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Consequences of Color Vision Variation on the Performance and Fitness of Capuchin 

Monkeys 

 

Chairperson:  Charles H. Janson 

 

The origin and maintenance of variation in natural populations are central to the study of 

evolution. When alternative alleles have obvious effects on phenotype and are common 

in a population, the maintenance of these alleles requires some form of balancing 

selection. Understanding how selection maintains multiple phenotypes in a population 

requires integration of genetic analyses of phenotypic differences with field studies on the 

performance consequences of these differences within an ecological context.  

 

The color vision polymorphism characterizing most diurnal platyrrhine and strepsirrhine 

primates provides an excellent opportunity to investigate the maintenance of variation in 

natural populations. The polymorphism leads to multiple forms of color perception co-

existing in a population. The mechanisms and behavioral consequences of this 

polymorphism are still hotly debated. The two main hypotheses for the maintenance are 

heterosis and some form of negative-frequency dependent selection. My dissertation 

evaluated the performance and fitness consequences of color vision variation within an 

ecological context in order to elucidate the mechanism maintaining variation at this locus. 

 

In chapter one, I provide an introduction to the subject, as well as a synopsis of the results 

from my dissertation chapters.  In chapters two and three, I examine the performance 

differences between dichromatic and trichromatic individuals in a highly controlled 

captive setting using ecologically-relevant detection tasks. My results demonstrate 

superior performance by trichromatic individuals, especially in low light conditions and 

amid complex visual tasks. In chapter four, I detail the success of a novel Taqman
®
 probe 

used to determine opsin genotypes of capuchin monkeys (Sapajus nigritus); use of this 

probe enabled establishment of genotypes of wild capuchin monkeys sampled non-

invasively. In chapter five, I examine the performance differences of dichromatic and 

trichromatic capuchin monkeys from a wild population when foraging for invertebrates.  

Trichromatic individuals demonstrated higher success rates than dichromatic individuals 

for total invertebrate captures and for cryptic invertebrates under all light conditions.  

There were no differences for non-cryptic prey. In chapter six, I examine fitness 

consequences of color vision variation in a wild population of capuchin monkeys. 

Trichromatic females weighed more and had higher birth rates than dichromatic females. 

Collectively, my research demonstrates clear and consistent advantages to trichromatic 

females from three distinct perspectives.  My results support the heterosis hypothesis for 

the maintenance of the polymorphic visual system characteristic of New World primates. 
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Chapter 1: Introduction 

Primates are unique among mammals in possessing three distinct types of cone 

photoreceptors, an arrangement that supports trichromatic color vision (Jacobs 1996, 

Bowmaker 1998).  Trichromacy is assumed most often to be adaptively linked to foraging 

tasks (Caine and Mundy 2000, Dominy and Lucas 2001, Osorio and Vorobyev 1996, Regan 

et al. 2001) although potential advantages for predator detection or social signaling have also 

been proposed as alternative selection pressures (Caine 2002, Kamilar et al. 2013, Sumner 

and Mollon 2003).   

Despite these proposed advantages, trichromatic color vision is not universal among 

primates.  Many platyrrhine (New World) primate species possess variable color vision 

systems featuring several distinct phenotypes present within a population (Jacobs 1996).   A 

central question is what has maintained the presence of multiple color vision phenotypes for 

millions of years given the advantages to trichromacy?  In response, some have suggested 

that different color vision phenotypes may be specifically adapted for different visual tasks or 

prove superior under certain viewing conditions (Melin et al. 2007, Osorio et al. 1998).   

In this dissertation, I sought to understand the maintenance of this important 

phenotypic variation from an evolutionary and adaptive perspective. This requires 

understanding the links between genotype, phenotype, performance, and fitness. The link 

between genotype and phenotype has been completed by prior work (Mollon et al. 1984, 

Neitz et al. 1991, Shyue et al. 1998). Currently, the DNA from an individual can be 

genotyped at a few major sites responsible for the spectral shifts in cone photopigments and 

thus obtain an estimate of an individual’s phenotype.   In my research, the link between 

phenotype and performance was documented in captive animals in visual discrimination tests 
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using controlled stimulus parameters and in wild animals for routine foraging tasks in a 

natural setting.  The phenotype to fitness link was also documented in a natural setting.  I 

used long-term reproductive data as well as weight data from a wild population of monkeys 

in Iguazu, Argentina to assess the link between phenotype and fitness. My study adds to the 

existing literature on consequences of primate color vision variation by: 1) investigating 

phenotypic consequences of target detection using controlled and ecologically relevant 

stimuli; 2) investigating the phenotypic consequences of successful insect capture in a wild 

black capuchin (Sapajus nigritus) population in a subtropical rainforest; 3) investigating the 

fitness consequences of phenotypic variation in a wild black capuchin population; 4) the use 

of a novel sampling design to control for confounding variation when taking data from 

natural populations; 5) the use of modern statistical approaches; and 6) the development of 

novel real-time PCR probes to determine color vision phenotype from fecal samples 

collected noninvasively. 

 

Color vision in primates 

Color vision is defined as the ability to distinguish between objects based solely on 

differences in their wavelength composition. Color vision requires both multiple types of 

cone photoreceptors and neural mechanisms to compare the responses from the cone cells.  

In general, having more kinds of spectrally distinct cone cells increases the potential for 

neural comparision, in turn leading to an increase in the dimensionality of color vision.  

Different types of photoreceptors contain different photopigments whose spectral 

sensitivities are determined by a protein called opsin.  For trichromatic color vision, the 

short-wavelength sensitive (S) pigment has peak sensitivity between 420 and 430nm and 
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middle-wavelength (M) and long-wavelength (L) sensitive pigments with peak sensitivities 

between 530 and 565 nm.  

Two separate neural channels compare the outputs from the different cone types to 

support color vision.  One compares the output from the S cones to the combined outputs of 

the L and M cones in an “on/off” fashion (Dacey 1994) while a second channel contrasts the 

respective outputs from M and L cones in a center-surround opponency fashion (Goodchild 

et al. 1996).  In general, this second type of channel supports higher visual resolution than 

does the first. The amplitude of the chromatic signal depends on the separation of the spectral 

sensitivities of the cones and how many different cone types are present (Dacey 1996).  The 

first channel, comparing the S cones to the combined outputs of the L and M cones, is 

present in most mammals.  The second channel, comparing the outputs of the L and M cones, 

is unique to primates (Jacobs 1993). 

 All primates have a short-wavelength sensitive opsin encoded by an autosomal gene.  

A gene on the X chromosome encodes the M/L sensitive opsin.  Ancestrally, primates 

exhibited a color vision similar to modern mammals with only two different cone types, an S 

sensitive opsin and one M/L sensitive opsin (dichromacy) (Jacobs 1993).  The single M/L 

opsin gene on the X chromosome became polymorphic with alleles encoding different M and 

L opsin proteins (Jacobs and Neitz 1987).  The allelic polymorphism of the X-linked opsin 

gene leads to the presence of several distinct color-vision phenotypes within a population.  

All males, having only a single X-chromosome, and those females with the same allele on 

each X-chromosome are dichromatic.  Females with two different alleles on each X-

chromosome are trichromatic (Jacobs and Deegan 2003).  This type of color vision 

characterizes the majority of platyrrhine primates and a few diurnal strepsirhine species 
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(Jacobs 1998, Tan and Li 1999).  The derived color-vision form in primates is often called 

“routine trichromacy”.  Routine trichromacy arose from two opsin genes being placed on the 

same X-chromosome, either because of a duplication event or unequal crossing over (Hunt et 

al. 1998).  After the X-chromosome acquired two copies of the opsin gene they became fixed 

for two distinct opsin variants (Jacobs et al. 1996, Jacobs and Deegan 1999). With this 

arrangement, all males and females are routinely trichromatic with an S opsin gene on the 

autosome and both one M and one L opsin gene on the X-chromosome.  All catarrhines 

exhibit this form of color vision in addition to one platyrrhine species, Alouatta (Jacobs et al. 

1996, Jacobs and Deegan 1999).   

 

Hypotheses for the maintenance of color vision variation in platyrrhines 

 Nearly all extant platyrrhine genera exhibit similar M/L opsin genes on the X-

chromosome, and the amino acid differences at functionally critical sites between the alleles 

have been maintained with minimal variation for more than 20 million years (Boissinot et al. 

1998, Hiwatashi et al. 2010, Hunt et al. 1998, Surridge and Mundy 2002).  Evidence of 

strong balancing selection acting on the alleles at the sex-linked opsin gene suggests that the 

polymorphism is maintained by natural selection.   Possible mechanisms for maintaining 

variation include spatial-temporal variance, heterosis, and negative frequency dependent 

selection. The spatial-temporal variance hypothesis seems very improbable in this scenario 

due to the fact that many platyrrhine species have the same color visual system regardless of 

differences in lifestyle and habitat requirements.  Therefore, in my dissertation, I investigated 

the heterosis and negative-frequency dependent selection hypotheses for the maintenance of 

this long-term variation. 
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 Heterosis occurs when an individual heterozygous at a locus has higher fitness than 

do individuals that are homozygous at that locus.  For New World (NW) primate color 

vision, heterozygous individuals are those females with two different alleles on each X-

chromosome.  Under the heterosis hypothesis, the polymorphism at the X-linked opsin locus 

is maintained by an average long-term fitness advantage to the heterozygous (trichromatic) 

females relative to the homozygous (dichromatic) females.  Although trichromatic 

individuals might not outperform dichromatic individuals in all tasks where color perception 

is important, it should be the case that trichromatic individuals have higher fitness than 

dichromatic individuals. 

 Negative-frequency dependent selection can maintain variation for a long period 

when rare phenotypes have a fitness advantage relative to the other phenotypes in the 

population.  Under this hypothesis, selective pressures affect phenotypes differently.  When 

applied to the color visual system of New World primates, this hypothesis postulates that the 

different color vision phenotypes in a population are not suboptimal but are maintained 

because they are adapted for different visual tasks.  Therefore, dichromatic individuals are 

predicted to outperform trichromatic individuals at some tasks or under certain viewing 

conditions.  Examples of proposed conditions and tasks where dichromats might outperform 

trichromats are when light levels are low or when searching for camouflaged prey (Caine et 

al. 2009, Melin et al. 2007, Morgan et al. 1992, Saito et al. 2005, Simunovic et al. 2001, 

Verhulst and Maes 1998).  For example, when light is limited, the chromatic signal is not 

very useful and this could in some way interfere with luminance detection (Osorio et al. 

1998, Perini et al. 2009).  Similarly, when searching for a cryptic object against a complex 

background, trichromats might be distracted by color differences and thus not readily see 
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pattern changes or luminance differences.  Dichromatic individuals, who cannot perceive the 

color difference as readily, might detect the pattern changes, edges, or contours (Morgan et 

al. 1992, Saito et al. 2005). Under this hypothesis, dichromatic individuals should outperform 

trichromatic individuals when foraging for cryptic invertebrate prey or under low light 

conditions.  Although, at equilibrium, there should be no fitness difference between 

trichromatic and dichromatic females, either type should have the higher fitness when it is 

relatively rare in the population.  Thus, dichromatic individuals should have higher fitness 

than trichromatic individuals when dichromatic individual are less frequent in the population 

than expected at equilibrium. 

 Earlier studies have examined aspects of these two hypotheses (see Table 1).  As 

shown in Table 1, the results from these studies do not consistently support one hypothesis.  

Many of these studies did not show a difference between color-vision phenotypes, either due 

to small sample size or negligible effect size.  Some of these studies conducted on 

performance differences between phenotypes lacked control conditions, easily-reproduced 

stimuli and/or provided tasks that were not ecologically relevant to the primate subjects.  I 

designed my dissertation experiments to address the short-comings of previous work.      

 To try and elucidate the mechanism maintaining variation at the X-linked opsin locus, 

I evaluated the performance and fitness consequences of color vision variation from three 

perspectives within an ecological context.  The first part of my research evaluated 

performance differences in a captive setting using controlled stimuli; the second part 

evaluated performance differences in the wild during routine foraging tasks while the third 

part evaluated fitness differences in the wild using long-term reproductive data and 

individual weight data.   
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In chapters two and three, I investigate the performance differences between 

dichromatic and trichromatic females in a highly-controlled captive setting, using 

ecologically-relevant detection tasks. Chapter 2 simulates differences in fruit finding under 

various environmental conditions with a colored target detection task against backgrounds 

varying in complexity under both bright and low light conditions. Chapter 3 simulates cryptic 

invertebrate foraging with cryptic insect targets presented against backgrounds varying in 

complexity under bright and low light conditions. In both target detection tasks, trichromatic 

individuals demonstrated superior performance relative to dichromatic individuals with the 

greatest differences seen under low light conditions and when the visual task was complex. 

These results lend support to the heterozygote advantage hypothesis for both colored and 

cryptic target detection in captivity. 

Chapter 4 details the success of using a novel Taqman
® 

probe to determine the opsin 

genotypes of wild capuchin monkeys (Sapajus nigritus) with real-time PCR from fecal 

samples collected non-invasively.  The probe was successful in determining the single-

nucleotide, base-pair changes at three important sites from fecal samples stored by various 

methods from as far back as 1995.  The use of these probes for SNP analysis at the sex-

linked opsin locus is likely applicable to other platyrrhine species.   

In chapter five I investigate the performance differences between dichromatic and 

trichromatic capuchin monkeys (Sapajus nigritus) in routine foraging tasks from a wild 

population.  I collected data on invertebrate capture success under various environmental 

conditions.  The use of a novel sampling design to collect data provided greater power in 

determining differences between color vision variants by controlling for important sources of 

variation between samples such as habitat, time of day, light levels, group activity, etc.  In 
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the wild, trichromatic females had significantly more invertebrate captures per hour than did 

dichromatic females. Furthermore, trichromatic females had higher success rates per hour on 

cryptic invertebrates, especially when foraging in low light conditions.  When foraging on 

non-cryptic invertebrates, trichromatic and dichromatic females performed equally well.  The 

data for this population are not consistent with the theoretical predictions and previous 

empirical findings of dichromatic foraging advantage under low-light conditions and on 

cryptic prey.  Instead, they demonstrate a consistent advantage in invertebrate foraging for 

trichromatic individuals, thus supporting the heterozygote advantage hypothesis for the 

maintenance of polymorphic color vision.  

Chapter six examines the fitness consequences of color vision variation using 20+ 

years of demographic data on a capuchin monkey (Sapajus nigritus) population, as well as 

weight data on females in the same population.   Trichromatic females weighed significantly 

more than their dichromatic counterparts when controlling for age.  Additionally, 

trichromatic females had higher birth rates than dichromatic females.  There were no 

differences in survival between dichromatic and trichromatic females, but limitations on 

sample size would have made it essentially impossible to demonstrate significant selection on 

survival.  Thus, two proxies of fitness lend support to the heterozygote advantage hypothesis 

for the maintenance of the color vision polymorphism in this population. 

In summary, the results documented in my dissertation show a consistent advantage 

to trichromatic individuals under various conditions with different measures, thus supporting 

the heterosis hypothesis for the maintenance of color vision polymorphism in this population.  

If this mechanism is proved to be more general across other populations, it could help explain 

the long-term maintenance of the polymorphism and distinct alleles optimized for color 
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discrimination in 130+ species of NW primates.  It also would help explain why duplication 

in howler monkeys and in the ancestor of Old World monkeys and apes quickly went to 

fixation conferring routine color vision on both males and females. 
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Tables 

 
Paper HA NFDS Ambiguous Species 

Bunce et al. 2012    ( small sample size) Callicebus brunneus 

Caine and Mundy 2000    Callithrix geoffroyi 

Caine et al. 2003    (small sample size) Callithrix geoffroyi 

Caine et al. 2009    Callithrix geoffroyi 

de Araujo et al. 2006    Saimiri sciureus 

Lucas et al. 2001    Catarrhines spp. 

Dominy et al. 2003    (no effect shown) 
Saguinus imperator and 

fucsicollis 

Fedigan et al. 2014    (no effect shown) Cebus capucinus 

Freitag and Pessoa 2012  ()  Callithrix jacchus 

Hiramatsu et al. 2008    (no effect shown) Ateles geoffroyi 

Jacobs 1990  ()  
Saguinus fucsicollis and Saimiri 

sciureus 

Leonhardt et al. 2009   (small sample size) Strepsirhine spp. 

Morgan et al. 1992    Homo sapien 

Melin et al. 2007  ()  Cebus capucinus 

Melin et al. 2008   (No effect shown) Cebus capucinus 

Melin et al. 2009  ()  Cebus capucinus 

Melin et al. 2010 () ()  Cebus capucinus 

Osorio and Vorobyev 1996    Catarrhine spp. 

Osorio et al. 1998  ()  Catarrhine spp. 

Osorio et al. 2004    Saguinus fuscicollis and mystax 

Perini et al. 2009  ()  Callithrix penicillata 

Regan et al. 2001    
Alouatta seniculus, Ateles 

panicus, and Cebus apella 

Riba-Hernandez et al. 2005    Ateles geoffroyi 

Riba-Hernandez et al. 2004    Ateles geoffroyi 

Saito et al. 2005    
Cebus apella, Macaca 

fasicularis, Pan troglodytes 

Smith et al. 2003a    Saguinus fuscicollis and mystax 

Smith et al. 2003b    (no effect shown) Saguinus fuscicollis and mystax 

Smith et al. 2005 ()   Saguinus fuscicollis and mystax 

Smith et al. 2012  ()  
Saguinus fuscicollis, labiatus 

and mystax 

Stoner et al. 2005    (no effect shown) 
Alouatta palliata and Alouatta 

geoffroyi 

Sumner and Mollon 2000a    Catarrhine spp. 

Sumner and Mollon 2000b    Catarrhine spp. 

Vogel et al. 2007    (no effect shown) Cebus capucinus 

Yamashita et al. 2005   (equivocal results) 

Lemur, Propithecus, Ateles, 

Alouatta, Cecropithecus, 

Colobus, Piliocolobus 

 

Table 1.  List of all published articles with data on the consequences of color vision variation.  Papers 

either showed support for predictions following from the heterozygote advantage (HA) hypothesis, 

support for predictions from the negative-frequency dependent selection (NFDS) hypothesis, or were 

ambiguous in the results.  Check marks under the HA column tended to be with colored food items or 

targets, whereas NFDS marks tended to be for cryptic food items or targets.  A check mark in 

parentheses indicates a small effect shown or an effect under specialized conditions. 
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Chapter 2: Colored Target Detection in Trichromatic and Dichromatic Capuchin 

Monkeys 

A.T. Green, C.H.Janson and M.Neitz 

 

Introduction 

It is a long-standing hypothesis that trichromacy evolved in primates to aid in 

foraging (Allen 1879, Mollon 1989, 1991, Polyak 1957).  According to this idea, trichromatic 

individuals have better color discrimination and are therefore more efficient at detecting food 

items, such as fruits and young edible leaves, embedded in a mature canopy background that 

varies randomly in lightness and form (Dominy and Lucas 2001, Osorio and Vorobyev 1996, 

Regan et al. 1998, 2001, Sumner and Mollon 2000). Despite these potential advantages, not 

all primates are trichromats (Jacobs 1996).  Nearly all species of New World monkeys have 

polymorphic color vision with several distinct color vision phenotypes co-occurring within a 

population (Jacobs 2007). This variable color vision system arises from allelic polymorphism 

at one X-linked opsin gene. The amino acid sequences of distinct opsins alter the spectral 

tuning of photopigments causing them to be preferentially tuned to different spectral 

locations. The short-wavelength sensitive [S] opsin gene is invariant and is located on an 

autosomal chromosome. A single, polymorphic middle/long-wavelength sensitive [M/L] 

opsin gene with three common allelic versions is located on the X-chromosome. The various 

possible combinations of the M/L pigments in an individual provide the basis for several 

discrete phenotypes and leads to all males and one third to one half of the females being 

dichromatic. The overall fraction of trichromats, about 25-33% of a given population, is very 

low compared to the over 99% rate of trichromacy found in Old World nonhuman primates 
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(Jacobs and Williams 2001, Onishi et al. 1999, 2002, Terao et al. 2005).  Despite the 

relatively low frequency of trichromats in the New World primates, Hiwatashi et al. (2010) 

demonstrated strong balancing selection acting at the X-chromosome opsin locus for two 

genera of New World primates.  The resulting high frequencies of the opsin alleles at this 

locus mean that the overall frequency of trichromatic females is often close to the maximum 

possible of 0.67 in a three-allele system. 

The functional basis of this balancing selection remains unclear.  The advantages to 

trichromatic individuals, especially those available when foraging for foods that signal 

palatability with a color change, remain the principal explanation in the literature (Caine and 

Mundy 2000, Melin et al. 2009, Osorio and Vorobyev 1996, Regan et al. 2001, Riba-

Hernandez et al. 2004, 2005, Smith et al. 2003b, Sumner and Mollon 2000a, 2000b). 

However, many behavioral observations have produced results that are ambiguous or are in 

conflict with the predicted trichromatic advantage. For example, Caine and Mundy (2000) 

demonstrated an advantage to trichromats over dichromats at detecting orange targets at 

longer distances, but that difference disappeared at closer distances.  Additionally, two 

separate studies conducted on tamarins found no consistent effect of color vision on either 

the nature of the leadership of the group to feeding sites or in their ability to locate feeding 

sites (Dominy et al. 2003, Smith et al. 2003a). Finally, in two different populations of 

capuchin monkeys, no differences were found between dichromats and trichromats in the 

time they spent foraging for different food types or in their foraging and energy intake rates 

(Melin et al. 2008, Vogel et al. 2007).   

Alternative adaptive hypotheses for the presence of these color vision polymorphism 

postulate that natural selection facilitates the persistence of dichromatic individuals in the 
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population.  These hypotheses predict that enhanced ability to distinguish chromatic 

differences in trichromats might interfere with performance in achromatic discrimination 

tasks (Morgan et al. 1992, Osorio et al. 1998, Perini et al. 2009). Thus, dichromacy might 

provide an advantage over trichromacy when chromatic differences do not provide any useful 

information, such as the perception of shapes, texture, depth perception, motion or under 

low-light conditions. Examples of tasks where dichromats might out-perform trichromats in 

the wild are when foraging on cryptic foods or detecting cryptic predators, or when foraging 

under low light levels.   

Studies with human subjects demonstrated potential selective advantages to 

dichromatic individuals when detecting color-camouflaged objects and by possessing lower 

light perception thresholds (Morgan et al. 1992, Simunovic et al. 2001, Verhurlst and Maes 

1998).  Similar advantages were found for non-human primates in captivity and in the wild 

(Caine et al. 2003, 2009, Melin et al. 2007, Saito et al. 2005). Experiments using capuchin 

monkeys (Sapajus apella) and marmosets (Callithrix geoffroyi) to detect color-camouflaged 

objects have suggested a disadvantage to trichromats (Caine et al. 2003, Saito et al. 2005), 

and a field study found an advantage to dichromats in foraging for surface dwelling insects 

(Melin et al. 2007).  In addition Caine et al. 2009 suggested a foraging advantage to 

dichromats in low-light intensity conditions.  These observations suggest that the selective 

advantage conferred to trichromats by their enhanced ability to differentiate colors in the red-

green spectrum may be mitigated by use of other visual cues and/or sensory modalities by 

dichromats to compensate for their inferiority in color sense.  In fact, two studies by 

Hiramatsu et al. (2008, 2009) demonstrated that other modalities -- luminance cues and 
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olfactory inspection of fruit -- were important determinants to both trichromats and 

dichromats for detection and ingestion of fruits.  

In this experiment we measured the performance of dichromatic and trichromatic 

capuchin monkeys (Sapajus apella) to detect circular targets for which the chromatic contrast 

of the target supplied the relevant cues.  To do so, we evaluated the performance of captive 

dichromatic and trichromatic female capuchin monkeys using highly-controlled stimuli 

presented on a computer under various test conditions. 

 

Methods 

We carried out target detection experiments on three socially-housed groups of 

capuchin monkeys (Sapajus apella) in the United States (NIH, Alpha Genesis Inc., and Yale 

University).  All behavioral experiments involved the use of a 17-inch touch sensitive screen 

accessible to the monkeys from their home cages.  Small enclosures surrounding the touch 

sensitive screen ensured that only one monkey at a time could access the testing device and 

prevented any glare from ambient light sources on the screen. We trained female subjects to 

respond to stimulus targets using operant conditioning with positive reinforcement with a 

food reward.  To mimic natural conditions typically encountered by foraging monkeys, we 

plotted natural insect and leaf reflectance measurements obtained from Nathaniel Dominy 

and other published sources (Regan et al. 2001) in a standard chromaticity diagram modified 

for the Sapajus eye.  We calculated quantum catches for the four common cone sensitivities 

(S – 430 nm, M- 530nm, Ma – 550nm, L-562nm) in Sapajus for each stimulus spectrum 

(canopy background and target insects) using a color space model similar to Sumner and 

Mollon (2000) with absorbance curves for lenses and optical densities of macular pigment 
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from the literature (Tovee et al. 1992, Wyszecki and Stiles 1982).  These quantum catch 

values were plotted on a chromaticity diagram representing the neural inputs of the 

luminance channel and both the older and more recent color contrast subsystems (Fig. 2 and 

3).  Natural food items fell into seven major color areas.  Using the hue, saturation, and 

brightness settings, we matched target hue to the average hue for each color area, kept 

saturation constant at 67% and brightness in the range of 60 to 70% while still representing 

the chromatic properties of food items consumed by wild primates.   

To test if visual phenotypes differ in target detection, we presented the monkeys with 

distinct colored “fruit” targets in random order against various backgrounds ranging in 

complexity from a plain non-textured background to a leaf-textured background.  An 

example of the target detection tasks presented to the test subjects is shown in Figure 1. The 

embedded items were presented against three backgrounds (non-textured white, non-textured 

green, leaf-textured monochromatic green background) under two light conditions (bright 

and dim).  The light conditions were manipulated by adjusting the brightness on the 

computer screen to its highest and lowest settings. Luminance changed approximately ten-

fold between the dim and bright settings (15 cd/m
2
 and 146 cd/m

2
, respectively).  Each 

experiment had eight targets of different colors covering approximately 5% of visual field.  

Two randomly selected targets were partially obscured by a leaf shape. The combination of 

background and light condition was constant for a given experimental trial. 

Each experimental trial was set up using The Primate Vision Program created by 

Christopher A. Green at John Hopkins University.  This is a Java Swing program that uses 

configurable visual displays to collect information from test subjects as they interact with the 

touch-screen display running the program.  The displays presented to the test subjects are 
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configurable via a XML document that stipulates a background image along with smaller 

image buttons placed on top of the background (all configurable).  When a test session is 

initiated, from a menu-choice or a command line argument, temporal-based information is 

written to a file.  The test subject's identity, the experimental condition used for the test 

session, and each image button's click time are collected in this session log file. We collected 

data on the rate of detection and the number and color of detected and undetected targets 

under the various conditions. 

We determined genotypes of the individuals by amplification and sequencing of the 

X-linked opsin gene at the three amino acid substitutions at positions 180, 277, and 285, 

which are important for spectral tuning (Neitz et al. 1991, Shyue et al. 1998). We extracted 

DNA from hair samples from each individual capuchin using a QIAamp DNA mini-kit 

(Qiagen, Crawley, UK).  We identified trichromatic females by the presence of heterozygous 

sites in the DNA sequence at these important positions.  We completed the genotyping of 

individuals after behavioral data collection to prevent any bias by the observer.  We trained 

nine captive, adult female individuals to use the touch screen testing device.  The ability of 

each monkey was built up in steps from touching the screen to touching multiple targets on 

the screen before receiving a food reward.  The location and visual phenotype of all tested 

individuals are shown in Table 1. NIH and AGI colonies were outside under shaded 

conditions and all tests took place during the mid-day hours.  The Yale colony was inside 

under typical office lighting.   

We used a generalized linear mixed model fit by maximum likelihood with either a 

categorical or continuous dependent variable, using the LME4 package in R and the ‘Fit 

Model’ platform in JMP, respectively (R v. 3.02: The R Foundation for Statistical 
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Computing, 2013, and JMP v. 10.2, SAS Institute).  Initial multifactorial models included all 

main effects and predicted interaction effects.  If the initial model was significantly different 

from the null hypothesis (all main effects and interactions have zero effects, except for the 

grand mean of the dependent variable), backwards stepwise selection was performed to 

obtain a final model using the smallest number of significant (P < 0.05) predictors.  The main 

fixed effects included brightness (two levels), background (four levels), color vision 

phenotype (two levels), and individual identity as a random effect.  Within a phenotype, there 

was no difference in performance under bright and dim light when against the white or plain 

green backgrounds; therefore the data for bright and dim light levels within the white and 

green backgrounds have been combined for graphical simplicity in the diagrams below.  

 

Results 

There were no differences in performance between dichromats and trichromats for the 

conditions involving plain white backgrounds (Fig. 4, 5, and 6).  Where the contrast between 

target and background was greatest, trichromats and dichromats performed equally well in 

detecting the targets.  All individuals were able to find all eight targets on average and did so 

at an average rate of approximately 1 target per second.  The number of targets found 

decreased for both phenotypes when the visual task was more complex, with dichromatic 

individuals affected more than trichromats (Figure 4).  When detecting targets against the 

leaf-textured backgrounds for both the bright and dim light conditions, trichromatic 

individuals found more targets on average than the dichromats (F3,29=140.77, P<0.0001). In 

the dim condition, trichromats had an average detection rate over twice as fast as the 

dichromats (Figure 5, Tri=0.539 targets/sec, Di=0.216 targets/sec; F3,29=29.62, P<0.0001) 
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and found on average two more targets per trial than the dichromats. Light level explained 

very little of the variation in the results for the number of targets hit (removing light level 

decreases r
2
 by only 0.021) or in the results for average detection rate between dichromatic 

and trichromatic individuals (0.0065 decrease in r
2
)(Tables 2 and 3).   

The search time needed to find the next target increased as the visual task became 

more complex, and this increase was more pronounced for dichromats than trichromats 

(Fig.6).  Dichromats tended to have consistently longer search times than trichromats in the 

more difficult visual tasks (Table 4).    

Individuals of different color-vision phenotypes were faster to choose targets of hues 

most suited to their discrimination abilities. Comparing the average wavelength of the first 

three targets hit and the last three targets hit in a trial, dichromats hit the shorter wavelength 

targets first in the more visually complex tasks (Fig. 7).  This pattern was not seen with the 

dichromats in the white background experiments. Trichromatic individuals exhibited the 

opposite pattern, hitting longer wavelength targets first in the white and bright leaf-textured 

experiments.   

 

Discussion 

Under highly controlled conditions in our experiments, trichromatic individuals never 

showed poorer performance than did dichromatic individuals in finding fruit-like targets.  

Contrary to the hypotheses that postulate some kind of dichromatic advantage for the 

maintenance of variation in New World primate color vision,  dichromatic individuals did not 

perform relatively better under visually complex conditions, but in fact did relatively worse.  
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Only under the least challenging conditions were dichromatic and trichromatic individuals 

equally effective at finding fruit-like targets.  

 In the literature on New World primate color vision, it has been very difficult to 

determine the costs and benefits of different color visual phenotypes in populations.  This is 

mainly due to the multitude of confounding factors when measuring performance differences 

in both the wild and captive settings.  If a phenotype is at a disadvantage relative to another 

phenotype for certain tasks, the disadvantaged phenotype might find ways to compensate for 

its disability by using other cues to complete the task (Hiramatsu 2008, 2009).  We attempted 

to control for the other possible cues in our experiments in order to parse out the specific 

costs and benefits to different visual phenotypes by standardizing the luminance and 

saturation cues in the visual scenes and removing potential cues such as shape of an object 

from the target detection task.   By controlling for these other cues, our results clearly show 

that trichromacy is linked to better performance at target detection when searching for 

colored targets amid a textured background.  When the visual task is easy, such as searching 

for an object on a visually simple scene, dichromats are comparable to trichromats.  This 

pattern is fully consistent with most theoretical analyses of the functions of trichromacy, that 

predict enhanced visual discrimination by trichromats of colored targets against complex 

backgrounds (Dominy and Lucas 2001, Osorio and Vorobyev 1996, Regan et al. 2001, 

Sumner and Mollon 2000a, 2000b). 

It was surprising to see a markedly enhanced performance by the trichromats relative 

to dichromats when detecting targets in dimmer light conditions.   We had expected to see 

the performance difference between dichromats and trichromats mitigated when performing 

under dim light conditions due to prior evidence in the literature (Perini et al. 2009, Verhulst 
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and Maes 1998).  The performance by trichromats in the dimmer conditions seemed to 

suggest that color was very useful even when light was limited and cues other than color 

were well-controlled. Alternatively, the low-light conditions in our experiment may have 

been bright enough to still allow trichromats ready access to hue information. 

The results from this experiment lend support to the trichromatic advantage 

hypothesis for the maintenance of this polymorphism in New World primate populations as it 

relates to detection of colored targets amid a textured background.  The recent literature has 

pointed to other foraging tasks where dichromats outperform trichromats such as when 

foraging on cryptic insects especially in a light-limited environment.  We will specifically 

address that task in a companion paper, in which we analyze performance differences 

between dichromats and trichromats under various simulated foraging conditions similar to 

those presented here.   

Whether or not trichromatic individuals are uniformly superior to dichromatic ones 

for all natural visual tasks, the evidence presented here and the strong molecular evidence for 

balancing selection on M/L alleles is consistent with a net fitness benefit to trichromatic 

individuals.  Such a net benefit explains the maintenance of the M/L polymorphism in all 

130+ species of diurnal New World primates over at least 20 million years, except for the 

howler monkeys, which have routine trichromacy via a duplication of the M/L locus and 

subsequent fixation of different alleles at each locus (Hunt et al. 1998, Jacobs et al. 1996, 

Kainz et al. 1998).  Although there may be situations in which dichromatic individuals excel 

in certain visual tasks relative to trichromatic ones (Caine et al. 2003, 2009, Melin et al. 

2007, 2010, Morgan et al. 1992, Saito et al. 2005), the existence of such situations is not 

sufficient to explain the uniform maintenance of the M/L polymorphism. Such situation-
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specific dichromat advantage needs to be coupled with negative frequency-dependent 

selection, with one outcome being that dichromats at least sometimes have demonstrably 

higher fitness than trichromats.  Such an outcome has yet to be documented in New World 

primates (Fedigan et al. 2014).   
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Tables 

 

Social Group Individual Color Vision Genotype 

AGI Polly Tri 549/560 

AGI Sweetpea Di 562/562 

AGI Zev Tri 549/560 

NIH Destiny Di 560/560 

NIH Irene Tri 550/560 

NIH Snickers Tri 550/560 

YAL Honey Di 560/560 

YAL Jill Tri 530/560 

YAL Mayday Tri 530/560 

 

Table 1.  Details of individuals tested in this experiment 
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Source  N DF DFDen F ratio P>F 

Visual Phenotype 1 1 6.02 4.5793 0.0760 

Light Level 1 1 13438 86.6299 <.0001 

phenotype*light level 1 1 13438 32.3893 <.0001 

Background Complexity 2 2 13438 1256.885 <.0001 

phenotype*background 2 2 13438 356.9983 <.0001 

Light level*background 2 2 13438 76.2859 <.0001 

phenotype*light level*background 2 2 13438 41.3650 <.0001 

 

Table 2. Fixed Effects Tests for the number of targets hit per experiment model,R
2
=0.31437 

For details of the GLMM analysis and the main and random effects included, see Data Analysis. 
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Source  N DF DFDen F ratio P>F 

Visual Phenotype 1 1 6.00 1.2364 0.3087 

Light Level 1 1 13438 31.4629 <.0001 

phenotype*light level 1 1 13438 118.5411 <.0001 

Background Complexity 2 2 13438 5953.062 <.0001 

phenotype*background 2 2 13438 101.2916 <.0001 

Light level*background 2 2 13438 11.8058 <.0001 

phenotype*light level*background 2 2 13438 46.5006 <.0001 

 

Table 3.  Fixed Effects Tests for the detection rate model.  R
2
= 0.687943  For details of the 

GLMM analysis and the main and random effects included, see Data Analysis. 
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Source  N DF DFDen F ratio P>F 

Visual Phenotype 1 1 6.102345258 6.102345258 0.4341 

Light Level 1 1 12725.162353 12725.162353 0.8397 

phenotype*light level 1 1 12725.228301 12725.228301 0.0007 

Background Complexity 2 2 12727.049533 12727.049533 <.0001 

phenotype*background 2 2 12727.299345 12727.299345 0.0041 

Light level*background 2 2 12725.38499 12725.38499 0.0607 

Color of target 6 6 12725.161801 12725.161801 0.0073 

Phenotype*color 6 6 12725.202921 12725.202921 0.9619 

Light level* color 6 6 12725.083646 12725.083646 0.1836 

Background*color 12 12 12725.103111 12725.103111 0.0981 

Targets Remaining 1 1 12725.694362 12725.694362 <.0001 

Phenotype*targets remaining 1 1 12725.742682 12725.742682 0.0003 

Light Level*target remaining 1 1 12725.064732 12725.064732 0.0071 

Phenotype*Light*Remain 1 1 12725.055789 12725.055789 0.0067 

Background*targets remaining 2 2 12725.469955 12725.469955 <.0001 

Phenotype*background*remain 2 2 12725.451835 12725.451835 0.0509 

Color of Target*targets remaining 6 6 12726.173691 12726.173691 0.1850 

Phenotype*color*remain 6 6 12726.165 12726.165 0.0028 

Light level*color*remain 6 6 12725.386539 12725.386539 0.0140 

 

Table 4.  Fixed Effects Tests for the search time model.  R
2
= 0.272604  For details of the 

GLMM analysis and the main and random effects included, see Data Analysis. 
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Figures 

 

 

   

 

Figure 1. Example of the three experiments displayed under bright and dim light conditions. 

From left to right: non-textured white, non-textured green, leaf-textured monochromatic 

green backgrounds. 
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Figure 2. Standard chromaticity (top) and luminances (bottom) diagrams for targets and 

background (the peak sensitivities, λmax , of the cone pigments were taken to be 430, 535, and 

562nm, and the lens data from squirrel monkeys was used). The color of each marker 

represents the broad color category of the target as viewed by a human trichromat and the X 

marker represents the green background.  The colors were chosen to be similar to measured 

reflectances of natural fruits, while constraining variation in luminance as much as possible. 
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Figure 3. Standard chromaticity (top) and luminances (bottom) diagrams for targets and 

background (the peak sensitivities, λmax , of the cone pigments were taken to be 430, 550, and 

562nm, and the lens data from squirrel monkeys was used). The color of each marker 

represents the broad color category of the target as viewed by a human trichromat and the X 

marker represents the green background. The colors were chosen to be similar to measured 

reflectances of natural fruits, while constraining variation in luminance as much as possible. 
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Figure 4. The average number of targets found per experiment for dichromats (n=3) and 

trichromats (n=6).  Experimental conditions increase in complexity from left to right. The 

error bars represent +/- SE. 
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Figure 5. The average detection rate for each experiment. Error bars represent +/- SE. 
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Figure 6. Search time to find the next target as a function of the number of targets remaining. 
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Figure 7. Average wavelength of the first and last three targets hit by dichromatic and 

trichromatic individuals 
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Chapter 3: Differences in camouflaged target detection between trichromatic and 

dichromatic monkeys for controlled, ecologically-relevant stimuli.   

A.T. Green, C.H.Janson and M.Neitz 

 

 Introduction 

It is a long-standing hypothesis that trichromacy evolved in primates to aid in 

foraging (Allen 1879, Mollon 1989, 1991, Polyak 1957).  According to this idea, trichromatic 

individuals have better color discrimination and are therefore more efficient at detecting food 

items, such as fruits and young edible leaves, embedded in a mature canopy background that 

varies randomly in lightness and form (Dominy and Lucas 2001, Osorio and Vorobyev 1996, 

Regan et al. 1998, 2001, Sumner and Mollon 2000a, 2000b). Despite these potential 

advantages, not all primates are trichromats (Jacobs 1996).  Nearly all species of New World 

monkeys have polymorphic color vision with several distinct color vision phenotypes co-

occurring within a population (Jacobs 2007). This variable color vision system arises from 

allelic polymorphism at one X-linked opsin gene. The amino acid sequences of distinct 

opsins alter the spectral tuning of photopigments causing them to be preferentially tuned to 

different spectral locations. The short-wavelength sensitive [S] opsin gene is invariant and is 

located on an autosomal chromosome. A single, polymorphic middle/long-wavelength 

sensitive [M/L] opsin gene with three common allelic versions is located on the X-

chromosome. The various possible combinations of the M/L pigments in an individual 

provide the basis for several discrete phenotypes and leads to all males and one third to one 

half of the females being dichromatic. The overall fraction of trichromats, about 25-33% of a 

given population, is very low compared to the over 99% rate of trichromacy found in Old 
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World nonhuman primates (Jacobs and Williams 2001, Onishi et al. 1999, 2002, Terao et al. 

2005).  Despite the relatively low frequency of trichromats in the New World primates, 

Hiwatashi et al. (2010) demonstrated strong balancing selection acting at the X-chromosome 

opsin locus for two general of New World primates.  The resulting high frequencies of the 

opsin alleles at this locus mean that the overall frequency of trichromatic females is often 

close to the maximum possible of 0.67 in a three-allele system.  

The functional causes of this balancing selection remain unclear.  The trichromatic 

advantage hypothesis remains the principal explanation (Caine and Mundy 2000, Melin et al. 

2009, Mollon et al. 1984, Osorio and Vorobeyv 1996, Regan et al. 2001, Riba-Hernandez et 

al. 2004, 2005, Smith et al. 2003b, Sumner and Mollon 2000a, 2000b).  Under this 

hypothesis, the stable polymorphism is maintained by the consistent fitness advantage to 

trichromatic individuals in tasks such as foraging or predator detection.  The trichromatic 

advantage hypothesis implies that the majority of the individuals in a given population, the 

ones who are dichromatic, have suboptimal fitness. 

Alternative adaptive hypotheses to the trichromatic advantage hypothesis postulate 

that natural selection has facilitated the persistence of dichromatic individuals in the 

population.  Under these hypotheses, it is predicted that there are visual tasks where having 

dichromacy would be an advantage over having trichromacy (Mollon et al. 1984).  The 

theoretical basis for these hypotheses is that the enhanced ability to distinguish chromatic 

differences interferes with other visual abilities (Morgan et al. 1992, Osorio et al. 1998, 

Perini et al. 2009).  Therefore, signals where chromatic differences do not provide any useful 

information, such as the perception of shapes, texture, depth perception, motion or under 

low-light conditions, are weakened by the two different spectral inputs of the L and M 
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photoreceptors in trichromats.  Examples of tasks where dichromats might out-perform 

trichromats in the wild are when foraging on cryptic foods or detecting cryptic predators, or 

when foraging under low-light levels.   

Studies with human subjects demonstrated potential selective advantages to 

dichromatic individuals when detecting camouflaged objects and possessing lower light 

perception thresholds (Morgan et al. 1992, Simunovic et al. 2001, Verhurlst and Maes 1998).  

Similar advantages were found for non-human primates in captivity and in the wild (Caine et 

al. 2003, 2009, Melin et al. 2007, Saito et al. 2005). These potential advantages to dichromats 

prompt the question of why trichromacy was rapidly selected for in Old World primates and 

why variant color vision phenotypes are so rare in non-human catarrhines (Jacobs and 

Williams 2001, Onishi et al. 1999, 2002, Terao et al. 2005).  

In this experiment we measured the performance of dichromatic and trichromatic 

monkeys to examine whether an advantage exists for different visual phenotypes when 

searching for color-camouflaged targets such as surface-dwelling invertebrates.  We 

evaluated the relative performance of captive dichromatic and trichromatic capuchin 

monkeys utilizing highly-controlled, ecologically-relevant stimuli under different viewing 

conditions to determine under which conditions certain visual phenotypes have an advantage. 

This study improves on previous approaches to this problem by increasing sample size, more 

consistent presentation of targets, and a closer approximation of natural foraging tasks. 

 

Methods 

We carried out target detection experiments on three socially-housed groups of 

Sapajus in the United States (NIH, Alpha Genesis Inc., and Yale University).  All behavioral 
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experiments involved the use of a 17-inch touch sensitive screen accessible to the monkeys 

from their home cages.  Small enclosures surrounding the touch sensitive screen ensured that 

only one monkey at a time could access the testing device and prevented any glare from 

ambient light sources on the screen.  We trained female subjects to respond to perceived 

stimuli presented using operant conditioning with positive reinforcement.  To mimic natural 

conditions typically encountered by foraging monkeys, we plotted natural insect and leaf 

reflectance measurements obtained from Nathaniel Dominy and other published sources 

(Regan et al. 2001) in a standard chromaticity diagram modified for the Sapajus eye.  We 

calculated quantum catches for the four common cone sensitivities (S- 430 nm, M- 530nm, 

Ma -550nm, L-562nm) in Sapajus for each stimulus spectrum (canopy background and target 

insects) using a color space model similar to Sumner and Mollon (2000), with absorbance 

curves for lenses and optical densities of macular pigment from the literature (Tovee et al. 

1992, Wyszecki and Stiles 1982).  These quantum catch values were plotted on a 

chromaticity diagram representing the neural inputs of the luminance channel and both the 

older and more recent color contrast subsystems.  The data are plotted on two diagrams: one 

representing the MacLeod-Boynton chromaticity diagram of L/(L+M) versus 

S/(L+M)(MacLeod and Boynton, 1979), and a plot representing the dichromatic color space 

of S/(L+M) versus luminance (L+M).  Using the hue, saturation, and brightness settings, we 

matched hue to the average hue of natural stimuli, kept saturation constant at 67% and 

brightness in the range of 60 to 70% while still representing the chromatic properties of food 

items consumed by wild primates. 

To test if there are differences between visual phenotypes in target detection, we 

presented the monkeys with various color-camouflaged “insect” targets presented against 
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various backgrounds. An example of the target detection tasks presented to the test subjects 

is shown in Figure 1. These were presented in random order and ranged in complexity from a 

plain non-textured background to a leaf-textured background.  Cryptic targets were defined 

as targets that were indistinguishable from the chromatic properties of the background.  For 

this reason, no chromaticity diagram is shown here, as the points for background and target 

lay on top of each other for each phenotype.  The embedded items were presented against 

four backgrounds (non-textured  “plain” white, non-textured “plain” green, leaf-textured 

monochromatic green, and leaf-textured, brown/green dappled “real” background) under two 

light conditions (bright and dim).  The light conditions were manipulated by adjusting the 

brightness on the computer screen to its highest and lowest settings.  The luminance from the 

computer screen changed approximately 10-fold between the dim and bright light settings 

(15 cd/m
2
 and 146 cd/m

2
). Each experiment had six targets of two sizes, with three being 

approximately 5% of visual field and three being 10% of visual field.  Each experimental 

trial was set up using The Primate Vision Program created by Christopher A. Green at John 

Hopkins University.  This is a Java Swing program that uses configurable visual displays to 

collect information from test subjects as they interact with the touch-screen display running 

the program.  The displays presented to the test subjects are configurable via a XML 

document that stipulates a background image along with smaller image buttons placed on top 

of the background (all configurable).  When a test session is initiated, from a menu-choice or 

a command line argument, temporal-based information is written to a file.  The test subject's 

identity, the experimental condition used for the test session, and each image button's click 

time are collected in this session log file.  Data were collected on the rate of detection and the 

number and color of detected and undetected targets under the various conditions. 
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Genotypes were determined by amplification and sequencing of the X-linked opsin 

gene at the three amino acid substitutions at positions 180, 277, and 285, which are important 

for spectral tuning (Neitz et al. 1991, Shyue et al. 1998). DNA was extracted from hair 

samples from each individual capuchin using a QIAamp DNA mini-kit (Qiagen, Crawley, 

UK).  Trichromatic females were identified by the presence of heterozygous sites in the DNA 

sequence at these important positions.  Genotyping of individuals was completed after 

behavioral data collection to prevent any bias by the observer. 

Nine captive, adult female individuals were trained to use the touch screen testing 

device.  The ability of each monkey was built up in steps from touching the screen to 

touching multiple targets on the screen before receiving a food reward.  The test location and 

visual phenotype of all subjects are shown in Table 1. NIH and AGI colonies were tested 

outside under shaded conditions and all tests took place during the mid-day hours. The Yale 

colony was tested inside under typical office lighting.   

For statistical inference, we used generalized linear mixed model fit by maximum 

likelihood with either a categorical or continuous dependent variable, using the LME4 

package in R (v. 3.02: The R Foundation for Statistical Computing, 2013) and the ‘Fit 

Model’ platform in JMP (v. 10.2, SAS Institute), respectively.  Initial multifactorial models 

included all main effects and predicted interaction effects.  If the initial model was 

significantly different from the null hypothesis, backwards stepwise selection was performed 

to obtain a final model using to the smallest number of significant (P < 0.05) predictors.  The 

main fixed effects included brightness (two levels), background (four levels), color vision 

phenotype (two levels), and target size (two levels), with individual identity as a random 

effect.   
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Results 

There was no difference in performance between dichromats and trichromats in the 

plain background experiments for all measures analyzed (Fig. 2, 3, and 4).  When the 

detection task was easy, as in the “plain” background experiments, trichromats and 

dichromats performed equally well in detecting the targets.  They were able to find all six 

targets on average and do so at a rate of slightly more than 1 target per second.  The 

difference in performance between dichromatic and trichromatic target detection became 

more evident when the visual task became more complex with the monochromatic  textured 

background (“textured”) and the more realistic canopy background with both texture and 

color differences (“real”).   As seen in figure 2, the number of targets hit dropped for both 

phenotypes when the visual task was more complex to less than one target every five 

seconds.  In both the textured and canopy realistic backgrounds, trichromatic individuals hit 

more targets on average than the dichromats (textured F1,6=6.89, P=0.0396, real F1,6=13.73, 

P=0.0099). Trichromats had an average detection rate over twice as fast as the dichromats 

(Figure 3, Tri=0.333 targets/sec, Di=0.153 targets/sec; F3,29=3.39, P=0.0313) and found on 

average two more targets than the dichromats in the “real” conditions.  The light level 

explained very little of the variation in the models for the number of targets hit (removing 

light level reduced r
2
 by 0.05) or for the average detection rate between dichromatic and 

trichromatic individuals (when removed, light level reduced r
2
 by 0.01; see Tables 2 and 3 

for fixed effects tests).   

The search time to find the next target increased as the visual task became more 

complex (Fig. 4).  When the visual task was easy there was no difference between 

dichromats and trichromats in the time needed to find the next target (Table 4), but when the 
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visual tasks became more complex the time to the next target increased more for dichromats 

than for trichromats (textured F1,9= 5.99, P=0.0374, real F1,9=10.24, P=0.0107). The time to 

find the next target was also influenced by the size of the target and the background on which 

it was presented (Fig. 5). Search time increased when the target was smaller, with dichromats 

increasing more than trichromats (F1,7= 4.84, P=0.0626) and also increased when the target 

detection task was presented under “real” conditions, with dichromats needing more time 

than trichromats to find the next target under those conditions (F3,43=4.92, P=0.005).  The 

difference between dichromats and trichromats in the time to find the next target was also 

larger when the light level was lower (Fig. 5). 

 

Discussion 

In previous studies, dichromatic individuals sometimes outperformed trichromatic 

individuals in certain conditions (Caine et al. 2003, 2009, Freitag and Pessoa 2012, Melin et 

al. 2007, 2010, Perini et al. 2009, Saito et al 2005).  Two of these conditions are searching for 

camouflaged insects and foraging in low light conditions.  Our evidence did not support 

those results with the detection tasks we tested. In our experiments, dichromatic and 

trichromatic individuals performed equally well under bright and dim conditions when the 

visual scene was simple, as in the plain, non-textured backgrounds.   When the detection task 

was changed to present targets amid a monochromatic textured background or a more 

realistic color-variable textured background, this proved to be a difficult task for monkeys of 

all visual phenotypes and was even more difficult when light was limited. Under these 

conditions, the trichromatic individuals outperformed the dichromatic individuals: search 

times between targets were significantly lower for trichromatic individuals relative to the 
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dichromatic ones.  These results are congruent with predictions from visual discrimination 

models that suggest that trichromats should be generally better than dichromats even in low 

light conditions (Osorio et al. 2004, Sumner and Mollon 2000, Regan et al. 2001).  

A few studies done in a laboratory setting have shown that dichromats perform as 

well or better than trichromats in detecting cryptic targets (Caine et al. 2003, 2009, Morgan et 

al. 1992, Saito et al. 2005).  Possible explanations for this difference from our results are 1) 

we controlled the visual scene to a great degree, decreasing non-chromatic and other possible 

cues that might be used by dichromats in nature, and 2) we used ecologically-relevant targets 

in the detection tasks.  Because of the lack of luminance cues for distinguishing targets from 

the heterogeneous background in our experiments, it is likely that the targets appeared 

camouflaged to both the trichromatic and dichromatic subjects. In contrast, in the design of 

some previous detection experiments, the task was camouflaged to a trichromatic eye, but 

still contained useful cues available to the dichromatic eye, similar to standard Ishihara tests.  

Finally, only females were tested in this experiment, thus eliminating any confounding effect 

due to performance differences between males and females. 

Our results lend support to the heterozygote advantage hypothesis predicting that 

trichromatic females, with different opsin alleles at each X-chromosome locus, have a fitness 

advantage due to superior visual discrimination abilities. Our results do not support the idea 

that dichromatic individuals outperform trichromatic individuals under certain conditions.  

Rather, trichromatic individuals exhibited superior performance especially in low light 

conditions and amid complex backgrounds.  This superior performance by the trichromats 

under dim conditions in this experiment is consistent with functional trichromatic vision in 
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low light conditions based on other modeling, phylogenetic analysis, and field studies (Melin 

et al. 2013, Osorio et al. 2004, Smith et. al. 2012, Tan and Li 1999).   
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Tables 

 

 

 

Social Group Individual Color Vision Genotype 

AGI Polly Tri 549/560 

AGI Sweetpea Di 562/562 

AGI Zev Tri 549/560 

NIH Destiny Di 560/560 

NIH Irene Tri 550/560 

NIH Snickers Tri 550/560 

YAL Honey Di 560/560 

YAL Jill Tri 530/560 

YAL Mayday Tri 530/560 

 

Table 1.  Details of individuals tested in this experiment 
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Source  N DF DFDen F ratio P>F 

Visual Phenotype 1 1 6.00 4.7117 0.0730 

Light Level 1 1 9425 45.9825 <.0001 

phenotype*light level 1 1 9425 23.4486 <.0001 

Background Complexity 2 2 9425 8224.175 <.0001 

phenotype*background 2 2 9425 508.5881 <.0001 

Light level*background 2 2 9425 15.8531 <.0001 

phenotype*light level*background 2 2 9425 20.7904 <.0001 

 

Table 2. Fixed Effects Tests for the number of targets hit per experiment model. R
2
=0.70631 
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Source  N DF DFDen F ratio P>F 

Visual Phenotype 1 1 6.00 0.4711 0.5181 

Light Level 1 1 9425 163.6880 <.0001 

phenotype*light level 1 1 9425 0.4098 0.5221 

Background Complexity 2 2 9425 4694.9064 <.0001 

phenotype*background 2 2 9425 22.6506 <.0001 

Light level*background 2 2 9425 98.5365 <.0001 

phenotype*light level*background 2 2 9425 12.1011 <.0001 

 

Table 3.  Fixed Effects Tests for the detection rate model.  R
2
= 0.585169 
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Source  N DF DFDen F ratio P>F 

Phenotype 1 1 6.00 4.5035 0.0742 

Light Level 1 1 6110 0.1556 0.6933 

Phenotype*light levels 1 1 6110 0.7491 0.3868 

Background 2 2 6110 433.9934 <.0001 

Phenotype *background 2 2 6110 25.4593 <.0001 

Light levels *background 2 2 6110 8.9724 0.0001 

Phenotype*light level*background 2 2 6110 0.1580 0.8539 

Size 1 1 6110 0.3907 0.5319 

Phenotype *size 1 1 6110 0.4593 0.4980 

Light Level *size 1 1 6110 0.7064 0.4007 

Phenotype*light levels *size 1 1 6110 2.9260 0.0872 

Background *size 2 2 6110 4.6382 0.0097 

Phenotype* background *size 2 2 6110 2.6526 0.0705 

Light Level*background*size 2 2 6110 3.1778 0.0417 

Remain 1 1 6110 642.4484 <.0001 

Phenotype* remain 1 1 6110 0.9897 0.3199 

Light levels*remain 1 1 6110 1.9257 0.1653 

Phenotype*light levels*remain 1 1 6110 1.9969 0.1577 

Background * remain 2 2 6110 30.5358 <.0001 

Phenotype* background * remain 2 2 6110 0.1469 0.8634 

Light Level*background * remain 2 2 6110 3.4783 0.0309 

Size* remain 1 1 6110 67.3164 <.0001 

Phenotype*size*remain 1 1 6110 12.4448 0.0004 

Light Level*size*remain 1 1 6110 0.1298 0.7186 

Background*size*remain 2 2 6110 8.9610 0.0001 

Lightlevel*background*size*remain 2 2 6110 2.9219 0.0539 

 

Table 4.  Fixed Effects Tests for the search time model.  R
2
= 0.308096  
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Figures 

 

 

 

 
 

Figure 1: Example of the four experimental treatments: non-textured white background, non-

textured green background, leaf-textured monochromatic green background, leaf-textured 

‘real’ background. 
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Figure 2. The average number of targets found per experiment for dichromats (n=3) and 

trichromats (n=6).  Experimental conditions increase in complexity from left to right. Error 

bars represent +/- SE 
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Figure 3. The average detection rate per experiment for dichromats (n=3) and 

trichromats(n=6). Experimental conditions increase in complexity from left to right. Error 

bars represent +/- SE. 
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Figure 4. Search time to find the next target as a function of the number of targets remaining.  
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Figure 5.  The search time of dichromatic and trichromatic individuals when searching for 

large vs. small targets embedded within monochromatic leaf-textured or “real” leaf-textured 

backgrounds. The number of targets remaining has been held constant at the mid-point. 
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Chapter 4: Use of SNP’s to Determine Color Vision Genotypes from Fecal Samples of 

Wild Capuchin Monkeys (Sapajus nigritus) 

A.T. Green and C.H. Janson 

 

Introduction 

Recent advances in techniques for molecular genetic analyses have improved the use 

of genetic material collected noninvasively from wild populations.  One type of sample 

commonly collected from wild populations is fecal material.  Both nuclear and mitochondrial 

DNA can be isolated from epithelial cells exfoliated from the intestinal wall during 

defecation (Albaugh et al. 1992).  The use of fecal material for genetic analyses has been 

limited in part by the poor quality and low quantity of DNA extracted from feces and by the 

expense and difficulty of sequencing loci in many individuals.   

The quality and quantity of usable material in a fecal sample depends on collection 

and storage methods as well as the extraction and amplification methods.  The poor quality 

and low quantity of obtained DNA can lead to erroneous scoring of genotypes due to allelic 

dropout, the random amplification of only one allele at a heterozygous site during the 

polymerase chain reaction (PCR), and false readings due to contaminant DNA or poor PCR 

reaction (Taberlet et al. 1996).  The success of amplification can be influenced by the fecal 

sample preservation method and the duration of storage before extraction.  Recent advances 

in sequencing and genotyping technology have allowed for faster and less expensive 

sequencing of many samples (Kwok 2003).  One such advance is the ability to detect small 

differences between sequences, such as single nucleotide polymorphisms (SNPs) using real-

time quantitative PCR (qPCR).   
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The color vision polymorphism found in New World primates (platyrrhines) is a good 

candidate for SNP analysis using qPCR. The color vision of most NW primates is determined 

by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- 

to long-wavelength (M/L) cone photopigment (Neitz et al. 1991). Females who are 

heterozygous at this locus have trichromatic vision, whereas homozygous females and all 

males are dichromatic. In platyrrhines, crucial non-synonymous changes at positions 180 in 

exon 3, and at positions 277 and 285 in exon 5 of the M/L opsin gene cause the sensitivity 

peak of the photopigment to vary from 530 to 565nm, with several other sites playing a 

minor role in the absorbance peak (Hiramatsu et al. 2004, Neitz et al. 1991, Shyue et al. 

1998).   

In this study we investigated the effectiveness of custom Taqman® real-time PCR 

probes to determine the opsin genotype of black capuchin monkeys (Sapajus nigritus) from 

four different social groups in Parque Nacional Iguazú in Argentina.  More than 300 fecal 

samples were collected between 1995 and 2010.  They were preserved in one of four ways: 

dried in silica gel, placed in ethanol (EtOH) and then dried in silica gel, preserved in ethanol 

(EtOH), and preserved in RNAlater.  Our goal was to evaluate the success of SNP analysis 

using qPCR for differently aged and preserved fecal samples collected from wild capuchin 

monkeys. 

 

Methods 

Sampling 

Between 1 and 4 social groups of Sapajus nigritus have been monitored continuously 

from 1991 until the present day at Parque Nacional Iguazú, Argentina. Detailed group 
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histories and reproductive data exist for the majority of the groups during that time period 

(Janson et al. 2012).  While following groups, observers collected fecal samples immediately 

following the observed defecation and identification of the individual.  The earliest samples 

(1995) were collected for parasite surveys and paternity determination, and were stored in 

50mL vials of ethyl alcohol ranging from 70-95% concentration. Later samples were placed 

into silica gel, either directly after collection (1995-2003) or after a 24-hour dehydration 

(2004-2008) in a five-fold excess of 95% ethyl alcohol by volume (as recommended in 

Roeder et al. 2004). In 2009 and 2010, ATG collected samples in RNAlater solution and 

stored them at -20°C while in the field, then at -80°C in the lab until extraction.  A typical 

defecation yielded about 2-3 ml of fecal material.  We collected all samples with the 

permission of the Argentine Ministry of National Parks and relevant IACUC protocols rom 

Stony Brook University (2002-1218, 2003-1218, 2004-1218, 2005-1218, 2006-1218) and the 

University of Montana to CHJ (041-07CJDBS-120507) and ATG (024-08CJDBS-053008). 

DNA extraction and genotyping 

We extracted DNA using the QIAamp DNA Stool kit (Qiagen) according to the 

manufacturer’s instructions, but with the following modifications.  We left the samples 

overnight in the ASL buffer.  For the samples in RNAlater solution, we centrifuged 2 ml of 

the mixture for 15 min at 7 rcf and removed the supernatant.  We added 500μl of 1XTE/0.9% 

NaCl buffer to the “pellet” and mixed gently.  We centrifuged the resulting solution for 10 

more minutes at 7 rcf and removed the supernatant. The residual pellet was resuspended in 

1.6 ml of ASL buffer and left overnight. 

Instead of sequencing the entire exon, we used probes that targeted the three critical 

codons responsible for the major changes in peak light sensitivity of the X-linked opsin 
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photopigment protein.  Table 1 shows the changes in relative sensitivity to long wavelength 

light from three non-synonymous changes in the M/L opsin pigment gene described above.  

In terms of relative spectral peaks, pigments with tyrosine at position 277 have a peak 

absorbance about 7 nm longer than the corresponding pigment with phenylalanine at 277; 

pigments with threonine at 285 have a peak about 10 nm longer than with alanine 285; 

pigments with serine at 180 peak about 3 nm longer than with alanine 180 (Neitz et al. 1991).  

We designed custom TaqMan
®
 assays for each amino acid site using sequences for 

Sapujus and Saimiri  (Manusco et al. 2006, Montague 2011).  We amplified regions inside 

Exons 3 and 5 of the M/L opsin gene separately using the following primers and reporter 

sequences:  

SNP Name TYPE Primer Sequence 

Exon3 site 180 

Forward 5’-ATCGTGGGAGTTGCCTTCTC 

Reverse 5’-GTAGAAACCAACCTCGTCCATTCC 

TaqMan Probe 1 5’- TGGATCTGGGCTGCTGT-VIC 

TaqMan Probe 2 5’-CTGGATCTGGTCTGCTGT-FAM 

Exon5 site 277   

Forward 5’-CGCATGGTGGTGGTGATGAT 

Reverse 5’-TACGAAACGACGACGGTTG 

TaqMan Probe 1 5’- AGCAGACGCAGTACGTCA-VIC 

TaqMan Probe 2 5’-AGACGCAGAACGTCA-FAM 

Exon5 site 285   

Forward 5’-CGCATGGTGGTGGTGATGAT 

Reverse 5’-TACGAAACGACGACGGTTG 

TaqMan Probe 1 5’-AAGAAGGTGTAGGGTCC-VIC 

TaqMan Probe 2 5’-AAGGCGTAGGGTCC-FAM 

 

PCR reactions contained 5 µL of DNA template, 0.28 µL of 20× assay mix, 10 µL of 

TaqMan
®
 Universal Master Mix, 1 µL of 0.1 µg/µL BSA and ddH2O to a final volume of 
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20 µL. The thermocycling profile consisted of an initial denaturing at 95°C for 10 min, 

followed by 40 cycles of denaturing at 95°C for 15 sec, annealing at 58°C for 60 sec and 

extension at 20°C for 30 sec. 5 cycle steps were completed after the initial 40 cycles in order 

to note the direction of movement on the discrimination plots.  Each plate was run with a 

positive control for each probe and the heterozygote using known genotypes extracted from 

hair samples of Sapujus.  In addition, each plate was run with five negative controls 

consisting of ddH2O instead of template DNA.  

The Step 1 real-time qPCR analysis software determined the genotype for each well 

that reached the threshold (Ct) for relative fluorescent units (RFUs). For each assay, the 

fluorescence emitted from the VIC-labeled probe (reporter signal 1) was plotted against the 

fluorescence from the FAM-labeled probe (reporter signal 2) in a scatter plot to produce an 

allelic discrimination plot (Figure 1).  

To ensure the genotypes assigned to individuals were not erroneous due to allelic 

dropout or false alleles, we ran multiple samples from each individual, when available, and 

we ran each sample in duplicate.  If there was disagreement between samples from the same 

individual, we ran the samples again to check the identity of the SNP.  In addition, we chose 

25% of the samples at random to run again to verify the previous SNP identifications. As an 

additional check to the SNP results, we used the 20 years of reproductive data to verify that 

each offspring possessed a visual genotype that matched a pattern of opsin inheritance from 

each reported biological parent (e.g. Table 2).  
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Results 

We extracted and amplified 315 fecal samples.  The ethanol-only samples (N=44) 

were from 1995; drying in silica (N= 125) was used from 1995 until 2003 while the protocol 

of collecting in ethanol and then drying in silica (N= 98) was used from 2004 until 2009.  

The RNAlater preservation protocol (N=48) was used in 2009 and 2010.  

We categorized each sample as successful, dropout, and failure. A successful sample 

provided no ambiguity in the SNP identifications.  If a sample resulted in ambiguous results 

for one of the SNPs, we categorized it as having allelic dropout.  If the sample did not 

amplify or provide results for 2 or more sites, it was categorized as a failure.  

Of the 315 samples, 30 (9.5%) were failures.  Failures came from the ethanol only, 

silica only, and ethanol/silica methods; there were no failures among the most recent samples 

collected in RNAlater. Across all methods of preservation, 54.6% of the samples were 

successes; the RNAlater method had the highest success rate at 87.88%. Across all methods, 

35.9% of samples showed allelic dropout at one of the three sites (Fig. 1).  Amplification was 

significantly more successful from samples preserved using the RNAlater method than for 

other methods (χ
2
 (6, N = 315) = 21.374, p =0.0016).  

The allelic dropout rate more than doubled in RNAlater samples from 2009 compared 

to those collected in 2010 (Figure 3), but this difference was not signifiant (Fisher’s exact test 

of independence χ
2 

(1, N=48) = 1.571, p=0.2101).  There was no consistent trend of failure or 

allelic dropout rate due to age of the sample for the other three methods (EtOH, EtOH/Silica, 

and Silica).   
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The spectral peaks of the M/L opsin allele photopigments were determined using the 

predicted estimates of peak sensitivity change for each amino acid at the three main sites 

(Table 1).  We identified the opsin genotype for 88 individuals from 4 social groups.  

 

Discussion 

The custom Taqman® real-time PCR probes, designed this in the study, were 

successful in distinguishing the visual genotypes of individual capuchin monkeys (Sapajus 

nigritus) in Parque Nacional Igauzú.  These probes never predicted the presence of a 

trichromatic male, and the results were consistent with the known family trees (Janson 

unpubl. data).  The success of the probes depended on the quality and quantity of DNA 

extracted from the fecal samples, which in turn depended on the preservation method used 

when collecting the samples.  Visual genotype could be reliably determined under all four 

preservation methods (EtOH, drying with Silica, EtOH/Silica, and RNAlater), but the most 

successful method in this study was using RNAlater.  These samples were also the most 

recently collected fecal samples so this result is conflated with time.  

We were able to reliably determine visual genotype from at least half of the samples 

collected 5-15 years ago using diverse inexpensive methods (70-95% ethanol; thoroughly 

drying the fecal pellet with silica gel; the two-step method of ethanol and then silica 

advocated by Roeder et al. 2004).  None of these methods had demonstrably better success 

rates than the others for either allelic dropout or failure to amplify.  For all methods, there 

was no consistent trend in the rates of failure or allelic dropout with year.  The discrepancies 

among years could be due to dietary difference when collected, varying concentration of 
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EtOH, the dryness of the sample, or some other environmental-related influences (Frantzen 

1998).   

One drawback of this SNP approach is the inability to specify the multilocus 

genotype for each chromosome.  The results using the SNP analysis showed only the 

heterozygosity of an individual. For instance, if an individual was S/A at position 180, Y/F at 

position 277, and A/T at position 285, there is no definitive way to tell if that female was 

SYT/AFA, SFT/AYA, SYA/AFT, or SFA/AYT.  In such cases, availability of genealogical 

information can help to resolve some multi-locus genotypes, as the multi-locus genotype of 

the (dichromatic) sire is known if the sire is known, thus allowing the female’s multi-locus 

genotype to be inferred. The inability to figure out how the SNPs distribute across the 

individual genes is a shared drawback with direct sequencing when using short sequences of 

DNA extracted from feces.  If high quality DNA is available, one can perform long distance 

PCR to get exon 3, 4 and 5 all together in one PCR fragment along with the introns (e.g., 

chapter 2). Overall, the custom Taqman® probes designed in this study produced reliable 

color visual genotype results by SNP analysis using qPCR.  SNP analysis using qPCR was a 

relatively cheap, quick and successful method to determine the visual phenotype of a large 

number of wild capuchin monkeys. This method is likely applicable for other platyrrhine 

species.  In addition, the results of preservation method as it relates to the success of SNP 

analysis using qPCR may be applicable to other non-invasively collected genetic materials. 
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Tables 

 

 

 

Sapujus M/L 

Opsin Allele 

Photopigment 

Exon 3 

Site 180 

A           S 

+3nm 

Exon 5 

Site 277 

F           Y 

+7nm 

Exon 5 

Site 285 

A              T 

+10nm 

530 Alanine Phenylalanine Alanine 

533 Serine Phenylalanine Alanine 

541 Alanine Tyrosine Alanine 

547 Alanine Phenylalanine Threonine 

551 Serine Tyrosine Alanine 

554 Serine Phenylalanine Threonine 

556 Alanine Tyrosine Threonine 

562 Serine Tyrosine Threonine 

 

Table 1. Description of the three critical amino acid site changes responsible for spectral 

tuning of the opsin molecule. The photopigment peaks shown represent different phenotypes 

in terms of relative spectral peaks. The bold photopigment peaks have been measured by 

means of electroretinograms (Neitz et al. 1991). The other peaks are predicted spectral peaks 

using the ball park estimate of peak sensitivity change for each amino acid at the site, shown 

in the top row (i.e. Tyrosine (Y) at 277 has a peak about 7nm longer than the corresponding 

pigment with Phenylalanine (F) at 277.)  
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Mother ID Offspring ID Sex Genotype Genotype of 

likely sire 

Grumpy  F SYT/AFA  

Grumpy Luisa F SYT/AFA SYT 

Grumpy Maggi F SYT/SYT SYT 

Grumpy Greta F SYT/AFA SYT 

Grumpy Diego M SYT SYT 

Grumpy Matteo M SYT SYT 

Grumpy Pablo M AFA SYT 

 

Table 2. Example of reproductive data used to verify SNP calls. 
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Figures 

 

 

 

 

 

Figure 1. Example of an allelic discrimination plot for Exon 5 site 285 
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Figure 2. Rate of allelic dropout, failure, and success of four preservation methods. The rate 

of successful amplification at all three sites was highest for the RNAlater samples, which 

were collected most recently (χ2 (df=6, N=315) = 21.374, p=0.0016). 
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Figure 3. Allelic dropout and success rate by year using the RNAlater preservation method.  

The allelic dropout rate did not differ between the two years (χ
2 

(df=1, N=48) = 1.571, 

p=0.2101). 
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Chapter 5: Trichromatic female capuchin monkeys are better than dichromatic females 

at capturing cryptic invertebrates under low light conditions. 

A. T. Green and C. H. Janson 

 

Abstract 

 In nearly all New World primates, 2-5 common alleles at one X-linked locus code for 

different opsin proteins with distinct curves of light absorption that are related to color 

perception. There is active debate about the mechanisms that maintain this widespread 

polymorphism in opsin alleles New World primates.  The major hypotheses invoke 1) 

heterozygous advantage or 2) frequency-dependent selection. In the former, trichromatic 

individuals are predicted to outperform dichromatic ones consistently, whereas in the latter, 

dichromatic individuals are predicted to outperform trichromatic ones under some conditions. 

These conditions include searching for camouflaged targets at low light levels.  Here we 

provide data on invertebrate captures by dichromatic and trichromatic capuchin monkeys 

(Sapajus nigritus) under three light levels for a wild population in Argentina.  Under all light 

conditions, trichromatic females had higher success rates than dichromatic individuals of 

either sex for total invertebrate captures and for cryptic invertebrates. There were no 

significant differences for non-cryptic prey.  In contrast to a predicted possible advantage of 

dichromacy under low light conditions or for camouflaged targets, the performance of 

dichromatic females was markedly poorer than trichromatic ones and this was especially true 

in the most challenging foraging tasks - searching for cryptic invertebrates under low light 

conditions.  Our data support the heterozygous advantage hypothesis for the maintenance of 

polymorphic color vision. 
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Introduction 

Uniquely among mammals, primates possess a diversity of color vision systems, 

ranging from ancestral dichromacy (‘color-blind’ vision) in nocturnal prosimians to routine 

trichromacy (‘normal color’ vision) in Old World primates.  New World primates and some 

diurnal prosimians have an intermediate polymorphic color vision system, consisting of an 

invariant short (S)-wavelength sensitive opsin gene on an autosome and one middle to long- 

(M/L) wavelength sensitive opsin gene on the X-chromosome.  In New World primates, 

genetic variation at the X-linked locus enables polymorphic color vision: females 

heterozygous at the M/L opsin locus possess trichromatic color vision, whereas homozygous 

females and all males possess dichromatic color vision (Jacobs and Neitz 1987, Mollon et al. 

1984, Shyue et al. 1998, Tovee et al. 1994).    

 Patterns of DNA sequence variation, in particular heightened polymorphism in opsin 

gene exons compared to pseudogene and intron reference sequences, strongly indicate that 

this polymorphism is maintained by balancing selection (Hiwatachi et al. 2010). However, 

the mechanism by which selection operates on this locus remains unclear (Boissinot et al. 

1998, Cropp et al. 2002, Hiwatashi et al. 2010).  There are two main proposed hypotheses. 

One is heterozygote advantage under which trichromatic females, heterozygous at the M/L 

opsin locus, have an overall fitness advantage relative to homozygous dichromatic females. 

Because the polymorphism particularly affects discrimination among the middle and long 

wavelengths (Mollon et al. 1984, Osorio and Vorobeyv 1996, Regan et al. 2001, Sumner and 

Mollon 2000a), studies of possible trichromatic advantages have focused on foraging ability 

for foods with longer-wavelength reflection (colors in the green to red range). Such foraging 

advantages have been documented for trichromatic females in theoretical, laboratory, and 
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field studies (Dominy and Lucas 2001, Melin et al. 2009, Regan et al. 2001, Sumner and 

Mollon 2000a, 2000b).  However, advantages to trichromatic females have not been 

consistently demonstrated in field studies (Hiramatsu et al. 2008, 2009, Melin et al. 2009, 

Vogel et al. 2007).   

A competing set of hypotheses postulate that different visual phenotype are best 

adapted for different tasks and thus dichromats should outperform trichromats in some tasks 

or under certain conditions. (Fedigan et al. 2014, Melin et al. 2007, Mollon et al. 1984).  A 

dichromatic advantage for target-detection tasks is predicted under low light levels or when 

foraging for cryptic or camouflaged prey (Morgan et al. 1992, Osorio et al. 1998, Perini et al. 

2009). Because dichromats are less able to derive hue information, they are expected to be 

less affected by situations in which information about hue is irrelevant (cryptic/camouflaged 

prey) or missing (low light). Dichromatic individuals have been found in some captive and 

field studies to be better than trichromats at detecting camouflaged targets or when foraging 

in light-limited environments (Melin et al. 2007, Morgan et al. 1992, Osorio et al. 1998, 

Perini et al. 2009, Saito et al. 2005).   

In this study, we investigated the invertebrate capture rates of dichromatic and 

trichromatic individuals in a population of wild black capuchins (Sapajus nigritus; Lynch 

Alfaro et al. 2012) in Argentina to determine: 1) if one phenotype had better overall success 

when foraging for invertebrates; and 2) if there were any combinations of prey type (cryptic 

vs. non-cryptic) or light environment (high, medium, or low) in which dichromatic 

individuals outperformed trichromatic individuals. 
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Methods 

Study Area and Subjects 

 We studied a population of black capuchin monkeys in Iguazú National Park in 

northeastern Argentina.  The study area is subtropical with seasonal variation in temperature 

and day length, but little variation in rainfall.  Fleshy fruit and arthropod abundance is low in 

the winter months (June-August) and highest in the spring months (October – December) (Di 

Bitetti and Janson 2001).  The forest in the study area and the study groups are impacted by 

both current and past anthropogenic disturbances from logging and tourism (Janson et al. 

2012).  Low visibility (distance to 95% obstruction of a checkerboard target) and light levels 

occur in the understory (0-5m) due to dense growth of shrubs and a common recumbent 

bamboo (Chusquea ramosisima).  Both light levels and visibility increase in general with 

height in the vegetation, although both can be high at all heights at the edges of forest 

clearings.   The study animals live in multi-male, multi-female groups consisting of 6 to over 

40 individuals (Di Bitetti and Janson 2001, Janson et al. 2012).  Black capuchins are 

omnivorous with a diet consisting of mainly fleshy fruit and arthropods. 

Data Collection 

 Individuals in four study groups could be unambiguously identified by physical 

characteristics such as coloration patterns, size and shape of tufts, scars and behavior.  Data 

were taken only on adult females and males. A female was considered an adult if she had 

reproduced, which typically meant 6 or more years old.  Adult males were generally 

immigrants at least 7 years old.  Color vision phenotypes were determined by extracting 

DNA from fecal samples of known individuals and using custom Taqman® real-time PCR 

probes to determine the opsin genotype (Green 2014).  To minimize observer bias during 
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behavioral and foraging observations, all observers were blind to the specific opsin 

genotypes of each individual. 

 Pairs of observers followed groups from dawn to dusk for 3-25 consecutive days. 

Activities of paired focal individuals were recorded during synchronized 15s continuous 

samples taken at 1min intervals. The two observers tracked the same pair of focal animals for 

10 minutes. The 10min block was considered one sample bout. Success rates were classified 

based on conditions during the 15s sample. The 15s sample was short enough to ensure 

minimal changes in light conditions due to movement. The sum of invertebrate capture 

attempts from samples taken under a particular light condition was divided by the summed 

sample time to yield the rate of invertebrate capture attempts under that condition for a given 

sample bout.  Simultaneous sampling of two focal animals provided greater power in 

determining differences between color vision variants. By controlling for habitat, time of 

day, and group activity contexts during the sampling process, differences in foraging success 

or behaviors between visual phenotypes should be much more salient than when individuals 

of different visual phenotypes are compared across these important sources of variation. The 

observations were conducted on a variety of paired individuals at different times of the day, 

and under different environmental conditions. Because the observers did not know the visual 

phenotypes of females, data collection could not be efficient in targeting comparisons 

between distinct color-vision phenotypes.  However, there was likewise no possibility of 

covert observer bias toward assessing capture success as higher in one female color-vision 

phenotype versus the other.  We collected data from October 2008 until April 2010.  

Ambient light conditions were measured using an Ocean Optics USB-4000 

spectrophotometer with a P200-UV/VIS cable and CC-3 cosine corrector (Ocean Optics, 
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Dunedin, Florida, U.S.A.).  Light levels were measured 4 times a year around each solstice 

and equinox.  We measured light levels under five categories of cloud cover (0%, 25%, 50%, 

75% , 100%) in four main forest types (open, bamboo dominated, above 10m and below 

10m) at three forest heights (ground level,  5m and near 10m (the highest I could safely reach 

climbing an 8m ladder with equipment in hand)).  

 During foraging observations, the observers recorded date and time, forest type, 

canopy height, height of the focal animal, cloud cover, travel speed, group position, and light 

level of foraging activity.  Light level was broken down into three categories: ‘high’: open 

forest or edge with no leaves or vegetation overhead; ‘medium’: below top of canopy with 

some overhead vegetation but not enough to completely block passage of sunlight; ‘low’: 

low in the vegetation with dense overhead cover which blocks much of the available 

sunlight.  There was an approximately 10-fold decrease in irradiance from high to medium 

and from medium to low light levels, respectively.   

Each attempt by the focal animal to capture an invertebrate was recorded as 

successful or unsuccessful. An ‘invertebrate attempt’ was defined as a lunge, grab, or 

manipulation of a substrate by the focal animal towards an invertebrate.  Visual inspection or 

finger-tapping a substrate was not considered an attempt. An attempt was considered a 

successful capture if the invertebrate was seen in the hand or if a hand-to-mouth or chewing 

movement was seen following the attempt. If no hand-to-mouth movement or chewing was 

seen after a lunge or manipulation the attempt was deemed unsuccessful. Observers recorded 

the rare cases when an invertebrate was rejected after capture; these were classified as 

unsuccessful foraging attempts as they did not lead to ingestion. Observers described 

whenever possible the substrate that the invertebrate was gleaned or extracted from, as well 
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as the type and color of invertebrate. ‘Cryptic’ invertebrates were those gleaned from the 

exterior surface of any substrate, most often from green leaves and tree branches. These 

invertebrates tended to be well camouflaged against their background. ‘Non-cryptic’ 

invertebrates were those extracted from inside substrates or were larger invertebrates not 

notably camouflaged against their background.  Examples of non-cryptic prey were termites, 

ants, and larvae inside dead wood or leaves, colonial invertebrates such as bees and wasps, 

and orb-weaving spiders in their webs.  We collected focal-animal data from over 225 hours 

of invertebrate foraging including 5272 invertebrate capture attempts and 2622 invertebrate 

capture successes. 

Data Analysis 

 The dependent variable, number of invertebrate captures per 15s sample, was an 

integer with relatively low mean values, for which a Poisson distribution provides the most 

appropriate sampling distribution.  For statistical inference, we used a generalized linear 

mixed model fit by maximum likelihood (LME4 package in R v. 3.02: The R Foundation for 

Statistical Computing, 2013).  After initial analysis showed the residuals of the Poisson 

GLMM to be overdispersed, we included a unique identifier for each observation as a 

random effect (following Gelman et al. 2013). Other random effects included the focal 

animal, the observer, and the paired experiment number.  Fixed effects included the light 

level, and gender/visual phenotype category; duration of the sample bout was included as a 

covariate.   Initial fitted models included all main effects and predicted interaction effects.  If 

the initial model was significantly different from the null hypothesis (all variables have zero 

effect except the fitted mean), backwards stepwise selection was performed, successively 

eliminating the variable with the highest P value (testing against the null hypothesis that the 
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variable had no effect) to obtain a final model containing significant predictors. Testing male 

and female dichromats combined against female trichromats did not yield any results 

qualitatively distinct from models using all three gender/phenotype categories, so I present 

the latter results only.  

  

Results 

 For all individuals (N=37), the average invertebrate capture attempt rate was 22.87 

attempts per hour.  The average capture attempt rates were higher for trichromatic females 

(24.75 per hour, N=14 individuals) than dichromatic females (21.65 per hour, N=11) or 

males (21.78 per hour, N=12) (Fig. 1, Table 1).  The number of attempts decreased 

consistently with increasing light levels (Fig. 1, Table 1).  The interaction between 

gender/color vision phenotype and light level on attempts per hour was not significant (Table 

1). 

   The average individual was successful about 50% of the time with 11.33 successes 

per hour. The fraction of all captures that were successful was highest for trichromatic 

females (51.8%), followed by males (50.7%), and markedly lower for dichromatic females 

(44.8%).  Female trichromats had more successful invertebrate captures per hour (12.83) than 

either female dichromats (9.69) or male dichromats (11.05) (Fig. 2, Table 2).  Similar to total 

capture attempts, successful captures decreased consistently as light level increased (Fig. 2, 

Table 2). The interaction between gender/color vision phenotype and light level on 

successful capture attempts was not significant (Table 2).  

 Black capuchins capture different kinds of invertebrates when foraging.  Cryptic 

invertebrates are generally gleaned from surfaces within the forest such as branches and 
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leaves while non-cryptic invertebrates are usually extracted from inside substrates such as 

dead wood or bamboo.  We separated the invertebrate capture successes into cryptic and non-

cryptic types. Success rates per hour on non-cryptic invertebrates were similar among the 

gender/vision phenotypes (trichromatic females = 5.93, dichromatic females = 5.93, males 

=6.19; Table 3), but generally decreased with increasing light level (Table 3). The interaction 

with gender/color vision phenotype and light level on non-cryptic invertebrate capture rates 

was not significant (Table 3).  

Invertebrate capture rates for cryptic insets differed significantly between the three 

gender/phenotype categories, among light levels and due to the interaction of 

gender/phenotype with light levels (Fig. 4, Table 4). Trichromats had higher overall capture 

rates per hour on cryptic invertebrates (9.97) than did either dichromatic females (7.28) or 

males (8.39), and capture rates decreased under increasing light levels (Table 4).  Moreover, 

the capture rate of trichromatic females relative to dichromatic females under low light 

conditions was markedly greater than expected by the main effects (significant interaction of 

gender/phenotype and light levels, Table 4).  

 

Discussion 

 Our data demonstrate a consistent advantage in invertebrate foraging by individuals 

that are heterozygous for opsin alleles, with trichromatic females showing higher total 

capture attempts and successes per hour relative to dichromatic females or males.  These 

differences were especially large under low light conditions. These data support the 

heterozygous (or trichromatic) advantage hypothesis for the maintenance of polymorphic 

color vision.  The alternative hypotheses for the maintenance of the polymorphism at the X-
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linked opsin locus postulate there are some defined conditions where dichromatic individuals 

should outperform trichromatic individuals, especially when foraging for cryptic prey, or 

when foraging under low light levels. (Caine et al. 2003, 2010, Melin et al. 2007,2008, 2010, 

Perini et al. 2009, Saito et al 2005).  In neither of these conditions did we find that 

dichromats outperformed trichromats; to the contrary, trichromats were particularly 

successful at capturing cryptic invertebrates under low light conditions (Fig. 4, Table 4). In 

sum, our data allow us to reject the existing predictions about foraging performance by 

primate visual phenotypes under negative-frequency dependent selection.  In contrast, when 

foraging on non-cryptic invertebrates, which often required some form of extractive foraging 

in which wavelength discrimination would not seem to be important, dichromatic and 

trichromatic capuchin females in our population performed equally well.   

There were some foraging measures for which males (always dichromats) performed 

as well or better than trichromatic females.  These cases may be confounded by gender 

differences in size and strength.  For example, male dichromats demonstrate higher success 

rates foraging for non-cryptic invertebrates (Fig. 3). Because the non-cryptic invertebrates 

eaten by capuchins are often hidden in large, hard, or tough substrates, such as the leaf bases 

of Pindo palms (Arecastrum romanizoffianum), the larger body size and strength of males 

may make them more successful at foraging on this class of prey, independent of the males’ 

visual system.   

The differences in foraging success between dichromatic and trichromatic females 

were less marked in high or medium light conditions than under low conditions.  These 

results are congruent with previous visual discrimination models (Osorio et al. 2004, Regan 

et al. 2001, Sumner and Mollon 2000), which predict that under higher light conditions 
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dichromats can more readily take advantage of cues other than wavelength.  However, in our 

data, foraging attempts are less common under high light conditions for all visual 

phenotypes, so that a lack of statistical significance may reflect reduced sample sizes instead 

of, or in addition to reduced differences in relative foraging performance among 

gender/phenotypes. The lack of attempts while under high light conditions may reflect 

differences in insect abundance due to light levels or a tendency to forage for fruit instead of 

invertebrates when high in the forest canopy. 

Recent literature on the maintenance of allelic color vision in New World monkeys 

calls for increased attention to mechanisms other than heterosis, citing variable results of 

tests of the heterozygote advantage mechanism and the existence of instances where 

dichromatic individuals outperform trichromatic individuals (Caine et al. 2003, 2009, 

Fedigan et al. 2014, Melin et al. 2007, 2010, Perini et al. 2009, Saito et al. 2005).  Our studies 

have demonstrated clear advantages to trichromatic females (Green 2014).  In our studies 

with captive capuchins using controlled stimuli, trichromatic females consistently exhibited 

superior performance relative to dichromatic females especially in low light conditions and 

amid complex backgrounds (Green 2014).  In this wild study population of capuchin 

monkeys, we also found that trichromatic females exceeded dichromatic females for two 

components of fitness (Green 2014).  The data presented here provide one possible link 

between phenotype and fitness for this population.  It is plausible that trichromatic females 

achieve heavier body mass, and faster reproductive rate due to their enhanced performance in 

capturing protein-rich food such as invertebrates (Green 2014, Valenta and Melin 2012).  

The combination of all of these studies provides strong support for the heterozygote 

advantage hypothesis and links between phenotype, performance differences, and fitness.   



 92 

 

Literature Cited 

Boissinot, S, Tan, Y, Shyue, SK (1998) Origins and antiquity of X-linked triallelic color 

vision 

systems in New World monkeys. Proc Natl Acad Sci USA 95:13749–13754. 

Caine NG, Surridge AK, Mundy NI (2003) Dichromatic and trichromatic Callithrix geoffroyi 

differ in relative foraging ability for red-green color-camoufl aged and non-camoufl aged 

food. Int J Primatol 24:1163–1175 

 

Caine NG, Osorio D, Mundy NI (2009) A foraging advantage for dichromatic marmosets 

(Callithrix geoffroyi) at low light intensity. Biol Lett 6:36–38  

 

Clutton-Brock, Th, ed. (1988) Reproductive Success. Studies of Individual Variation in 

Contrasting Breeding Systems. The University of Chicago Press, Chicago. 

 

Cropp S, Boinski S, Li WH (2002) Allelic variation in the squirrel monkey X-linked color 

vision gene: Biogeographical and behavioral correlates. J Mol Evol 54:734-745. 

 

Di Bitetti, MS,  Janson, CH (2001) Reproductive socioecology of tufted capuchins (Cebus 

apella nigritus) in northeastern Argentina. Int  J Primatol, 22(2): 127-142. 

 

Dominy NJ, and Lucas PW (2001) Ecological importance of trichromatic vision to 

primates. Nature 410:363–366 

 

Fedigan LM, Melin AD, Addicott JF, Kawamura S (2014) The Heterozygote Superiority 

Hypothesis for Polymorphic Color Vision Is Not Supported by Long-Term Fitness Data from 

Wild Neotropical Monkeys. PloS one, 9(1), e84872. 

 

Gelman A, Carlin JB, Stern H S, Dunson DB, Vehtari A, Rubin, DB (2013) Bayesian data 

analysis. CRC press. 

 

Green, AT (2014) Consequences of color vision variation on performance and fitness in 

capuchin monkeys. Ph.D. thesis, University of Montana. 

 

Hiramatsu, C, Melin, AD, Aureli, F (2008) Importance of achromatic contrast in short-range 

fruit foraging of primates. PLoS One 3:3356. 

 

Hiramatsu, C, Melin, AD, Aureli, F (2009) Interplay of olfaction and vision in fruit foraging 

of spider monkeys. Anim Behav 77:1421–1426. 

 

Hiwatashi ,T, Okabe, Y, Tsutsui, T (2010) An explicit signature of balancing selection for 

colorvision variation in new world monkeys. Mol Biol Evol 27:453–464. 

 



 93 

Janson, CH, Baldovino MC, DiBitetti M (2012) The group life cycle and demography of 

Brown Capuchin monkeys (Cebus [apella] nigritus) in Iguazu National Park, Argentina. In 

Kappeler PM and Watts, DT (Eds.), Long-term Field Studies of Primates (pp. 185-212). 

London, England: Springer Berlin Heidelberg. 

 

Jacobs, GH and Neitz J (1987) Inheritance of color vision in a New World monkey (Saimiri 

sciureus). Proc Nat Acad Sci 84(8): 2545-2549 

 

Lynch Alfaro JW, Silva Jr J de S e,  Rylands  AB (2012) How different are robust and gracile 

capuchin monkeys?  An argument for the use of Sapajus and Cebus. Am J Primatol 74: 273-

286 

 

Melin AD, Fedigan LM, Hiramatsu C (2007) Effects of colour vision phenotype on insect 

capture by a free-ranging population of white-faced capuchins ( Cebus capucinus ). Anim 

Behav 73:205–214. 

 

Melin, AD, Fedigan, LM, Hiramatsu, C, Kawamura, S (2008) Polymorphic color vision in 

white-faced capuchins (Cebus capucinus): is there foraging niche divergence among 

phenotypes? Behav Ecol Socio 62: 659-670. 

 

Melin AD, Fedigan LM, Hiramatsu C (2009) Fig foraging by dichromatic and trichromatic 

Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775. 

 

Melin AD, Fedigan LM, Young HC (2010) Can color vision variation explain sex differences 

in invertebrate foraging by capuchin monkeys? Curr Zool 56:300–312. 

 

Mollon, JD, Bowmaker, JK, Jacobs, GH (1984) Variations of color vision in a New World 

primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond  222: 

373-399. 

 

Morgan, MJ, Adam, A, Mollon, JD (1992) Dichromats detect colour-camouflaged objects 

that are not detected by trichromats. Proc R Soc Lond B 248:291–295.  

 

Osorio, D, Vorobyev ,M (1996) Colour vision as an adaptation to frugivory in primates. Proc 

R Soc Lond B 263:593–599 

 

Osorio, D, Ruderman, DL, and Cronin, TW (1998) Estimation of errors in luminance signals 

encoded by primate retina resulting from sampling of natural images with red and green 

cones. J Opt  Soc America A 15:16–22. 

 

Osorio D, Smith AC, Vorobyev M (2004) Detection of fruit and the selection of primate 

visual pigments for color vision. Am Nat 164:696–708 

 

Perini ,ES, Pessoa, VF, Pessoa, DM (2009) Detection of fruit by the Cerrado’s marmoset 

(Callithrix penicillata): modeling color signals for different background scenarios and 

ambient light intensities. J Exp Zool Part A 311:289–302. 



 94 

 

Regan, BC, Julliot C, Simmen, B et al (2001) Fruits, foliage and the evolution of primate 

colour vision. Philos Trans R Soc B 356:229–283. 

 

Saito A, Mikami A, Kawamura S et al (2005) Advantage of dichromats over trichromats in 

discrimination of color-camouflaged stimuli in nonhuman primates. Am J Primatol 67:425–

436 

 

Shyue, SK, Boissinot ,S, Schneider, H (1998) Molecular genetics of spectral tuning in New 

World monkey color vision. J Mol Evol 46:697–702. 

 

Sumner P, Mollon JD (2000a) Catarrhine photopigments are optimized for detecting targets 

against a foliage background. J Exp Biol 203:1963–1986  

 

Sumner P, Mollon JD (2000b) Chromaticity as a signal of ripeness in fruits taken by 

primates. J Exp Biol 203:1987–2000 

 

Surridge AK, Suarez SS, Buchanan-Smith HM (2005) Color vision pigment frequencies in 

wild tamarins (Saguinus spp). Am J Primatol 67:463–470. 

 

Tovée, M J, Bowmaker, JK, Mollon, JD (1992) The relationship between cone pigments and 

behavioural sensitivity in a new world monkey (Callithrix jacchus jacchus). Vision Res, 

32(5):867-878. 

 

Valenta, K, Melin, AD (2012). Protein Limitation Explains Variation in Primate Colour 

Vision Phenotypes: A Unified Model for the Evolution of Primate Trichromatic Vision, 

Zoology, Dr. María-Dolores García (ed.) ISBN: 978-953-51-0360-8, InTech. 

 

Vogel ER, Neitz M, Dominy NJ (2007) Effect of color vision phenotype on the foraging of 

wild white-faced capuchins, Cebus capucinus . Behav Ecol 18:292–297. 

  



 95 

Tables 

 

 
 

 Test statistic Sign of effect df P 

Full saturated model vs. 

without interaction 
Χ

2 
= 8.4415  4 0.0767 

FTri  vs. FDi Z = 2.428 FTri > FDi  0.0152 

FTri vs. MDi Z = 1.237 FTri > MDi  0.215 

FDi vs. MDi Z = -1.907 FDi < MDi  0.0565 

Medium vs. Low Z = -3.861 Medium < Low  0.000113 

High vs. Medium Z = -3.429 High < Medium  0.000605 

High vs. Low Z = -6.067 High < Low  1.31e-09 

     

 

Table 1. The effect of gender/visual phenotype category (MDI- male dichromat, FDI- female 

dichromat, FTRI- female trichromat) and light levels on total invertebrate capture attempt 

rates. Interaction tested was gender/phenotype category by light level. All probability levels 

given are comparison-wise. For details of the GLMM analysis and the main and random 

effects included, see Data Analysis. 
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 Test statistic Sign of effect df P 

Full saturated model 

vs. without interaction 
Χ

2 
= 2.301  4 0.6806 

FTri  vs. FDi Z = 2.654 FTri > FDi  0.00795 

FTri vs. MDi Z = 0.713 FTri > MDi  0.23795 

FDi vs. MDi Z = -1.961 FDi < MDi  0.049849 

Medium vs. Low Z = -3.812 Medium < Low  0.000138 

High vs. Medium Z = -1.753 High < Medium  0.07955 

High vs. Low Z = -4.554 High < Low  5.28e-06 

     

 

Table 2. The effect of gender/visual phenotype category and light levels on successful 

invertebrate capture rates. Interaction tested was gender/phenotype category by light level. 

All probability levels given are comparison-wise. For details of the GLMM analysis and the 

main and random effects included, see Data Analysis. 
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 Test statistic Sign of effect df P 

Full saturated model vs. 

without interaction 
Χ

2 
= 2.5575  4 0.6344 

FTri  vs. FDi Z = 1.866 FTri > FDi  0.06209 

FTri vs. MDi Z = 0.366 FTri > MDi  0.35705 

FDi vs. MDi Z = -1.786 FDi < MDi  0.07407 

Medium vs. Low Z = -1.135 Medium < Low  0.25621 

High vs. Medium Z = -2.173 High < Medium  0.0298 

High vs. Low Z = -2.692 High < Low  0.00711 

     

 

Table 3.The effect of gender/visual phenotype category and light levels on non-cryptic 

invertebrate capture success rates. Interaction tested was gender/phenotype category by light 

level. All probability levels given are comparison-wise. For details of the GLMM analysis 

and the main and random effects included, see Data Analysis. 
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 Test statistic Sign of effect df P 

Full saturated model vs. 

without interaction 
Χ

2 
= 10.786  4 0.02908 

FTri:low  vs. FDi:low Z = 3.878 FTri:low > FDi:low  0.000628 

FTri:low  vs. MDi:low Z = 3.927 FTri:low  > MDi:low  0.000512 

FDi:low  vs. MDi:low Z = -0.319 FDi:low  < MDi:low  0.999 

FTri:medium vs. FDi:medium Z = 1.473 FTri:med > FDi:med  0.247 

FTri:medium  vs. MDi:medium Z = 0.522 FTri:med > MDi:med  0.827 

FDi:medium  vs. MDi:medum Z = -0.473 FDi:med < MDi:med  0.845 

FTri:high vs. FDi:high Z = 2.180 FTri:high > FDi:high  0.056 

FTri:high  vs. MDi:high Z = 0.391 FTri:high  > MDi:high  0.902 

FDi:high  vs. MDi:high Z = -1.473 FDi:high  < MDi:high  0.247 

 

Table 4. The effect of gender/visual phenotype category and light levels on cryptic 

invertebrate capture success rates. Interaction tested was gender/phenotype category by light 

level. All probability levels given are comparison-wise. For details of the GLMM analysis 

and the main and random effects included, see Data Analysis. 
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Figures  

 

 

 

 
  
Figure 1. Total capture attempts per hour by the three gender/color vision phenotypes within 

each light level. (MDI- male dichromat, FDI- female dichromat, FTRI- female trichromat) 
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Figure 2. Successful invertebrate captures per hour by the three gender/color vision 

phenotypes within each light level. (MDI- male dichromat, FDI- female dichromat, FTRI- 

female trichromat) 
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Figure 3. Successful non-cryptic invertebrate captures per hour by the three gender/color 

vision phenotypes within each light level. (MDI- male dichromat, FDI- female dichromat, 

FTRI- female trichromat) 
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Figure 4. Successful cryptic invertebrate captures per hour by the three gender/color vision 

phenotypes within each light level. (MDI- male dichromat, FDI- female dichromat, FTRI- 

female trichromat) 
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Chapter 6: Fitness correlates of color vision variation in black capuchin monkeys: 

evidence for heterozygote advantage 

 

A.T. Green and C.H.Janson 

 

Abstract 

 

We provide data on three components of fitness (body mass, reproductive rate, and 

survival) in a wild population of dichromatic and trichromatic monkeys (Sapajus nigritus) 

studied annually for a period of more than 20 years.  For two measures, trichromatic females 

had higher fitness than dichromatic females. Our results support the trichromatic-advantage 

hypothesis for the evolution of the polymorphic color vision system characteristic of New 

World primates. 

 

Introduction 

 

The variable color vision system in New World primates provides an excellent 

opportunity to describe the links between genotypic and phenotypic variation, performance 

and fitness in natural populations.  The variability in color vision arises from a well-

characterized allelic polymorphism of the opsin gene on the X-chromosome that code for 

photoreceptor proteins, opsins, sensitive to medium (M) to long (L) wavelengths (Jacobs and 

Neitz 1987, Mollon et al. 1984, Shyue et al. 1998, Tovee et al. 1992).  This stable 

polymorphism of 2-5 alleles at a single X-chromosome linked locus has been maintained for 

at least 14-20 million years (Boissinot et al. 1998, Hunt et al. 1998).  Hemizygous males and 

homozygous females are functionally dichromatic (similar to red-green color blind humans) 

whereas heterozygous females are trichromatic (similar to normal color vision in humans).  

There is almost no genetic variation at the other autosomal opsin gene that codes for a retinal 

protein sensitive to short (S) wavelengths. 
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Hiwatashi et al. (2010) demonstrated strong balancing selection acting on the alleles 

at the sex-linked opsin gene, suggesting that the polymorphism is consistently maintained by 

natural selection.  However, the functional causes of this balancing selection remain unclear.  

The trichromatic advantage hypothesis postulates that the polymorphism at the X-linked 

opsin locus is maintained by a consistent fitness advantage to heterozygous (trichromatic) 

individuals relative to homozygous (dichromatic) individuals.  This hypothesis remains the 

principal explanation in the literature and is supported by theoretical modeling as well as 

evidence from foraging experiments conducted in the laboratory (Caine and Mundy 2000, 

Osorio and Vorobeyv 1996, Regan et al. 2001, Riba-Hernandez et al. 2004, 2005, Smith et al. 

2003b, Sumner and Mollon 2000). Opposing this hypothesis are many behavioral 

observations in natural populations that have produced results that either fail to show a 

trichromatic advantage or show a dichromatic advantage under some conditions (Dominy et 

al. 2003, Fedigan et al. 2014, Melin et al. 2008, Smith et al. 2003, Vogel et al. 2007,).  

According to the trichromatic hypothesis, if a gene duplication event occurred at the opsin 

locus, fixing two functionally different alleles on one X-chromosome, it would spread rapidly 

in the population due to the advantages of full color vision and confer routine trichromacy to 

all individuals.  Such a gene duplication appears to have occurred in the ancestor of Old 

World primates after their divergence from New World monkeys (Nathans et al. 1986), and 

in one genus of New World monkeys, the howler monkeys (Alouatta) (Dulai et al. 1999, 

Jacobs et al. 1996).   

An alternative hypothesis postulates that selection has facilitated the persistence of 

dichromatic individuals in the population (Morgan et al. 1992, Osorio et al. 1998, Perini et al. 

2009) suggesting that the enhanced ability of trichromats to distinguish chromatic differences 
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interferes with other discrimination.  According to this idea, dichromatic individuals might 

out-perform trichromats in tasks where chromatic differences do not provide any useful 

information such as the perception of shape, texture, and motion detection, when foraging on 

cryptic foods or detecting cryptic predators, or when in low-light conditions.  In support of 

this notion, studies conducted on natural populations have reported that dichromats may 

perform better than trichromats when they forage for surface-dwelling insects under low-

light conditions (Melin et al. 2007, 2010).  

If trichromats do not have an average fitness advantage over dichromats, then a stable 

polymorphism could be maintained only by negative frequency-dependent selection.  

Phenotypes that are below their equilibrium frequency in the population would be at an 

advantage relative to the other phenotypes.  Under this mechanism, trichromats might appear 

to have a fitness advantage over dichromats when the former happen to be relatively 

uncommon, but would have a lower fitness than dichromats when trichromats are at 

relatively high frequency.   

A third possibility, that dichromatic genotypes have an average fitness advantage over 

trichromats seems inherently unlikely in diurnal New World primates. If such a situation 

occurred, the expected genetic response would be to rapidly favor a single allele at the M/L 

locus, thereby eliminating the polymorphism. This response has yet to be observed in diurnal 

New World monkey populations.  Notable levels of polymorphism are maintained in all 

tested New World primate species except the howler monkey, as noted above, and the 

nocturnal owl monkey (Aotus trivirgatus), in which only a single M/L allele has been 

maintained and the S locus has become disabled (Jacobs et al. 1996). Given this evidence and 

the lack of any overall advantage to dichromatic individuals in any previous study of New 
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World primates, one might expect to find that appropriate measures of overall fitness are 

greater in trichromatic than in dichromatic individuals in wild capuchins. 

The link between color-vision phenotype and ecological performance has been 

investigated in natural populations (Bunce et al. 2011, Dominy et al. 2003, Hiramatsu et al. 

2008, 2009, Melin et al. 2007, 2008, 2009, 2010, Riba-Hernandez et al. 2004, Smith et al. 

2003a, 2003b, 2005, Vogel et al. 2007).   One prior study, of the capuchin monkey Cebus 

capucinus (Fedigan et al. 2014), examined the link between performance and fitness, but 

found no difference in several fitness correlates between the color vision genotypes.  Here we 

examine the fitness correlates of color vision variation in a different capuchin species 

(Sapajus nigritus), using three proxies for fitness: long-term reproductive success, survival, 

and weight.   The 20+ years of demographic data on the study population in Iguazú, 

Argentina (Janson et al. 2012) provides a unique opportunity to relate fitness to genetic 

variation affecting color vision in New World primates.  Our data support the trichromatic-

advantage hypothesis for two fitness measures.  

 

Methods 

 

Study Area and Subjects 

We studied a population of black capuchin monkeys (Sapajus nigritus) in Iguazú 

National Park in northeastern Argentina.  The study area is subtropical with seasonality in 

temperature and day length, but little seasonality in rainfall.  Fleshy fruit and arthropod 

abundance is lowest in the winter months (June-August) and highest in the spring months 

(October – December) (Di Bitetti and Janson 2001).  The forest in the study area and the 

study groups are impacted by both current and past anthropogenic disturbances from logging 

and tourism (Janson et al. 2012).    The study animals live in multi-male, multi-female groups 
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consisting of 6 to over 40 individuals (Di Bitetti and Janson 2001, Janson et al. 2012).  Black 

capuchins are omnivorous with a diet that consists mainly of fleshy fruits and arthropods.  

Usually one male is dominant and so secures the majority of the matings and food sources 

(Escobar-Páramo 2000, Janson 1984).  Females are philopatric and exhibit linear dominance 

hierarchies (Di Bitetti 1997), and adult female rank affects food intake (Janson 1985). Males 

typically disperse from their natal group at 5 to 9 years of age; females usually have their 

first birth at around 6 years of age (Janson et al. 2012).  Estrous cycles begin between March-

May of each year with very few females remaining receptive by August.  The well-defined 

birth season is typically from October to January, during the peak of fruit and arthropod 

abundance (Di Bitteti and Janson 2001).  Color vision phenotypes were determined by 

extracting DNA from fecal samples of known individuals and using custom Taqman® real-

time PCR probes to determine the opsin genotype (Green et al. 2014).   

Data Collection and Analysis 

Individuals of the four main study groups were identified by physical characteristics 

such as coloration patterns, size and shape of tufts, scars and behavior.  The population of 

Sapajus nigritus within the park has been studied since 1988 (Brown and Zunino 1990). This 

includes censusing twice a year since 1991 (Janson et al. 2012) as well as many behavioral 

and ecological studies over the years (Janson 1996, 1998, 2007, Di Bitetti and Janson 2001, 

Di Bitetti 2005, Baldovino and Di Bitetti 2008, Wheeler 2009, Baldovino 2010).  The data 

included here are from four social groups derived from one original study group (Macuco), 

which splintered in 2005 to produce two additional groups (Rita, Gundolf), and split again in 

2009 to give rise to another group (Spot).   
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We analyzed individual- and age-related changes in birthrate based on the presence or 

absence of a birth during each birth season for every female as a function of her age.  

Survivorship curves were calculated from the data set containing individuals born into the 

study groups and individuals already in the groups at the inception of study (Janson et al. 

2012) and whose color vision phenotypes were known.  Age was estimated for the 

individuals already in the group at the start of the study based on age-related changes in size, 

shape, and fur patterning.  All individuals were followed until disappearance, death, 

dispersal, or the end of the 2010 study period (Janson et al. 2012).  

Weights of the adult females were obtained using feeding platforms suspended from 

tree branches by a rope through a pulley. A scale was attached to this rope and weights of the 

platform were taken with a particular animal on the platform versus when no animal was on 

it. Three observers participated in the collection of weight data. 

  For statistical inference, we used a generalized linear mixed model fit by maximum 

likelihood. For continuous dependent variables, we used the ‘Fit Model’ platform in JMP 

(version 10.0.2 SAS Corp, 2011); for binomial dependent variables (e.g. presence or absence 

of a birth), we used the LME4 package in R (v. 3.02 The R Foundation for Statistical 

Computing, 2013).  Initial fitted models included all main effects and predicted interaction 

effects.  If the initial model was significantly different from the null hypothesis, backwards-

stepwise selection was performed, successively eliminating the variable with the highest P 

value (testing against the null hypothesis that the variable had no effect) to obtain a final 

model containing only significant (P < 0.05) predictors.  Survivorship curves were fit using 

the proportional hazards platform in JMP. Because of our strong uni-directional prediction 
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indicating higher fitness in trichromatic females, we used one-tailed tests when examining 

the effects of color-vision phenotype. 

 

 Results 

 

Weights were obtained for 18 adult females (11 trichromats and 7 dichromats) 

between ages 6 and 27 in three of the main study groups.  The average weight of these 

females was 2.11kg.  Adult trichromatic females weighed on average 0.15kg more than adult 

dichromatic females (Figure 1).  When controlling for age, with individual identity and 

observer as random effects, trichromatic females weighed significantly more than did 

dichromatic females (p=0.0082, Table 1).     

The estimated birth rate for all females of known color vision phenotype was 0.527 

births per female per year (N= 143 births from 31 females across 20 years; 17 females were 

trichromatic and 14 dichromatic).  Trichromatic females had an estimated birth rate of 0.593 

births per female per year, giving an approximate inter-birth interval of 20 months.  

Dichromatic individuals had an estimated birth rate of 0.445 births per female per year 

yielding an approximate inter-birth interval of 27 months (Figure 2).  The difference in birth 

rates by color vision phenotypes was significant (p=0.0332) after controlling for age and 

prior-year birth, with individual identity as a random effect (Table 2). 

The age-dependent survivorship curves for dichromatic and trichromatic females as a 

function of their color vision phenotype did not differ between trichromats and dichromats 

(proportional hazards analysis across all ages vs. color-vision phenotype, χ
2
= 0.0134, df=1, 

p=0.7876, Figure 3).  About 89% of trichromatic females reached the age of sexual maturity 

compared to 94% of dichromatic females.  The survivorship curves show a period of 
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increased mortality at the age of the first birth and nursing (6-8 years of age) followed by a 

period of stable survival for both dichromats and trichromats.  The median predicted survival 

time for trichromatic females (N=18) and 26.63 and 19.74 for dichromatic females (N=18). 

 

Discussion 

 

 Two proxies of fitness in this study lend support to the trichromatic advantage 

hypothesis for the maintenance of the color vision polymorphism in New World primates.  

Trichromatic females on average weighed 0.15kg (7.5%) more than their dichromatic 

counterparts.  A heavier female has potentially more energy to allocate to energy-intensive 

reproductive events such as gestation and lactation (Clutton-Brock 1988, Gittleman and 

Thompson 1988), and may recover more quickly from short periods of energy deprivation 

(Lindstedt and Boyce 1985).  These energy allocation events could, in turn, affect other 

fitness measures such as birth rate and survival. Indeed, trichromatic females in our study 

averaged 0.15 births per year more than did dichromatic females.  Over an expected 

reproductive lifespan of about 20 years, this should equate to an increase of 3 offspring born 

(12 vs. 9 births, respectively). 

 In addition, the longest-lived trichromatic female in the study population continued to 

reproduce up to her last year of life at 33 years of age. The longest-lived dichromatic female 

stopped reproducing at 23 years of age but survived to age 27 (Janson et al. 2012).  Although 

anecdotal, this result further supports an advantage to trichromatic individuals allowing for a 

higher fecundity. 

Trichromatic females did not differ in survival from their dichromatic counterparts in 

this study.  A similar negative result was found in a related species (Cebus capucinus) in 
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Costa Rica (Fedigan et al. 2014). However, it would have been essentially impossible to 

demonstrate statistically significant selection on survival with the sample sizes in both this 

study (38 females) and the Fedigan et al. 2014 study (47 females) given the small number of 

deaths in the younger age classes. For this reason, these negative results in the two studies are 

not that informative.  The sample size of aged females was also limited, but three of the five 

females who lived past 20 years of age were trichromatic, and the longest lived female (33 

years) was trichromatic.  A similar trend was found in Tamarins (Callithrix geoffroyi) 

(Surridge et al. 2005).     

As predicted by a priori functional and evolutionary arguments, trichromatic females 

have consistently higher values for two proxies of fitness in this population of New World 

monkeys.  An overall fitness advantage to female dichromats is not logically plausible, as it 

would lead to a rapid collapse of the polymorphism by a selective sweep favoring one of the 

opsin alleles.  However, equal mean fitness between dichromatic and trichromatic 

phenotypes in a population could be maintained by frequency-dependent selection (Clarke 

1979, Endler 1988, Mollon et al. 1984).  In a structured population such as this one, which is 

divided into relatively stable groups that persist across decades (Janson et al. 2012), selection 

favoring one phenotype is expected whenever that phenotype is locally less common than 

expected.  Thus, the observed fitness advantages of trichromatic females in this study could 

have been due to negative frequency-dependent selection acting on the less common 

phenotype.  However, trichromatic females were not less common than expected in our 

population. Among females of reproductive age (those most likely to compete for food and 

breeding success), the observed and expected fractions of trichromatic females were nearly 

identical: 56:8% vs. 55.7% (Green 2014). Analysis of fitness versus phenotype frequency 
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within individuals groups would have required more independent social groups than 

available in this study. Clearly, it would be desirable to expand the sample to more groups 

and populations.  

A recently published article studying a sister species (Cebus capucinus: Fedigan et al. 

2014) did not find evidence for a heterozygote advantage using similar fitness measures, nor 

did they demonstrate a fitness advantage to other phenotypes.  Lack of evidence for a 

heterozygous advantage is not sufficient evidence to falsify that hypothesis; it is possible that 

the sample size was not sufficient to show an advantage to trichromats under the typically 

variable conditions that occur in field studies.  To support the hypothesis of negative-

frequency dependent selection for the maintenance of color-vision polymorphism in New 

World primates would require demonstrating at least on occasion a clear average fitness 

advantage to dichromats, a situation that has yet to be documented in any study of New 

World primates.  In this study we demonstrated a clear fitness advantage to trichromats 

relative to dichromats in a natural population.   

Even if the trichromatic advantage in fitness proves to be more general in New World 

primates, the mechanism linking phenotype to fitness is still poorly understood.  Modeling of 

fruit-finding capability suggests that trichromatic females should have an advantage (Melin 

et al. 2014), while it may be that dichromatic females have an advantage in finding cryptic 

insects in some conditions (Melin et al. 2007).  However, when tested in simulated foraging 

tasks in captivity, trichromatic female capuchins typically foraged faster on both conspicuous 

fruit-like targets and on camouflaged insect-like targets (Green 2014); only when the task 

was very easy did trichromats and dichromats perform equally.  It is possible that food items 

other than conspicuous fruits provide a selective advantage to trichromatic females.  
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Palatable young leaves tend to be redder in hue and are used as a fallback resource during 

low fruit abundance by some New World primate species (Lucas et al. 2003), although not 

by any population of either Cebus or Sapajus yet studied.  Another possibility is that 

trichromatic individuals are more efficient at finding cryptic fruits (Stoner et al. 2005, Melin 

et al. 2009), or protein-rich foods in a protein-limited environment (Valenta and Melin 2012).  

Further study is needed to understand the mechanisms that link color-vision phenotype and 

fitness in wild foraging primates.  
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Tables 

 

 

 

Source  N DF DFDen F ratio P> F 

Visual Phenotype 1 1 11.01 8.0136 0.00815 

Age 1 1 6.521 20.3472 0.0033 

 

Table 1.  Fixed Effects Tests for the body mass of females using a one-tailed test.  R
2
= 

0.293272.  The random effect of female identity accounted for 6.06% of the total variation.  

Observer accounted for 5.26% of the total variation. 
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Source  Estimate SE Z value PR (>|z|) 

Intercept -0.900438 0.8999755 -1.001 0.31694 

Prior Infant (yes) -2.376521 0.360429 -6.594 4.29e^-11 

Age Class 0.37023 0.129662 2.855 0.00430 

Age Class^2 -0.01242 0.003964 -3.141 0.00168 

Visual Phenotype (tri) 0.666088 0.362834 1.836 0.0332 

 

Table2.  Fixed Effects Tests for the birth rate of females using a one-tailed test.  Phenotype 

significant in one-tailed test (p<0.05) when comparing models with and without visual 

phenotype. 
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Figure 1. Weights of adult females from three study groups (Error bars are +/- standard 

errors). 
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Figure 2. Birth rate plotted as a function of female age. Each symbol is the fraction of 

females of a given age of a given phenotype (triangles=trichromat, square=dichromat) that 

gave birth.  The lines show the expected relationship of birth rate to age for each phenotype 

(grey = trichromat, black = dichromat), based on General Linear Mixed Model analysis 

(Table1).  Controlling statistically for linear and quadratic effects of age, female identity 

(included as a random effect), and the presence of a surviving infant from the preceding birth 

season, trichromatic females had significantly higher birth rates than did dichromatic 

females. 
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Figure 3. Age-dependent survival. Survivorship curves for all females of known color vision 

phenotype (grey = trichromat, black = dichromat). Because infants that died within 6 months 

after birth were rarely sampled genetically, the marked post-natal mortality documented 

across all individuals (Janson et al 2012) is not seen in this sample and the effects of color-

vision phenotype at these early ages cannot be assessed. 
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