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  One of the global causes of forest die-off is climate-change induced drought. Drought 

kills trees by reducing water supply and non-structural carbohydrate (NSC) availability 

and by increasing susceptibility to negative biotic interactions. However, we lack an 

understanding of how water, NSC, and biotic agents interact. As a result, we still cannot 

accurately predict drought-induced mortality. The overarching goal of my dissertation is 

to increase our understanding of the interacting mechanisms leading to drought-induced 

mortality (DIM) and to identify physiological variables that accurately predict risk of 

DIM. Via greenhouse experiments with Pinus ponderosa (ponderosa pine) seedlings, I 

addressed three overarching research questions: (1) which physiological variables are 

good predictors of DIM?, (2) What is the role of NSC on plant water relations and DIM?, 

and (3) Do fungal symbionts affect plant water relations by altering host NSC during 

periods of carbon deficit? I first show that plant water content integrates the negative 

effects of reduced water supply and NSC availability under drought and it accurately 

predicts DIM risk. Further, plant water content shows a threshold at which DIM risk 

increases. I also provide evidence that plants use NSC to retain water in living tissues and 

maintain plant water content above critical mortality thresholds. Next, I show that plant 

water content is a good predictor of DIM risk across populations of ponderosa pine 

despite differences in morphology, physiology, and drought strategies. The integrative 

nature of plant water content is relevant because it can be detected remotely, which may 

allow large-scale assessments of mortality risk. Lastly, I show that fungal symbionts 

connecting multiple plant hosts can become parasitic and deplete NSC in some hosts. 

Such a depletion impairs plant water relations, which could increase host vulnerability to 

drought. My dissertation provides insight on physiological mechanisms leading to DIM 

and identifies simple physiological variables useful for monitoring DIM risk.  
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INTRODUCTION 
One of the big questions in biology is ‘how species distributions will respond to future 

changes in climate’. To answer this question, we must understand how changes in abiotic and 

biotic conditions will affect species distributions. In plants, one of the global causes of shifts in 

species distributions is climate-change induced drought. During the last fifty years, extreme 

drought events have become more frequent and intense 1. As a result, forests around the world -

including wet regions- are dying 2. These die-off events have instigated a lot of research to 

understand why trees are dying and to predict how this will affect the distribution of species and 

forests themselves.  

In 2008, McDowell proposed a mechanistic framework based on two physiological 

drivers of drought-induced mortality (DIM): water and carbon 3. This framework suggested that 

intense and short droughts may kill plants by disrupting transport of water through their vascular 

system (i.e., hydraulic failure). Alternatively, mild and long droughts may kill plants by forcing 

them to consume their carbohydrate reserves and starve to death. This framework also 

acknowledged that, sometimes, drought may kill plants through an interaction between both 

water and carbon. However, the framework did not stress this interaction. The McDowell 

framework also suggested that biotic agents may amplify hydraulic failure or carbon depletion 

thus leading to early death. This framework has been cited nearly 2,000 times and led to an 

intense search for hydraulic failure or carbon depletion. However, after ten years of research and 

despite having a mechanistic framework of DIM, we still cannot accurately predict DIM. The 

question is ‘why not?’. 

1- We do not fully understand how hydraulic failure and carbon depletion interact. 

Recent studies indicate that, in most DIM cases, hydraulic failure killed plants but carbon 

depletion played an important role 4. This suggests that water and carbon interact in ways that we 

do not fully understand 5. Therefore, we must understand the mechanisms underlying this 

interaction to model and predict DIM, and foresee its effects on species distributions. However, 

it is very difficult to study how water and carbon interact under drought because water deficit 

(i.e., drought) reduces both water and carbon availability. Thus, correlations between variables 

related to water and carbon do not imply causation because such correlations could simply result 

from water deficit. 
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2- We cannot tell when trees actually die. Contrary to animals, plants do not show clear 

indicators of death such as sudden lack of heartbeat, respiration, motion, etc. Thus, it is very 

difficult to determine the exact moment when a tree dies 6. Accurately distinguishing dead trees 

from live trees is critical to determine the physiological processes that lead to death and to find 

accurate predictors of DIM.  

3- We lack large-scale predictors applicable to different plant types. A species can 

vary substantially in morphology, physiology, and drought strategies across populations within 

its distribution. This variation can lead to different responses to drought among populations and, 

therefore, predictors of DIM 7. Finding a variable that only predicts DIM in a specific population 

barely increases our capacity to predict distribution shifts. Consequently, we must find variables 

that accurately predict DIM risk regardless of spatial variation in morphology, physiology, and 

drought strategies. Additionally, these variables should be measurable at large scales (e.g., 

through remote sensing) to facilitate monitoring of species distributions over time. 

4- We must understand the interaction between drivers of DIM before studying 

biotic agents. Biotic factors may be as important as abiotic factors. Plant parasites may be more 

prevalent in future climates as a result of higher temperatures. These parasites may feed on 

resources from their plant hosts such as water or carbon and amplify hydraulic failure or carbon 

depletion. Alternatively, plant symbionts such as mycorrhizal fungi may provide resources to 

their hosts and ameliorate hydraulic failure or carbon depletion. However, it is difficult to study 

how biotic agents interact with hydraulic failure and carbon depletion without having a clear 

understanding of how water and carbon interact on their own. Before studying how biotic agents 

influence DIM, first we must i) find a way to accurately classify dead and live trees and ii) 

understand how water and carbon interact. Then, we can assess how biotic agents influence these 

two components and infer how they may affect species distributions under future climates. 

Studying whole distributions is a herculean task. Alternatively, studying individual 

physiology is feasible and allows us to understand fundamental processes that ultimately drive 

distribution shifts (e.g., seedling mortality). With this in mind, my dissertation has consisted of a 

series of greenhouse experiments with ponderosa pine seedlings that address the four gaps of 

knowledge described above. In chapter 1, I explore the interaction between water and carbon 

through plant water relations (Gap 1), design a method that distinguishes dead and live plants 

(Gap 2), and identify predictors of DIM. In chapter 2, we assess different predictors of DIM risk 
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across populations with varying traits and discuss their large-scale capabilities (Gap 3). In 

chapter 3, we assess how mycorrhizal symbionts influence plant water relations during periods of 

carbon limitation and its implications under drought (Gap 4). The overarching goals of my 

dissertation were to i) increase basic scientific understanding of the physiological processes 

leading to DIM, ii) provide tools to monitor current DIM risk across large scales, and iii) provide 

data to parameterize mechanistic models that can predict future DIM risk based on water, carbon, 

and biotic agents. 

REFERENCES 

1. Stocker, T. F. et al. Summary for Policymakers. In: Climate Change 2013: The Physical 

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. CEUR Workshop Proc. 1542, 33–36 (2015). 

2. Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower 

wood density and higher specific leaf area. Ecol. Lett. 20, 539–553 (2017). 

3. McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do 

some plants survive while others succumb to drought? New Phytol. 178, 719–39 (2008). 

4. Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-

induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017). 

5. Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J. & Hölttä, T. Coordination 

of physiological traits involved in drought-induced mortality of woody plants. New 

Phytol. 208, 396–409 (2015). 

6. Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and 

modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012). 

7. Anderegg, W. R. L. Spatial and temporal variation in plant hydraulic traits and their 

relevance for climate change impacts on vegetation. New Phytol. 205, 1008–1014 (2015). 
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CHAPTER 1: PLANT WATER CONTENT IS A USEFUL INDICATOR 

OF POPULATION-LEVEL DROUGHT-INDUCED SEEDLING 

MORTALITY 

ABSTRACT  

Widespread drought-induced forest mortality (DIM) is expected to increase with climate change 

and drought, with major impacts on carbon and water cycles. For large scale assessment and 

management, it is critical to identify physiological thresholds that signal risk of drought mortality 

and that can be assessed at landscape scales. To identify thresholds of DIM risk, we subjected 

Pinus ponderosa seedlings to experimental drought using a point of no return experimental 

design. Periodically during the drought, independent sets of seedlings were sampled to measure 

physiological state (volumetric water content [VWC], percent loss of conductivity [PLC] and 

non-structural carbohydrates) and to estimate population-level probability of mortality through 

re-watering. We show that plant VWC and PLC are good predictors of population-level DIM 

risk. However, VWC exhibits a threshold-type relationship with mortality risk that distinguishes 

plants at no risk from those at increasing risk of mortality.  Further, plant VWC integrates the 

effects of hydraulic failure and carbon depletion across organs, two mechanisms involved in 

individual tree death. We show for the first time that VWC, a variable that can be remotely 

sensed, is a robust indicator of population-level DIM risk. Our results offer promise for 

landscape level monitoring of DIM risk.   

 

INTRODUCTION 

Episodes of drought-induced forest mortality (DIM) (Lewis, Brando, Phillips, van der 

Heijden & Nepstad 2011; Williams et al. 2013; Rowland et al. 2015) are expected to increase 

with climate change (Allen, Breshears & McDowell 2015; Stocker et al. 2015), and to have 

profound consequences for global water and carbon cycles and vegetation-climate feedbacks. For 

monitoring and management purposes, there is a critical need to identify reliable plant variables 

that provide early warning signals of DIM risk at the population level (defined as percentage of 

dead individuals within a stand or area at a given point in time) and that can potentially be 

monitored at large spatial scales (Hartmann et al. 2018). Intense research in the past decade on 

the mechanisms of mortality at the individual level has identified hydraulic failure (i.e., loss of 
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water transport capacity in the xylem) as a dominant mechanism of DIM, with non-structural 

carbohydrate (NSC) depletion often playing a significant, interacting role (Adams et al. 2017).  

While complete hydraulic failure under persistent drought will always lead to death, measures of 

hydraulic deterioration, often quantified  at the individual level as loss of percent hydraulic 

conductivity (PLC), are difficult to monitor continuously in a given plot or stand, thus hindering 

our ability to monitor mortality risk it at larger scales. Here, we explore whether plant water 

content, a variable that can be measured remotely (Ceccato, Flasse, Tarantola, Jacquemoud & 

Grégoire 2001; Ullah, Skidmore, Naeem & Schlerf 2012; Konings et al. 2016), is a useful 

indicator of drought- induced mortality risk.  

 

Regardless of the specific mechanisms involved, mortality under drought occurs due to 

progressive dehydration leading to irreversible loss of turgor (Tyree et al. 2003) – when living 

cells lose function. How living plant cells sense dehydration is still under debate (Sack, John & 

Buckley 2018), but it involves changes in cell volume, cell turgor, and osmolyte concentration 

(Zhu 2016; Sack et al. 2018), which in most plants eventually leads to membrane dysfunction 

(Wang et al. 2008; Chaturvedi, Patel, Mishra, Tiwari & Jha 2014) and death (Guadagno et al. 

2017). Plants must maintain a given pool of water to generate turgor in living cells and this must 

be done by balancing water supply and demand. Survival under drought, therefore, could be 

ultimately related to maintenance of plant water content above a minimum threshold leading to 

permanent turgor loss. Under drought, when stomata close to minimize water loss, the water 

balance of plants depends in large part on the balance between water supply and water retention 

capacity in living cells. Water supply to living cells depends on hydraulic conductance, which 

decreases under drought due to xylem embolism potentially leading to hydraulic failure (Tyree & 

Sperry 1989). Water retention in living cells depends on their ability to decrease their water 

potential to match that of the adjacent xylem, which occurs by concentrating solutes. Otherwise, 

cells will unavoidably lose water to the xylem. NSC depletion may lead to loss of water retention 

capacity and turgor loss via reductions of organic solutes and their osmotic or energetic roles 

(Brodersen, McElrone, Choat, Matthews & Shackel 2010; Sevanto, McDowell, Dickman, Pangle 

& Pockman 2014).   
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A water balance approach (Fig. 1) suggests that water content may be a useful early-

warning indicator of mortality risk for several reasons. First, while hydraulic failure appears to 

be the dominant mechanism of drought mortality, NSC depletion is thought to play a role 

(Adams et al. 2017) and the two mechanisms often interact (McDowell 2011; Sala, Woodruff & 

Meinzer 2012; Meir, Mencuccini & Dewar 2015). However, the nature of this interaction is not 

well understood and is  difficult to model (Mencuccini, Minunno, Salmon, Martínez-Vilalta & 

Hölttä 2015).  The water balance approach under drought mechanistically captures this 

interaction and integrates it into a single variable – water content. Second, and critical for an 

indicator variable, just as turgor loss shows a threshold response (from sufficient turgor pressure 

to maintain cell function to irreversible turgor loss and loss of cell function) water content is also 

likely to mirror such a threshold response and to distinguish plants at no risk of DIM from those 

at risk as drought proceeds (i.e., to detect incipient risk of mortality). Third, and particularly 

relevant for the purposes of large scale monitoring, water content can be measured remotely 

(Ceccato et al. 2001; Ullah et al. 2012; Konings et al. 2016). Indeed, recent remote sensing 

studies show that progressive declines in canopy water content are associated with subsequent 

increases of tree mortality (Saatchi et al. 2013; Asner et al. 2015). Although these data suggest 

that water content may successfully predict DIM, so far, experimental evidence is limited 

(Kursar et al. 2009). In summary, water content may prove a useful indicator of drought 

mortality risk because it is likely to integrate the mechanisms of drought mortality and to show a 

threshold response that signals incipient risk of mortality. If so, and because it can be measured 

remotely, water content offers significant potential for monitoring drought mortality risk at larger 

scales.    

 

Most studies of individual DIM physiological thresholds have focused on measurements 

of dead or nearly-dead plants based on visual cues, including browning, defoliation, and branch 

die-off (Anderegg et al. 2015; Dickman et al. 2015; Adams et al. 2017; Hoffmann et al. 2011; 

Anderegg et al. 2012b; Anderegg & Anderegg 2013; O’Brien et al. 2014; Pratt et al. 2014; 

Rowland et al. 2015; Garcia-Forner et al. 2016). This can be problematic because visual 

symptoms of plant death generally occur well after plants have crossed the point of no return (the 

point beyond which plants can no longer survive; Anderegg et al. 2012b), thus potentially 

missing early-warning physiological signals. Furthermore, for some species, measurements at the 
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leaf or branch level may not be representative of whole plant level mortality processes. Thus, 

identifying physiological states at the whole plant level that are indicative of DIM risk, 

particularly incipient DIM risk thresholds, requires experimental designs based on the point of no 

return. That is, it requires concurrent multi-organ/whole-plant level measurements of potential 

physiological indicators (PLC, NSC, water content) at different stages of drought regardless of 

symptoms and of probability of mortality (e.g., by re-watering and subsequent assessment of 

mortality). Because whole plant measurements are usually destructive, physiological 

measurements must be independent of mortality assessment. Such an approach entails pairing 

independent measurements of physiological state and of probability of mortality progressively 

during drought to identify the physiological states at which population-level mortality risk 

increases as drought progresses. To our knowledge, only Barigah et al. (2013) and Kursar et al. 

(2009) used such a design. However, Barigah et al. (2013) did not measure water content and 

neither study focused on thresholds for incipient mortality risk, which is a critical feature for a 

useful indicator with monitoring purposes.    

 

We performed a greenhouse drought experiment with two-year-old ponderosa pine 

(Pinus ponderosa Douglas ex C. Lawson) seedlings to identify physiological predictors of DIM 

risk at the population level based on the point of no return. We focused on thresholds signaling 

incipient DIM risk. We sampled independent sets of seedlings periodically during the 

experimental drought to: 1) measure their physiological state (e.g. volumetric water content, PLC 

and NSC) and 2) estimate the probability of mortality once re-watered. We hypothesized that i) 

tissue water content is related to loss of hydraulic conductivity and NSC availability at both 

tissue and whole-plant levels; ii) PLC, NSC and water content explain DIM risk, though their 

respective predictive power will vary (Fig. 1); and iii) both PLC and water content show a 

threshold-like response distinguishing healthy plants from those at risk of DIM. The focus on 

water content as a useful indicator is because, as opposed to other indicators, it can be measured 

remotely and, as such, it offers significant potential for large scale applications.  

 

MATERIALS AND METHODS 

Study Design. The experiment took place at the University of Montana greenhouse 

facilities. On August 2nd 2015 we obtained 165 two-year-old Pinus ponderosa seedlings in soil 
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plugs from the Coeur D’Alene Nursery (USDA Forest Service) and planted them in 7.6 cm 

diameter x 43 cm tall pots using a homogeneous soil mixture consisting of 3:1:1 sand, peat moss, 

and top soil, respectively. Seedlings were ca. 20 cm tall from the base to the tip of the stem and 

soil plugs were similar in length. Pots were randomized on a bench at regular distances from 

each other and left to acclimate for a month under well-watered conditions (i.e. field capacity, 

when the soil is saturated). Soil field capacity corresponded to soil volumetric water content 

values (VWCs) of ca. 20%. Based on preliminary experiments and for the purpose of timing 

consecutive samplings, we monitored changes in VWCs using Decagon 5TE sensors placed in 

five representative seedlings 10 cm above the bottom of the pots. Sensors were inserted through 

a hole drilled on the side of the pots to minimize disturbance and root damage, which had 

reached 40 cm in depth by the end of the experiment. 

From September 2nd to October 1st, seedlings underwent four drought pre-conditioning 

cycles to allow plants to acclimate to drought stress. During the first three cycles, we let pots dry 

down to 50% of their field capacity (VWCs = 10%) after which we watered again to field 

capacity. On the last cycle, pots were dried to 25% of their field capacity (VWCs = 5%), which 

corresponds to a soil water potential of -0.7 MPa based on an empirical soil characteristic curve 

(see below), and then watered again to field capacity. From October 1st to December 1st, we 

stopped watering all but five seedlings (controls). Drought-treated seedlings were left un-watered 

for the rest of the experiment while control seedlings were kept at field capacity (Fig. 2). Based 

on a preliminary drought experiment to assess symptoms of mortality as a function of soil 

drought and to optimize sampling times and sample size, we started measurements 34 days after 

the beginning of the drought treatment.  

 

Sampling procedure. We assessed soil water potential, seedling physiology, and 

mortality risk on six weekly samplings at days 0, 34, 41, 48, 55, and 62. At each sampling, we 

measured midday VWCs in five randomly chosen seedlings. VWCs sensors were installed 24h 

prior to measurement to reach equilibrium with soil conditions. VWCs was then used to estimate 

the soil water potential at which each seedling was exposed to at the time of sampling. To do so, 

we converted VWCs values to soil water potential based on an empirical soil characteristic curve, 

describing the relationship between VWCs and soil water potential as a soil dries (Fredlund & 

Xing 1994). To generate this curve, we dried a pot with the same soil used in the experiment at a 
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constant temperature (ca. 40 ºC). A VWCs sensor (Decagon 5TE) and a soil water potential 

sensor (Decagon MPS-6) were placed at the same height in the center of the pot. This process 

was repeated twice with the same pot to reduce variability due to measurement error. 

We also measured leaf water potentials. However, these measurements were not reliable 

because needles became dry and brittle as the drought intensified thus breaking during 

measurements or becoming hydraulically disconnected from the rest of the plant. We note, 

however, that this did not prevent us from assessing hydraulic failure, carbon depletion, and 

plant water content, which was the main goal of this experiment. Although plant water status is 

usually assessed with plant water potential, plant water content and PLC are also indicators of 

drought stress. At every sampling date, the same five seedlings in which VWCs was measured 

were then harvested and kept in zip-lock bags with a moist paper towel in a cooler to prevent 

further water loss (Garcia-Forner et al. 2016). We did not measure stem water potential to 

prevent artifacts on subsequent measurements of stem PLC and VWC. Samples were transported 

to the laboratory within two hours for physiological measurements (below). Because 

physiological measurements were destructive, at each sampling event during the drought a 

second independent subset of randomly sampled seedlings was used to assess mortality risk.  

Mortality assessment. To estimate the probability of mortality at the population level 

over time, at each sampling event, 15% of the total pool of drought-treated seedlings were 

randomly chosen, re-watered to field capacity, and kept well-watered for at least 39 days (until 

January 8th) to assess mortality. This method ensures accurate classification of both live and dead 

plants at every sampling event regardless of visual symptoms. We classified seedlings as dead 

only if their canopy and phloem were completely brown and dry (Cregg 1994) and no 

subsequent buds appeared (dead seedlings were left in the greenhouse for two additional 

months). Notice that early re-watering groups were re-watered for longer periods of time due to 

the nature of the experimental design. However, seedlings removed at the later stages of the 

drought were completely dry and brittle with no subsequent signs of recovery. Because the total 

pool of drought-treated seedlings was reduced every time when mortality probability was 

assessed, a 15% of the total pool of drought-treated seedlings represented a different number of 

individuals at each sampling event (max:32 – min: 14). To make estimates of mortality 

comparable across sampling events in terms of sample size, we estimated mortality using only 13 

plants randomly subsampled from the pool of plants chosen to estimate mortality at each 
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sampling date. This subsampling procedure was repeated a thousand times using a bootstrapping 

scheme, and the thousand values of mortality generated per sampling event were averaged to 

generate a proxy for population-level probability of mortality at each sampling event.  Note that 

in our design, physiological measurements during drought were done in individual plants and 

averaged, while mortality measurements were conducted at the population level.   

Tissue Volumetric Water Content. Upon arrival to the laboratory we separated roots, 

stems, and needles of each seedling to measure their volumetric water content (VWC) based on 

fresh and dry weights as: ((Fresh weight-Dry weight)/ Fresh Volume)*100. We measured 

volume with the water displacement method in a reservoir of deionized water (Olesen 1971; 

Hughes 2005). Dry weights were measured after hydraulic conductivity measurements (see 

below). We focused on VWC because this variable can be directly related to variables measured 

through remote sensing (Yilmaz, Hunt & Jackson 2008; Mirzaie et al. 2014; Veysi, Naseri, 

Hamzeh & Bartholomeus 2017). We calculated whole plant VWC weighed by tissue fraction 

biomass (proportion of each tissue dry mass fraction multiplied by their respective VWC). For 

consistency, root VWC was measured before any other tissue to avoid changes in VWC or 

hydraulic conductivity due to cleaning procedures and exposure to dry air. After a very quick 

immersion in water to minimize water absorption, we immediately blotted tissues with paper 

towels until no surface water was left. Stems and root systems were returned to Ziploc bags and 

the cooler immediately after measurements of fresh weight and volume, prior to hydraulic 

conductivity measurements. 

Stem and Root Hydraulics. We measured stem hydraulic conductivity and root 

hydraulic conductance using the gravimetric method (Sperry, Donnelly & Tyree 1988) 

immediately after fresh volume measurements of tissues. We used a modification of the 

hydraulic apparatus described in Sperry (1988) that allowed us to measure hydraulic conductance 

of whole root systems in addition to stems. In our system, a micro-flow sensor (Sensirion SLI-

0430) was placed upstream from the stem (instead of a scale) to record water flow. This sensor 

measures flow every 70 ms with a precision of 1 µL/min thus allowing precise measurements in 

plants with low hydraulic conductivity. Stem segments previously used for VWC measurements 

were immersed in deionized water for 20 minutes to relax xylem tensions that could artificially 

alter conductivity values (Trifilo, Barbera, Raimondo, Nardini & Gullo 2014). After relaxation, 

stems were placed on the hydraulic apparatus and each end was recut twice at a distance of 1 mm 
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from the tips (total of 2 mm per side) to remove any potential emboli resulting from previous 

cuts, transport, and relocation (Torres-Ruiz et al. 2015). Stems were then connected to the 

hydraulic apparatus while under water, with their terminal ends facing downstream flow. The 

stems were then raised out of the water and the connections were checked to ensure that there 

were no leaks.  

First, initial background flow was measured to account for the flow existing under no pressure, 

which can vary depending on the degree of dryness of the measured tissue (Hacke et al. 2000; 

Torres-Ruiz, Sperry & Fernández 2012; Blackman et al. 2016). Second, a pressure gradient of 5-

8 kPa was applied to run water through the stem and pressurized flow was measured. This small 

pressure gradient prevented embolism removal from the samples while ensuring flow. Lastly, 

final background flow was measured, initial and final background flows were averaged, and net 

flow was calculated as the difference between pressurized flow and average background flow. 

Native specific hydraulic conductivity (K) was estimated in stems as the (net) flow divided by 

the pressure gradient used and standardized by xylem area and length. Xylem length was 

measured using a caliper and xylem area was calculated from stem diameter assuming a circular 

area. 

The configuration of the apparatus was then changed to measure whole root system 

hydraulic conductance using the same gravimetric principle. This approach requires the water to 

flow backwards through the roots. Such backwards flow has been proven to have no significant 

effect on hydraulic measurements (Kolb & Robberecht 1996; Tyree et al. 2003). We ensured that 

both configurations of the apparatus were comparable by measuring stems using both 

arrangements and we found no significant differences between them (t= 0.7854, p-value= 

0.4761). As in stems, roots were also relaxed in deionized water for 20 minutes to relax xylem 

tensions that could artificially alter conductivity values (Trifilo et al. 2014). Flow, including 

initial and final background flow, was measured as above and whole root native hydraulic 

conductance (k) was estimated as the (net) flow divided by the pressure gradient used and 

standardized by xylem area at the root collar.  

Maximum stem hydraulic conductivity (Kmax) and root hydraulic conductance (kmax) 

were estimated as the average stem K and root k of the well-watered seedlings measured at day 

62 after the onset of the drought and used to calculate PLC in all measured seedlings. Such a 

population approach was chosen because 1) destructive measurements in these small seedlings 
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prevented multiple successive measurements of K and water potentials on the same individuals, 

and 2) flushing and vacuum infiltration techniques to obtain Kmax from embolized tissues can 

generate artifacts and overestimate Kmax (Cochard et al. 2013). Percent loss of stem 

conductivity and percent loss of root conductance (PLC) were estimated for each measured 

seedling as 100*(Kmax-K)/Kmax and 100*(kmax-k)/kmax, respectively. Note that slightly 

negative PLC values may occur if K or k in a given sample is larger than Kmax estimated as the 

average K of controls. We calculated whole-plant PLC weighted by the proportion of each tissue 

fraction. Root and stem PLC can be averaged together because they are unit-less indexes that 

represent the relative loss of water transport capacity of their respective tissues. Because we did 

not measure PLC in needles, whole-plant PLC represents the overall hydraulic integrity of the 

stem and root systems. A solution of water with 10 mM KCl degassed at 3 kPa for at least 8 

hours was used for all hydraulic measurements (Espino & Schenk 2011). We developed an R 

code (see Methods S1 in Supporting Information) that automatically calculates pressurized and 

background flows once flow stabilizes. We excluded hydraulic measurements taken at days 0 

and 34 since the onset of drought (see Fig. 3b) because a leakage was detected in our apparatus 

leading to artificial values. However, this did not prevent us from obtaining PLC values across 

the full range of observed mortality, including values close to 0. 

Non-structural Carbohydrates (NSC). After hydraulic measurements, needle, stem, and 

root samples were microwaved for 180 seconds at 900 Watts in three cycles of 60 seconds to 

stop any metabolic activity. Tissues were subsequently oven-dried at 70 ºC until constant mass. 

Samples were weighed and ground to a fine powder. Approximately 11 mg of needle tissue and 

13 mg of stem or root tissue were used to analyze NSC dry mass content following the enzymatic 

digestion method (McCleary, Gibson & Mugford 1997). We calculated the total pool of NSCs, 

starch, soluble sugars, and glucose or fructose in each tissue by multiplying the corresponding 

concentration per dry mass by the dry weight. Concentrations (total NSC and each individual 

component) were scaled up to the whole-plant by weighting by tissue fraction as above.  

Statistical analyses. We developed five models to evaluate trends in drought intensity, 

whole-plant physiological status, and population-level mortality over time. All models had days 

since the onset of drought as their predictor variable and one of the following variables as the 

response variable: (1) Soil Water Potential, (2) total NSC concentrations, (3) VWC, (4) PLC, or 

(5) Probability of Mortality. Linear models were used for the first three cases given that response 
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variables could be transformed to meet model assumptions. Generalized linear models with 

binomial error distribution (logit link) were used in the last two instances. PLC and probability of 

mortality were expressed on a decimal fraction basis following requirements of models with 

binomial distributions. 

To test whether NSC concentrations, loss of hydraulic conductivity (PLC), and VWC at each 

sampling time predicted population level probability of mortality we used six linear models at 

the whole plant level with the probability of mortality as the response variable. Predictor 

variables for each model were: (1) starch and soluble sugar concentrations; (2) total NSC 

concentrations; (3) PLC; (4) VWC; (5) starch and soluble concentrations and PLC; and (6) total 

NSC and PLC as the explanatory variables. We ran these last two models to test whether the 

combined predictive capacity of hydraulic and carbohydrate variables was similar to the 

predictive capacity of VWC alone given that VWC should integrate both hydraulic failure and 

carbon depletion. VWC was log-transformed to achieve normality. We used Differential Akaike 

Information Criterion (∆AIC) and adjusted R-square values (R2
adj) to rank the models in terms of 

simplicity and predictive power. 

We used segmented linear models using the segmented function from R package 

segmented (Muggeo 2008) to explore potential threshold-type relationships between NSC, PLC 

or VWC and population-level probability of mortality. Given a linear regression model, this 

function tries to estimate a new model with a segmented relationship (the linear function is 

divided into two segments, each with different slope, starting from an initial inflection point 

provided by the user and then identifies the actual inflection point at which the change of slope 

occurs). The model simultaneously optimizes the slopes and inflection point through several 

iterations until a local optima is achieved (Muggeo 2003). As suggested by package instructions, 

initial inflection points were determined by visually inspecting the relationship between 

mortality risk and the variables of interest. We emphasize that thresholds are not meant to 

distinguish dead from living plants, but rather, values of a given explanatory variable above or 

below which the risk of mortality at the population level is no longer zero (incipient mortality 

risk). We used ∆AIC to justify the use of segmented models instead of simple linear models. 

Only segmented models with a ∆AIC equal or greater than 10 were considered to provide a better 

fit for the data (Burnham & Anderson 2004). In those cases, thresholds among tissues and 
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whole-plant were considered significantly different when the confidence intervals of the 

threshold values did not overlap. 

To test whether loss of hydraulic conductivity explained plant water content, we 

performed tissue-level and plant-level linear models with VWC as the response variable and stem 

PLC, root PLC, or plant PLC as predictors. We also assessed the relationship between NSC and 

VWC. Because under drought and minimal carbon supply, consumption of NSC storage for 

metabolic demands is expected, a positive relationship between NSC and VWC could simply 

reflect that both variables independently responded to drought. To test whether NSC 

concentrations directly affected tissue or plant water content, we first performed two sets of 

tissue and plant-level linear models with VWC and NSC as the response variables and soil water 

potential as predictor. Then, we tested whether the residuals from the relationships of VWC vs 

soil water potential were related to those from the relationship of NSC vs soil water potential, 

thus removing the direct effect of drought on each variable. 

 

RESULTS 

Soil water potential decreased with time in drought-stressed seedlings (Fig. 3a, R2
adj = 

0.82, p < 0.001, Table S1). The first signs of DIM did not appear until day 34 after the onset of 

drought (Fig. 3a), after which the probability of mortality increased over time (p = 0.005, Table 

S1). Whole-plant percent loss of conductivity (PLC) was still low at day 40 but increased sharply 

over time in drought-stressed seedlings (Fig. 3b, p = 0.028, Table S1) with plants reaching 50% 

loss of conductivity by approximately day 50. Both whole-plant total NSC concentrations and 

VWC decreased over time (R2
adj = 0.09, p = 0.044 and R2

adj = 0.74, p < 0.001 respectively, Table 

S1). NSC declined linearly over time (Fig. 3c) while VWC declined non/linearly (Fig. 3d). The 

observed decrease in NSC was driven by a decline in starch (plant: R2
adj = 0.33, p < 0.001; 

needles: R2
adj = 0.18, p = 0.005; stem: R2

adj = 0.47, p < 0.001; roots: R2
adj = 0.48, p < 0.001; Fig. 

S1), which offset an increase in soluble sugars (plant: R2
adj = 0.62, p < 0.001; needles: R2

adj = 

0.06, p = 0.08; stem: R2
adj = 0.51, p < 0.001; roots: R2

adj = 0.53, p < 0.001; Fig. S1).  

VWC at each sampling time was negatively related to the probability of mortality (R2
adj = 

0.90, p < 0.001), both at the whole plant (Fig. 4 main) and organ level (Fig. S2, Table S2 & S3). 

PLC and NSC were positively and negatively related, respectively, to the probability of mortality 

(R2
adj = 0.82, p < 0.001 and R2

adj = 0.14, p < 0.009, respectively). However, only PLC was a 
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good predictor of mortality based on R2
adj (Figs. 4 inset, S3 & Table S2). Segmented models 

identified thresholds for incipient mortality for VWC (VWC value below which the risk of 

mortality was no longer zero and started to increase rapidly), but failed to find such thresholds 

for PLC and NSC (Fig. 4, Table S3). These results are robust to differences in sample size among 

explanatory variables and to the uncertainty in PLC estimates generated by using different sets of 

individuals to measure native and maximum conductivity/conductance (SI Methods S2, S3). 

When VWC was assessed at the organ level, needles and roots also showed a threshold-type 

response (Fig. S2 & Table S3). Thresholds in needles and roots were not significantly different 

despite the observed variability among tissues due to differences in VWC at full turgor.  

PLC increased as soil water potentials decreased (plant: Adjusted R2 = 0.39, p = 0.002; 

stem: R2
adj = 0.39, p = 0.002; roots: R2

adj = 0.33, p = 0.005), and VWC was strongly related to 

PLC in all organs and at the whole plant level (plant: R2
adj = 0.74, p < 0.001; stem: R2

adj = 0.54, p 

< 0.001; roots: R2
adj = 0.52, p < 0.001) (Fig. 5, Table S4a). VWC was also correlated with NSC 

depletion (Fig. S4), as both decreased with drought. The residuals from the relationship of VWC 

vs soil water potential and those from the relationship of NSC vs soil water potential were 

positively correlated (plant: R2 = 0.67, p < 0.001; needles: R2 = 0.20, p = 0.041; roots: R2 = 0.21, 

p = 0.024) (Fig. 6b & Table S4a), indicating that VWC and NSC were related independent of soil 

water potential (see statistical analyses section for rationale behind this analysis).  Contrary to 

expectations, however, the effect of NSC on VWC was driven by starch, not by soluble sugars 

(Fig. 6b & Table S4b) as supported by the lack of a significant relationship between sugar 

residuals and VWC residuals (Fig. 6b).  

 

DISCUSSION 

Our experimental design based on the point of no return allowed us to identify PLC and 

VWC, both at the whole plant (Fig. 4 main) and organ levels (Fig. S2, Table S2 & S3), as 

excellent indicators of DIM risk. While PLC indicates mortality risk (see below), the ability of 

VWC to predict incipient mortality risk is particularly relevant because VWC can be measured 

remotely (Mirzaie et al. 2014; Veysi et al. 2017), which opens a promising avenue for 

monitoring DIM risk at large spatial scales. 

The threshold-like response of VWC (Fig. 4 main and Fig S2) or other water content-

related variables is expected based on physiological principles: DIM risk is low over ranges of 



16 

 

water content sufficient to maintain turgor, but may increase substantially as tissue water 

contents decrease below values leading to turgor loss. Although plants can recover from 

temporary turgor loss, continued decreases of water content below turgor loss may increase the 

risk of irreversible turgor loss due to cellular damage. Because widespread and permanent loss of 

turgor in living cells unavoidably leads to tissue or plant death, variables related to water pools 

have the potential to signal incipient DIM risk thresholds across species (Martínez-Vilalta et al. 

in review), a much-needed feature for mortality risk assessment across communities (Hartmann 

et al. 2018).  

A critical advantage of adding water content in our toolkit and current framework for 

assessing  DIM is that it can be measured across scales ranging from organs to ecosystems via 

remote sensing (Saatchi & Moghaddam 2000; Ceccato et al. 2001; Ullah et al. 2014; Ma et al. 

2016; Fang et al. 2017; Konings et al. 2017). Remotely-sensed water content has been linked to 

forest mortality across diverse forest types (Saatchi et al. 2013; Asner et al. 2015). In contrast, 

PLC is more difficult to measure at large spatial scales, and values leading to mortality are 

variable across organs and species (Tyree et al. 2003; Brodribb & Cochard 2009; Choat et al. 

2012; Urli et al. 2013). Therefore, water content may offer improved potential for monitoring 

DIM risk across scales, especially if water content thresholds leading to DIM risk prove to be 

consistent across species and plant types.  

PLC has also been shown to cause a DIM threshold-like response at the individual 

(Brodribb & Cochard 2009; Urli et al. 2013) and population levels (Barigah et al. 2013). 

However, in our study PLC did not signal incipient mortality risk  (i.e., the relationship between 

PLC and probability of mortality was linear rather than showing an inflection point that 

distinguishes healthy from at-risk plants) (Fig. 4, Table S3). Caution is needed before drawing 

conclusions based on our data because the removal of faulty PLC values at days 0 and 34 and 

estimations of PLC based on population-level Kmax could have biased the results. However, our 

sensitivity analysis indicate that our results are robust to differences in sample size among 

explanatory variables and to the uncertainty in PLC estimates generated by using different sets of 

individuals to measure Kmax (SI Methods S2, S3). Additionally, the lack of an incipient PLC 

threshold is unlikely to be caused by variability in PLC among individuals given that such 

variability also exists in VWC. Yet, segmented regressions detected a mortality threshold for 

VWC, even after removing VWC values at days 0 and 34 of drought (the period with no PLC 
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measurements; see methods S2). These results tentatively suggest that water content-related 

variables have threshold-type responses and may be good indicators of incipient mortality risk. It 

is important to note that while our sensitivity analyses did not support a threshold response for 

PLC, PLC thresholds may occur at other life stages, populations, or species as suggested by the 

results in Barigah et al.( 2013). The critical point is not which variables are or are not good 

indicators of incipient mortality risk, but which are more useful and for what purpose. While 

others have shown that water content is linked to drought mortality (Kursar et al. 2009), this 

study is the first to show that water content can distinguish populations at no risk of drought 

mortality from those at risk (i.e. incipient mortality risk), a critical property for monitoring 

purposes. Because water content can be measured remotely at large scales, if corroborated in 

other species, our results in ponderosa pine have important implications for large scale 

applications if corroborated in other species.  

 

Our results also support that water content integrates the diverse mechanisms leading to 

drought mortality. When stomata close under drought, plant water content depends on losses via 

cuticular conductance and stomatal leakiness, along with the water supply through the vascular 

system (Blackman et al. 2016). Consistently, VWC was strongly related to PLC in all organs and 

at the whole plant level (Fig. 5, Table S4a). VWC also decreased significantly with NSC 

depletion (Fig. S4), which occurred as the drought intensified and starch concentration 

decreased, likely as a result of decreased supply via photosynthesis (Fig. S1). In contrast, soluble 

sugars, the osmotically active component of NSC, increased during drought (Fig. S1), a common 

response (Martinez-Vilalta et al. 2016). Critically, VWC residuals and NSC residuals were tightly 

related indicating that NSC storage is involved directly or indirectly in tissue water retention 

capacity independent of direct drought effects on both variables. Contrary to expectations, 

however, the effect of NSC on VWC was driven by starch, not by soluble sugars (Fig. 6b & Table 

S4b). Such a response was unexpected if the role of NSC on water relations is via the supply of 

compatible solutes for osmotic adjustment. It could be that the actual osmotic components are 

not the compounds we measured (glucose, fructose and sucrose) and were conflated with starch 

by the digestion method. This can occur because amyloglucosidase does not specifically target 

starch but rather glucose chains regardless of chain length. Thus, small molecules containing 

glucose units such as trioses (which have significant osmotic potential) could be partially or fully 
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digested during the starch digestion step and misclassified as starch. Alternatively, NSC could 

serve as an energy source for the active accumulation of inorganic solutes (White & Broadley 

2001; Plett & Møller 2010). Overall, our results at the whole plant and tissue level show that 

metrics of water content accurately capture the progressive dehydration leading to desiccation 

that occurs during the process of DIM (Tyree et al. 2003; Saiki, Ishida, Yoshimura & Yazaki 

2017). Plants regulate water content by preventing loss of hydraulic conductivity or PLC, 

enhancing retention (including capacitance), and reducing water loss (Meinzer, Clearwater & 

Goldstein 2001) (Fig. 1). We find that both water supply (PLC) and NSC influence VWC, and 

that failure to maintain water content above certain thresholds increases risk of death (Fig. 1). 

The incorporation of water content-related variables advances our current conceptual framework 

for predicting DIM based on hydraulic failure and carbon starvation (Mcdowell et al. 2008): 

water content integrates important aspects of the two mechanisms (Figs. 5 & 6) and provides a 

metric to which living cells respond directly (Zhu 2016; Sack et al. 2018). Consistent with recent 

evidence (Adams et al. 2017), our results show that hydraulic failure (i.e., the water supply) has 

a dominant effect on DIM relative to NSC storage depletion (i.e., water retention capacity) (Fig. 

4 inset; Fig. S3 &Table S2). The degree to which hydraulic failure and NSC depletion contribute 

to changes in plant water balance likely varies across species but such variability is potentially 

captured by water content variables. Thus, water content variables may provide more consistent 

relationships with mortality risk across species than PLC or NSC alone because they integrate the 

two.  

 

The expected increase in DIM under climate change has large ecological, economic, and 

social implications (Stocker et al. 2015). Despite intense research, the lack of physiological 

indicators with incipient DIM thresholds measurable at large scales, and our limited 

understanding of the interaction between hydraulic failure and carbon depletion have hindered 

our ability to accurately model and monitor DIM risk (Hartmann et al. 2018).  We provide 

experimental evidence that plant water content, a variable scalable from organs to the whole 

plant and detectable through remote sensing (Saatchi et al. 2013; Asner et al. 2015; Konings et 

al. 2017), is a good indicator of DIM risk and shows a threshold response (i.e. detects incipient 

mortality risk). We also provide evidence that water content integrates the mechanisms of 

mortality. While our results have important implications for large scale monitoring of DIM risk, 
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much research is needed to: i) corroborate our results in other species; ii) test the consistency of 

incipient mortality thresholds in water content variables such as relative water content, which 

standardizes differences in VWC across species, iii) examine similar thresholds from remotely 

sensed data concurrent with drought mortality data, and iv) integrate dynamics of vegetation 

water content in systems with multiple species and plant growth strategies. We hope our results 

will motivate such work. 
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FIGURES 

 

Fig 1. A framework of drought-induced mortality (DIM) focused on plant water content. 

Plants experience dehydration when water supply is insufficient to replace water loss leading to 

water deficit. Consequently, xylem tension increases, leading to embolism formation (hydraulic 

failure). Likewise, stomatal closure eventually leads to carbon depletion during long periods of 

drought. Loss of hydraulic function and carbon depletion further limit water supply and retention 

capacity of tissues leading to inability to maintain water balance, loss of turgor/desiccation and 

death. Black text indicates variables of interest. Grey text indicates DIM mechanisms. Solid 

arrows link variables within a given mechanism. Dashed arrow indicates potential (but still 

controversial) interactions between non-structural carbohydrates and hydraulic conductivity (e.g. 

embolism repair processes). 
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Fig 2. Experimental drought design based on changes in soil volumetric water content 

(VWCs). All seedlings used for the experiment were drought pre-conditioned in four consecutive 

dry down cycles. The first three lowered the VWCs to 50% of field capacity, while the last one to 

25% of field capacity. After the last pre-conditioning dry down, five seedlings were kept at field 

capacity (dark blue) and the rest received no watering (orange). Dark blue represent controls 

subjected to drought pre-conditioning but kept well-watered through the final dry-down. Orange 

arrows represent when drought-treated seedlings were measured and the corresponding mortality 

assessment was conducted (by re-watering a random, independent sample of seedlings). Blue 

arrows indicate when measurements in control seedlings were done. 
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Fig 3. Dynamics of drought intensity, population-level mortality, and whole-plant 

physiological state over time. Panel A: Probability of mortality (blue) increased after day 34 of 

drought. Soil water potentials (orange) decreased over time. Panel B: Significant increases of 

percent loss of conductivity (i.e. PLC= 50%) occurred several days after first cases of mortality. 

Panel C: Non-structural carbohydrate concentrations decreased over time. Panel D: Volumetric 
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water content experienced a rapid decline once mortality started. Open circles and corresponding 

dashed lines indicate control groups. Solid regression lines in panels a b and d are loess 

functions. The regression line in panel c is a linear function. These functions were chosen to best 

represent the natural behavior of each variable (see Table S1 for statistics). Vertical lines indicate 

onset of mortality.  

 

 

Fig 4. Plant-level volumetric water content (VWC) predicts mortality risk and shows a 

threshold response (i.e. identifies a threshold of incipient DIM risk) based on segmented 

linear regression. Probability of mortality increases sharply after the population reaches VWC 

values above ca. 45%. Percent loss of conductivity (PLC) also predicts mortality risk, but in 

contrast to VWC, the response is linear over the full range of PLC (inset). Each point corresponds 

to one plant (n=5 for each probability of mortality with some points overlapping). 
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Fig 5. Plant-level volumetric water content (VWC) decreases as water supply capacity is lost 

(measured as the percent loss of conductivity, PLC). The response is similar across all 

measured tissues (stems: orange, roots: brown) and at the whole plant level (blue). Adjusted R2 

values range from 0.52 to 0.74 (Table S4a). Shaded areas represent 95% confidence intervals of 

the regression lines. 
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Fig 6. Water retention capacity depends on NSC storage. The positive correlation between 

the residuals of the regression between plant-level volumetric water content (VWC) vs. soil water 

potential (WP) and those between non-structural carbohydrates (NSC) vs. soil water potential 

indicates that for a given soil WP, if NSCs were higher than expected, then VWC was also higher 

than expected. A) Relationship between VWC (top), starch concentrations (middle), and Total 

NSC concentrations (bottom) and Soil Water Potential. B) Residuals of the relationship between 

volumetric water content and Soil Water Potential as a function of residuals of the relationship 

between NSC and Soil Water Potential (purple), and between Starch and Soil Water Potential 

(dark green) in needles (top), roots (middle) and at the whole plant level (bottom). Carbohydrate 

contents are represented as percentage of dry mass. Only significant regressions are shown and 

NSC components for which there was no significant relationship (glucose + fructose and sucrose) 

are not shown. Shaded areas are 95% confidence intervals of the regression lines. P-values in 

residual analyses ranged between less than 0.001 and 0.04 and adjusted R2 values ranged 

between 0.20 and 0.68 (Table S4a & S4b). 
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SUPPORTING INFORMATION 

Methods S1 R code for measuring Hydraulics conductivity and conductance. 

#########Sensirion SLI-0430 Flow Meter Data Retriever ############ 

 

###Author: Gerard Sapes 

 

#####DESCRIPTION:#######  

#This program calculates the initial background flow, pressurized flow and 

final background flow values needed to  

#calculate hydraulic conductivity and conductance. The program also provides 

a flow stability criteria based on three measures: 

#The change in flow (Delta flow), the change in standard deviation 

(DeltaSDflow), and the slope over the last 1200 values (ca.70 seconds).  

#You can specify the threshold value at which you consider that the flow is 

steady and ready to be recorded. 

#The program is built for Sensirion sensors. 

 

#Travels through all the Sensirion CSV datafile. If initial background flow 

hasn't been recorded, finds the position  

#where the timescale is trunkated, calculates initial background flow as the 

mean of the last 300 values and changes the  

#initial background flow status to TRUE. If initial background flow has been 

calculated but pressurized flow has not, 

#the program travels to the next trunkated point and calculates pressurized 

flow as the mean of the last 300 values 

#and changes pressured flow status to TRUE. If pressurized flow has been 

calculated but final background flow has not, 

#the program travels to the next trunkated point and calculates final 

background flow as the mean of the last 300 values  

#and changes final background flow status to TRUE. 

 

######Instructions 

#1- Enter the directory path and the name of the files you will create with 

the sensors. They should match the name you gave 

#them in the sensor interface.  

#2-Once, the plant tissue is connected to the apparatus, set the sensors to 

RUN and to START logging. 

#3-Set valves so that flow only travels through the plant tissue AND without 

any pressure coming from the reservoir. 

#4-Wait for at least 70 seconds before running the code or you will get an 

error message. 

#5-Keep running the code to check the stabilization criteria until your 

thresholds are met. Then, PAUSE logging to record  

#initial background flow. 

#6-Open valves so that water flows pressurized from the reservoir to the 

plant tissue. Then CONTINUE logging. 

#7-Keep running the code to check the stabilization criteria until your 

thresholds are met. Then, PAUSE logging to record  

#Pressurized flow. 

#8-Close valves so that water stops flowing from the reservoir nor the 

vertical tubing. Open the loop valves momentarily 

#to release the remaining pressure existing between the vertical tube and the 

plant tissue. Then close the valves again 
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#so that water only flows through the plant tissue at no pressure. Then 

CONTINUE logging. 

#9-Keep running the code to check the stabilization criteria until your 

thresholds are met. Then, PAUSE logging,  

#wait for at least a second, and CONTINUE logging again to record final 

background flow. 

 

#####Considerations 

#The program needs a minimum amount of 1200 values in the CSV file before 

correctly reporting stability criteria. Wait a couple 

#of minutes from the moment you start loging for the program to start working 

properly. If you do not wait enough 

#you will receive an error message. 

 

#Because of how I constructed the loop, the results are reported 3 times for 

each sensor as the measurements are taken... but 

#it's a free software so we can tolerate this right? :)  

 

##Packages 

library(ggplot2) 

library(Rmisc) 

 

##############Hydroflow Function############# 

  

hydroflow <- 

function(data,filename,stable_deltaflow,stable_deltaSDflow,stable_slope.Ymin,

Ymax){ 

   

  ##Loading CSV file and preparing data to graph 

   

  colnames(data) <- c('Sample','Time','Flow_rate') 

  data$Time <- as.numeric(gsub(",","", data$Time)) 

  data$Relative_Time <- data$Time-data$Time[1] 

  x<- data$Relative_Time 

  y<- data$Flow_rate  

   

  SampleID <- paste('Sample ID:', filename) 

   

  ##Initial Checkpoint statuses 

  initial_bg_status <- F 

  pressured_flow_status <- F 

  final_bg_status <- F 

   

  ##Stabilization criteria 

   

  #Calculates change in flow during the last ca. 70 seconds. When delta 

approximates 0 flow has stabilized  

  # and measurements can be taken. The range of values used to calculate 

delta is shown in purple on the graph 

   

  deltaflow <- mean(y[(length(y)-600):length(y)])-mean(y[(length(y)-

1200):(length(y)-600)])  

   

  if (deltaflow >= stable_deltaflow | deltaflow <= -stable_deltaflow){    

    deltaflow_status <- 'UNSTABLE' 

  } else { 

    deltaflow_status <- 'OK' 
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  } 

   

  #Calculates change in standard deviation of flow during the last ca. 70 

seconds. When delta approximates 0 flow has stabilized  

  # and measurements can be taken. The range of values used to calculate 

delta is shown in purple on the graph 

   

  deltasdflow <- sd(y[(length(y)-600):length(y)])-sd(y[(length(y)-

1200):(length(y)-600)])  

   

  if (deltasdflow >= stable_deltaSDflow | deltasdflow <= -

stable_deltaSDflow){    

    deltaSDflow_status <- 'UNSTABLE' 

  } else { 

    deltaSDflow_status <- 'OK' 

  } 

  #Calculates the slope in the graph for the last ca. 70 seconds. When slope 

approximates 0 flow has stabilized  

  # and measurements can be taken. The range of values used to calculate the 

slope is shown in purple on the graph 

   

  slopefile <- data[(length(y)-1200):length(y),] 

  n <- nrow(slopefile) 

  xy <- x*y 

   

  slope <- (n*sum(xy)-sum(x)*sum(y)) / (n*sum(x^2)-sum(x)^2) 

   

  if (slope >= stable_slope | slope <= -stable_slope){    

    slope_status <- 'UNSTABLE' 

  } else { 

    slope_status <- 'OK' 

  } 

   

  #Calculates the average flow in the graph for the last ca. 70 seconds. The 

range of values used to calculate the  

  #slope is shown in purple on the graph. 

   

  meanflow <- mean(y[(length(y)-1200):length(y)]) 

   

  ##Plotting data 

   

  graph<- ggplot(data, aes(x=data[,4], y=data[,3]), environment = 

environment()) + 

    geom_line(aes(group=1), colour='#33CC00') + 

    ylab('Flow rate (ul/min)') + 

    xlab('Time (seconds)') + 

    theme_bw() +   

    theme(panel.border = element_blank(), panel.grid.major = element_blank(),  

          panel.grid.minor = element_blank(), axis.line = element_line(colour 

= "black"), 

          plot.title = element_text(lineheight = .8,face='bold')) + 

    ggtitle(filename)  

   

  graph + geom_vline(xintercept = x[length(x)],colour='purple') + 

    geom_vline(xintercept = x[length(x)-1200],colour='purple') 

   

  ##Scanning for background and pressured flow values 
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  for (i in 2:length(x)){ 

    if (initial_bg_status == F && x[i]-x[i-1]>= 1){    

      initial_bg <- mean(y[i-1]:y[i-301])             

      InBGFlow_rows <- paste('Initial Background Flow measured using 

rows:',i-301,'-', i-1,'(Light Blue)') 

      graph <- graph + coord_cartesian(ylim = c(Ymin, Ymax)) + 

geom_vline(xintercept = x[i-301],colour='light blue') + 

        geom_vline(xintercept = x[i-1],colour='light blue') 

       

      InBGFlow <- paste('Initial Background Flow is:', initial_bg) 

       

      writeLines(paste('---------------------------------------------','\n---

------------------------------------------', 

                       '\n\n',SampleID,'\n\n','Flow Stabilization criteria 

(based on last ca. 70 secs):\n\nDelta Flow is:', 

                       deltaflow, '   ', deltaflow_status,'\nDelta SD Flow 

is:',deltasdflow, '   ',deltaSDflow_status, 

                       '\nSlope is:',slope, '   ', 

slope_status,'\n\n','Current flow is:',meanflow,'\n\n','------------RESULTS--

----------', 

                       '\n\n', InBGFlow_rows,'\n\n', InBGFlow)) 

       

      initial_bg_status <- T 

      i<-i+1     

       

    } else if (initial_bg_status == T && pressured_flow_status == F && x[i]-

x[i-1]>= 1){ 

      pressured_flow <- mean(y[i-1]:y[i-301])  

      PFlow_rows <- paste('Pressured Flow measured using rows:',i-301,'-', i-

1,'(Dark Blue)') 

      graph<- graph + geom_vline(xintercept = x[i-301],colour='dark blue') + 

        geom_vline(xintercept = x[i-1],colour='dark blue') 

      PFlow <- paste('Pressured Flow is:',pressured_flow)                                         

       

      writeLines(paste('---------------------------------------------','\n---

------------------------------------------', 

                       '\n\n',SampleID,'\n\n','Flow Stabilization criteria 

(based on last ca. 70 secs):\n\nDelta Flow is:', 

                       deltaflow, '   ', deltaflow_status,'\nDelta SD Flow 

is:',deltasdflow, '   ',deltaSDflow_status, 

                       '\nSlope is:',slope, '   ', 

slope_status,'\n\n','Current flow is:',meanflow,'\n\n','------------RESULTS--

----------', 

                       '\n\n', InBGFlow_rows,'\n', PFlow_rows,'\n\n', 

InBGFlow,'\n', PFlow)) 

       

      pressured_flow_status <- T                                     

      i<-i+1      

       

    } else if (pressured_flow_status == T && final_bg_status == F  && x[i]-

x[i-1]>= 1){ 

      final_bg <- mean(y[i-300]:y[i-1]) 

      FiBGFlow_rows <- paste('Final Background Flow measured using rows:',i-

300,'-', i-1,'(Light Blue)') 

      graph<- graph + geom_vline(xintercept = x[i-300],colour='light blue') + 

        geom_vline(xintercept = x[i-1],colour='light blue') 
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      FiBGFlow <- paste('Final Background Flow is:',final_bg) 

       

      writeLines(paste('---------------------------------------------','\n---

------------------------------------------', 

                       '\n\n',SampleID,'\n\n','Flow Stabilization criteria 

(based on last ca. 70 secs):\n\nDelta Flow is:', 

                       deltaflow, '   ', deltaflow_status,'\nDelta SD Flow 

is:',deltasdflow, '   ',deltaSDflow_status, 

                       '\nSlope is:',slope, '   ', 

slope_status,'\n\n','Current flow is:',meanflow,'\n\n','------------RESULTS--

----------', 

                       '\n\n', InBGFlow_rows,'\n', PFlow_rows,'\n', 

FiBGFlow_rows,'\n\n', InBGFlow,'\n', PFlow,'\n', FiBGFlow)) 

       

      final_bg_status <- T 

      i<-i+1   

       

    } else if (initial_bg_status == F && i==length(x)){ 

       

      writeLines(paste('---------------------------------------------','\n---

------------------------------------------', 

                       '\n\n',SampleID,'\n\n','Flow Stabilization criteria 

(based on last ca. 70 secs):\n\nDelta Flow is:', 

                       deltaflow, '   ', deltaflow_status,'\nDelta SD Flow 

is:',deltasdflow, '   ',deltaSDflow_status, 

                       '\nSlope is:',slope, '   ', 

slope_status,'\n\n','Current flow is:',meanflow,'\n\n')) 

       

    } else { 

      i<-i+1 

    } 

  } 

   

  graph<-graph + geom_vline(xintercept = x[length(x)],colour='purple') + 

    geom_vline(xintercept = x[length(x)-1200],colour='purple') 

   

   

  return(graph) 

   

} 

 

#####User-defined variables###### 

 

##Files 

directory <- 

'D:/Gerard/University_of_Montana/Thesis/Chapter_1/Sensirion_measurements/'   

#Enter the name of the csv file currentlly being created by the Sensirion 

sensor 

 

filename_1 <- 'C8_RMR_1260_Roots.csv' 

filename_2 <- 'C8_CP_47_Roots.csv' 

filename_3 <- 'C8_RMR_180_Roots.csv' 

#Y axis size 

Ymax <- 10  # Enter the expected maximum value of flow here to better 

visualize your graph 

Ymin <- -1 # Enter the expected minimum value of flow here to better 

visualize your graph 
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##Stability Thresholds 

stable_deltaflow <- 0.1  # Enter the maximum change in flow over 70 secs. 

that you consider acceptable as STABLE 

stable_deltaSDflow <- 0.04 # Enter the maximum change in standard deviation 

of flow over 70 secs. that you consider acceptable as STABLE 

stable_slope <- 0.05  # Enter the minimum slope over 70 secs. that you 

consider acceptable as STABLE 

 

#############Program############# 

#Loading Data 

 

data_sensor_1 <- read.csv(paste(directory,filename_1,sep=''),header=T, 

sep=",", dec='.') 

data_sensor_2 <- read.csv(paste(directory,filename_2,sep=''),header=T, 

sep=",", dec='.') 

data_sensor_3 <- read.csv(paste(directory,filename_3,sep=''),header=T, 

sep=",", dec='.') 

 

#Calling function 

 

#interval = 120 

#repeat { 

#  startTime = Sys.time() 

#   

sensor_1 <- 

hydroflow(data_sensor_1,filename_1,stable_deltaflow,stable_deltaSDflow,stable

_slope.Ymin,Ymax) 

sensor_2 <- 

hydroflow(data_sensor_2,filename_2,stable_deltaflow,stable_deltaSDflow,stable

_slope.Ymin,Ymax) 

sensor_3 <- 

hydroflow(data_sensor_3,filename_3,stable_deltaflow,stable_deltaSDflow,stable

_slope.Ymin,Ymax) 

 

#Plotting 

 

if (exists("sensor_1") == T && exists("sensor_2") == T && exists("sensor_3") 

== T){    

  multiplot(sensor_1,sensor_2,sensor_3,layout=matrix(c(1,2,3,3), nrow=2, 

byrow=T)) 

  } else if (exists("sensor_1") == T && exists("sensor_2") == T && 

exists("sensor_3") == F){ 

    multiplot(sensor_1,sensor_2,layout=matrix(c(1,1,2,2), nrow=2, byrow=T)) 

  } else if (exists("sensor_1") == T && exists("sensor_2") == F && 

exists("sensor_3") == T){ 

    multiplot(sensor_1,sensor_3,layout=matrix(c(1,1,2,2), nrow=2, byrow=T)) 

  } else if (exists("sensor_1") == F && exists("sensor_2") == T && 

exists("sensor_3") == T){ 

    multiplot(sensor_2,sensor_3,layout=matrix(c(1,1,2,2), nrow=2, byrow=T)) 

  } else if (exists("sensor_1") == T && exists("sensor_2") == F && 

exists("sensor_3") == F){ 

    sensor_1 

  } else if (exists("sensor_1") == F && exists("sensor_2") == T && 

exists("sensor_3") == F){ 

    sensor_2 
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  } else if (exists("sensor_1") == F && exists("sensor_2") == F && 

exists("sensor_3") == T){ 

    sensor_3 

  } else { 

    writeLines(paste('\n\n','Error: Files not found or minimal time needed 

for stabilization routines not met')) 

  } 
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Methods S2. Sensitivity analysis assessing the effects of sample size on threshold detectability. 

We tested the potential effects of sample size on the detection of incipient mortality thresholds in 

VWC by removing VWC data of days 0 and 34 and generating a thousand iterations of the 

segmented regression. We calculated the probability of finding an incipient mortality threshold 

as the number of times that a threshold was found at VWC values associated with mortality risk 

near zero. These regressions still found an incipient threshold in 530 of the thousand iterations 

(53 %) that were ran (Panel B). In the other instances, a threshold was still found but at higher 

mortality. Without removing these data, the incipient threshold was found in 1000 out of a 

thousand iterations (100 %) (Panel A). We also generated a thousand iterations of the segmented 

regression between PLC and probability of mortality to assess the robustness of our findings. 

Accordingly, no incipient mortality threshold was found in any of the iterations (0 %) for PLC 

(Panel C). 

  

A B 

C 
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Methods S3. Sensitivity analysis assessing the effects of maximum conductivity on percent loss 

conductivity values.  

We tested the potential effects of Kmax on the detection of incipient mortality thresholds in PLC by 

simulating Kmax estimates with added uncertainty. We randomly generated a normal distribution of a 

thousand Kmax values with a mean equal to the average K of controls and a standard deviation equal to 

the standard deviation of the mean K of controls. Then, we recalculated PLC for each individual using 

each of the generated Kmax values (1000 PLC estimates per individual were obtained). Finally we run a 

thousand iterations of the segmented regressions using the thousand different sets of PLC values and 

extracted the distribution of threshold values for PLC. This analysis detected an important influence of 

Kmax on low PLC values and a threshold around PLC = 85, corresponding to 63% probability of 

mortality (see figure below). However, no threshold was detected below ca. PLC = 70 in any of the 

thousand iterations of the segmented regression despite the effect of Kmax on the relationship between 

PLC and mortality at low PLC values. Blue points and line indicate actual data. Red points and grey lines 

indicate simulated data. Dashed line and the gradient around it indicate the mean threshold +/- one 

standard distribution for simulated data. 
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Figure S1. Depletion of NSC pools under drought. Non-structural carbohydrate pools (by 

component and total) as function of soil water potential in needles (green), stems (orange), roots 

(brown), and at the whole plant level (blue). Carbohydrate contents are represented as percentage 

of dry mass. Only significant regressions are shown. Shaded areas are 95% confidence intervals 

of the regression line. P-values ranged between less than 0.001 and 0.04 and R2 values ranged 

between 0.13 and 0.73. 
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Figure S2. Volumetric water content predicts mortality across needles (green), stems (orange), 

and roots (brown). Breaking points between mortality and volumetric water content of needles 

and roots did not significantly differ from each other. All p-values were lower than 0.001 and 

adjusted R2 values ranged between 0.69 and 0.78. 

 

 
  



43 

 

Figure S3. NSC and its components are not good predictors of mortality. Carbohydrate contents 

are represented as percentage of dry mass. Left panel: Starch concentrations at the whole plant 

level. Right panel: Total NSC at the whole plant level. Both relationships are significant but 

show low adjusted R2 values.  
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Figure S4. Volumetric water content decreases as non-structural carbohydrates decrease, as 

shown by the relationships between Volumetric Water Content and NSC components in needles 

(green), stems (orange), roots (brown), and at the whole plant level (blue). Carbohydrate contents 

are represented as percentage of dry mass. Regression lines are shown for significant 

relationships only. Shaded areas are 95% confidence intervals of the regression line. P-values 

ranged between less than 0.001 and 0.06 and R2 values ranged between 0.10 and 0.58. 
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Table S1. Models assessing changes in drought intensity, whole-plant physiological status, and population-level mortality over time. 

Full models with non-significant variables not shown. Linear models were used for soil water potential, total NSC, and VWC given 

that response variables could be transformed to meet model assumptions. Generalized linear models with binomial distribution were 

used for PLC and probability of mortality. PLC and probability of mortality where expressed on a per unit basis following 

requirements of models with binomial distributions. 

 

Model and Factors Model type Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
2.5% 97.5% 

Soil Water Potential =Days since Onset of Drought 

LM 

   < 0.001 30 0.82 

Intercept -0.07708 -0.3380643 0.18389813 0.551 - - 

Days since Onset of Drought -0.03699 -0.0433191 -0.0306578 < 0.001 - - 

        

Plant NSC Concentrations = Days since Onset of Drought 

LM 

   0.044 33 0.09 

Intercept 9.31706 7.73983095 10.8942943 < 0.001 - - 

Days since Onset of Drought -0.04214 -0.0829767 -0.0013115 0.044 - - 

        

log(Plant VWC) = Days since Onset of Drought 

LM 

   < 0.001 34 0.74 

Intercept 4.253857 4.09723357 4.41048039 < 0.001 - - 

Days since Onset of Drought -0.01932 -0.0232866 -0.0153490 < 0.001 - - 

        

Plant PLC/100 = Days since Onset of Drought 

GLM 

    16 NA 

Intercept -10.3141 -22.200904 -2.2965819 0.032 - - 

Days since Onset of Drought 0.20603 0.05139158 0.4374114 0.028 - - 

        

Probability of Mortality/100 = Days since Onset of Drought 

GLM 

    40 NA 

Intercept -8.17236 -15.365634 -3.7203390 0.005 - - 

Days since Onset of Drought 0.15000 0.06799845 0.2805273 0.005 - - 
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Table S2. Linear models predicting probability of Mortality as function of PLC, NSC (and its components), and VWC. Models are 

sorted in descending order by best fit and simplicity based on Adjusted R2 and AIC. Full models with non-significant variables (i.e. 

Starch) not shown. 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
AIC 

2.5% 97.5% 

Probability of Mortality = log(Plant VWC)    < 0.001 39 0.87 -68.84 

Intercept 1.95323 1.7363176 2.170149 < 0.001 - - - 

log(Plant VWC) -0.47164 -0.5294125 -0.413869 < 0.001 - - - 

        

Probability of Mortality = Plant PLC + Plant NSC Concentrations    < 0.001 18 0.91 -37.60 

Intercept 0.4664640 0.271083252 0.661844718 < 0.001 - - - 

Plant PLC 0.0046814 0.003337284 0.006025493 < 0.001 - - - 

Plant NSC Concentrations -0.0378331 -0.054587488 -0.021078792 < 0.001 - - - 

        

Probability of Mortality = Plant PLC    < 0.001 20 0.82 -24.46 

Intercept 0.0441359 -0.044440599 0.132712302 0.311 - - - 

Plant PLC 0.0068423 0.005367984 0.008316518 < 0.001 - - - 

        

Probability of Mortality = Plant PLC + Plant Soluble Sugar Concentrations    < 0.001 18 0.80 -20.79 

Intercept 0.0816678 -0.108392585 0.271728185 0.379 - - - 

Plant PLC 0.0066867 0.005125231 0.008248081 < 0.001 - - - 

Plant Soluble Sugar Concentrations -0.0066286 -0.038449437 0.025192299 0.667 - - - 

        

Probability of Mortality = Plant NSC Concentrations    0.009 38 0.14 5.01 

Intercept 0.46 0.2436815 0.676318147 < 0.001 - - - 

Plant NSC Concentrations -0.03137 -0.0544841 -0.008246711 0.009 - - - 

        

Probability of Mortality = Plant Soluble Sugar Concentrations    0.0272 38 0.10 7.05 
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Intercept -0.06602 -0.30213946 0.17009931 0.5747 - - - 

Plant Soluble Sugar Concentrations 0.05100 0.00606307 0.09593456 0.0272 - - - 
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Table S3. Segmented models predicting probability of Mortality as function of VWC and 

their corresponding linear models. Segmented models were only used if their ∆AIC (AIC 

simple linear model – AIC segmented model) was greater than 10 (see reference 38 in main 

document). Otherwise, simple linear regressions were applied. Segmented models for PLC 

and NSC failed to detect breakpoints (i.e. thresholds) and are not included. 

 

Model and Factors Estimate p-value 
Breakpoint 

& C.I. 

d.f. 

(res.) 

Adjusted 

R square 
∆AIC 

Probability of Mortality = Plant VWC  < 0.001 47.3 ± 7.61 37 0.90 27.39 

Intercept 1.021509 < 0.001 - - - - 

Plant VWC -0.021226 < 0.001 - - - - 

U1. Plant VWC 0.020380 NA - - - - 

       

Probability of Mortality = Needle VWC  < 0.001 38.3 ± 11.89 36 0.69 13.85 

Intercept 0.819363 < 0.001 - - - - 

Needle VWC -0.018840 < 0.001 - - - - 

U1. Needle VWC 0.017309 NA - - - - 

       

Probability of Mortality = Stem VWC  < 0.001 Not detected 39 0.75 0 

Intercept 0.870377 < 0.001 - - - - 

Stem VWC -0.014966 < 0.001 - - - - 

       

Probability of Mortality = Root VWC  < 0.001 27.9 ± 3.67 38 0.78 26.76 

Intercept 1.496336 < 0.001 - - - - 

Root VWC -0.046331 < 0.001 - - - - 

U1. Root VWC 0.042396 NA - - - - 
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Table S4a. Significant linear models predicting VWC as function of PLC and NSC for each tissue and at the whole plant level. 

 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
2.5% 97.5% 

Plant VWC= Plant PLC    <0.001 20 0.74 

Intercept 51.18226 45.1871346 57.1773949 <0.001 - - 

Plant PLC -0.37327 -0.4730545 -0.2734885 <0.001 - - 

       

Stem VWC = Stem PLC    <0.001 19 0.54 

Intercept 51.60841 43.0292752 60.1875516 <0.001 - - 

Stem PLC -0.27180 -0.3874893 -0.1561097 <0.001 - - 

       

Root VWC = Root PLC    <0.001 20 0.52 

Intercept 52.52591 42.5576402 62.4941876 <0.001 - - 

Root PLC -0.41544 -0.5941348 -0.2367427 <0.001 - - 

       

Residuals Plant VWC vs Soil WP = Residuals Plant NSC vs Soil WP    <0.001 16 0.67 

Intercept 2.758e-16 -3.345780 3.345780 1 - - 

Residuals Plant NSC vs Soil WP 3.318 2.142986 4.493076 <0.001 - - 

       

Residuals Needle VWC vs Soil WP = Residuals Needle NSC vs Soil WP    0.037 16 0.20 

Intercept 5.267e-16 -8.4602577 8.460258 1 - - 

Residuals Needle NSC vs Soil WP 1.755 0.1189953 3.390435 0.037 - - 

       

Residuals Root VWC vs Soil WP = Residuals Root NSC vs Soil WP 

Intercept 
 

5.270e-17 

 0.0314 

1 

16 

- 

0.21 

- -6.1267231 6.1267231 

Residuals Root NSC vs Soil WP 2.636 0.2663532 5.005323 0.0314 - - 
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Table S4b. Significant linear models predicting VWC as function of Starch. Soluble sugars did not show a significant relationship 

with VWC in any tissue. 

 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 2.5% 97.5% 

Residuals Plant VWC vs Soil WP = Residuals Plant Starch vs Soil WP    <0.001 16 0.66 

Intercept -3.977e-17 -3.406275 3.406275 1 - - 

Residuals Plant Starch vs Soil WP 3.448 2.194836 4.701916 <0.001 - - 

       

Residuals Needle VWC vs Soil WP = Residuals Needle Starch vs Soil WP    0.003 16 0.39 

Intercept 3.359e-16 -7.3687150 7.3687150 1 - - 

Residuals Needle Starch vs Soil WP 2.241 0.8642181 3.617169 0.003 - - 

       

Residuals Root VWC vs Soil WP = Residuals Root Starch vs Soil WP    <0.001 16 0.68 

Intercept 9.866e-17 -3.886078 3.886078 1 - - 

Residuals Root Starch vs Soil WP 5.813 3.803182 7.822944 <0.001 - - 
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CHAPTER 2: INTRASPECIFIC VARIATION IN MORPHOLOGY AND 

PHYSIOLOGY INFLUENCES INDICATORS OF DROUGHT-INDUCED 

MORTALITY RISK 

ABSTRACT 

Widespread drought-induced forest mortality (DIM) is expected to increase with climate change 

and drought, with major impacts on carbon and water cycles. Anticipating and predicting the 

global impacts of DIM requires large-scale assessments of DIM risk but indicators that can 

accurately predict DIM risk across the landscape are rare. The main challenge that large-scale 

assessments of DIM risk face is finding indicators that predict DIM risk regardless of variation in 

morphology and physiology across the landscape. We assessed whether intraspecific variation in 

morphology and physiology among Pinus ponderosa populations translates into variation in 

incipient mortality thresholds or predictive power of water potential, percent loss of conductivity 

(PLC), and relative water content (RWC). We found that intraspecific variation can significantly 

influence incipient mortality thresholds and predictive power in PLC. However, water potential 

and RWC showed consistent incipient mortality thresholds and high predictive power among 

populations and across organs. Both water potential and RWC are promising candidates for 

large-scale assessments of DIM risk. RWC is of special interest because it integrates different 

physiological drivers of DIM, allows comparisons across species, and can be remotely sensed. 

Our results offer promise for landscape level monitoring of DIM risk. 

 

INTRODUCTION 

Drought-induced forest mortality (DIM) is a major cause of forest die-off and is expected 

to increase in many regions (both in frequency and intensity) with climate change (Dai 2013; 

Trenberth et al. 2014; Greenwood et al. 2017). Increases in DIM are expected to severely impact 

carbon cycles, species distributions, the economy, and global climate feedbacks (Stocker et al. 

2013). Anticipating (for the purposes of active management) and predicting the global impacts of 

DIM requires large-scale monitoring of DIM risk that provide early warning signals. However, 

large-scale assessments of DIM risk are rare and lack accuracy, in part, because we lack 

information on the properties of potential indicators (Hartmann et al. 2015). Ideally, accurate, 

large-scale indicators of DIM risk should i) consistently predict DIM risk across plants of 
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varying morphology, physiology, and drought strategies and ii) distinguish healthy populations 

(no risk) from those at risk of DIM (i.e., should show an incipient mortality threshold) (Martinez-

Vilalta et al. in review). Thus, the first step towards accurate large-scale monitoring of DIM risk 

is identifying which indicators show consistent incipient mortality thresholds and high predictive 

power. 

Mortality thresholds and the predictive power of DIM risk indicators can vary due to 

morphological and physiological variation within and among species. Under drought, plants 

avoid lethal desiccation by continuously supplying water to critical living tissues, preventing 

water loss, or both. Plants can maintain water supply through a variety of strategies including 

deep root systems (Matías, González-Díaz & Jump 2014), using stored water (i.e., drought-

avoidant) (Mcculloh et al. 2014), or by developing embolism-resistant xylem that prevents 

emboli formation and interruption of water transport under water deficit (i.e., drought-tolerant) 

(Maherali & Pockman 2004). Similarly, plants can prevent water loss by reducing canopy area 

(Daubenmire 1972) and stomatal conductance (Meinzer et al. 2016) or by retaining water under 

water deficit through osmotic adjustment (Subbarao et al. 2000). Given that plants combine 

multiple strategies to maintain water balance (Wright et al. 2004; Mencuccini et al. 2015), DIM 

indicators that do not reflect their combined integrative effect may show less consistent incipient 

mortality thresholds and predictive power among plants with varying strategies. Further, 

thresholds and predictive power can also vary among species and populations as a function of 

individual variation. Species or population thresholds will be clearly distinguishable if all 

individuals exhibit the same mortality threshold and threshold consistency (or lack of thereof) 

will be easily detected (Martinez-Vilalta et al. in review). In turn, low variation in mortality 

thresholds among individuals should also result in high predictive power as mortality is expected 

at similar values for all individuals. Thus, we need to assess individual variability among 

populations and species to determine whether a given variable is a suitable indicator of DIM risk 

at large scales. 

While the morphological and physiological traits involved in drought survival strategies 

vary widely both among and within species, research has mostly focused on the importance of 

variation among species (Bartlett, Scoffoni & Sack 2012; Choat et al. 2012). However, studies 

have shown that mortality rates under drought not only depend on species’ traits but also on 

intraspecific variation in traits and drought strategies (Cregg 1994; Tognetti, Michelozzi & 
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Giovannelli 1997; Sergent et al. 2014; Garcia-Forner et al. 2016). Thus, depending on the type 

of indicator used, intraspecific variation across a species’ range may affect the mortality 

thresholds and predictive power of variables that indicate DIM risk. For this reason, assessments 

of the relative consistency and predictive power of candidate variables are necessary to identify 

useful large-scale indicators of DIM risk.  

Water potential is a commonly used indicator of DIM (Choat et al. 2012) and has been 

extremely useful to understand water transport across the soil-plant-atmosphere continuum 

(Sperry & Love 2015) and develop species-specific models of DIM risk (Simeone et al. 2018; 

Venturas et al. 2018). Additionally, water potential can detect turgor loss, a process that precedes 

cellular damage and plant death in many plants (Guadagno et al. 2017) (but see resurrection 

plants). However, species vary widely in their ability to tolerate low water potentials (Bartlett et 

al. 2012; Choat et al. 2012) and water potential thresholds for incipient mortality are therefore 

likely to vary across species. Similarly, just as it occurs among species, lethal water potential 

thresholds may vary among populations with different morphology, physiology, and drought 

strategies. For instance, drought-avoidant and drought-tolerant populations may show different 

lethal water potential thresholds as a result of local adaptation to their respective environments 

including changes in osmotic adjustment capacity, resistance to embolism, turgor loss point, 

biomass allocation, etc. However, the extent to which water potential thresholds leading to 

incipient mortality and predictive power vary within species remains understudied. Given that 

lethal water potentials vary widely across species, it is critical to assess the extent to which such 

variation also exists among populations of the same species. 

Percent loss of conductivity (PLC) is a useful indicator of DIM risk because of its general 

consistency across species within broad lineages. Several studies have reported similar PLC 

thresholds within gymnosperms (~ 50%) and angiosperms (~ 88% in angiosperms) (Choat et al. 

2012). Thus, PLC mortality thresholds are also likely to be consistent among populations of the 

same species. However, PLC thresholds reported in the literature are often inferred from dead 

plants and may represent thresholds leading to 100% DIM risk rather than incipient mortality 

risk thresholds (Anderegg, Berry & Field 2012; but see Barigah et al. 2013). While thresholds 

leading to 100% DIM tell us when to expect extensive regional mortality, incipient DIM 

thresholds allow us to anticipate mortality based on observations and initiate preventive 

management. Therefore, PLC holds enormous potential as an indicator of DIM risk but only if 
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incipient mortality thresholds are consistent within and across species. A potential complication 

with PLC as a DIM risk indicator is that incipient mortality thresholds and the predictive power 

of PLC may vary among populations if hydraulic failure is not the sole driver of DIM (Mitchell 

et al. 2013). For instance, plants may show both high and low mortality risk at low PLC in 

populations if other factors (e.g., carbon depletion) kill individuals before they reach 50% or 

80% PLC (depending on lineage). In this case, the predictive power of PLC might be low and 

incipient mortality thresholds might be less clear due to other factors increasing mortality risk at 

low PLC values. Exploring the extent to which PLC is the prevalent driver of DIM and the 

consistency of its incipient mortality thresholds among populations is critical to determine the 

potential of PLC as a large-scale indicator of DIM risk. 

Plant water content is a direct measurement of desiccation status and could be a strong 

candidate indicator of DIM risk at large scales because it integrates the multiple strategies that 

plants use to maintain water balance. As opposed to PLC, a clear advantage of water content as a 

large scale indicator of DIM is that it can be measured from organs to ecosystems via remote 

sensing (Ullah et al. 2012; Wang & Li 2012; Mirzaie et al. 2014). Indeed, several remote sensing 

studies have observed substantial decreases in canopy water content which were followed by 

increased drought mortality (Saatchi et al. 2013; Asner et al. 2015). Consistently, Sapes et al., in 

review have shown that plant volumetric water content (VWC): i) predicts DIM risk with high 

accuracy, ii) shows incipient mortality thresholds, and iii) integrates water supply, retention, and 

loss. Relative water content (RWC) is of special interest because it is highly correlated to VWC 

but it reflects the amount of water present in a plant or organ relative to its maximum water 

content (i.e., desiccation status) (Barrs & Weatherley 1962). Thus, it standardizes differences 

among individuals or species with different maximum water contents due to varying anatomy. 

Accordingly, Bartlett et al. 2012 showed that turgor loss occurs at similar RWC values (but 

different water potential) across species from different biomes which inherently vary in 

morphology and physiology. The fact that RWC, like water potential, can detect turgor loss is 

critical given its link to cellular damage and plant death (Guadagno et al. 2017). Because RWC 

is a relative measure and it detects turgor loss (a process that may become irreversible and lead 

to death if drought persists), it is possible that incipient mortality thresholds for RWC and 

predictive power are relatively consistent across plants with varying morphology and physiology. 

The potential for consistency and the fact that water content can be remotely sensed, place RWC 



55 

 

as a potentially useful candidate for large-scale assessments of DIM risk. However, note that 

RWC thresholds and predictive power could vary if populations and their individuals differ in 

tolerance to desiccation or turgor loss.   

Good indicators of DIM risk should also show consistent mortality thresholds and 

predictive power across plant organs of varying morphology and physiology. Under drought, 

plants often shed certain organs to reduce water loss. For instance, drought-deciduous trees shed 

leaves or even branches to reduce canopy area and increase their survival during periods of 

drought stress (Daubenmire 1972). In extreme cases, some species can re-sprout from their roots 

if all above-ground organs desiccate and perish (Hastings, Oechel & Sionit 1989). Clearly, DIM 

risk should be assessed in live, functional organs (e.g., roots in drought-deciduous species). 

Thus, variables that can estimate DIM risk in multiple organs are of critical interest. 

Consequently, it is important to evaluate the predictive power and consistency of incipient 

mortality thresholds among organs in different candidate variables. Differences in morphology 

and physiology among organs add yet another source of variation that may affect mortality 

thresholds and predictive power. Such variation may also affect the relationships between 

indicator variables and DIM risk (i.e., slope and intercept). Therefore, assessing the consistency 

of DIM mortality thresholds and predictive power as a function of the specific indicator variable, 

as well as the inter-relationships among indicator variables and DIM risk is also critical to 

determine which variables are good candidates for large-scale assessments of DIM risk and why 

(i.e. provide insight into the mechanisms of DIM).  

We performed a greenhouse drought experiment based on the point of no return (i.e., no 

recovery after re-watering) with one-year-old ponderosa pine (Pinus ponderosa Douglas ex C. 

Lawson) seedlings to assess predictive power and incipient mortality thresholds of three DIM 

indicator variables (water potential, PLC, and relative water content). We focused on variability 

among populations and organs and we used a common garden approach with two genetically 

differentiated seedling provenances (North Plateau and Northern Rocky Mountain) (Potter et al. 

2013) known to differ in responses to drought (Cregg 1994). This allowed us to assess the extent 

to which intraspecific variation in morphology and physiology translates into variation in 

incipient mortality thresholds or predictive power of water potential, PLC and RWC within 

species and organs. Specifically, we asked 1) do populations differ in mortality rates under 

drought?, 2) if so, what physiological and morphological differences contribute to differences in 
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mortality processes?, and 3) do water potentials, PLC, and RWC show high predictive power and 

incipient mortality thresholds across populations and organs? 

 

MATERIALS AND METHODS 

Study Design. We performed a greenhouse drought experiment at the University of 

Montana greenhouse facilities with one-year old ponderosa pine (Pinus ponderosa Douglas ex. 

C. Lawson) seedlings from two genetically differentiated populations known as the North 

Plateau race (NP) (42.6 N 122.8 W) and the Northern Rocky Mountain race (RM) (45.9 N 104.5 

W) (Potter et al. 2013). We chose one-year old seedlings because of their convenient size and 

their biological relevance for regeneration of lower tree-line forests that are constrained by dry 

conditions (Simeone et al. 2018). On May 25th 2016 we planted 250 individuals from seed 

provided by the USDA Forest Service in 7.62 cm diameter x 43 cm tall pots using a 

homogeneous soil mixture consisting of 3:1:1 sand, peat moss, and top soil, respectively. Pots 

were randomly distributed on a bench at regular distances from each other. Seeds started to 

germinate by June 2nd and seedlings were grown at soil field capacity (i.e. soil fully saturated 

with water) until they were big enough to be measured (ca. 6 cm height and 2.5 cm basal 

diameter), which corresponded to February 24th 2017. Soil field capacity corresponded to soil 

volumetric water content values (VWCs) of ca. 20%. We monitored changes in VWCs using 

Meter 5TE sensors placed 10 cm above the bottom of the pots in five representative seedlings of 

each population. Sensors were inserted through a hole previously drilled in the side of the pots to 

minimize disturbance of soil structure and root system damage; which started to reach the bottom 

of the pot by the end of the experiment. 

From February 24th 2017 to May 11th, seedlings underwent three drought pre-

conditioning cycles to simulate early summer conditions. During the first two cycles, we dried 

pots down to 50% of their field capacity (VWCs = 10%) after which we watered again to field 

capacity. On the last cycle, pots were dried down to 25% of their field capacity (VWCs = 5%), 

which corresponds to a soil water potential of -0.7 MPa based on an empirical soil characteristic 

curve (see below), and then watered again to field capacity. This drought preconditioning 

provided a more realistic response to experimental severe drought since plants were able to 

acclimate to increasing drought as it tends to occur in natural conditions. After the drought-

preconditioning, water was withheld (final drought) in all seedlings except a control group which 



57 

 

was kept at field capacity. Based on a preliminary drought experiment to assess symptoms of 

mortality as a function of soil drought and to optimize sampling times and sample size, we 

started measurements 29 days after the start of the drought treatment.  

Sampling procedure. We assessed the degree of drought (i.e. soil water potential), 

seedling physiology, and mortality risk on six weekly samplings starting on day 29 of the 

drought treatment. At each sampling, we measured midday VWCs in five randomly chosen 

seedlings from each population and we used VWCs to estimate soil water potential based on soil 

water-retention curves specific for our soil type as in Sapes et al. in review. VWCs sensors were 

installed 24h prior to measurement to reach equilibrium with soil conditions. We used the same 

seedlings in which VWCs was measured to assess mid-day leaf and stem water potentials. Leaf 

water potential was measured in a single needle bundle using a pressure chamber (PMS 

Instrument Company, Corvallis, OR) following methods in (Kaufmann 1968). Stem water 

potentials were estimated equilibrating the water potential of a needle bundle with the stem 

following methods from Begg & Turner (1970) and measuring the equilibrated bundle with the 

pressure chamber. We also took midday measurements of stomatal conductance rates per unit 

leaf area in each seedling using a Licor 6400 XT using a 6400 RED LED chamber. Light 

conditions were set at 1,000 μmol quanta m-2 s-1 and CO2, flow, temperature, and relative 

humidity were set constant at 400 µmol s-1, 100 mol s-1, 25 ºC, and 50%, respectively. We scaled 

up stomatal conductance to canopy level (i.e., canopy conductance) by multiplying it by canopy 

area (see below). After this, seedlings were immediately harvested and kept in zip-lock bags with 

a moist paper towel in a cooler to prevent water loss(Garcia-Forner et al. 2016). Seedlings were 

then transported to the laboratory within two hours for hydraulic and water content 

measurements (see below). Because we could not assess mortality risk in plants that were 

harvested, we randomly chose a second independent subset of seedlings at each sampling event 

to assess mortality risk at any given point during the drought (see below). 

Mortality assessment. We estimated the probability of mortality at the population level 

over time. In our study, population-level mortality is defined as the proportion of individuals 

from each population sampled at a given time that end up dying. At each sampling event, five 

groups of six seedlings (total of 30) were randomly chosen, classified as dead or alive, re-

watered to field capacity, and kept well-watered until September 22nd to confirm mortality 

assessments. This method ensures accurate classification of both live and dead plants at every 
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sampling event. On that date, we classified seedlings as dead only if their canopy and phloem 

were completely brown and dry after a month of re-watering and no subsequent buds appeared 

(Cregg 1994). Then, mortality was calculated as the proportion of dead seedlings (out of 30) at a 

given sampling time. Notice that early re-watering groups were re-watered for longer periods of 

time due to the nature of the experimental design. However, seedlings removed later from the 

drought were completely dry and brittle with no subsequent signs of recovery. Note that in our 

design, physiological measurements during drought were done in individual plants, while 

mortality measurements were conducted at the population level. Thus, one value of probability 

of mortality is always associated to five individual values that reflect the variation in physiology 

across the population. 

Organ Relative Water Content. Upon arrival to the laboratory, we separated roots, 

stems, and needles of each seedling to measure their Relative water content (RWC) based on 

fresh, turgid, and dry weights as: ((Fresh weight-Dry weight)/Turgid weight-Dry weight)*100 

(Barrs & Weatherley 1962). Turgid weight was obtained by rehydrating needles for 5 hours in 

the dark at low temperatures (3 ºC). Low temperatures prevent oversaturation due to artificially 

low osmotic potentials resulting from catabolic conversion of starch into sugars (Boyer et al. 

2008). We calculated whole plant RWC weighed by organ biomass fraction (proportion of each 

organ dry mass fraction multiplied by their respective RWC). For consistency, root RWC was 

measured before any other organ to avoid changes in RWC due to cleaning procedures (quick 

rinse and immediate blotting with paper towels) and exposure to dry air. Stems and root systems 

were returned to Ziploc bags and back into the cooler to prevent desiccation between 

measurements of fresh weight and turgid weight. Population-level pressure-volume curves were 

also built using midday leaf water potentials and the corresponding leaf RWC of each individual 

as in (Tyree et al. 2002) and Leaf RWC at turgor loss and water potential at turgor loss were 

extracted for each population. 

Stem and Root Hydraulics. We measured stem hydraulic conductivity and root 

hydraulic conductance using the gravimetric method (Sperry, Donnelly & Tyree 1988) 

immediately after organ fresh weight measurements. We used a modification of the hydraulic 

apparatus described in Sperry (1988) that allowed us to measure hydraulic conductance of whole 

root systems in addition to stems (Sapes et al. in review). Stem segments previously used for 

RWC measurements were immersed in deionized water for 20 minutes to relax xylem tensions 
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that could artificially alter conductivity values (Trifilo et al. 2014). After relaxation, stems were 

relocated to the hydraulic apparatus and each end was recut twice at a distance of 1 mm from the 

tips each time (total of 2 mm per side) to remove any potential emboli resulting from previous 

cuts, transport, and relocation (Torres-Ruiz et al. 2015). Stems were then connected to the 

hydraulic apparatus while under water, with their terminal ends facing downstream flow. The 

stems were then raised out of the water and the connections were checked to ensure that there 

were no leaks. A solution of water with 10 mM KCl degassed at 3 kPa for at least 8 hours was 

used for all hydraulic measurements (Espino & Schenk 2011). 

First, initial background flow was measured to account for the flow existing under no 

pressure, which can vary depending on the degree of dryness of the measured tissue (Hacke et al. 

2000; Torres-Ruiz, Sperry & Fernández 2012; Blackman et al. 2016). Second, a pressure 

gradient of 5-8 kPa was applied to run water through the stem and pressurized flow was 

measured. This small pressure gradient prevented embolism removal from the samples while 

ensuring flow. Lastly, final background flow was measured, initial and final background flows 

were averaged, and flow was calculated as the difference between pressurized flow and average 

background flow. Native specific hydraulic conductivity (K) was estimated in stems as the flow 

divided by the pressure gradient used and standardized by xylem area and length. In root 

systems, flow was measured as above and whole root native hydraulic conductance (k) was 

estimated as the flow divided by the pressure gradient used and standardized by xylem area at the 

root collar.  

Maximum stem hydraulic conductivity (Kmax) and root hydraulic conductance (kmax) 

were estimated at the population level as the average stem K and root k of the pre-conditioned 

control measured at day 0 since the onset of the drought. Such a population approach was 

necessary because 1) destructive measurements in these small seedlings prevented multiple 

successive measurements of K and water potentials on the same individuals, and 2) flushing and 

vacuum infiltration techniques to obtain Kmax from embolized tissues can generate artifacts and 

overestimate Kmax (Cochard et al. 2013). Percent loss of stem conductivity and percent loss of 

root conductance were estimated for each measured seedling as 100*(Kmax-K)/Kmax and 

100*(kmax-k)/kmax, respectively. Note that negative PLC values may occur if K or k in a given 

sample is larger than Kmax estimated as the average K of controls. We calculated whole-plant 

PLC weighted by organ fraction. Root and stem PLC can be averaged together because they are 
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unit-less indexes that represent the relative loss of water transport capacity of their respective 

organs. Because we did not measure PLC in needles, whole-plant PLC represents the overall 

hydraulic integrity of the stem and root systems. We excluded negative PLC values resulting 

from uncertainty around population level estimates of Kmax (Sapes et al. in review). This could 

affect comparisons between populations if exclusion was biased towards a population or 

sampling time. However, exclusion of data was fairly homogeneous across the whole dataset 

(Table S1). 

Morphological measurements. Upon harvest, we measured plant height and root system 

length in each seedling as the distance from the root collar to the highest needle and to the end of 

the longest root, respectively. We took pictures of the canopy of each seedling and estimate 

canopy area using ImageJ software. Organ dry weights were used to calculate whole plant 

biomass as the sum of needle, stem, and root dry weights. Root to shoot ratios were calculated as 

root dry weight divided by the sum of leaf and stem dry weights. 

Statistical analyses. We tested differences in morphology between populations across 

the full set of measurements using two-tailed Student’s t-test for independent samples. Canopy 

area, root to shoot ratios, organ biomass, whole-plant biomass, and plant length across all 

samples were used as dependent variables while population was the categorical variable in all 

tests. Differences in maximum stem hydraulic conductivity between populations were also tested 

using two tailed Student’s t-tests comparing the stem hydraulic conductivity of all controls from 

both populations. Variables were transformed to achieve normality and homogeneity of 

variances when needed. We also tested potential differences in hydraulic conductivity due to 

plant length given that trees are known to increase hydraulic conductivity at the base of the stem 

as they grow tall to minimize the resistance of the hydraulic pathway (Olson et al. 2018). 

Differences in hydraulic conductivity as a function of plant length were assessed in two linear 

models with plant length, population and their interaction as predictors and stem hydraulic 

conductivity and root hydraulic conductance as response variables. Response variables were log-

transformed to meet model assumptions. 

We tested differences in response to drought over time between populations by splitting 

the drought into early drought (days 0 and 29) and late drought (days 29 to 72). This was 

necessary because, physiological measurements were not taken before day 29 in order to 

maximize sampling after the onset of mortality. Thus, analyses from day 29 to 72 reflect 



61 

 

responses close to and after the onset of mortality in the population (when a few individuals start 

to die) and characterize the processes that either prevent or ultimately cause death.  Early 

differences in response to drought between populations were tested using two-tailed Student’s t-

test for independent samples at day 0 and 29. T-tests were used instead of regressions because 

data included only two days. Soil and plant water potentials, canopy conductance, PLC, and 

RWC across organs at day 0 and 29 were used as dependent variables while population was the 

categorical variable in all tests. Contrasts from day 0 to 29 provide information of whether 

observed differences after the onset of mortality originated during early stages prior to mortality. 

Late differences in response to drought between populations were tested using three sets of 

regression models with data from day 29 to 72. All models had days since the onset of drought, 

population, and the interaction of both factors as the predictor variables. Response variables were 

i) soil, leaf, or stem water potential to represent the degree of drought intensity; ii) whole-plant 

PLC or whole-plant RWC to represent loss of hydraulic function and degree of desiccation; and 

iii) population-level mortality to represent the probability of DIM. Generalized linear models 

(Mardia, Kent & Bibby 1979) with binomial distribution and logit link were used for models 

including probability of mortality. Linear models were used for all other cases as the response 

variables showed a linear response with time or could be transformed to meet assumptions of 

linearity.  

We took a residuals approach to test whether differences in responses to drought between 

populations were driven by morphology physiology or both. We chose RWC as our response 

variable because desiccation is the main process leasing to DIM (Tyree et al. 2003, Sapes et al in 

review, Martinez-Vilalta et al. in review) and integrates the physiological (e.g. low stomatal 

conductance, maintenance of hydraulic function) and morphological (e.g. low canopy area, high 

root to shoot ratios, reduced growth) responses to prevent desiccation leading to DIM risk. First, 

we extracted the residuals from a model with RWC as the response variable and days since the 

onset of drought as the predictor. In this initial model, differences between populations should be 

expressed in the residual variation (i.e. residuals reflect population differences). Then, we built a 

second model for morphology with these residuals as the response variable and all the 

interactions between population, root to shoot ratios, and whole-plant biomass as predictive 

variables. In this model, a significant effect of a given morphological variable indicates an 

overall effect of morphology on desiccation rates. Significant interactions between a given 
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morphological variable and population indicate that the effects of morphology are population-

specific. Thus, a significant effect of population alone or as part of an interaction indicates that 

morphological differences alone are not able to explain all the variation in desiccation rates 

existing between populations. To test the influence of physiology, we built a third model with the 

residuals from the model with RWC as the response variable and days since the onset of drought 

as the predictor (as for the morphology model) as the response variable and all the interactions 

between population, stomatal conductance, and whole-plant PLC as predictive variables. The 

interpretation of the outcomes of this model is the same as for the morphology model only that 

they refer to physiology rather than morphology. Morphological variables were log-transformed 

to meet model assumptions. Other physiological (e.g., soil and plant water potential) or 

morphological (e.g., plant length and canopy area) variables were excluded from these models 

because they were highly correlated with the selected predictors. Using whole-plant variables 

also allowed us to account for potential organ-specific effects without increasing the number of 

predictors or violating assumptions of co-linearity.  

We used logistic regressions (Walker & Duncan 1967) to assess the predictive power and 

consistency of each mortality predictor and search for potential thresholds indicative of incipient 

mortality risk. For each organ within a population, logistic models included probability of 

mortality as the response variable and RWC, water potential, or PLC as predictors. Probability of 

mortality was expressed on a decimal fraction basis following requirements of models with 

binomial distributions. Predictive power was estimated as the proportion of variance explained 

(VE) by each model (i.e., [1- residual variance/ null variance] x 100) (Guisan & Zimmermann 

2000). In logistic models, this model performance criterion is often discouraged because it tends 

to underestimate predictive power due to the lack of values between 0 and 1 in the response 

variable. However, population-level mortality does contain intermediate values between 0 and 1 

thus overcoming this issue. We assessed predictive consistency by testing differences in slopes 

and intercepts of mortality relationships across populations and organs using logistic models 

containing the interaction between a given predictor, population, and organ. In these models, 

non-significant interactions were not removed because our hypothesis was explicitly directed to 

the interaction between population, organ, and each predictor.  
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RESULTS 

All dates combined, Pacific Coast (NP) seedlings were longer (t = 2.51, p = 0.014; Fig. 

1a) and had greater whole-plant biomass (t = 3.58, p < 0.001; Fig. 1b) than Northern Rocky 

Mountain (RM) seedlings. These differences were due to greater stem biomass (t = 5.04, p < 

0.001; Fig. S1a) and root biomass (t = 5.43, p < 0.001; Fig. S1b) in NP seedlings. Differences in 

biomass allocation translated to greater root to shoot ratios in NP seedlings (t = 4.83, p < 0.001; 

Fig. 1c). Differences in plant length between populations were associated with greater hydraulic 

conductivity in NP seedlings (stem: R2
adj = 0.18, plant length: p < 0.001, population: p = 0.077; 

roots: R2
adj = 0.08, plant length: p = 0.003, population: p = 0.047; Table S2). Accordingly, NP 

seedlings had greater maximum hydraulic conductivity (t = 1.94, p = 0.059; Fig. S1c). 

By day 29 the probability of mortality was zero in both populations (Fig. 2d). Mortality risk 

started to increase above zero by days 29 and 42 in NP and RM populations, respectively, based 

on their estimated mortality curves (Fig. 2d). After the onset of mortality in each population, 

mortality probabilities increased at the same rate for both populations. 

At early stages of drought (day 0), populations showed no differences in any 

physiological variable. However, at day 29 of drought, NP seedlings had lower whole-plant 

RWC (t = -4.57, p = 0.002). This effect was driven by lower stem and root RWC (stem: t = -

4.70, p = 0.003; roots: t = -2.25 p = 0.056). Changes from day 0 to day 29 indicate that NP 

seedlings experienced greater desiccation rates at some point during the early stages of the 

drought. While differences were not statistically significant, soil, stem, and leaf water potentials 

were also consistently lower in NP seedlings by day 29.  

At late stages of drought (day 29 to 72), soil water potentials clearly diverged among 

populations and continued decreasing at similar rates (R2
adj = 0.30, days: p < 0.001; population: p 

= 0.029; Fig. 2a, Table S3). The same pattern was observed in leaf and stem water potentials 

(needles: R2
adj = 0.77, days: p < 0.001, population: p = 0.031; stems: R2

adj = 0.83, days: p < 

0.001, population: p = 0.065; Fig. 2a, Table S3). Declines in water potential were accompanied 

by increases in PLC in both populations, but NP seedlings experienced higher PLC rates (R2
adj = 

0.57, days: p < 0.001, days x population: p < 0.022; Fig. 2b, Table S3). This pattern was driven 

by higher PLC rates in roots (R2
adj = 0.27, days: p < 0.001, population: p = 0.044, days x 

population: p < 0.011; Fig. 2b, Table S3), and higher PLC rates were explained by higher root to 

shoot ratios in NP seedlings (R2
adj = 0.60, days: p < 0.001, root shoot ratio: p = 0.035, days x 
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population: p = 0.018; Fig. S2, Table S3). Consistently, NP seedlings lost RWC in needles at 

faster rates than RM seedlings (R2
adj = 0.78, days: p < 0.001, days x population: p = 0.030; Fig. 

2c, Table S3). In turn, differences in desiccation rates in needles led to marginally lower 

conductance rates in NP seedlings (R2
adj = 0.03, days: p = 0.071, population: p = 0.055, days x 

population: p = 0.079; Table S3). While canopies of NP seedlings desiccated faster (i.e., different 

slopes between populations), this trend was not observed at the whole plant level because of the 

small contribution of needles to whole-plant RWC relative to other organs. However, whole-

plant RWC still differed among populations (i.e. different intercepts between populations) (R2
adj 

= 0.71, days: p < 0.001, population: p < 0.001; Fig. 2c, Table S3) as observed during early 

drought stages. As a result, NP seedlings started dying earlier (ca. more than two weeks) but both 

populations showed similar rates of mortality once mortality started (days: p < 0.001; population: 

p = 0.024; Fig. 2d, Table S3).  

Residual analyses allowed us to determine whether differences in desiccation rates 

between populations were explained by differences in morphology physiology or both. 

Population was still significant when the leftover variation in desiccation rates was attributed to 

physiology (R2
adj = 0.34, population: p = 0.071, population x stomatal conductance: p = 0.007, 

population x stomatal conductance x whole-plant PLC: p = 0.003, Table S4). This indicates that 

physiological differences alone cannot fully explain the differences in desiccation rates observed 

between populations. On the other hand, population was not significant when the leftover 

variation was attributed to morphology (R2
adj = 0.33, log(root to shoot ratio): p = 0.013, log(plant 

biomass): p = 0.002, Table S4). Additionally, the morphological model explained the same 

amount of variation in RWC than the physiological model with less variables, thus being more 

parsimonious. This indicates that morphological differences in root to shoot ratios and plant size 

alone can fully explain the differences in desiccation rates observed between populations. That 

is, morphological variables absorb the variation otherwise explained by the categorical variable 

‘population’ thus making it not significant. 

The ability to predict mortality of RWC, PLC, and water potential varied among 

populations and organs both in terms of predictive power and degree of significance (Fig. 3, 

Table S5). RWC and water potential had comparably high predictive power (RWC: p-valueRange 

= <0.001 - 0.002, VEAverage = 76.35%, VERange: 54%-95%; water potential: p-valueRange = <0.001 

- 0.01, VEAverage = 74.42%, VERange: 46%-93%). Additionally, both variables showed similar 
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relationships with DIM risk across organs and populations as supported by the lack of significant 

differences in intercepts and slopes (Fig. 4a, & c, Table S6). However, when comparing 

populations, water potential values leading to 50% mortality (LD50) differed more than RWC 

values (Fig. 4a & c). PLC had the lowest predictive power (p-valueRange = <0.001 - 0.564, 

VEAverage = 42.78%; Fig. 3) and it was highly variable among populations and organs (VERange: 

1%-76%; Fig. 3 & 4b, Table S5). 

Logistic regressions identified mortality thresholds in all variables (Fig. 4a, b & c). 

However, only RWC and water potential showed incipient mortality thresholds across all 

populations and organs. Importantly, all the incipient mortality thresholds found in RWC and 

water potential were close to the values corresponding to leaf turgor loss (Fig. 4a & c, vertical 

lines). In contrast to RWC and water potential, PLC only showed threshold-type responses in the 

NP population. 

DISCUSSION 

Intraspecific variation can significantly influence the predictive power and incipient 

mortality thresholds of indicators of DIM risk. Populations can vary in performance under 

drought as a result of intraspecific variation in morphology, physiology, and drought strategies. 

The North Plateau population (NP) showed greater biomass allocation to roots, plant size (both 

height and mass), and hydraulic conductivity than the rocky mountain population (RM). As a 

result, NP seedlings were able to absorb more water and at faster rates. Because potted 

conditions limit soil depth and access to water, this led to earlier desiccation and mortality in NP 

seedlings. While the potted conditions in this experiment are certainly artificial, these results 

highlight a biologically relevant point: morphological and physiological differences among 

populations can lead to differences in mortality rates under limited water. While plants can 

drastically adjust their physiology under drought, their capacity to adjust morphology under 

drought is often more limited (Gratani et al. 2003). For instance, plants can adjust stomatal 

conductance under water deficit but they might not be able to elongate roots to extract more 

water because water deficit inhibits growth (Maseda & Fernández 2015). Reducing stomatal 

conductance and water loss may reduce the detrimental impacts caused by the specific 

morphology of roots, but, like in our case, physiological adjustments might not always 

completely compensate morphological differences. Thus, performance under drought depends on 

both morphological characteristics and physiological adjustment capacity. Given that 
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morphology and physiology can vary among populations, drought performance may also vary 

across a species’ range as a result of morphological and physiological variation.  

Morphological variation can also lead to different drivers of mortality among 

populations. In our study, NP seedlings showed high PLC rates over time, high mortality at 

whole-plant PLC values above 50 % (consistent with thresholds reported for gymnosperms), and 

strong correlations between PLC and DIM risk with similar relationships across organs (Table 

S6). On the other hand, RM seedlings showed lower PLC rates but high mortality below 50 % 

whole-plant PLC and, thus, poor correlations between PLC and DIM risk across organs despite 

their similar relationships (Table S6). The low correlation between PLC and mortality observed 

in RM seedlings suggests that processes other than hydraulic failure (e.g., carbon depletion) led 

to mortality before they could experience lethal PLC (Mitchell et al. 2013). Small and young 

individuals within a species have small NSC pools (Sala & Mencuccini 2014 and references 

therein). The young age of our plants and the smaller size of RM seedlings may have led to low 

NSC pools thus making them highly susceptible to carbon depletion during drought. However, 

this hypothesis should be further explored. The high correlation between PLC and mortality 

observed in NP seedlings suggests that, in this case, mortality was mostly driven by hydraulic 

failure. Hydraulic failure might be driving NP mortality due to a more efficient but vulnerable 

xylem built to compensate the hydraulic resistance imposed by greater height (Olson et al. 2018). 

Tall plants may increase xylem efficiency by building both wider conduits at the base of their 

trunk (Carrer et al. 2014) and hydraulically efficient pits that impose lower resistance to water 

flow (Pittermann et al. 2010). However, these two morphological adaptations come at the cost of 

hydraulic safety due to both higher chances of containing faulty pits and lower torus overlap in 

all pits, respectively (Delzon et al. 2010, Roskilly et al, in prep). NP seedlings are likely to have 

more efficient but vulnerable xylem given their greater height and overall size (Fig. 1), greater 

maximum hydraulic conductivity (based on controls at day 0), and the observed influence of size 

on desiccation and PLC rates (Fig. S2). In natural conditions, NP seedlings might not need to 

invest in resistant xylem given their ability to avoid low water potentials through deep root 

systems. However, abnormally intense or frequent droughts may still lead to low water 

potentials, hydraulic failure, and death. Altogether, our results under greenhouse conditions 

suggest that the relative contribution of mechanisms leading to DIM may vary across populations 

as a function of morphological variation.  
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Depending on the type of indicator variable, mortality thresholds and predictive power 

can vary among populations across a species’ range if the relative contribution of mechanisms 

leading to DIM varies among populations. Counter to expectations, NP and RM populations 

showed different relationships between PLC and DIM risk which led to different PLC incipient 

mortality thresholds and predictive power. PLC likely shows variable thresholds and predictive 

power because it only reflects processes linked to hydraulic failure and does not reflect other 

important drivers of DIM such as carbon depletion or other processes contributing to desiccation 

(e.g., cuticular conductance) (Blackman et al. 2016). This result suggests that relationships 

between PLC and DIM risk in a population may not be generalizable across a species’ range if 

the drivers of DIM change across the landscape. Large-scale assessments of DIM risk might be 

challenging even if population-specific relationships are known and averaged to better capture 

the behavior of the species. For instance, we may obtain higher overall predictive power if we 

combined both NP and RM populations and predicted DIM risk using PLC. However, the 

resulting relationship would have lower predictive power in both populations and mortality 

thresholds would not indicate PLC values at incipient mortality in either population. 

Additionally, incipient mortality thresholds in PLC are also expected to vary among 

gymnosperms and angiosperms given their different morphology, physiology, and tolerance to 

embolism (Choat et al. 2012). Such variation among species may significantly reduce our 

capacity to accurately assess DIM risk across the landscape based on PLC. Instead, landscape 

assessments should rely on indicators that integrate multiple drivers of DIM. 

Plant water potentials showed consistent mortality thresholds associated to turgor loss 

and high predictive power across both populations and organs. Low water potentials are 

responsible for both formation of emboli and stomatal closure (Tyree & Sperry 1989; Meinzer et 

al. 2016), which can lead to hydraulic failure and carbon depletion (McDowell et al. 2008), 

respectively. Given that low water potentials drive both processes, water potentials may reflect 

both hydraulic failure and carbon depletion to a certain extent. Additionally, plant water potential 

also indicates turgor loss (ѰTLP) thus explaining the observed thresholds associated to turgor loss. 

The consistent water potential thresholds and high predictive power found in both populations 

suggest that there is little variability in lethal water potentials among individuals and populations. 

This is very promising because water potential is widely used in modeling and can be used to 

connect the soil-plant-atmosphere continuum. Thus, water potentials could accurately predict 
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incipient mortality and DIM risk across populations regardless of existing differences in 

morphology, physiology, and drought strategies. However, plant water potential is likely to show 

different incipient mortality thresholds across species given the enormous variation in minimum 

water potential (Choat et al. 2012) and in ѰTLP (Bartlett et al. 2012) across species and biomes. 

Thus, large-scale assessments of DIM based on water potential might be challenging in diverse 

forests. However, this may be resolved by including the ѰTLP of each species in DIM models and 

monitoring approaches. 

Relative water content (RWC) integrates drivers of DIM, reduces variation in thresholds 

and predictive power, and predicts DIM risk from any organ. While the contribution of hydraulic 

failure -and perhaps carbon depletion or other processes- to desiccation and DIM varied between 

populations, results for water potential and RWC indicate that desiccation was the common 

driver of DIM. Water content variables such as RWC are direct measures of desiccation and 

integrate the two physiological processes leading to DIM (Sapes et al. in review). Accordingly, 

we found that RWC showed similar thresholds and high predictive power among populations 

and organs. Additionally, RWC represents plant water status and can thus be linked to turgor loss 

(using RWCTLP), the ultimate cause of cellular death under drought (Guadagno et al. 2017). 

Hence, we found that incipient mortality occurred at RWC values indicative of turgor loss and 

increased with further declines as cellular damage likely increased (membrane people here). 

Given that turgor loss and cellular damage is ubiquitous across organs under drought, the 

consistent thresholds and relationships between DIM risk and RWC across plant organs are 

expected. This is of critical importance given that some organs such as leaves may not be present 

in species that discard their canopy under drought (Daubenmire 1972). Thus, using integrative 

indicators such as RWC, which can also assess DIM risk from any organ available, are 

preferable for large scale assessments. 

RWC is a good candidate for large-scale assessments of DIM risk because it can be 

remotely sensed and absorbs variation in morphology, physiology, and drought strategies. 

Unfortunately to date, PLC cannot be measured at large scales because measurements are 

complex, time consuming, and we lack remote sensing techniques to estimate it. Water potentials 

can be estimated using remote sensing techniques (Cohen et al. 2005). However, variation in 

morphology, physiology, and drought strategies among species is likely to be reflected in water 

potential measurements taken at large scales. For instance, the average water potential of a pixel 
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containing a mixture of drought-avoidant and tolerant species is more likely to reflect the 

diversity in drought-strategies existing in that pixel than the degree of DIM risk (Martinez-

Vilalta et al. in review). On the other hand, plant water content can be remotely sensed across the 

landscape using hyperspectral and thermal techniques (Ceccato et al. 2001; Elsayed et al. 2017; 

Konings et al. 2017). RWC also standardizes differences in water content due to morphological 

and physiological variation among populations and species, integrates the different drivers of 

DIM (Sapes et al. in review), and shows consistent RWCTLP across organs, species, and biomes 

(Bartlett et al. 2012). Thus the average RWC of a pixel is likely to accurately reflect the expected 

degree of DIM at a given point in time regardless of differences among populations or species. 

For these reasons, RWC stands out as a good candidate for large-scale assessments of DIM risk 

with potential to allow monitoring of DIM even across species and biomes. 

Overall, our results suggest that intraspecific variation can significantly influence 

mortality risk under drought across a species’ range and our ability to monitor and predict DIM 

risk. Large-scale indicators of DIM risk should accurately assess DIM risk across plants 

regardless of such variation and should be chosen based on the consistency of their mortality 

thresholds and predictive power among populations and species. Variables related to plant water 

pools (e.g., RWC) are good candidates because they reflect the ultimate causes of mortality 

under drought, integrate physiological drivers of DIM, show consistent thresholds, and have high 

predictive power. While our results support RWC as a good candidate for large-scale monitoring 

of DIM risk based on its consistency and predictive capacity across populations, future research 

should test the consistency of incipient mortality thresholds and the predictive power of RWC 

across species. Until tested, the consistency of RWC across species remains unknown. However, 

this avenue is promising given that RWC accounts for differences in anatomy among species and 

integrates differences in drivers of DIM resulting from varying morphology and physiology. 

Similarly, remote sensing techniques measure VWC rather than RWC (Yilmaz, Hunt & Jackson 

2008; Mirzaie et al. 2014; Veysi et al. 2017). However proxies of remotely sensed RWC have 

been recently developed (Rao et al. in review) and are likely to become more abundant in the 

near future. Despite, the work that still lays ahead, the results shown here will help increase the 

accuracy of current monitoring efforts and may open a path of research towards global scale 

assessments of DIM risk (Martinez-Vilalta et al. in review). 
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FIGURES 

 

Fig. 1. Morphological differences between North Plateau (NP) and Rocky Mountain (RM) 

seedlings. NP seedlings were consistently bigger in size and biomass and allocated greater 

biomass to below ground organs. Differences among populations are significant across all 

panels. 
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Fig. 2. Dynamics of population-level mortality, drought intensity, and whole-plant 

physiological state over time. Panel A: Probability of mortality increased after day 29 and 42 of 

drought in North Plateau (NP, open circles and corresponding solid line) and Rocky Mountain 

(RM, closed circles and corresponding dashed line) seedlings, respectively. Panel B: Water 

potentials decreased over time in soil (gray), stem (orange) and leaves (green) but NP seedlings 

experienced greater decline rates. Panel C: Both populations experienced loss of conductivity 

over time in both stems and roots (brown) and at the plant level (blue), but NP seedlings lost 

hydraulic conductivity at faster rates in all organs. Panel D: Relative water content declined over 

time at similar rates in all organs but NP seedlings desiccated faster than RM seedlings. 

 
Fig. 3. Percentage of variation in DIM risk explained by each predictor of mortality in each 

organ and population. Relative water content (RWC) (green) and water potential (yellow) 

predicted DIM risk in all organs and populations and had a similar average predictive power (i.e. 

variance explained). In contrast, loss of conductivity (PLC) (purple) only predicted DIM risk in 

NP seedlings and had lower average predictive power even after excluding non-significant 

models (gray circles).   
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Fig. 4. Relationships between mortality risk and each DIM predictor. Percent loss 

conductivity (PLC) showed different mortality functions between NP and RM seedlings and no 

incipient mortality thresholds in RM seedlings. Both relative water content (RWC) and water 

potential showed similar mortality functions with incipient mortality thresholds at turgor loss 

(vertical lines) across organs and populations. However, values leading to 50% mortality risk 

across organs and populations were less variable in RWC than in water potential or in PLC. 
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SUPPORTING INFORMATION 

 

 

 

Fig. S1. Differences in stem and root biomass and hydraulic conductivity between North Plateau 

(NP) and Rocky Mountain (RM) seedlings. NP seedlings were consistently bigger and had 

greater hydraulic conductivity. Differences among populations are significant across all panels. 
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Fig. S2. North Plateau seedlings (NP, black points and solid line) lost hydraulic conductivity at 

faster rates than Rocky Mountain seedlings (RM, white points and dashed line) due to 

differences in biomass allocation. NP seedlings allocated more biomass to roots and consumed 

water in the soil at faster rates. 
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Table S1. Number of PLC data points removed by population, organ and sampling group. The number of points removed was similar in each 

population and organ. The highest number of points removed in each organ corresponds to Controls. Removed data within this group 

correspond to two groups of well-watered control seedlings (preconditioned and non-preconditioned) that were measured at the end of the 

experiment. These seedlings grew over time which resulted in greater hydraulic conductivity than in the preconditioned controls used to 

calculate population-level Kmax at day 0. Removal of these data is unlikely to drive patterns found in PLC between populations given that 

observed differences between populations appeared at late stages of drought. 

Group 
Stem Root Whole Plant 

Coastal Rocky Mountain Difference Coastal Rocky Mountain Difference Coastal Rocky Mountain Difference 

Controls 9 5 4 6 3 3 9 4 5 
Drought - Day 29 2 5 -3 1 2 -1 1 2 -1 
Drought - Day 36 2 1 1 2 1 1 2 1 1 
Drought - Day 42 2 3 -1 1 3 -2 1 3 -2 
Drought - Day 57 0 0 0 0 0 0 0 0 0 
Drought - Day 65 0 1 -1 0 0 0 0 1 -1 
Drought - Day 72 0 0 0 0 0 0 0 0 0 

TOTAL 15 15  10 9  13 11  
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Table S2. Linear models used to standardize RWC by morphology and physiology and residual models testing independent effects of 

morphology and physiology on population differences in desiccation rates. 

 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 2.5% 97.5% 

Log(Stem Hydraulic Conductivity) = Plant length x Population    <0.001 102 0.18 

Intercept 1.830401 1.37624098 2.28456091 <0.001 - - 

Plant Length 0.017699 0.01068521 0.02471359 <0.001 - - 

Population - RMR 0.162318 -0.01802708 0.34266243 0.077 - - 

       

Log(Root Hydraulic Conductance) = Plant length x Population    <0.001 105 0.08 

Intercept 3.626437 3.265981513 3.98689211 <0.001 - - 

Plant Length 0.008438 0.002852591 0.01402426 0.003 - - 

Population - RMR 0.148013 0.001958142 0.29406819 0.047 - - 
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Table S3. Models assessing changes in drought intensity, whole-plant hydraulic function and degree of desiccation, population-level 

mortality and canopy activity levels over time starting at day 29 since the onset of drought. Only significant factors are shown. A 

logistic model was used for probability of mortality because it could not be transformed to meet linear model assumptions. Probability 

of mortality was also transformed to per unit basis following requirements of models with binomial distributions. 

 

Model and Factors Model type Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
2.5% 97.5% 

Soil Water Potential = Days since Onset of Drought x Population 

LM 

   <0.001 57 0.30 

Intercept -1.075160 -0.239196239 0.48603325 0.031 - - 

Days since Onset of Drought -0.041689 -0.073496211 -0.05567413 <0.001 - - 

Population-RMR  0.620238 -0.503905295 0.52172409 0.029 - - 

        

Leaf Water Potential = Days since Onset of Drought x Population 

LM 

   <0.001 53 0.77 

Intercept 2.22232 0.95229030 3.4923595 <0.001 - - 

Days since Onset of Drought -0.15796 -0.18092399 -0.1350017 <0.001 - - 

Population-RMR  0.79490 0.07352279 1.5162857 0.031 - - 

        

Stem  Water Potential = Days since Onset of Drought x Population 

LM 

   <0.001 54 0.83 

Intercept 3.15997 2.04923568 4.2706960 <0.001 - - 

Days since Onset of Drought -0.17223 -0.19250203 -0.1519484 <0.001 - - 

Population-RMR  0.59747 -0.03882642 1.2337579 0.065 - - 
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Model and Factors Model type Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
2.5% 97.5% 

Plant PLC = Days since Onset of Drought x Population LM    <0.001 44 0.57 

Intercept  -7.5348 -25.9228774 10.87328814 0.414 - - 

Days since Onset of Drought  1.0279 0.6910973 1.36463821 <0.001 - - 

Population-RMR  11.9945 -14.0948133 38.08376569 0.360 - - 

Days since Onset of Drought x Population-RMR  -0.5622 -1.0405618 -0.08380609 0.022 - - 

        

Plant PLC = Days since Onset of Drought x Population x Root Shoot Ratio LM    <0.001 43 0.60 

Intercept  -17.6897 -37.7473072 2.36782551 0.082 - - 

Days since Onset of Drought  0.9740 0.6460260 1.30191448 <0.001 - - 

Population-RMR  17.6961 -7.9630927 43.35522894 0.172 - - 

Root Shoot Ratio  8.3719 0.6118301 16.13193591 0.035 - - 

Days since Onset of Drought x Population-RMR  -0.5591 -1.0194898 -0.09866543 0.018 - - 

        

Stem PLC = Days since Onset of Drought x Population LM    <0.001 40 0.49 

Intercept  8.1380 -15.6972775 31.973188 0.495 - - 

Days since Onset of Drought  1.2206 0.7976874 1.643427 <0.001 - - 

Population-RMR  -24.8821 -37.5015720 -12.262635 <0.001 - - 

        

Root PLC = Days since Onset of Drought x Population LM    <0.001 45 0.27 

Intercept  9.1774 -17.7046217 36.059357 0.496 - - 

Days since Onset of Drought  1.0530 0.5609697 1.545101 <0.001 - - 

Population-RMR  39.2267 1.1932278 77.260242 0.044 - - 

Days since Onset of Drought x Population-RMR  -0.9189 -1.6133898 -0.224493 0.011 - - 
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Model and Factors Model type Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
2.5% 97.5% 

Plant RWC = Days since Onset of Drought x Population LM    <0.001 54 0.71 

Intercept  110.9513 99.456181 122.4465168 <0.001 - - 

Days since Onset of Drought  -1.1934 -1.403436 -0.9833056 <0.001 - - 

Population-RMR  12.6950 6.098499 19.2915497 <0.001 - - 

        

Leaf RWC = Days since Onset of Drought x Population LM    <0.001 54 0.78 

Intercept  141.8941 124.20776335 159.580410 <0.001 - - 

Days since Onset of Drought  -1.8720 -2.20868295 -1.535356 <0.001 - - 

Population-RMR  -8.9838 -33.99603021 16.028446 0.475 - - 

Days since Onset of Drought x Population-RMR  0.5308 0.05469984 1.006928 0.030 - - 

        

Stem RWC = Days since Onset of Drought x Population LM    <0.001 55 0.73 

Intercept  118.3478 104.167577 132.528118 <0.001 - - 

Days since Onset of Drought  -1.6074 -1.866141 -1.348607 <0.001 - - 

Population-RMR  12.9269 4.857052 20.996774 0.002 - - 

        

Root RWC = Days since Onset of Drought x Population LM    <0.001 54 0.51 

Intercept  97.7960 85.046141 110.5459402 <0.001 - - 

Days since Onset of Drought  -0.8574 -1.09040 -0.6244183 <0.001 - - 

Population-RMR  9.7382 2.421658 17.0547688 0.010 - - 
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Model and Factors Model type Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
2.5% 97.5% 

Total Conductance = Days since Onset of Drought x Population LM    0.219 54 0.03 

Intercept 1.710e-05 2.844115e-06 3.136323e-05 0.020 - - 

Days since Onset of Drought  -2.493e-07 -5.207803e-07 2.208813e-08 0.071 - - 

Population-RMR  -1.971e-05 -3.987444e-05 4.576837e-07 0.055 - - 

Days since Onset of Drought x Population-RMR  3.430e-07 -4.088858e-08 7.268434e-07 0.079 - - 

        

Probability of Mortality/100 = Days since Onset of Drought x Population GLM    <0.001 57 NA 

Intercept  -10.04974 -16.279168 -5.8607657 <0.001 - - 

Days since Onset of Drought  0.20847 0.123628 0.3383138 <0.001 - - 

Population-RMR  -2.76760 -5.752685 -0.7046645 0.024 - - 
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Table S4. Linear models used to predict changes in RWC over time and residual models testing effects of morphology and physiology 

on population differences in desiccation rates. Data used corresponds to values starting at day 29 since the onset of drought to the end 

of the drought. 

 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 
AICc 

2.5% 97.5% 

Plant RWC = Days since Onset of Drought    <0.001 45 0.59 - 

Intercept 112.2879 97.627177 126.9487100 <0.001 - - - 

Days since Onset of Drought -1.1199 -1.388956 -0.8508492 <0.001 - - - 

        

Residuals Plant RWC = Population x Plant PLC x Stomatal Conductance    <0.001 39 0.34 396.00 

Intercept -2.583e+00 -15.5342417 10.3680573 0.689 - - - 

Population-RMR 1.556e+01 -1.3856152 32.5083621 0.071 - - - 

Plant PLC -7.542e-02 -0.3247718 0.1739392 0.545 - - - 

Stomatal Conductance -1.459e+03 -5117.8146684 2199.5811954 0.425 - - - 

Population-RMR x Stomatal Conductance 7.118e+03 2074.9238767 12160.4019900 0.007 - - - 

Population-RMR x Plant PLC -1.392e-01 -0.5553165 0.2769169 0.503 - - - 

Plant PLC x Stomatal Conductance 3.520e+01 -44.1219635 114.5237150 0.375 - - - 

Population-RMR x Plant PLC x Stomatal Conductance -2.424e+02 -396.5837658 -88.2785224 0.003 - - - 

        

Residuals Plant RWC = Population x log(Root to shoot ratio) x log(Plant biomass)    <0.001 44 0.33 389.02 

Intercept 11.704 4.340938 19.066895 0.002 - - - 

log(Plant biomass) -9.078 -16.156395 -1.999588 0.013 - - - 

log(Root to shoot ratio) -13.090 -20.922028 -5.257927 0.002 - - - 
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Table S5. Logistic models assessing the ability to predict mortality of RWC, PLC and water potential in each organ within a population. 

Model and Factors Estimate 95% C.I. Estimates p-value 
d.f. 

(res.) 
V.E. AIC 

2.5% 97.5% 

 Coastal Pine 

Probability of Mortality/100 = Root RWC    0.001 34 0.54 31.80 

Intercept 4.98366 2.2091939 8.678722 0.002 - - - 

Root RWC -0.09276 -0.1639429 -0.044972 0.001 - - - 

Probability of Mortality/100 = Stem RWC    < 0.001 50 0.95 8.47 

Intercept 4.26961 2.0814809 8.46725910 0.003 - - - 

Stem RWC -0.10784 -0.1846087 -0.06349933 < 0.001 - - - 

Probability of Mortality/100 = Leaf RWC    < 0.001 48 0.95 8.88 

Intercept 4.95464 2.4975909 9.43711623 0.002 - - - 

Leaf RWC -0.10333 -0.1772533 -0.06096504 < 0.001 - - - 

Probability of Mortality/100 = Plant RWC    0.002 39 0.87 15.42 

Intercept 6.47419 3.2503647 12.0944653 0.002 - - - 

Plant RWC -0.13098 -0.2491567 -0.0686114 0.002 - - - 

 Rocky Mountain 

Probability of Mortality/100 = Root RWC    0.005 35 0.54 28.08 

Intercept 4.78117 1.3645408 9.33191421 0.015 - - - 

Root RWC -0.09411 -0.1745279 -0.03855422 0.005 - - - 

Probability of Mortality/100 = Stem RWC    < 0.001 49 0.71 26.29 

Intercept 1.51439 0.09518901 3.15167840 0.046 - - - 

Stem RWC -0.06163 -0.10373380 -0.03298452 < 0.001 - - - 

Probability of Mortality/100 = Leaf RWC    < 0.001 50 0.61 29.67 

Intercept 2.74463 0.6939106 5.2292095 0.015 - - - 

Leaf RWC -0.06500 -0.1064305 -0.0337169 < 0.001 - - - 

Probability of Mortality/100 = Plant RWC    < 0.001 43 0.67 26.43 

Intercept 3.84161 1.2997532 7.12454758 0.008 - - - 

Plant RWC -0.08141 -0.1396342 -0.04074093 < 0.001 - - - 
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Model and Factors Estimate 95% C.I. Estimates p-value 
d.f. 

(res.) 
V.E. AIC 

2.5% 97.5% 

 Coastal Pine 

Probability of Mortality/100 = Root PLC    0.003 43 0.44 37.06 

Intercept -6.21832 -11.16383724 -2.9931479 0.002 - - - 

Root PLC 0.08727 0.04087564 0.1558133 0.003 - - - 

Probability of Mortality/100 = Stem PLC    < 0.001 35 0.75 17.02 

Intercept -8.58459 -14.88912583 -4.5411667 < 0.001 - - - 

Stem PLC 0.12022 0.06412035 0.2083284 < 0.001 - - - 

Probability of Mortality/100 = Plant PLC    0.003 39 0.76 15.60 

Intercept -9.16749 -17.2236736 -4.4382974 0.004 - - - 

Plant PLC 0.18904 0.0934005 0.3492716 0.003 - - - 

 Rocky Mountain 

Probability of Mortality/100 = Root PLC    0.564 44 0.01 51.76 

Intercept -1.813737 -3.79172600 -0.2196395 0.042 - - - 

Root PLC 0.008344 -0.01954568 0.0384584 0.564 - - - 

Probability of Mortality/100 = Stem PLC    0.114 33 0.12 38.75 

Intercept -2.62256 -5.152451247 -0.7063709 0.018 - - - 

Stem PLC 0.02598 -0.004303739 0.0616459 0.114 - - - 

Probability of Mortality/100 = Plant PLC    0.211 40 0.06 44.82 

Intercept -2.11749 -3.81842509 -0.73632606 0.006 - - - 

Plant PLC 0.02514 -0.01423102 0.06756254 0.211 - - - 
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Model and Factors Estimate 95% C.I. Estimates p-value 
d.f. 

(res.) 
V.E. AIC 

2.5% 97.5% 

 Coastal Pine 

Probability of Mortality/100 = Soil Water Potential    <0.001 53 0.59 35.66 

Intercept -3.9644 -6.842051 -2.2048206 <0.001 - - - 

Soil Water Potential -1.3502 -2.366627 -0.7167899 <0.001 - - - 

Probability of Mortality/100 = Stem Water Potential    <0.001 53 0.93 11.46 

Intercept -6.5164 -12.347141 -3.5992918 0.002 - - - 

Stem Water Potential -1.2105 -2.188772 -0.6825154 <0.001 - - - 

Probability of Mortality/100 = Leaf Water Potential    <0.001 52 0.89 14.34 

Intercept -6.758 -13.420706 -3.6954542 0.002 - - - 

Leaf Water Potential -1.195 -2.227083 -0.6702828 <0.001 - - - 

 Rocky Mountain 

Probability of Mortality/100 = Soil Water Potential    0.010 53 0.46 37.00 

Intercept -3.8623 -6.974155 -2.1278054 <0.001 - - - 

Soil Water Potential -1.1648 -2.345810 -0.4730897 0.010 - - - 

Probability of Mortality/100 = Stem Water Potential    0.002 52 0.88 19.37 

Intercept -5.7081 -11.295333 -3.193501 0.002 - - - 

Stem Water Potential -0.8257 -1.624107 -0.435619 0.002 - - - 

Probability of Mortality/100 = Leaf Water Potential    <0.001 52 0.80 22.78 

Intercept -5.1561 -9.064376 -3.0238930 <0.001 - - - 

Leaf Water Potential -0.7508 -1.325623 -0.4035579 <0.001 - - - 
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Table S6. Logistic models assessing the consistency of the relationships between probability of Mortality and water potential, PLC 

and RWC among populations and organs. 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 
AIC 

2.5% 97.5% 

Probability of Mortality = RWC * Population * Organ    < 0.001 348 175.1 

Intercept 4.954645 2.49759289 9.43711507 0.002 - - 

RWC -0.103329 -0.17725331 -0.06096500 < 0.001 - - 

Population-RMR -2.210012 -7.06192957 1.34636292 0.262 - - 

Organ-Plant 1.519549 -3.97511538 7.68110342 0.566 - - 

Organ-Roots 0.029017 -5.15107061 4.53011361 0.990 - - 

Organ-Stem -0.685038 -5.68687207 4.16151679 0.753 - - 

RWC * Population-RMR 0.038328 -0.02155419 0.11789299 0.243 - - 

RWC * Organ-Plant -0.027653 -0.15367542 0.06955652 0.588 - - 

RWC * Organ-Roots 0.010569 -0.07288420 0.09767735 0.791 - - 

RWC * Organ-Stem -0.004513 -0.09221156 0.08169024 0.910 - - 

Population-RMR * Organ-Plant -0.422577 -7.37617276 6.07617875 0.895 - - 

Population-RMR * Organ-Roots 2.007525 -4.13144001 8.82999003 0.531 - - 

Population-RMR * Organ-Stem -0.545209 -5.98431389 4.99210991 0.831 - - 

RWC * Population-RMR * Organ-Plant 0.011241 -0.10293724 0.14764083 0.849 - - 

RWC * Population-RMR * Organ-Roots -0.039680 -0.15626517 0.06767046 0.471 - - 

RWC * Population-RMR * Organ-Stem 0.007881 -0.08965499 0.10636449 0.866 - - 
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Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 
AIC 

2.5% 97.5% 

Probability of Mortality = PLC * Population * Organ    < 0.001 234 205.01 

Intercept -9.16749 -17.22367359 -4.43829743 0.004 - - 

PLC 0.18904 0.09340050 0.34927158 0.003 - - 

Population-RMR 7.05000 1.98881145 15.21450305 0.030 - - 

Organ-Roots 2.94917 -4.01424362 11.67861929 0.433 - - 

Organ-Stem 0.58290 -7.40475793 9.62889084 0.885 - - 

PLC * Population-RMR -0.16390 -0.32793433 -0.05796376 0.013 - - 

PLC * Organ-Roots -0.10176 -0.26910035 0.01718508 0.142 - - 

PLC * Organ-Stem -0.06882 -0.23922148 0.06199070 0.340 - - 

Population-RMR * Organ-Roots -2.64542 -11.62832907 4.68665170 0.502 - - 

Population-RMR * Organ-Stem -1.08798 -10.46760595 7.28388241 0.798 - - 

PLC * Population-RMR * Organ-Roots 0.08497 -0.04440641 0.25798939 0.248 - - 

PLC * Population-RMR * Organ-Stem 0.06966 -0.07075485 0.24630373 0.363 - - 
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Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 
AIC 

2.5% 97.5% 

Probability of Mortality = Water potential * Population * Organ    < 0.001 315 140.62 

Intercept -6.75760 -13.4207055 -3.6954542 0.002 - - 

Water potential -1.19521 -2.2270832 -0.6702828 < 0.001 - - 

Population-RMR 1.60149 -3.4211186 8.6136058 0.543 - - 

Organ-Soil 2.79325 -1.4895129 9.6921907 0.263 - - 

Organ-Stem 0.24124 -6.4449649 7.5774654 0.937 - - 

Water potential * Population-RMR 0.44437 -0.3366592 1.5321003 0.291 - - 

Water potential * Organ-Soil -0.15503 -1.3158572 1.0504650 0.775 - - 

Water potential * Organ-Stem -0.01526 -1.1356876 1.1495089 0.976 - - 

Population-RMR * Organ-Soil -1.49940 -9.0635572 4.4072637 0.628 - - 

Population-RMR * Organ-Stem -0.79325 -9.4144049 7.0472438 0.835 - - 

Water Potential * Population-RMR * Organ-Soil -0.25894 -1.8746480 1.1901370 0.726 - - 

Water Potential * Population-RMR * Organ-Stem -0.05958 -1.4018790 1.2175489 0.923 - - 
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CHAPTER 3: ECTOMYCORRHIZAL NETWORKS IMPAIR 

CARBON AND WATER RELATIONS OF PLANT HOSTS DURING 

PERIODS OF CARBON DEPLETION 
 

ABSTRACT 

Ectomycorrhizal networks can transfer nutrients from plants with abundant 

resources to resource-limited individuals. Among the resources that fungal networks can 

transfer, carbon has been particularly debated. During periods of carbon limitation, 

networks could relocate carbon from carbon-rich hosts to carbon-limited plants (plant-

centric view). Alternatively, carbon-limited hosts may induce carbon deficit on 

ectomycorrhizal fungi, which then may increase carbon demand from hosts with abundant 

carbon (fungal-centric view). Given that carbon may play an important role in plant water 

relations, movement of carbon through ectomycorrhizal networks may also affect host 

water relations. Using a greenhouse experiment with Pinus ponderosa seedlings, we tested 

the extent to which ectomycorrhizal networks operate under plant-centric or fungal-centric 

views during periods of carbon limitation. We also assessed whether changes in host carbon 

pools affected host water relations. Ectomycorrhizal networks depleted carbon-rich hosts in 

response to carbon-limited hosts. Hosts with low carbon showed low water retention, loss 

of turgor, and desiccation symptoms despite being well-watered throughout the experiment. 

Symbiotic ectomycorrhizal networks can become parasitic in response to disturbances that 

cause differential host carbon availability. The observed effects of carbon depletion on host 

water relations suggest that networks may increase plant vulnerability to drought under 

future climates. 

 

INTRODUCTION 

Associations between plants and fungi have been incredibly successful and are 

found across the whole plant kingdom. In exchange for plant carbon, ectomycorrhizal 

associations increase resource uptake (Lapeyrie & Chilvers 1985), enhance growth 

(Thomson et al. 1994), help recruit seedlings (Bingham & Simard 2012) and, ultimately, 

can influence forest composition. Ectomycorrhizae also form underground networks that 

connect several plants through the same fungi. These networks can transfer resources from 
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hosts with abundant resources to hosts in need of them (Warren et al. 2008; He et al. 2009; 

Song et al. 2015). While several nutrients can be  transferred, it is unclear whether non-

structural carbohydrates (NSC) can be also transferred from carbon-rich to carbon-limited 

plants (e.g., seedlings with low assimilation) (Simard & Perry 1997; Wu et al. 2001).  

Some suggest that hosts with abundant NSC may transfer them to stressed, carbon-

limited seedlings via ectomycorrhizal networks (Simard & Perry 1997; Song et al. 2015) 

(i.e., plant-centric view). Stressed seedlings could benefit from such transfer because higher 

NSC increases survival (Poorter & Kitajima 2007; O’Brien et al. 2014). In the long term, 

both hosts and fungi may also benefit because surviving seedlings could recover and share 

the carbon costs of the network. However, this hypothesis has two major critiques. First, 

carbon-rich hosts and fungi must pay a performance cost to sustain stressed seedlings 

(Ellström et al. 2015) and may not be favored by natural selection. Second, surviving hosts 

may compete for resources later and offset the long-term benefits of carbon transfer. Others 

suggest that fungi can switch demand from carbon-depleted to carbon rich hosts to meet the 

carbon needs of their fungal biomass (Fungi-centric view). This hypothesis suggests that 

hosts cannot regulate how much NSC are transferred to fungi which is not consistent with 

recent studies (Nehls et al. 2007 and references therein; Kiers et al. 2011). Clearly, there is 

controversy on whether carbon transfer is regulated by plant or fungal members of the 

network.  

Carbon transfer through fungal networks can influence drought stress at fine scales 

and affect host physiology. Drought stress causes stomatal closure, reduces assimilation, 

and often leads to carbon depletion (McDowell et al. 2008; Sperry & Love 2015). 

Seedlings are especially susceptible to carbon depletion because they have small carbon 

pools  (Sala & Mencuccini 2014 and references therein) but high carbon demands to grow 

and establish. Under drought, neighboring seedlings and adults may become carbon-

depleted to different extents because drought stress varies across space and time (Simeone 

et al. 2018), and across plants with different traits (Lloret et al. 2018). Consequently, 

drought-stressed seedlings may provide less NSC to the network than non-stressed 

seedlings and both seedlings and fungi may lack sufficient carbon to cover all their needs. 

If plant hosts regulate carbon movement, there may be a redistribution of carbon from 

carbon-rich hosts to carbon-poor hosts. This redistribution may increase overall survival by 
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preventing severe carbon deficit on both hosts and fungi until drought eventually subsides. 

If fungi regulate carbon movement, they may reassign de symbiotic costs of carbon-poor 

hosts to carbon-rich hosts and draw more carbon from them. In turn, this increase in carbon 

costs may lead to carbon deficit and reduce overall survival. It is critical to determine 

whether networks are plant- or fungi-centric because they have contrasting implications. If 

networks transfer carbon from carbon rich to carbon poor hosts and reduce physiological 

stress, forests may be resistant to more intense and frequent droughts under future climates. 

However, if networks steal carbon from hosts and increase stress, forests may be vulnerable 

under future drought (Oliva et al. 2014). We need to know how fungal networks influence 

host physiology under variable stress to understand how forests will respond to future 

droughts. However, studies rarely assess the effects of fungal networks on host physiology 

under variable stress. 

By drawing carbohydrates, fungal networks could affect the water relations of hosts 

during periods of carbon limitation. A global synthesis by Martinez-Vilalta et al. (2016) 

showed that plants rarely consume NSC below certain levels and suggested that basal levels 

of NSC are critical for survival. Other studies have shown that NSC could be used as 

osmolytes to maintain turgor in living cells (Sevanto et al. 2014), or to enhance water 

transport (McDowell et al. 2011; O’Brien et al. 2014). Together, these findings suggest that 

stored NSC cannot be consumed below a minimum threshold without impairing plant water 

relations. If stored NSC are important for water relations, carbon depletion by fungi could 

impair water relations and exacerbate drought stress. The effects of carbon depletion on 

water relations could be especially damaging for seedlings because of their already small 

NSC storage and their strong carbon needs. However, seedlings may avoid this problem if 

they receive NSC from non-stressed plants through fungal networks. If fungal networks do 

not decrease carbon demand during periods of carbon limitation (e.g., via mortality of fungi 

associated with carbon-poor hosts), the water relations of seedlings -including non-stressed 

ones- may eventually be impaired by their own symbionts. Some studies have shown that 

networks increase plant performance and seedling survival (Bingham & Simard 2012). 

However, these studies do not consider fluctuating conditions that can create carbon deficit 

between plant hosts and fungi and rarely study plant water relations in depth (but see 

Nardini et al. 2000). Additionally, these studies often focus on networks with large hub 
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trees which likely have sufficiently high NSC pools to feed small seedlings or their fungi 

(Beiler et al. 2015). However, plant-fungal networks may not always contain large trees 

and, in some instances such as in forest boundaries, they may be largely composed by 

recruiting seedlings.  

We must decouple carbon depletion from drought stress to fully understand the role 

of fungal networks in water relations. Drought kills plants by impairing their water relations 

(Adams et al. 2017). However, carbon depletion is involved in the process because NSC 

interacts with water (O’Brien et al. 2014; Sevanto et al. 2014; Secchi & Zwieniecki 2016, 

Sapes et al. in review). However, we do not fully understand the nature of this interaction, 

in part, because drought stress affects both plant water and plant carbon status. Thus, it is 

difficult to tease apart the sole effects of carbon depletion on water relations from those of 

water deficit. For the same reason, it is difficult to assess whether fungal networks affect 

host water relations with water deficit confounding the observed results. Thus, before 

adding drought to the equation, we must study how networks influence water relations 

through carbon without water deficit. By excluding drought, we can find how much carbon 

can be consumed without compromising plant water relations and whether networks 

ameliorate or amplify these effects. We can ask these questions using experimental designs 

that deplete stored NSC under well-watered conditions. 

We performed a greenhouse experiment with two-year-old ponderosa pine (Pinus 

ponderosa Douglas ex C. Lawson) seedlings connected through ectomycorrhizal networks. 

We applied a carbon depletion treatment under well-watered conditions to assess whether 

ectomycorrhizal networks move carbon among hosts following gradients of carbon and 

influence host physiology. Specifically, we asked 1) do networks transfer carbon from non-

depleted to carbon-depleted hosts or do they increase carbon demand from non-depleted 

hosts without benefit to depleted hosts?; and 2) does network movement of carbon under 

differential stress affects host water relations? 

 

MATERIALS AND METHODS 

Experimental Design. In the spring of 2016, we planted eighty one-year-old 

ponderosa pine seedlings (source: Zone IV-V block of the Missoula Ponderosa Pine Seed 

Orchard, Department of Natural Resources) in forty 19 L pots at the University of Montana 
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greenhouse facilities. Each pot contained two seedlings. Half of the pots contained a 

stainless-steel mesh (139.7 µm wire diameter and 177.8 µm pore diameter) penetrable by 

fungal hyphae that separated seedlings and prevented root contacts. The remaining pots did 

not contain this mesh and allowed both root and mycorrhizal interactions between 

seedlings. The purpose of these barriers was to distinguish whether treatment effects were 

caused by mycorrhizal connections or root connections among plants and examine if the 

effects varied in the presence of roots. We observed the same patterns in both categories for 

all variables measured. For the sake of simplicity and sample size, we merged these two 

categories from here on. Seedlings were planted in a soil mixture consisting of 40% sand, 

30% topsoil, and 30% peat moss; and were kept at field capacity (saturated soil) throughout 

the duration of the experiment. We inoculated the rhizosphere of each seedling with both a 

commercial mixture of Rhizopogon spores (Mycorrhizal Applications. Grants Pass, OR) 

and spores gathered from Pezizales already present in seedling root systems. Both 

Rhizopogon and members of the order Pezizales can form structures capable of 

redistributing resources among plants (Beiler et al. 2010; Song et al. 2015). After 

inoculation, seedlings grew unperturbed for 47 weeks to allow establishment of mature 

ectomycorrhizal associations between seedlings. 

In the fall of 2017, we split all pots into two groups and applied a 3-week NSC 

depletion treatment to one group using light-blocking covers (Fig. 1). This procedure 

generated control (light) and NSC-depleted treatments. In each pot within the NSC-

depleted treatment, we placed a cover over one of the two seedlings (dark) to reduce stored 

NSCs through photosynthetic inhibition and metabolic consumption while the other 

seedling (light paired with dark) was left undisturbed. Each cover consisted of a wire 

scaffolding (20 x 40 cm) overlaid with aluminum foil that blocked incoming light while 

keeping air temperatures similar to those in non-covered neighbor seedlings (ca. 24 ºC). We 

pierced 5 mm diameter holes evenly across the cover walls to facilitate air flow, keep the 

atmosphere around the plant unsaturated (i.e., relative humidity < 50%), and allow canopy 

transpiration. We maximized the number of holes while keeping minimum levels of light 

inside the covers (Photosynthetic Active Radiation < 0.40 μmol quanta m-2 s-1). After three 

weeks of depletion, we harvested ten pots from both control an NSC-depleted treatments to 

assess the physiological status (see below) of light seedling pairs (LL), light paired with 
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dark (LD), and dark (D) seedlings. This harvest was also used to establish base-line 13C/12C 

ratios (∆13C) in all organs across treatments. Note that sample size in light seedlings is 

twice as big as in dark and light neighbor seedlings because both plants in light pots qualify 

as light seedlings. Immediately after the harvest, the remaining light paired with dark 

seedlings within the carbon-depletion treatment were subjected to isotopic labeling with 13C 

(see below) to assess potential transfer of carbon between individuals in the presence of 

carbon-limiting conditions. We also performed an identical labeling process in the 

remaining control pots to assess potential transfer among non-stressed plants. In this case, 

the labeled seedling was chosen at random between the two seedlings. Comparing carbon 

transfer between control and NSC-depleted pots provided information of the dynamics of 

carbon transfer in response to stress. After one week of labeling, we harvested the 

remaining pots in both treatments to measure changes in 13C/12C ratios. 

 

Isotopic Labeling and Carbon Transfer Variables. Labeling was performed 

following similar methods to Song et al. (2015). We introduced 13C into labeled seedlings 

by enclosing the entire canopy of each plant in a clear 2 L plastic bag. Each bag was 

subsequently injected with 20 mL of Carbon-13C dioxide (99 atom % 13C, <3 atom % 18O, 

Sigma Aldrich. St. Louis, MO. USA) for a ratio of 10 mL of 13C per 1 L of air and was left 

undisturbed for 2 hours. 13C injections were performed at midday over two consecutive 

days. After each labeling event, enriched air was removed from bags and directed outside 

the greenhouse facilities using an industrial vacuum thus preventing contamination of 

neighboring seedlings. Ground samples of dry needles, stems, and roots were sent to the 

Stable Isotope Facility at University of California, Davis and analyzed to obtain ∆13C 

values. We also collected a representative sample of fungal material from roots in seedlings 

across treatments and analyzed ∆13C in them. Fungal samples were collected to ensure that 

13C traveled from needles in labeled seedlings to mycorrhizae on the labeled side and also 

to the mycorrhizae of paired non-labeled plants through the mycorrhizal network. Thus, it 

served us to validate the existence of a mycorrhizal network between seedling pairs. 

Additionally, extra seedlings were randomly interspersed throughout the treatments and 

used to assess possible contamination of the greenhouse environment during labeling. We 

collected needles from these seedlings after each labeling to compare the concentration of 
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13C to that in seedlings measured prior to labeling. No signs of excess ∆13C were observed 

in these seedlings. 

 

Sampling Procedure. We measured midday leaf and stem water potentials in each 

seedling using a pressure chamber (PMS Instrument Company, Corvallis, OR) following 

methods in (Kaufmann 1968). Stem water potential was estimated equilibrating the water 

potential of a needle bundle with that in the stem following methods from Begg & Turner 

(1970) and measuring the equilibrated bundle with the pressure chamber. Subsequently, we 

harvested seedlings and collected tissue samples (needles, stem, and roots) for osmotic 

potential measurements. Tissue samples were wrapped in aluminum foil to prevent artificial 

declines in osmotic potential due to water loss. Then, they were placed in small Ziploc bags 

and stored in a cooler with dry ice for transport to the lab within the following 2 hours. The 

rest of the seedling was placed in a Ziploc bag containing a wet paper towel partially 

covered in tin foil to prevent desiccation without introducing external moisture into the 

tissues in contact with the towel (Garcia-Forner et al. 2016). Bags were placed in a cooler 

and transported to the lab to measure both hydraulic function (i.e., water content, hydraulic 

conductivity, and pressure-volume curves) and NSC pools (see below).  

Upon arrival to the lab, samples collected for osmotic potential were crushed to 

extract cellular liquid contents and the extruded solution was used to saturate 28 mm2 filter 

paper disks. Disks were then placed in a C-52 sample chamber attached to a Psypro data 

logger (Wescor, Inc. Logan, Utah. USA) to measure osmotic potentials. Finally, pressure 

potential was calculated in stems and needles as the difference between their respective 

water potentials and osmotic potentials. Pressure potential was not calculated in roots 

because we lacked root water potentials. 

 

Pressure-Volume Curves. We used pressure-volume curves to estimate turgor loss 

point, osmotic potential at full turgor, modulus of elasticity, and capacitance; following the 

methods outlined in (Bartlett et al. 2012). For each seedling, water potential was recurrently 

measured in a needle bundle as described above. Bundles were placed on a bench to air-dry 

between consecutive water potential measurements. During water potential measurements, 

care was taken to increase and decrease pressure within the sample chamber at an equal rate 
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(< 0.01 MPa s-1). PV-curves were considered complete when 4 – 8 data points on the 

apparent linear portion of the curve were obtained. After completion, each bundle was 

placed in a drying oven at 70oC for a minimum of 48 hours to obtain individual dry mass. 

Turgor loss point was estimated as the point of transition between curved and linear 

portions in each p-v curve. The osmotic potential at full turgor was estimated as the 

intercept of a linear fit to the linear portion of the p-v curve. The modulus of elasticity was 

estimated as the change in osmotic water potential across the portion of the p-v curve 

before turgor loss point, divided by the change in RWC across the same span. Finally, 

capacitance was estimated by taking the slope of a regression of RWC and leaf water 

potential.    

 

Relative Water Content. We used a sample of roots, stems, and needles of each 

seedling to measure their relative water content (RWC). First, samples were weighted to 

obtain fresh weight and returned to Ziploc bags in the cooler to avoid changes in hydraulic 

conductivity due to exposure to dry air. For consistency, root fresh weight was measured 

before any other tissue to avoid changes in RWC or hydraulic conductivity due to exposure 

to dry air. After hydraulic conductivity measurements (see below), stem, needle, and root 

samples were hydrated to full turgidity for 5 hours in a water bath at 10 ºC. After hydration, 

we blotted each sample to remove surface moisture using a paper towel and weighed them 

to determine weight at full turgor. Samples were then oven dried at 70ºC, until a constant 

mass was achieved and weighed to determine dry weight. RWC was calculated as: ((Fresh 

weight - Dry weight)/(Turgid weight - Dry weight))*100 following methods from (Barrs & 

Weatherley 1962). The rest of the seedling was dried, separated by organ, and weighed. 

These weights were later combined with sample dry weights to calculate whole plant RWC 

by multiplying the dry mass of each tissue relative to whole-plant dry mass (i.e., tissue 

fraction) by their respective RWC. Whole-plant dry mass for each seedling was calculated 

by combining the dry mass of all samples and the remaining biomass. 

 

Hydraulic Conductivity. We measured stem hydraulic conductivity and root 

hydraulic conductance using the gravimetric method (Sperry et al. 1988), after fresh weight 

measurements. We used the same hydraulic apparatus described in Sapes et al. (in review) 
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capable of measuring hydraulic conductance of both whole root systems and stems. After 

measuring fresh weight, stem segments were immersed in deionized water for 20 minutes 

to relax xylem tensions that could artificially alter conductivity values (Trifilò et al. 2014). 

After relaxation, stems were relocated to the hydraulic apparatus and each end was recut 

twice at a distance of 1 mm from the tips each time (total of 2 mm per side) to remove any 

potential emboli resulting from transport, previous cuts, and relocation (Torres-Ruiz et al. 

2015). Stems were then connected to the hydraulic apparatus while under water, with their 

terminal ends facing downstream flow. The stems were then raised out of the water and the 

connections were checked to ensure that there were no leaks. A solution of water with 10 

mM KCl degassed at 3 kPa for at least 8 hours was then used for all hydraulic 

measurements (Espino & Schenk 2011). First, initial background flow was measured to 

account for the flow existing under no pressure, which can vary depending on the degree of 

dryness of the measured tissue (Hacke et al. 2000; Torres-Ruiz et al. 2012; Blackman et al. 

2016). Second, a pressure gradient of 5-8 kPa was applied to run water through the stem 

and pressurized flow was measured. This small pressure gradient prevented embolism 

removal from the samples while ensuring flow. Lastly, final background flow was 

measured, initial and final background flows were averaged, and flow was calculated as the 

difference between pressurized flow and average background flow. Native specific 

hydraulic conductivity (K) was estimated in stems as the flow divided by the pressure 

gradient used and standardized by xylem area and length. Stem segments where then 

removed from the apparatus and placed in a water bath for measurements of RWC (see 

above). The configuration of the apparatus was then changed to measure whole root system 

hydraulic conductance using the same gravimetric principle as explained in Sapes et al., (in 

review). Flow, including initial and final background flow, was measured as above and 

whole root native hydraulic conductance (k) was estimated as the flow divided by the 

pressure gradient used and standardized by xylem area at the root collar. We used the R 

code published in Sapes et al., (in review, see Methods S1 in Supporting Information) to 

calculate pressurized and background flows once flow stabilizes. Once flow rates were 

measured, root samples were placed in a water bath to be used in measurements of RWC. 
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Non-structural Carbohydrates. Non-structural carbohydrates were analyzed in all 

organs and at the whole plant level. A sample of each tissue was immediately collected 

upon arrival to the laboratory, microwaved for 180 seconds at 900 Watts in three cycles of 

60 seconds to stop metabolic activity (i.e., consumption of NSC pools), and then placed in a 

drying oven at 70 oC. Samples were dried to a constant mass and then finely ground into a 

homogenous powder. We used 11 mg of needle tissue and 13 mg of stem or root tissue to 

analyze NSC concentrations following the enzymatic digestion method (McCleary et al. 

1997). We calculated the total pool of NSCs, starch, soluble sugars, and glucose or fructose 

in each tissue by multiplying the corresponding concentration of each tissue by its dry 

weight. Concentrations (total NSC and each individual component) were later scaled up to 

whole-plant level as explained in the RWC section.  

 

Statistical Analyses. We tested differences among treatments in all variables using 

Wilcoxon tests for independent samples followed by Tukey’s HSD post-hoc tests. We 

chose Wilcoxon rank tests because variables did not met assumptions of normality across 

all groups. To test the effectiveness of the NSC-depletion, we compared NSC pools and 

each NSC component (i.e., starch, sucrose, and glucose and fructose together) among 

treatments for each organ and at the whole-plant level. We also tested potential artificial 

effects of covers on stomatal conductance. To test the effectiveness of the labeling process, 

we compared ∆13C values in labeled seedlings to values in seedlings from the same 

treatment harvested prior to labeling. Note that dark seedlings were excluded because they 

were never labeled. These comparisons were done for each organ type to ensure that 13C 

reached all organs of the labeled plant. Changes in ∆13C in mycorrhizae were descriptive 

because, while we have values from non-labeled seedlings harvested after labeling, only a 

few samples were collected from labeled seedlings and from seedlings harvested prior to 

labeling. To assess potential carbon transfer to non-labeled seedlings, we compared ∆13C 

values in non-labeled seedlings harvested after labeling to values in seedlings from the 

same treatment harvested prior to labeling. Note that light neighbor seedlings were 

excluded because they were all labeled. These comparisons were done for each organ type 

to assess the extent to which transferred 13C was able to reach different organs. We tested 

differences in water relations among treatments. Variables tested included hydraulic 
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conductivity, water potential, osmotic potential, pressure potential, relative water content, 

and parameters extracted from pressure-volume curves (i.e., turgor loss point, osmotic 

potential at full turgor, modulus of elasticity, and capacitance). These comparisons were 

done for each organ available and at the whole-plant level when possible. 

Additionally, we assessed whether osmotic potential and pressure potential change 

in response to carbon depletion. We used two linear regressions with NSC concentrations in 

needles as predictor and either leaf osmotic potential or leaf pressure potential as response 

variables. For these analyses, response variables were normalized using log 

transformations. We focused on needles because they are the most exposed organ to dry 

conditions and because they showed the most striking patterns in these variables. Finally, 

we assessed whether NSC storage influences turgor loss as water potentials decrease using 

linear regressions. Leaf pressure potential was the response variable and the interaction 

between leaf water potential and whole-plant NSC concentrations was given as a predictor.  

 

RESULTS 

NSC pools significantly differed among treatments (Fig. 2). As expected, light 

deprivation extremely reduced NSC pools in dark (D) seedlings (p < 0.001) because stored 

NSC were used to maintain metabolism. Light seedlings paired with dark (LD) plants also 

experienced NSC depletion and showed intermediate NSC pools relative to light (LL) and 

dark seedlings (p < 0.001, and p = 0.009, respectively). When broken down to each NSC 

compound, we found that starch was significantly lower in dark seedlings (p < 0.001) 

relative to LL seedlings and LD plants had marginally higher levels than dark seedlings (p 

< 0.079). However, starch levels did not differ between dark seedlings and their respective 

light pairs. Both sucrose and glucose + fructose were lower in dark seedlings than in light 

and LD seedlings (sucrose: light: p < 0.001, light paired with dark: p = 0.040; glucose and 

fructose: light: p < 0.001, light paired with dark: p = 0.018). However, no differences were 

detected between LL and LD seedlings. Patterns within each organ were consistent with 

those observed at the whole-plant level (Fig S1).These results indicate that carbon-depleted 

seedlings converted stored starch into free sugars to minimize their depletion. Dark 

seedlings depleted stored starch to a point were consumed free sugars could not be replaced 

anymore thus incurring carbon limitation.  
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Labeled seedlings showed high levels of ∆13C relative to pre-labeling base-line 

values (Fig. 3) indicating that seedlings had successfully incorporated the labeling isotope. 

13C of labeled seedlings increased in all organs and followed a gradient with the highest 

values in needles and the lowest in roots (p < 0.001 in all seedling types and organs, Fig. 

3a-c). High levels of 13C were also present in the mycorrhizae associated to labeled 

seedlings and, to a lesser extent, in mycorrhizae associated to non-labeled LL plants paired 

with labeled seedlings (Fig. 3d). The presence of 13C in fungi from non-labeled LL plants 

confirmed the existence of a mycorrhizal network between seedlings. However, 13C did not 

travel from mycorrhizae associated to labeled LD seedlings to fungi from non-labeled D 

plants. In all cases, 13C levels in non-labeled seedlings were similar to base-line values 

regardless of organ or treatment (Fig. 3e-g). Thus, 13C traveled from needles to both sides 

of the fungal network in non-depleted conditions but stayed in the side of the labeled 

seedling in carbon-depleted conditions. In both cases, mycorrhizae did not transfer carbon 

to non-labeled plants. 

Hydraulic conductivity did not significantly differed among treatments in any organ 

(Fig S2). However, osmotic potentials were significantly lower in light seedlings than in 

LD and D seedlings (Fig. 4a-c). These differences were observed in needles (p < 0.001 in 

all treatments), stems (dark: p = 0.002, light paired with dark: p < 0.001), and roots (dark: p 

< 0.001, light paired with dark: p = 0.001). High osmotic potentials were associated to low 

pressure potentials in needles (dark: p < 0.001, light paired with dark: p < 0.001, Fig. 4d) 

and stems (dark: p = 0.012, light paired with dark: p < 0.001, Fig. 4e). Pressure potentials in 

stems were low enough to bring stems to turgor loss (i.e., pressure potential lower than 0). 

As a result, we observed lower stem RWC in depleted seedlings than in non-depleted plants 

(dark: p < 0.001, light paired with dark: p = 0.047, Fig. 5). 

The patterns observed through direct measurements of osmotic potential were 

corroborated by indirect estimations of osmotic potentials at turgor loss point from 

pressure-volume curves. However, because of the greater uncertainty inherent from this 

method, only dark seedlings showed lower osmotic potentials at turgor loss point than light 

seedlings (p = 0.032, Fig. 6a). Pressure-volume curves also detected significant differences 

in saturated water content in dark seedlings relative to their counterparts (light: p < 0.007, 
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light paired with dark: p < 0.008, Fig. 6b). No differences were detected in osmotic 

potential at full turgor, capacitance, and elasticity. 

Low leaf osmotic potentials were associated to high leaf NSC concentrations (p < 

0.001, R2
Adj = 0.69, Table S1, Fig. 7a). This relationship was linear at low NSC and reached 

a plateau at values close to the average NSC from control pots. Increases in NSC beyond 

this value had a minimal effect on leaf osmotic potentials. The effects of NSC were 

mirrored in pressure potential (p < 0.001, R2
Adj = 0.40, Table S1, Fig. 7b). In this case, 

turgor increased linearly until NSC values were close to the average NSC from control 

pots. Beyond that point, turgor plateaued around a maximum value of 1.5 MPa. 

Stored NSC also influenced the relationship between leaf pressure potential and leaf 

water potential (p < 0.001, R2
Adj = 0.60, Table S1). Plants with low NSC showed lower 

pressure at any given water potential and higher water potentials at turgor loss (Fig. 8, red 

vertical line and black horizontal line, respectively). Additionally, plants with low NSC lost 

more turgor than plants with high NSC given the same decline in water potential (Fig. 8, 

slopes).  

 

DISCUSSION  

Carbon gradients among plant hosts did not elicit transfer of carbon through fungal 

networks. We did not observe carbon transfer despite the differences in carbon pools 

among plant hosts. Light seedlings paired with dark plants became carbon-depleted relative 

to controls, indicating that they incurred a carbon cost imposed by dark seedlings. 

However, dark seedlings exhibited even lower carbon pools yet no increase in 13C, 

indicating that they did not receive any carbon from their neighbors in the light. Instead, 

fungi retained the 13C received from light seedlings paired to dark plants and the same 

occurred in light seedlings paired to light plants. These results suggest that plants cannot 

control carbon once it reaches the fungal network. Thus, in the case of carbon-based 

resources, we did not find supporting evidence for the plant-centric view. These results also 

suggest that fungi may have mechanisms to retain carbon in their system and prevent loss 

of carbon towards carbon-depleted hosts. Other studies have found that fungi convert plant 

carbon into fungi-specific sugars and alcohols (Nehls et al. 2007 and references therein). 

These studies suggest that fungi convert plant NSC to i) maximize plant-derived sugar 

concentrations gradients from hosts to fungi and facilitate passive carbon transfer and ii) 
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prevent transfer back to hosts by storing carbon in forms that are not compatible with plant 

sugar-transport proteins. Other studies also failed to find evidence of significant carbon 

transfer among plant hosts. For instance, Newman (1988) provides an extensive review of 

carbon-labeling studies showing that carbon is unlikely to move among plant hosts. In most 

instances, labeled carbon in fungi did not re-enter plant tissues. In the cases where carbon 

re-entered hosts, the amounts were likely too small to significantly increase host NSC 

storage (Simard & Perry 1997). Recent studies suggest that these small quantities of carbon 

may re-enter hosts as amino acids or stress-signaling compounds such as jasmonate (Teste 

et al. 2010; Song et al. 2015). While the indirect transfer of carbon via these compounds 

may be relevant on its own, it is unlikely to have a significant effect on plant carbon pools. 

Thus, carbon transfer among plant hosts likely occurs as a byproduct of other functions 

rather than as a mechanism to counter carbon depletion.  

Covers served to simulate carbon-limiting conditions that occur during drought or 

shading. When we applied covers, fungal networks received less carbon from their 

darkened hosts. As a result, fungal networks draw carbon from seedlings in the light and 

depleted their NSC storage. We did not observe these effects in networks without covers. 

Thus, carbon limitation turned the symbiotic relationship between plants and fungal 

networks into a parasitic relationship. Shifts in plant-fungal relationships are common and 

often occur when environmental conditions change the cost-benefit of the relationship 

between both organisms. For instance, under nutrient limitation, mycorrhizae are known to 

provide extra nutrients for plants and enhance their growth despite the carbon costs 

imposed by the fungi (Thomson et al. 1994). In contrast, if limiting nutrients become 

abundant (e.g., fertilization), the carbon cost of mycorrhizae offsets its benefits and can 

reduce potential growth (Newton & Pigott 1991; Alberton et al. 2007; van der Heijden & 

Horton 2009). Some plants can reduce these negative effects by regulating how much 

carbon is transferred to mycorrhizae (Nehls et al. 2007 and references therein). 

Accordingly, we observed lower 13C in fungi of carbon-depleted plants (Fig. 3d) relative to 

non-depleted plants. While these mechanisms may have existed in our case, they were not 

able to fully stop carbon transfer to fungi. This pattern could also be explained if fungi 

purposely reduced their live biomass using digestive enzymes (Ellström et al. 2015). This 

would be consistent with the differences in 13C observed between carbon-depleted and non-
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depleted treatments. First, fungal networks may have drawn more carbon from seedlings 

paired with darkened hosts during early stages of carbon depletion. As a result, these 

seedlings depleted their NSC pools. Then, as carbon deficit persisted, networks selectively 

killed fungi from darkened hosts that were not providing plant carbon to maximize their 

survival. This strategy may have reduced carbon demand in seedlings paired with darkened 

hosts due to lower live fungal biomass. Thus, it would explain why their fungal 13C levels 

were lower than labeled light seedlings and why this 13C did not travel to (dead) fungi from 

darkened hosts. Importantly, we would have not identified a shift towards a parasitic 

relationship if we had measured typical indicators of plant performance such as growth 

rather than plant carbon. Thus, we must assess host physiology to get a full view of the 

potential long-term effects of fungal networks on plants and, ultimately, forest vulnerability 

to drought. Given that seedlings are highly sensitive to carbon depletion, dry areas with 

forest boundaries that rely on seedling recruitment may be especially vulnerable to 

relationship shifts between plants and fungi. 

Carbon depletion impairs host water relations and may predispose plants to early 

stress under drought. When stored NSC were consumed in hosts in the dark or drawn from 

seedlings by fungi, osmotic potentials increased indicating insufficient solutes (Fig. 7). 

Water potentials in these tissues likely became greater than the xylem water potential and 

tissues started losing water towards the vascular system. As a result, tissues of carbon-

depleted plants had lower pressure potential relative to light controls and often reached 

turgor loss, which can cause loss of cell function and lead to death (Guadagno et al. 2017, 

Sapes & Sala, in prep). However, plants did not lose turgor due to loss of water transport 

(similar conductivity regardless of carbon status, Fig. S2). More likely, high osmotic 

potentials were unable to match xylem water potentials, and water simply traveled through 

the xylem and to the atmosphere without entering living cells. Other water-related traits 

were also affected by the increase in osmotic potentials associated to carbon depletion. 

Plants with high osmotic potentials also lost turgor at high water potentials (i.e., higher 

turgor loss point) and  had lower pressure at full turgor (i.e., water potential close to 0) (Fig. 

8) which makes them more vulnerable to drought (Bartlett et al. 2012). Interestingly, 

carbon-depleted plants also had higher saturated water content which has been related to 

capacitance (Ogburn & Edwards 2012). It is possible that cells consumed many starch 
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granules and water filled the volume previously occupied by starch. This would increase 

the saturated water content of the tissues by increasing the amount of water relative to their 

dry biomass. However, we lack direct evidence for this hypothesis and it should be further 

tested.  

Plants may experience resource-allocation tradeoffs as a result of carbon depletion. 

Our results suggest that seedlings use most of their stored carbon for water retention (Fig. 

7). Plants reduced their water retention and turgor when NSC storage decreased below the 

average values observed in controls. Only plants with NSC pools above average the control 

values seemed to have enough carbon to spend in other functions without risk of impairing 

their water relations. Plants use stored NSC to provide a source of energy for metabolic 

needs, produce defenses, grow, and reproduce, in addition to retain water in living tissues. 

Given that stored NSC are used for all these functions, seedlings may have to continuously 

choose which functions to prioritize, thus facing significant resource-allocation tradeoffs. 

These tradeoffs may easily compromise seedlings if they become carbon-limited by fungal 

networks or drought stress, thus making them more vulnerable than adult trees. However, 

these detrimental effects may have a lesser impact in plant-fungal networks with carbon-

rich trees that can cover the carbon deficit of neighboring seedlings (Bingham & Simard 

2012; Beiler et al. 2015). Yet, we lack studies on the effects of plant and network size on 

host water relations.  

Our results add to existing evidence showing how critical stored NSC are to 

maintain water relations (Anderegg & Callaway 2012; Sevanto et al. 2014; Secchi & 

Zwieniecki 2016) and to elongate survival under drought (O’Brien et al. 2014). The 

patterns found in this experiment are also consistent with hypotheses from a recent 

framework of drought-induced mortality that integrates carbon depletion, water deficit, and 

biotic agents (Oliva et al. 2014). This framework suggests that biotrophic parasites that 

attack trees before drought should deplete plant NSC pools and impair water relations such 

that, once drought starts, plants die at faster rates. While we did not explicitly assess the 

effects of fungal-driven carbon depletion under drought, we observed higher osmotic 

potential and turgor loss point, and lower turgor and relative water content in carbon-

depleted seedlings. Additionally, we observed stronger declines of turgor per unit of water 

potential in depleted seedlings. Finally, we did not observe loss of water transport. 
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However, depleted plants may have lost conductivity under drought at faster rates given 

their greater loss of turgor per unit water potential. These results strongly suggest that 

depleted plants would have experienced early mortality under drought as suggested by 

Oliva et al. (2014). 

Overall, we found that relationships between plant and fungi are highly responsive 

to disturbances that affect carbon balance. Studying the effects of fungal networks on host 

physiology rather than just growth or survival may help us better understand the responses 

of plant-fungi relationships to stress. In the case of drought, changes in carbon balance 

between plant hosts and fungi due to drought may influence plant water relations and 

ultimately forest vulnerability to drought. Future research should develop similar 

experiments that explicitly test how hosts respond to carbon depletion in combination with 

water deficit and assess the role of host and network size on host physiology. 
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FIGURES 

 

Fig. 1. Experimental design. Circles represent pots divided with barriers and a seedling on 

each side. Colors represent plants exposed to natural light (golden), plants with light-

blocking covers (black), and plants exposed to natural light paired with plants with covers 

(teal). Numbers in the side of each circle indicate the sample size of the treatment 

represented in that side of the circle at a given point on time. Dashed red line indicates the 

time of 13C labeling. Arrows indicate harvesting events. 
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Fig. 2. All seedlings in carbon-depleted pots showed low carbohydrate levels in all 

NSC components. Panels correspond to whole-plant A) NSC storage, B) Starch, C) 

Sucrose, and D) Glucose & Fructose concentrations. Colors represent plants exposed to 

natural light (golden), plants with light-blocking covers (black), and plants exposed to 

natural light paired with plants with covers (teal). Lines within boxes represent the median 

and top and bottom hinges represent 25th and 75th percentiles. Whiskers indicate highest 

and lowest value no further than 1.5 times the inter-quartile range represented by the 

hinges. Dots represent the distribution of the data. Asterisks indicate the degree of 

significance between groups (* = 0.05, ** = 0.01, *** = < 0.001). 
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Fig. 3. 13C isotope reached all organs in labeled plants and the fungal network but was 

not transferred to carbon-depleted hosts. Panels on the left correspond to 13C/12C ratios 

(∆13C) in A) needles, B) stems, and C) roots, from labeled plants. Panel D corresponds to 

the fungal network. Numbers on boxplots in panel D indicate average values of ∆13C for 

that group. Panels on the right correspond to ∆13C in A) needles, B) stems, and C) roots, 

from non-labeled plants. Open boxes indicate values before labeling (i.e., base-line) and 

solid boxes indicate values after labeling. Colors represent plants exposed to natural light 

(golden), plants with light-blocking covers (black), and plants exposed to natural light 

paired with plants with covers (teal). Lines within boxes represent the median and top and 

bottom hinges represent 25th and 75th percentiles. Whiskers indicate highest and lowest 

value no further than 1.5 times the inter-quartile range represented by the hinges. Dots 

represent the distribution of the data. Asterisks indicate the degree of significance between 

groups (* = 0.05, ** = 0.01, *** = < 0.001). 
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Fig. 4. All tissues in carbon-depleted treatments lost water retention and turgor. 

Panels on the left correspond to osmotic potentials of A) needles, B) stems, and C) roots. 

Panels on the right correspond to pressure potentials of D) needles and E) stems. Colors 

represent plants exposed to natural light (golden), plants with light-blocking covers (black), 

and plants exposed to natural light paired with plants with covers (teal). Lines within boxes 

represent the median and top and bottom hinges represent 25th and 75th percentiles. 

Whiskers indicate highest and lowest value no further than 1.5 times the inter-quartile range 

represented by the hinges. Dots represent the distribution of the data. Asterisks indicate the 

degree of significance between groups (* = 0.05, ** = 0.01, *** = < 0.001). 

  



121 

 

 
 

Fig. 5. Carbon-depleted plants lose water content under well-watered conditions. 

Colors represent plants exposed to natural light (golden), plants with light-blocking covers 

(black), and plants exposed to natural light paired with plants with covers (teal). Lines 

within boxes represent the median and top and bottom hinges represent 25th and 75th 

percentiles. Whiskers indicate highest and lowest value no further than 1.5 times the inter-

quartile range represented by the hinges. Dots represent the distribution of the data. 

Asterisks indicate the degree of significance between groups (* = 0.05, ** = 0.01, *** = < 

0.001). 
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Fig. 6. Water potential at turgor loss point and capacitance increase in carbon 

depleted plants. Panels correspond to A) turgor loss point and B) saturated water content. 

Colors represent plants exposed to natural light (golden), plants with light-blocking covers 

(black), and plants exposed to natural light paired with plants with covers (teal). Lines 

within boxes represent the median and top and bottom hinges represent 25th and 75th 

percentiles. Whiskers indicate highest and lowest value no further than 1.5 times the inter-

quartile range represented by the hinges. Dots represent the distribution of the data. 

Asterisks indicate the degree of significance between groups (* = 0.05, ** = 0.01, *** = < 

0.001). 
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Fig. 7. Water relations are impaired when NSC drop below control values. Panels 

correspond to A) osmotic potential and B) turgor pressure. All treatments are merged for 

this analysis. Vertical golden lines indicate average leaf NSC content in control pots (i.e., 

light plants). A loess function was fit to the data to best represent the relationship between 

variables. Dashed lines indicate 95% confidence interval of the regression lines. 

 

 
 

Fig. 8. Carbon depletion is associated to turgor loss at high water potentials. Colors 

represent plants exposed to natural light (golden), plants with light-blocking covers (black), 

and plants exposed to natural light paired with plants with covers (teal). Vertical red line 

and points indicate differences in turgor at a given water potential. Horizontal line indicates 

turgor loss point. Dashed lines indicate 95% confidence interval of the regression lines. 
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SUPPORTING INFORMATION 

 

Fig. S1. All seedlings in carbon-depleted pots showed low carbohydrate levels in all 

NSC components and organs. Panels correspond to NSC storage, Starch, Sucrose, and 

Glucose & Fructose concentrations in needles (left), stems (middle), and roots (right). 

Colors represent plants exposed to natural light (golden), plants with light-blocking covers 

(black), and plants exposed to natural light paired with plants with covers (teal). Lines 

within boxes represent the median and top and bottom hinges represent 25th and 75th 

percentiles. Whiskers indicate highest and lowest value no further than 1.5 times the inter-

quartile range represented by the hinges. Dots represent the distribution of the data. 

Asterisks indicate the degree of significance between groups (* = 0.05, ** = 0.01, *** = < 

0.001). 
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Fig. S2. Depletion of NSC did not affect water transport in plants. Panels correspond to 

A) stem hydraulic conductivity and B) root hydraulic conductance. Colors represent plants 

exposed to natural light (golden), plants with light-blocking covers (black), and plants 

exposed to natural light paired with plants with covers (teal). Lines within boxes represent 

the median and top and bottom hinges represent 25th and 75th percentiles. Whiskers 

indicate highest and lowest value no further than 1.5 times the inter-quartile range 

represented by the hinges. Dots represent the distribution of the data. No significant 

differences were observed among groups. 
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Table S1. Linear models showing the influence of non-structural carbohydrates on pressure and osmotic potentials. 

Model and Factors Estimate 
95% C.I. Estimates 

p-value 
d.f. 

(res.) 

Adjusted 

R square 2.5% 97.5% 

Leaf Osmotic Potential = log(Leaf NSC Concentrations)    <0.001 75 0.69 

Intercept -0.28307 -0.524066 -0.0420816 0.022 - - 

log(Leaf NSC Concentrations) -0.89378 -1.030518 -0.7570468 <0.001 - - 

       

Leaf Pressure Potential = Leaf NSC Concentrations    <0.001 75 0.40 

Intercept -0.2105 -0.5626360 0.1416684 0.238 - - 

log(Leaf NSC Concentrations) 0.7326 0.5328177 0.9324307 <0.001 - - 

       

Leaf Pressure Potential = Leaf Water Potential x Plant NSC Concentrations    <0.001 71 0.60 

Intercept 0.15526 -0.4363549 0.7468661 0.602 - - 

Leaf Water Potential -0.02210 -0.7650880 0.7208887 0.953 - - 

Plant NSC Concentrations 0.20671 0.1319697 0.2814489 <0.001 - - 

Leaf Water Potential x Plant NSC Concentrations 0.13082 0.0382965 0.2233412 0.006 - - 

 


