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Day,	Le,	Ph.D.,	May	2020																				Biochemistry	and	Biophysics	

Abstract	Title:	Characterization	of	the	influences	of	Human	Cytomegalovirus	glycoprotein	O	(gO)	

expression	on	gH/gL	complexes	assembly	and	its	polymorphisms	on	cell-free	and	cell-to-cell	spread,	

and	antibody	neutralization.		

Research	Advisor:	Dr.	Brent	J.	Ryckman	

	

Human	cytomegalovirus	(HCMV)	is	widely	spread	throughout	the	world	and	

immunocompromised	individuals	can	suffer	severe	diseases	from	HCMV	infection.	Once	the	

infection	is	established,	HCMV	can	spread	through	the	body	and	infect	many	major	somatic	

cell	types.	The	glycoproteins	H	and	L	(gH/gL)	on	HCMV	envelope	can	be	bound	by	either	gO	

or	the	UL128-131	proteins	to	form	complexes	gH/gL/gO	and	gH/gL/UL128-131	that	are	

critical	for	viral	entry	and	spread,	and	these	two	complexes	are	important	targets	of	

neutralizing	antibodies.	Strains	of	HCMV	vary	considerably	in	the	levels	of	gH/gL/gO	and	

gH/gL/UL128-131.	gO	is	one	of	the	most	diverse	loci	among	strains	with	10-30%	of	amino	

acid	sequence	differences.	In	this	thesis	I	explored	the	mechanisms	behind	the	complex	

assembly	differences	between	strains	and	the	impacts	of	interstrain	gO	diversity	on	the	

biology	of	HCMV.	My	results	uncovered	that	the	strain	variations	in	the	assembly	of	gH/gL	

complexes	is	due	to	the	differences	in	the	expression	level	of	gO	and	UL128-131,	while	gO	

amino	acid	sequence	differences	have	no	influence	on	the	complexes	assembly.	

Interestingly,	the	diversity	of	gO	has	dramatic	impacts	on	HCMV	cell-free	and	cell-to-cell	

spread	as	well	as	on	antibody	neutralization	and	these	effects	of	gO	polymorphisms	are	

epistatically	dependent	on	other	variable	loci	in	the	virus	genome.	My	study	could	help	to	

understand	the	complexity	of	genotypes	observed	in	clinical	samples	and	decode	the	

challenge	for	intervention	approaches	against	HCMV.	
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Overview	of	Human	Herpesviruses	

a.	Herpesviridae	

Herpesviridae	is	a	large	family	of	DNA	viruses	and	the	members	of	this	family	are	

also	known	as	herpesviruses.	There	are	more	than	130	herpesviruses	in	total	and	

they	are	found	in	mammals,	fish,	reptiles,	birds,	and	mollusks.	Based	on	biological	

and	genetic	properties,	the	herpesviruses	are	divided	into	three	subfamilies:	

alphaherpesvirinae,	betaherpesvirinae,	and	gammaherpesvirinae	[1].	In	hosts,	the	

life	cycle	of	herpesviruses	can	be	divided	into	lytic	and	latent	infections.	The	lytic	

infection	leads	to	production	of	progenies,	while	the	viral	replication	is	suppressed	

during	latent	infection.	The	establishment	of	latency	is	a	unique	characteristic	of	

herpesviruses.		

	

b.	Human	Herpesviruses	

There	are	eight	herpesviruses	that	are	known	to	utilize	human	as	primary	host:	

herpes	simplex	virus	1	(HSV-1),	herpes	simplex	virus	2	(HSV-2),	varicella-zoster	

virus	(VZV),	Epstein-Barr	virus	(EBV),	human	cytomegalovirus	(HCMV),	human	

herpesvirus-6	(HHV-6),	human	herpesvirus-7	(HHV-7),	and	Kaposi’s	sarcoma	

herpes	virus	(KSHV).		

	

HSV-1,	HSV-2,	and	VZV	belong	to	the	alpha	subfamily	and	they	have	the	

characteristics	of	short	replication	cycle	in	the	host,	rapid	growth,	and	the	

establishment	of	latency	in	sensory	ganglia	[1].	The	beta	human	herpesviruses,	

including	HCMV,	HHV-6,	and	HHV-7,	have	relative	long	replication	cycle	in	the	host	
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compared	to	alpha	human	herpesviruses.	The	latency	of	beta	herpesviruses	are	

established	in	lymphocytes,	secretory	glands,	and	other	cell	types	[4].	EBV	and	

KSHV,	the	gamma	herpesviruses,	have	limited	host	cell	tropism	compared	to	

alphaherpesvirinae	and	betaherpesvirinae.	They	develop	long-term	latency	in	B-

cells/	memory	B-cells	and	replicate	in	epithelial	cells	[Table	1.1].	

	

Table	1.1.	Major	properties	of	human	herpesviruses	

							Name																						Formal	name									Type									Primary	target	cells							Main	sites	of	latency	

	Herpes	simplex										Human																				Alpha												Mucoepithelia																	Sensory	and		
		virus-1	(HSV-1)							herpesvirus	1																																																																							cranial	nerve	ganglia	
	

Herpes	simplex										Human																				Alpha													Mucoepithelia																	Sensory	and		
		virus-2	(HSV-2)							herpesvirus	2																																																																							cranial	nerve	ganglia	
	

Varicella	zoster										Human																				Alpha													Mucoepithelia																	Sensory	and		
		virus	(VZV)															herpesvirus	3																																																																							cranial	nerve	ganglia	
	

Epstein-Barr																			Human																			Gamma												Epithelial	and																	Memory	B-cells	
		virus	(EBV)																			herpesvirus	4																																			B-cell																																		
	

Human																															Human																			Beta																	Monocytes,																											Monocytes,		
Cytomegalovirus												herpesvirus	5																									lymphocytes,	epithelial,											lymphocytes	
(HCMV)																																																																																							fibroblasts…	
	

Roseola	virus																				Human																			Beta																			T-cells																														Various														
		(HHV-6)																										herpesvirus	6																																																																														leukocytes	
	

Rosela	virus																							Human																			Beta																			T-cells																										T-cells,	epithelia	
		(HHV-7)																											herpesvirus	7	
	

Kaposi’s	sarcoma-													Human																		Gamma												lymphocytes																							B-cells	
associated	virus															herpesvirus	8																																		and	epithelia		
	(KSHV)	
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Overview	of	Human	Cytomegalovirus		

a.	HCMV	structure	

The	virion	of	HCMV	is	approximately	230nm	in	diameter	and	consists	four	major	

components:	the	core,	capsid,	tegument,	and	envelope	[2](Fig	1.1).	The	core	

contains	a	linear	double-stranded	viral	DNA	genome,	which	is	located	inside	an	

icosahedral-shaped	capsid.	Between	the	capsid	and	lipid	envelope,	there	is	a	layer	of	

tegument	proteins,	which	are	responsible	for	connecting	the	capsid	to	the	envelope	

and	storing	viral	proteins	that	are	essential	for	initiation	of	infection.	The	outermost	

layer	is	viral	lipid	bilayer	envelope	and	it	contains	viral	glycoproteins	that	facilitate	

virus	attachment,	signaling	transduction,	and	fusion	into	the	host	cell.	

	

	

	

	

	

Fig	1.1.	Virion	particle	in	cytoplasm	of	HCMV-infected	cell.	(Modified	from	[2])	
	

1.	Genome	

HCMV	has	the	largest	genome	among	human	herpesviruses.	The	whole	genome	size	

is	about	235kb,	which	is	over	50%	larger	than	that	of	herpes	simplex	virus	type	

1(HSV-1).	According	to	the	herpesviruses	genome	structure	classification	[5],	HCMV	

genome	has	class	E	repeated	region	organization	and	it	is	the	most	complex	genome	
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structure	among	human	herpesviruses.	The	two	major	domains	are	known	as	the	

long	and	short	genome	segments	(L	and	S)	and	each	includes	a	unique	region	(UL	

and	US)	at	the	center.	The	unique	regions	are	flanked	by	repeated	sequences	at	both	

the	two	ends	of	the	genome	(TRL	and	TRS)	and	the	intersection	between	the	long	

and	short	segments	(IRL	and	IRS).	Besides,	there	are	few	hundred	base	pair	repeated	

at	the	two	ends	of	the	viral	genome	and	the	IRL-IRS	junction,	which	is	termed	as	a	

sequence	[6].	Consequently,	HCMV	genome	has	the	structure	organization	of:	a-TRL-

UL-IRL-a’-IRS-US-TRS-a	(Fig	1.2).	

	

	

	

Fig	1.2.	HCMV	genome	structure.	(Modified	from	[6])				

	

2.	Capsid	

HCMV	has	an	icosahedral-shaped	capsid,	which	is	important	for	both	protecting	the	

large	DNA	viral	genome	and	releasing	the	viral	genome	into	host	nucleus.	There	are	

at	least	five	proteins	involved	in	capsid	formation:	UL86	(the	major	capsid	protein),	

UL48-49	(the	smallest	capsid	protein,	SCP),	UL85	(the	minor	capsid	protein),	UL46	

(minor	capsid	binding	protein),	and	fragments	of	UL80	(assembly	protein).	These	

protein	components	assemble	into	the	capsid	through	extensive	intermolecular	

networks,	such	as	formation	of	disulfide	bonds	and	non-covalent	interactions.						

	

3.	Tegument		
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The	tegument	layer	is	formed	through	sequential	adding	of	proteins,	which	starts	in	

the	nucleus	and	completes	in	the	cytoplasm.	Previous	studies	have	suggested	that	

the	formation	of	tegument	requires	an	intact	capsid	[8].	Tegument	proteins	play	

important	roles	in	regulating	viral	gene	expression	and	modifying	host	immune	

responses	to	HCMV	infection.	For	example,	tegument	protein	pp71	activates	the	

immediate	early	gene	expression	to	initiate	HCMV	replication	and	ppUL83	inhibits	

expression	of	the	host	proteins	associated	with	induction	of	interferon	response	[9-

13].	In	addition,	tegument	proteins	are	involved	in	capsids	egress	by	modifying	

nuclear	cytoskeleton	and	nuclear	membranes	[14].		

	

4.	Envelope		

The	envelope	of	HCMV	is	a	lipid	bilayer	and	viral	glycoproteins	are	embedded	in	this	

lipid	bilayer.	Mass	spectrometry	studies	have	revealed	that	HCMV	virion	contains	at	

least	19	different	glycoproteins	and	some	of	them	are	indispensible	for	viral	

replication	in	vitro,	including	glycoprotein	B	(gB),	gM/gN	and	gH/gL	[15].		The	

relative	abundance	of	these	essential	glycoproteins	follows	the	order	of:	gM/gN	>	gB	

>	gH/gL.		

	

gM	from	different	strains	of	HCMV	have	very	few	amino	acid	sequence	changes,	

while	gN	from	clinical	isolates	have	up	to	20%	amino	acid	sequence	variability	in	

the	ectodomain	whereas	the	short	cytoplasmic	tail	is	conserved.	Nearly	67%	of	gN’s	

mass	is	from	carbohydrate,	which	are	almost	exclusively	O-linked	sugars	attached	to	
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the	ectodomain.	Despite	the	variation	in	amino	acid	sequence,	the	total	O-linked	

glycan	modification	sites	are	relatively	conserved	among	gN	isoforms	[16].		

	

The	fusion	protein	gB	is	a	type-I	membrane	fusion	protein	with	110kDa	ectodomain	

disulfide	linked	to	a	55kDa	transmembrane	domain.	gB	exists	in	virion	envelope	in	

the	form	of	homotrimer,	which	is	linked	together	by	inter-chain	disulfide	bonds	

[17].	gB	is	also	heavily	glycosylated	and	it	has	50-60kDa	of	N-linked	glycan	and	at	

least	one	O-linked	glycan	modification	[18].		

	

On	the	HCMV	envelope,	gH/gL	is	decorated	by	accessory	proteins	and	exists	as	two	

complex	forms:	gH/gL/gO	and	gH/gL/UL128/UL130/UL131	(gH/gL/UL128-131).	

Compared	to	gH/gL	and	UL128-131,	gO	amino	acid	sequence	is	highly	diverse	

among	HCMV	strains	and	the	phylogenetic	analysis	showed	that	there	are	8	

genotypes	of	gO	[19].	Within	each	genotype,	the	gO	sequences	are	98-100%	

identical,	while	between	groups	there	are	up	to	50%	differences	[19].	The	diverse	

regions	are	scattered	across	the	gO	sequence	but	mostly	locate	at	the	N-terminus	

[64].		Nearly	half	of	the	mass	of	gO	is	contributed	by	glycan,	the	amino	acid	sequence	

divergence	may	contribute	to	variation	of	glycan	sites	and	glycan	compositions	

among	different	gO	isoforms.		

															

b.	HCMV	lifecycle	

1.	Entry	and	cell	tropism	
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The	very	first	step	of	viral	replication	cycle	is	entry	into	host	cell.	HCMV’s	entry	

process	has	high	complexity	and	one	unique	property	of	HCMV	is	that	this	virus	can	

infect	a	broad	spectrum	of	cell	types,	such	as	dendritic	cells,	endothelial	cells,	

epithelial	cells,	fibroblast	cells,	and	monocyte/macrophage	cells.		

	

The	entry	event	is	mediated	by	envelope	glycoproteins:	gB,	gM/gN,	gH/gL/gO	and	

gH/gL/UL128-131.	The	gM/gN	complex	interacts	with	heparin	sulfate	

proteoglycans	on	the	host	cell	surface	to	facilitate	viral	particle	attachement	to	the	

host	cell	[28].	As	with	other	human	herpesviruses,	gB	together	with	gH/gL	serve	as	

the	“core”	membrane	fusion	machinery	for	HCMV.	gH/gL	complexes	trigger	gB	to	

dramatically	rearrange	its	structure	and	mediate	fusion	between	viral	and	cellular	

membranes	[29,30].	However,	the	mechanisms	for	how	gH/gL	complexes	interact	

or	regulate	the	gB	fusogen	remain	unclear.		

	

	The	gH/gL	complexes,	including	gH/gL/gO	and	gH/gL/UL128-131,	have	big	

impacts	on	the	tropism	of	HCMV.	For	virus	floating	outside	of	cells,	gH/gL/gO	on	the	

virion	envelope	is	required	for	infecting	all	cell	types.	It	has	been	shown	that	

gH/gL/gO	can	bind	to	the	platelet-derived	growth	factor	receptor-alpha	(PDGFR-α)	

on	fibroblasts	through	gO	[31,	32].	Particularly	for	infection	on	certain	cell	types,	

such	as	leukocytes,	epithelial	cells,	and	endothelial	cells,	gH/gL/UL128-131	is	

additionally	required.	Neuropilin-2	(Nrp2)	has	been	identified	as	a	receptor	for	

gH/gL/UL128-131	[33].	gH/gL/gO-mediated	entry	into	fibroblast	cell	occurs	

through	a	rapid	macropinocytosis	in	a	pH-independent	manner	[34].	However,	the	
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entry	into	epithelial	and	endothelial	cells,	which	depend	on	both	gH/gL/gO	and	

gH/gL/UL128-131,	requires	low	pH	and	involves	endocytosis	[35].	Over	the	years,	

many	host	cell	surface	proteins	have	been	suggested	to	function	as	potential	

receptors,	co-receptors,	or	accessory	proteins	for	gH/gL	complexes,	which	

contribute	to	viral	entry.	However,	the	mechanisms	of	how	they	affect	the	entry	

event	are	not	well	understood	[36-39].				

	

2.	Delivery	of	viral	genome	into	the	nucleus	and	initiation	of	viral	gene	expression	

After	fusion	between	virion	envelope	and	host	cell	plasma	membrane	or	endosome	

membrane,	not	only	the	capsid	containing	viral	genome	but	also	the	proteins	within	

tegument	layer	are	released	into	the	cell.	The	tegument	proteins	are	mainly	in	

charge	of	delivering	the	viral	genome	to	the	nucleus	and	initiating	viral	gene	

expression.	For	example,	tegument	proteins	pUL47	and	pUL48,	which	are	tightly	

associated	with	the	nucleocapsid,	can	interact	with	microtubules	in	the	cytosol	to	

accomplish	delivery	of	viral	nucleocapsid	to	the	nucleus.	Another	tegument	protein	

pp71	can	bind	and	degrade	host	proteins	inside	of	the	nucleus	that	inhibit	viral	

genome	transcription,	thus	facilitating	the	initiation	of	viral	replication.	

	

3.	Progeny	assembly				

The	assembly	of	progeny	starts	with	capsid	formation	in	the	nucleus	and	is	followed	

by	incorporating	the	viral	DNA	genome	into	the	capsid	through	DNA	packaging	

enzyme	(terminase)	[23].	After	nucleocapsid	egress	from	nucleus	to	cytoplasm,	the	

tegument	proteins	are	added	to	the	particle	[26].	Once	the	particle	is	completely	
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tegumented,	the	immature	particle	buds	into	the	virion	assembly	compartment,	

which	is	a	complex	derived	from	the	endoplasmic	reticulum,	Golgi	apparatus,	and	

endosomal	machinery.	The	immature	particles	acquire	their	envelope	along	with	all	

the	virion	envelope	glycoproteins	inside	of	the	virion	assembly	compartment	[27].	

Afterwards,	the	fully	assembled	progeny	virus	is	either	released	out	of	the	cell	or	

transported	towards	the	cell-cell	interface.		

	

4.	Latency	and	reactivation	

Like	all	herpes	viruses,	HCMV’s	ability	of	establishing	latency	is	critical	for	its	

lifelong	persistence	in	the	host.	Compared	to	acute	HCMV	infection,	which	has	very	

broad	cell	tropism,	latent	virus	resides	in	restricted	cell	types.	Based	on	clinical	

study	using	a	highly	sensitive	PCR	approach,	it	has	been	found	that	myeloid	lineage	

in	the	peripheral	blood	is	an	important	site	for	HCMV	latency.	More	specifically,	

CD14+	monocyte	population	is	the	dominant	carrier	of	the	HCMV	latent	genome.	The	

CD34+	cells	that	reside	in	bone	marrow	are	also	shown	to	be	HCMV	genome	positive	

[40-43].			

	

The	reactivation	of	HCMV	gene	expression	and	productive	infection	is	associated	

with	differentiation	of	CD34+	cells,	which	is	stimulated	by	inflammatory	cytokines	

and/or	growth	factors	[48-49].	The	differentiation	of	CD34+	cells	to	mature	

macrophages	and	dendritic	cells	change	the	level	of	cellular	transcription	factors	

and	these	changes	lead	to	viral	gene	expression.		
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c.	HCMV	genetic	variability	

HCMV	has	the	largest	genome	among	all	known	viruses	that	infect	humans.	With	the	

development	of	Next	Generation	Sequencing	(NGS),	researchers	in	the	field	started	

to	look	into	HCMV	sequence	in	clinical	specimens.			

	

Based	on	clinical	samples	collected	worldwide,	NGS	analyses	showed	that	HCMV	has	

significantly	higher	diversity	compared	to	other	human	herpesviruses	[54].	There	

are	21	out	of	165	loci	scattered	in	the	genome	that	are	hyper-variable	across	clinical	

samples,	while	the	majority	are	conserved	[54-55].	Since	most	regions	are	

conserved,	the	linkage	disequilibrium	is	low	among	loci,	which	enables	pervasive	

recombination	between	viral	genomes.	Among	the	21	high	diversity	loci,	some	of	

them	encode	for	glycoproteins	that	are	critical	for	viral	tropism	and	escape	from	

host	immunity.	For	example,	UL74	encodes	for	gO,	which	is	involved	in	viral	entry	

and	spread.	The	product	of	the	UL11	gene	is	a	membrane	glycoprotein,	which	can	

modulate	T-cell	signaling.	For	each	of	the	high	diversity	loci,	2-14	different	alleles	

exist	[153].	It	is	possible	that	HCMV	utilizes	extensive	recombination	to	constantly	

diversify	the	loci	that	are	critical	for	cell	tropism	and	escaping	from	immune	

responses,	while	maintaining	the	rest	of	the	genome	that	is	optimally	adapted	to	the	

asymptomatic	lifecycle.			

	

High	HCMV	intra-host	diversity	has	also	been	described	by	genomic	sequencing	

research.	This	diversity	was	observed	among	a	range	of	human	hosts,	including	

healthy	adults,	children,	congenitally	infected	infants,	organ	transplant	recipients,	
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and	AIDS	patients	[56-60].	The	analyses	also	uncovered	higher	viral	genetic	

diversity	in	plasma	compared	to	certain	body	compartments,	which	suggests	that	

the	various	genomes	in	the	peripheral	blood	might	undergo	selection	pressure	for	

fitness	in	different	host	compartments	[66].	Some	potential	links	have	been	drawn	

between	the	diversity	of	viral	glycoproteins	and	dissemination	into	distinct	body	

compartments.	For	example,	UL74	(gO)	locus	diversity	may	affect	dissemination	to	

certain	body	compartments	by	influencing	the	ratio	between	gH/gL/gO	and	

gH/gL/UL128-131	complexes,	thus	impacting	cell	tropism	[66].	It	has	also	been	

found	that	UL55(gB)	genotypes	are	associated	with	particular	host	compartments	

[65].		

	

Taken	together,	these	studies	highlight	the	complexity	of	HCMV	genome	and	

brought	a	new	direction	for	understanding	HCMV’s	various	pathological	outcomes.		

	

	d.	HCMV	immune	evasion	

The	replication	and	spread	of	HCMV	can	induce	host	immune	responses,	including	

recruitment	of	natural	killer	cells,	production	of	neutralizing	antibodies,	and	

activation	of	CD4+	T-helper	cells	and	CD8+	cytotoxic	T	cells	[67].		

	

HCMV	as	one	of	the	most	ancient	human	viruses	has	sophisticated	mechanisms	for	

escaping	both	innate	and	acquired	immune	responses.	It	has	been	shown	that	viral	

protein	IE2-86	could	inhibit	transcription	of	interferon-beta	[70].	There	is	also	a	list	

of	viral	proteins	involved	in	interfering	with	MHC-I	antigen	presentation.	For	
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example,	US2	and	US11	translocate	MHC	heavy	chain	from	ER	to	cytosol	for	

proteasome	degradation	[72].	US3	interacts	with	MHC-I	and	leads	to	ER	retention	

[73-74].	US6	inhibits	peptide	transport	and	prevents	viral	peptide	being	loaded	to	

MHC-I	[75].	In	addition,	UL141	interferes	with	NK	cell	activation	by	retaining	

CD155,	which	is	a	ligand	for	the	activation	receptor	on	NK	cells,	inside	the	ER	[78].		

	

For	the	acquired	immune	response,	HCMV	can	interfere	with	T	cell	stimulation	

mainly	through	viral	protein	UL144.	UL144	interacts	with	T	cell	attenuator,	which	

inhibits	T	cell	proliferation	[81].	Interestingly,	the	UL144	gene	has	significant	strain-

specific	variability	and	the	amino	acid	sequences	vary	up	to	20%	among	HCMV	

strains	[82-84].	

	

	e.	HCMV	Pathology	

HCMV	is	an	opportunistic	pathogen	and	it	does	not	cause	disease	in	healthy	people.	

However,	the	infection	in	hosts	with	immature	or	compromised	immune	system	can	

cause	severe	pathology.		

	

1.	Congenital	and	neonatal	infection	

HCMV	is	the	most	frequent	among	all	the	congenital	viral	infections,	which	account	

for	more	than	40,000	cases	in	the	United	States	every	year.	13%	of	infected	infants	

are	born	with	symptoms	and	0.5%	of	the	infections	are	fatal	[85].	For	the	

symptomatic	infants,	20%	of	them	suffer	from	sensorineural	hearing	loss	and	the	

rest	show	various	symptoms	including	physical	impairment,	vision	loss,	behavioral	
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and	cognition	delays	[86].	Clinical	studies	have	shown	that	the	seronegative	

mothers	who	became	infected	during	pregnancy	had	very	high	risk	of	transmitting	

the	virus	to	the	developing	child	[87].	Women	infected	by	HCMV	before	pregnancy	

also	had	the	risk	of	bearing	an	infected	infant,	which	resulted	from	infection	with	a	

new	strain	during	conception	[88].		

	

2.	Hematopoietic	stem	cell	transplantation	(HCT)	patients	

Following	HCT,	HCMV	infection-caused	pneumonia	is	one	of	the	most	feared	cases	at	

clinics,	and	mortality	remains	high	even	with	treatment	[89].	The	HCMV	infection-

associated	gastrointestinal	disease	is	the	most	common	one	observed	in	the	clinic	

among	HCT	recipients,	which	can	affect	both	upper	and	lower	tracts	[89].	Since	

HCMV	has	broad	cell	tropism,	the	infection	also	frequently	causes	retinitis,	hepatitis,	

and	encephalitis.	The	most	important	pre-transplant	risk	factor	for	HCMV	disease	is	

the	serological	status	of	the	donor	and	recipient.	The	seropositive	recipients	are	

considered	as	the	highest	risk,	which	is	mostly	caused	by	HCMV	reactivation	

diseases	[90].	For	the	cases	where	the	donors	are	seropositive,	recipients	have	the	

risk	of	getting	re-infected	by	different	HCMV	strains	[90].		

	

3.	Solid	organ	transplantation	(SOT)	patients	

Among	SOT	patients,	HCMV	can	cause	a	febrile	syndrome	with	leukopenia	and/or	

transaminitis.	The	indirect	effects	related	to	HCMV	infection	include	allograft	

rejection,	decreased	graft,	and	patient	death	[92].	Compared	to	HCT	patients,	HCMV	

reactivation	diseases	in	seropositive	recipients	are	less	common	in	SOT	patients.	
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The	highest	risk	occurs	when	the	organ	donor	is	HCMV	seropositive	and	the	

recipient	is	seronegative.			

	

4.	HIV/AIDS	patients	

HCMV	diseases	are	observed	in	HIV-1-infected	patients	whose	immune	systems	are	

heavily	under	attack.	Retinitis	is	the	most	common	clinical	manifestation,	followed	

by	gastrointestinal	disease	and	encephalitis	[93].		

	

5.	Immuno-competent	hosts		

HCMV	infection	may	occur	at	any	time	during	lifespan,	such	as	childhood	acquisition	

in	a	day	care	setting,	adulthood	latent	infection	reactivation,	and	transmission	

through	blood	transfusions.		Primary	infection	is	typically	asymptomatic	in	immune-

competent	hosts.	Occasionally,	HCMV	causes	pneumonia	or	gastrointestinal	diseases	

[94].		

	

f.	Treatment	and	prevention	

Ganciclovir,	foscarnet,	and	cidofovir	are	the	drugs	frequently	applied	for	treating	

HCMV	infection	in	the	clinic.	Ganciclovir	is	a	Guanosine	analog	and	after	

phosphorylation	by	HCMV	UL97	kinase,	it	acts	as	a	chain	terminator	during	viral	

DNA	replication.	Cidofovir	is	a	nucleoside	monophosphate	analog	and	foscarnet	is	a	

pyrophosphate	analog	that	inhibits	viral	DNA	polymerase	activity.	Unlike	

ganciclovir,	neither	cidofovir	nor	foscarnet	requires	activation	by	other	viral	

proteins	[94].	Ganciclovir	has	been	tested	in	both	SOT	and	HIV	patients,	which	could	
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be	given	through	intravenous	therapy,	oral	formulations,	and	locally	to	the	eye	for	

sight-threatening	retinitis	[95].	However,	the	clinical	trials	for	cidofovir	have	not	

been	performed	in	SOT	patients.		

	

These	drugs	have	various	side	effects.	For	example,	ganciclovir’s	principal	toxicity	is	

causing	neutropenia	and	the	main	side	effects	of	foscarnet	are	renal	toxicity	and	

electrolyte	imbalance	[96].	It	has	been	observed	that	HCMV	in	patients	developed	

drug	resistance	to	all	these	three	drugs	during	treatment	[97].	The	resistance	to	

ganciclovir	has	been	observed	when	viral	UL97	kinase	and	viral	DNA	polymerase	

mutations	occurred	[98].	The	resistance	mutations	against	foscarnet	and	cidofovir	

also	arise	at	the	DNA	polymerase	gene	[99].		Some	of	these	mutations	at	the	viral	

DNA	polymerase	gene	locus	could	lead	to	resistance	to	more	than	one	drug	[99].	

	

Considering	the	tremendous	amount	of	healthcare	costs	associated	with	HCMV	

infection,	much	effort	has	been	put	into	developing	vaccines	against	this	virus	as	a	

prevention	strategy.	The	history	of	vaccine	development	for	HCMV	can	be	traced	

back	30	years.	However,	no	HCMV	vaccine	appears	to	be	approaching	imminent	

licensure.	A	variety	of	strategies	have	been	employed,	including	live	attenuated	

vaccines	and	subunit	vaccines,	and	a	number	of	them	have	been	evaluated	in	clinical	

trials	[100].		

	

The	first	live	attenuated	vaccine	tested	in	human	was	developed	based	on	the	

laboratory-adapted	strain	AD169.	Later	on	another	live	attenuated	vaccine	based	on	
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strain	Towne	was	confirmed	to	elicit	neutralizing	antibodies	as	well	as	CD4+	and	

CD8+	T	lymphocyte	responses.	The	efficacy	of	the	Towne	vaccine	was	tested	in	

studies	with	renal	transplant	recipients.	This	vaccine	was	also	tested	in	a	placebo-

controlled	study	in	seronegative	mothers	who	had	children	attending	daycare.	The	

study	found	that	immunization	with	Towne	based	vaccine	failed	to	protect	these	

women	from	acquiring	HCMV	infection	from	their	children	[103].	However,	this	

vaccine	did	protect	women	with	pre-existing	immunity	against	HCMV	from	getting	

re-infected	by	different	strains	[103].		Recent	evidence	indicated	that	the	defect	in	

Towne	live	attenuated	vaccine	might	be	due	to	insufficient	CD4+	and	CD8+	T	cell	

responses.	In	order	to	overcome	this	defect,	adjuvant	interleukin-12	(rhIL-12)	was	

co-administered	with	live	attenuated	Towne	vaccine	and	it	is	currently	under	

clinical	trial	[104].	In	addition,	chimeric	viruses	between	strain	Towne	and	Toledo	

were	generated	as	live	attenuated	vaccines.	Four	of	these	Towne/Toledo	chimeric	

vaccines	were	tested	in	a	clinical	trial	and	all	of	them	were	well	tolerated	with	no	

sign	of	virus	shedding	in	the	blood	and	body	fluids	[105].	However,	the	major	

concern	or	risk	for	live	attenuated	vaccines	is	that	they	may	establish	latent	HCMV	

infections.		

	

Subunit	vaccines	are	designed	against	specific	immunogenic	viral	proteins,	which	

are	expressed	by	various	techniques	and	tested	either	alone	or	in	combination.	

Based	on	clinical	observations	among	HCMV-seropositive	individuals,	up	to	70%	of	

neutralizing	antibodies	respond	to	gB	[106],	which	makes	gB	a	promising	candidate	

for	subunit	vaccine	development.	The	vaccines	based	on	gB	demonstrated	



	 18	

protection	against	HCMV	infection	disease	in	murine	and	guinea	pig	models	[107].	

In	current	clinical	trials,	soluble	gB	ectodomain	expressed	in	Chinese	hamster	ovary	

(CHO)	cells	are	purified	and	combined	with	adjuvants	MF59	or	alum	as	vaccines	

[108].	These	vaccines	are	currently	under	test	among	seronegative	adults,	a	limited	

number	of	toddlers,	young	HCMV-seronegative	women,	and	renal	transplant	

patients	who	are	waiting	for	transplantation.	Based	on	the	results	reported	to	date,	

the	level	of	gB-specific	antibodies	and	virus	neutralizing	activity	after	3	doses	

exceeded	those	observed	in	HCMV-seropositive	controls	[109-111].		

	

pp65	has	been	identified	as	a	target	for	subunit	vaccine	because	it	is	the	dominant	

trigger	for	CD8+	T	cell	responses	[113-114].	During	clinical	trial,	pp65	vaccine	

recipients	were	observed	with	a	similar	level	of	HCMV-specific	CD8+	cytotoxic	T	cell	

responses	as	the	seropositive	controls	[115].	The	pp65	vaccine	is	also	currently	

under	clinical	trial	in	a	trivalent	formulation	together	with	gB	and	IE1	vaccines	

[115].		

	

Focus	of	the	dissertation	

Human	cytomegalovirus	(HCMV)	glycoproteins	H	and	L	(gH/gL)	can	be	bound	by	

either	gO	or	UL128,	UL130,	and	UL131	proteins	to	form	complexes:	gH/gL/gO	and	

gH/gL/UL128-131,	which	facilitate	viral	entry	and	spread	[122-127,	129-132].	The	

epitopes	on	gH/gL	in	two	complexes	are	important	targets	of	neutralizing	

antibodies	[166-170].	Strains	of	HCMV	vary	dramatically	in	their	levels	of	gH/gL/gO	

and	gH/gL/UL128-131.	The	UL74	locus	that	encodes	for	gO	is	one	of	the	most	
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diverse	loci	among	HCMV	strains.	Most	phylogenetic	groupings	indicate	gO	has	8	

genotypes,	which	differ	in	10%	to	30%	of	amino	acid	sequences	[64,	135].	The	

diverse	regions	of	gO	predominately	locate	at	the	N-terminus	and	these	amino	acid	

polymorphisms	can	potentially	affect	the	N-linked	glycan	sites	on	gO	[64].		

	

The	two	major	questions	addressed	in	this	dissertation	include:		

§ What	are	the	mechanisms	behind	gH/gL	complex	assembly	differences	

between	strains?		

§ How	do	natural	inter-strain	variations	in	the	amino	acid	sequence	of	gO	

influence	the	biology	of	HCMV?	

	

The	studies	in	Chapter	2	address	the	first	question	by	utilizing	recombinant	viruses	

in	which	the	UL74	(gO)	ORF	was	swapped.	I	picked	strain	TR	to	represent	strains	

with	gH/gL/gO	as	the	dominant	gH/gL	complex	on	the	envelope,	and	strain	Merlin	

(ME)	represented	for	gH/gL/UL128-131-rich	viruses.	I	observed	that	swapping	

UL74	(gO)	had	no	effect	on	gH/gL	complexes	assembly	for	both	strains.	To	explore	

whether	the	abundance	of	viral	proteins	could	influence	gH/gL	complex	formation,	I	

applied	a	quantitative	immunoprecipitation	approach	and	revealed	that	gO	

expression	level	was	20-fold	lower	in	ME	compared	to	TR.	Overall,	strain	variations	

in	the	assembly	of	gH/gL	complexes	are	mostly	due	to	the	viral	protein	expression	

level	difference	and	gO	amino	acid	sequence	does	not	affect	the	gH/gL	complexes	

assembly	process.		
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The	Chapter	3	summarizes	my	results	for	investigating	the	second	question.	I	

constructed	heterologous	gO	recombinants	with	6	out	of	8	genotypes	(GT)	and	

analyzed	them	in	both	strain	TR	and	strain	ME	backgrounds.	I	found	that	gO	

isoforms	could	impact	viral	entry,	spread,	and	sensitivity	to	anti-gH	neutralizing	

antibodies	and	these	effects	were	subjected	to	epistatic	global	strain	genetic	

differences.	Characterization	of	these	gO	recombinants	has	also	revealed	that	

gH/gL/gO	utilizes	different	mechanisms	for	facilitating	cell-free	and	cell-to-cell	

spread,	and	gH/gL/gO	performs	its	functions	in	viral	attachment	and	fusion	in	a	

separate	manner.				

	

In	summary,	this	dissertation	explored	the	significance	of	gO	diversity	in	critical	

aspects	of	HCMV	biology	and	highlighted	the	epistatic	effects	in	HCMV	phenotype	

determination.	These	findings	may	provide	information	for	better	understanding	of	

HCMV	pathology	and	bring	novel	insights	on	vaccine	design	strategy.		
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Chapter	II.	Expression	levels	of	glycoprotein	O	

(gO)	vary	between	strains	of	Human	

Cytomegalovirus,	influencing	the	assembly	of	

gH/gL	complexes	and	virion	infectivity.	

	

This	chapter	is	modified	version	of	the	manuscript	published	

in	Journal	of	Virology	in	May	2018;	92:	e00606-18.	
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Introduction	

Human	Cytomegalovirus	(HCMV)	is	widely	spread	through	the	world	and	it	is	found	

in	approximately	60%	of	adults	in	developed	countries	and	in	100%	of	adults	in	

developing	countries	[116-119].	HCMV	is	an	opportunistic	pathogen	and	

immunocompromised	individuals,	such	as	HIV	patients,	transplant	recipients	under	

immunosuppression	treatments	can	suffer	severe	HCMV	infection	related	

pathologies,	including	gastroenteritis,	encephalitis,	retinitis,	and	vasculopathies.	The	

congenital	infection	of	HCMV	is	a	significant	cause	of	congenital	neurological	

impairments	and	sensorineural	hearing	loss.	The	transmission	of	HCMV	is	mainly	

through	body	fluid,	such	as	urine	and	saliva.	Once	infection	is	established,	the	virus	

spreads	throughout	the	body,	infecting	many	of	the	major	somatic	cell	types,	

neurons,	and	leukocytes.		

	

Much	focus	has	been	on	the	gH/gL	complexes,	which	likely	engage	cell	receptors	

and	promote	infection	by	contributing	to	the	gB-mediated	membrane	fusion	event	

or	through	activating	cell	signaling	pathways	[120-122].	During	virus	assembly,	the	

HCMV	UL128-131	proteins	and	gO	compete	for	binding	to	gH/gL	to	form	the	

pentameric	complex	gH/gL/UL128-131	or	the	trimeric	complex	gH/gL/gO.	

Structural	studies	involving	purified	soluble	complexes	showed	that	gO	and	UL128	

can	each	make	a	disulfide	bond	with	cysteine	144	of	gL,	and	this	was	suggested	to	be	

the	basis	of	the	competitive	assembly	of	the	complexes	[123].	However,	Stegmann	et	

al.	demonstrated	that	mutant	gO	lacking	the	cysteine	implicated	in	the	disulfide	



	 23	

bond	with	gL	formed	intact	and	functional	gH/gL/gO	[124].	This	suggests	that	gO	

can	engage	in	extensive	non-covalent	interactions	with	gH/gL.	The	gH/gL/UL128-

131	complex	is	dispensable	for	infection	of	cultured	fibroblasts	and	neuronal	cells	

but	is	required	for	infection	of	epithelial	and	endothelial	cells	and	monocytes-

macrophages	[125-129].	In	contrast,	gH/gL/gO	is	critical	for	infection	of	all	cell	

types	[130-133].	Both	complexes	likely	interact	with	cell	receptors.	gH/gL/gO	can	

bind	platelet-derived	growth	factor	receptor	alpha	(PDGFRα)	through	the	gO	

subunit,	and	this	interaction	is	critical	for	infection	of	fibroblasts	[31-32,	134].	

Epithelial	and	endothelial	cells	do	not	express	PDGFRα,	but	blocking	of	gH/gL/gO	

with	either	neutralizing	antibodies	or	soluble	PDGFRα	can	inhibit	infection	of	these	

cells,	suggesting	the	existence	of	other	gH/gL/gO	receptors	[31-32].	Receptors	for	

gH/gL/UL128-131	might	include	epidermal	growth	factor	receptor	(EGFR)	(also	

known	as	ErbB1)	and	β1	or	β3	integrins,	and	these	interactions	may	induce	

signaling	cascades	critical	for	infection	of	selected	cell	types,	such	as	epithelial	and	

endothelial	cells	and	monocytes-macrophages	[31,	35].		

	

Zhou	et	al.	reported	that	the	amounts	of	gH/gL/gO	and	gH/gL/UL128-131	in	the	

virion	envelope	differ	dramatically	among	strains	of	HCMV	and	this	difference	

affects	the	infectivity	of	the	virions	[64,133].	The	major	results	of	those	studies	were	

that	1)	Merlin	(ME)	virions	contained	gH/gL	mostly	in	the	form	of	gH/gL/UL128-

131,	whereas	TR	and	TB	40/E	(TB)	virions	had	mostly	gH/gL/gO;	2)	in	terms	of	

“total	gH/gL,”	the	amount	of	gH/gL/gO	in	TR	and	TB	virions	was	larger	than	the	

amount	of	gH/gL/UL128-131	in	ME	virions;	3)	the	infectivity	of	all	three	strains	on	
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both	fibroblasts	and	epithelial	cells	correlated	with	the	amount	of	gH/gL/gO;	and	4)	

when	the	expression	of	UL128-131	was	suppressed	in	ME,	virions	contained	

dramatically	less	gH/gL/UL128-131	but	only	slightly	more	gH/gL/gO.	The	latter	

point	was	especially	curious	since	the	model	that	gO	and	UL128-131	proteins	

compete	for	binding	to	gH/gL	would	predict	that	the	fraction	of	gH/gL	normally	

bound	by	UL128-131	would,	in	their	absence,	be	bound	by	gO	instead.	This	

discrepancy	could	be	explained	by	differences	in	the	stoichiometric	expression	of	

gH/gL,	gO,	and	UL128-131	between	strains.	An	alternative	hypothesis	was	

suggested	by	the	fact	that	there	are	at	least	eight	alleles	of	the	UL74	gene	that	

encodes	gO	[135].	The	amino	acid	sequence	of	gO	among	these	eight	genotypes	can	

vary	between	10	and	30%,	and	this	could	affect	competition	with	UL128-131	for	

binding	to	gH/gL.	Both	of	these	non-mutually-exclusive	hypotheses	were	addressed	

in	this	chapter.	

	

Results	

Strains	of	HCMV	display	different	patterns	of	glycoprotein	expression	and	

trafficking	to	virion	assembly	compartments.		

The	dramatic	differences	in	the	compositions	of	gH/gL	complexes	in	TR	and	ME	

virions	described	previously	by	Zhou	et	al.	[64,	133]	suggested	corresponding	

differences	in	glycoprotein	expression	and/or	the	trafficking	of	glycoproteins	to	

virion	assembly	compartments	(ACs).	To	address	these	possibilities,	cells	were	

infected	for	2	days	(Fig	2.1A)	or	5	days	(Fig	2.1B)	with	TR	or	ME,	and	steady-state	

amounts	of	viral	proteins	were	compared	by	immunoblotting.	At	2	days	
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postinfection	(dpi),	immediate	early	protein	1/2	(IE1/2)	levels	were	similar	for	both	

TR	and	ME,	consistent	with	an	equal	multiplicity	of	infection.	At	5	dpi,	the	levels	of	

the	virion	structural	proteins	major	capsid	protein	(MCP),	gB,	gH,	and	gL	were	also	

very	similar	between	the	two	strains.	In	contrast,	ME-infected	cells	contained	

dramatically	more	UL128-131	protein	than	did	TR-infected	cells.	The	UL148	protein	

was	also	included	in	these	analyses	because	it	was	recently	described	as	an	

endoplasmic	reticulum	(ER)	chaperone	protein	that	influences	the	ratio	of	gH/gL	

complexes	[136].	In	TR-infected	cells,	an	anti-UL148	antibody	detected	a	prominent	

35-kDa	protein	species,	consistent	with	the	previous	description	of	the	UL148	

protein	[136].	This	35-kDa	species	was	not	detected	in	ME-infected	cells.	Instead,	

ME-infected	cells	contained	two	species	that	were	less	abundant	and	of	higher	and	

lower	electrophoretic	motilities	than	the	single	UL148	species	detected	in	TR-

infected	cells.	The	basis	of	the	apparent	size	difference	was	not	characterized	but	

could	reflect	differences	in	translational	start/stop	codon	usage,	splicing	of	the	

UL148	mRNA,	or	posttranslational	modifications	of	the	UL148	protein	between	

strains.	Overall,	the	pattern	of	expression	of	the	UL128-131	and	UL148	proteins	

correlated	well	with	the	previously	described	pentamer-rich	nature	of	ME	virions	

and	the	trimer-rich	nature	of	TR	virions	[64,	133].	Note	that	the	expression	of	gO	

was	not	addressed	in	these	analyses	because	the	gO	amino	acid	sequence	

differences	between	strains	affect	antibody	recognition	and	preclude	direct	

comparison	[64].		
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Fig	2.1	Comparison	of	protein	expression	between	TR	and	ME.	nHDF	were	infected	with	1	
PFU/cell	of	TR	or	ME.	At	day	2	(A)	or	day	5	(B),	total	cell	extracts	were	separated	by	
reducing	SDS-PAGE	and	analyzed	by	immunoblot	analysis	probing	for	immediate	early	
protein	1/2	(IE1/2),	major	capsid	protein	(MCP),	gB,	gH,	gL,	UL128,	UL130,	UL131,	or	
UL148.	Arrowheads	indicate	the	positions	of	the	cleaved	100-kDa	and	55-kDa	fragments	of	
gB.	
	

Trafficking	of	gH/gL	from	the	ER	to	trans-Golgi	network	(TGN)-derived	assembly	

compartments	was	assessed	by	treating	the	infected-cell	extracts	at	5	dpi	with	

either	endoglycosidase	H	(endo	H)	or	peptide	N-glycosidase	F	(PNGase	F)	and	then	

analyzing	gH	and	gL	by	immunoblotting	(Fig	2.2).	The	majority	of	gH	and	gL	in	TR-
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infected	cells	was	endo	H	resistant,	consistent	with	efficient	transport	from	the	ER	

to	trans-Golgi	network-derived	ACs.	In	contrast,	most	of	the	gH	and	gL	in	ME-

infected	cells	was	sensitive	to	endo	H	digestion.	In	HFFFtet	cells,	which	repress	

transcription	from	the	UL128-131	locus	[64,	137],	there	was	even	less	endo	H-

resistant	gH	and	gL.	This	suggested	that	the	bulk	of	gH/gL	trafficked	to	ACs	in	ME-

infected	neonatal	human	dermal	fibroblasts	(nHDF),	which	allow	UL128-131	

expression,	represented	gH/gL/UL128-131	and	is	consistent	with	previous	

observations	that	(i)	the	bulk	of	gH/gL	in	the	ME	virion	is	pentamers	and	(ii)	the	

loss	of	gH/gL	in	the	form	of	pentamers	in	ME-T	virions	due	to	the	repression	of	the	

UL128-131	proteins	is	apparently	not	fully	compensated	for	by	the	formation	of	

complexes	with	gO	[64,	133].		

	

	

	

	

	

	

	

	

Fig	2.2	Analysis	of	ER-to-trans-Golgi	compartment	trafficking	of	glycoproteins	in	TR-	or	ME-
infected	cells.	Extracts	of	nHDF	infected	with	TR	or	ME	or	HFFFtet	cells	infected	with	ME	
were	treated	with	endoglycosidase	H	(H)	or	PNGase	F	(F)	or	left	untreated	(U)	and	then	
separated	by	reducing	SDS-PAGE	and	analyzed	by	immunoblot	analysis	probing	for	gH	or	
gL.	Arrowheads	indicate	the	positions	of	the	faster-migrating,	deglycosylated	species.	
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Differences	in	amino	acid	sequence	of	gO	between	TR	and	ME	do	not	affect	the	

infectivity	of	cell-free	virus.		

The	predicted	amino	acid	sequence	of	gO	differs	by	25%	between	TR	and	ME.	This	

sequence	divergence	precluded	direct	comparison	of	gO	expression	levels	because	

antibodies	do	not	cross-react	[64].	Furthermore,	these	sequence	differences	could	

potentially	affect	the	ability	of	the	distinct	gO	isoforms	to	compete	with	the	UL128-

131	proteins	for	binding	to	gH/gL	(thus	influencing	the	amounts	of	gH/gL	

complexes	in	the	mature	virion	envelope)	or	the	function(s)	of	gO	during	entry,	such	

as	binding	PDGFRα	or	other	receptors.	To	address	these	possibilities,	bacterial	

artificial	chromosome	(BAC)	recombineering	methods	were	used	to	replace	the	gO	

open	reading	frame	(ORF)	(UL74)	of	TR	with	the	analogous	sequences	from	ME,	and	

visa	versa,	to	generate	recombinant	viruses	denoted	TR_MEgO	and	ME_TRgO.		

Zhou	et	al.	demonstrated	a	positive	correlation	between	the	infectivity	of	HCMV	

virions	and	the	amounts	of	gH/gL/gO	in	the	virion	envelope	[133].	To	assess	the	

effects	of	gO	sequences	on	infectivity,	cell-free	virus	stocks	of	the	parental	wild	type	

and	heterologous	gO	recombinants	were	analyzed	by	quantitative	PCR	(qPCR)	to	

determine	the	number	of	virions,	and	infectivity	was	determined	by	a	plaque	assay.	

No	difference	in	particles/PFU	was	observed	between	TR	and	the	corresponding	

recombinant	TR_MEgO	(Fig	2.3)	or	between	ME	and	the	corresponding	recombinant	

ME_TRgO	(Fig	2.3).	When	ME-based	HCMV	was	grown	in	HFFFtet	cells,	which	

repress	UL128-131	expression,	the	resultant	virions,	ME-T	and	ME-T_TRgO,	were	

dramatically	more	infectious,	as	shown	previously	[133,	137],	but	consistently,	

there	were	no	differences	due	to	the	isoform	of	gO	expressed	(Fig	2.3).	In	parallel	
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analyses,	the	amounts	of	gH/gL	complexes	were	analyzed	by	nonreducing	

immunoblot	probing	for	gL	to	detect	intact,	disulfide-linked	gH/gL/gO	and	disulfide-

linked	gH/gL/UL128	(note	that	UL130	and	UL131	are	not	disulfide	linked	to	the	

intact	pentamer	complex	and	are	thus	separated	by	SDS-PAGE)	(Fig	2.4).	Consistent	

with	our	previous	reports	[64,	133],	TR	virions	contained	much	larger	amounts	of	

total	gH/gL,	mostly	in	the	form	of	gH/gL/gO,	whereas	ME	virions	contained	less	

gH/gL,	mostly	as	gH/gL/UL128-131.	Repression	of	the	UL128-131	proteins	(ME-T)	

drastically	reduced	the	amount	of	gH/gL/UL128-131	and	increased	the	amount	of	

gH/gL/gO.	However,	note	that	the	amount	of	gH/gL/gO	in	ME-T	virions	was	still	

smaller	than	the	amount	of	gH/gL/UL128-131	in	ME	virions,	indicating	that	the	

repression	of	UL128-131	was	not	fully	compensated	for	by	gO.	In	no	case	did	the	

expression	of	the	heterologous	gO	isoform	detectably	influence	the	amounts	of	

gH/gL	complexes	in	HCMV	virions.	Together,	these	results	suggest	that	the	amino	

acid	sequence	differences	between	TR	and	ME	gO	do	not	influence	gH/gL	complex	

assembly	or	the	function	of	gO	in	entry	into	fibroblasts.	
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Fig	2.3	Specific	infectivity	of	parental	and	TR-ME	heterologous	gO	recombinants.	
Extracellular	virions	of	TR,	TR_MEgO,	ME,	ME_TRgO,	ME-T,	or	ME-T_TRgO	were	analyzed	by	
quantitative	PCR	for	viral	genomes,	and	PFU	were	determined	by	a	plaque	assay	on	nHDF.	
Average	particle/PFU	ratios	from	at	least	4	independent	experiments	are	plotted.	Error	
bars	represent	standard	deviations.	
	

	

	

	

	

	

	

	

	

	

	
Fig	2.4	Immunoblot	analysis	of	gH/gL	complexes	in	parental	viruses	and	TR-ME	
heterologous	gO	recombinants.	Extracellular	virion	extracts	of	TR,	TR_MEgO,	ME,	ME_TRgO,	
ME-T,	or	ME-T_TRgO	were	separated	by	reducing	(A	and	B)	or	nonreducing	(C)	SDS-PAGE	
and	analyzed	by	immunoblot	probing	for	major	capsid	protein	(A)	or	gL	(B	and	C).	
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ME	expresses	less	gO	during	replication	than	does	TR.		

The	heterologous	gO	recombinants	allowed	comparison	of	gO	expression	levels	

between	TR	and	ME.	In	the	first	analyses,	cells	infected	with	the	parental	virus	or	

the	heterologous	gO	recombinants	were	analyzed	by	reducing	immunoblot	analysis	

using	TR-	and	ME-specific	anti-gO	antibodies	[64]	(Fig	2.5).	TR-specific	gO	

antibodies	detected	two	bands	in	TR-infected	cells,	a	prominent	species	migrating	

just	above	the	100-kDa	marker	and	a	minor,	more	diffuse	species	migrating	at	

approximately	130	to	140	kDa.	The	ME-specific	antibodies	detected	similarly	

migrating	bands	in	TR_MEgO-infected	cells;	however,	their	relative	abundances	

appeared	more	equal.	No	similar	bands	were	detected	in	cells	infected	with	ME	or	

ME_TRgO	analyzed	with	either	gO	antiserum.	The	failure	to	detect	either	isoform	of	

gO	in	cells	infected	with	ME-based	HCMV	suggested	that	the	protein	expression	

level	from	the	UL74	locus	of	ME	was	lower	than	that	in	TR.	

	

To	directly	compare	differences	in	glycoprotein	expression	between	TR	and	ME,	

infected	cells	were	labeled	with	[35S]methionine-cysteine	for	15	min	and	then	

analyzed	by	immunoprecipitation	with	antipeptide	antibodies	specific	for	gH,	gL,	or	

gO,	followed	by	SDS-PAGE	and	band	density	analysis	(Fig	2.6	and	Tables	1	and	2).	

Two	approaches	were	taken	to	allow	direct	quantitative	comparisons	of	labeled	

proteins	between	extracts.	First,	cell	extracts	were	denatured	and	reduced	with		
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Fig	2.5	Immunoblot	analysis	of	gO	expression	in	cells	infected	with	parental	viruses	and	TR-
ME	heterologous	gO	recombinants.	nHDF	were	infected	with	1	PFU/cell	of	TR,	TR_MEgO,	
ME,	or	ME_TRgO.	At	day	5,	total	cell	extracts	of	infected	cells	were	separated	by	reducing	
SDS-PAGE	and	analyzed	by	immunoblot	probing	for	TRgO,	MEgO,	MCP,	or	actin.	
	

SDS-dichlorodiphenyltrichloroethane	(DDT)	prior	to	immunoprecipitation	to	allow	

maximum	epitope	access	by	the	antipeptide	antibodies.	Second,	for	each	analysis,	

multiple	immunoprecipitation	reactions	were	performed	in	parallel	with	increasing	

amounts	of	protein	extract	input	to	ensure	that	antibodies	were	not	limiting.	In	

these	experiments,	expression	levels	of	gH	were	nearly	identical	between	TR	and	

ME,	and	the	gL	expression	level	was	approximately	4-fold	higher	for	TR	than	for	ME,	

but	the	gO	expression	level	was	strikingly	27-fold	higher	for	TR	than	for	ME	(Fig	

2.6A	and	Table	2.1).	To	address	the	possibility	that	the	MEgO-specific	antibodies	

were	simply	less	efficient	at	capturing	MEgO	from	ME	extracts,	similar	experiments	

were	performed	with	the	TR-ME	heterologous	gO	recombinants	(Fig	2.6B	and	Table	
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2.2).	Again,	gH	and	gL	levels	were	similar	between	TR_MEgO	and	ME_TRgO,	but	gO	

levels	were	approximately	20-fold	higher	for	the	TR-based	virus.	To	address	the	

hypothesis	that	differences	in	gO	expression	between	TR	and	ME	reflect	differences	

in	protein	turnover,	the	[35S]methionine-cysteine	label	was	chased	for	up	to	6	h	(Fig	

2.7).	The	patterns	of	gH	detection	over	the	chase	time	were	very	similar	for	both	TR	

and	ME	samples.	In	both	cases,	the	amounts	of	labeled	gH	dropped	to	60%	after	3	h	

and	to	30	to	40%	after	6	h.	The	pattern	of	gO	detection	for	both	TR	and	ME	was	

comparable	to	that	of	gH	detection.	Together,	these	results	confirmed	that	ME-

infected	cells	express	less	gO	than	do	TR-infected	cells	and	suggested	differences	in	

early	steps	of	expression,	such	as	mRNA	transcription,	translation,	or	rapid	ER-

associated	degradation,	which	can	degrade	proteins	in	the	time	scale	of	minutes	

[138].		
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Fig	2.6	Quantitative	comparison	of	glycoprotein	expression	in	TR-	and	ME-infected	cells.	
nHDF	were	infected	with	1	PFU/cell	of	TR	or	ME	(A)	or	TR_MEgO	or	ME_TRgO	(B).	At	5	dpi,	
infected	cells	were	metabolically	labeled	with	[35S]cysteine-methionine	for	15	min,	and	
membrane	proteins	were	extracted	in	1%	Triton	X-100.	All	samples	were	adjusted	to	2%	
SDS–30	mM	DTT,	heated	to	75°C	for	10	min,	cooled	to	room	temperature,	and	then	diluted	
35-fold.	Parallel	immunoprecipitations	were	performed,	in	which	equal	amounts	of	anti-gH,	
gL,	or	gO	(TR-	or	ME-specific)	antibodies	were	reacted	with	3-fold-increasing	amounts	of	
protein	extract	as	the	input,	and	precipitated	proteins	were	analyzed	by	SDS-PAGE.	
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Table	2.1	Quantitative	comparison	of	glycoprotein	expression	in	TR-	and	ME-infected	cellsd		

aSeven	microliters	of	rabbit	antipeptide	serum	per	immunoprecipitation	reaction	mixture.	
bPreparation	of	radiolabeled	cell	extracts	is	described	in	the	legend	to	Fig	2.6	and	in	
Materials	and	Methods.	
cPixel	density	of	bands	shown	in	Fig	2.6A	as	determined	using	ImageJ	version	1.48.	
dND,	band	density	not	detected.	
eDensity	divided	by	the	predicted	number	of	methionine	(met)	and	cysteine	(cys)	residues:	
TRgH	(17	met,	13	cys),	MEgH	(17	met,	14	cys),	TRgL	(3	met,	10	cys),	MEgL	(3	met,	10	cys),	
TRgO	(16	met,	6	cys),	MEgO	(18	met,	6	cys).	
fAdjusted	density	of	TR	divided	by	adjusted	density	of	ME.	
gAverage	fold	difference	between	TR	and	ME	±	standard	deviation.	
	

	

	

	

	

	

	

	

	



	 36	

Table	2.2	Quantitative	comparison	of	glycoprotein	expression	in	TR_MEgO-	and	ME_TRgO-
infected	cellsd.	

aSeven	microliters	of	rabbit	antipeptide	serum	per	immunoprecipitation	reaction	mixture.	
bPreparation	of	radiolabeled	cell	extracts	is	described	in	the	legend	to	Fig	2.6	and	in	
Materials	and	Methods.	
cPixel	density	of	bands	shown	in	Fig.	6B	as	determined	using	ImageJ	version	1.48.	
dND,	band	density	not	detected.	
eDensity	divided	by	the	predicted	number	of	methionine	(met)	and	cysteine	(cys)	residues:	
TRgH	(17	met,	13	cys),	MEgH	(17	met,	14	cys),	TRgL	(3	met,	10	cys),	MEgL	(3	met,	10	cys),	
TRgO	(16	met,	6	cys),	MEgO	(18	met,	6	cys).	
fAdjusted	density	of	TR_MEgO	divided	by	adjusted	density	of	ME_TRgO.	
gAverage	fold	difference	between	TR_MEgO	and	ME_TRgO	±	standard	deviation.	
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Fig	2.7	Analysis	of	glycoprotein	turnover	in	TR-	and	ME-infected	cells.	nHDF	were	infected	
with	1	PFU/cell	of	TR	or	ME.	At	5	dpi,	infected	cells	were	metabolically	labeled	with	
[35S]cysteine-methionine	for	15	min,	and	the	label	was	then	chased	for	0,	10,	60,	180,	or	360	
min.	Membrane	proteins	were	extracted	in	1%Triton	X-100,	adjusted	to	2%	SDS–30mM	
DTT,	heated	to	75°C	for	10	min,	cooled	to	room	temperature,	and	then	diluted	35-fold.	
Immunoprecipitation	was	performed	with	anti-gH	and	-gO	(TR-	or	ME-specific)	antibodies,	
and	precipitated	proteins	were	analyzed	by	SDS-PAGE.	Band	densities	were	determined	
relative	to	the	0-min	chase	time.	Results	shown	are	representative	of	data	from	4	
independent	experiments.	
	

Overexpression	of	gO	during	ME	replication	increases	gH/gL/gO	assembly	and	

virus	infectivity.		

To	directly	test	the	hypothesis	that	the	low	abundance	of	gH/gL/gO	in	ME	virions	

was	due	not	simply	to	competition	from	the	UL128-131	proteins	but	also	to	low	gO	

expression,	adenovirus	(Ad)	vectors	were	used	to	increase	gO	levels	during	ME	

replication.	Ad	vectors	expressing	green	fluorescent	protein	(GFP)	were	used	to	

control	for	potential	effects	of	the	Ad	vectors	themselves.	Consistent	with	data	from	

the	above-described	analyses,	gO	levels	were	below	the	limits	of	immunoblot	

detection	in	ME-infected	nHDF	or	HFFFtet	cells,	but	gO	was	readily	detected	in	cells	

superinfected	with	AdMEgO	(Fig	2.8A).	The	overall	expression	of	gL	in	ME-infected	

cells	was	reduced	by	the	presence	of	either	Ad	vector	(Fig	2.8A).	In	the	case	of	the	

control	AdGFP,	the	lower	intracellular	gL	level	correlated	with	reduced	levels	of	

gH/gL/gO	complexes	in	virions	from	HFFFtet	cells	(ME-T)	(Fig	2.8B),	and	this	in	
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turn	correlated	with	reduced	infectivity	(i.e.,	increased	particle/PFU	ratio)	(Fig	2.9).	

The	“Ad	effect”	on	virion	gH/gL	levels	and	infectivity	was	less	apparent	in	human	

foreskin	fibroblast	(HFF)	cells	(ME),	perhaps	masked	by	the	overall	larger	amounts	

of	gH/gL	and	the	much	lower	infectivity	of	these	virions	(Fig	2.8B	and	2.9).	

Controlling	for	the	Ad	effect,	AdMEgO	expression	in	HFFFtet	cells	increased	the	

amounts	of	gH/gL/gO	in	ME-T	virions	compared	to	AdGFP,	and	this	resulted	in	a	6-

fold	enhancement	of	infectivity,	beyond	the	40-fold	enhanced	infectivity	resulting	

from	the	repression	of	UL128-131	alone	(Fig	2.8B	and	2.9).	In	contrast,	AdMEgO	

expression	had	little	effect	on	the	virions	from	HFF	cells.	

	

	

	

	

	

	

	

	

	

	

	

	

FIG	2.8	Ad	vector	overexpression	of	gO	during	ME	replication.	nHDF	or	HFFFtet	cells	were	
infected	with	ME	for	2	days	and	then	superinfected	with	Ad	vectors	expressing	either	GFP	
or	MEgO	for	an	additional	4	days.	Extracts	of	infected	cells	(A)	or	extracellular	virions	(B)	
were	separated	by	reducing	(A	and	B,	top)	or	nonreducing	(B,	bottom)	SDS-PAGE	and	
analyzed	by	immunoblot	probing	for	MEgO,	actin,	MCP,	or	gL,	as	indicated	to	the	right.	
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FIG	2.9	Specific	infectivity	of	ME	virions	produced	under	conditions	of	gO	overexpression.	
nHDF	or	HFFFtet	cells	were	infected	with	ME	for	2	days	and	then	superinfected	with	Ad	
vectors	expressing	either	GFP	or	MEgO	for	an	additional	4	days.	Extracellular	virions	from	
nHDF	(ME)	or	HFFFtet	(ME-T)	cells	were	analyzed	by	quantitative	PCR	for	viral	genomes,	
and	PFU	were	determined	by	a	plaque	assay	on	nHDF.	Shown	are	average	particle/PFU	
ratios	of	virions	produced	in	2	independent	experiments,	each	analyzed	in	triplicate.	Error	
bars	represent	the	standard	deviations.	Asterisks	above	fold	differences	indicate	a	P	value	
of	<0.03	(determined	by	Student’s	unpaired	t	test	[2	tailed]).	
	

Discussion	

Recent	population	genetic	studies	have	demonstrated	a	greater	degree	of	genetic	

diversity	of	HCMV	in	clinical	specimens	than	had	been	previously	appreciated	[54,	

61,	139].	The	cell	type	and	propagation	methods	likely	narrow	the	resultant	

genotypes	by	purifying	selection	[140-141].	During	propagation	in	cultured	

fibroblasts,	inactivating	mutations	in	the	UL128-131	ORFs	are	rapidly	selected	in	a	

BAC	clone	of	ME,	and	this	selective	pressure	can	be	relieved	by	transcriptional	

repression	of	the	UL131	promoter,	which	reduces	the	expression	of	pentameric	

gH/gL/UL128-131	[137].	In	contrast,	the	UL128-131	ORFs	are	more	stable	in	BAC	

clones	of	strains	TR	and	TB	[141-142].	The	UL128-131	ORF	of	TB	contains	a	single	
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nucleotide	polymorphism	(SNP)	relative	to	ME	that	reduces	the	splicing	of	the	

mRNA	encoding	the	UL128	protein,	which	may	help	stabilize	the	UL128-131	ORFs	

through	reduced	expression	of	gH/gL/UL128-131	[142].	However,	TR	is	identical	to	

ME	at	this	nucleotide	position,	and	recombinant	ME	in	which	the	UL128-131	locus	

was	replaced	with	the	UL128-131	sequences	from	TR	was	as	sensitive	to	the	

selective	inactivation	of	the	locus	as	wild-type	ME	[142].	Together,	these	

observations	suggest	that	factors	beyond	the	expression	levels	of	the	UL128-131	

proteins	can	influence	the	selective	pressures	on	the	UL128-131	ORFs.		

	

The	results	reported	here	demonstrated	that	TR	and	ME	differ	in	the	stoichiometry	

of	expression	of	gO	and	UL128-131,	and	this	seems	to	be	a	major	factor	determining	

the	abundances	of	gH/gL/gO	and	gH/gL/UL128-131	in	the	virion	envelope	and	the	

infectivity	of	cell-free	virions.	The	steady-state	levels	of	gH/gL	in	fibroblasts	infected	

with	TR	and	ME	were	found	to	be	comparable,	but	ME-infected	cells	contained	more	

UL128-131	than	did	TR-infected	cells.	In	ME-infected	cells,	most	of	the	gH/gL	was	in	

an	ER-associated	form,	whereas	TR-infected	cells	contained	a	large	amount	of	Golgi	

compartment-associated	gH/gL.	This	correlated	well	with	previous	observations	

that	TR	contained	more	total	gH/gL	than	did	ME	virions	[64,	133].	The	amount	of	

Golgi	compartment-associated	gH/gL	in	ME-infected	cells	was	reduced	when	the	

expression	of	the	UL128-131	proteins	was	repressed,	consistent	with	the	

observation	that	most	of	the	gH/gL	in	ME	virions	was	in	the	form	of	gH/gL/UL128-

131	[64,133].	Comparison	of	gO	expression	levels	between	strains	was	complicated	

because	the	amino	acid	sequence	differences	between	genotypes	affected	antibody	
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recognition	[64].	To	circumvent	this	caveat,	HCMV	recombinants	were	engineered,	

in	which	the	UL74(gO)	ORFs	of	TR	were	replaced	with	the	homologous	sequences	of	

ME,	and	vice	versa.	This	approach	allowed	the	analysis	of	the	expression	of	both	gO	

isoforms	in	both	genetic	backgrounds,	eliminating	the	possibility	that	the	results	

were	due	to	differences	in	antibody-antigen	affinities.	Immunoblot	and	

radiolabeling	experiments	clearly	demonstrated	that	ME	infected	cells	contained	

less	gO	than	did	TR-infected	cells.	The	overexpression	of	gO	during	ME	replication	

had	no	effect	on	the	levels	of	gH/gL/gO	or	the	infectivity	of	the	virions	unless	

UL128-131	proteins	were	also	transcriptionally	repressed,	and	even	then,	

gH/gL/gO	levels	and	infectivity	were	only	modestly	enhanced.	Together,	these	

results	underscore	the	competition	between	gO	and	UL128-131	for	binding	to	

gH/gL	and	suggest	that	other	factors	may	influence	the	efficiency	of	gH/gL/gO	

assembly.	

	

The	molecular	mechanisms	underpinning	the	discrepancy	between	TR	and	ME	in	

the	expression	UL128-131	and	gO	remain	unclear.	As	mentioned	above,	Murrell	et	

al.	described	a	SNP	in	the	TB	UL128-131	locus	that	affected	mRNA	splicing,	in	part	

explaining	the	lower	expression	levels	of	these	proteins	in	TB	[142].	However,	this	

splicing	effect	does	not	explain	the	difference	in	UL128-131	expression	levels	

between	TR	and	ME,	since	this	nucleotide	position	is	conserved	between	these	

strains.	For	gO,	the	radiolabeling	analyses	reported	in	Fig	2.6	and	2.7	suggest	that	

the	differences	are	due	to	early	events	in	UL74(gO)	expression,	such	as	

transcription,	mRNA	processing/stability,	translation,	or	rapid	ER-associated	
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degradation,	occurring	in	the	time	scale	of	minutes	[138].	Attempts	to	analyze	

UL74(gO)	mRNA	levels	between	TR	and	ME	by	quantitative	reverse	transcription-

PCR	(RT-PCR)	were	complicated	by	the	fact	that	HCMV	genomes	contain	many	

overlapping	RNA	polymerase	II	(RNAPII)	transcription	units	that	vary	between	

strains	[143,	144].	It	is	interesting	that	ME-infected	cells	contained	less	UL148	than	

did	TR-infected	cells.	UL148	was	first	described	as	an	ER-resident	chaperone	

protein	that	promotes	the	assembly	of	gH/gL/gO	[136].	The	mechanism	may	well	

involve	interactions	between	UL148	and	the	cellular	ER-associated	degradation	

pathway	(C.	Nguyen,	M.	Siddiquey,	H.	Zhang,	and	J.	Kamil,	presented	at	the	42nd	

International	Herpesvirus	Workshop,	Ghent,	Belgium,	2017).	

	

The	TR-ME	heterologous	gO	recombinant	viruses	also	allowed	analysis	of	the	effects	

of	gO	amino	acid	sequence	differences	on	the	assembly	of	gH/gL	complexes	and	the	

function	of	gO	in	entry.	No	differences	were	observed	between	TR	and	TR_MEgO	or	

between	ME	and	ME_TRgO	in	either	the	amounts	of	gH/gL	complexes	in	virions	or	

cell-free	infectivity.	These	results	argue	against	the	notion	that	the	amino	acid	

sequence	differences	between	gO	genotypes	affect	interactions	with	gH/gL	or	the	

binding	of	the	fibroblast	entry	receptor	PDGFRα.	Interestingly,	Kalser	et	al.	showed	

that	replacing	the	endogenous	gO	protein	of	TB	with	the	gO	protein	from	Towne	did	

not	alter	replication	in	cultured	fibroblasts	but	enhanced	replication	in	epithelial	

cell	cultures	[145].	Thus,	it	may	be	that	gO	sequence	variation	affects	interactions	

with	receptors	other	than	PDGFRα	that	mediate	infection	of	epithelial	cells.	
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Laib-Sampaio	et	al.	reported	that	mutational	disruption	of	UL74(gO)	expression	in	

ME	had	little	effect	on	replication	unless	the	UL128-131	locus	was	also	disrupted	

[132].	Those	authors	suggested	that	the	spread	of	ME	was	mediated	principally	by	

gH/gL/UL128-131	in	a	cell-associated	manner,	but	when	UL128-131	was	

inactivated,	spread	could	also	occur	in	a	cell-free	manner,	mediated	by	gH/gL/gO.	

This	is	in	stark	contrast	to	the	dramatic	phenotype	reported	for	a	gO-null	TR	mutant	

[130].	Our	finding	that	the	level	of	expression	of	gO	by	ME	is	low	compared	to	that	

by	TR	may	provide	a	partial	explanation	for	these	different	gO-null	phenotypes.	

	

It	remains	unclear	whether	the	described	difference	in	gO	expression	between	TR	

and	ME	represents	a	bona	fide	variation	that	naturally	exists	between	HCMV	

genotypes	in	vivo	or	reflects	differential	selection	on	de	novo	mutations	that	

occurred	during	the	independent	isolation	of	these	strains	from	clinical	specimens.	

It	seems	clear	that	serial	propagation	of	ME	in	cultured	fibroblasts	selects	for	de	

novo	mutations	that	reduce	or	abolish	the	robust	expression	of	the	UL128-131	

proteins	[137,	141].	The	selective	pressure	that	fixes	these	mutations	in	the	culture	

population	may	be	explained	by	data	from	the	specific	infectivity	analyses	reported	

here	(Fig	2.3	and	2.9)	and	by	Zhou	et	al.	[133].	In	both	analyses,	the	specific	

infectivity	of	TR	was	measured	at	approximately	100	to	200	particles/PFU,	whereas	

ME	was	30-	to	50-fold	less	infectious.	Repression	of	the	UL128-131	proteins	

enhanced	the	infectivity	of	ME	(“ME-T”)	to	levels	comparable	to	those	of	TR	

(approximately	100	particles/PFU).	While	the	infectivities	of	ME-T	and	TR	virions	

were	comparable,	ME-T	virions	still	contained	far	less	gH/gL/gO	than	did	TR	virions	
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(Fig	2.4)[133].	Ad	vector	overexpression	of	gO	enhanced	the	infectivity	of	ME	only	

6-fold	beyond	the	enhancement	due	to	UL128-131	repression	alone	(Fig	2.8	and	

2.9).	Together,	these	observations	seem	to	suggest	that	in	vitro	selective	pressures	

for	reduced	UL128-131	expression	are	much	more	pronounced	than	any	for	

enhanced	gO	expression.	Thus,	it	is	possible	that	the	difference	in	gO	expression	

between	HCMV	TR	and	ME	is	derived	not	from	the	selection	of	de	novo	mutations	

occurring	during	propagation	in	culture	but	from	nonselective,	random	sampling	of	

the	multitude	of	different	genotypes	that	likely	preexist	in	clinical	specimens	[54,	

61,	139].	Distinguishing	between	these	possibilities	will	require	clear	identification	

of	the	genomic	sequences	that	determine	gO	expression	levels.	

	

Materials	and	methods	

Cell	lines.	Primary	neonatal	human	dermal	fibroblasts	(nHDF;	Thermo	Fisher	

Scientific),	MRC-5	fibroblasts	(ATCC	CCL-171;	American	Type	Culture	Collection),	

and	HFFFtet	cells	(which	express	the	tetracycline	[Tet]	repressor	protein;	provided	

by	Richard	Stanton)	[137]	were	grown	in	Dulbecco’s	modified	Eagle’s	medium	

(DMEM;	Thermo	Fisher	Scientific)	supplemented	with	6%	heat-inactivated	fetal	

bovine	serum	(FBS;	Rocky	Mountain	Biologicals,	Inc.,	Missoula,	MT,	USA)	and	6%	

bovine	growth	serum	(BGS;	Rocky	Mountain	Biologicals,	Inc.,	Missoula,	MT,	USA).	

Human	cytomegaloviruses.	All	HCMV	strains	were	derived	from	bacterial	artificial	

chromosome	(BAC)	clones.	The	BAC	clone	of	TR	was	provided	by	Jay	Nelson	

(Oregon	Health	and	Sciences	University,	Portland,	OR,	USA)	[146].	The	BAC	clone	of	

Merlin	(ME)	(pAL1393),	which	carries	tetracycline	operator	sequences	in	the	
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transcriptional	promoter	of	UL130	and	UL131,	was	provided	by	Richard	Stanton.	

[137].	Infectious	HCMV	was	recovered	by	electroporation	of	BAC	DNA	into	MRC-5	

fibroblasts,	as	described	previously	by	Wille	et	al.	[130].	Cell-free	HCMV	stocks	were	

produced	by	infecting	HFF	or	HFFFtet	cells	at	2	PFU	per	cell.	At	8	to	10	days	

postinfection	(when	cells	were	still	visually	intact),	culture	supernatants	were	

harvested,	and	cellular	contaminants	were	removed	by	centrifugation	at	1,000	X	g	

for	10	min	and	again	at	6,000	X	g	for	10	min.	Stocks	were	judged	to	be	cell	free	by	

the	lack	of	calnexin	and	actin	by	Western	blot	analyses	and	then	stored	at	-80°C.	

Freeze-thaw	cycles	were	avoided.	PFU	were	determined	by	plating	a	series	of	10-

fold	dilutions	of	each	stock	onto	replicate	cultures	of	HFF	for	2	h	at	37°C	and	

replacing	the	inoculum	with	DMEM	supplemented	with	5%	FBS	and	0.6%	SeaPlaque	

agarose	(to	limit	cell-free	spread).	Plaques	were	counted	by	light	microscopy	3	

weeks	after	infection.		

	

Heterologous	UL74(gO)	recombinant	HCMV.	A	two-step	BAC	recombineering	

process	was	performed	as	previously	described	[137].	In	the	first	step,	the	

endogenous	UL74	ORF	from	the	start	codon	to	the	stop	codon	of	both	TR	and	ME	

was	replaced	by	a	selectable	marker.	Briefly,	cultures	of	Escherichia	coli	SW102	

containing	either	the	BAC	clone	of	TR	or	ME	were	grown	at	32°C	until	an	optical	

density	at	600	nm	(OD600)	of	0.55	was	reached.	Recombination	genes	were	induced	

by	incubation	at	42°C	for	15min.	The	purified	PCR	product	containing	the	

KanR/LacZ/RpsL	selectable	marker	cassette	flanked	by	sequences	homologous	to	

80	bp	upstream	and	downstream	of	the	TR	or	ME	UL74	ORF	was	electroporated	
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into	the	bacteria,	and	cultures	were	incubated	for	1	h	at	32°C	and	then	selected	on	

medium	containing	kanamycin	(15	μg/ml),	isopropyl-β-D-thiogalactopyranoside	

(IPTG)	(50	μM),	5-bromo-4-chloro-3-indolyl-	β	-D-galactopyranoside	(X-gal)	(20	

μg/ml),	and	chloramphenicol	(12.5	μg/ml).	First-step	primer	sequences	were	5’-

CTTGGTGGACTATGCTTAACGCTCTCATTCTCATGGGAGCTTTTTGTATCGTATTAC	

GACATTGCTGTTTCCAGAACTCCTGTGACGGAAGATCACTTCG-3’	and	5’-	

CGACCAGAATCAGCAGTGAGTACACGCAGGCAAGCCAAACCACAAGGCAGACGGACGGT

GCGGGGTCTCCTCCTCTGTCCTGAGGTTCTTATGGCTCTTG-3’	for	TR	and	5’-

CCTGGTGGACTATGCTTAACGCTCTCATTCTGATGGGAGCTTTTTGTATCGTATTACGAC

ATTGCTGCTTCCAGAACTCCTGTGACGGAAGATCACTTCG-3’	and	5’-

CGACCAGAATCAGCAGTGAGTACACGCAGGCAAACCAAACCACAAGGCAGACGGACGGT

GCGGGGTCTCCTCCTCTGTACTGAGGTTCTTATGGCTCTTG-3’	for	ME.	

	

In	the	second	step,	the	selectable	marker	cassette	in	the	TR	and	ME	first-step	

intermediate	BACs	was	replaced	with	the	UL74(gO)	sequence	from	the	heterologous	

strain.	Briefly,	E.	coli	cultures	were	prepared	for	recombination	as	described	above	

for	step	1	and	electroporated	with	purified	PCR	products	containing	the	UL74	ORF	

from	the	TR	or	ME	strain	flanked	by	sequence	homologous	to	80	bp	upstream	and	

downstream	of	the	opposite	strain.	Transformed	E.	coli	cells	were	selected	for	the	

removal	of	the	KanR/LacZ/RpsL	cassette	by	growth	on	medium	containing	

streptomycin	(1.5	mg/ml),	IPTG	(50	μM),	X-gal	(20	μg/ml),	and	chloramphenicol	

(12.5	μg/ml).	Primers	used	to	generate	the	second-step	PCR	product	were	5’-

GCCTGGTGGACTATGCTTAACGCTCTCATTCTGATGGGAGCTTTTTGTATCGTATTACGA
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CATTGCTGCTTCCAGAACTTTACTGCAACCACCACCAAAG-3’	and	5’-

CGACCAGAATCAGCAGTGAGTACACGCAGGCAAACCAAACCACAAGGCAGACGGACGGT

GCGGGGTCTCCTCCTCTGTAATGGGGAGAAAAGGAGAGATG-3’for	the	transformation	

of	TR	UL74	into	ME	and	5’-GGCTTGGTGGACTATGCTTAACGCTCTCATTCTCATGGGAG	

CTTTTTGTATCGTATTACGACATTGCTGTTTCCAGAACTTTACTGCGACCACCACCAAA-

3’	and	5’-

CAGAATCAGCAGTGAGTACACGCAGGCAAGCCAAACCACAAGGCAGACGGACGGTGCGG

GGTCTCCTCCTCTGTCATGGGGAAAAAAGAGATGATAATGG	for	the	transformation	of	

ME	UL74	into	TR.	

	

The	final	heterologous	UL74(gO)	recombinants	were	verified	by	Sanger	sequencing	

of	PCR	products	using	the	following	primers:	5’-

GATGATTTTTACAAGGCACATTGTACATC-3’	and	5’-AACTAGGTCGTCTTGGAAGC-3’	

for	TRΔMEgO	and	5’-CTCACAATGATTTTTACAATGCG-3’	and	5’-

AACTAGGTCGTCTTGGAAGC-3’	for	MEΔTRgO.	

	

Antibodies.	Rabbit	polyclonal	antipeptide	antibodies	specific	for	TBgO	and	MEgO	

were	described	previously	[64].	Rabbit	polyclonal	antibodies	specific	for	UL148	

were	described	previously	[136].	Rabbit	polyclonal	anti-peptide	antibodies	against	

gH,	gL,	UL130,	and	UL131	were	provided	by	David	Johnson	(Oregon	Health	and	

Sciences	University,	Portland,	OR,	USA)	[147].	Anti-UL128	monoclonal	antibody	

(MAb)	4B10	was	provided	by	Tom	Shenk	(Princeton	University,	Princeton,	NJ,	USA)	

[148].	MAb	28-4	directed	against	major	capsid	protein	(MCP)	and	MAb	27-156	
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directed	against	gB	were	provided	by	Bill	Britt	[149-150].	MAb	CH160	against	

cytomegalovirus	(CMV)	immediate	early	protein	1	(IE1)	and	IE2	was	purchased	

from	Abcam	(Cambridge,	MA,	USA).	

	

Immunoblotting.	HCMV-infected	cells	or	cell-free	virions	were	solubilized	in	2%	

SDS–20	mM	Tris-buffered	saline	(TBS)	(pH	6.8).	Insoluble	material	was	cleared	by	

centrifugation	at	16,000	X	g	for	15min,	and	extracts	were	then	boiled	for	10	min.	For	

endoglycosidase	H	(endo	H)	or	peptide	N-glycosidaseF	(PNGase	F)	treatment	assays,	

proteins	were	extracted	in	1%	Triton	X-100	(TX100)	plus	0.5%	sodium	

deoxycholate	(DOC)	in	20	mM	Tris	(pH	6.8)	plus	100	mM	NaCl	(TBS-TX-DOC).	

Extracts	were	clarified	by	centrifugation	at	16,000	X	g	for	15	min	and	treated	with	

endo	H	or	PNGase	F	according	to	the	manufacturer’s	instructions	(New	England	

BioLabs).	For	reducing	blots,	dithiothreitol	(DTT)	was	added	to	extracts	to	a	final	

concentration	of	25	mM.	After	separation	by	SDS-PAGE,	proteins	were	transferred	

onto	polyvinylidene	difluoride	(PVDF)	membranes	(Whatman)	in	a	buffer	

containing	10	mM	NaHCO3	and	3mM	Na2CO3	(pH	9.9)	plus	10%	methanol.	

Transferred	proteins	were	probed	with	MAbs	or	rabbit	polyclonal	antibodies,	anti-

rabbit	or	anti-mouse	secondary	antibodies	conjugated	with	horseradish	peroxidase	

(Sigma-Aldrich),	and	Pierce	ECL-Western	blotting	substrate	(Thermo	Fisher	

Scientific).	Chemiluminescence	was	detected	using	a	Bio-Rad	ChemiDoc	MP	imaging	

system.	
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Radiolabeling	proteins.	Cell	cultures	were	incubated	in	labeling	medium	(Met-Cys-

free	DMEM	plus	2%	dialyzed	FBS	lacking	methionine	and	cysteine)	for	2	h	at	37°C,	

and	[35S]methionine-cysteine	was	then	added	to	1	mCi/ml	(EasyTag	Express	35S	

protein	labeling	mix;	PerkinElmer).	For	chase	experiments,	label	medium	was	

removed,	and	cultures	were	washed	twice	in	DMEM	plus	2%	FBS	supplemented	

with	a	10-fold	excess	of	nonradioactive	methionine	and	cysteine	and	then	incubated	

in	this	medium	for	the	indicated	times.	

	

Immunoprecipitation.	Cell	extracts	were	harvested	in	TBS-TX-DOC	supplemented	

with	0.5%	bovine	serum	albumin	(BSA)	and	1	mM	phenylmethylsulfonyl	fluoride	

(PMSF),	clarified	by	centrifugation	at	16,000	X	g	for	15	min,	adjusted	to	2%	SDS–30	

mM	DTT,	and	heated	at	75°C	for	15	min.	The	extracts	were	then	diluted	35-fold	with	

TBS-TX-DOC	supplemented	with	0.5%	BSA	and	10	mM	iodoacetamide,	incubated	on	

ice	for	15	min,	and	precleared	with	protein	A-agarose	beads	(Invitrogen/Thermo	

Fisher	Scientific)	for	at	4°C	for	2	h.	Immunoprecipitation	reactions	were	set	up	with	

specific	antibodies	and	protein	A-agarose	beads,	and	the	mixtures	were	incubated	

overnight	at	4°C.	Protein	A-agarose	beads	were	washed	3	times	with	TBS-TX-DOC,	

and	proteins	were	eluted	with	2%	SDS	and	30	mM	DTT	in	TBS	at	room	temperature	

(RT)	for	15	min,	followed	by	75°C	for	10	min.	Eluted	proteins	were	separated	by	

SDS-PAGE	and	analyzed	with	a	Typhoon	FLA-9500	imager	(GE	Healthcare	Life	

Sciences).	Band	densities	were	determined	using	ImageJ	version	1.48	software.	
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Quantitative	PCR.	Viral	genomes	were	determined	as	described	previously	[133].	

Briefly,	cell-free	HCMV	stocks	were	treated	with	DNase	I	before	extraction	of	viral	

genomic	DNA	(PureLink	viral	RNA/DNA	minikit;	Life	Technologies/Thermo	Fisher	

Scientific).	Primers	specific	for	sequences	within	UL83	were	used	with	the	MyiQ	

real-time	PCR	detection	system	(Bio-Rad).	

	

Superinfection	of	HCMV-infected	cells	with	replication-defective	adenovirus	

vectors.	The	construction	of	Ad	vectors	expressing	MEgO	or	GFP	was	described	

previously	[64].	Two	days	after	HCMV	infection,	cells	were	superinfected	with	20	

PFU/cell	of	AdMEgO	or	AdGFP.	Six	days	later,	cell-free	HCMV	was	collected	from	the	

supernatant	culture	by	centrifugation,	and	cells	were	harvested	for	immunoblotting.	
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Chapter	III.	Polymorphisms	in	Human	

Cytomeglaovirus	gO	exert	epistatic	influences	

on	cell-free	and	cell-to-cell	spread,	and	

antibody	neutralization	on	gH	epitopes.	

	

This	chapter	is	modified	version	of	the	manuscript	published	

in	Journal	of	Virology	in	March	2020;	10.1128/JVI.02051-19.	
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Introduction	

Recent	application	of	state-of-the-art	genomics	approaches	have	begun	to	uncover	a	

greater	and	more	complex	genetic	diversity	of	human	cytomegalovirus	(HCMV)	than	

had	been	appreciated	[54,	55,	61,	139,	151-154].	Of	the	165	canonical	open	reading	

frames	(ORFs)	in	the	235	kbp	HCMV	genome,	21	show	particularly	high	nucleotide	

diversity	and	are	distributed	throughout	the	otherwise	highly	conserved	genome.	

Links	between	specific	genotypes	and	observed	phenotypes	are	not	well	understood	

and	as	a	corollary	outcome,	the	factors	driving	HCMV	genetic	diversity	and	

evolution	remain	speculative.	This	is	further	complicated	by	recombination	between	

genotypes	that	can	shuffle	the	diverse	loci	into	various	combinations,	and	this	may	

result	in	epistasis	where	the	phenotypic	manifestation	of	a	specific	genotype	of	one	

locus	may	be	influenced	by	the	specific	genotypes	of	other	loci.	Thus,	realizing	the	

full	potential	of	modern	genomics	approaches	towards	the	design	of	new	

interventions,	clinical	assessments	and	predictions	will	require	better	mechanistic	

understanding	of	the	links	between	genotypes	and	phenotypes.	

	

The	UL74	ORF	codes	for	glycoprotein	(g)	O	and	is	one	of	the	aforementioned	highly	

diverse	loci	of	HCMV	[19,	64,	155,156].	Most	phylogenetic	groupings	indicate	8	

genotypes	or	alleles	of	gO	that	differ	in	10-30%	of	amino	acids,	predominately	near	

the	N-terminus	and	in	a	short	central	region.	These	amino	acid	polymorphisms	also	

affect	predicted	N-linked	glycan	sites.	The	evolutionary	origins	of	gO	genotype	

diversity	are	not	understood.	Studies	that	followed	infected	humans	through	

latency-reactivation	cycles	over	several	years	demonstrated	remarkable	stability	in	
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UL74(gO)	sequences,	arguing	against	the	idea	of	selective	pressure	from	a	

dynamically	adapting	host	immune	system	as	a	driving	force	for	gO	diversity	[59,	

155].	The	functional	significance	of	gO	diversity	has	only	recently	been	addressed	

and	centers	around	its	role	as	a	subunit	of	the	envelope	glycoprotein	complex	

gH/gL/gO,	which	is	involved	in	the	initiation	of	infection	into	different	cell	types.	

	

The	general	model	for	herpesvirus	entry	involves	fusion	between	the	virion	

envelope	and	cell	membranes	mediated	by	the	fusion	protein	gB	and	the	regulatory	

protein	gH/gL	[120,	122,	157].	The	HCMV	gH/gL	can	be	unbound,	or	bound	by	gO	or	

the	set	of	UL128-131	proteins	[148,	158-160].	How	these	gH/gL	complexes	

participate	to	mediate	infection	is	complicated	and	seems	to	depend	on	both	the	cell	

type	and	whether	the	infection	is	by	cell-free	virus	or	direct	cell-to-cell	spread.	

Efficient	infection	of	all	cultured	cell	types	by	cell-free	HCMV	is	dependent	on	

gH/gL/gO,	whereas	infection	of	select	cell	types	including	epithelial	and	endothelial	

cells	additionally	requires	gH/gL/UL128-131	[125,	126,	130,	131,	133,	161].	

Experiments	involving	HCMV	mutants	lacking	either	gO	or	UL128-131	suggested	

that	cell-to-cell	spread	in	fibroblast	cultures	can	be	mediated	by	either	gH/gL/gO	or	

gH/gL/UL128-131,	whereas	in	endothelial	and	epithelial	cells	gH/gL/UL128-131	is	

required,	and	it	has	remained	unclear	whether	gH/gL/gO	plays	any	role	[126,	130,	

132,	162].	While	it	is	clear	that	gH/gL/gO	can	bind	to	the	cell	surface	protein	

PDGFRα	via	gO,	and	that	gH/gL/UL128-131	can	bind	NRP2	and	OR14I1	via	UL128-

131,	the	specific	function(s)	of	these	receptor	engagements	is	unclear,	but	may	

include	virion	attachment,	regulation	of	gB	fusion	activity,	or	activation	of	signal	
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transduction	pathways	[31,	33,	163].	In	the	case	of	gH/gL/gO,	binding	to	PDGFRα	

activates	signaling	pathways,	but	these	are	not	required	for	entry	[31,	162,	134].	

Stegmann	et	al.	showed	that	binding	of	a	gO	null	HCMV	to	fibroblasts	and	

endothelial	cells	was	impaired,	yet	it	is	unclear	whether	this	was	due	to	lack	of	

PDGFRα	engagement.	[32].	Finally,	Wu	et	al.	reported	coimmunoprecipitation	of	gB	

with	gH/gL/gO	and	PDGFRα,	consistent	with	a	role	for	the	gH/gL/gO-PDGFRα	

interaction	in	promoting	gB	fusion	activity	[134].	However,	unbound	gH/gL	has	

been	shown	to	mediate	cell-cell	fusion	and	has	also	been	found	in	stable	complex	

with	gB	in	extracts	of	infected	cells	and	extracellular	virions	[160,	164].	Thus,	

although	many	of	the	key	factors	in	HCMV	entry	and	cell-to-cell	spread	have	been	

identified,	their	interplay	in	the	various	entry	pathways	is	unclear.	Moreover,	the	

influence	of	gO	diversity	remains	a	mystery.	

	

The	gH/gL	complexes	have	been	extensively	studied	as	potential	vaccine	candidates	

and	neutralizing	antibodies	have	been	described	that	react	with	epitopes	on	gH/gL,	

on	UL128-131	and	on	gO	[165–173].	Anti-UL128-131	antibodies	neutralize	with	

high	potency,	but	only	on	cell	types	for	which	gH/gL/UL128-131	is	required	for	

entry;	e.g.,	epithelial	cells.	In	contrast,	antibodies	that	react	with	epitopes	on	gH/gL	

tend	to	neutralize	virus	on	both	fibroblasts	and	epithelial	cells,	but	are	far	less	

potent	on	fibroblasts,	where	only	gH/gL/gO	is	needed	for	entry.	One	explanation	for	

these	observations	is	that	gO,	with	its	extensive	N-linked	glycan	decorations	

presents	more	steric	hindrance	to	antibodies	accessing	the	underlying	gH/gL	

epitopes	than	do	the	UL128-131	proteins.	Similar	effects	of	glycans	in	shielding	
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neutralizing	epitopes	have	been	described	for	HIV	env,	and	for	HCMV	gN	[174-175].	

In	support	of	this	hypothesis	for	gO,	Jiang	et	al.	showed	that	focal	spread	of	a	gO	null	

HCMV	in	fibroblasts	was	more	sensitive	to	anti-gH	antibodies	[176].	Recently,	Cui	et	

al.	described	antibodies	that	reacted	to	a	linear	epitope	on	gH	that	exhibited	strain-

selective	neutralization	that	could	not	be	explained	by	polymorphisms	within	the	gH	

epitope	[177].	One	possible	explanation	was	that	gO	polymorphisms	between	the	

strains	imposed	differential	steric	hindrances	on	these	antibodies.	

	

In	this	study	we	utilized	a	set	of	HCMV	BAC-clones	that	represent	the	range	of	

phenotypic	diversity	in	terms	of	gH/gL	complexes.	HCMV	TB40/e	(TB),	TR	and	

Merlin	(ME)	differ	dramatically	in	the	amounts	of	gH/gL	complexes	in	the	virion	

envelope	and	their	infectivity	on	fibroblasts	and	epithelial	cells.	Extracellular	virions	

of	TB	and	TR	contain	gH/gL	predominately	in	the	form	of	gH/gL/gO	and	are	far	

more	infectious	on	both	fibroblasts	and	epithelial	cells	than	ME,	which	contains	

overall	lower	amounts	of	gH/gL,	predominately	as	gH/gL/UL128-131	[64,	133].	

Each	of	these	strains	encodes	a	different	representative	of	the	8	gO	genotypes.	In	a	

previous	report,	we	demonstrated	that	variation	in	the	UL74(gO)	ORF	was	not	

responsible	for	the	observed	differences	between	TR	and	ME.	[178].	Rather,	it	was	

shown	that	the	amounts	of	gH/gL/gO	in	ME	and	TR	virions	were	influenced	by	

different	steady-state	levels	of	gO	present	during	progeny	assembly.	Kalser	et	al.	

showed	that	replacing	the	gO	of	TB	with	that	of	Towne	(TN)	also	did	not	affect	the	

levels	of	gH/gL	complexes	but	may	have	enhanced	the	ability	of	TB	to	spread	in	

epithelial	cell	cultures	[145].	Here,	we	have	generated	a	set	of	heterologous	gO	
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recombinants	to	include	6	of	the	8	genotypes	in	the	genetic	backgrounds	of	the	

gH/gL/gO-rich	strain	TR	and	the	gH/gL/UL128-131-rich	ME	to	analyze	how	the	

differences	in	gO	sequence	influence	HCMV	biology.	The	results	demonstrate	that	gO	

variation	can	have	dramatic	effects	on	cell-free	entry,	cell-to-cell	spread	and	the	

neutralization	by	anti-gH	antibodies.	In	some	cases	opposite	influences	were	

observed	for	a	given	gO	genotype	in	the	different	backgrounds	of	TR	and	ME,	

indicating	epistasis	with	other	genetic	differences	between	these	strains.	

	

Results	

Influences	of	gO	polymorphisms	on	cell-free	infectivity	and	tropism	can	be	

dependent	on	the	background	strain.	To	examine	the	effects	of	gO	polymorphism,	

a	set	of	recombinant	viruses	was	constructed	in	which	the	endogenous	UL74(gO)	

ORFs	of	strain	TR	and	ME	were	replaced	with	the	UL74(gO)	ORFs	from	5	other	

strains.	BAC-cloned	strains	TR	and	ME	were	chosen	as	the	backgrounds	for	these	

studies	since	they	represent	gH/gL/gO-rich	and	gH/gL/UL128-131-rich	strains	

respectively	[64,	133,	145].	Additionally,	ME	is	restricted	to	a	cell-to-cell	mode	of	

spread	in	culture,	whereas	TR	is	capable	of	both	cell-free	and	cell-to143	cell	modes	

of	spread	[126,	137,	179].	The	intended	changes	to	UL74(gO)	in	each	recombinant	

BAC	were	verified	by	sequencing	the	UL74	ORF	and	the	flanking	regions	used	for	

BAC	recombineering.	However,	it	was	recently	reported	that	HCMV	BAC-clones	can	

sustain	various	genetic	deletions,	and	rearrangements,	and	mutations	during	rescue	

in	fibroblasts	or	epithelial	cells,	resulting	in	mixed	genotype	populations	[141].	To	

ensure	that	phenotypes	characterized	were	the	associated	with	the	intended	
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changes	to	UL74(gO)	and	not	to	other	genetic	changes	sustained	during	BAC	rescue	

in	fibroblasts,	all	analyses	were	performed	on	at	least	three	independently	BAC-

rescued	viral	stocks.	

	

As	a	basis	for	interpretation	of	the	later	biological	comparisons	among	

recombinants,	the	levels	of	gH/gL	complexes	incorporated	into	the	virion	envelope	

were	analyzed	by	immunoblot	as	previously	described	[64,	133].	As	in	the	previous	

reports,	TR	contained	predominantly	gH/gL/gO,	whereas	ME	contained	mostly	

gH/gL/UL128-131	(Fig	3.1,	compare	lane	1	in	panels	A	and	B).	Propagation	of	ME	

under	conditions	of	UL131	transcriptional	repression	(denoted	“Merlin-T”	(MT)	as	

described	[133,	137]),	resulted	in	more	gH/gL/gO	and	less	gH/gL/UL128-131	(Fig	

3.1C,	lane	1).	Some	minor	differences	in	the	amounts	of	total	gL,	gH/gL/gO,	and	

gH/gL/UL128-131	were	observed	for	some	of	the	heterologous	gO	recombinants	

relative	to	their	parental	strains.	However,	band	density	analyses	showed	that	all	

apparent	differences	were	less	than	3-fold	and	few	reached	statistical	significance	

when	compared	across	multiple	experiments,	likely	reflecting	the	limitations	of	

immunoblot	as	a	precise	quantitative	method,	as	well	as	stock-to-stock	variability	in	

glycoprotein	composition	(Table	3.1).	Thus,	consistent	with	our	previous	report,	

differences	between	strains	TR	and	ME	in	the	abundance	of	gH/gL	complexes	are	

predominately	influenced	by	genetic	background	differences	outside	the	UL74(gO)	

ORF	[178].	
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Fig	3.1	Immunoblot	analysis	of	gH/gL	complexes	in	parental	and	heterologous	gO	
recombinant	HCMV.	Equal	number	of	cell-free	virions	(as	determined	by	qPCR)	of	HCMV	TR	
(A),	ME	(B),	or	MT	(C)	or	the	corresponding	heterologous	gO	recombinants	were	separated	
by	reducing	(upper	two	panels)	or	non-reducing	(bottom	panel)	SDS-PAGE,	and	analyzed	by	
immunoblot	with	antibodies	specific	for	major	capsid	protein	(MCP)	or	gL.	Blots	shown	are	
representative	of	three	independent	experiments.	Molecular	mass	markers(kDa)	indicated	
on	each	panel.	
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Table	3.1	Immunoblot	band	density	analyses	of	parental	and	heterologous	gO	
recombinants.	

	

While	gH/gL/gO	is	clearly	important	for	entry	into	both	fibroblasts	and	epithelial	

cells,	the	mechanisms	are	likely	different	since	1)	fibroblasts	clearly	express	the	

gH/gL/gO	receptor	PDGFRα	on	their	surface,	whereas	ARPE19	epithelial	cells	

express	little	or	none	of	this	protein	[31,	162,	134,	180],	and	2)	entry	into	epithelial	

cells	requires	gH/gL/UL128-131	in	addition	to	gH/gL/gO	[126,	161,	133].	Thus,	it	

was	possible	that	gO	polymorphisms	would	differentially	affect	replication	in	these	

two	cell	types.	To	address	this,	fibroblast-to-epithelial	tropism	ratios	were	

determined	for	each	parental	strain	and	gO	recombinant	by	inoculating	cultures	of	
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fibroblasts	and	epithelial	cells	in	parallel	with	equivalent	amounts	of	cell-free	virus	

stocks.	The	number	of	infected	cells	in	each	culture	was	then	determined	by	flow	

cytometry	using	GFP	expressed	from	the	virus	genome.	Figure	3.2	shows	the	results	

of	these	experiments	as	the	fold	preference	for	either	cell	type	as	a	ratio,	where	“1”	

indicates	equal	infection	of	both	cell	types.	Stocks	of	the	parental	TR	were	

approximately	20-fold	more	infectious	on	fibroblasts	than	on	epithelial	cells	(Fig	

3.2A).	Preference	towards	fibroblasts	was	greater	for	TR-recombinants	expressing	

MEgO(GT5),	PHgO(GT2a),	and	TBgO(GT1c).	In	contrast,	tropism	ratios	of	TR	

recombinants	expressing	ADgO(GT1a)	and	TNgO(GT4)	were	closer	to	1,	indicating	

more	equal	infection	of	both	cell	types.	Parental	ME	and	all	of	the	ME-based	gO	

recombinants	had	tropism	ratios	within	the	range	of	6	in	favor	of	fibroblasts	to	3	in	

favor	of	epithelial	cells.	Several	of	these	viruses	had	variability	between	replicate	

stocks	where	some	had	slight	fibroblasts	preference	and	others	slight	epithelial	

preference	(Fig	3.2B).	Propagation	of	the	ME-based	viruses	as	MT	greatly	increased	

the	preference	towards	fibroblasts	infection	for	all	recombinants	to	a	range	of	30-

300	fold	(Fig	3.2B).	These	results	suggested	that	for	the	more	gH/gL/gO-rich	TR	and	

MT,	gO	polymorphisms	may	differentially	influence	the	infection	of	fibroblasts	and	

epithelial	cells,	shifting	the	apparent	relative	tropism.	However,	such	influences	

were	less	pronounced	for	ME,	consistent	with	the	low	abundance	of	gH/gL/gO	

expressed	by	this	virus.	

	



	 61	

Fig	3.2	Relative	fibroblast	and	epithelial	cell	tropism	of	parental	and	heterologous	gO	
recombinant	HCMV.	Cell-free	stocks	of	HCMV	TR	(A),	ME	(B),	or	MT	(C)	or	the	
corresponding	heterologous	gO	recombinants	were	serially	diluted,	and	side-by-side	
cultures	of	nHDF	fibroblasts	and	ARPE19	epithelial	cells	were	inoculated	with	equal	
volumes	of	the	dilutions.	The	number	of	infected	cells	was	determined	by	flow	cytometry	
for	GFP	at	2	days	post	infection.	Ratios	greater	than	or	equal	to	1	of	the	number	of	each	cell	
type	infected	(fib/epi	or	epi/fib)	are	plotted	for	each	of	three	independent	sets	of	virus	
stocks	(black,	open	and	striped	bars).	
	

It	was	not	clear	if	the	observed	differences	in	tropism	ratios	were	due	to	enhanced	

infection	of	one	cell	type,	reduced	infection	of	the	other	cell	type	or	a	mixture	of	

both.	To	address	this,	specific	infectivity	(ratio	of	the	number	of	virions	to	the	

number	of	infectious	units)	was	determined	for	each	parental	and	recombinant	on	

both	fibroblasts	and	epithelial	cells.	Multiple	independent	supernatant	stocks	of	

each	recombinant	were	analyzed	by	qPCR	for	encapsidated	viral	genomes	and	

infectious	titers	on	both	cell	types	were	determined	by	flow	cytometry	

quantification	of	GFP-positive	cells	(Fig	3.3).	For	the	TR-based	viruses	on	

fibroblasts,	MEgO(GT5),	TBgO(GT1c),	and	TNgO(GT4)	each	resulted	in	moderately	

enhanced	infectivity	(2	to	10-fold	fewer	genomes/IU)	compared	to	the	parental	TR,	
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and	PHgO(GT2a)	enhanced	infectivity	30-fold.	In	contrast,	ADgO(GT1a)	dropped	TR	

infectivity	below	the	detection	limit	of	the	flow	cytometry-based	assay	(Fig	3.3A,	top	

panel).	In	our	previous	report,	expression	of	MEgO	in	the	TR	background	did	not	

appear	to	affect	infectivity	on	fibroblasts	[178].	This	discrepancy	was	likely	due	to	

the	more	sensitive	flow	cytometry	readout	used	in	the	current	studies	as	compared	

to	the	plaque	assay	readout	used	previously.	The	infectivity	of	parental	TR	on	

epithelial	cells	was	about	20-fold	lower	than	on	fibroblasts	(i.e.,	20-fold	higher	

genomes/IU),	but	the	relative	effect	of	each	heterologous	gO	was	similar	to	that	

observed	on	fibroblasts	(Fig	3.3A,	bottom	panel).	Thus,	some	of	the	gO	changes	had	

dramatic	effects	on	the	infectivity	of	TR.	Although	these	effects	were	manifest	on	

both	cell	types,	they	were	more	pronounced	on	fibroblasts	and	this	explains	the	

observed	differences	in	fibroblast	preferences	reported	in	Figure	3.2A.		
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Fig	3.3	Specific	infectivity	of	parental	and	heterologous	gO	recombinant	HCMV.	
Extracellular	HCMV	stocks	of	HCMV	TR	(A),	ME	(B),	or	MT	(C)	or	the	corresponding	
heterologous	gO	recombinants	were	quantified	by	qPCR	for	viral	genomes,	and	infectious	
units	(IU)	were	determined	by	flow	cytometry	quantification	of	GFP-expressing	nHDF	
fibroblasts	or	ARPE-19	epithelial	cells,	2	days	post	infection.	Average	genomes/IU	of	3	
independent	set	of	virus	stock	are	plotted,	with	error	bars	representing	standard	
deviations.	Undetectable	levels	of	infectivity	indicated	by	ND	(not	determined).	Asterisks	(*)	
denote	p-values	≤	0.05;	one	way	ANOVA	with	Dunnett’s	multiple	comparisons	test	
comparing	each	recombinant	to	the	parental	in	three	independent	experiments.	
	

The	infectivity	of	cell-free	ME	virions	on	both	cell	types	was	below	the	detection	

limit	of	the	flow	cytometry-based	assay	and	none	of	the	changes	to	gO	rescued	

infectivity	(Fig	3.3B).	These	results	indicated	that	the	cell-free	virions	of	all	of	the	

ME-based	viruses	were	virtually	non-infectious.	When	propagated	as	MT,	infectivity	

on	both	cell	types	was	improved	to	levels	comparable	to	TR	and	this	was	consistent	

with	our	previous	results	(Fig	3.2C)	[133,	178].	The	only	significant	effect	of	gO	

changes	on	MT	was	ADgO(GT1a),	which	reduced	infectivity	on	both	cell	types,.	Thus,	
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as	in	the	TR	background,	some	changes	to	gO	influenced	infectivity	of	MT	and	this	

was	disproportionally	manifest	on	fibroblasts	compared	to	epithelial	cells,	but	the	

overall	preference	of	all	of	the	MT-based	viruses	was	strongly	in	favor	of	fibroblasts.		

	

It	has	been	reported	that	gO-null	HCMV	are	impaired	for	attachment	to	cells	and	

that	soluble	gH/gL/gO	can	block	HCMV	attachment	[32,	181].	Thus,	it	was	possible	

that	the	observed	changes	to	cell-free	infectivity	due	to	gO	polymorphisms	were	

related	to	a	role	for	gO	in	attachment.	To	test	this	hypothesis,	each	heterologous	gO	

recombinant	was	compared	to	the	corresponding	parental	strain	by	applying	cell-

free	virus	stocks	to	fibroblast	or	epithelial	cell	cultures	for	approximately	20	min,	

washing	away	the	unbound	virus	and	then	counting	the	numbers	of	cell-associated	

virions	by	immunofluorescence	staining	of	the	capsid-associated	tegument	protein	

pp150	[32]	(Fig	3.4	and	Tables	3.2	and	3.3).	Given	the	short	incubation	time,	high	

concentrations	of	input	viruses	were	used	to,	and	these	inputs	were	equal	for	each	

set	of	parental	and	heterologous	gO	recombinants	within	the	constraints	of	the	

stock	concentrations.	Higher	inputs	were	required	for	ME	to	obtain	detectable	

numbers	of	bound	virus,	consistent	with	the	low	amounts	of	gH/gL/gO	in	these	

virions.	The	average	number	of	cell-associated	virions	per	cell	varied	considerable	

between	experiments,	likely	reflecting	the	complex	parameters	expected	to	

influence	virus	attachment	including	stock	concentration,	cell	state	and	variability	in	

the	incubation	time	between	experiments.	In	some	cases,	a	given	recombinant	was	

significantly	different	from	parental	in	only	one	or	two	of	the	three	experiments.	It	

was	concluded	that	these	specific	gO	isoforms	did	not	affect	binding	or	attachment	
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of	HCMV	to	cells.	However,	binding	of	TR_TNgO(GT4)	and	MT_ADgO(GT1a)	were	

each	significantly	lower	than	their	respective	parental	viruses	in	all	three	

experiments	on	both	fibroblasts	and	epithelial	cells.	While	it	was	possible	that	the	

reduced	binding	of	MT_ADgO(GT1a)	was	due	in	part	to	the	slightly	lower	amounts	

of	gH/gL/gO	(Fig	3.1C	and	Table	3.1),	the	reduced	binding	of	TR_TNgO(GT4)	could	

not	be	similarly	explained	since	this	virus	had	slightly	more	gH/gL/gO	than	the	

parental	TR	(Fig	3.1A,	Table	3.1).	Moreover,	reduced	binding	may	help	explain	the	

lower	infectivity	of	MT_ADgO(GT1a)(Fig	3.3C),	but	the	poor	infectivity	of	

TR_ADgO(GT1a)	could	not	be	explained	by	poor	binding,	and	the	reduced	binding	of	

TR_TNgO(GT4)	did	not	result	in	reduction	of	infectivity	(Fig	3.3A).	
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Fig	3.4	Binding	of	parental	and	heterologous	gO	recombinant	HCMV	to	fibroblasts.	
Extracellular	HCMV	TR,	ME,	MT	or	the	corresponding	heterologous	gO	recombinants	were	
applied	to	nHDF	for	20	min.	Multiplicities	(genomes/cell)	were:	TR-background	viruses	(1	x	
104),	ME-background	viruses	(5	x	104),	MT-	background	viruses	(1	x	104).	After	washing	
away	unbound	virus,	cultures	were	fixed	and	permeabilized	with	acetone	and	cell-
associated	virus	particles	were	detected	by	immunofluorescence	using	antibodies	specific	
for	the	capsid-associated	tegument	protein,	pp150.	Cells	were	visualized	by	staining	nuclei	
with	DAPI.	(A)Representative	fields	of	parental	TR,	ME,	MT	and	heterologous	gO	
recombinants	that	consistently	reduced	binding	in	3	independent	experiments	(Table	3.2).	
(B)	Mean	particles	per	cell	for	representative	experiments.	Error	bars	represent	the	
standard	deviation.	Asterisks	(*)	denote	p-values	≤	0.05;	one-way	ANOVA	with	Dunnett’s	
multiple	comparisons	test	comparing	each	recombinant	to	the	parental.	
	

	

	

Table	3.2	Binding	of	parental	and	heterologous	gO	recombinant	HCMV	to	fibroblasts.	
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Table	3.3	Binding	of	parental	and	heterologous	gO	recombinant	HCMV	to	epithelial	cells.	
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In	sum,	these	analyses	indicated	that;	1)	gO	polymorphisms	can	influence	the	cell-

free	infectivity	of	HCMV.	In	some	cases	this	was	independent	of	any	effects	on	

abundance	of	gH/gL/gO	in	the	virion	envelope	or	binding	to	cells	(e.g.	parental	TR	

and	TR	recombinants	harboring	MEgO(GT5),	TBgO(GT1c),	and	ADgO(GT1a),	had	

dramatically	different	infectivity	but	comparable	levels	of	gH/gL/gO	and	cell	

binding).	2)	The	influence	of	some	gO	isoforms	was	dependent	on	the	background	

strain	(e.g.,	PHgO(GT2a)	enhanced	TR	infectivity	but	did	not	affect	ME	or	MT	and	

TNgO(GT4)	reduced	binding	of	TR	but	had	no	effect	on	binding	of	ME	or	MT).	3)	

While	some	heterologous	gO	recombinants	had	quantitatively	different	effects	on	

infectivity	on	fibroblast	compared	to	epithelial	cells,	these	did	not	change	the	

fundamental	fibroblast	preferences	for	either	TR	or	MT.	4)	Some	of	the	heterologous	

gOs	did	appear	to	change	relative	tropism	of	ME.	However,	the	relevance	of	tropism	

ratios	for	these	viruses	is	questionable	since	the	specific	infectivity	(genomes/IU)	

analyses	suggested	that	all	ME-based	recombinants	were	noninfectious	on	either	

cell	type.	This	was	consistent	with	the	highly	cell-associated	nature	of	ME	[137,	

179].	

	

Polymorphisms	in	gO	can	differentially	influence	the	mechanisms	of	cell-free	

and	cell-to-cell	spread.	The	analyses	described	above	focused	on	the	cell-free	

infectivity	of	HCMV,	as	indicative	of	a	cell-free	mode	of	spread.	Cell-to-cell	spread	

mechanisms	are	likely	important	for	HCMV,	and	while	gH/gL	complexes	are	clearly	

important	for	cell-to-cell	spread,	the	mechanisms	in	these	processes	are	poorly	



	 70	

characterized	in	comparison	to	cell-free	infection.	Strains	TR	and	ME	are	well-suited	

to	compare	the	effects	of	gO	polymorphisms	on	cell-free	and	cell-to-cell	spread	since	

ME	is	mostly	restricted	to	cell-to-cell	due	to	the	poor	infectivity	of	cell-free	virions	

but	can	be	allowed	to	also	spread	cell-free	by	propagation	as	MT,	whereas	TR	can	

spread	by	both	cell-free	and	cell-to-cell	mechanisms	[126,	133,	137,	179].	

	

To	compare	spread	among	heterologous	gO	recombinants,	replicate	cultures	were	

infected	at	low	multiplicity,	and	at	12	dpi,	foci	morphology	was	documented	by	

fluorescence	microscopy	and	the	increased	number	of	infected	cells	was	determined	

by	flow	cytometry.	In	fibroblasts	cultures,	parental	TR	and	MT	showed	more	diffuse	

foci	compared	to	the	tight,	localized	focal	pattern	of	parental	ME,	consistent	with	the	

notion	that	TR	and	MT	spread	by	both	cell-free	and	cell-to-cell	mechanisms	whereas	

ME	was	restricted	to	cell-to-cell	spread	(Fig	3.5A).	Quantitatively,	spread	by	

parental	TR	increased	the	numbers	of	infected	cells	55-fold	over	12	days,	whereas	

spread	of	TR_MEgO(GT5)	and	TR_PHgO(GT2a)	were	significantly	reduced	(Fig	

3.5B).	Spread	of	ME	was	slightly	reduced	by	ADgO(GT1a),	but	was	increased	by	

TNgO(GT4)	(Fig	3.5C).	Surprisingly,	different	effects	on	spread	were	observed	for	

MT	where	TBgO(GT1c)	and	TNgO(GT4)	reduced	spread,	and	ADgO(GT1a)	increased	

spread.		
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Fig	3.5	Spread	of	parental	and	heterologous	gO	recombinant	HCMV	in	fibroblast	cultures.	
Confluent	monolayers	of	nHDF	or	HFFFTet	(for	“MT”)	were	infected	with	0.003/cell	of	
HCMV	TR	(A,	B),	ME	(A,	C),	MT	(A,	D)	or	the	corresponding	heterologous	gO	recombinants.	
At	3	and	12	days	post	infection	cultures	were	analyzed	by	fluorescence	microscopy	(A)	or	
by	flow	cytometry	to	quantitate	the	total	number	of	infected	(GFP+)	cells	(B-D).	Plotted	are	
the	average	number	of	infected	cells	at	day	12	per	infected	cell	at	day	3	in	3	independent	
experiments.	Error	bars	represent	standard	deviations.	Asterisks	(*)	denote	p-values	≤	0.05;	
one-way	ANOVA	with	Dunnett’s	multiple	comparisons	test	comparing	each	recombinant	to	
the	parental.	
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A	number	of	interesting	incongruities	were	observed	when	comparing	the	cell-free	

infectivity	of	some	gO	recombinants	on	fibroblasts	to	their	respective	spread	

characteristics	in	fibroblasts;	1)	Spread	of	TR_PHgO	in	fibroblasts	was	reduced	

compared	to	the	parental	TR	(Fig	3.5B),	but	the	cell-free	infectivity	of	this	

recombinant	was	actually	better	(Fig	3.3A).	Similarly,	spread	of	both	

MT_TBgO(GT1c)	and	MT_TNgO(GT4)	were	reduced	in	fibroblasts	(Fig	3.5D),	but	

cell-free	infectivity	of	both	viruses	was	comparable	to	parental	MT.	2)	Conversely,	

MT_ADgO(GT1a)	spread	better	in	fibroblasts	(Fig	3.5D),	but	the	cell-free	infectivity	

was	substantially	worse	(Fig	3.3C).	Since	the	efficiency	of	cell-free	spread	should	

depend	on	both	the	specific	infectivity	and	the	quantities	of	progeny	virus	released	

to	the	culture	supernatants,	it	was	possible	that	some	of	these	incongruities	

reflected	offsetting	differences	in	the	quantity	of	cell-free	virus	released	as	

compared	to	their	infectivity.	To	test	this,	progeny	released	from	infected	fibroblasts	

into	culture	supernatants	were	quantified	by	qPCR.	There	were	no	significant	

differences	in	the	quantity	of	progeny	released	per	cell	for	any	of	the	TR	or	ME-

based	recombinants	(Fig	3.6A,	and	B).	Likewise,	all	of	MT-based	recombinants	

released	similar	numbers	of	cell-free	progeny	exceptcfor	MT_ADgO(GT1a),	which	

was	reduced	by	approximately	4-fold	(Fig	3.6C).	Thus,	the	discrepancies	between	

efficiency	of	spread	and	cell-free	infectivity	could	not	be	explained	by	offsetting	

differences	in	the	release	of	cell-free	progeny.	Rather,	these	results	suggested	that	

gO	polymorphisms	can	differentially	influence	the	mechanisms	of	cell-free	and	cell-

to-cell	spread	in	fibroblasts.	The	interpretation	that	gH/gL/gO	can	provide	a	specific	

function	for	cell-to-cell	spread	was	supported	by	the	results	that	expression	of	
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ADgO(GT1a)	and	TNgO(GT4),	respectively	reduced	and	increased	spread	of	the	

strain	ME,	for	which	spread	is	almost	exclusively	cell-to-cell	(Fig	3.5C).	

Fig	3.6	Release	of	extracellular	progeny	by	parental	and	heterologous	gO	recombinant	
HCMV	in	fibroblast	cultures.	Cultures	of	nHDF	or	HFFFTet	(for	“MT”)	were	infected	with	1	
IU/cell	of	HCMV	TR	(A),	ME	(B),	MT	(C)	or	the	corresponding	heterologous	gO	recombinants	
for	8	days.	The	number	of	infected	cells	was	determined	by	flow	cytometry	and	progeny	
virus	in	culture	supernatants	was	quantified	by	qPCR	for	viral	genomes.	The	average	
number	of	extracellular	virions	per	mL	in	each	of	3	independent	experiments	is	plotted.	
Error	bars	represent	standard	deviations.	Asterisks	(*)	denote	p-values	≤	0.05;	one-way	
ANOVA	with	Dunnett’s	multiple	comparisons	test	comparing	each	recombinant	to	the	
parental.	
	

Spread	was	also	analyzed	in	epithelial	cell	cultures.	Here,	foci	of	both	TR	and	ME	

remained	tightly	localized,	suggesting	predominantly	cell-to-cell	modes	of	spread	

for	both	strains	in	this	cell	type	(Fig	3.7A).	The	number	of	TR-infected	cells	

increased	by	only	5-6	fold	over	12	days	compared	to	approximately	25-fold	for	ME	

(Fig	3.7B	and	C).	The	low	efficiency	of	spread	for	TR	in	epithelial	cells	compared	to	

ME	was	documented	previously	and	may	relate	to	the	low	expression	of	

gH/gL/UL128-131	by	TR	compared	to	ME	[126,	133,	142].	Expression	of	

TNgO(GT4)	further	reduced	TR	spread	in	epithelial	cells	(Fig	3.7B).	In	contrast,	ME	

spread	was	slightly	reduced	by	TBgO(GT1c)	and	ADgO(GT1a),	but	nearly	doubled	by	
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TNgO(GT4).	The	observed	increase	in	ME	spread	due	to	TNgO(GT4)	was	not	

attributed	to	increased	release	of	progeny	to	the	culture	supernatants	in	epithelial	

cells	(Fig	3.8).	Note	that	spread	of	MT	could	not	be	addressed	in	epithelial	cells,	

since	gH/gL/UL128-131	is	clearly	required	for	spread	in	these	cells	and	its	

repression	would	complicate	analysis	of	the	contribution	of	gO	polymorphisms	

[126].	Nevertheless,	it	is	clear	from	these	experiments	that	gO	polymorphisms	can	

affect	spread	in	epithelial	cells	and	that	this	can	depend	on	the	background	strain.	

Specifically,	TNgO(GT4)	reduced	TR	spread	but	increased	ME	spread.	This	

suggested	that	although	gH/gL/UL128-131	is	required	for	efficient	cell-to-cell	

spread	in	epithelial	cells,	and	may	even	be	sufficient	in	the	case	of	gO-null	HCMV	

[130,	132],	gH/gL/gO	may	also	contribute	to	the	mechanism	when	present.	
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Fig	3.7	Spread	of	parental	and	heterologous	gO	recombinant	HCMV	in	epithelial	cell	
cultures.	Confluent	monolayers	of	ARPE19	cells	were	infected	with	0.003	IU/cell	of	HCMV	
TR	(A,	B),	ME	(A,	C),	or	the	corresponding	heterologous	gO	recombinants.	At	3	and	12	days	
post	infection	cultures	were	analyzed	by	fluorescence	microscopy	(A)	or	by	flow	cytometry	
to	quantitate	the	total	number	of	infected	(GFP+)	cells	(B-D).	Plotted	are	the	average	
number	of	infected	cells	at	day	12	per	829	infected	cell	at	day	3	in	3	independent	
experiments.	Error	bars	represent	standard	deviations	Asterisks	(*)	denote	p-values	≤	0.05;	
one-way	ANOVA	with	Dunnett’s	multiple	comparisons	test	comparing	each	recombinant	to	
the	parental.		
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Fig	3.8	Release	of	extracellular	progeny	by	parental	and	heterologous	gO	recombinant	
HCMV	ME	in	epithelial	cell	cultures.	Cultures	of	ARPE19	epithelial	cells	were	infected	with	
HFFF-tet-derived	MT	or	corresponding	heterologous	gO	recombinants	at	the	highest	
multiplicities	possible	given	the	specific	infectivity	of	stocks	reported	in	Fig	3.3	
(approximately	0.0005	IU/cell).	(Note:	since	APRE19	cells	do	not	express	TetR,	after	the	
initial	infection,	MT	replicates	as	ME).	Cultures	were	then	propagated	by	trypsinization	and	
reseeding	of	intact	cells	until	the	number	of	infected	cells	approached	90-100%	by	
microscopy	inspection	for	GFP+	cells.	After	8	more	days,	culture	supernatants	were	then	
analyzed	by	quantified	by	qPCR	for	viral	genomes.	The	average	number	of	extracellular	
virions	per	mL	in	each	of	3	independent	experiments	is	plotted.	Error	bars	represent	
standard	deviations.	Asterisks	(*)	denote	p-values	≤	0.05;	one-way	ANOVA	with	Dunnett’s	
multiple	comparisons	test	comparing	each	recombinant	to	the	parental.	
	

Polymorphisms	in	gO	can	affect	antibody	neutralization	on	gH	epitopes.		

The	extensive	N-linked	glycosylation	of	gO	raised	the	possibility	that	gO	could	

present	steric	hindrance	to	the	binding	of	antibodies	to	epitopes	on	gH/gL,	as	was	

shown	for	HCMV	gN	and	also	HIV	env	[174,	175].	A	corollary	hypothesis	was	that	

such	effects	might	vary	with	the	polymorphisms	among	gO	isoforms.	To	address	

this,	neutralization	experiments	were	conducted	using	two	monoclonal	anti-gH	

antibodies;	14-4b,	which	recognizes	a	discontinuous	epitope	likely	located	near	the	

membrane	proximal	ectodomain	of	gH	[165,	166]	and	AP86,	which	binds	to	a	

continuous	epitope	near	the	N-terminus	of	gH	[182].	Note	that	these	experiments	
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could	only	be	performed	with	TR-	and	MT-based	recombinants	since	the	cell-free	

progeny	of	ME-based	viruses	were	found	to	be	only	marginally	infectious	(Fig	3.3B).	

	

Parental	TR	and	recombinants	encoding	MEgO(GT5),	PHgO(GT2a)	and	TBgO(GT1c)	

were	completely	neutralized	on	fibroblasts	by	mAb	14-4b,	whereas	TR_ADgO(GT1a)	

and	TR_TNgO(GT4)	were	significantly	resistant	(Fig	3.9A).	There	was	more	

variability	among	TR-based	recombinants	with	mAb	AP86	(Fig	3.9B).	Here,	parental	

TR	could	only	be	neutralized	to	approximately	40%	residual	infection.	TNgO(GT4)	

rendered	TR	totally	resistant	to	mAb	AP86,	and	MEgO(GT5)	also	significantly	

protected	TR.	In	contrast,	TR_TBgO(GT1c)	and	TR_ADgO(GT1a)	were	more	sensitive	

to	mAb	AP86.	On	epithelial	cells	neutralization	by	both	antibodies	was	more	potent	

and	complete	than	on	fibroblasts,	and	there	was	less	variability	among	gO	

recombinants	(Fig	3.9C,	and	D).	This	was	consistent	with	the	interpretation	that	

both	14-4b	and	AP86	could	bind	their	epitopes	on	gH/gL/UL128-131	and	that	this	

represented	the	majority	of	the	observed	neutralization	on	epithelial	cells.	However,	

TR_TNgO(GT4)	still	displayed	some	reduced	sensitivity	to	both	antibodies,	

suggesting	that	gH/gL/gO	epitopes	also	contributed	to	neutralization	on	epithelial	

cells.		

	

MT-based	recombinants	were	generally	more	sensitive	to	neutralization	by	14-4b	

than	were	TR-based	viruses	(compare	14-4b	concentrations	in	Fig	3.9A	and	3.10A).	

Strikingly,	whereas	TNgO(GT4)	conferred	14-4b	resistance	to	TR,	it	did	not	in	MT,	

and	instead	ADgO(GT1a)	provided	resistance	to	14-4b	(Fig	3.10A).	As	was	observed	
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for	TR-based	recombinants,	14-4b	neutralization	on	epithelial	cells	was	less	affected	

by	gO	polymorphisms	(Fig	3.10B).	Note	that	neutralization	of	MT-based	

recombinants	by	AP86	could	not	be	tested	since	MEgH	harbors	a	polymorphism	in	

the	linear	AP86	epitope	that	precludes	reactivity	[182].	Together,	these	results	

indicated	that	differences	among	gO	genotypes	can	differentially	affect	antibody	

neutralization	on	gH	epitopes.	Moreover,	which	gO	genotype	could	protect	against	

which	antibody	depended	on	the	background	strain,	suggesting	the	combined	

effects	of	gO	polymorphisms	and	gH/gL	polymorphisms.		
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Fig	3.9	Neutralization	of	parental	HCMV	TR	and	heterologous	gO	recombinant	by	anti-gH	
antibodies.	Genome	equivalents	of	extracellular	HCMV	TR	or	the	corresponding	
heterologous	gO	recombinants	were	incubated	with	0.025-250	mg/mL	of	anti-gH	mAb	14-
4b,	or	0.01-100	mg/mL	of	anti-gH	mAb	AP86	and	then	plated	on	cultures	of	nHDF	
fibroblasts	(A	and	B)	or	ARPE19	epithelial	cells	(C	and	D).	At	2	days	post	infection	the	
number	of	infected	(GFP+)	cells	was	determined	by	flow	cytometry	and	plotted	as	the	
percent	of	the	no	antibody	control.	(Left	panels)	Full	titration	curves	shown	are	
representative	of	three	independent	experiments,	each	performed	in	triplicate.	(Right	
panels)	Average	percent	of	cells	infected	at	the	highest	antibody	concentrations	in	3	
independent	experiments.	Error	bars	represent	standard	deviations.	Asterisks	(*)	denote	p	
values	≤	0.05;	one-way	ANOVA	with	Dunnett’s	multiple	comparisons	test	comparing	each	
recombinant	to	the	parental.	
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Fig	3.10	Neutralization	of	parental	HCMV	MT	and	heterologous	gO	recombinant	by	anti-gH	
antibodies.	Genome	equivalents	of	extracellular	extracellular	HCMV	MT	or	the	
corresponding	heterologous	gO	recombinants	were	incubated	with	0.025-250	mg/mL	of	
anti-gH	mAb	14-4b	and	then	plated	on	cultures	of	nHDF	fibroblasts	(A)	or	ARPE19	
epithelial	cells	(B).	At	2	days	post	infection	the	number	of	infected	(GFP+)	cells	was	
determined	by	flow	cytometry	and	plotted	as	the	percent	of	the	no	antibody	control.	(Left	
panels)	Full	titration	curves	shown	are	representative	of	three	independent	experiments,	
each	performed	in	triplicate.	(Right	panels)	Average	percent	of	cells	infected	at	the	highest	
antibody	concentrations	in	3	independent	experiments.	Error	bars	represent	standard	
deviations.	Asterisks	(*)	denote	p-values	≤	0.05;	one-way	ANOVA	with	Dunnett’s	multiple	
comparisons	test	comparing	each	recombinant	to	the	parental.	
	

Discussion	

Efficient	cell-free	infection	of	most,	if	not	all	cell	types	requires	gH/gL/gO	[130,	131,	

133].	However,	the	details	of	the	mechanisms,	and	the	distinctions	between	the	

roles	of	gH/gL/gO	in	cell-free	and	cell-to-cell	spread	remain	to	be	clarified.	While	

there	are	naturally	occurring	amino	acid	polymorphisms	in	each	subunit	of	
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gH/gL/gO,	gO	has	the	most	dramatic	variation,	with	8	known	genotypes	(or	alleles)	

that	differ	between	10-30%	of	amino	acids	[64,	135,	155,	156].	All	isoforms	of	gO	

are	predicted	to	have	extensive	N-linked	glycan	modifications	and	some	of	the	

amino	acid	differences	alter	the	predicted	sites.	In	a	previous	report,	we	sought	to	

determine	if	gO	polymorphisms	were	a	factor	influencing	the	different	levels	of	

gH/gL/gO	and	gH/gL/UL128-131	in	strains	TR	and	ME.	On	the	contrary,	results	

suggested	that	genetic	differences	outside	the	UL74(gO)	ORF	result	in	more	rapid	

degradation	of	gO	in	the	ME-infected	cells	compared	to	TR,	and	this	influences	the	

pool	of	gO	available	during	progeny	assembly	[178].	Kalser	et	al.	reported	that	gO	

polymorphisms	could	differentially	affect	multi	step	replication	kinetics	in	

fibroblasts	and	epithelial	cells	[145].	However,	only	TB	was	analyzed	as	the	

background	and	distinctions	between	effects	on	cell-free	and	cell-to-cell	spread	

were	unclear.	In	this	report	we	constructed	a	matched	set	of	heterologous	gO	

recombinants	in	the	well-characterized,	BAC-cloned	strains	TR	and	ME.	Studies	

included	address	aspects	of	cell-free	and	cell-to-cell	spread,	cell-type	tropism	and	

neutralization	by	anti-gH	antibodies.	The	results	demonstrate	that	gO	

polymorphisms	can	influence	each	of	these	parameters	and	the	effects	in	some	cases	

were	dependent	on	the	genetic	background,	suggesting	a	number	of	possible	

epistatic	phenomena	at	play.	

	

A	commonly	used	measure	to	assess	the	tropism	of	HCMV	strains,	isolates	and	

recombinants	is	the	ratio	of	infection	between	fibroblasts	and	other	cell	types,	

including	epithelial	and	endothelial	cells	[142,	145,	183,	184].	Expressions	of	this	
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ratio	have	varied,	but	have	generally	involved	a	normalization	of	the	epithelial	or	

endothelial	infection	to	that	of	fibroblasts.	Here	we	similarly	determined	the	

infectious	titer	of	each	of	the	parental	strains	and	heterologous	gO	recombinants	on	

both	fibroblasts	and	epithelial	cells	and	expressed	ratios	≥1	(either	

fibroblasts/epithelial	or	epithelial/fibroblasts)	to	indicate	the	fold	cell	type	

preference	or	tropism	of	each	virus	(Fig	3.2).	Both	gH/gL/gO-rich	viruses,	TR	and	

MT,	were	strongly	fibroblast-tropic	and	some	heterologous	gO	isoforms	enhanced	

this	preference,	while	others	reduced	it.	In	contrast,	the	gH/gL/UL128-131-rich	

virus	ME	infected	both	cell	type	more	equally	(ratios	closer	to	1),	and	gO	

polymorphisms	had	little	effect.	The	limitation	of	any	such	measure	of	relative	

tropism	is	that	it	does	not	determine	whether	the	virus	in	question	can	efficiently	

infect	one	cell	type	in	particular,	both	or	neither.	Thus,	any	2	viruses	compared	may	

have	the	same	fibroblast-to-epithelial	cell	infectivity	ratio	for	completely	different	

reasons.	To	address	this	we	also	compared	infectivity	on	both	cell	types	using	a	

common	comparison	for	all	viruses,	i.e.,	the	number	of	virions	in	the	stock	as	

determined	by	qPCR	for	DNAse-protected	viral	genomes	in	the	cell-free	virus	stocks	

(Fig	3.3).	This	analysis	provided	a	measure	of	specific	infectivity	as	the	number	of	

genomes/IU,	where	the	lower	ratio	indicates	more	efficient	infection.	Whether	

higher	genomes/IU	values	reflect	the	presence	of	greater	numbers	of	bona	fide	

“defective”	virions,	or	a	lower	probability	or	efficiency	of	each	viable	virion	in	the	

stock	to	accomplish	a	detectable	infection,	and	whether	or	how	these	two	

possibilities	are	different	is	difficult	to	know	for	any	type	of	virus.	Nevertheless,	

these	analyses	provided	important	insights	to	the	tropism	ratios	reported.	In	



	 83	

general,	the	specific	infectivity	ratios	of	the	gH/gL/gO-rich	viruses	TR	and	MT	in	

these	experiments	were	in	the	range	of	500-5000	genomes/IU	on	fibroblasts,	but	

these	viruses	were	approximately	20-100	fold	less	infectious	on	epithelial	cells,	

explaining	the	strong	fibroblast	preference	exhibited	by	these	strains.	The	effect	of	

most	heterologous	gO	isoforms	was	similar	on	both	cell	types,	but	often	of	larger	

magnitude	on	fibroblasts.	Thus,	while	all	of	the	TR	and	MT-based	gO	recombinants	

remained	fibroblast	tropic,	the	quantitatively	different	effects	on	the	two	cell	types	

influenced	the	magnitude	of	fibroblasts	preference.	Importantly,	in	no	case	did	the	

change	of	gO	affect	the	fundamental	fibroblast	preference	of	either	TR	or	MT.	The	

infectivity	of	the	gH/gL/UL128-131-rich,	ME-based	viruses	on	both	cell	types	was	

undetectable	in	these	assays.	Thus,	the	near	neutral	fibroblast-to-epithelial	tropism	

ratios	of	the	ME-based	viruses	seem	to	reflect	an	equal	inability	to	infect	either	cell	

type	and	any	assertion	of	a	“preference”	for	either	cell	type	for	extracellular	ME	

virions	seems	spurious.	

	

Binding	to	PDGFRα	through	gO	is	clearly	critical	for	infection	of	fibroblasts	[31].	

However,	while	gH/gL/gO	is	also	important	for	infection	of	epithelial	cells,	the	

literature	is	conflicted	on	the	expression	of	PDGFRα	and	its	importance	for	HCMV	

infection	in	epithelial	and	endothelial	cells	[32,	133,	134,162,	163].	On	either	cell	

type,	possible	mechanisms	of	gH/gL/gO	include	facilitating	initial	attachment	to	

cells,	promoting	gB	mediated	membrane	fusion,	and	signaling	though	PDGFRα	or	

other	receptors.	While	Wu	et	al.	were	able	to	coimmunoprecipitate	gB	with	

gH/gL/gO	and	PDGFRα,	Vanarsdall	et	al.	showed	that	gH/gL	without	gO	or	UL128-
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131	can	directly	interact	with	gB	and	promote	gB-fusion	activity	[134,	160,	164].	It	

has	also	been	shown	that	gH/gL/gO	engagement	of	PDFGRα	can	elicit	signaling	

cascades,	but	that	this	is	not	required	for	infection	[31,	134,	162].	In	contrast,	there	

is	evidence	that	gH/gL/gO	can	help	facilitate	initial	virion	attachment	[32,	181].	In	

our	studies,	TNgO(GT4)	reduced	binding	of	TR	to	both	fibroblasts	and	epithelial	

cells	(Fig	3.4,	Tables	3.2	and	3.3).	However,	the	reduced	binding	of	TR_TNgO(GT4)	

did	not	result	in	reduced	infection	of	either	cell	type,	and	there	were	other	isoforms	

of	gO	that	either	resulted	in	increased	or	decreased	infectivity	but	were	not	

associated	with	any	detectable	alteration	in	binding.	Thus,	while	gH/gL/gO	may	

contribute	to	initial	binding,	it	is	likely	involved	in	other	important	mechanisms	that	

facilitate	infection	and	these	can	be	influenced	by	gO	polymorphisms.	For	example,	

it	is	possible	that	polymorphisms	in	gO	can	affect	the	nature	and	outcome	of	

PDGFRα	engagement.	In	support	of	this	hypothesis,	Stegmann	et	al.	showed	that	

mutation	of	conserved	residues	within	the	N-terminal	variable	domain	of	gO	were	

critical	for	PDGFRα	binding	[185].	Thus	it	is	conceivable	that	the	variable	residues	of	

gO	can	alter	the	architecture	of	the	interaction	with	PDGFRa.	Alternatively,	it	may	be	

that	there	are	other	receptors	on	both	cell	types	for	gH/gL/gO	and	that	gO	

polymorphisms	can	affect	those	interactions.	Also,	the	effects	of	several	specific	gO	

isoforms	observed	in	the	TR-background	were	not	observed	in	the	ME	or	MT-

backgrounds.	Possible	explanations	for	the	apparent	epistasis	include	not	only	the	

differential	contributions	of	polymorphisms	in	gH/gL,	but	also	potential	differences	

between	strains	in	other	envelope	glycoproteins,	such	as	gB,	or	gM/gN	may	

influence	the	relative	importance	of	gH/gL/gO	for	binding	and	infection.	



	 85	

	

The	mechanistic	distinctions	between	cell-free	and	cell-to-cell	spread	of	HCMV	are	

unclear.	Spread	of	ME	in	both	fibroblast,	epithelial	and	endothelial	cells	is	almost	

exclusively	cell-to-cell	and	this	can	be	at	least	partially	explained	by	the	non-

infectious	nature	of	cell-free	ME	virions	(Fig	3.3)	[132,	137,	142,	179].	Laib	Sampaio	

et	al.	showed	that	inactivation	of	the	UL74(gO)ORF	in	ME	did	not	impair	spread	but	

that	a	dual	inactivation	of	both	gO	and	UL128	completely	abrogated	spread	[132].	

This	indicates	that	gH/gL/UL128-131	is	sufficient	for	cell-to-cell	spread	in	

fibroblasts	or	endothelial	cells	in	the	absence	of	gH/gL/gO,	and	it	seems	likely	that	

spread	in	epithelial	cells	might	be	similar	in	this	respect.	Our	finding	that	various	

heterologous	gO	isoforms	can	enhance	or	reduce	spread	of	ME	without	affecting	the	

cell-free	infectivity	strongly	suggest	that	while	gH/gL/UL128-131	may	be	sufficient	

for	cell-to-cell	spread,	gH/gL/gO	can	modulate	or	mediate	the	process,	if	present	in	

sufficient	amounts.	In	the	context	of	MT,	where	expression	of	gH/gL/UL128-131	is	

reduced	to	sub	detectable	levels	[133,	137]	the	virus	gained	cell-free	spread	

capability,	and	yet	some	of	the	heterologous	gO	isoforms	had	opposite	effects	on	

cell-free	infectivity	and	spread	(compare	Fig	3.3C	to	3.5D).	Similar	discorrelations	

between	cell-free	infectivity	and	spread	were	observed	for	the	naturally	gH/gL/gO-

rich	strain	TR,	albeit	with	different	heterologous	gO	isoforms	involved.	That	gO	

polymorphisms	can	have	opposite	effects	on	cell-free	and	cell-to-cell	spread	

supports	a	hypothesis	of	mechanistic	differences	in	how	gH/gL/gO	mediates	the	

two	processes,	and	again	these	effects	seem	dependent	on	epistatic	influences	of	the	

different	genetic	backgrounds.	



	 86	

	

Beyond	the	roles	of	gH/gL/gO	in	replication,	the	complex	is	likely	a	significant	target	

of	neutralizing	antibodies,	and	therefore	a	valid	candidate	for	vaccine	design.	

Several	groups	have	reported	neutralizing	antibodies	that	react	with	epitopes	

contained	on	the	gH/gL	base	of	both	gH/gL/UL128-131	and	gH/gL/gO	and	others	

that	react	to	gO	[165-173].	We	found	that	changing	the	gO	isoform	can	have	

dramatic	effects	on	the	sensitivity	to	two	anti-gH	mAbs	(Figs	3.9	and	3.10).	In	the	TR	

background	on	fibroblasts,	both	ADgO(GT1a)	and	TNgO(GT4)	conferred	significant	

resistance	to	neutralization	by	14-4b,	which	likely	reacts	to	a	discontinuous	epitope	

near	the	membrane	proximal	ectodomain	of	gH	[165-166].	TNgO(GT4)	also	

conferred	resistance	to	AP86,	which	reacts	to	a	linear	epitope	near	the	N-terminus	

of	gH	[182],	whereas	ADgO(GT1a)	actually	increased	sensitivity	of	TR	to	AP86.	

Neutralization	by	either	antibody	on	epithelial	cells	was	not	significantly	affected,	

consistent	with	the	notion	that	these	antibodies	can	also	neutralize	by	reacting	to	

gH/gL/UL128-131.	Again,	the	strain	background	exerted	considerable	influence	

over	the	effects	of	gO	polymorphisms.	For	MT,	it	was	ADgO(GT1a)	that	conferred	

resistance	to	14-4b,	and	the	other	isoforms	had	little	or	no	effect.	The	observed	

effects	on	neutralization	on	gH	epitopes	likely	involve	differences	in	how	gO	

variable	regions	or	associated	glycans	fold	onto	gH/gL	to	exert	differential	steric	

effects.	Relatedly,	the	differential	influence	of	gO	isoforms	in	the	two	genetic	

backgrounds	suggests	epistasis	involving	the	additive	effects	of	gO	polymorphisms	

with	the	more	subtle	gH	polymorphisms,	which	together	can	differentially	affect	the	

global	conformation	of	the	gH/gL/gO	trimer.	
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Previous	analyses	have	suggested	two	groups	of	gH	sequences	defined	by	

polymorphisms	at	the	N	terminus,	including	the	AP86	epitope	[182,	186].	Of	the	

strains	represented	in	this	study,	TB,	TR	and	AD	belong	to	the	gH1	genotype	and	are	

sensitive	to	AP86,	whereas	ME,	TN	and	PH	belong	to	gH2	genotype	and	are	resistant	

to	AP86.	The	differential	effects	of	gO	recombinants	reported	here	raise	questions	

about	the	combinations	of	gH	and	gO	genotypes	in	HCMV	circulating	in	human	

populations.	The	recently	published	genome	sequence	datasets	from	clinical	

specimens	have	been	collected	with	short-read	sequencing	approaches,	which	allow	

sensitive	detection	of	the	various	gH	and	gO	genotypes	within	samples,	but	not	the	

combinations	of	the	two	ORFs	on	individual	genomes	[54,	55,	139,	153].	To	address,	

this	we	analyzed	236	complete	HCMV	genome	sequences	of	isolated	strains	and	BAC	

clones	in	the	NCBI	database	(Fig	3.11).	Approximately	half	the	sequences	were	gH1	

and	the	other	half	gH2.	ADgO(GT1a)	and	TBgO(GT1c)	genotypes	were	exclusively	

linked	to	gH1,	whereas	MEgO(GT5)	was	exclusively	linked	to	gH2.	Other	gO	

genotypes	were	found	mixed	with	both	gH	genotypes,	but	in	most	cases,	

disproportionally	with	one	of	the	gH	genotypes.	These	analyses	agreed	with	

Rasmussen	et	al	who	suggested	a	strong	linkage	between	gH1	and	gO1	genotypes	

(note	that	their	study	predated	the	GT1a,	1,	b,	and	1c	subdivisions)	[135].	Thus,	it	

appears	that	gH	and	gO	genotypes	are	non-randomly	linked.	This	may	be	due	in	part	

to	the	adjacent	position	of	UL74(gO)	and	UL75(gH)	on	the	HCMV	genome	and	the	

sequence	diversity,	together	limiting	the	frequency	of	recombination,	as	suggested	

by	the	high	linkage-disequilibrium	of	this	region	reported	by	Lassalle	et	al	[55].	In	
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addition,	our	results	may	suggest	linkage	pressures	based	on	functional	

compatibility	of	gH	and	gO.	However,	it	was	worth	noting	that	among	the	more	

striking	effects	reported	were	the	loss	of	cell-free	infectivity	and	differential	

sensitivity	to	neutralization	by	gH	antibodies	of	TR_ADgO(GT1a).	Together,	with	the	

fact	that	TR	and	AD	are	of	the	same	gH	genotype,	these	results	suggest	epistatic	

interplay	of	genetic	variation	of	other	loci	with	that	of	gH	and	gO.		

	

	

	

	

	

	

	

	

	

	

	

	
Fig	3.11	Association	of	gH	and	gO	genotypes	in	236	complete	HCMV	genome	sequences	in	
the	NCBI	database.	Complete	HCMV	genome	sequences	were	retrieved	from	the	NCBI	
nucleotide	database	using	the	keywords	filter	<human	herpesvirus	type	5	complete	
genome>.	The	resulting	set	of	350	sequences	was	curated	to	remove	duplicates	or	genomes	
missing	any	of	the	UL74(gO)	and	UL75(gH)	open	reading	frames,	generating	a	working	set	
of	236	complete	HCMV	genomes,	which	were	analyzed	using	MAFFT	FFT-NS-I	(v7.429)	
phylogeny	software.	UL74(gO)	and	UL75(gH)	sequences	were	assigned	to	their	respective	
genotype	groups	as	defined	previously;	UL75(gH)	genotypes	1	and	2	[182,	186];	UL74(gO)	
genotypes	1a,	1b,	1c,	2a,	2b,	3,	4	and	5	[19,	156].	Shown	is	a	phylogenetic	tree	of	the	8	gO	
genotypes	with	the	frequency	of	pairing	with	either	gH1	or	gH2	.	Asterisks	(*)	indicate	gO	
genotypes	that	were	not	analyzed	in	the	experiments	described	herein.	
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In	conclusion,	we	have	shown	that	naturally	occurring	polymorphisms	in	the	HCMV	

gO	can	have	a	dramatic	influence	on	significant	aspects	of	HCMV	biology	including,	

cell-free	and	cell-to-cell	spread,	and	neutralization	by	anti-gH	antibodies.	These	

effects	could	not	be	explained	by	changes	to	the	levels	of	gH/gL	complexes	in	the	

virion	envelope,	but	rather	point	to	changes	in	the	mechanism(s)	of	gH/gL/gO	in	the	

processes	of	cell-free	and	cell-to-cell	spread.	The	associated	epistasis	with	the	global	

genetic	background	highlights	a	particular	challenge	for	intervention	approaches	

since	humans	can	be	superinfected	with	several	combinations	of	HCMV	genotypes	

and	recombination	may	occur	frequently	[54,	55,	61,	139,	151–154].	Moreover,	

these	observations	could	help	explain	the	incomplete	protection	observed	for	the	

natural	antibody	response	against	HCMV.	

	

Materials	and	methods	

Cell	lines.	Primary	neonatal	human	dermal	fibroblasts	(nHDF;	Thermo	Fisher	

Scientific),	MRC-5	fibroblasts	(ATCC	CCL-171;	American	Type	Culture	Collection),	

and	HFFFtet	cells	(which	express	the	tetracycline	[Tet]	repressor	protein;	provided	

by	Richard	Stanton)	[137]	were	grown	in	Dulbecco’s	modified	Eagle’s	medium	

(DMEM;	Thermo	Fisher	Scientific)	supplemented	with	6%	heat-inactivated	fetal	

bovine	serum	(FBS;	Rocky	Mountain	Biologicals,	Inc.,	Missoula,	MT,	USA)	and	6%	

bovine	growth	serum	(BGS;	Rocky	Mountain	Biologicals,	Inc.,	Missoula,	MT,	USA)	

and	and	with	penicillin	streptomycin,	gentamycin	and	amphotericin	B.	Retinal	

pigment	epithelial	cells	(ARPE19)	(American	Type	Culture	Collection,	Manassas,	VA,	
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USA)	were	grown	in	a	1:1	mixture	of	DMEM	and	Ham’s	F-12	medium	(DMEM:F-

12)(Gibco)	and	supplemented	with	10%	FBS	and	with	penicillin	streptomycin,	

gentamycin	and	amphotericin	B.	

	

Human	Cytomegalovirus	(HCMV).	All	HCMV	were	derived	from	bacterial	artificial	

chromosome	(BAC)	clones.	The	BAC	clone	of	TR	was	provided	by	Jay	Nelson	

(Oregon	Health	and	Sciences	University,	Portland,	OR,	USA)	[146].	The	BAC	clone	of	

Merlin	(ME)	(pAL1393),	which	carries	tetracycline	operator	sequences	in	the	

transcriptional	promoter	of	UL130	and	UL131,	was	provided	by	Richard	Stanton	

[137].	All	BAC	clones	were	modified	to	express	green	fluorescent	protein	(GFP)	by	

replacing	the	US11	ORF	with	the	eGFP	gene	under	the	control	of	the	murine	CMV	

major	immediate	early	promoter.	The	constitutive	expression	of	eGFP	allows	the	

monitoring	of	HCMV	infection	early	and	was	strain-independent.	Infectious	HCMV	

was	recovered	by	electroporation	of	BAC	DNA	into	MRC-5	fibroblasts,	as	described	

previously	by	Wille	et	al.	[130]	and	then	coculturing	with	nHDF	or	HFFFtet	cells.	

Cell-free	HCMV	stocks	were	produced	by	infecting	HFF	or	HFFFtet	cells	at	2	PFU	per	

cell	and	harvesting	culture	supernatants	at	8	to	10	days	postinfection	(when	cells	

were	still	visually	intact).	Harvested	culture	supernatants	were	clarified	by	

centrifugation	at	1,000	X	g	for	15	min.	Stock	aliquots	were	stored	at	-80°C.	Freeze-

thaw	cycles	were	avoided.	Infectious	unit	(IU)	were	determined	by	infecting	

replicate	cultures	of	nHDF	or	ARPE19	with	serial	10-fold	dilutions	and	using	flow	

cytometry	to	count	GFP	positive	cells	at	48	hours	post	infection.	
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Heterologous	UL74(gO)	recombinant	HCMV.	A	modified,	three	step	BAC	En	

Passant	recombineering	technique	was	performed	[187-188].	In	the	first	step,	the	

endogenous	UL74	ORF	from	the	start	codon	to	the	stop	codon	of	both	TR	and	ME	

was	replaced	by	a	selectable	marker.	This	necessary	step	was	added	to	prevent	

formation	of	chimeric	UL74	gene	by	internal	recombination	of	the	UL74	BAC	

sequence	and	the	incoming	heterologous	UL74	ORF.	A	purified	PCR	product	

containing	the	ampicillin	resistance	selectable	marker	(AmpR)	cassette	from	the	

pUC18	plasmid	flanked	by	sequences	homologous	to	50	bp	upstream	and	

downstream	of	the	TR	or	ME	UL74	ORF	was	electroporated	into	the	bacteria,	

recombination	was	induced	and	the	recombinant-positive	bacteria	were	selected	on	

medium	containing	ampicillin	(50	μg/ml)	and	chloramphenicol	(12.5	μg/ml).	The	

primers	used	to	produce	the	TR-	and	ME-specific	AmpR	PCR	bands	are	

For74TRamp,	5'-

CATGGGAGCTTTTTGTATCGTATTACGACATTGCTGTTTCCAGAACTTTAcgcggaaccccta

tttgtttatttttctaaatac,	For74MEamp,	5'-

GATGGGAGCTTTTTGTATCGTATTACGACATTGCTGCTTCCAGAACTTTAcgcggaaccccta

tttgtttatttttctaaatac,	and	Rev74amp	(used	for	both	TR	and	ME	PCR	reactions),	5'-	

CCAAACCACAAGGCAGACGGACGGTGCGGGGTCTCCTCCTCTGTCATGGGGttaccaatgctta

atcagtgaggcacc.	The	lower	case	nucleotides	correspond	to	the	AmpR	gene	from	the	

pUC18	plasmid,	the	upper	case	nucleotides	to	the	TR	and	ME	BAC	sequences	

immediately	upstream	and	downstream	of	the	UL74	ORF.		
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In	the	second	step,	the	AmpR	cassette	in	the	TR	and	ME	first-step	intermediate	BACs	

was	replaced	with	the	UL74(gO)	sequence	from	the	heterologous	strain	containing	

the	En	Passant	cassette	[187-188].	Briefly,	E.	coli	cultures	were	prepared	for	

recombination	as	described	above	for	step	1	and	electroporated	with	purified	PCR	

products	containing	the	UL74	ORF	from	the	TR	or	ME	strain	flanked	by	sequence	

homologous	to	50	bp	upstream	and	downstream	of	the	opposite	strain.	The	UL74	

ORF	also	contained	an	inserted	En	Passant	cassette	(an	I-SceI	site	followed	by	a	

kanamycin	resistance	gene	surrounded	by	a	50-bp	duplication	of	the	UL74	

nucleotides	of	the	insertion	site).	Transformed	E.	coli	cells	were	induced	for	

recombination	and	then	selected	for	the	swap	of	the	UL74	En	Passant	sequence	into	

the	BAC	by	growth	on	medium	containing	kanamycin	(50	μg/ml)	and	

chloramphenicol	(12.5	μg/ml).	A	PCR	reaction	analysis	with	primers	located	

upstream	and	downstream	of	UL74	was	used	to	confirm	the	swap	of	the	AmpR	

cassette	by	the	En	Passant	cassette/UL74	gene.	

	

In	the	third	step,	several	sequencing	validated	colonies	of	the	second	step	were	

subjected	to	the	last	step	of	the	En	Passant	recombineering,	that	is,	an	induction	of	

both	the	I-SceI	endonuclease	and	the	recombinase	[187-188].	The	activity	of	these	

enzymes	lead	to	an	intramolecular	recombination	in	the	UL74	sequence	around	the	

En	Passant	cassette	and	thus	the	restoration	of	an	uninterrupted,	full	length	UL74	

ORF.	The	final	heterologous	UL74(gO)	recombinants	were	verified	by	Sanger	

sequencing	of	PCR	products	using	primers	located	upstream	and	downstream	of	the	

UL74	gene.	
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Antibodies.	Monoclonal	antibodies	(MAbs)	specific	to	HCMV	major	capsid	protein	

(MCP),	pp150,	and	gH	(14-4b	and	AP86)	were	provided	by	Bill	Britt	(University	of	

Alabama,	Birmingham,	AL)	[165,	182,	189-190].	14-4b	and	AP86	were	purified	by	

FPLC	and	quantified	by	the	University	of	Montana	Integrated	Structural	Biology	

Core	Facility.	Rabbit	polyclonal	sera	against	HCMV	gL	was	described	previously	[64,	

133].	

	

Immunoblotting.	HCMV	cell-free	virions	were	solubilized	in	2%	SDS–20	mM	Tris-

buffered	saline	(TBS)	(pH	6.8).	Insoluble	material	was	cleared	by	centrifugation	at	

16,000	X	g	for	15min,	and	extracts	were	then	boiled	for	10	min.	For	reducing	blots,	

dithiothreitol	(DTT)	was	added	to	extracts	to	a	final	concentration	of	25	mM.	After	

separation	by	SDS-PAGE,	proteins	were	transferred	onto	polyvinylidene	difluoride	

(PVDF)	membranes	(Whatman)	in	a	buffer	containing	10	mM	NaHCO3	and	3mM	

Na2CO3	(pH	9.9)	plus	10%	methanol.	Transferred	proteins	were	probed	with	MAbs	

or	rabbit	polyclonal	antibodies,	anti-rabbit	or	anti-mouse	secondary	antibodies	

conjugated	with	horseradish	peroxidase	(Sigma-Aldrich),	and	Pierce	ECL-Western	

blotting	substrate	(Thermo	Fisher	Scientific).	Chemiluminescence	was	detected	

using	a	Bio-Rad	ChemiDoc	MP	imaging	system.	Band	densities	were	quantified	using	

BioRad	Image	Lab	v	5.1.		

	

Quantitative	PCR.	Viral	genomes	were	determined	as	described	previously	[133].	

Briefly,	cell-free	HCMV	stocks	were	treated	with	DNase	I	before	extraction	of	viral	
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genomic	DNA	(PureLink	viral	RNA/DNA	minikit;	Life	Technologies/Thermo	Fisher	

Scientific).	Primers	specific	for	sequences	within	UL83	were	used	with	the	MyiQ	

real-time	PCR	detection	system	(Bio-Rad).	

	

Flow	cytometry.	Recombinant	GFP-expressing	HCMV-infected	cells	were	washed	

twice	with	PBS	and	lifted	with	trypsin.	Trypsin	was	quenched	with	DMEM	

containing	10%	FBS	and	cells	were	collected	at	500Xg	for	5	min	at	RT.	Cells	were	

fixed	in	PBS	containing	2%	paraformaldehyde	for	10	min	at	RT,	then	washed	and	

resuspended	in	PBS.	Samples	were	analyzed	using	an	AttuneNxT	flow	cytometer.	

Cells	were	identified	using	FSC-A	and	SSC-A,	and	single	cells	were	gated	using	FSC-

W	and	FSC-H.	BL-1	laser	(488nm)	was	used	to	identify	GFP+	cells,	and	only	cells	

with	median	GFP	intensities	10-fold	above	background	were	considered	positive.	

	

Virus	particle	binding.	nHDF	or	ARPE19	cells	were	seeded	at	density	of	35,000	

cells	per	cm2	on	chamber	slides	(Nunc	Lab	Tek	II).	2	days	later,	virus	stocks	were	

diluted	with	media	to	equal	numbers	of	virus	particles	based	on	genome	

quantification	by	qPCR.	Binding	of	virus	particles	to	the	cells	was	allowed	for	20min	

at	37°C.	Then	the	inoculum	was	removed,	and	the	cells	were	washed	once	with	

medium	to	remove	unbound	virus	before	fixation	and	permeabilization	with	80%	

acetone	for	5min.	Bound	virus	particles	were	stained	with	an	antibody	against	the	

capsid-associated	tegument	protein	pp150	[26]	which	allowed	to	detect	enveloped	

particles	attached	to	the	plasma	membrane	as	well	as	internalized	particles.	For	

visualization,	a	goat	anti-mouse	Alexa	Fluor	488	(Invitrogen)	secondary	antibody	
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was	used.	Unbound	secondary	antibody	was	washed	off	before	the	chambers	were	

removed	and	the	cells	were	mounted	with	medium	containing	DAPI	(Fluoroshield)	

and	sealed	with	a	cover	slide	for	later	immunofluorescence	analysis.	Images	were	

taken	with	a	Leica	DM5500	at	630-fold	magnification.	For	each	sample	10	images	

with	4	to	6	cells	per	image	were	taken	and	the	number	of	cell	nuclei	as	well	as	the	

number	of	virus	particles	was	determined	using	Image	J	Fiji	software	(v	1.0).	Three	

independent	virus	stocks	were	tested	in	3	independent	experiments.	

	

Antibody	neutralization	assays.	Equal	numbers	of	nHDF-derived	cell-free	

parental	viruses	and	heterologous	gO	recombinants	were	incubated	with	multiple	

concentrations	of	anti-gH	mAb	14-4b	or	AP86	for	1hr	at	RT	then	plated	on	nHDF	or	

ARPE19	for	4hrs	at	37°C.	Cells	were	then	cultured	in	the	appropriate	growth	

medium	supplemented	with	2%	FBS.	After	2	days,	cells	were	detected	from	the	dish	

and	fixed	for	flow	cytometry	analyses.	Each	antibody	concentration	was	performed	

in	triplicate	and	3	independent	experiments	were	conducted.	
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Chapter	IV.	Conclusion,	discussion,	and		

future	directions	
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HCMV	epidemiology,	clinical	pathology	and	genetic	diversity									

Human	cytomegalovirus	(HCMV)	has	high	seroprevalence	within	human	population.	

Based	on	clinical	observations,	50%	of	people	acquire	HCMV	during	childhood	and	

the	rest	contract	this	virus	later	on	in	their	life	[191].	Most	human	viruses	attack	

certain	cell	types,	tissues,	or	organs,	for	example	HIV	specifically	infects	T-cells	and	

SARS-Cov-2	targets	lungs	[192-193].	In	contrast,	one	unique	characteristic	of	HCMV	

is	that	it	can	spread	throughout	the	body	and	cause	clinical	pathologies,	including	

gastroenteritis,	encephalitis,	retinitis,	vasculopathies	and	so	on	[194].		

	

With	the	development	of	high-throughput	sequencing	techniques	in	the	past	few	

years,	some	geneticists	and	bioinformaticians	have	revealed	a	great	degree	of	

genetic	diversity	of	HCMV	in	clinical	specimens	[53-55,61,66,139,151,153,154].	

Based	on	these	studies,	21	out	of	165	canonical	genes	have	high	diversity	and	they	

are	distributed	in	clusters	across	the	viral	genome.	For	each	diverse	gene,	there	are	

2	to	14	different	alleles	detected	among	the	clinical	specimen	samples.	Since	the	

majority	of	the	viral	genome	is	conserved,	recombination	sites	are	widely	spread	

through	the	genome.	The	low	linkage	disequilibrium	among	the	diverse	loci	

suggests	the	variable	alleles	may	get	shuffled	among	strains	by	recombination	[55].	

Theoretically,	more	than	1015	unique	strains	can	be	generated	by	possible	

recombination	events	[Jean-Marc	Lanchy,	personnel	communication].	Of	the	

approximately	240	complete	genome	sequences	in	the	databases,	each	are	unique	in	

their	combination	of	these	variable	alleles.	The	inter-strain	recombination	suggests	

that	more	than	one	individual	HCMV	virion	may	infect	the	same	cell	and	actively	
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replicate	at	the	same	time.	Another	important	finding	from	the	clinical	specimen	

sequencing	study	is	that	while	there	are	many	HCMV	strains,	which	contain	distinct	

viral	genomes,	circulating	in	the	peripheral	blood,	each	body	compartment	may	

have	a	limited	number	of	strains.		

	

UL74,	which	codes	for	glycoprotein	O	(gO),	is	one	of	the	most	diverse	loci	among	the	

variable	genes	described	above.	Based	on	the	sequencing	results	using	isolates	

collected	from	congenitally	infected	newborns,	transplant	recipients,	and	HIV/AIDS	

patients,	8	genotypes	of	gO	are	identified	[135,156,195].	There	are	five	major	

genotypes	(gO1,	gO2,	gO3,	gO4	and	gO5)	and	some	of	them	are	further	divided	into	

minor	subtypes	(gO1a,	gO1b,	gO1c,	gO2a,	gO2b).	The	divergence	of	nucleotide	

sequence	between	genotypes	ranges	between	3%	to	up	to	55%	[156].	The	amino	

acid	sequence	alignment	of	representative	gO	isoform	from	each	genotype	has	

revealed	regions	of	high	diversity	and	regions	of	conservation	(Fig	4.1A).	The	

majority	of	the	diverse	regions	locate	within	the	N-terminal	100	residues.	A	20-22-

amino	acid	hydrophobic	domain	serving	as	the	signal	peptide	that	begins	at	the	14th	

amino	acid	from	the	N-terminus	[196].	After	cleavage	of	signal	peptide,	the	mature	

gO	has	approximately	70	amino	acids	that	are	diverse	at	the	N-terminus	and	the	

residues	from	270	to	340	also	harbor	notable	diversity.	There	are	6	conserved	

cysteine	residues	among	gO	isoforms,	which	locate	at	positions	31,	152,	160,	178,	

229,	and	354.	Apart	from	cysteine	31	that	is	within	the	signal	peptide,	cysteine	354	

is	involved	in	forming	disulfide	bond	with	gH/gL	and	cysteine	178,	229	are	

important	for	viral	infectivity	[64,124].	The	amino	acid	sequence	differences	may	
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lead	to	distinct	characteristics	and	a	good	example	is	that	the	predicted	N-link	

glycosylation	sites	vary	among	the	gO	isoforms	(Fig	4.1B).				

	
A.	
	
	
	
	
	
	
B.	
	
	
	
	
	
	
Fig	4.1.	(A)	gO	sequence	alignment.	Dark	shading	indicates	conserved	sequences.	The	
approximate	positions	of	6	conserved	cysteine	(C)	are	indicated.	(Modified	from	[64])	(B)	
Predicted	N-link	glycosylation	sites	on	gO.		
	
The	role	of	gO	in	HCMV	biology	

gO	does	not	have	a	transmembrane	domain	and	it	locates	on	the	virion	envelope	

through	forming	a	complex	with	glycoprotein	H	(gH)	and	glycoprotein	L	(gL).	gH	

and	gL	are	found	in	all	herpesviruses	and	they	are	part	of	the	core	membrane	fusion	

machinery	for	the	virus	family	[120,122,197].	Within	the	gH/gL/gO	complex,	gH	is	

the	one	containing	the	transmembrane	domain	and	anchoring	the	complex	on	the	

lipid	envelope,	while	gL	forms	disulfide	bonds	with	both	gH	and	gO.	The	gH/gL	

heterodimer	in	the	virion	envelope	can	alternatively	be	found	being	bound	by	

UL128,	UL130,	and	UL131,	forming	complex	gH/gL/UL128-131	[159,161].	The	

same	gL	cysteine	144	mediates	binding	to	both	gO	and	UL128,	which	suggests	the	

two	gH/gL	complexes	are	formed	through	competition	[123].		
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gH/gL/gO	is	critical	for	HCMV	cell-free	infection	on	all	cell	types,	while	

gH/gL/UL128-131	is	additionally	required	for	infecting	certain	cell	types,	such	as	

epithelial,	endothelial,	and	leukocytes	[125,126,130,131,132,133,161].	It	has	been	

shown	that	platelet-derived	growth	factor	receptor-α	(PDGFR-α)	on	fibroblast	cell	is	

a	receptor	for	gH/gL/gO,	and	gO	directly	interacts	with	PDGFR-α	[31,32].	The	

interaction	between	gO	and	the	receptor	may	contribute	to	viral	infection	by	

enhancing	viral	attachment	to	the	host	cell	and/or	facilitating	post-attachment	

events,	such	as	initiating	signal	transduction	or	triggering	membrane	fusion.		

	

Compared	to	cell-free	spread,	the	mechanisms	of	gH/gL	complexes	in	cell-to-cell	

spread	are	less	understood.	Previous	study	has	shown	that	gO-null	virus	could	still	

spread	cell-to-cell	on	fibroblasts	and	epithelial	cells,	which	was	most	likely	

facilitated	by	gH/gL/UL128-131.	In	contrast,	the	UL128-131-null	virus	could	spread	

cell-to-cell	on	fibroblasts	but	not	on	epithelial	cells	[179].	gO	and	UL128-131	double	

knock	out	mutant	completely	abolished	cell-to-cell	spread,	which	suggests	a	

requirement	for	the	participation	of	at	least	one	gH/gL	complex	[132].	

	

Based	on	studies	using	clinical	human	blood	samples	and	an	animal	immunization	

models,	the	epitopes	on	gH/gL	are	prime	targets	for	neutralizing	antibodies	and	

there	is	evidence	suggesting	that	gO	protects	the	virus	from	antibody	neutralization	

[116,166,168,176,198].		
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Despite	the	clear	diversity	at	gO	locus,	there	has	been	no	evidence	showing	the	

differences	in	gO	sequence	could	cause	functional	variability.	Since	previous	work	

studied	each	role	of	gO	within	only	one	strain	context,	it	was	not	clear	whether	the	

observed	gO	functions	could	be	affected	by	gO	sequence	diversity	and	whether	

strain	genetic	background	was	involved	in	determining	the	phenotype	outcome.	In	

this	dissertation,	I	explored	the	significance	of	gO	diversity	in	the	following	critical	

aspects	of	HCMV	biology	in	different	strain	genetic	backgrounds:			

Ø The	assembly	of	gH/gL/gO	and	gH/gL/UL128-131	

Ø The	infectivity	and	tropism	

Ø The	cell-free	vs.	cell-to-cell	spread	

Ø The	sensitivity	to	neutralizing	antibody	

Ø The	epistatic	effect	of	gO	polymorphism	

	

1.The	assembly	of	gH/gL/gO	and	gH/gL/UL128-131	

Previous	studies	have	shown	that	strains	containing	distinct	gO	genotypes	have	

various	amounts	of	gH/gL/gO	and	gH/gL/UL128-131	in	their	virion	envelope	[64].	

Strain	TB	and	TR	have	more	gH/gL	in	total	than	strain	ME.	The	gH/gL	in	strain	TB	

and	TR	are	mostly	in	the	gH/gL/gO	form	while	ME	is	abundant	in	gH/gL/UL128-

131.		

	

In	this	topic,	I	tested	two	factors	that	could	contribute	to	the	differential	level	of	

gH/gL	complexes	among	strains:	

§ The	expression	level	of	gH/gL,	gO	and	UL128,	UL130,	UL131		
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§ The	competition	ability	of	gO	sequences	in	gH/gL	complexes	formation	

	

Strain	TR	was	chosen	as	a	representative	for	gH/gL/gO-rich	virus	and	strain	ME	

represented	for	gH/gL/UL128-131	abundant	virus.	The	results	in	Chapter	2	showed	

that	TR	expressed	similar	amount	of	gH/gL	as	strain	ME.	However,	the	gH/gL	in	ME-

infected	cells	were	mostly	associated	with	the	ER,	while	TR’s	gH/gL	were	pre-

dominantly	residing	in	Golgi,	indicating	a	higher	chance	of	being	assembled	into	

virion.	This	result	was	consistent	with	the	observation	that	TR	had	more	total	

amount	of	gH/gL	in	the	virion	than	ME.	Much	more	UL128,	130,	131	were	detected	

in	ME-infected	cells	than	TR-infected	cells,	which	directly	correlated	with	ME’s	high	

gH/gL/UL128-131	phenotype.	To	study	gO	expression	level,	TR-ME	gO	open	

reading	frame	swap	mutants	were	generated	to	eliminate	the	caveat	of	using	strain-

specific	antibodies	to	make	a	comparison.	Both	the	immunoblot	and	quantitative	

radiolabeling	experiment	results	showed	that	ME	produced	significantly	less	

amounts	of	gO	than	TR.	These	results	clearly	demonstrated	that	the	stoichiometry	of	

gO	and	UL128-131	expression	plays	an	important	role	in	gH/gL/gO	and	

gH/gL/UL128-131	assembly.		

	

There	was	one	previous	study	related	to	addressing	the	expression	level	of	UL128-

131.	It	was	found	that	strain	TB,	a	gH/gL/gO-rich	strain,	possessed	a	G>T	single	

nucleotide	polymorphism	(SNP)	compared	to	ME,	which	reduced	the	splicing	of	

mRNA	encoding	UL128,	thus	limited	the	assembly	of	gH/gL/UL128-131	[142].	

However,	this	G>T	SNP	cannot	fully	explain	strain	TB’s	low	amount	of	
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gH/gL/UL128-131,	since	strain	TR,	which	also	contains	small	amounts	of	

gH/gL/UL128-131,	has	nucleotide	G	at	the	SNP	position.	The	research	on	gO	

expression	was	rather	incomplete	before	this	dissertation	study.	Based	on	the	

quantitative	radiolabeling	experiment	conducted	in	Chapter	2,	ME	infected	cells	

produced	27-fold	less	of	gO	than	TR	within	15min,	which	suggested	the	differences	

in	gO	expression	were	due	to	some	early	stage	events,	such	as	UL74	(gO)	mRNA	

transcription,	mRNA	degradation,	translation	efficiency,	or	ER-associated	rapid	

degradation.	Nguyen	et	al.	provided	evidence	supporting	the	possibility	of	ER-

associated	degradation	by	showing	that	viral	protein	UL148	interacts	with	SEL-1,	a	

factor	that	plays	a	key	role	in	ER-associated	degradation.	This	study	also	showed	

that	gO	was	a	substrate	for	ER-associated	degradation	and	that	UL148	could	protect	

gO	from	degradation	[199].	UL148	has	also	been	considered	as	a	chaperon	protein	

in	the	ER	facilitating	gH/gL/gO	formation	[136],	which	correlates	well	with	the	

result	in	Chapter	2	that	ME-infected	cells	contained	less	UL148	than	TR.	

	

The	results	in	Chapter	2	further	tested	whether	the	low	abundance	of	gO	in	ME-

infected	cells	was	the	determinant	factor	for	its	low	gH/gL/gO	phenotype.	The	

overexpression	of	gO	during	ME	replication	did	not	increase	the	level	of	gH/gL/gO	

in	the	virion	unless	the	expression	of	UL128-131	was	suppressed.	Even	then,	the	

change	of	gH/gL/gO	level	was	marginal.	These	data	taken	together	suggest	that	

there	might	be	some	other	factors	that	affect	the	assembly	of	gH/gL	complexes.	One	

potential	candidate	was	discovered	by	Calo	et	al.,	who	found	that	HCMV	viral	

glycoprotein	UL116	competes	with	gL	and	forms	a	heterodimer	with	gH,	and	this	



	 104	

gH/UL116	complex	is	located	on	infectious	virion	envelope	[200].	It’s	unclear	

whether	gL-gO	or	gL-UL128	competes	with	UL116	for	binding	to	gH.	If	these	

competitions	do	exist,	which	one	is	more	competitive?	This	interesting	question	

could	be	followed	up.		

	

Swapping	6	gO	isoforms	into	strain	TR	and	ME	had	no	impact	on	the	level	of	gH/gL	

complexes	in	the	virion	envelope.	These	results	suggest	that	the	strain	genetic	

background,	loci	outside	of	UL74	(gO),	determines	the	level	of	gH/gL	complexes	in	

the	virion,	and	the	diversity	within	the	gO	open	reading	frame	does	not	affect	gH/gL	

complexes	assembly.	

	

New	ideas	for	future	work:	

The	mechanisms	of	differential	expression	levels	of	gO	and	UL128-131	between	TR	

and	ME	haven’t	been	fully	characterized	in	this	study	and	some	potential	future	

work	can	be	followed	up	on	this	topic.			

1)	Comprehensive	RNA	sequencing	analysis	on	infected	cells	with	multiple	time	

points	may	help	to	clear	up	whether	UL74	of	ME	is	transcribed	with	low	efficiency	

and/or	whether	ME’s	UL74	mRNA	has	poor	stability.	Also,	RNA	sequencing	data	

would	also	provide	information	on	understanding	the	mechanisms	of	UL128-131	

expression	differences	between	TR	and	ME.		

2)	Several	connections	around	UL148:	i)	it	favors	gH/gL/gO	formation,	ii)	it	is	

involved	in	ER-associated	rapid	degradation,	and	iii)	ME	expresses	significantly	less	

UL148	than	TR.	Since	polymorphisms	exist	in	the	UL148	locus	between	TR	and	ME,	
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one	specific	direction	for	going	forward	is	to	generate	UL148	swap	mutants	

between	TR	and	ME,	which	may	help	to	narrow	down	UL148’s	function	in	

determining	the	gH/gL	complexes	assembly.		

3)	UL116	is	a	potential	factor	that	influences	gH/gL	complex	assembly.	It	is	unclear	

whether	gL-gO	or	gL-UL128	can	compete	with	UL116	for	binding	to	gH	inside	of	ER.		

Adenovirus	can	be	used	as	vector	to	deliver	genes	of	interest	into	cells	and	

afterwards	analyze	the	gH-associated	complex	by	immunoprecipitation.	Based	on	

the	result	from	Chapter	3	that	gO	isoforms	do	not	affect	gH/gL	composition	in	the	

virion,	it	is	hard	to	believe	that	the	gO	sequence	has	an	impact	on	competition	with	

UL116.	However,	there	are	genetic	polymorphisms	at	the	UL116	locus.	Between	

strain	TR	and	strain	ME,	there	are	6	amino	acid	variations	in	UL116	sequence,	

including	TR>ME:	Gly34	>	Ser,	Thr82	>	Ala,	Pro86	>	Leu,	Gly99	>	Arg,	Pro115	>	Ser,	

and	Ala123	>	Val.	It	is	worth	to	look	into	whether	these	polymorphisms	could	

potentially	change	its	structure	or	interaction	with	gH.		

	

2.	Infectivity	and	tropism	

Strains	TB,	TR,	and	ME	containing	different	gO	genotypes	have	distinct	cell-free	

infectivity	on	different	cell	types	[133].	The	gH/gL/gO-rich	strains	TB	and	TR	are	

much	more	infectious	than	strain	ME,	which	is	abundant	in	gH/gL/UL128-131.	

However,	the	level	of	gH/gL/gO	in	the	virion	cannot	fully	explain	the	infectivity	

differences.	In	the	case	of	MT,	where	the	level	of	gH/gL/UL128-131	is	reduced	

during	strain	ME	replication,	the	virion	has	slightly	increased	amounts	of	gH/gL/gO	

and	the	infectivity	is	greatly	improved.	Despite	much	less	of	gH/gL/gO	in	the	MT	
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virion	than	strain	TR,	MT	is	more	infectious	than	TR.	From	these	previous	analyses,	

it	seems	that	both	the	quantity	and	the	quality	of	gH/gL/gO	can	impact	the	cell-free	

infectivity.	Since	gO	can	directly	interact	with	gH/gL/gO	receptor	PDGFR-α,	it	is	

possible	that	gO	isoforms	have	different	characteristics	in	interacting	with	receptor	

[31],	which	lead	to	various	efficiencies	in	attachment,	signal	transduction,	and	

membrane	fusion.			

	

This	dissertation	tested	the	hypothesis	that	the	amino	acid	sequences	of	gO	directly	

affect	viral	infectivity	and	tropism.				

	

Since	all	the	gO	isoforms	have	no	influence	on	the	assembly	of	gH/gL	complexes	in	

both	strain	TR	and	strain	ME	background.	The	gO	swap	mutant	library	was	a	

suitable	reagent	set	for	testing	this	hypothesis.			

	

The	cell-free	infectivity	analysis	in	Chapter	3	showed	that	several	gO	isoforms	

significantly	affected	viral	infectivity	on	both	fibroblast	and	epithelial	cells.	For	

example,	MEgO,	PHgO,	and	TNgO	enhanced	TR’s	viral	infectivity,	while	ADgO	

dramatically	dropped	the	infectivity	down	to	below	the	detection	limit	of	this	flow	

cytometry-based	assay.		

	

A	common	parameter	used	in	the	field	for	measuring	the	tropism	is	the	ratio	of	

infection	between	fibroblast	cells	and	other	cell	types,	such	as	epithelial	and	

endothelial	cells	[142,145,184].	In	this	dissertation,	I	generated	ratio	of	infectious	
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titer	between	fibroblast	cells	and	epithelial	cells	to	look	into	the	cell	type	preference	

or	tropism	for	each	gO	swap	mutant	virus.	TR	and	MT,	which	contain	much	more	

gH/gL/gO	than	gH/gL/UL128-131	in	the	virion	envelope,	were	strongly	fibroblast	

tropic,	and	some	gO	isoforms	enhanced	this	preference,	while	others	reduced	it.	

However,	in	strain	ME	with	abundant	gH/gL/UL128-131,	the	tropism	ratio	was	

close	to	equal.	This	result	revealed	the	limitation	of	using	the	ratio	of	infection	

between	cell	types	as	the	parameter	for	evaluating	viral	tropism.	The	ratio	

parameter	overlooked	the	situation	where	viruses	could	not	efficiently	infect	one	

cell	type	in	particular	or	both.	Since	none	of	the	gO	swap	mutant	in	ME	background	

had	detectable	cell-free	infectivity,	it	is	a	moot	point	to	generate	the	tropism	ratio.	

The	near	neutral	tropism	ratio	reflected	these	viruses’	equal	incapability	for	

infecting	fibroblast	and	epithelial	cells.	For	MT	gO	swap	mutants	and	majority	of	gO	

swap	mutants	in	TR	background,	they	were	capable	of	establishing	cell-free	

infection	with	reproducible	viral	infectivity.	These	viruses	were	approximately	20-	

to	100-fold	more	infectious	on	fibroblast	cells	than	on	epithelial	cells,	thus	showing	

a	preference	for	fibroblast	cells.	The	impacts	of	gO	isoforms	in	TR	and	MT	were	

similar	on	both	cell	types	but	exhibited	a	larger	range	on	fibroblast	cells.	Thus,	

although	all	of	the	TR-	and	MT-based	gO	swap	mutants	remained	fibroblast	cell	

tropic,	they	were	quantitatively	different	due	to	the	various	magnitude	of	fibroblast	

cell	preference.											

	

Possible	functions	or	mechanisms	of	gH/gL/gO	in	cell-free	infection	include	

engaging	receptor	binding/attachment	to	cell,	promoting	gB-mediated	fusion,	and	
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signaling	through	its	receptor.	Within	the	past	few	years,	studies	in	the	field	have	

investigated	PDGFR-α	as	a	receptor	for	gH/gL/gO	on	fibroblast	cells.	The	cryo-EM	

structure	analysis	indicated	the	interaction	between	gH/gL/gO	and	PDGFR-	α	was	

through	component	gO	[31].	However,	it	is	unclear	whether	gH/gL/gO	engages	

binding	to	receptors	on	epithelial	or	endothelial	cells.	That	soluble	PDGFR-α	pre-

incubation	with	virus	significantly	prevented	the	infection	on	endothelial	cells	

suggested	it	is	highly	likely	gH/gL/gO	also	has	the	function	of	receptor	binding	on	

epithelial	and	endothelial	cells	[32].	Wu	et	al.	showed	that	fusion	protein	gB	could	

be	co-immunoprecipitated	with	gH/gL/gO	and	PDGFR-α,	which	supported	the	

hypothetical	model	in	the	field	that	gH/gL/gO	interacts	with	gB	to	facilitate	fusion	

and	this	function	may	rely	on	receptor	binding	[134].	There	was	another	study	that	

revealed	that	the	gH/gL	heterodimer	could	form	a	stable	complex	with	the	fusion	

protein	gB	in	the	virion	to	perform	fusion	[160],	however,	distinguishing	gB-gH/gL-	

complex-mediated	fusion	compared	to	gH/gL/gO-	or	gH/gL/UL128-131-facilitated	

fusion	needs	to	be	further	investigated.	The	binding	of	gH/gL/gO	does	trigger	cell	

signaling	through	PDGFR-α.	However,	Wu	et	al.	reported	that	only	the	extracellular	

domain	of	PDGFR-α	was	critical	for	virus	entry	while	the	cell	line	with	a	PDGFR-α	

intracellular	tyrosine	kinase	domain	knocked	out	had	no	influence	on	cell-free	

infection	[162].		

	

For	binding	between	gH/gL/gO	and	PDGFR-α,	Stegmann	et	al.	went	one	step	further	

and	explored	that	the	N-terminus	of	gO	was	important	for	binding	to	PDGFR-α.	

Mutagenesis	analysis	uncovered	the	binding	sites	on	gO	were	aa56-61	and	aa117-
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121.	These	two	binding	sites	are	conserved	within	3	out	of	8	gO	genotypes,	which	

are	GT1a,	GT1c	and	GT2	[185].	It	remains	to	be	explored	whether	other	gO	

genotypes	bind	to	PDGFR-α	through	different	binding	sites	or	whether	they	utilize	

other	proteins	on	host	cell	surface	as	receptors.	Since	ADgO	and	PHgO	contain	the	

conserved	sites	for	binding	to	PDGFR-α,	the	previous	findings	cannot	explain	the	

dramatic	infectivity	differences	between	TR_ADgO	and	TR_PHgO,	where	TR_PHgO	

was	30-fold	more	infectious	than	TR	and	TR_ADgO’s	infectivity	was	too	poor	to	be	

detected	by	the	flow	cytometry-based	infectivity	assay.	It	is	possible	that	although	

ADgO	and	PHgO	contain	the	conserved	binding	sites,	the	co-folding	between	gH/gL	

and	gO	are	differentially	altered	by	the	sequence	outside	of	the	binding	sites,	which	

leads	to	their	distinct	accessibility	for	binding	to	PDGFR-α	and	cell-free	infectivity.	

However,	this	possibility	is	framed	under	the	assumption	that	PDGFR-α	is	the	only	

receptor	for	gH/gL/gO	and	the	binding	event	between	them	is	conserved.	It	is	

possible	that	gH/gL/gO	utilize	multiple	receptors	on	the	host	cell	surface.	A	similar	

phenomenon	has	been	observed	for	herpes	simplex	virus-1	envelope	glycoprotein	

gD,	which	could	bind	to	nectin-1,	HVEM,	or	3-O-sulfacted	HS	[201].		

	

Considering	that	gH/gL/gO	is	involved	in	receptor	binding,	the	study	in	Chapter	3	

investigated	whether	the	cell-free	infectivity	differences	among	gO	recombinant	

mutants	were	due	to	their	various	abilities	for	attachment.	The	results	from	the	

attachment	assay	could	not	explain	the	distinct	cell-free	infectivity.	For	example,	

ADgO	in	TR	background	dramatically	dropped	the	infectivity	down	to	below	the	

detection	limit	of	the	flow	cytometry-based	assay.	However,	TR_ADgO	had	no	
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deficiency	in	binding	to	cells.	In	contrast,	TR_TNgO	was	more	infectious	than	TR,	

while	it	had	significantly	less	attachment	than	others	on	both	fibroblast	and	

epithelial	cells.	This	incongruity	between	cell-free	infectivity	and	attachment	

indicated	that	although	gH/gL/gO-mediated	attachment	and	fusion	closely	

coordinate,	the	efficiency	of	these	two	events	are	not	completely	linked	together.	It	

is	possible	that	gH/gL/gO	with	certain	gO	isoforms	can	bind	to	PDGFR-α	with	higher	

affinity,	however,	the	binding	will	not	necessarily	lead	to	fusion	and	vice	versa.	

Fewer	virus	particles	attached	to	cells	does	not	preclude	the	possibility	that	the	gO	

isoform	could	contribute	to	a	hyper-fusogenic	gH/gL/gO.		

	

New	ideas	for	future	work:	

The	results	of	gO’s	disproportional	impacts	on	gH/gL/gO’s	attachment	and	fusion	

highlighted	a	big	unknown	in	the	field	about	how	gH/gL/gO	interacts	with	gB	and	

leads	to	fusion,	and	whether	this	interaction	requires	gH/gL/gO	binding	to	its	

receptor.	It	is	also	unclear	whether	gO	is	involved	in	this	interaction	interface	

between	gB	and	gH/gL/gO.	It	remains	to	be	understood	whether	gH/gL/gO	carrying	

different	gO	genotypes	have	different	binding	affinity	to	PDGFR-α.	In	addition,	the	

viral	attachment	could	be	aided	not	only	by	the	interaction	between	gH/gL/gO	and	

PDGFR-α,	but	also	by	other	potential	receptors	for	gH/gL/gO	or	other	viral	proteins	

on	the	virion	envelope.	In	order	to	explore	these	unknowns,	some	structure	and	

proteomics	approaches	would	be	fruitful.			

1)	In	order	to	obtain	information	on	the	interaction	between	gB	and	gH/gL/gO,	the	

most	direct	approach	is	a	structural	study.	Compared	to	crystallography,	cryo-EM	is	
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a	better	approach	for	keeping	all	the	glycan	on	the	protein	of	interest.	However,	

since	cryo-EM	requires	proteins	being	purified,	it	is	going	to	be	challenging	to	co-

purify	gB	and	gH/gL/gO	as	a	complex.			

2)	In	regard	to	finding	novel	receptors	for	gH/gL/gO,	the	future	work	can	start	with	

using	soluble	expressed	and	purified	gH/gL/gO	to	bind	to	fibroblast	or	epithelial	

cells,	using	immunoprecipitation	and	mass	spectrometry	to	investigate	gH/gL/gO-

associated	host	cell	proteins	existed	in	the	cytoplasmic	membrane	fraction.	With	the	

development	of	high-resolution	single-cell	mass	spectrometry	technology,	it	will	be	

even	possible	to	study	the	preference	of	gH/gL/gO	for	utilizing	its	receptors	[202].		

3)	To	investigate	whether	gH/gL/gO	containing	different	gO	isoforms	have	various	

affinity	for	binding	to	PDGFR-α,	surface	plasmon	resonance	(SPR)	can	be	utilized	to	

obtain	the	binding	kinetics	information.		

	

3.	The	cell-free	vs.	cell-to-cell	spread	

HCMV	cell-to-cell	spread	requires	gH/gL	complexes	and	either	gH/gL/gO	or	

gH/gL/UL128-131	is	sufficient	for	facilitating	cell-to-cell	spread	on	fibroblast	cells,	

while	gH/gL/UL128-131	is	indispensable	for	cell-to-cell	spread	on	epithelial	and	

endothelial	cells	[132,179].	However,	the	roles	of	gH/gL	complexes	in	cell-to-cell	

spread	have	only	been	studied	in	cases	of	gO-null	or	UL128-131-null	mutant.	The	

sufficiency	of	gH/gL/UL128-131	in	cell-to-cell	spread	observed	with	gO-null	mutant	

could	not	rule	out	gH/gL/gO’s	potential	contribution	in	cell-to-cell	spread.	Schultz	et	

al.	reported	that	strains	were	inherently	different	in	their	spread	[205].	For	

example,	strain	TB	is	highly	dependent	on	cell-free	mode	of	spread,	while	strain	ME	
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spreads	in	a	cell-to-cell	manner.	Since	previous	studies	were	based	on	different	

single	strain,	it	remains	unclear	whether	gH/gL/gO	and	gH/gL/UL128-131	have	

differential	participations	in	spread	for	distinct	strains.							

	

To	understand	the	mechanism	of	gH/gL/gO	in	facilitating	cell-to-cell	spread,	the	

following	questions	remained	to	be	answered:	

§ Does	gH/gL/gO-mediated	cell-to-cell	spread	also	require	receptor	binding?	

§ How	does	gO	polymorphism	affect	the	cell-to-cell	mode	of	spread?		

§ How	does	gH/gL/gO	contribute	to	cell-to-cell	spread	with	the	presence	of	

gH/gL/UL128-131?			

	

The	results	from	spread	analysis	in	Chapter	3	uncovered	the	influence	of	gO	

polymorphism	in	cell-to-cell	spread.	On	fibroblast	cell,	TR_PHgO	had	the	best	cell-

free	infectivity	across	all	the	mutants,	however,	the	total	spread	rate	of	this	mutant	

(combination	of	cell-free	and	cell-to-cell	spread)	was	the	lowest,	which	indicated	

gH/gL/PHgO	was	poorly	efficient	in	cell-to-cell	spread.	Quite	opposite,	ADgO	in	TR	

background	was	non-infectious	for	cell-free	infection.	However,	TR_ADgO’s	total	

spread	rate	was	similar	to	TR	on	fibroblast	cells,	which	revealed	that	TR_ADgO	had	

potent	ability	in	cell-to-cell	spread	and	it	could	compensate	the	poor	contribution	

from	cell-free	spread.	On	epithelial	cell,	however,	TR_ADgO	had	relatively	slower	

spread	rate	than	TR,	while	TR_TNgO,	which	spread	similar	to	TR	on	fibroblast	cells,	

had	significantly	reduced	spread	on	epithelial	cells,	so	the	effects	of	gO	isoforms	on	

viral	spread	were	dependent	on	the	cell	type.	Since	cell-free	viruses	of	ME	gO	
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recombinants	were	non-infectious,	the	spread	observed	in	Chapter	3	were	

dominantly	contributed	by	cell-to-cell	mode.	TBgO	and	ADgO	significantly	reduced	

the	spread	of	ME,	while	TNgO	dramatically	increased	the	spread	on	both	fibroblast	

and	epithelial	cells.			

	

The	indications	from	results	mentioned	above	cleared	up	some	confusion	about	

gH/gL/gO’s	function	in	viral	spread	in	the	HCMV	field.	The	differential	impacts	of	gO	

isoforms	on	two	modes	of	spread	enlightened	that	gH/gL/gO	utilizes	different	

mechanisms	in	cell-free	and	cell-to-cell	spread.	It	is	possible	that	gH/gL/gO	binds	to	

different	receptors	for	facilitating	the	two	modes	of	spread	or	the	interaction	

between	gH/gL/gO	and	fusion	protein	gB	is	different	at	the	cell-cell	junction	

compared	to	cell	surface.	The	differential	effects	of	gO	polymorphisms	on	ME	spread	

in	both	fibroblast	and	epithelial	cells	uncovered	that	although	gH/gL/UL128-131	

was	sufficient	for	facilitating	cell-to-cell	spread,	gH/gL/gO	could	also	contribute	to	

this	process.	In	addition,	the	phenomenon	of	gO	isoform’s	various	impacts	between	

cell	types	brought	to	light	that	gH/gL/gO	participates	in	spread	with	different	

fashion	based	on	the	cell	type.	One	possibility	that	remains	to	be	further	studied	is	

the	differential	coordination/preference	between	gH/gL/gO	and	gH/gL/UL128-131	

in	facilitating	membrane	fusion	in	distinct	cell	types.	

	

4.	The	sensitivity	to	neutralizing	antibody	

Previous	studies	reported	that	in	clinical	human	samples	and	animal	immunization	

model,	HCMV	infection	elicited	antibodies	mostly	against	gB,	gH/gL,	and	UL128-131	
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[166-170,198].	The	common	observation	from	these	studies	was	that	the	antibodies	

against	gH/gL	and	UL128-131	in	either	human	or	animal	serum	neutralized	HCMV	

infection	on	epithelial	or	endothelial	cells	much	more	potently	than	on	fibroblast	

cells.	There	are	many	possible	explanations	for	this	phenomenon,	such	as	antibodies	

against	UL128-131	can	efficiently	block	the	gH/gL/UL128-131	thus	inhibiting	the	

entry	on	epithelial	and	endothelial	cells.	Another	possibility	is	that	the	anti-gH/gL	

antibodies	elicited	can’t	bind	to	gH/gL/gO	as	easily	as	gH/gL/UL128-131,	which	

suggests	a	new	potential	function	for	gO	as	part	of	HCMV’s	strategy	for	escaping	the	

host	immune	response.	Several	studies	supported	this	possibility.	Jiang	et	al.	

showed	that	the	focal	growth	of	gO-null	virus	was	much	more	sensitive	to	anti-gH	

antibody	than	WT	[176].	Cui	et	al.	discovered	that	two	HCMV	strains,	which	

contained	identical	gH	epitopes	but	distinct	gO	genotypes	had	different	sensitivities	

to	anti-gH	antibody	[177].	All	these	observations	taken	together,	generated	one	

hypothesis:		

§ gO	provides	steric	hindrance	against	anti-gH	antibody	binding,	and	this	

protective	effect	varies	among	gO	isoforms.		

	

The	gO	recombinant	library	is	a	great	tool	set	for	addressing	this	hypothesis.	The	

neutralization	assay	in	Chapter	3	tested	the	sensitivity	of	gO	swap	mutants	to	two	

anti-gH	monoclonal	antibodies.	Both	TR_ADgO	and	TR_TNgO	conferred	significant	

resistance	to	antibody	14-4b,	which	recognizes	a	conformational	epitope	located	

near	the	transmembrane	domain	of	gH.	Anti-gH	antibody	AP86,	which	targets	a	

linear	epitope	near	the	N-terminus	of	gH.	TR_TBgO	and	TR_ADgO,	turned	out	to	be	
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more	sensitive	to	AP86	than	TR,	while	MEgO	provided	some	resistance	and	

TR_TNgO	showed	100%	resistance	to	AP86	neutralization.	In	the	MT	context,	ADgO	

showed	resistance	to	14-4b,	while	others	had	similar	sensitivity.		

	

Taken	together,	these	results	indicated	that	gO	could	protect	HCMV	against	anti-gH	

antibody	neutralization	and	that	different	gO	isoforms	might	cover	distinct	epitopes	

on	gH.	These	findings	may	help	to	explain	the	great	challenges	in	HCMV	vaccine	

development	for	HCMV	where	immunization	with	one	or	two	attenuated	strains,	or	

viral	proteins	failed	to	prevent	natural	acquisition	of	this	virus	during	clinical	trials	

[203].		

	

New	ideas	for	future	work:	

In	order	to	explore	the	mechanisms	behind	gO	polymorphism’s	differential	impacts	

on	viral	sensitivity	to	neutralizing	antibody,	three	future	studies	are	proposed	here.		

1)	Characterization	of	binding	between	antibody	and	gO	recombinant	viruses.		

For	the	recombinant	virus	that	conferred	resistance	to	antibody	neutralization,	if	

the	antibody	does	not	bind	or	has	weaker	binding	to	the	virus,	it	can	simply	explain	

the	resistance	to	neutralization	is	due	to	poor	antibody	binding.	However,	if	the	

antibody	can	bind	to	these	recombinant	viruses	as	well	as	others,	it	suggests	that	gO	

may	affect	the	folding	of	gH/gL	during	gH/gL/gO	assembly.	It	is	possible	that	gH	

that	is	bound	by	the	antibody	yet	still	can	interact	with	gB	to	trigger	fusion.		

2)	Structural	study	of	gH/gL/gO	formed	with	various	gO	isoforms.		
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Since	gH,	gL	and	gO	are	heavily	glycosylated	and	the	glycans	may	play	important	

roles	in	preventing	antibody	binding,	solving	structure	of	gH/gL/gO	with	glycan	

information	is	critical.	Compared	to	crystallography,	which	requires	the	glycans	

being	trimmed	off	from	the	proteins,	cryo-EM	is	a	better	method	for	this	study.		

3)	Characterization	and	comparison	of	the	glycans	on	different	gO	isoforms	by	mass	

spectrometry.	

Wei	et	al.	demonstrated	that	HIV	utilized	glycan	on	Env	protein	as	an	escaping	

strategy	for	antibody	neutralization	[174].	Considering	that	gO	is	heavily	

glycosylated	and	the	predicted	N-link	glycan	sites	vary	among	gO	isoforms,	it	is	

possible	that	the	glycan	on	gO	can	provide	steric	hindrance	against	the	binding	of	

neutralizing	antibody	and	gO	isoforms	containing	different	amino	acid	sequences	

may	carry	distinct	glycan	compositions.	However,	the	knowledge	about	gO-

associated	glycans	are	very	limited	currently	and	further	study	on	this	topic,	

especially	including	different	gO	isoforms,	will	be	very	helpful	for	the	

comprehensive	understanding	of	gO.	

		

5.	The	epistatic	effect	of	gO	polymorphism	

Another	set	of	interesting	observations	from	my	study	was	that	some	impacts	of	gO	

isoforms	were	dependent	on	global	strain	genetic	background.		

	

The	infectivity	analyses	in	Chapter	3	showed	that	swapping	ADgO	into	TR	and	MT	

reduced	the	viral	infectivity,	however,	PHgO	and	TNgO	significantly	enhanced	the	

viral	infectivity	in	TR	background	on	both	fibroblast	and	epithelial	cells	but	not	in	
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MT	situation.	Interestingly,	the	effects	of	certain	gO	isoforms	on	viral	attachment	

were	also	not	identical	in	TR,	ME	and	MT	backgrounds,	such	as	that	TR_ADgO	

attached	to	cell	as	well	as	TR,	while	MT_ADgO	had	significant	reduced	binding	

compared	to	MT.		

	

The	characterization	of	viral	spread	on	gO	recombinants	in	TR	and	ME	background	

proved	that	the	impacts	of	gO	polymorphism	in	spread	phenotype	were	also	

dependent	on	strain	genetic	background.	The	isoform	TNgO	had	no	influence	for	

spread	in	TR	background,	but	significantly	enhanced	the	spread	in	ME,	while	PHgO	

reduced	the	spread	in	TR	background	but	not	in	ME.		

	

Based	on	the	neutralization	analysis	in	Chapter	3,	TNgO	provided	protection	for	TR	

against	antibody	14-4b	neutralization,	while	TNgO	did	not	protect	MT.	This	

observation	is	more	evidence	indicating	that	the	impacts	of	gO	polymorphism	are	

subject	to	the	global	genetic	background.	One	difference	between	TR	and	ME	

background	that	may	directly	contribute	to	the	epistatic	effect	in	this	neutralization	

study	is	that	the	amino	acid	sequence	34-43	at	the	N-terminus	of	gH	is	not	identical	

between	two	strains.	Based	on	this	polymorphism	at	N-terminus,	gH	across	

different	strains	of	HCMV	is	assigned	as	gH1	genotype	and	gH2	genotype.	Compared	

to	TR-gH	(gH1),	ME-gH	(gH2)	has	a	Proline	missing	and	a	substitution	from	

Histidine	to	Lysine	[182].	Since	Proline	is	often	considered	as	a	“helix	breaker”	and	

Histidine	has	higher	chance	of	being	found	around	protein’s	active	or	binding	sites,	

it	is	possible	that	the	polymorphisms	in	gH	can	affect	the	structure	of	gH/gL/gO.	
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To	investigate	the	frequency	of	linkage	between	gH	and	gO	genotypes,	236	complete	

HCMV	genome	sequences	were	analyzed.	The	result	in	Chapter	3	showed	that	ADgO	

and	TBgO	genotypes	were	exclusively	linked	to	gH1,	whereas	MEgO	was	exclusively	

linked	to	gH2.	Other	gO	genotypes	were	found	together	with	gH1	and	gH2,	however,	

each	gO	genotype	seemed	to	have	a	preference	type	between	the	two	gH	genotypes.	

The	preference	of	genotype	combination	between	gO	and	gH	may	be	due	to	the	fact	

that	they	locate	right	next	to	each	other	in	the	HCMV	genome,	with	gO	locating	at	

UL74	and	gH	at	UL75,	so	the	recombination	chance	is	rare.	It	is	also	possible	that	

there	are	genes	coded	on	the	opposite	strand	of	DNA,	which	restricts	the	

recombination	between	gH	and	gO	locus.	The	sequencing	analysis	also	confirmed	

the	high	linkage	disequilibrium	between	gH	and	gO	locus	[55].	The	caveat	for	this	

part	of	the	study	is	that	the	genome	sequences	subjected	to	this	analysis	were	

isolated	strains	and	BAC	clones,	majority	of	which	were	extensively	passaged	on	

fibroblast	cells	and	went	through	selection	pressure	for	adapting	to	propagation	in	

tissue	culture.	More	advanced	analyses	based	on	the	clinical	specimen	sequencing	

data	are	required	for	better	understanding	of	the	linkage	between	gH	genotypes	and	

gO	genotypes.						

	

In	summary,	the	effects	of	gO	isoforms	were	tested	in	different	virus	strain	genetic	

backgrounds	in	multiple	aspects,	including	the	infectivity,	attachment,	spread,	and	

sensitivity	to	neutralizing	antibody.	These	findings	stressed	the	important	roles	of	

other	variable	loci	apart	from	gO	in	determining	the	phenotypic	features	of	HCMV	
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and	the	observed	influences	of	gO	polymorphism	were	epistatic	outcomes	between	

gO	and	other	variable	loci	across	the	viral	genome.		

	 	

Perspectives		

With	more	Next	Generation	Sequencing	and	bioinformatics	data	analyzed	directly	

on	clinical	samples,	the	connections	and	disconnections	between	laboratory	

adapted	strains	and	HCMV	in	clinical	specimens	started	drawing	more	and	more	

attention.		

	

The	studies	characterizing	HCMV	genomic	sequence	directly	from	clinical	samples	

revealed	great	complexity	and	diversity	of	HCMV	[153-154].	There	is	substantial	

strain	diversity	among	individuals	and	this	high	diversity	is	likely	due	to	high	

frequency	of	mutations	at	nonfunctional	genes	and	pervasive	recombination	

between	strains.	Within	the	host,	multiple-strain	infections	are	observed	and	up	to	5	

strains	can	be	detected	inside	of	one	individual.	The	strains	inside	body	

compartments	of	hosts	are	rather	conserved	and	stable,	suggesting	the	

compartments	may	place	selection	pressure	on	strain	genotypes.							

	

The	major	factor	that	causes	disconnection	between	lab	strains	and	clinical	samples	

is	the	method	of	isolating	virus	from	clinical	specimens.	One	piece	of	evidence	from	

studies	in	the	field	was	that	propagation	of	clinical	isolates	on	fibroblasts	could	

rapidly	select	out	mutations	that	heavily	reduced	or	even	abolished	the	expression	

of	UL128-131	proteins	by	inserting	a	stop	codon	within	UL128	open	reading	frame	
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[137,141].	The	cell	type	for	clinical	sample	propagation	also	plays	critical	role	in	the	

process	of	isolation.	The	disrupting	mutations	in	UL128	observed	during	fibroblast	

propagation	were	not	seen	in	epithelial	cell	passaging,	which	could	be	interpreted	as	

that	gH/gL/UL128-131	has	indispensible	function	on	epithelial	cell	infection	[140].	

It	has	also	been	observed	that	29	out	of	30	clinical	HCMV	isolates	that	had	the	

potential	to	spread	in	endothelial	cells	lost	that	ability	after	long-term	adaptation	in	

fibroblast	cultures.	In	contrast,	virus	subjected	to	long-term	adaptation	on	

endothelial	cells	retained	both	fibroblast	tropism	and	endothelial	tropism	[204].	

However,	since	it	was	unclear	whether	the	isolates	contained	single	or	multiple	

strains,	the	phenomenon	described	above	might	be	due	to	mutation	and/or	strain	

selection.	Besides,	there	are	mutations	in	genes	occurred	in	regardless	of	culture	cell	

types,	such	as	RL13,	which	encodes	a	highly	glycosylated	virion	envelope	protein	

and	has	the	potential	to	modulate	tropism.	Stanton	et	al.	reported	that	a	rapid	and	

reproducible	frame-shift	mutation	occurred	at	RL13	locus	when	strain	ME	was	

passaged	on	both	fibroblast	and	epithelial	cells	and	the	mutation	led	to	dramatic	

repression	on	RL13	expression	[137].	For	other	strains,	such	as	TR,	although	the	

same	phenomenon	was	not	observed,	it	is	still	under	investigation	whether	RL13	in	

these	strains	can	be	translated	into	protein	and	perform	its	function.	In	addition,	

other	sporadic	mutations	can	be	selected	across	HCMV	genome	during	the	

passaging	of	laboratory	virus	clones	[141].		

	

The	result	in	Chapter	2	showed	that	overexpression	of	gO	during	ME	replication	

enhanced	the	infectivity	by	only	6-fold,	while	repression	of	UL128-131	enhanced	
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ME’s	infectivity	by	30-	to	50-fold.	These	infectivity	analyses	suggested	that	the	

selective	pressure	for	losing	UL128-131	was	much	stronger	than	gaining	gO,	thus	it	

is	possible	that	the	difference	in	gO	expression	between	TR	and	ME	reflects	

sampling	of	the	different	genotypes	exist	in	clinical	specimens	rather	than	

mutations	raised	during	tissue	culture	propagation.		

	

Although	the	question	about	how	well	the	laboratory-adapted	strains	could	

represent	HCMV	exist	in	nature	remains	unclear,	multiple	studies	that	conducted	

Next	Generation	Sequencing	analysis	on	clinical	specimen	samples	concurred	the	

diversity	of	gO	sequence	in	nature	[53-55,66,153-154].	This	dissertation	focused	on	

studying	the	effects	of	gO	sequence	diversity	as	the	connection	between	laboratory	

research	and	HCMV	exist	in	nature,	and	characterized	the	influences	of	gO	

polymorphism	on	critical	aspects	of	HCMV	biology.		

	

In	conclusion,	this	dissertation	research	is	fundamentally	based	on	questions	raised	

from	clinical	sequencing	studies	and	aimed	for	connecting	the	barrier	between	

laboratory	study	and	clinical	observations.	The	new	findings	include	the	mechanism	

of	gH/gL	complex	assembly	and	the	dramatic	influence	of	gO	polymorphism	on	cell-

free,	cell-to-cell	spread	and	neutralization	by	anti-gH	antibodies.	This	study	also	

firstly	elaborated	that	the	impacts	of	gO	polymorphism	are	subjected	to	epistatic	

influences	of	the	global	genetic	background.	Although	the	study	has	inevitable	

limitations	in	reflecting	the	features	of	virus	found	in	clinic,	hopefully	these	findings	
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can	provide	more	information	for	better	understanding	of	HCMV	pathology	and	

bring	novel	insights	on	vaccine	design	strategy.		
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