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ABSTRACT 

 

Dispersal is expected to evolve as an adaptive mechanism to optimize individual fitness across 

the landscape. While there is evidence that active dispersers base emigration decisions (i.e., stay 

vs. leave) on perceived costs associated with environmental variation and inbreeding, it is less 

well understood how and whether these same factors influence dispersal distances– a more 

comprehensive measure of dispersal. More generally, the challenge of quantifying dispersal in 

the field has resulted in a paucity of data on the fate and fitness of dispersing individuals, leaving 

us with little knowledge of the factors influencing individual variation in dispersal distance. 

In my dissertation, I use a combination of morphological, performance, demographic, and 

genetic data to understand the selective forces shaping variation in dispersal distances in the 

stream salamander Gyrinophilus porphyriticus. 

 

 I found that phenotypic attributes that facilitate long-distance dispersal restrict other 

locomotor performances. Specifically, salamanders that dispersed farther in the field had longer 

forelimbs, but swam at slower velocities under experimental conditions. These results suggest 

that salamanders disperse by walking, and that longer limbs may lower the cost of transport by 

increasing stride length. Longer limbs also impose more drag, potentially explaining the reduced 

swimming performance of long-distance dispersers. These results are novel in demonstrating a 

trade-off associated with variation in dispersal distance, and, more broadly, suggest that this and 

other trade-offs associated with continuous variation in dispersal distance may constrain 

dispersal evolution. 

 

 I show that large-scale, long-term environmental variation – reflected in survival 

probabilities of G. porphyriticus – better predicts dispersal distances than current, local variation 

in habitat quality. These results provide the first empirical support for early theory that treated 

dispersal as an innate, ‘fixed’ quality of individuals that evolves in response to a history of 

spatiotemporal environmental variability at large spatial scales. Importantly, these results 

challenge the current paradigm that most dispersal is conditional and based on gathering 

information about local habitat quality. Based on these findings, I develop a conceptual model of 

dispersal evolution where informed strategies explain short-distance dispersal, and fixed 

strategies explain long-distance dispersal. 

 



 

 iv 

 I provide rare empirical support for the basic prediction that inbreeding risk decreases 

with dispersal distance. Further, I show that the degree to which dispersal functions to reduce 

inbreeding risk in G. prophyriticus is mediated by other environmental conditions influencing 

dispersal distance. Specifically, dispersal effectively reduced inbreeding risk in downstream 

reaches where dispersal distances were greater. In contrast, dispersal did not reduce inbreeding 

risk in upstream reaches, where dispersal distances were shorter. These results suggest that 

selective pressures influencing dispersal distances in G. porphyriticus can vary at fine spatial 

scales (i.e., reach-scale), with resulting consequences on inbreeding risk. Population genetic data 

indicated that inbreeding avoidance is likely not the primary driver of dispersal distance, but 

downstream and upstream reaches differ in many abiotic and biotic factors (i.e., discharge, 

streamwater chemistry, substrate size, prey and predator communities) that may explain 

differences in dispersal distances.  

 

 Collectively, my dissertation research provides empirical insight on the causes of 

individual variation in dispersal distance and constraints on the evolution of dispersal. My work 

demonstrates that data on dispersal distances are crucial for disentangling the relative importance 

of the many selective pressures influencing dispersal in natural populations. Previous studies 

have shown that long-distance dispersal is predicted to contribute disproportionately to range 

shifts in response to climate change and persistence in fragmented habitats. Therefore, 

understanding the processes promoting and constraining long-distance dispersal in natural 

populations may help to address several pressing applied issues. 
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CHAPTER 1: Introduction and overview 

 

 

 

Dispersal drives ecological and evolutionary processes by affecting population growth rates and 

gene flow (Tittler et al. 2006, Van Houtan et al. 2007). Long-distance dispersal, in particular, 

plays a key role in determining population and species persistence by setting the rate of range 

shifts and facilitating connectivity across fragmented habitat (Higgins and Richardson 1999; 

Bohrer et al. 2005; Phillips et al. 2008). However, the challenge of quantifying dispersal in the 

field has resulted in a paucity of data on the fate and fitness of dispersing individuals, leaving us 

with little understanding of the factors influencing individual variation in dispersal distance 

(Koenig et al. 1996, Nathan 2001, Lowe and McPeek 2014). Most dispersal research has instead 

focused on the discrete emigration response (stay vs. leave). Dispersal distances provide a more 

complete picture of the dispersal process because they encompass not only emigration, but also 

subsequent stages of transience and settlement (Ronce 2007, Clobert et al. 2009). 

 

Dispersal is expected to evolve as an adaptive mechanism to optimize individual fitness 

across the landscape (Bowler and Benton 2005). Dispersal incurs energy costs, opportunity costs, 

and mortality risk (reviewed in Bonte et al. 2012); thus, individuals should only disperse if the 

fitness gains of settling in a new environment exceed the fitness costs of moving or remaining 

philopatric. Across taxa, most individuals in natural populations do not disperse, whereas 

dispersal distances vary substantially among those that do, with few individuals exhibiting long-

distance dispersal (Mayr 1963, Endler 1977, Johnson and Gaines 1990). The relative rarity of 

long-distance dispersal suggests that the costs of dispersal increase with distance, but empirical 

tests of this prediction remain scarce.  

 

Decades of theory and empirical work have settled on three main sources of fitness costs 

that lead to the evolution of dispersal: kin competition (Hamilton and May 1977, Ronce et al. 

2000, Poethke et al. 2007), inbreeding (Bengtsson 1978, Waser et al. 1986, Guillaume and Perrin 

2006), and environmental variation (Johnson and Gaines 1990, McPeek and Holt 1992). While 

there is evidence that active dispersers base emigration decisions (i.e., stay vs. leave) on 

perceived costs associated with these factors (e.g., O’Riain et al. 1996; Bonte et al. 2008; Cote 

and Clobert 2010), it is less well understood how and whether the same factors influence 

dispersal distances. Additionally, we have little understanding of the relative importance of these 

drivers in natural populations where dispersal may be shaped by many, potentially conflicting 

selective forces (Guillaume & Perrin, 2006; Perrin & Goudet, 2001; Waser, Austad, & Keane, 

1986). 

 

In my dissertation, I use a combination of morphological, performance, demographic, and 

genetic data to understand the selective forces shaping variation in dispersal distances in the 
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stream salamander Gyrinophilus porphyriticus. My specific research objectives were to test for 

locomotion-based tradeoffs associated with variation in dispersal distance, test for effects of 

environmental variation on dispersal distance, and evaluate the effects of dispersal distance on 

inbreeding risk. Last, I integrate early theory and recent empirical work to develop a new 

conceptual model of dispersal evolution – where dispersal strategies differ with dispersal 

distances.  

 

The goal of my dissertation was to understand the processes leading to continuous 

variation in dispersal distances, but this naturally leads to the question of how to define long-

distance dispersal. It is generally acknowledged that short-distance dispersal influences local 

processes (i.e., population dynamics, resource use), while long-distance dispersal affects large-

scale process (i.e., range shifts, colonization dynamics; Kot et al. 1996, Hanski 1998, Nathan et 

al. 2003). However, ‘local’ and ‘large-scale’ must still be scaled to the movement capacities of 

species. Likewise, thresholds for distinguishing long-distance dispersal must be species-specific, 

but should be considerably higher than mean or median dispersal distances (Nathan et al. 2003). 

The dispersal distances I quantified in G. porphyriticus ranged from 0 – 881m, and the mean and 

median distances were 12.77m and 1m, respectively. Therefore, I am confident that I detected 

movements that were both long-distance and rare relative to the majority of movements by G. 

porphyriticus, but I also acknowledge that the extent to which these long-distance movements 

affect large-scale processes remains an open question. Because my research did not require 

delineating individuals as short- or long-distance dispersers, the analyses I present here are not 

biased by the subjectivity associated with defining long-distance dispersal. 

 

 

Research objectives and findings 

 

A distance-performance tradeoff in the phenotypic basis of dispersal 

 

The costs of dispersal are widely believed to trade off with the benefits (e.g., reduced 

competition, increased reproductive success) to influence emigration decisions (Clobert et al. 

2009; Bonte et al. 2012; Ronce and Clobert 2012). Differences in morphological, physiological, 

and behaviors traits between dispersers and residents may indicate selection for ‘dispersal 

phenotypes’ to reduce dispersal costs (Harrison 1980; Benard and McCauley 2008; Edelaar and 

Bolnick 2012), but phenotypic attributes that facilitate dispersal may also induce costs. Cost-

benefit trade-offs are well documented for the discrete emigration response (Denno et al. 1989, 

Mole and Zera 1993), but this framework has not been applied to understand individual variation 

in dispersal distance. However, the rarity of long-distance dispersal highlights the need to 

consider the possibility that phenotypic specialization for long-distance dispersal creates costs 

that have gone unrecognized. Instead, variation in dispersal distance is often attributed to 
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extrinsic stochastic or environmental factors (Carlquist 1981, Tufto et al. 1997, Morales 2002), 

rather than phenotypic attributes of the individual. 

 

 In Chapter 2, I assessed locomotion-based trade-offs associated with dispersal distance. 

Locomotion serves many different functions, including foraging, prey capture, predator escape, 

and dispersal, each requiring different morphological or physiological specializations. In aquatic 

vertebrates, morphological specialization for sustained swimming for long-distance dispersal 

may create a cost through reduced maneuverability, affecting fast-starts for prey capture or 

predator escape (Webb 1984, Weihs 2002). I used 4 years of intensive, spatially explicit capture-

mark-recapture data to test for a morphological basis of dispersal distance under natural field 

conditions. Next, I tested whether morphological traits related to dispersal distance in the field 

also influenced swimming performance in an experimental water chamber. Specifically, I 

addressed the following research question: 

 Do phenotypic attributes associated with variation in dispersal distance constrain 

swimming performance? 

 I found that salamanders that dispersed farther in the field had longer forelimbs but swam 

at slower velocities under experimental conditions. The positive relationship between forelimb 

length and dispersal distance suggests that G. porphyriticus disperse primarily via walking 

because salamanders do not actively use their limbs for swimming (Delvolvé et al. 1997). Longer 

forelimbs may facilitate moving greater distances by increasing stride length, thereby lowering 

the cost of transport (Pontzer 2007). Post-hoc analyses showed that the longest-limbed 

individuals could experience up to 18% more drag than the shortest-limbed individuals, 

potentially explaining the reduced swimming performance of long-distance dispersers. This 

study is novel in demonstrating a trade-off associated with variation in dispersal distance and, 

specifically, that phenotypic attributes that facilitate long-distance dispersal restrict other 

locomotor performances. This work challenges the long-standing view that dispersal distance is 

extrinsically controlled by environmental factors, and underscores the importance of considering 

dispersal as a continuous trait that is shaped by selection. 

 

Effects of environmental variation on dispersal distance 

 

Dispersal represents a mechanism to escape fitness costs resulting from changes in 

environmental conditions (Johnson and Gaines 1990, McPeek and Holt 1992). Two basic, 

conceptual models of dispersal responses to environmental variation have emerged in the 

literature: conditional and fixed dispersal strategies. Under conditional strategies, dispersal 

decisions are based on the individual's ability to perceive and act on information about local 

conditions, and dispersal is, fundamentally, a plastic response to current environmental variation 

(Clobert et al. 2009). Under fixed strategies, dispersal is an evolved response to long-term 

patterns of environmental variability at large spatial scales (i.e., across multiple potential 

settlement sites), rather than a conditional response to the local environment. Specifically, fixed 
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dispersal is predicted to evolve when habitat quality varies stochastically across potential 

settlement sites, both temporally and spatially (Kuno 1981; Levin et al. 1984; McPeek and Holt 

1992). Empirical support is more abundant for conditional dispersal, leading researchers to 

speculate that conditional strategies are more evolutionarily advantageous, and therefore, more 

prevalent than fixed strategies. However, because most studies do not track the fate of dispersers, 

we have little understanding of whether and how conditional and fixed emigration responses – or 

the underlying stimuli themselves – relate to ultimate dispersal distances.  

  

 In Chapter 3, I used four years of spatially explicit, capture-mark-recapture data from 

three headwater streams to test whether current or long-term patterns of environmental variation 

– matching conditional vs. fixed models of dispersal evolution – predict variation in dispersal 

distances. For my test of conditional dispersal, I used spatial variation in salamander body 

condition as an index of current environmental variation. For my test of fixed dispersal, I used 

survival probability from multistate CMR models as an index of long-term patterns of 

environmental variation, and specifically mortality risk resulting from that variation (Stacey and 

Taper 1992, Nicoll et al. 1993, Lande 1993). I addressed the following research question: 

 Are current or long-term patterns of environmental variation associated with variation in 

dispersal distances? 

 I found that dispersal distance increased in environments characterized by low survival 

probability – a long-term and large-scale measure of habitat quality. Dispersal distance was 

unrelated to spatial variation in body condition, a measure of current, local habitat quality. Long-

distance dispersal in my study streams, therefore, likely represents a response to a historical 

pattern of environmental variation resulting in low survival, consistent with fixed models of 

dispersal evolution (Gadgil 1971, Kuno 1981, Levin et al. 1984, McPeek and Holt 1992). This 

finding supports the hypothesis that habitats characterized by low survival are risky from an 

individual’s perspective, causing the relative risk of long-distance dispersal to decrease and the 

relative benefit to increase. Post-hoc analyses showed that neither current nor long-term patterns 

of environmental variation affected dispersal propensity, a more common measure of dispersal, 

underscoring the necessity of treating dispersal propensity and dispersal distance as functionally 

distinct processes. More broadly, this study provides the first empirical support for fixed models 

of dispersal evolution predicting that dispersal evolves in response to a history of spatiotemporal 

environmental variation, rather than individual perceptions of immediate conditions. 

 

Dispersal distance predicts inbreeding risk 

 

Avoiding the harmful effects of inbreeding  has been identified as an important driver of 

dispersal evolution (Bengtsson 1978, Waser et al. 1986). Dispersal distances should strongly 

affect inbreeding risk because the likelihood of mating with relatives decreases with increasing 

distances, yet few studies have tested this basic prediction (Szulkin and Sheldon 2008). 

Evaluating dispersal distances in the context of the spatial scale of genetic relatedness will 
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provide insight on the importance of inbreeding avoidance relative to other selective pressures 

influencing dispersal distances. Importantly, the degree to which dispersal functions to reduce 

inbreeding may be mediated by other environmental conditions influencing dispersal distance, 

such as the presence of predators, competition for resources, and changes in habitat quality 

(Cronin et al. 2004, Bitume et al. 2013, Baines et al. 2014).  

 

 In Chapter 4, I evaluated whether dispersal distance predicts inbreeding risk, and whether 

this relationship changes under different environmental conditions. Many abiotic and biotic 

factors differ along streams, such as  discharge, streamwater chemistry, substrate size, and the 

composition of prey and predator communities, creating a diverse suite of selective pressures that 

might influence salamander dispersal (Vannote et al. 1980, Hubert and Kozel 1993, Lowe and 

Bolger 2002, McGuire et al. 2014). I hypothesized that these or other environmental factors may 

lead to different relationships between dispersal distance and inbreeding risk in the downstream 

and upstream reaches of headwater streams in G. porphyriticus. In this chapter, I used 

demographic and population genetic data from 5 headwater streams used as replicates to address 

the following research questions: 

 Do dispersal distances differ between downstream and upstream reaches? 

 Does the effect of dispersal on inbreeding risk differ between downstream and upstream 

reaches? 

 I found that dispersal distances were greater in downstream reaches than upstream 

reaches, suggesting that selective pressures influencing dispersal differ at fine spatial scales. 

Inbreeding risk, measured as the proportion of individuals within 50m that were relatives, was 

lower for dispersers than residents in downstream reaches. In contrast, there was no difference in 

inbreeding risk between dispersers and residents in upstream reaches. These results demonstrate 

that dispersal reduces inbreeding risk and that environmentally-associated variation in dispersal 

distances leads to variation in the effects of dispersal in inbreeding risk. Population genetic data 

indicated that inbreeding depression is unlikely in our study populations, suggesting that 

selective pressures other than inbreeding avoidance maintain dispersal in G. porphyriticus. These 

results underscore the importance of interpreting dispersal distances in the context of spatial 

patterns of genetic relatedness to disentangle inbreeding avoidance from other selective pressures 

influencing dispersal distances. 

 

Scale- dependent evolution of dispersal 

 

In Chapter 5, I develop a conceptual model that can be used to explain variation in dispersal 

distances in natural populations. This model integrates conditional and fixed models of dispersal 

evolution (introduced in Chapter 3) in one scale-dependent model. Conditional and fixed 

dispersal models represent two very different views of dispersal evolution, hinging on 

differences in the perception and use of information. My argument for a scale-dependent model 

of dispersal evolution is based primarily on the scaling of information-gathering costs with 
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dispersal distance. Therefore, for clarity, here I refer to conditional strategies as ‘informed’ 

strategies. 

 

 Models of informed dispersal are based on individuals’ ability to perceive and assess 

fitness returns at the current location and in transit to a settlement site. This view is supported by 

accumulating empirical evidence that individuals use information about habitat quality and 

environmental conditions to make emigration and settlement decisions (e.g., Massot et al. 2002; 

Bonte et al. 2008). In contrast, early theoretical models treated dispersal as a ‘fixed’ trait, where 

individuals have an innate propensity to disperse that is independent of local conditions (e.g., 

Gadgil 1971; Roff 1975; Hastings 1983; Holt 1985; McPeek and Holt 1992). The fitness benefits 

of fixed dispersal strategies stem from unpredictable spatiotemporal variation in ecological 

conditions, and dispersal represents a bet-hedging strategy that ultimately maximized the long-

term geometric mean fitness of dispersers (McPeek 2017). Empirical support for fixed dispersal, 

however, is still scarce, leading researchers to speculate that informed strategies are more 

evolutionarily advantageous and common (Bowler and Benton 2005, Bonte et al. 2008, Clobert 

et al. 2009). 

 

 I suggest that the prevalence of the informed strategy in empirical studies is, in part, an 

artifact of a focus on the discrete emigration and settlement responses associated with short-

distance movements. The importance of information becomes less clear when we consider 

continuous variation in dispersal distance. Specifically, the dramatic increase in potential 

settlement sites with increasing dispersal distances make informed strategies impractical and 

costly at large spatial scales. I propose that informed strategies are useful for explaining the 

emigration and settlement decisions that govern short-distance dispersal, but fixed strategies are 

more likely to explain long-distance dispersal because they reduce the cost of large-scale 

movements. Environmental conditions are also more likely to vary unpredictably with increasing 

distance from an origin, further reducing the benefits of information gathering at large spatial 

scales. 

 

 I hope this opinion article will unify and advance research on the evolutionary forces 

producing variation in the frequency and distance of dispersal events in natural populations. 

Fixed strategies merit more attention in dispersal research, and my hypothesis that informed and 

fixed strategies can act simultaneously illuminates opportunities for further theoretical and 

applied work. For example, range shifts in response to a shifting climate window will likely 

require long-distance dispersal to cross large gaps of unsuitable habitat (Travis and Dytham 

2012). Therefore, identifying individual- or species-level traits underlying informed or fixed 

strategies could help predict species persistence under ongoing environmental change.  
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Synthesis and significance 

 

My dissertation research provides empirical insight on the causes of individual variation in 

dispersal distance and constraints on the evolution of dispersal (Burton et al. 2010, Burgess et al. 

2015, Bonte and Dahirel 2017). The difficulty of tracking animals in the field has resulted in an 

historical focus on emigration and settlement stages of dispersal, while processes affecting 

distance decisions during transience have received comparatively less attention (Bowler and 

Benton 2005). By focusing on phenotypic differentiation among dispersers, rather than between 

dispersers and residents, my research is novel in showing that phenotypic attributes that facilitate 

long-distance dispersal can constrain other locomotor performances. More broadly, this and 

other trade-offs associated with continuous variation in dispersal distance may constrain 

dispersal evolution. The importance of considering continuous variation in dispersal distance in 

dispersal research is further underscored by my results showing that patterns of environmental 

variation leading to increased dispersal distances do not affect dispersal propensity (i.e., the 

discrete emigration response). This finding cautions against using dispersal propensity as a proxy 

for dispersal distance, and, perhaps more importantly, suggests that dispersal propensity and 

distance evolve independently (Bonte et al. 2010, Duputié and Massol 2013, Burgess et al. 

2015).  

 

 Data on dispersal distances are also crucial for disentangling the relative importance of 

the many selective pressures influencing dispersal in natural populations. The prediction that 

different distances are required to alleviate fitness costs associated with kin competition, 

inbreeding, and environmental variation – the 3 putative drivers of dispersal evolution – remains 

largely untested (Duputié and Massol 2013). By quantifying the spatial scale of genetic 

relatedness, I was able to determine that dispersal distances were great enough in downstream 

reaches to lower inbreeding risk, but this effect was not observed in upstream reaches where 

dispersal distances were shorter. These results therefore suggest that inbreeding avoidance is not 

the primary driver of dispersal distances in G. porphyriticus, and that selective pressures 

influencing dispersal distances differ at fine spatial scales in headwater systems. Importantly, 

these data provide rare empirical support for the basic prediction that inbreeding risk decreases 

with dispersal distance. 

 

 My research challenges the current paradigm that most dispersal is a conditional response 

to local environmental cues. Instead, I show that large-scale, long-term environmental variation – 

reflected in survival probabilities – better predicts dispersal distances than current, local variation 

in habitat quality. These results provide the first empirical support for early theory that treated 

dispersal as an innate, ‘fixed’ quality of individuals that evolves in response to stochastic, 

spatiotemporal variation in environmental conditions (Kuno 1981, Levin et al. 1984, McPeek 

and Holt 1992). I suggest fixed dispersal strategies may help to explain the evolution and 

maintenance of long-distance dispersal in natural populations, where the costs of information-
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gathering about potential settlement sites under conditional dispersal strategies become 

prohibitively high. Previous work has shown that long-distance dispersal is predicted to 

contribute disproportionately to range shifts in response to climate change (Higgins and 

Richardson 1999, Phillips et al. 2008) and persistence in fragmented habitats (Muller-Landau et 

al. 2003, Bohrer et al. 2005). Therefore, future efforts to characterize fixed dispersal and 

associated phenotypes in natural populations may help to address several pressing applied issues. 

 

 

Dissertation format 

 

The following chapters are formatted for publication in peer-reviewed scientific journals. I use 

the collective ‘we’ throughout the dissertation to reflect that each of these chapters include 

important contributions from many collaborators. 
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CHAPTER 2: A distance-performance trade-off in the phenotypic basis of dispersal 

 

 

Abstract 

 

Across taxa, individuals vary in how far they disperse, with most individuals staying close to 

their origin and fewer dispersing long distances. Costs associated with dispersal (e.g., energy, 

risk) are widely believed to trade off with benefits (e.g., reduced competition, increased 

reproductive success) to influence dispersal propensity. However, this framework has not been 

applied to understand variation in dispersal distance, which is instead generally attributed to 

extrinsic environmental factors. We hypothesized that variation in dispersal distances results 

from trade-offs associated with other aspects of locomotor performance. We tested this 

hypothesis in the stream salamander Gyrinophilus porphyriticus, and we found that salamanders 

that dispersed farther in the field had longer forelimbs but swam at slower velocities under 

experimental conditions. The reduced swimming performance of long-distance dispersers likely 

results from drag imposed by longer forelimbs. Longer forelimbs may facilitate moving longer 

distances, but the proximate costs associated with reduced swimming performance may help to 

explain the rarity of long-distance dispersal. The historical focus on environmental drivers of 

dispersal distances misses the importance of individual traits and associated trade-offs among 

traits affecting locomotion. 

 

 

Introduction 

 

Dispersal is a key driver of ecological and evolutionary processes by affecting population growth 

rates and gene flow (Tittler et al. 2006, Van Houtan et al. 2007). Across taxa, most individuals in 

natural populations do not disperse, whereas dispersal distances vary substantially among those 

that do, with few individuals exhibiting long-distance dispersal (Mayr 1963, Endler 1977, 

Johnson and Gaines 1990). However, most dispersal research has focused on the discrete 

emigration response (stay or leave), leaving us with little understanding of the factors influencing 

individual variation in dispersal distance. Identifying the factors that underlie variation in 

dispersal distance is critical because long-distance dispersal contributes disproportionately to 

range shifts (Higgins and Richardson 1999), invasions (Kot et al. 1996; Miller and Tenhumberg 

2010; Lindström et al. 2011), and population persistence (Bohrer et al. 2005).   

 

 Dispersal incurs energy, mortality risk, and opportunity costs that are widely believed to 

trade off with the benefits of dispersal (e.g., reduced competition, increased reproductive 

success) to influence the propensity to disperse (Clobert et al. 2009; Bonte et al. 2012; Ronce and 

Clobert 2012). We now have evidence from multiple taxa that dispersing individuals are not a 

random subset of the population and, instead, differ from residents in morphological, 
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physiological, and behavioral traits (Harrison 1980; Benard and McCauley 2008; Edelaar and 

Bolnick 2012). These differences may indicate selection for ‘dispersal phenotypes’, but 

phenotypic attributes that facilitate dispersal may also induce costs. For example, investment in 

flight structures for dispersal creates a resource allocation trade-off with reproduction in many 

wing dimorphic insects (Denno et al. 1989, Mole and Zera 1993). However, the influence of 

phenotypic variation across dispersing individuals on dispersal distances is relatively unstudied 

due to the difficulty of directly quantifying dispersal distances in the field (Koenig et al. 1996; 

Nathan 2001; Lowe and McPeek 2012). The rarity of long-distance dispersal alone suggests that 

it is costly, and highlights the need to consider the possibility that phenotypic specialization for 

long-distance dispersal also creates costs that have gone unrecognized. Indeed, cost-benefit 

trade-offs are well documented for the discrete emigration response, but this framework has not 

been applied to understand individual variation in dispersal distance. Instead, variation in 

dispersal distance is often attributed to extrinsic stochastic or environmental factors (Carlquist 

1981, Tufto et al. 1997, Morales 2002), rather than phenotypic attributes of the individual. 

 

 Locomotor performance, for example, seems a likely candidate to influence distances that 

individuals move, as well as potential costs of long-distance dispersal. Locomotion serves many 

different functions, including foraging, prey capture, predator escape, and dispersal, each 

requiring different morphological or physiological specializations. In aquatic vertebrates, 

morphological specialization to maximize stability and reduce drag comes at a cost to 

maneuverability (Webb 1984, Weihs 2002). These locomotor performance differences may 

allow sustained swimming for long-distance dispersal, but create a cost through reduced fast-

starts for prey capture or predator escape. We cannot, however, assess such trade-offs using 

indirect, proximate indices of dispersal ability (e.g., velocity, acceleration, maneuverability) 

because this common approach inherently confounds dispersal with other aspects of locomotor 

performance (Cormont et al. 2011, Bringloe et al. 2013, Arnold et al. 2016). The lack of direct 

data on individual dispersal distances and their associated phenotypes under natural conditions 

has, until now, precluded more rigorous assessment. 

 

 We assessed locomotion-based trade-offs associated with dispersal distance in the stream 

salamander Gyrinophilus porphyriticus. Our goal was to provide novel empirical insight on 

whether phenotypic attributes associated with variation in dispersal distance constrain other 

aspects of locomotor performance. First, we used 4 years of intensive, spatially explicit capture-

mark-recapture data to test for a morphological basis of dispersal distance under natural field 

conditions. Trunk and leg morphology are known to affect swimming and walking performance 

in salamanders, respectively (D’Août and Aerts 1999, Azizi and Horton 2004), leading to 

predictions that these traits may influence dispersal distance in G. porphyriticus. Next, we tested 

whether morphological traits related to dispersal distance in the field also influenced swimming 

performance in an experimental water chamber. Gyrinophilus porphyriticus may disperse by 

swimming, or, given the turbulent nature of headwater streams, may instead walk along the 
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stream bottom or on land (adults only) (Grover and Wilbur 2002, Greene et al. 2008). However, 

regardless of the mode of locomotion employed for dispersal, swimming is likely important for 

other ecological functions, including capture of invertebrate prey and escape from aquatic 

predators (Brodie et al. 1979, Petranka 1988, Resetarits 1995). 

 

 

Materials and methods 

 

Study species and site 

 

Gyrinophilus porphyriticus belongs to the Plethodontidae, the lungless salamanders, and is found 

in small, cool, well-oxygenated streams along the Appalachian uplift in the eastern United States 

(Petranka 1988). Larvae are exclusively aquatic (Bruce 1980) and adults are mainly aquatic but 

can forage terrestrially at night (Degraaf and Rudis 1990, Deban and Marks 2002). During the 

day, larvae and adults are found in interstitial spaces among cobble (Bruce 2003). The larval 

period lasts 3-5 years (Bruce 1980) and adults can live to be 14 years (W.H. Lowe, unpublished 

data). Previous work in this system has shown that both larval and adult G. porphyriticus 

disperse (Lowe 2003, Lowe et al. 2006b), so both life stages were the focus of this study. This 

species is suited for dispersal studies because movements are generally constrained to linear 

stream corridors, so detection probability is less affected by movement distance, overcoming a 

major empirical hurdle (Koenig et al. 1996). Additionally, the relative mobility of G. 

porphyriticus is low, so surveys can detect a wide range of dispersal distances, including rare 

long-distance dispersal events. 

 

 This work was conducted in three hydrologically independent first order streams (Bear, 

Paradise, Zigzag) in the Hubbard Brook Experimental Forest, located in the White Mountains of 

central New Hampshire (43°56′N, 71°45′W). These streams differ in environmental conditions, 

including aspect, daily discharge, and drainage slope (Lowe et al. 2006b, McGuire et al. 2014). 

 

Capture-mark-recapture survey methods 

 

Capture-mark-recapture surveys were conducted in June-September of 2012 – 2015. 1-kilometer 

sections encompassing the majority of the perennial portion of each stream were surveyed 9 

times throughout each summer, for a total of 36 surveys per stream over the 4-year study period. 

A constant search effort was maintained by turning one cover object per meter of stream; thus, 

surveys provided spatially explicit information about the capture locations of individual 

salamanders. Previously unmarked salamanders were injected with visible implant elastomer 

(Northwest Marine Technologies, Washington, USA). All encountered individuals were 

photographed (see below) and snout-vent length (SVL) was recorded. 
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Quantifying dispersal distance 

 

We quantified dispersal distances in recaptured individuals as the net distance moved (m along 

the stream) over the 4-year study period. Due to the rarity of long-distance dispersal, it was 

necessary to pool movement data across streams, sexes, life-history stages and time to achieve 

sufficient sample sizes to test for relationships between morphology, dispersal distance, and 

swimming performance. Previous surveys of G. porphyriticus showed no differences in 

movement distributions of adults v. larvae or males v. females (Lowe 2003, Lowe et al. 2006a). 

Additionally, movement is not influenced by intra-annual variation in stream flow (Lowe 2003, 

Lowe et al. 2006a), justifying pooling movement data across streams. 

 

 Home ranges in G. porphyriticus are approximately 3m2 (Lowe 2003), which roughly 

translates to 3m in stream length. Therefore, we considered a dispersal event as any movement > 

4m in stream length from an initial location to ensure that dispersal movements were distinct 

from daily movements within the home range (Van Dyck and Baguette 2005, Burgess et al. 

2015). There was a strong correlation between the total distance moved over the study period and 

net movement from the initial capture location in individuals that were recaptured more than 

once (n = 34, r = 0.86, p < 0.001), indicating that most dispersal movements are unidirectional 

(i.e., only downstream or only upstream) and permanent.  

 

Morphological analyses 

 

To test whether individual variation in trunk and limb morphology was associated with 

differences in dispersal distance, we photographed each captured individual alongside a ruler and 

measured trunk width, trunk length, humerus length and femur length from these digital photos. 

Humerus length and femur length served as proxies for fore- and hindlimb morphologies, as 

obtaining accurate measurements of the distal portions of the limbs from photographs was 

generally not possible. Because we expected all body measurements to be correlated with the 

overall size of the animal (SVL), we generated size-adjusted shape variables using principle 

components analysis (Adams and Beachy 2001, Cosentino and Droney 2016). We extracted two 

principal components from each of four covariance matrices representing the four body 

elements. Each covariance matrix included log-transformed SVL and one of the four body 

measurements (log-transformed). The first principal components (PC1) represented the 

generalized size of the salamander, and the second principal components (PC2) represented size-

adjusted morphological characters.  

 

 To test for an association between morphology and dispersal distance, we performed 

stepwise multiple regression analysis to identify size-adjusted morphological characters (PC2s) 

that best predicted dispersal distance in individuals that dispersed (moved > 4m). Model 

selection was based on Akaike information criterion (AIC). Our initial model only included four 
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predictor variables that were based on a priori hypotheses of how morphology affects dispersal; 

therefore, we assumed low family-wise error.  

 

Performance assays 

 

To test for a locomotion-based trade-off with dispersal distance, we assessed burst-swimming 

performance in controlled experiments. We constructed an in-stream chamber (71cm long × 

× 22.5cm wide × 25cm tall) that was placed in a pool in the stream channel in Zigzag brook so 

that salamanders did not experience any flow or incline during the swimming trials. The water 

depth in the chamber was 8 – 10cm. Previously marked individuals captured in 2014 and 2015 

underwent swimming trials. Salamanders were prodded a maximum of 3 times to elicit a swim 

response. Using dorsal-view video, we sampled swimming trials at 60 frames per second using a 

GoPro Black 3+. We used a wide-view to capture the length of the swimming chamber, which 

created distortion that we removed before kinematic analyses. We calculated an undistortion 

transformation using a gridded image and X-ray of Moving Morphology (XROMM) Undistorter, 

and we applied the undistortion correction to each video file using the XrayProject 2.2.5 script in 

MATLAB (Brainerd et al. 2010). A contrasting bead attached with a rubber band on the 

salamander’s torso served as an anatomical landmark, and this point was digitized in MATLAB 

using a custom script, DLTdv5 (Hedrick 2008). We used Igor Pro (v.6) to derive mean velocity 

(m/s) and peak acceleration (m/s2) from digitized position data (m). These measures were 

obtained by averaging over a series of 11 digitized points to minimize effects of random 

digitizing error that were inflated by taking derivatives. This smoothing may produce different 

values from instantaneous measures achieved with higher frame rates or from other averaging 

algorithms (Walker 1998). However, the performance of all animals in this study was evaluated 

using the same methods, such that performance measures within this study are directly 

comparable. Salamanders were immediately returned to their last capture location following 

swimming trials. The challenge of collecting both dispersal and performance data from the same 

set of individuals prevented us from assessing the repeatability of swimming performance, but 

other studies have demonstrated high repeatability of locomotor performance in amphibians 

(Walton 1988, Kolok 1999). 

 

 To assess whether the same morphological variable(s) associated with dispersal distance 

also influenced swimming performance, we used stepwise multiple regression analysis to 

identify the most predictive model of each performance metric from the set of size-adjusted trunk 

and limb variables (PC2s). Because we were interested in whether swimming performance itself 

predicted dispersal distance, we used linear regression to evaluate this possibility. All statistical 

analyses were conducted in the program R version 3.3.1 (R Development Core Team 2016). 
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Results 

 

Capture-mark-recapture surveys 

 

We marked 2368 G. porphyriticus individuals over the 4-year study period in the 3 study 

streams. Of these, 575 individuals were recaptured, including 159 adults and 417 larvae. There 

was no difference in the dispersal distributions of larvae and adults (Kolmogorov-Smirnov test, p  

> 0.28). 132 individuals dispersed > 4m from their initial locations. The maximum dispersal 

distance detected was 481m (Figure 1). 

 

 To test for locomotion-based trade-offs with dispersal distance, we needed individuals 

that dispersed in the field (moved > 4m) and had measures of swimming performance (n = 50). 

This subset included 26 adults and 24 larvae. The range of dispersal distances in this reduced 

dataset matched that of the full dataset, and the distributions did not differ (Kolmogorov-

Smirnov test, p = 0.95; Figure 1).  

 

Morphological variation  

 

The first principal components of each of the four covariance matrices representing the four body 

elements were positively correlated with log-transformed SVL, confirming that PC1s represented 

the generalized size of salamanders (r = 0.95 – 0.99). The second principal components, 

therefore, represented size-adjusted shape variables. Second principal components were 

positively weighted by the body measurements; therefore, the proportional size of each body 

element (e.g. log trunk length / log SVL) was positively correlated with PC2 score (r = 0.43 – 

0.84, p < 0.001, Figure 2) Among the PC2 values, only trunk length PC2 and trunk width PC2 

were correlated (r = 0.58, n = 50, p < 0.001).  

 

Morphological predictors of dispersal distance  

 

Among dispersers (n = 50), the single significant morphological correlate of log-transformed 

dispersal distance was forelimb PC2 (β = 0.36, SE = 0.17, t = 2.14, P = 0.037, r2 = 0.07), such 

that individuals with longer forelimbs dispersed farther (Figure 3). Dispersal distance was 

unrelated to SVL and trunk and limb PC1s (r = 0.0-0.1, n = 50, P = 0.49-0.99), indicating that 

there was no ontogenetic variation in dispersal distance. 

 

Morphological predictors of swimming performance 

 

Log-transformed peak velocity (mean: 0.18 m/s; range: 0.05 – 0.35 m/s) and log-transformed 

peak acceleration (mean: 0.76 m/s2; range: 0.25 – 1.26 m/s2) were positively correlated (r = 0.82, 

n = 50, p < 0.001); therefore, we used only peak velocity as our swimming performance metric. 
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Among dispersers, forelimb PC2 was the single significant morphological correlate of peak 

velocity (β = -0.04, SE = 0.02, t = -2.06, p = 0.042, r2 = 0.06) such that individuals with shorter 

forelimbs attained the highest peak velocities (Figure 3). Peak velocity was unrelated to SVL and 

trunk and limb PC1s (r = 0.06-0.15, n = 50, p = 0.31-0.68), indicating that there was no 

ontogenetic variation in swimming velocity. Peak velocity was unrelated to dispersal distance (β 

= -0.48, SE = 1.18, t = -0.41, p = 0.67).  

 

 

Discussion 

 

Our study is novel in demonstrating a trade-off associated with continuous variation in dispersal 

distance and, specifically, that phenotypic attributes that facilitate long-distance dispersal restrict 

other locomotor performances. These results provide empirical insight on the causes of 

individual variation in dispersal distance and constraints on the evolution of dispersal (Burton et 

al. 2010, Burgess et al. 2015, Bonte and Dahirel 2017), and support an alternative to the 

historical view that dispersal distance is controlled by extrinsic environmental factors. As 

importantly, by integrating field and experimental data, this study shows the risk of relying on 

proximate measures of locomotor performance (e.g., swimming velocity) as proxies for dispersal 

ability (Cormont et al. 2011, Bringloe et al. 2013, Arnold et al. 2016). Our results suggest that 

these proximate performance measures may not only misrepresent dispersal ability, but instead 

reflect fundamental constraints on dispersal ability.  

 

 The positive relationship between forelimb length and dispersal distance suggests that G. 

porphyriticus individuals disperse primarily via walking – either underwater (larvae and adults) 

or overland (adults only) – because salamanders do not actively use their limbs for swimming 

(Delvolvé et al. 1997). This finding adds to a growing body of work linking limb morphology to 

dispersal or movement capacity (Phillips et al. 2006, Lowe and McPeek 2012, Arnold et al. 

2016). Salamander limbs function in walking by generating thrust against the ground to propel 

the animal forward (Azizi and Horton 2004). Mechanistically, longer limbs increase stride length 

and allow the animal to move a greater distance per step, thereby lowering the cost of transport 

(Pontzer 2007). The absence of a relationship between hindlimb length and dispersal distance in 

our data may be a function of the reduced requirement for stability in aqueous environments, in 

contrast to walking on land where legs play a larger role in supporting the body (Ashley-Ross 

1994).  

 

 Longer limbs increase hydrodynamic drag during swimming, which may explain why 

swimming velocity declined with forelimb length (Figure 3). Aquatic salamanders generally hold 

their limbs close to the body during swimming to reduce drag (Delvolvé et al. 1997, Bennett et 

al. 2001). However, we noticed that G. porphyriticus individuals displayed a wide range of limb 

postures while swimming – in some cases extending them to be nearly perpendicular to the long 
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axis of the body. We modelled drag as a function of forelimb length in G. porphyriticus and 

found that the longest-limbed individuals could experience up to 18% more drag than the 

shortest-limbed individuals (range 5.0 – 5.9 milliNewtons; see Appendix for details). This 

increase in drag solely due to longer forelimbs could represent a significant selective pressure on 

limb length in aquatic salamanders. 

 

 Our finding that the same trait was associated with both dispersal distance and swimming 

performance, but in opposite ways, is indicative of an adaptive trade-off. Using proximate 

performance measures, trade-offs between endurance and speed have been shown in other 

species (Bennett et al. 1989, Reidy et al. 2000), and our results may reflect a similar relationship. 

We did not measure endurance directly, but our results suggest that dispersal distance is 

determined by the reduction in transport costs of walking with increased stride length, rather than 

by improvements in swimming performance. Swimming speed has, however, been linked to 

predator escape in larval amphibians (Dayton et al. 2005), including larval salamanders (Storfer 

1999), and both adult and larval G. porphyrticus are susceptible to predation (Brodie et al. 1979, 

Resetarits 1991, 1995). Therefore, it is likely that predation pressure represents a strong selective 

force shaping swimming performance in this system.  

 

 The lack of correlation between body size and dispersal distance is surprising because 

other ecological interactions change with body size in G. porphyriticus. For example, predation 

pressure from brook trout is size-dependent, with larvae being more affected than adults due to 

the gape limitation of brook trout (Resetarits 1995, Lowe et al. 2004). Thus, if dispersal were 

extrinsically controlled by environmental factors (Carlquist 1981, Tufto et al. 1997, Morales 

2002), we would expect that dispersal distance might also change with body size and life-history 

stage. Because we did not detect these ontogenetic relationships, we interpret our findings as 

support for the role of natural selection in maintaining variation in dispersal phenotypes and 

distances, rather than dispersal distance being conditional on stage/size or environmental cues. 

Tests of the fitness consequences and genetic basis of the forelimb phenotype are clearly needed 

to definitively assess this interpretation. Furthermore, given the complexity of the dispersal 

process (Nathan 2001, Ronce 2007), and the scatter in our data (Figure 3), accurate predictions 

of dispersal distance will likely rely on models that incorporate both individual traits and 

extrinsic environmental factors (Bocedi et al. 2014, Henry et al. 2016).  
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Figure 1. Dispersal distances of Gyrinophilus porphyriticus from 3 streams in the Hubbard 

Brook Watershed in central New Hampshire (inset map). Distances are from individuals 

recaptured between 2012-2015 that dispersed > 4m from their initial location (n = 150). Data are 

binned in 4m increments. Grey portions of the columns are individuals for which both 

morphological and performance data were collected (n = 50).  
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Figure 2. Correlations between size-adjusted morphological variables (PC2 scores) and 

proportional size of each body element (e.g. log trunk length / log snout-vent length [SVL]) for 

Gyrinophilus porphyriticus individuals in the Hubbard Brook Watershed (n = 50). Letters in the 

top left of plots correspond to the actual measurements on salamanders. PC2 scores were from 

principal components analyses including each body measurement and SVL. The percentage of 

variation accounted for by these PC2s is indicated within each plot. Lines of best fit are plotted 

for each correlation to show trends.  
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figure 

 
 

Figure 3. The relationship between sized-adjusted forelimb length (PC2) and dispersal distance 

(left) and swimming velocity (right) in Gyrinophilus porphyriticus individuals that dispersed > 

4m in the Hubbard Brook Watershed (n = 50). Dotted linear regression lines indicate significant 

associations (P < 0.05); grey bands indicate 95% confidence intervals. Size-adjusted forelimb 

length is positively weighted by humerus length; therefore individuals with longer forelimbs 

dispersed the farthest but swam at the lowest velocities.  
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Appendix 

 

Drag calculation 

 

To explore the potential for forearm length to increase drag, we calculated the extent to which 

the range of forearm lengths represented in our study salamanders might increase drag according 

to the equation 

FD = 
1

2
 ρυ2CDA 

 

where FD is the force of drag, ρ is the density of water (1000 kg m-3), υ is the velocity of water 

relative to the salamander, CD is the coefficient of drag, and A is the cross- sectional area 

perpendicular to the flow. We held velocity constant at 0.29 m s-1, the mean swimming velocity 

of salamanders in this study. The coefficient of drag for a cylinder at Reynolds numbers ranging 

from 102 - 105 is one, which we considered reasonable for salamanders in headwater stream 

environments. For cross-sectional area, we simplified the shape of the salamander to a circle 

(trunk) with 2 rectangles (forelimbs) to represent the widest part of the salamander with 

forelimbs perpendicular to flow. The circular area was calculated from the average trunk width 

of the 48 dispersers (11.38mm). The rectangular area of the limbs was calculated based on an 

average width of 3 mm and the length varied according to the humerus length measured from 

each photograph (mean = 4.59mm). Thus, the only term that varied in the drag calculations was 

cross-sectional area, as a function of variation in forelimb length. 
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CHAPTER 3: Effects of environmental variation on dispersal distance in a stream 

salamander 

 

 

Abstract 

 

Dispersal evolves as an adaptive mechanism to optimize individual fitness across the landscape. 

Specifically, dispersal represents a mechanism to escape fitness costs resulting from changes in 

environmental conditions. While there is evidence that active dispersers base emigration 

decisions (stay vs. leave) on environmental factors related to habitat quality (e.g., conspecific 

density, food availability, mortality risk), it is less well understood how these factors influence 

dispersal distance – a more comprehensive measure of dispersal. Decades of empirical work 

suggest that individuals use local habitat cues to make movement decisions, but theory predicts 

that dispersal can also evolve as a fixed trait – independent of local conditions – in environments 

characterized by a history of stochastic spatiotemporal variation. Until now, however, both 

conditional and fixed models of dispersal evolution have primarily been evaluated using 

emigration data, and not dispersal distances. Our goal was to test whether conditional or fixed 

models of dispersal evolution predict variation in dispersal distance in the stream salamander 

Gyrinophilus porphyriticus. We quantified variation in habitat quality using measures of 

salamander performance from 4 years of spatially explicit, capture-mark-recapture (CMR) data 

across 3 headwater streams in the Hubbard Brook Experimental Forest in central New 

Hampshire, USA. We used body condition as an index of local habitat quality that individuals 

may use to make dispersal decisions, and survival probability estimated from multistate CMR 

models as an index of mortality risk resulting from the long-term history of environmental 

variation. We found that dispersal distances increased with declining survival probability, 

indicating that salamanders disperse further in risky environments. Dispersal distances were 

unrelated to spatial variation in body condition, suggesting that salamanders do not base 

dispersal distance decisions on local habitat quality. Our study provides the first empirical 

support for fixed models of dispersal evolution predicting that dispersal evolves in response to a 

history of spatiotemporal environmental variation, rather than individual perceptions of 

immediate conditions. More broadly, this study underscores the value of assessing alternative 

scales of environmental variation to gain the most complete understanding of dispersal evolution. 

 

Introduction 

 

Dispersal is expected to evolve as an adaptive mechanism to optimize individual fitness across 

the landscape (Bowler and Benton 2005). Dispersal incurs energy costs, opportunity costs, and 

mortality risk (reviewed in Bonte et al. 2012); thus, individuals should only disperse if the fitness 

gains of settling in a new environment exceed the fitness costs of moving or remaining 
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philopatric. Decades of theory and empirical work have settled on three main sources of fitness 

costs that lead to dispersal evolution: kin competition (Hamilton and May 1977, Ronce et al. 

2000, Poethke et al. 2007), inbreeding (Bengtsson 1978, Waser et al. 1986, Guillaume and Perrin 

2006), and environmental variation (Johnson and Gaines 1990, McPeek and Holt 1992). While 

there is evidence that active dispersers base emigration decisions (i.e., stay vs. leave) on 

perceived costs associated with these factors (e.g., O’Riain et al. 1996; Bonte et al. 2008; Cote 

and Clobert 2010), it is less well understood how and whether the same factors influence 

dispersal distances.  

 

 Across taxa, most individuals in natural populations do not disperse, and dispersal 

distances vary substantially among those that do, with few individuals dispersing long distances 

(Mayr 1963, Endler 1977, Johnson and Gaines 1990). Research on the causes of variation in 

dispersal distances is challenging because it is difficult to obtain direct dispersal data in the field 

(Koenig et al. 1996, Nathan 2001). As a result, most dispersal research focuses on dispersal 

propensity, or the discrete emigration response. Dispersal distance, however, also encompasses 

stages of transience and settlement, and thereby provides a more complete picture of the 

dispersal process (Ronce 2007, Clobert et al. 2009). Furthermore, long-distance dispersal is 

predicted to contribute disproportionately to range shifts in response to climate change (Higgins 

and Richardson 1999, Phillips et al. 2008) and persistence in fragmented habitats (Muller-

Landau et al. 2003, Bohrer et al. 2005), so understanding the drivers of variation in dispersal 

distance is important from an applied perspective. 

 

 Generally, environmental variation is expected to have a stronger effect on dispersal 

distances than kin competition and inbreeding (Bowler and Benton 2005, Duputié and Massol 

2013). Short-distance movements are likely to alleviate fitness costs associated with kin 

competition and inbreeding because kin tend to be clumped around the natal site (Greenwood 

1980, Waser and Jones 1983, Lawson Handley and Perrin 2007). Environmental variation, 

however, can occur across multiple spatial scales, from the microhabitat (Wilson 1998, Jimenez 

et al. 2015) to the landscape (Johnson et al. 1997, Clark and Clark 2000), as well as over multiple 

temporal scales (Tielbörger and Kadmon 2000, Anderson and Cribble 2006). It is, therefore, 

reasonable to expect that different scales of environmental variation favor different dispersal 

distances, although this possibility has yet to be evaluated empirically. Indeed, theory predicts 

that short- and long-distance dispersal evolve according to different properties of the landscape 

(Bonte et al. 2010), suggesting that focusing on environmental variation is key to understanding 

variation in dispersal distances in natural populations.   

 

 Two basic, conceptual models of dispersal responses to environmental variation have 

emerged in the literature: conditional and fixed dispersal strategies. Under conditional strategies, 

dispersal decisions are based on the individual's ability to perceive and act on information about 

local conditions, and dispersal is, fundamentally, a plastic response to current environmental 
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variation (Clobert et al. 2009). For example, studies of dispersal propensity have shown that 

active dispersers are capable of initiating emigration in response to increased intraspecific 

competition for resources (Herzig 1995, Aars and Ims 2000, De Meester and Bonte 2010), the 

presence of predators or parasites (Suhonen et al. 2010, McCauley and Rowe 2010), and low 

food availability (Lurz et al. 1997, Kennedy and Ward 2003). However, because most studies do 

not track the fate of dispersers, we have little understanding of whether and how these 

conditional emigration responses – or the underlying stimuli themselves – relate to ultimate 

dispersal distances.  

 

 Under fixed strategies, dispersal is an evolved response to long-term patterns of 

environmental variability at large spatial scales (i.e., across multiple potential settlement sites), 

rather than a conditional response to the local environment. Specifically, dispersal is predicted to 

evolve when habitat quality varies stochastically across potential settlement sites, both 

temporally and spatially (Kuno 1981; Levin et al. 1984; McPeek and Holt 1992). Because these 

stochastic changes in habitat quality cannot be anticipated, fixed dispersal represents a bet-

hedging mechanism that ultimately maximizes the long-term geometric mean fitness of 

dispersers (Kuno 1981; Metz et al. 1983; Armsworth and Roughgarden 2005; McPeek 2017). 

Direct, empirical support for fixed dispersal is limited, but indirect support can be found in 

systems where the development of locomotor structures are necessary for dispersal, such as 

wing-dimorphic insects (Harrison 1980, Denno et al. 1996). Generally, these phenotypic 

constraints prevent individuals from basing dispersal decisions on immediate, local habitat 

conditions (Hendrickx et al. 2013) and, instead, the ability to disperse is a response to a long-

term pattern of stochastic environmental variation. Similar to conditional dispersal, however, 

fixed dispersal has predominantly been studied in terms of propensity (stay vs. leave), leaving a 

gap in our understanding of whether and how long-term patterns of environmental variation 

influence dispersal distance.  

 

 Explicitly testing for effects of current and long-term patterns of environmental variation 

on dispersal distances will help to resolve the prevalence of conditional vs. fixed dispersal 

strategies. Conditional dispersal has more empirical support in the literature than fixed dispersal, 

leading researchers to speculate that it is more evolutionarily advantageous and ubiquitous in 

nature (Bowler and Benton 2005, Bonte et al. 2008, Clobert et al. 2009). The weight of support 

for conditional strategies may be, in part, an artifact of the feasibility of quantifying dispersal 

propensity and local environmental conditions, but it is also possible that dispersal distance is 

governed by conditional strategies, particularly if settlement decisions are based on local 

conditions (Stamps 2001, Banks and Lindenmayer 2014). Alternatively, dispersal propensity and 

distance may be governed by different strategies. For example, assuming that settlement sites are 

randomly distributed, the number of these sites will increase exponentially with distance moved, 

making it costly and potentially unrealistic for individuals to gather the information needed to 

optimize conditional strategies (Delgado et al. 2014). If so, we would expect dispersal distances 
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to be regulated by the long-term patterns of environmental variation that favor fixed dispersal 

strategies (Kuno 1981; Levin et al. 1984; McPeek and Holt 1992). 

 

 We used four years of spatially explicit, capture-mark-recapture data from three 

headwater streams to test whether current or long-term patterns of environmental variation – 

matching conditional vs. fixed models of the evolution of dispersal, respectively – predict 

variation in dispersal distances in the salamander Gyrinophilus porphyriticus. For our test of 

conditional dispersal, we used spatial variation in salamander body condition as an index of 

current environmental variation. Body condition, commonly measured as size-corrected mass, 

reflects the nutritional state of the animal, where high-condition individuals are considered to 

have higher foraging success and competitive ability (Jakob et al. 1996, Johnson 2007). In G. 

porphyriticus, body condition increases with gut content biomass (W. H. Lowe, unpublished 

data) and is positively correlated with reproduction (Lowe 2003), suggesting that body condition 

reflects local prey resources, which contribute to reproductive potential (Croll et al. 2006, Ward 

et al. 2009). Therefore, body condition provides a snapshot of local habitat quality at a given 

time point. Under a conditional strategy, low spatial variation in body condition should cause 

dispersal distances to increase by increasing the distance individuals must move to encounter 

higher quality habitat than their starting location (Palmer and Strathmann 1981, Levin et al. 

1984, Lowe 2009). When spatial variation in habitat quality – and thus body condition – is high, 

individuals need not move long distances to encounter higher quality habitat, and dispersal 

distances should decrease (Bonte et al. 2010). 

 

 For our test of fixed dispersal, we used survival probability as an index of long-term 

patterns of environmental variation, and specifically mortality risk resulting from that variation 

(Stacey and Taper 1992, Nicoll et al. 1993, Lande 1993). In habitats characterized by low 

survival, the risk of dispersing to an alternative site is low relative to the risk of remaining at an 

initial site, and we expected dispersal distances to increase under these conditions (McPeek and 

Holt 1992, Boudjemadi et al. 1999). In contrast, when survival is high on average, the risk of 

dispersing relative to that of remaining at an initial site should increase, causing dispersal 

distances to decrease (Delgado et al. 2011). We estimated survival probabilities from capture 

histories of hundreds of individuals (White and Burnham 1999); therefore, these estimates 

integrate the long-term effects of environmental variation across individuals in the population, 

which are predicted to govern fixed dispersal strategies (Kuno 1981; Levin et al. 1984; McPeek 

and Holt 1992). 

 

 

Materials and methods 

 

Study species and sites 
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Gyrinophilus porphyriticus is a lungless salamander that lives in small, cool, well-oxygenated 

streams along the Appalachian uplift in the eastern United States (Petranka 1988). Larvae are 

exclusively aquatic (Bruce 1980) and adults are mainly aquatic but can forage terrestrially at 

night (Degraaf and Rudis 1990, Deban and Marks 2002). During the day, larvae and adults are 

found in interstitial spaces among the larger rocks (i.e., cobble) in the stream bed (Bruce 2003). 

The larval period lasts 3-5 years (Bruce 1980) and adults can live to be 14 years (W.H. Lowe, 

unpublished data). Previous work has shown that both larval and adult G. porphyriticus disperse 

(Lowe 2003; Lowe et al. 2006a), so both life stages were the focus of this study. This species is 

suited for dispersal studies because movements are generally constrained to linear stream 

corridors, so detection probability is less affected by movement distance, overcoming a major 

empirical hurdle (Koenig et al. 1996). Additionally, the relative mobility of G. porphyriticus is 

low, so surveys can detect a wide range of dispersal distances, including rare long-distance 

dispersal events.  

 

 This work was conducted in three hydrologically independent first-order streams (Bear, 

Paradise, Zigzag) in the Hubbard Brook Experimental Forest, located in the White Mountains of 

central New Hampshire (43°56′N, 71°45′W; Figure 1). These streams differ in environmental 

conditions, including aspect, daily discharge, and drainage slope (Lowe et al. 2006b; McGuire et 

al. 2014). Brook trout (Salvelinus fontinalis) occur in the mainstem of Hubbard Brook and 

downstream reaches of the study streams (Warren et al. 2008, Lowe et al. 2018). Brook trout 

prey on and reduce growth rates of G. porphyriticus (Resetarits 1995), thus they may represent 

an important aspect of the environment that influences dispersal through effects on G. 

porphyriticus survival and body condition.  

 

Capture-mark-recapture survey methods 

 

Capture-mark-recapture surveys were conducted in June-September of 2012 – 2015. To test for 

differences in survival and body condition related to fish presence – or other longitudinal 

changes in stream environments (Vannote et al. 1980) – we divided each stream to into two 500-

meter reaches (downstream and upstream reaches). Downstream reaches began at the confluence 

with Hubbard Brook. Upstream reaches ended at weirs where long-term stream data are 

collected, and above which sampling is restricted (Bormann and Likens 1979). Distances 

between downstream and upstream reaches, measured along stream channels, were 400m in Bear 

Brook, 250m in Paradise Brook, and 500m in Zigzag Brook. Our surveys were based on a robust 

design framework consisting of 3 primary sampling sessions per summer, with 3 secondary 

sampling sessions within each primary session (Pollock 1982). Each reach was surveyed 9 times 

throughout each summer, for a total of 36 surveys per reach over the 4-year study period. A 

constant search effort was maintained by turning one cover object per meter of stream; thus, 

surveys provided spatially explicit information about the capture locations of individual 

salamanders. Salamanders were uniquely marked with visible implant elastomer (Northwest 
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Marine Technologies, Washington, USA). Snout-vent lengths and weights were recorded for all 

captured individuals. 

 

Quantifying long-term environmental variation 

 

We first quantified long-term environmental variation for our test of fixed dispersal, then used 

those results to structure our analysis of current environmental variation for our test of 

conditional dispersal. Survival probability over the 4-year study period served as our measure of 

long-term environmental variation. Because the three study streams are hydrologically 

independent, differ in many environmental conditions, and are genetically differentiated (Lowe 

et al. 2006b), we expected a priori that the determinants of survival would differ among streams 

and, therefore, modeled each stream separately (Lowe et al. 2006b, McGuire et al. 2014). We 

used multistate CMR models to estimate monthly survival (S) and recapture (p) probabilities of 

G. porphyriticus larvae and adults, and transition probabilities from the larval to adult stage 

(ψlarva→adult). These models were implemented in Program MARK (White and Burnham 1999, 

Lebreton et al. 2009). Although we originally designed our sampling to fit a robust design 

framework, we collapsed all secondary survey sessions to a single observation within each 

primary session to fit the traditional multi-state framework and increase the accuracy and 

precision of parameters of interest (e.g., Grant et al. 2010). This resulted in a total of 12 sampling 

occasions over the 4-year study period. 

 

 In multistate models, survival probability represents the probability that an animal alive 

at time t in one state (i.e., life history stage) will be alive at time t+1, independent of state at t+1. 

Survival probability confounds mortality and permanent emigration in multistate models. 

However, we believe permanent emigration is minimal in our study streams because weirs above 

the upstream reaches likely act as a barrier to dispersal, and G. porphyriticus have not been 

previously detected in the mainstem of Hubbard brook (W. H. Lowe, unpublished data), 

suggesting that downstream emigration is unlikely. Additionally, extensive overland dispersal is 

impossible for the strictly aquatic larvae of G. porphyriticus and likely rare for adults given their 

highly aquatic habits (Petranka 1988, Greene et al. 2008). With two states, the transition 

probability is the conditional probability that an animal in one state at time t will be in the other 

state at t+1, given that the animal is alive at t+1. Recapture probability is the probability that a 

marked animal at risk of capture at time t is captured at t, conditional on being alive and 

available for recapture.  

 

 First, we determined the best models for recapture probabilities (plarva, padult) and 

transitions from the larval to adult stage (ψlarva→adult) simultaneously, holding apparent survival 

constant (Lebreton et al. 2009, Grant et al. 2010). Recapture and transition probabilities were 

modeled as constant, variable by time (month), and variable by stream reach (downstream, 

upstream). This candidate model set was justified by temporal variation in stream flow (Likens 
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and Buso 2006) and spatial variation in fish occurrence (Warren et al. 2008) that could alter 

salamander behavior in such a way as to affect recapture probabilities. Temporal variation in 

ψlarva→adult has been observed in a different stream outside of the Hubbard Brook watershed 

(Lowe 2012), and we hypothesized that ψlarva→adult could vary as a function of fish occurrence in 

downstream and upstream reaches because brook trout do not prey on adults (Resetarits 1991, 

Benard 2004). We fixed ψadult→larva to 0 because this transition is biologically impossible. Stream 

reaches were represented as attribute groups in Program MARK (Cooch and White 2007). 

 

 Using the top models for recapture and transition probabilities, we modeled survival as 

constant, variable over time, and variable by stream reach. This allowed us to test the spatial 

scale over which survival varied within each stream (i.e., whether survival differed between 

upstream, fishless reaches and downstream reaches with fish). By objectively identifying the 

scale of survival variation, we were able to define relevant ‘stream units’ for subsequent 

analyses. Importantly, this modeling approach allowed us to estimate survival independently for 

larvae and adults, and thereby test whether the spatial scale of survival also differs between life-

history stages. 

 

Model selection was based on Akaike’s information criterion (AIC; Akaike 1973) and models 

were ranked by second-order AIC (AICc) differences (∆AICc; Burnham and Anderson 2002). 

The relative likelihood of each model in the candidate set was estimated with AICc weights 

(Buckland et al. 1997). Goodness-of-fit for the saturated multistate model was assessed using the 

program U-CARE (Choquet et al. 2009) and by estimating the variance inflation factor (ĉ) 

between the top model and the saturated model. It is generally accepted that model fit is adequate 

if ĉ < 3 (Lebreton et al. 1992). 

 

Quantifying current environmental variation 

 

To quantify current environmental variation for our test of conditional dispersal, we measured 

spatial variation in body condition at occupied sites within each stream unit identified by survival 

analyses. We used the coefficient of variation (CV) as an index of variability in body condition 

because it is a unitless measure of relative variability that can be compared across samples (i.e., 

stream units) with different means (Abdi 2010). Coefficients of variation are intended for 

measurements on a ratio scale (i.e., all positive values) so we added 1 to all condition 

measurements prior to calculations to meet this criterion. We calculated the CV of body 

condition within each year of the study for each stream unit. Because each salamander was 

associated with a specific position along the stream, this approach captured spatial variation in 

body condition. We then calculated the mean of yearly CVs to obtain a single estimate of 

variation in body condition per stream unit. Consequently, these means reflect spatial variation in 

body condition within streams and changes in the amount of this variation over the 4 years of the 

study. Body condition was calculated as residuals from ordinary least squares linear regression of 
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log-transformed SVL and mass measurements. This approach was justified by the lack of 

correlation between log SVL and residuals from these regressions (r < 0.0001; Green 2001). 

Regressions were conducted separately for each stream, and for larvae and adults within each 

stream, matching our approach for survival estimation. Calculating condition separately for the 

two life-history stages was further justified by the potential for ontogenetic variation in length-

mass relationships unrelated to habitat quality. To avoid pseudoreplication, measurements from 

recaptured animals were not included in body condition calculations.  

 

Quantifying dispersal distance 

 

We quantified dispersal distances in recaptured individuals as the net distance moved (m along 

the stream) over the 4-year study period (Turchin 1998). To quantify variability in dispersal 

distance among stream units, we calculated the interquartile range (IQR) of dispersal distances 

because it reflects the relative dispersion of the data, but is robust to outliers (Hubert and 

Vandervieren 2008).  

 

Statistical analyses 

 

To test for effects of alternative scales of environmental variation on G. porphyriticus dispersal 

distances, we identified the best model of dispersal distance IQR from a set of univariate and 

multivariate linear regression models using AIC model selection. Candidate univariate models 

included spatial variation in body condition and monthly apparent survival probability, reflecting 

conditional vs. fixed models of dispersal evolution, respectively. The multiple regression model 

included spatial variation in body condition and monthly apparent survival probability, to 

address the possibility that dispersal distance may be predicted by both current and long-term 

patterns of environmental variation simultaneously.  

 

 We tested for covariation in spatial variation in body condition and survival probability to 

ensure that these two metrics captured different aspects of environmental variation (i.e., current 

vs. long-term; Graham 2003). We also tested whether model likelihood increased when body 

condition was added as an individual covariate in survival models (Pollock 2002). If model 

likelihood increases when survival is a function of body condition, it would suggest that survival 

at the scale of the stream units may be confounded with variation in condition within the stream 

units. Therefore, this analysis represents an additional test of the independence of our two 

metrics of environmental variation. 

 

 

Results 

 

Capture-mark-recapture surveys 
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Over the 4-year study period, we marked 662, 635, and 384 larval G. porphyriticus in Bear, 

Paradise, and Zigzag Brooks, respectively. We marked 268, 241, and 169 adult G. porphyriticus 

in Bear, Paradise, and Zigzag Brooks, respectively. More individuals were marked in upstream 

reaches than downstream reaches in all three streams. Ratios of the number of upstream to 

downstream individuals were 1.34:1 in Bear Brook, 1.48:1 in Paradise Brook, and 3.13:1 in 

Zigzag Brook. 

 

Long-term environmental variation: survival probability 

 

Parameterization of the top models for recapture and transition probabilities differed among 

streams (Table 1). For Paradise and Zigzag Brooks, the difference in AICc (ΔAICc) between the 

top two models of p and ψlarva→adult was < 2, indicating that both models have approximately 

equal support (Table 1; Burnham and Anderson 2002). However, both the top- and second-

ranked models of p and ψlarva→adult yielded the same parameterization for survival, justifying 

retaining the top model of p and ψlarva→adult for these streams. The difference AICc between the 

top- and second-ranked models was > 2 for Bear Brook, indicating considerable support for the 

top model (Table 1). 

 

 In the top models, monthly apparent survival of larvae and adults was either constant 

over time and reach or variable by reach, but never variable by time alone (Table 2). The 

difference in AICc (ΔAICc) between the top and second-ranked survival models was > 2 in Bear 

and Zigzag Brooks, indicating considerable support for the top models. The difference in AIC 

between the top and second-ranked model for Paradise Brook was < 2. The 95% confidence 

intervals on adult survival estimates for the downstream and upstream reach broadly overlapped 

(lower reach: 0.90 – 0.96; upper reach: 0.91 – 0.97), which increased our confidence that the top 

model – with no variation in adult survival between reaches – was the most accurate and 

conservative. None of the lack-of-fit tests performed on the saturated model with the program U-

CARE were significant, indicating that the multistate framework was appropriate for the dataset 

(Choquet et al. 2009). Estimates of median ĉ were 1.03, 1.04, and 1.33 for Bear, Paradise, and 

Zigzag Brooks, respectively, further indicating adequate model fit (Lebreton et al. 1992). 

 

 Overall, these analyses showed that the spatial scale of variation in survival differed 

among our study streams. Survival differed between downstream and upstream reaches for adults 

in Bear Brook and for larvae in Paradise Brook. In contrast, survival was constant between 

reaches for larvae in Bear and Zigzag Brooks, and for adults in Paradise and Zigzag Brooks. We 

considered the possibility that detecting between-reach differences in survival was contingent on 

sample size, as highly parameterized models are not supported when data are thin. Our sample 

size was highest for larvae in Bear Brook (n = 662), yet model ranking did not support a 

difference in larval survival between reaches. In contrast, model ranking supported a difference 
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in adult survival between reaches in Bear Brook, which had much smaller sample sizes (lower: n 

= 123; upper: n = 145). Additionally, when we forced multi-state models to estimate survival for 

upstream and downstream reaches separately, confidence intervals broadly overlapped in cases 

where model ranking supported a single estimate of survival. Thus, we have confidence that our 

modeling approach accurately and objectively identified the spatial scales over which survival 

differed in our study streams. This approach yielded 8 independent estimates of monthly survival 

across stages, reaches, and streams, ranging from 0.88 – 0.96. Larval and adult survival estimates 

were not correlated (r = -0.40, p = 0.51), confirming independence of this metric across life-

history stages. We refer to the spatial scale pertaining to each of the 8 survival estimates as a 

‘stream unit’ because, in some cases, there were multiple survival estimates per stream.  

 

Current environmental variation: body condition 

 

Means of annual CV of body condition, our index of current environmental variation within each 

of the 8 stream units, ranged from 5.15 – 8.12. Across the four years of the study, ranges of 

annual CV values within each stream unit were 1.93 – 5.35, indicating temporal, as well as 

spatial, variation in body condition. In each stream, mean annual CV values were higher for 

larvae (range: 7.52 – 8.11) than adults (range: 5.15 – 7.33), and were not correlated across life-

history stages (r = -0.76, p = 0.14). 

 

Dispersal distance 

 

Of the 2,359 G. porphyriticus individuals captured in surveys, 464 individuals were recaptured. 

Maximum dispersal distances of recaptured individuals in the 8 stream units ranged from 81 - 

481 m (Figure 2). There was a strong correlation between the total distance moved over the study 

period and net movement from the initial capture location in individuals that were recaptured 

more than once (n = 111, r = -0.67, p < 0.001), indicating that most dispersal movements are 

unidirectional and permanent. The interquartile range of dispersal distances, our dependent 

variable for testing relationships with indices of environmental variation, ranged from 2 - 10 m 

across the 8 stream units identified by survival analyses (Figure 2). There was no correlation 

between stream unit sample sizes and dispersal distance IQR (r = -0.48, p = 0.22), indicating that 

this metric was not biased by variation in sample size.  

 

Effects of current and long-term environmental variation on dispersal distance 

 

The best model of dispersal distance included monthly apparent survival probability alone and 

received 12 times more support than the second-ranked model, which included spatial variation 

in body condition (Table 3). The model including both monthly apparent survival and spatial 

variation in body condition received less support than the univariate models (Table 3). Consistent 

with a priori predictions, dispersal distance was negatively related to survival ( = -78.09, SE = 
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23.27, t = -3.36, p = 0.02, r2= 0.59; Figure 3). This regression accounts for variation in the 

precision of survival estimates by weighting each estimate by the inverse standard error. The 

relationship between spatial variation in body condition and dispersal distance was not 

significant ( = -1.83, SE = 0.99, t = -1.85, p = 0.11, r2= 0.26; Figure 4).  

 

 Monthly apparent survival was – somewhat surprisingly – positively correlated with 

spatial variation in body condition (r = 0.77, p = 0.03), but overwhelming support for the model 

with survival alone (Table 3) indicates that survival probability was the best predictor of 

variation in dispersal distances. Further, model likelihood did not increase when body condition 

was added as an individual covariate in the best-fitting survival models (Table S1), suggesting 

that variation in body condition within stream units did not cause survival probabilities to differ 

among stream units, and that these two metrics reflect different aspects of environmental 

variation.  

 

 

Discussion  

 

Theory has long predicted that dispersal can evolve as a fixed trait – independent of local 

conditions – in environments characterized by a history of stochastic spatiotemporal variation 

(Kuno 1981; Levin et al. 1984; McPeek and Holt 1992). Yet, empirical work has predominantly 

supported conditional dispersal, where individuals use local habitat cues to make dispersal 

decisions (Bowler and Benton 2005, Bonte et al. 2008, Clobert et al. 2009). We show that 

dispersal distance in a stream salamander increased in environments characterized by low 

survival probability – a long-term and large-scale measure of habitat quality. Dispersal distance 

was unrelated to spatial variation in body condition, our measure of current, local habitat quality. 

These results demonstrate that salamanders do not base dispersal decisions on cues related to 

habitat quality in their immediate vicinity, but instead indicate that increased dispersal distance is 

an evolved response to risky environments.  

 

 Our finding that dispersal distances increased as survival declined (Figure 3) supports the 

hypothesis that habitats characterized by low survival are risky from an individual’s perspective, 

causing the relative risk of long-distance dispersal to decrease and the relative benefit to 

increase. This interpretation aligns with models predicting that dispersal evolves as a bet-hedging 

strategy in stochastically varying environments (Kuno 1981, Metz et al. 1983, Armsworth and 

Roughgarden 2005), rather than models where dispersal is conditional on individual perceptions 

of habitat quality (Clobert et al. 2009). Long-distance dispersal in our study streams likely 

represents a response to a historical pattern of environmental stochasticity resulting in low 

survival, consistent with fixed models of dispersal evolution (Gadgil 1971, Kuno 1981, Levin et 

al. 1984, McPeek and Holt 1992). Capture-mark-recapture model ranking supports our 

assumption that survival probabilities reflect long-term variation in habitat quality because 
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models where survival varied over time received little support (Table 2). Also consistent with 

fixed dispersal models (Levin et al. 1984), the spatial scale over which we estimated survival 

was large (500 or 1000m of stream length), much larger than typical dispersal movements of G. 

porphyriticus (Figure 2) and encompassing many potential settlement sites. Further, because 

most individuals in our dataset did not move far (70% moved < 4m), it is unlikely that these 

survival estimates are confounded by the fitness consequences of dispersal (e.g., higher mortality 

of dispersing individuals than non-dispersers).  

 

 We did not detect a relationship between current, local habitat quality – measured with 

individual body condition – and dispersal distance (Figure 4), suggesting that salamanders do not 

base dispersal distances on habitat sampling during periods of transience. This result may reflect 

constraints on habitat sampling as dispersal distance increases. Assuming that suitable habitat is 

randomly distributed, the number of potential settlement sites increases with dispersal distance 

(Morris 1992, Koenig 1999). For long-distance dispersal, it becomes unrealistic for individuals 

to sample all (or even a modest percentage of) potential sites (Delgado et al. 2014). Additionally, 

more time spent sampling likely increases the costs of dispersal by increasing risk of mortality, 

increasing energy expenditure, or reducing time available for other activities such as mating or 

foraging (Bonte et al. 2012). Dispersing without sampling habitat may, therefore, be favored for 

longer movements because it reduces mortality by minimizing the number of steps needed to 

achieve a certain distance (Zollner and Lima 1999, Barton et al. 2009).  

 

 The lack of relationship between current, local habitat quality and dispersal distance 

underscores the value of treating dispersal propensity and dispersal distance as functionally 

distinct. There is a large body of work linking dispersal propensity to fine-scale fluctuations in 

habitat quality, leading researchers to predict that factors increasing dispersal propensity should 

also increase dispersal distance, yet few studies have tested this prediction (Hovestadt et al. 

2001, Rousset and Gandon 2002, Duputié and Massol 2013). To explore this possibility, we 

tested post hoc for a relationship between dispersal propensity and both survival probability and 

spatial variation in body condition. Home ranges in G. porphyriticus are approximately 3 m2 

(Lowe 2003), so we calculated dispersal propensity as the proportion of individuals that moved > 

4 m to be sure that dispersal movements were distinct from daily movements within the home 

range (Burgess et al. 2015). We found no relationship between survival probability and dispersal 

propensity ( = -1.57, SE = 1.15, t = -1.37, p = 0.22), or between spatial variation in body 

condition and dispersal propensity ( = -0.03, SE = 0.03, t = -1.12, p = 0.30). These results 

caution against using dispersal propensity as a proxy for dispersal distance, and, perhaps more 

importantly, suggest that dispersal propensity and distance evolve independently (Bonte et al. 

2010, Duputié and Massol 2013, Burgess et al. 2015). 

 

 Our modeling results clearly indicate that large-scale, long-term variation in survival 

better predicts dispersal distances than current, local variation in habitat quality (Table 3). 
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Nevertheless, we did find an unexpected positive correlation between spatial variation in body 

condition and survival probability, indicating a possible mechanistic link between these two 

variables. We know of no studies reporting a causal relationship between variability in body 

condition and survival, although positive relationships between mean body condition and 

survival have been reported (Schmutz and Ely 1999, Vitz and Rodewald 2011, Boulanger et al. 

2013). Importantly, however, post-hoc analyses showed no correlation between mean body 

condition and survival probability across our 8 stream units (r = -0.22, p = 0.60), and spatial 

variation in body condition and mean body condition also were not correlated (r = -0.34, p = 

0.41). Further, including body condition as an individual covariate in survival models did not 

improve model fit (Table S1), indicating that variation in body condition within stream units did 

not cause survival probabilities to differ among stream units. Instead, our results suggest that 

habitat heterogeneity itself positively affects G. porphyriticus survival (Kindvall 1996, Piha et al. 

2007), such as by providing access to different conditions for optimal foraging vs. predator 

avoidance (Sih 1982, Gilliam and Fraser 1987, Creel et al. 2005), although the mechanism 

underlying this relationship clearly requires further investigation.  

 

 We used indices of individual performance (survival, body condition) as proxies for 

environmental differences among our study sites because performance consequences ultimately 

drive adaptive evolution (Arnold 1983). Further, a rich body of work links habitat quality to 

body condition (e.g., Bearhop et al. 2004; Burton et al. 2006; Maceda-Veiga et al. 2014) and 

survival (e.g., Paradis 1995; Kindvall 1996; Carvell et al. 2017). However, a drawback of our 

approach is that it does not reveal proximate drivers of salamander dispersal. It is difficult to 

generate a priori hypotheses for the proximate variables affecting dispersal – or survival – in this 

system because we know that the study streams are highly heterogeneous by many biotic and 

abiotic measures, and across multiple scales (Schwarz et al. 2003, Likens and Buso 2006, 

McGuire et al. 2014). Our finding that survival of G. porphyriticus larvae was not consistently 

lower in the downstream reaches with brook trout underscores this challenge (Figure 3). 

Variation in survival between downstream and upstream reaches may be a function of several 

interrelated factors that differ along the stream continuum, in addition to brook trout occurrence, 

such as discharge, substrate embeddedness and its effects on refuge availability, and invertebrate 

prey composition (Vannote et al. 1980, Hubert and Kozel 1993, Lowe and Bolger 2002). 

 

 This study represents the first empirical support for models predicting that dispersal 

evolves as a fixed strategy in risky environments. Further efforts to characterize long-term and 

large-scale patterns of environmental variation, and to quantify dispersal distances – rather than 

emigration propensity – may reveal previously unrecognized contributions of fixed dispersal 

strategies in other systems (Levin et al. 1984, McPeek and Holt 1992). Furthermore, these 

relationships may be more likely in species that are not constrained to linear habitats like 

streams, where potential habitat available for sampling increases exponentially with dispersal 

distance, making conditional strategies even more impractical and costly for long-distance 
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dispersers (Bocedi et al. 2012, Bonte et al. 2012, Delgado et al. 2014). Finally, our results 

suggest that dispersal distances will be greater in populations that have evolved in high-risk 

environments. Quantifying long-term environmental variation and resulting risk landscapes may, 

therefore, be useful for predicting dispersal distances and associated population and range 

dynamics under future environmental change (Higgins and Richardson 1999, Bohrer et al. 2005, 

Phillips et al. 2008).  
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Table 1. Multistate capture-mark-recapture (CMR) models of monthly larval and adult recapture 

probabilities (plarva, padult) and larva-adult transition probability (ψlarva-adult) for Gyrinophilus 

porphyriticus (Slarva, Sadult) in Bear (a), Paradise (b), and Zigzag (c) Brooks. Larval and adult 

survival probabilities (Slarva, Sadult) were held constant for this analysis. Here we only show the 

top 3 models for each stream. 
 

(a)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(.), plarva(reach), padult(time), ψlarva-adult(reach) 2106.53 0 0.74 17 

Slarva(.), Sadult(.), plarva(reach), padult(time), ψlarva-adult(.) 2108.77 2.24 0.24 16 

Slarva(.), Sadult(.), plarva(.), padult(time), ψlarva-adult(.) 2114.67 8.14 0.01 15 

     

(b)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(.), plarva(time), padult(time), ψlarva-adult(.) 1876.64 0 0.63 25 

Slarva(.), Sadult(.), plarva(time), padult(time), ψlarva-adult(reach) 1877.88 1.23 0.34 26 

Slarva(.), Sadult(.), plarva(time), padult(time), ψlarva-adult(time) 1883.92 7.28 0.02 35 

     

(c)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(.), plarva(reach), padult(reach), ψlarva-adult(.) 927.17 0 0.31 7 

Slarva(.), Sadult(.), plarva(reach), padult(.), ψlarva-adult(reach) 927.77 0.60 0.23 7 

Slarva(.), Sadult(.), plarva(reach), padult(reach), ψlarva-adult(reach) 927.77 0.60 0.23 8 

     

Notes: Second-order Akaike’s information criterion values (AICc), AICc differences(AICc), 

AICc weights (AICc wt), and number of estimable parameters (K) are provided for all models. 

Parameterization for S, p, and ψ is in parentheses; “.” = constant by stream reach and time. 
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Table 2. Multistate capture-mark-recapture (CMR) models assessing variation in monthly 

survival probabilities of Gyrinophilus porphyriticus larvae and adults (Slarva, Sadult) in Bear (a), 

Paradise (b), and Zigzag (c) Brooks. Recapture probabilities (plarva, padult) and larva-adult 

transition probability (ψlarva-adult) were parameterized based on results in Table 1. Only the 3 top 

models for each stream are shown.  
 

(a)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(reach), plarva(reach), padult(time), ψlarva-adult(reach) 2098.06 0 0.72 18 

Slarva(reach), Sadult(reach), plarva(reach), padult(time), ψlarva-adult(reach) 2100.13 2.07 0.25 19 

Slarva(time), Sadult(reach), plarva(reach), padult(time), ψlarva-adult(reach) 2104.67 6.61 0.03 28 

          

(b)         

Model AICc ∆AICc AICc wt K 

Slarva(reach), Sadult(.), plarva(time), padult(time), ψlarva-adult(.) 1869.65 0 0.70 26 

Slarva(reach), Sadult(reach), plarva(time), padult(time), ψlarva-adult(.) 1871.57 1.92 0.27 27 

Slarva(.), Sadult(.), plarva(time), padult(time), ψlarva-adult(.) 1876.64 6.99 0.02 25 

     

(c)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(.), plarva(reach), padult(reach), ψlarva-adult(.) 927.17 0 0.59 7 

Slarva(.), Sadult(reach), plarva(reach), padult(reach), ψlarva-adult(.) 929.21 2.04 0.21 8 

Slarva(time), Sadult(.), plarva(reach), padult(reach), ψlarva-adult(.) 929.9 2.74 0.15 17 

     

Notes: Second-order Akaike’s information criterion values (AICc), AICc differences(AICc), 

AICc weights (AICc wt), and number of estimable parameters (K) are provided for all models. 

Parameterization for S, p, and ψ is in parentheses; “.” = constant by stream reach and time. 
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Table 3. Models of dispersal distance in Gyrinophilus porphyriticus larvae and adults in Bear, 

Paradise, and Zigzag Brooks.  
 

            

Model AICc ΔAICc AICc wt K Adjusted R2 

survival 40.16 0 0.93 3 0.59 

spatial bodycond 45.73 5.56 0.06 3 0.26 

survival + spatial bodycond 49.13 8.97 0.01 4 0.53 

      

Notes: Second-order Akaike’s information criterion values (AICc), AICc differences (AICc), 

AICc weights (AICc wt), and number of estimable parameters (K) are provided for all models. 

Independent variables, calculated from capture-mark-recapture data from 2012-2015, include 

monthly survival (survival) and spatial variation in body condition (spatial bodycond). Response 

variables were the interquartile range of dispersal distances in stream units defined by survival 

analyses.  
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Figure 1. Map of the three study streams in the Hubbard Brook Experimental Forest in central 

New Hampshire, U.S.A. Bear, Paradise, and Zigzag Brooks are hydrologically independent and 

flow into Hubbard Brook.   
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Figure 2. Dispersal distances of Gyrinophilus porphyriticus larvae and adults in ‘stream units’ 

defined from capture-mark-recapture analyses. Data are from Bear, Paradise, and Zigzag Brooks 

in the Hubbard Brook Experimental Forest. ‘Stream units’ are the spatial scale over which 

survival differed in each of the three study streams. The interquartile range (IQR) of dispersal 

distances are indicated in the center of each plot. Hatches indicate a break in the y-axis to 

accommodate large numbers of individuals that dispersed < 3m. Data are binned in 3m 

increments. 
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Figure 3. The relationship between monthly apparent survival and interquartile ranges of 

dispersal distance in Gyrinophilus porphyriticus. Data are from Bear, Paradise, and Zigzag 

Brooks in the Hubbard Brook Experimental Forest. Each point corresponds to ‘stream units’ 

defined from capture-mark-recapture analyses. Shapes correspond to the three study streams. 

Black shapes represent adult G. porphyriticus, and grey shapes represent larval G. porphyriticus. 

When survival analyses distinguished between upstream and downstream reaches, open shapes 

represent downstream reaches and filled shapes represent upstream reaches. The best-fit linear 

regression line is plotted ( = -78.09, SE = 23.27, t = -3.36, p = 0.015, r2= 0.59). 
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Figure 4. The relationship between spatial variation in body condition and interquartile ranges of 

dispersal distance in Gyrinophilus porphyriticus. Data are from Bear, Paradise, and Zigzag 

Brooks in the Hubbard Brook Experimental Forest. Each point corresponds to ‘stream units’ 

defined from capture-mark-recapture analyses. Shapes correspond to the three study streams. 

Black shapes represent adult G. porphyriticus, and grey shapes represent larval G. porphyriticus. 

When survival analyses distinguished between upstream and downstream reaches, open shapes 

represent downstream reaches and filled shapes represent upstream reaches.  

 
 

 

 

 

 

 

 

 

 

 

 

5 6 7 8 9

2
4

6
8

1
0

Spatial variation in body condition

In
te

rq
u

a
rt

ile
 r

a
n

g
e
 o

f 

d
is

p
e

rs
a

l 
d

is
ta

n
c
e
s
 (

m
)

Bear

Paradise

Zigzag



 

 43 

Table S1. Multistate capture-mark-recapture (CMR) models of monthly survival probabilities of Gyrinophilus porphyriticus larvae 

and adults (Slarva, Sadult), recaptures probabilities (plarva, padult) and larva-adult transition probability (ψlarva-adult) in Bear (a), Paradise (b), 

and Zigzag (c) Brooks with and without body condition as an individual covariate on survival. 
 

(a)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(reach), plarva(reach), padult(time), ψlarva-adult(reach) 2098.06 0 0.65 18 

Slarva(., bodycond), Sadult(reach, bodycond), plarva(reach), padult(time), ψlarva-adult(reach) 2099.31 1.25 0.35 21 

          

(b)         

Model AICc ∆AICc AICc wt K 

Slarva(reach), Sadult(.), plarva(time), padult(time), ψlarva-adult(.) 1869.65 0 0.90 26 

Slarva(reach, bodycond), Sadult(., bodycond), plarva(time), padult(time), ψlarva-adult(.) 1874.00 4.35 0.10 29 

     

(c)         

Model AICc ∆AICc AICc wt K 

Slarva(.), Sadult(.), plarva(reach), padult(reach), ψlarva-adult(.) 927.17 0 0.83 7 

Slarva(., bodycond), Sadult(., bodycond), plarva(reach), padult(reach), ψlarva-adult(.) 930.33 3.16 0.17 9 

     



 

 44 

CHAPTER 4: Dispersal distance predicts inbreeding risk in a stream salamander 

 

 

Abstract  

 

Avoiding inbreeding is considered a key driver of dispersal evolution, and dispersal distance 

should be particularly important in mediating inbreeding risk because the likelihood of mating 

with relatives decreases with increasing dispersal distances. However, the lack of direct data on 

dispersal distances in most taxa has precluded empirical tests of this basic prediction. Here, we 

evaluated whether dispersal distance predicts inbreeding risk in the headwater stream salamander 

Gyrinophilus porphyriticus, and whether this relationship changes under different environmental 

conditions. Specifically, we hypothesized that variation in ecological conditions between 

downstream and upstream reaches, including the presence of predatory fish in downstream 

reaches, leads to differences in dispersal distances, resulting in reach-scale differences in the 

effect of dispersal on inbreeding risk. Dispersal distances were greater in downstream reaches 

than upstream reaches in 5 headwater streams, suggesting that selective pressures influencing 

dispersal in G. porphyriticus differ at fine spatial scales. Inbreeding risk, measured as the 

proportion of individuals within 50m that were relatives, was lower for dispersers than non-

dispersers in downstream reaches. In contrast, there was no difference in inbreeding risk between 

dispersers and non-dispersers in upstream reaches. These results demonstrate that dispersal 

distance reduces inbreeding risk in G. porphyriticus, and that environmentally-associated 

variation in dispersal distances leads to variation in the effects of dispersal on inbreeding risk. 

Furthermore, these results, in addition to population genetic data, indicate that selective pressures 

other than inbreeding avoidance maintain dispersal in G. porphyriticus, and underscore the 

importance of explicitly addressing alternative hypotheses in dispersal research.  

 

 

Introduction 

 

Dispersal influences the genetic structure of populations by facilitating gene flow and affecting 

the spatial distribution of organisms (Clobert et al. 2001, Lowe and Allendorf 2010). Immigrants 

are also an important source of outbred mates, lowering the risk of inbreeding in small 

populations (Spielman and Frankham 1992, Vilà et al. 2003). Avoiding the harmful effects of 

inbreeding (i.e., inbreeding depression; Keller & Waller, 2002; Lynch & Walsh, 1998) has been 

identified as one of three main drivers of dispersal evolution (Bengtsson 1978, Waser et al. 

1986), along with avoiding costs associated with kin competition (Hamilton and May 1977, 

Ronce et al. 2000, Poethke et al. 2007) and spatiotemporal variation in environmental conditions 

(Johnson and Gaines 1990, McPeek and Holt 1992). However, empirical studies of these putative 

drivers have been far outpaced by theory, leaving researchers with little understanding of their 

relative importance in natural populations where dispersal may be shaped by many, potentially 
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conflicting selective forces (Waser et al. 1986, Perrin and Goudet 2001, Guillaume and Perrin 

2006). Understanding how dispersal is shaped by inbreeding avoidance, in particular, will 

become increasingly important as habitat fragmentation and climate change cause many 

populations to become smaller and more isolated (Haddad et al. 2015), increasing the risk of 

inbreeding depression and reliance on dispersal for long-term persistence. 

 

 Knowledge of the spatial structure of genetic differentiation is crucial for evaluating the 

role of dispersal in inbreeding avoidance because it dictates the scale of dispersal required to 

reduce the risk of inbreeding. Dispersal separates kin in space, and the likelihood of mating with 

relatives decreases with increasing dispersal distances (Szulkin and Sheldon 2008). 

Consequently, the minimum dispersal distance needed to reduce the risk of inbreeding depends 

on the spatial scale over which individuals are related (Gompper et al. 1998, Daniels and Walters 

2000). Within populations, limited dispersal can create a pattern of isolation-by-distance, where 

individuals in close geographic proximity are more genetically similar than individuals that are 

farther apart (Wright 1943, Primmer et al. 2006, Broquet et al. 2006). If inbreeding avoidance is 

an important driver of dispersal, dispersal distances should evolve to exceed the scale of spatial 

clustering of relatives. Most dispersal studies, however, have focused on dispersal propensity 

(i.e., the decision to stay v. leave), and not dispersal distance (Bowler and Benton 2005), 

precluding rigorous assessment of the efficacy of dispersal for reducing inbreeding in natural 

populations.  

 

 Theory suggests that inbreeding depression is unlikely to explain the evolution of 

dispersal alone (Perrin and Goudet 2001), and we know from empirical studies that dispersal is 

often based on multiple cues (Bowler and Benton 2005, Bitume et al. 2013, Baines et al. 2014). 

Nevertheless, the prediction that dispersal should reduce an individual’s spatial proximity to 

relatives offers a straightforward framework for testing the importance of inbreeding relative to 

other factors influencing dispersal. For example, Daniels and Walters (2000) found that female 

red cockaded woodpeckers did not disperse far enough to avoid mating with close relatives 

despite evidence of inbreeding depression. The authors instead posited that acquiring breeding 

territories was a stronger selective pressure than inbreeding avoidance, and remaining in the natal 

territory increased an individual’s competitive advantage. More generally, this and other studies 

show that the degree to which dispersal functions to reduce inbreeding may be mediated by other 

environmental conditions influencing dispersal distance, such as the presence of predators, 

competition for resources, and changes in habitat quality (Cronin et al. 2004, Bitume et al. 2013, 

Baines et al. 2014).  

 

 Here our goal was to evaluate whether dispersal distance predicts inbreeding risk in the 

headwater stream salamander Gyrinophilus porphyriticus, and whether this relationship changes 

under different environmental conditions. Many abiotic and biotic factors differ along streams, 

such as discharge, streamwater chemistry, substrate size, and the composition of prey and 
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predator communities, creating a diverse suite of selective pressures that might influence 

salamander dispersal (Vannote et al. 1980, Hubert and Kozel 1993, Lowe and Bolger 2002, 

McGuire et al. 2014). We hypothesized that these environmental factors may lead to different 

relationships between dispersal distance and inbreeding risk in the downstream and upstream 

reaches of headwater streams. For example, we know that G. porphyriticus often co-occurs with 

predatory brook trout (Salvelinus fontinalis) in the downstream reaches of our headwater study 

streams, but waterfalls prevent brook trout from occupying the upstream reaches (Warren et al. 

2008). If G. porphyriticus respond to brook trout by increasing dispersal to escape predation risk 

(Cronin et al. 2004, McCauley and Rowe 2010, Otsuki and Yano 2014), we would expect 

dispersal distances to be longer in downstream reaches compared to upstream reaches, thereby 

leading to comparatively lower inbreeding risk for dispersers in downstream reaches. Gradients 

in discharge along streams may also affect dispersal dynamics in G. porphyriticus. Lower base 

flows and more frequent drying in upstream reaches (Jensen et al. 2017) could result in longer 

dispersal distances as individuals track water availability, thereby leading to comparatively lower 

inbreeding risk for dispersers in upstream reaches than downstream reaches.  

 

 We took advantage of the natural variation in environmental conditions along 5 replicate 

streams in the Hubbard Brook Experimental Forest (New Hampshire, USA) to test for reach-

scale differences in dispersal distances and resulting consequences for inbreeding risk in G. 

porphyriticus. Specifically, we used a combination of demographic (capture-mark-recapture) and 

population genetic approaches to address 3 objectives: (1) test for differences in individual 

dispersal distances between downstream and upstream reaches; (2) quantify spatial population 

genetic structure and inbreeding risk within and among the study streams; and (3) test whether 

the effect of dispersal on inbreeding risk varies between downstream and upstream reaches.  

 

 

Materials and methods 

 

Study species and sites 

 

Gyrinophilus porphyriticus is a lungless salamander that lives in small, cool, well-oxygenated 

streams along the Appalachian uplift in the eastern United States (Petranka 1988). Larvae are 

exclusively aquatic (Bruce 1980) and adults are mainly aquatic but can forage terrestrially at 

night (Degraaf and Rudis 1990, Deban and Marks 2002). During the day, larvae and adults are 

found in interstitial spaces among the larger rocks (i.e., cobble) in the stream bed (Bruce 2003). 

The larval period lasts 3 – 5 years (Bruce 1980) and adults can live to be 14 years (W.H. Lowe, 

unpublished data). Previous work in this system has shown that both larval and adult G. 

porphyriticus disperse (Lowe 2003, Lowe et al. 2006a). Larval dispersal is restricted to linear 

stream corridors, but adults may be found up to 9 meters away from streams (Greene et al. 2008). 
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Nevertheless, extensive overland dispersal is unlikely given the highly aquatic habits of adults 

(Petranka 1988).  

 

 This work was conducted in 5 hydrologically independent first-order streams (Bear, 

Canyon, Cascade, Paradise, Zigzag) in the Hubbard Brook Experimental Forest (HBEF), located 

in the White Mountains of central New Hampshire (43°56′N, 71°45′W; Figure 1). All five 

streams flow into the mainstem of Hubbard Brook (Figure 1), a tributary of the Pemigewasset 

River. Brook trout (Salvenlinus fontinalis) occur in the mainstem of Hubbard Brook and 

downstream reaches of Bear, Canyon, Paradise, and Zigzag Brooks, but have not been detected 

in Cascade Brook (Warren et al. 2008). Typical of headwater streams in New Hampshire, the 

study streams have low conductivity (12.0 – 15.0 S), slight acidity (pH of 5.0 – 6.0), high 

dissolved oxygen content (80 – 90% saturation), and moderate midday summer temperatures 

(13.0 – 17.0oC). Hydrology of HBEF streams is characterized by high spring discharge due to 

melting snow, and high discharge events throughout the year associated with isolated storms. 

Base flow conditions usually occur in August and September. The study streams are high 

gradient mountain headwaters with cobble, boulder, and bedrock substrate. The dominant tree 

species in forests surrounding these streams were Acer saccharum, Fagus grandifolia, Betula 

alleghaniensis, Picea rubens, Abies balsamea, B. papyrifera. 

 

Sampling protocol 

 

To test for reach-scale differences in the effect of dispersal on inbreeding risk, we divided each 

stream into two 500m reaches: downstream reaches where G. porphyriticus co-occur with brook 

trout (Salvelinus fontinalis), and upstream reaches without fish. Downstream reaches began at 

the confluence with Hubbard Brook, and upstream reaches ended at weirs where long-term 

stream data are collected, and above which sampling is restricted (Bormann and Likens 1979). 

Together, these two 500m reaches encompassed the majority of the perennial portion of each 

stream. Each reach was surveyed 9 times throughout the summer months (June  – August), 

resulting in 36 total surveys from 2012 – 2015 in Bear, Paradise, and Cascade Brooks, and 27 

total surveys from 2012 – 2014 in Canyon and Cascade Brooks. A constant search effort was 

maintained by turning one cover object per meter of stream; thus, surveys provided spatially 

explicit information about the capture locations of individual salamanders. Salamanders were 

uniquely marked with visible implant elastomer (Northwest Marine Technologies, Washington, 

USA). Tail clips were collected from newly captured individuals and stored in 70% ethanol for 

genomic analyses.  

 

Quantifying dispersal distance 

 

To test for differences in dispersal distance between downstream and upstream reaches, we 

quantified dispersal distances in recaptured individuals as the net distance moved (m along the 
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stream) during 2012 – 2015 in Bear, Paradise, and Zigzag, and during 2012 – 2014 in Canyon 

and Cascade (Turchin 1998). We considered dispersers to be individuals that moved  10m from 

their initial location over the duration of the study. Previous studies of G. porphyriticus used a 

lower cutoff of 3m to distinguish dispersers from residents because the home range size was 

estimated as 3m2 (roughly 3m of stream length; Lowe and McPeek 2012). We used 10m here to 

ensure a clear distinction between dispersers and residents, and because we expected a priori that 

the scale over which individuals are related would be larger than the home range of an 

individual. Therefore, longer dispersal distances are likely needed to influence an individual’s 

exposure to relatives. Among dispersers (i.e., individuals that moved  10m), we tested for a 

difference in dispersal distance between downstream and upstream reaches using a Wilcoxon 

rank sum test. Because the majority of G. porphyriticus do not disperse (Lowe 2003, Lowe et al. 

2006a, Lowe and McPeek 2012), it was necessary to pool dispersal data across streams to 

achieve sufficient sample sizes to test for differences in dispersal distance between stream 

reaches. 

 

Genomic library preparation and sequencing 

 

To characterize the spatial structure of genetic differentiation in G. porphyriticus, we prepared 

genomic libraries for 432 individuals across the 5 study streams. We preferentially sequenced 

individuals that were recaptured during the study and thus had an associated dispersal distance. 

This caused sample sizes to be uneven among streams, ranging from 25 – 167 individuals per 

stream. DNA was extracted from tissue samples using a SPRI bead protocol. Genomic DNA 

quality was visualized on an agarose gel and each sample was quantified using a BioTek 

Synergy HT Microplate reader. Libraries were prepared following the double-digest restriction-

associated DNA sequencing (ddRAD-seq) method of (Peterson et al. 2012) with several 

modifications. Briefly, we used the restriction enzymes BspDI and SbfI to digest 300 – 1000ng 

of genomic DNA per individual. We then performed fragment size selection using SPRI beads 

prior to adapter ligation. To enable detection of PCR duplicates, we introduced a random 8 bp 

sequence in the P2 adapter according to the method of Schweyen et al. (2014). The use of 12 

unique barcode sequences in the P1 adapter allowed us to pool 12 individuals to form a single 

library. Fragments in the range of 360 – 440 bp were extracted from each library using a 

BluePippin size selection system (Sage Science). We used 39 uniquely indexed PCR primers, 

enabling us to pool all individuals into a single library for sequencing following PCR. The 

pooled library was sequenced on 3 lanes of Illumina HiSeq 2500 (125 bp paired-end) at Hudson 

Alpha Institute for Biotechnology, resulting in 616,385,491 forward and reverse reads. 

 

Quality filtering and SNP calling 

 

Raw Illumina reads from each sequencing lane were concatenated and demultiplexed using the 

process_radtags program in STACKS version 2.1 (Catchen et al. 2011). Reads with ambiguous 
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barcodes (greater than 2 mismatches) were discarded from the data set. PCR clones were 

identified by comparing unique 8 bp oligonucleotide sequences that were ligated on to each 

molecule during library preparation and removed using the clone_filter program in STACKS. We 

used the DDOCENT 1.0 pipeline (Puritz et al. 2014)  to remove low-quality bases (Phred quality 

score < 20) and construct a de novo assembly of putative RAD tags and call single nucleotide 

polymorphisms (SNPs). We required a minimum depth of 6x and a maximum of 4 mismatches to 

form reference contigs. Putative ddRAD loci were merged if they contained > 85% sequence 

similarity. DDOCENT uses BWA to map reads to reference contigs and generate alignment files, 

and FREEBAYES (Garrison and Marth 2012) to call SNPs from aligned reads of all individuals. 

FREEBAYES is a Bayesian-based variant detection program that assesses variants across all 

samples simultaneously, thereby allowing confident calls of genotypes with few reads. The 

DDOCENT pipeline identified 62,777 variants sites.  

 

SNP filtering 

 

We employed several SNP filters to remove SNPs likely to be the result of sequencing error or 

paralogs, the latter representing a particular challenge for salamanders with gigantic genomes 

due to proliferation of transposable elements (Sun et al. 2012). Briefly, we retained SNPs that 

were present in 70% of individuals in at least 3 of the 5 streams and had a minor allele frequency 

of 0.05. We required a minimum depth of coverage for each SNP of 3x per individual, but 

required a mean minimum site depth averaged across individuals of 10x and allowed a maximum 

of 300x. We removed loci with an allele balance of < 0.3 or > 0.7 in heterozygous individuals 

because asymmetrical allele ratios are often indicative of multicopy loci (McKinney et al. 2017). 

We also filtered by Hardy-Weinberg proportions, removing loci that significantly deviated from 

expectations in at least 3 of the 5 streams. Loci with a mean FIS value of < -0.3 or > 0.3 averaged 

across streams were also removed. To avoid linked markers, we retained only 1 SNP per contig 

that was genotyped in the most individuals. To ensure that the remaining contigs were not 

physically linked, we calculated the r2 statistic among contigs using VCFTOOLS, and removed the 

SNP that was genotyped in the fewest individuals per pair with r2 > 0.8 in at least 3 streams. 

Finally, we removed 50 individuals with  30% missing genotypes from the dataset. After 

filtering, we retained 297 SNPs (Table S1). 

 

Assessing genetic differentiation 

 

We used population genetic analyses to quantify the spatial structure of genetic differentiation of 

G. porphyriticus. Genetic variation within streams was calculated as observed heterozygosity 

(Ho) and expected heterozygosity (He) in GENODIVE version 2.0b23 (Meirmans and Tienderen 

2004). Discrepancies between observed and expected heterozygosity were quantified using FIS 

(Weir and Cockerham 1984). We tested for isolation-by-distance within streams using a simple 

Mantel test between pairwise matrices of Euclidean distances and pairwise genetic distances in 
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the ECODIST package in R (Goslee and Urban 2007). We created a Mantel correlogram to 

visualize isolation-by-distance patterns across different distance classes in the ECODIST R 

package. We used a lag of 100m and all correlograms were run for 999 permutations. We 

generated 95% confidence intervals with 500 iterations of 90% bootstrapping. We estimated 

pairwise FST between upstream and downstream reaches within each stream to test for genetic 

substructure within streams. Genetic variation among streams was assessed using pairwise FST. 

Between-reach and between-stream FST were calculated in GENODIVE and significance was 

assessed using 10,000 permutations. 

 

Population size 

 

We calculated the ratio of effective to census populations size (Ne/N) to understand the severity 

of inbreeding in our study streams, as the increase in homozygosity due to inbreeding is 

inversely proportional to effective population size. Effective population sizes (Ne) were 

estimated for each stream using the linkage disequilibrium method (LDNe) in NeEstimator v. 2.1 

(Waples and Do 2008, Do et al. 2014). LDNe is a single-sample estimator that uses gametic 

disequilibria generated in small populations where there are a finite number of parents (Waples 

2005). LDNe generally estimates the number of parents that contributed to the sample because 

disequilibria at unlinked loci decay rapidly. We assumed random mating and used a jackknife 

method to generate confidence intervals surrounding Ne estimates (Waples and Do 2008). 

 

 We used the POPAN formulation of the original Jolly-Seber model in Program Mark to 

estimate abundance (i.e., census size) of adult G. porphyriticus in each of the 5 study streams 

from our capture-mark-recapture data (White and Burnham 1999, Lebreton et al. 2009). We 

restricted our abundance estimation to adults because Ne estimates reflect the number of parents. 

Although we originally designed our sampling to fit a robust design framework, consisting of 3 

primary sampling sessions per summer, with 3 secondary sampling sessions within each primary 

session (Pollock 1982), we collapsed all secondary survey sessions to a single observation within 

each primary session to increase the accuracy and precision of parameters of interest (e.g., Grant 

et al. 2010).  

 

 The POPAN formulation posits the existence of a hypothetical super-population (N), 

from which individuals enter the population (Schwarz and Arnason 1996). The probability of 

entering the population (PENT) is the probability that an animal from the super-population (N) 

enters the population between time t and t+1 and survives to time t+1. Survival probability () 

represents the probability that marked and unmarked animals alive at time t will be alive at time 

t+1. Recapture probability (p) is the probability of capture of both marked and unmarked animals 

at time t, conditional on being alive and available for recapture. 
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 We modeled , p, and PENT parameters as either constant or variable by time (month), 

for a total of 6 possible models per stream. Each model produced an estimate of the super-

population (N), which represents all adult individuals that could ever enter the stream population 

over the study period, and which we used as our measure of adult abundance. Model selection 

was based on Akaike’s information criterion (AIC; (Akaike 1973) and models were ranked by 

second-order AIC (AICc) differences (∆AICc; (Burnham and Anderson 2002). The relative 

likelihood of each model in the candidate set was estimated with AICc weights (Buckland et al. 

1997). When top model rankings were ambiguous (i.e., ∆AICc < 2.0; Burnham and Anderson 

2002), we performed pairwise likelihood ratio tests (LRT) to compare model fit. A significant 

LRT (P < 0.05) indicates greater support for the model with more parameters; a non-significant 

LRT indicates both models are equally supported, in which case the model with fewer 

parameters is more parsimonious (Cooch and White 2007). Prior to model selection, we assessed 

goodness-of-fit for saturated models (i.e., fully time-dependent) using the program RELEASE 

(Cooch and White 2007). 

 

Quantifying inbreeding risk 

 

We quantified inbreeding risk as an individual’s proximity to relatives, calculated as the 

proportion of individuals within 50m (i.e., in either upstream or downstream directions along the 

channel, amounting to 100m of stream length) that were relatives. We set this 50m cutoff a 

priori based on existing data on G. porphyriticus movement in a stream in northern New 

Hampshire (Lowe et al. 2006a). Specifically, mean dispersal distance of 287 recaptured 

individuals in that 6-year dataset was 47m (W.H. Lowe, unpublished data), suggesting that a 

50m cutoff would be large enough to encompass the majority of potential mates in the Hubbard 

Brook streams, accounting for future movements of the focal individual and those potential 

mates.  

 

 We used the program RELATED (Pew et al. 2015), an R implementation of the program 

COANCESTRY (Wang 2011), to estimate pairwise coefficients of relatedness (r) between 

individuals using 297 SNPs. Seven relatedness estimators are available in COANCESTRY, 

including five moment estimators (Queller and Goodnight 1989, Ritland 1996, Lynch and 

Ritland 1999, Wang 2002, Li et al. 2014) and two likelihood methods (Wang 2007, Anderson 

and Weir 2007). Performance of these estimators is known to depend on many factors, including 

the level of relationship within the population of interest (Csilléry et al. 2006), population 

demographic history (Robinson et al. 2013), and number and polymorphism of genetic markers 

used (Blouin 2003). Simulations are therefore recommended to select the best estimator for a 

given dataset (Wang 2011, Taylor 2015). We used empirical allele frequencies from our study 

populations to simulate 100 dyads of each of the following relationship categories: parent-

offspring (r = 0.50), full siblings (r = 0.50), half siblings (r = 0.25) and unrelated (r = 0.0). 

Estimator performance was assessed by calculating Pearson’s correlation coefficient for 
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relatedness estimates produced by each estimator and true relatedness. The triadic likelihood 

method (TrioML) produced relatedness estimates that were most closely correlated with true 

relatedness (Pearson’s r = 0.972) and was employed for subsequent analyses. We performed 100 

bootstrap replicates over loci to calculate 95% confidence intervals for each point estimate of 

relatedness.  

 

 Simulations revealed some imprecision in relatedness estimates for individuals in known 

relationship categories (Fig S1), so we took a conservative approach and classified individuals as 

‘related’ or ‘unrelated’ for subsequent analyses rather than using point estimates of relatedness 

coefficients. We considered related individuals to be pairs with a relatedness coefficient > 0.13, 

the lower 95% confidence limit of the simulation of half-siblings with the TrioML estimator. 

Therefore, related pairs included parent-offspring dyads, full-siblings and half-siblings. All other 

individuals were considered unrelated because we did not have the power to distinguish more 

distant relationships from unrelated individuals (e.g., first-cousins [r=0.125], second-cousins 

[r=0.01325]), as the upper 95% confidence limit of unrelated individuals from simulations was 

0.123. 

 

Testing for effects of dispersal on inbreeding risk 

 

We used a linear mixed effects (LME) model to test for effects of dispersal and stream reach on 

the proportion of relatives within 50m – our measure of inbreeding risk. This approach allowed 

us to pool data across streams by including stream as a random effect, thereby accounting for 

variation in relatedness among streams. We treated dispersal status (yes, no), and stream reach 

(downstream, upstream) as fixed effects. We included the dispersal × reach interaction as a fixed 

effect to explicitly test for a difference in the effect of dispersal on inbreeding risk between 

downstream and upstream reaches. These analyses were conducted using the ‘lme’ and 

‘anova.lme’ functions in the ‘nlme’ R package (Pinheiro et al. 2014). We used a ‘varIdent’ 

weighting function to correct for heteroscedasticity due to unequal variances among dispersal × 

reach groups. To assess the statistical significance of the dispersal × reach interaction, we 

defined significance at p < 0.10. Tests of interactions are often underpowered when sample sizes 

are small (Marshall 2007, Durand 2013), as in many ecological studies (e.g., Drake et al. 2011, 

Sistla et al. 2013). Given the rarity of dispersers compared to residents in G. porphyriticus, we 

anticipated small sample sizes might also interfere with our ability to detect true differences in 

inbreeding risk between dispersers and residents in downstream and upstream reaches. Based on 

the ANOVA summary of the LME model, we conducted post-hoc pairwise comparisons to 

identify specific differences in inbreeding risk between dispersal × reach groups using Tukey’s 

test in the R package ‘lsmeans’ (Lenth 2016). Larvae and adults were pooled for all analyses 

because the two life-history stages are not independent; that is, dispersal during the larval stage 

affects spatial proximity to relatives as an adult. 
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Results 

 

Dispersal distance 

 

We captured 2,861 salamanders across the 5 study streams during our study. Information on 

recapture rates and other sampling parameters are in Table 1. All but two of the recaptured 

individuals stayed within the same reach during the study; one individual in Bear and one 

individual in Zigzag moved from the upstream reach to the downstream reach. Within-reach 

dispersal distances in recaptured individuals ranged from 0 – 404m, and dispersal distances in 

dispersers (i.e., individuals that moved  10m) were greater in downstream reaches than 

upstream reaches (Wilcoxon rank-sum test, p = 0.047; Figure 2).  

 

Genetic differentiation 

 

Mean expected heterozygosity was similar in the 5 study streams and ranged from 0.334 – 0.343 

(Table 1). FIS values were not significant for any stream (p  0.05), but estimates were slightly 

positive for all streams except Cascade, indicating a deficit of heterozygotes (Table 1). Mantel 

tests for isolation-by-distance were significant in Bear (r = 0.084, p = 0.001) and Paradise (r = 

0.075, p = 0.004; Table 1). The lack of a signal of IBD in Cascade, Canyon and Zigzag was 

likely due to small sample sizes (Table 1). In Bear and Paradise, Mantel correlograms indicated 

autocorrelation of genetic distances at < 300m and little to no correlation at distances greater 

than 300m (Figure 3).  

 

 Pairwise FST values between reaches were low (0.001 – 0.008; Table 2) and only 

significant for Bear and Paradise, indicating weak differentiation between upstream and 

downstream reaches (Table 2). The lack of significant FST values between reaches in the other 

streams was also likely due to small sample sizes. All pairwise FST between streams were 

significant, ranging from 0.007 – 0.022 (Table 2). Bear and Paradise, the streams closest together 

on the landscape, were the least differentiated, and Cascade was the most differentiated from all 

other streams. 

 

Population size 

 

Jolly-Seber abundance models for all 5 study streams indicated that survival was constant over 

time, and recapture and entrance probabilities were variable over time (Table S2). The difference 

in AICc (ΔAICc) between the top and second-ranked models were > 2 in all streams except 

Canyon, indicating considerable support for the top models. Entrance probability was constant 

over time in the second-ranked model in Canyon. However, a likelihood ratio test between the 

top two models was significant (Χ2 = 10.96, p = 0.03), indicating that the model with more 

parameters (i.e., with time-variant entrance probabilities) had the best fit. None of tests 
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performed in RELEASE were significant, indicating no evidence of lack-of-fit for any models. 

Estimates of adult abundance from the top models for each stream ranged from 587 – 899 (Table 

1).   

 

 Effective population sizes estimated using LDNe ranged from 124 – 205 (Table 1). The 

upper 95% confidence limit for Cascade included infinity, likely due to small sample size. 

Effective to census population size ratios ranged from 0.163 – 0.406; however, these ratios are 

rough given that 95% confidence limits were sizeable for both effective and census sizes (Table 

1).   

 

Effects of dispersal on inbreeding risk 

 

We quantified inbreeding risk as the proportion of individuals within 50m that were related (r > 

0.132). Individuals that were not within 50m from any other individuals were excluded from 

subsequent analyses (n = 7). The number of individuals within 50m of a focal individual ranged 

from 1 – 30 and the proportion of these that were relatives ranged from 0 – 1; these two 

measures were not correlated (r = -0.033, p = 0.522). The median proportion of relatives within 

50m was 0.111. 

 

 The results of the LME model and ANOVA showed a significant main effect of dispersal 

on the proportion of relatives within 50m (F1,360 = 7.176, p = 0.007), indicating that inbreeding 

risk was lower for dispersers than residents. However, a significant disperser × reach interaction 

term (F1,360 = 3.059, p = 0.081) indicated that this effect was dependent on stream reach (Figure 

4). Post-hoc Tukey tests showed that dispersers in downstream reaches were in proximity to 

fewer relatives than residents (t =3.080, p = 0.012), but there was no difference in the proportion 

of relatives surrounding dispersers and residents in upstream reaches (t = 0.899, p = 0.806). The 

main effect of stream reach on the proportion of relatives within 50m was not significant (F1,360 = 

0.009, p = 0.926). These results indicate that dispersal is effective for reducing inbreeding risk in 

downstream reaches only – where dispersal distances were greater than in upstream reaches. 

 

 

Discussion 

 

Our results show that dispersal reduces inbreeding risk in G. porphyriticus, and that 

environmentally-associated variation in dispersal distances leads to variation in the effects of 

dispersal on inbreeding risk. Specifically, we found that in the downstream reaches of our study 

streams, where dispersal distances were greater (Figure 2), dispersal significantly lowered 

inbreeding risk (Figure 4). This effect was not observed in upstream reaches where dispersal 

distances were shorter. These results indicate that selective pressures influencing dispersal 

distances can vary at fine spatial scales (i.e., reach-scale), with resulting consequences for 
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inbreeding risk. Likewise, these results show that inbreeding avoidance is not the sole 

evolutionary driver of dispersal distances in our study system, given that inbreeding risk has not 

led to increased dispersal distances in upstream reaches. More generally, our study demonstrates 

the importance of considering dispersal distance, rather than dispersal propensity, for 

determining an individuals’ inbreeding risk, while also underscoring the danger of ascribing 

variation in dispersal – whether propensity or distance – to inbreeding avoidance alone.  

 

 Our key finding that dispersal distances predict inbreeding risk was due, in part, to the 

spatial structure of genetic differentiation in G. porphyriticus. Dispersal is rare in G. 

porphyriticus, creating a pattern of isolation-by-distance along streams, where relatives are 

locally clustered. This pattern was statistically significant in Bear and Paradise (Figure 3), and 

we believe it is likely that small sample sizes prevented us from detecting IBD in the other 

streams (Table 1). This fine-scale clustering of relatives created conditions under which dispersal 

effectively lowered inbreeding risk in downstream reaches. Our data suggest that the same 

pattern of clustering occurred in upstream reaches: the main effect of reach was not significant in 

our ANOVA analyses, indicating that the proportion of relatives within 50m of a focal individual 

– our index of inbreeding risk – did not differ between downstream and upstream reaches. 

However, dispersal (based on the 10m cutoff) did not lower inbreeding risk in upstream reaches, 

indicating that the different effects of dispersal on inbreeding risk in downstream and upstream 

reaches were due to differences in dispersal distances rather than differences in spatial patterns of 

genetic relatedness. Without information on mate choice, we cannot know whether dispersers in 

downstream reaches successfully avoided inbreeding, but several studies have shown that 

dispersers do not discriminate between relatives and non-relatives when choosing mates (Duarte 

et al. 2003, Foerster et al. 2006, Hansson et al. 2007, Eikenaar et al. 2008), further underscoring 

the importance of dispersal distances in mitigating inbreeding risk.  

 

 Evidence of increasing genetic divergence with stream distance suggests that the majority 

of dispersal in G. porphyriticus occurs in or along stream channels. This pattern is consistent 

with other stream salamanders that are confined to the stream network, whereas salamanders 

dispersing both overland between streams and along streams tend to exhibit less genetic structure 

(Steele et al. 2009, Mullen et al. 2010, Miller et al. 2015). Overland dispersal is also known to 

increase demographic connectivity and gene flow among populations of other headwater stream 

organisms (Finn et al. 2006, 2007, Ponniah and Hughes 2006, Grant et al. 2010), and should, we 

expect, reduce the overall threat of inbreeding and the effectiveness of dispersal as an inbreeding 

avoidance strategy. In contrast, IBD along stream channels creates conditions where dispersal, 

and dispersal distance in particular, can influence individual inbreeding risk. More generally, 

then, the capacity of stream organisms to use overland dispersal pathways may help to predict 

inbreeding risk and the likelihood that specific dispersal parameters (e.g., distance, frequency, 

stage or sex specificity) evolve to reduce inbreeding.  
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 Despite evidence of IBD along streams (Figure 3) and that dispersal distance predicts 

inbreeding risk (Figures 2 and 4), our results do not support the conclusion that inbreeding 

avoidance is the primary selective pressure influencing dispersal distance in G. porphyriticus. If 

this were the case, we would expect dispersal distances to be greater in upstream reaches (Figure 

2), leading to reduced inbreeding risk in dispersers (Figure 4). Additionally, low FST values 

between streams, ranging from 0.007 – 0.022, indicate that our study streams receive 

approximately 16 migrants per generation assuming migration-drift equilibrium (Wright 1969). 

This number of migrants exceeds that which is generally needed to reduce the harmful effects of 

inbreeding (Wright 1951, Lowe and Allendorf  2010). Further, effective population sizes (Ne = 

124 – 205) are likely high enough to avoid inbreeding depression (Jamieson and Allendorf 

2012). Effective to census population size ratios (Ne/N) ranged from 0.16 – 0.41, within the 

range observed for non-threatened wild populations (Palstra and Ruzzante 2008) and higher than 

previously reported medians (0.11 in Frankham 1995, 0.14 in Palstra and Ruzzante 2008). It 

should be noted, however, that there is significant uncertainty associated with our Ne and N 

estimates, indicated by large confidence intervals in streams with low sample sizes (i.e., Canyon, 

Cascade; Table 1). It is also challenging to interpret Ne from mixed-age samples like ours; 

Waples et al. (2014) suggest that estimates from mixed-aged samples may be downwardly biased 

by as much as 30% in amphibians. This downward bias in Ne means that Ne/N ratios are also 

likely downwardly biased, and that these indices may overestimate the effects of inbreeding on 

population genetic variation.  

 

 If we rule out inbreeding avoidance as the primary driver of dispersal distance in our 

study system, there remain several ecological differences between downstream and upstream 

reaches that may explain the observed variation in dispersal distances (and associated effects on 

inbreeding risk). Previous research in the HBEF has shown that survival in G. porphyriticus is 

generally lower in downstream reaches (Lowe et al. 2018; Addis, Chapter 3), suggesting that 

increased dispersal distances in these reaches is a response to increased mortality risk. Increased 

mortality risk may, in turn, be a result of co-occurrence with brook trout in downstream reaches. 

Brook trout prey on G. porphyriticus larvae and reduce growth rates of larger size classes 

through interference competition for shared prey (Resetarits 1991, 1995, Lowe et al. 2004). 

Predation and competition are known to increase dispersal distances to escape predation and 

alleviate competition for space and resources, respectively (De Meester and Bonte 2010, Bitume 

et al. 2013, Otsuki and Yano 2014). However, many other factors also differ along our study 

streams that could lead to differential dispersal distances between downstream and upstream 

reaches (e.g., discharge, prey availability, refuge availability; Vannote et al. 1980, Hubert and 

Kozel 1993, Lowe and Bolger 2002). Finally, although inbreeding avoidance is unlikely to be the 

primary selective pressure influencing dispersal distances in G. porphyriticus, any positive 

fitness effects of reduced matings with relatives may help to maintain longer dispersal distances 

in downstream reaches (Perrin and Goudet 2001). 
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 A strength of our study comes from using direct dispersal data, rather than inferring 

dispersal from genetic data. Directly measuring dispersal allowed us to test for effects of 

relatively short-distance movements (i.e., shorter than the spatial scale of genetic differentiation; 

Figure 3) on inbreeding risk. This analysis would not have been possible using indirect genetic 

methods that require genetic divergence among subpopulations to detect immigrants (i.e., 

assignment tests; Rannala and Mountain 1997, Manel et al. 2005, Hall et al. 2009). Additionally, 

our approach allowed us to quantify the effects of both larval and adult dispersal on inbreeding 

risk. Parentage analyses are commonly used to estimate dispersal distances based on the physical 

distance between parent-offspring dyads (Proctor et al. 2004, Cullingham et al. 2008, Waser and 

Hadfield 2011), but this approach precludes the possibility of adult dispersal because it assumes 

that offspring were born at the location where the parents were sampled (Blouin 2003). This 

assumption is certainly valid for species with highly philopatric adults (Dobson 1982), but 

dispersal by reproductive adults is also well documented (Hazell et al. 2000, Bonte et al. 2008), 

including in G. porphyriticus (Lowe 2003).  

 

 This study provides rare empirical support for the basic prediction that inbreeding risk 

should decrease with increasing dispersal distances. Our results also underscore the importance 

of interpreting dispersal distances in the context of spatial patterns of genetic relatedness to 

disentangle inbreeding avoidance from other selective pressures influencing dispersal distances. 

More broadly, this work contributes to a growing body of research showing that inbreeding, kin 

competition, and environmental variation – the three putative drivers of dispersal evolution – 

may each require different dispersal distances to reduce associated fitness costs (Bowler and 

Benton 2005, Duputié and Massol 2013). Likewise, we hope this work shows the value of 

directly quantifying dispersal distances to understand the relative importance of these selective 

pressures in shaping dispersal strategies in natural populations. 
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Table 1. Sample sizes and genetic information for G. porphyriticus in 5 headwater streams in the 

Hubbard Brook Experimental Forest. 

 

Stream 

Total captured 

(down/up) 

recaptured 

(down/up) 

genotyped 

(down/up) 

Ne              

(95% CI) 

Nadult         

(95% CI) 
Ne:N He FIS Mantel R 

Bear 
930 246 150 182 899 

0.202 0.341 0.002 0.084* 
(397/533) (89/157) (65/85) (147 - 234) (649 - 1314) 

Canyon 
387 50 36 183 451 

0.406 0.334 0.017 0.036 
(245/142) (32/18) (25/11) (111 - 467) (273 - 824) 

Cascade 
115 37 22 124 761 

0.163 0.341 -0.017 0.140 
(76/39) (22/15) (16/6) (51 - ∞) (277 - 2572) 

Paradise 
876 212 112 205 825 

0.248 0.343 0.001 0.075* 
(353/523) (73/139) (45/67) (165 - 267) (645 - 1085) 

Zigzag 
553 118 62 157 587 

0.267 0.343 0.001 0.009 
(134/419) (11/107) (5/57) (112 - 251) (407 - 905) 

* p<0.05          
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Table 2. Pairwise FST values for G. porphyriticus in 5 headwater streams in the Hubbard Brook 

Experimental Forest. Values in the diagonal are pairwise FST between downstream and upstream 

reaches. 

            

  Bear Canyon Cascade Paradise Zigzag 

Bear 0.008*     

Canyon 0.015* 0.001    

Cascade 0.02* 0.017* 0.003   

Paradise 0.007* 0.014* 0.022* 0.006*  

Zigzag 0.012* 0.013* 0.022* 0.014* 0.006 

* p<0.05      
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Figure 1. Map of the 5 study streams in the Hubbard Brook Experimental Forest in central New 

Hampshire, USA. Bear, Canyon, Cascade, Paradise, and Zigzag Brooks are hydrologically 

independent and flow into the Main Hubbard.  
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Figure 2. Distribution of dispersal distances in downstream reaches (light grey, n = 43) and 

upstream reaches (dark grey, n = 50) of recaptured G. porphyriticus in 5 streams in the Hubbard 

Brook Experimental Forest, USA. Only dispersers are shown – individuals that moved  10m 

from their initial location, as justified in the main text. Dotted lines indicate mean dispersal 

distances (downstream = 80.070m, upstream = 47.020m). Dispersal distances were significantly 

greater in downstream reaches than upstream reaches (Wilcoxon rank-sum test, p = 0.047). 
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Figure 3. Mantel correlograms for G. porphyriticus in Bear and Paradise streams in the Hubbard 

Brook Experimental Forest, USA. Filled points are statistically significant and open points are 

not statistically significant. Each distance class is 100 m.  
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Figure 4. Results of ANOVA testing for differences in inbreeding risk (measured as the 

proportion of relatives within 50m) in G. porphyriticus dispersers and non-dispersers in 

downstream and upstream reaches of 5 streams in the Hubbard Brook Experimental Forest. 

Filled circles are dispersers (i.e., individuals that moved  10m from their initial location) and 

open circles are non-dispersers. Data are least squares means (LSM) from ANOVA. The asterisk 

indicates a significant difference in inbreeding risk. 
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Table S1.  The number of variant sites retained after each filtering step for G. porphyriticus in 

the Hubbard Brook Experimental Forest. 

    

Filter SNP count 

Raw SNP catalogue 62777 

Remove individuals > 40% missing data  

Genotyped in 50% of individuals, base quality >20 31069 

Minimum depth of 3 reads to call genotypes  

Genotype call rate of 70% in all pops 24214 

Minor allele frequency > 0.05 11618 

Allele ratio >0.3, <0.7 5251 

Mean site depth >10, < 300 4141 

filter by HWE (out of proportions in ≥ 3 pops) 1380 

thin to 1 SNP/contig 312 

remove physically linked loci (r2 ≥ 0.8 in ≥ 3 pops) 297 
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Table S2. Jolly-Seber capture-mark-recapture (CMR) models of monthly survival (ϕ), recapture 

(p), and entrance probabilities (pent) used to estimate abundance of adult Gyrinophilus 

porphyriticus in 5 study streams in the Hubbard Brook Experimental Forest. Here we only show 

the top 3 models for each stream. 
 

          

Bear AICc ∆AICc AICc wt K 

ϕ(.), p(time), pent(time) 510.95 0 1.00 22 

ϕ(time), p(time), pent(time) 525.54 14.59 0.00 30 

ϕ(time), p(time), pent(.) 81470.65 80959.70 0 21 

          

Canyon AICc ∆AICc AICc wt K 

ϕ(.), p(time), pent(time) 201.84 0 0.60 16 

ϕ(.), p(time), pent(.) 202.65 0.81 0.40 12 

ϕ(time), p(time), pent(time) 211.66 9.82 0.00 21 

          

Cascade AICc ∆AICc AICc wt K 

ϕ(.), p(time), pent(time) 177.29 0 0.98 16 

ϕ(time), p(time), pent(time) 184.76 7.48 0.02 21 

ϕ(.), p(.), pent(.) 38011.56 37834.27 0.00 4 

          

Paradise AICc ∆AICc AICc wt K 

ϕ(.), p(time), pent(time) 522.53 0 1.00 22 

ϕ(time), p(time), pent(time) 534.52 11.99 0.00 30 

ϕ(time), p(time), pent(.) 75947.30 75424.78 0 21 

          

Zigzag AICc ∆AICc AICc wt K 

ϕ(.), p(time), pent(time) 342.77 0 1.00 22 

ϕ(time), p(time), pent(time) 361.69 18.92 0.00 30 

ϕ(.), p(.), pent(.) 369.89 27.12 0 4 

     
Notes: Second-order Akaike’s information criterion values (AICc), AICc differences(AICc), 

AICc weights (AICc wt), and number of estimable parameters (K) are provided for all models. 

Parameterization for ϕ, p, and pent is in parentheses; “.” = constant by stream reach and time. 
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Figure S1. Relatedness coefficients estimated by TrioML in COANCESTRY for simulated dyads 

in 4 relationship categories (parent-offspring [r = 0.5], full-siblings [r = 0.5], half-siblings [r = 

0.25], unrelated [r = 0]) using simulated genotypes based on empirical allele frequencies of 297 

SNPs developed for G. porphyriticus.  
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CHAPTER 5: Evolution of dispersal is scale-dependent 

 

 

 

Abstract  

 

The challenge of quantifying long-distance dispersal in the field has limited our understanding of 

the processes leading to individual variation in dispersal distances in natural populations. Recent 

empirical work has shown that animals use information on habitat quality to make emigration 

and settlement decisions, thereby maximizing individual fitness with ‘informed dispersal’. In 

contrast, early dispersal theory treated dispersal as a ‘fixed’ trait, independent of local conditions. 

Empirical support for fixed strategies remains scarce, leading researchers to speculate that 

informed dispersal is more prevalent and evolutionarily advantageous. However, the costs of 

information acquisition at large spatial scales make informed strategies impractical for long-

distance dispersal. We bring together informed and fixed models of dispersal and propose a 

scale-dependent model of dispersal evolution. Under our model, informed strategies explain 

short-distance dispersal and fixed strategies explain long-distance dispersal. We further suggest 

that fixed dispersal will have added adaptive significance under climate change by facilitating 

long-distance movements needed to track suitable habitat. 

 

 

Introduction 

 

Dispersal has long been recognized as an important process in ecology and evolution. Dispersal 

contributes to population growth rates (Tittler et al. 2006), facilitates gene flow and introduces 

adaptive alleles into populations (Swindell and Bouzat 2006, Garant et al. 2007), and allows 

populations to track changes in the distribution of suitable habitat (Kokko and López-Sepulcre 

2006). Additionally, populations receiving immigrants are less likely to go extinct by 

demographic mechanisms (Brown and Kodric-Brown 1977, Hanski and Gilpin 1997) or genetic 

mechanisms (Spielman and Frankham 1992, Vilà et al. 2003). These effects of dispersal on 

population dynamics and evolutionary trajectories are often mediated by dispersal distances. For 

example, connectivity between geographically separated populations may be achieved only if 

dispersal distances are long enough to cross the intervening habitat matrix (Van Houtan et al. 

2007). Long-distance dispersal, in particular, sets the rate of range shifts (Higgins and 

Richardson 1999) and species invasions (Kot et al. 1996), and ultimately plays a key role in 

determining population and species persistence (Bohrer et al. 2005).  

 

 Despite this evidence for its importance, our understanding of how long-distance 

dispersal is maintained in natural populations is limited by empirical and conceptual obstacles 

related to spatial scale. Dispersal is difficult to quantify empirically in the field, and increasingly 

so the greater the distance (Koenig et al. 1996, Nathan 2001). This leads to small post-dispersal 
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sample sizes, and a lack of related information on the fate and fitness of dispersing individuals 

(Lowe and McPeek 2014). This scarcity of data on the fitness consequences of dispersal impedes 

dispersal research generally, but poses a particular challenge in efforts to understand the causes 

and consequences of variation in dispersal distance – because the likelihood of recapture declines 

with distance (Nathan 2001, Reid et al. 2016, Cayuela et al. 2018). 

 

 Spatial scale also poses a conceptual challenge in dispersal research. We often associate 

dispersal with large-scale movements, but dispersal is commonly defined as movement from a 

natal site to a site of reproduction – with no explicit mention of spatial scale (Greenwood 1980, 

Duputié and Massol 2013, Burgess et al. 2015). Some reluctance to address scale in dispersal 

theory is expected given the species and system-specific nature of “large-scale movements”. 

Additionally, the distinction between short-distance and long-distance dispersal is often 

ambiguous (Nathan et al. 2003). It is generally acknowledged that short-distance dispersal 

influences local processes (i.e., population dynamics, resource use), while long-distance 

dispersal affects regional processes (i.e., range shifts, colonization dynamics; Kot et al. 1996, 

Hanski 1998, Nathan et al. 2003). However, ‘local’ and ‘regional’ must still be scaled to the 

movement capacities of species. Nevertheless, conceptual reckoning with scale is necessary if we 

hope to answer questions that are scale-dependent, such as why we see a consistent pattern of 

many short-distance dispersers (Janzen 1970, Hamilton and May 1977) but very few long-

distance dispersers across taxa (Kot et al. 1996, Gillespie et al. 2012), and whether the proximate 

drivers of dispersal (e.g., behavioral, physiological, morphological traits) vary with distance 

(Alonso et al. 1998, Lowe and McPeek 2012). 

 

 Dispersal is a 3-part process, including stages of emigration, transience, and settlement 

(Ronce 2007, Clobert et al. 2009). Under a scale-free view of dispersal, it is logical to focus on 

emigration (stay vs. leave) and settlement (stop vs. continue), and a growing body of research 

emphasizes the use of information by dispersers – environmental and social – to make these 

discrete dispersal decisions (Bowler and Benton 2005, Clobert et al. 2009). This view of 

dispersal is largely consistent with the Ideal Free Distribution (IDF), where fitness declines with 

conspecific density and individuals apportion themselves among habitat patches to maximize 

individual fitness (Fretwell and Lucas 1970, Fretwell 1972). Dispersal decisions often 

incorporate factors other than conspecific density (e.g., Massot et al. 2002; Bonte et al. 2008; 

Mathieu et al. 2010). But, regardless of the cause of emigration and settlement, dispersal is the 

mechanism that allows individuals to maximize fitness at the landscape scale, and it relies on an 

ability to assess habitat – at the origin and in transit (i.e., informed dispersal; Clobert et al. 2009). 

 

 When we consider continuous variation in dispersal distance, rather than discrete 

emigration and settlement responses, the importance of information becomes less clear. Dispersal 

in most plants and animals is characterized by a majority of individuals that stay close to their 

natal site and significantly fewer that move far from that site (Dobzhansky and Wright 1943, 
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Mayr 1963, Endler 1977). This produces distance distributions with high peaks at a distance of 0 

and long tails encompassing the variation in dispersal distance (i.e., leptokurtic or fat-tailed 

distributions; Darwin 1872; Endler 1977; Johnson and Gaines 1990). As the scale of dispersal 

increases, the number of potential settlement sites increases dramatically, and so does the cost of 

sampling those sites under an informed dispersal model (Bonte et al. 2012; Delgado et al. 2014; 

Figure 1). This rate of increase will depend on the movement behavior of a focal species 

(Schjørring 2002; Enfjäll and Leimar 2009; Bocedi et al. 2012; Figure 2), but will be highly 

distant-dependent (Poethke et al. 2011). Thus, although informed dispersal may be an 

appropriate model for variation in dispersal distances near the peaks of distance distributions, 

where the costs of gathering information are relatively low, it is unlikely to maintain the tails of 

these distributions.  

 

 We suggest that long-distance dispersal is likely an outcome of fixed dispersal strategies 

– those that are not contingent on assessing local habitat quality, but instead based on innate 

qualities of individuals. To advance empirical and theoretical research on dispersal, we propose a 

new, scale-explicit model of dispersal evolution where strategies differ with dispersal distance – 

informed strategies at short distances, fixed strategies at long distances. We first review the 

conceptual basis of the two dominant models of dispersal evolution – informed and fixed – to 

clarify the foundation and motivation for our integrated model. We then describe how these two 

bodies of theory can be brought together in one scale-dependent model of dispersal evolution. 

Finally, we show how this new model can help address a pressing challenge in applied ecology: 

predicting species’ ability to tracking shifting habitat under climate change. Because we are 

primarily interested in the role of information in dispersal evolution, we do not address variation 

in dispersal distance in passive dispersers, where transport is achieved by an external vector (i.e., 

wind, transport by animals; Carlquist 1981). 

 

 

Dispersal is a mechanism to maximize individual fitness 

 

Dispersal should only be selectively advantageous if the fitness benefits of dispersing to a new 

habitat patch exceed the costs. Fundamentally, then, dispersal evolves as a consequence of 

variation in individual fitness among habitat patches (Bowler and Benton 2005). Without 

individual fitness variation, dispersal should not evolve because individuals do not experience a 

fitness advantage by moving among patches (Holt 1985, but see Hamilton and May 1977 for an 

exception under a scenario of kin competition). A variety of ecological conditions can contribute 

to fitness variation among patches (e.g., con- and heterospecific density, resource availability, 

patch size), but regardless of the cause, how individuals distribute themselves among habitat 

patches to maximize fitness forms the basis of competing views of dispersal evolution. 
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Informed dispersal 

 

Models of informed dispersal are based on individuals’ ability to perceive and assess fitness 

returns at the current location and in transit to a settlement site. This view is supported by 

accumulating evidence that individuals use information about habitat quality and environmental 

conditions to make emigration and settlement decisions (e.g., Massot et al. 2002; Bonte et al. 

2008). For example, we now know that earthworm (Aporrectodea icterica) dispersal is triggered 

by unsuitable soil properties (Mathieu et al. 2010), red squirrels (Sciurus vulgaris) disperse when 

food availability is low (Lurz et al. 1997), and backswimmers (Notonecta undulata) disperse in 

response to predatory sunfish (Baines et al. 2014).  

 

 Dispersal decisions can also be based on social information, such as presence and 

reproductive success of conspecifics (e.g., Doligez et al. 2003; De Meester and Bonte 2010). In 

many insects, flight-capable wings develop in response to conspecific density thresholds. For 

example, crowding triggers wing development for dispersal in many species of aphids (Harrison 

1980), while planthopper species living in low-density, temporary habitats develop wings to 

locate mates in other habitat patches (Denno et al. 1991). Vertebrates are also known to use 

social information in emigration and settlement decisions. Kittiwakes (Rissa tridactyla) use 

information about the reproductive success of conspecifics to evaluate their own chances of 

breeding successfully in a given patch (Danchin et al. 1998), and common lizards (Lacerta 

vivipara) base emigration decisions on phenotypes of incoming immigrants to gain information 

about habitat quality elsewhere (Cote and Clobert 2007). 

 

 In addition to the recent surge of empirical support for informed dispersal models, theory 

supports the role of information in the evolution and maintenance of dispersal. In particular, the 

ability to recognize and avoid related individuals is implicit in dispersal theory addressing kin 

competition (Hamilton and May 1977, Ronce et al. 2000, Poethke et al. 2007) and inbreeding 

avoidance (Bengtsson 1978, Waser et al. 1986, Guillaume and Perrin 2006). Kin competition is a 

strong driver of dispersal in the common lizard: in the presence of kin, lizards will disperse at all 

costs, even when cues indicate that dispersal risk is high (Cote and Clobert 2010). Dispersive 

naked mole rats (Heterocephalus glaber) are phenotypically distinct from other colony members 

and preferentially mated with non-colony members during mate-choice experiments, indicating 

that dispersal is an inbreeding avoidance mechanism in this system (O’Riain et al. 1996).  

 

 Finally, informed dispersal also aligns with habitat selection theory. In particular, the 

Ideal Free Distribution (IFD) posits that individuals should freely distribute themselves among 

habitat patches to maximize individual fitness, thereby equilibrating fitness across the landscape 

(Fretwell and Lucas 1970, Fretwell 1972). In the original IFD model, fitness is contingent on 

conspecific density: the best patches will have the fewest competitors for resources. But, like 

recent empirical and theoretical work on informed dispersal, the IFD is based on an underlying 
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hypothesis that individuals obtain and act on knowledge of the resource quality in each patch. 

For example, Daphnia pulex choose their position in a patch based on food concentrations and 

population densities (Larsson 1997), and little grebes (Tachybaptus ruficollis) only occupy low-

quality ponds after high-quality ponds become overcrowded (Sebastián‐González et al. 2010). 

 

 Together, this long-standing habitat selection theory and recent research on informed 

dispersal can explain short-distance dispersal – the majority of dispersal events – where the costs 

of information gathering are relatively low (Figure 1). However, it is difficult to reconcile these 

important bodies of work with the phenomenon of long-distance dispersal, where the costs of 

information gathering are prohibitive (and indeed, the original IFD assumed no dispersal costs at 

all; Fretwell and Lucas 1970; Fretwell 1972). While recent refinements of information-based 

models do allow for behavioral mitigation of these costs (Delgado et al. 2014), the problem of 

distance-dependent information costs has yet to be explicitly addressed in theory and empirical 

work on the evolution of dispersal.  

 

Fixed dispersal 

 

Despite the traction that the informed dispersal perspective has gained in recent years, 

foundational models of dispersal evolution treated dispersal as a ‘fixed’ trait, where individuals 

have an innate propensity to disperse that is independent of local conditions (e.g., Gadgil 1971; 

Roff 1975; Hastings 1983; Holt 1985; McPeek and Holt 1992). A central conclusion of these 

early theoretical models was that fixed dispersal should only evolve when fitness varies both 

spatially and temporally (Kuno 1981, Levin et al. 1984, McPeek and Holt 1992). If fitness varies 

temporally but not spatially, all patches experience temporal fluctuations in fitness identically, 

eliminating the benefits of moving among patches. If fitness varies spatially but not temporally, 

dispersal initially acts to balance patch abundances, but ultimately distorts abundances away 

from patch-specific carrying capacities (Hastings 1983, Holt 1985). This occurs because, on 

average, more individuals move from high-density patches (thus, high-quality) to low-density 

(low-quality) patches. Such distortion reduces mean individual fitness and will ultimately lead to 

selection against dispersal (Hastings 1983; Holt 1985, but see Pulliam (1988) for an exception 

under a scenario of asymmetrical competition).  

 

 The fitness benefits of fixed dispersal strategies stem from unpredictable spatiotemporal 

variation in ecological conditions, where the probability that a patch is above, below, or at 

equilibrial abundance varies randomly through time. Under these conditions, a fixed proportion 

of individuals dispersing among patches, independent of local conditions, acts to decrease 

variance in individual fitness over time by spatially averaging fitness across patches (McPeek 

2017). Ultimately, this bet-hedging strategy maximizes the disperser’s long-term geometric mean 

fitness (Kuno 1981, Metz et al. 1983, Armsworth and Roughgarden 2005), thereby maintaining 

the fixed dispersal strategy in the population. Scale is not explicitly addressed in fixed models of 
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dispersal evolution, but in these models the fitness benefits of fixed strategies are not contingent 

on processes with scale-dependent costs, such as information gathering. 

 

 These fixed models have had a significant and lasting impact on dispersal research, but 

direct empirical support for fixed dispersal is still scarce. Indirect support is found in systems 

where the development of locomotor structures are necessary for dispersal, such as wing-

dimorphic insects (Harrison 1980, Denno et al. 1996). In these cases, phenotypic constraints 

prevent individuals from basing dispersal decisions on immediate, local habitat conditions 

(Hendrickx et al. 2013). More generally, traits linked to dispersal that do not vary plastically in 

response to environmental cues are suggestive of fixed strategies, such as morphological or 

physiological traits that have high resource requirements and take considerable time to produce 

(Padilla and Adolph 1996, DeWitt et al. 1998).  

 

 Fixed dispersal has typically been modeled as having a simple genetic architecture, often 

controlled by one or two loci (e.g., McPeek and Holt 1992; Travis and Dytham 2002; Poethke et 

al. 2003). Instead, dispersal is likely a complex trait influenced by many genes of small effect 

(Saastamoinen et al. 2018). Heritability estimates are generally used to discern the amount of 

trait variation controlled by genetics, but most studies estimate heritability of dispersal proxies 

(i.e., putative dispersal traits, locomotive ability), and not dispersal distance or propensity 

explicitly (e.g., Watkins and McPeek 2006; Drangsholt et al. 2014; Mattila and Hanski 2014). 

Additionally, the power of such analyses is often limited by small post-dispersal sample sizes. 

Identifying a genetic basis for dispersal would, nevertheless, strengthen empirical support for 

fixed models.  

 

 

Scale-dependent evolution of dispersal 

 

Informed and fixed dispersal models represent two very different views of dispersal evolution, 

hinging on differences in the perception and use of information. Historically, fixed dispersal was 

the first to receive theoretical consideration, but the recent accumulation of empirical support for 

informed dispersal has led some researchers to speculate that it is more evolutionarily 

advantageous and, therefore, more prevalent than fixed strategies (Bowler and Benton 2005, 

Bonte et al. 2008, Clobert et al. 2009). We suggest that the prevalence of the informed strategy in 

empirical studies is, in part, an artifact of a focus on the discrete emigration and settlement 

responses associated with short-distance movements. But these are only two of the three steps in 

the dispersal process, which also includes a period of transience before settlement (Ronce 2007, 

Clobert et al. 2009). Shifting to focus on the transience period – and associated variation in 

dispersal distance – will make explicit the scale-related costs that may select for fixed strategies. 
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 The rarity of long-distance dispersal events alone, as reflected in the leptokurtic shape of 

dispersal distributions (Figure 3), suggests that the costs of dispersal increase with distance. In 

fact, because the potential sampling area increases with distance (Figure 1), it becomes 

unrealistic for individuals to sample all (or even most) available patches. More time spent 

sampling results in increased risk of predation, higher energy expenditure, and reduced 

opportunity for mating (Steen 1994, Giraldeau et al. 2002, Bonte et al. 2012). Thus, while 

informed dispersal is likely the optimal strategy over short distances, it is very difficult to explain 

long-distance dispersal events based on an informed dispersal model, unless the fitness benefits 

of dispersal also increase dramatically with distance.  

 

 Because of the high costs of gathering information about settlement sites at large spatial 

scales, we hypothesize that long-distance dispersal events are more likely explained by fixed 

dispersal strategies (Figure 3). Specifically, we predict that the fat tails of dispersal distributions 

are comprised of individuals with innate dispersal propensity, and which do not gather 

information about settlement site quality during transience (Delgado et al. 2014). Over long 

distances, dispersing without gathering information on site quality is likely to result in more 

efficient, straight-line movements, reducing mortality during the transient stage by minimizing 

the number of steps needed to achieve a certain distance (Zollner and Lima 1999; Barton et al. 

2009; Figure 2). 

  

 Fixed dispersal can be thought of as a cost-reducing strategy for long-distance dispersal 

(Figure 2), but these long-distances movements are still likely to be costly (Newton and 

Marquiss 1983, Forero et al. 2002). Long-distance movements should, therefore, have a high 

fitness payoff when successful to be maintained in populations. However, data on these fitness 

benefits are rare and – when available – subject to bias (Doligez and Pärt 2008). Specifically, 

low detectability can lead to underestimation of survival and reproductive success of long-

distance dispersers relative to short-distance dispersers and residents (Greenwood et al. 1979, 

Pärn et al. 2009), leading to the conclusion that dispersers tend to have lower fitness than 

residents (e.g., Wheelwright and Mauck 1998; Pocock et al. 2005; Hoogland et al. 2006). These 

sampling limitations have precluded unbiased assessment of the fitness benefits of long-distance 

dispersal, and thus the types of movements that we suggest are likely to be fixed. There are, 

however, more tractable benefits of fixed dispersal at the population level. Fixed dispersal offers 

a mechanism for populations to overcome ‘dispersal inertia’ – a tendency for perceptive 

individuals to disperse less than is optimal to maximize population performance (Enfjäll and 

Leimar 2009, Delgado et al. 2011). As a consequence, fixed dispersal can lead to higher 

colonization success of new habitats and higher metapopulation connectivity (Vuilleumier and 

Perrin 2006).  

 

 Our argument for a scale-dependent model of dispersal evolution is based primarily on 

the scaling of information costs, but the scaling of environmental variation also supports our 
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prediction that long-distance dispersal is under fixed control. As area around an initial starting 

position increases (Figure 1), spatiotemporal environmental variability of potential settlement 

sites will increase (Wiens 1989, Legendre 1993), with the highest variability (relative to the 

initial position) occurring at the most distant sites (Nekola and White 1999). Thus, the conditions 

predicted to maintain fixed dispersal by theoretical models are themselves likely to be scale 

dependent, consistent with our prediction that fixed models better explain long-distance 

dispersal. Interestingly, Bocedi et al. (2012) recently showed that it does not pay to invest in 

information acquisition when the environment varies unpredictably (e.g., as distance from an 

initial location increase) because the cost of gathering information will not reliably be offset by 

the benefits. Unpredictable variation in environmental conditions can also induce time lags 

between the cue and dispersal decisions (i.e., stay vs. leave), which can be maladaptive (Ims and 

Hjermann 2001). These findings add to indirect support for the role of fixed strategies in 

maintaining long-distance dispersal.   

 

 Taken together, we suggest that informed dispersal is most likely to evolve when the cost 

of information acquisition is low and when the environment varies predictably. When these two 

criteria are not met, we expect fixed dispersal to prevail. By extension, we suggest that the 

criteria for informed dispersal are most likely to be met at small spatial scales, and so generally 

pertain to short-distance movements. As the scale of movement increases, it becomes more 

costly to gather information, and individuals are more likely to experience spatiotemporal 

variability in habitat quality (Wiens 1989, Legendre 1993), leading to selection for fixed 

dispersal. Thus, we propose that the mechanisms underlying dispersal evolution are scale-

dependent, with short and long-distance dispersal evolving separately. 

 

 

Dispersal and climate change 

 

In the current era of climatic change, the survival of species will depend in part on their ability to 

track shifting habitat by dispersing (Kokko and López-Sepulcre 2006, Pöyry et al. 2009, Berg et 

al. 2010). However, many projections of future species distributions do not incorporate dispersal 

(Thomas et al. 2004, Thuiller et al. 2006), and the few that do generally model dispersal without 

individual variation in emigration and settlement responses, or in dispersal distance (Travis and 

Dytham 2012). Consequently, the role of information in species’ ability to keep pace with 

climate change has received little attention, yet it is likely that the spatial arrangement of suitable 

habitat will strongly dictate which dispersal strategy—informed or fixed—most enhances habitat 

tracking.  

 

 Range shifts in response to a shifting climate window will likely require dispersing across 

gaps of unsuitable habitat. Species ranges often occur along an environmental gradient, with the 

most suitable habitat at the core of the range, and declining suitability towards the range margins 
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(Bridges et al. 2007). Because these marginal populations will lead climate-induced range shifts, 

the capacity to disperse across patches of unsuitable habitat will likely play a key role in species’ 

ability to keep pace with climate change (Travis and Dytham 2012). Increasing habitat 

fragmentation may also interact with climate change to increase distances between suitable 

habitat patches (Travis et al. 2010, Williams et al. 2016). Consequently, long-distance dispersal 

will be required to colonize new habitat patches. Indeed, we have seen that long-distance 

dispersal, rather than short-distance dispersal, sets the rate of range expansions in theoretical 

models (Le Galliard et al. 2012), and Boeye et al. (2013) showed that fast rates of climate change 

selected for larger dispersal distances, which enhanced the ability of populations to cross gaps in 

unsuitable habitat.  

 

 Based on our scale-dependent model of dispersal evolution, the long-distance dispersal 

needed to track shifting suitable habitat will likely require fixed dispersal. To our knowledge, 

however, only one study has examined the role of information use and dispersal in the context of 

climate change. Ponchon et al. (2015) used a simulation-based approach to show that informed 

dispersal led to the highest level of population persistence in rapidly changing environments, 

whereas uninformed dispersal decreased population sizes and ultimately led to local population 

extinction. But Ponchon et al. (2015) did not explicitly model dispersal distance and did not 

include fitness costs to information acquisition. As we have previously argued, the costs of 

information acquisition are not negligible and likely increase with distance. This highlights a 

need for future research to assess how information costs influence dispersal distance evolution 

under different environmental scenarios. 

 

 Another important – yet under-recognized – prediction from theory is that short- and 

long-distance dispersal evolve according to different properties of the landscape. Bonte et al. 

(2010) used spatially explicit, individual-based models to show that the configuration of 

available habitat selects for different dispersal distances. They showed that highly autocorrelated 

habitat (i.e., clumped) selects for short-distance dispersal, reflecting an investment in adapting to 

local conditions rather than crossing gaps of unsuitable habitat, whereas spatially uncorrelated 

habitat (i.e., scattered) selects for long-distance dispersal. This result reinforces the hypothesis 

that short- and long-distance dispersal are functionally distinct and evolve separately, whether 

based on information costs or spatial habitat configuration. 

 

 

Can we use dispersal traits to predict population persistence? 

 

Faced with the threat of climate change, there is considerable interest in identifying individual or 

species-level traits that might predict vulnerability (Pöyry et al. 2009, Foden et al. 2013, Pearson 

et al. 2014). For species that respond to climate change primarily by shifting distributions, we 

suggest that individual cognitive abilities and information use may be of little relevance. Instead, 
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traits that enhance individuals’ long distance dispersal capability may be more predictive of 

resilience to habitat change. Specifically, physiological or morphological traits that reduce the 

energy costs of dispersal are likely to be more important for the long-distance movements 

required to keep pace with a shifting climate window. For example, a growing body of work 

linking limb length to dispersal distance—with long-distance dispersers having longer limbs than 

short-distance dispersers (Phillips et al. 2006, Lowe and McPeek 2012, Arnold et al. 2016)—

suggests a biomechanical advantage associated with limb length that may function to reduce the 

cost of transport over long distances (Pontzer 2007). In contrast, short-distance movements are 

less likely to require physiological or biomechanical specialization, but may instead require traits 

that enhance perception or information use, such as the ability to discriminate among habitats in 

order to maximize individual fitness (Edelaar et al. 2008, Karpestam et al. 2012).  

 

 Clobert et al. (2009) advocate for estimating the contributions of genetic factors (G), 

environmental factors (E), and their interaction (G x E) to understand the evolution of dispersal 

behavior (i.e., dispersal reaction norms). Within this framework, perception-based traits 

underlying dispersal at local scales are likely to have a large environmental contribution and, 

therefore, represent plastic traits (Kingsolver and Huey 1998, Liefting and Ellers 2008). In 

contrast, morphological and physiological traits underlying long-distance dispersal are likely to 

have a larger genetic component, reinforcing the value of exploring the genetic basis of dispersal 

to predict species persistence under climate change. The feasibility of generating thousands of 

genome-wide markers has increased the likelihood of detecting genetic variants underlying 

phenotypic differences, but these methods have not yet been thoroughly applied to understand 

variation in the dispersal traits of natural populations (Saastamoinen et al. 2017). 

 

 

Concluding remarks 

 

The failure of most dispersal research to explicitly address spatial scale has resulted in a 

tendency to view dispersal as an information-based process. But this narrow view struggles to 

explain long-distance dispersal, where the costs of information gathering are prohibitive. Instead, 

we need to consider a model of dispersal evolution that also includes fixed dispersal, drawing on 

early models of dispersal evolution where dispersal was treated as an innate propensity of the 

individual. We hope that uniting these two bodies of dispersal theory – informed and fixed – will 

advance dispersal research by providing a more complete understanding of individual variation 

in dispersal distances. Understanding the ecological and evolutionary drivers of dispersal 

distances will allow us to address pressing applied questions, such as forecasting species’ ability 

to keep pace with climate change.  
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Figure 1. The effect of spatial scale on information-gathering costs. The costs of dispersal 

increase with distance from an origin (black dot) to a settlement site (black x). The potential 

search area (gray) also increases with dispersal distance, making it unrealistic for individuals to 

sample all potential settlement sites during large-scale movements (tope panel). When dispersal 

is not constrained to linear corridors (i.e., stream networks, valleys), the potential search area 

increases exponentially with dispersal distance (bottom panel). 
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Figure 2. The effect of movement behavior on dispersal costs. Straight-line movement 

trajectories (a) are more efficient, thereby lowering dispersal costs by decreasing the number of 

steps needed to achieve a certain distance (Zollner and Lima 1999, Barton et al. 2009). In 

contrast, non-linear dispersal trajectories (b, c) have the effect of increasing the number of steps 

needed to achieve a certain distance, thereby increasing the cost of dispersal. We suggest that 

fixed strategies are more likely to result in straight-line trajectories, whereas informed strategies 

will result in non-linear trajectories. Thus, fixed dispersal represents a cost-reducing strategy for 

long-distance dispersal.  
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Figure 3. A scale-dependent model of dispersal evolution. The line represents a leptokurtic 

population dispersal distribution that is representative of most animals, with many individuals 

dispersing short distances and far fewer dispersing long distances. Dispersal based on 

information-gathering about potential settlement sites is more likely to explain short-distance 

movements (red hue) because the costs of habitat sampling become prohibitive at large spatial 

scales. Fixed dispersal, a dispersal strategy that is not based on assessing local habitat quality, is 

therefore more likely to explain long-distance movements (blue hue) because the fitness benefits 

are not contingent on processes with scale-dependent costs.  
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