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ABSTRACT 

  I investigated the influence of beavers on aquatic floodplain habitats and determined 
how juvenile salmon habitat use, growth, survival, movement, and production varied by 
habitat type in a large alluvial floodplain of the Kwethluk River in western Alaska. I also 
compared juvenile salmon production at the floodplain scale in the Kwethluk River (with 
beavers), to a very similar salmon river in Kamchatka (the Kol) that has no beavers.  
  Beavers modified 87.5% of the aquatic off-channel habitat of the Kwethluk River, 
which was composed of three successional stages of beaver ponds (early-, mid-, and late-
successional), and beaver-influenced spring brooks. Early-successional ponds were closer 
to and more connected to the main channel, while mid- and late-successional ponds were 
farther from the main channel with more dams and highly variable hydrology.  
  Juvenile salmon habitat use varied by habitat type. Total fish species and salmon species 
richness was 2-3x higher, the proportion of young-of-the-year salmon was over 50% 
compared to <5%, and densities of juvenile salmon were 5-7x higher in spring brooks 
and early-successional ponds compared to late-successional ponds. The growth of young-
of-the-year coho and Chinook was almost 2x higher in early-successional ponds 
compared to both beaver-influenced and beaver-free spring brooks, but survival rates 
were consistently highest each month (46 to 80%) in beaver-free spring brooks. Within 
the parafluvial zone early-successional ponds produced a greater biomass of juvenile 
salmon than either type of spring brook (175 vs. 149 and 140kg) but only reared half the 
individuals as beaver-free spring brooks (24,100 vs. 41,400 salmon). 
  In contrast to the Kwethluk, there was no difference in species richness or density by 
habitat type within the Kol River, suggesting that juvenile salmon are able to rear in all 
parafluvial and orthofluvial habitats when beavers are not present. 
  I estimated that in the absence of beavers the entire Kwethluk floodplain could produce 
2x the biomass (between June-August, 1174 vs. 667kg) and rear 3x the number of salmon 
(370,000 vs. 140,000). By damming off-channel habitats and blocking large amounts of 
orthofluvial habitats beavers could have a large effect on production of juvenile salmon 
in a large alluvial river floodplain.        
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INTRODUCTION 

BACKGROUND 

Beavers as habitat engineers of streams 

Large animals, especially herbivores like beavers, may directly alter the 

availability of resources to other species by causing physical state changes in biotic or 

abiotic materials (Jones et al. 1994, Naiman and Rogers 1997). Beaver engineering of 

aquatic habitats can exert strong influences on physical and biological components of 

stream ecosystems by impounding water (Naiman et al. 1988). Most of our understanding 

of beaver effects on river processes and aquatic organisms comes from studies on low 

order systems, namely the types of habitats beavers are thought to prefer (Beier and 

Barrett 1987, Suzuki and McComb 1998, Pollock et al. 2004). In low order systems the 

presence of beaver dams results in lentic habitats with altered nutrient and carbon cycles 

(Francis et al. 1985, Naiman et al. 1991, Naiman et al. 1994), increased nutrient 

availability (Wilde et al. 1950, Naiman and Melillo 1984, Pinay and Naiman 1991), and 

altered fluxes of organic matter, sediment, and heat (Naiman et al. 1986, Naiman et al. 

1994, Rosell et al. 2005). 

The presence of beaver dams can also alter the hydrology of riparian zones, 

resulting in increased biocomplexity of low order streams (Naiman and Rogers 1997, 

Gurnell 1998, Wright et al. 2002, Rosell et al. 2005). Furthermore, by cutting trees and 

shrubs (Jenkins 1980) beavers alter the structure and productivity of the riparian zone and 

can change successional pathways of riparian vergetation (Naiman et al. 1988, Mouw et 

al. 2012). The combination of the effects of altering hydrology and riparian vegetation 

results in a mosaic of different vegetation types being present in beaver-impounded 

watersheds compared to beaver-free watersheds (Naiman et al. 1988).  
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Though most of our understanding of beaver effects on lotic processes comes 

from low order stream systems, beavers are also ubiquitous inhabitants of large North 

American rivers (Naiman et al. 1988). 

Beavers in large alluvial floodplain rivers 

The influence of beavers on large alluvial floodplains has not been examined in 

detail, though beavers are ubiquitous inhabitants of large North American rivers where 

they cut large amounts of riparian wood and construct dams lateral to the main channel 

(Naiman et al. 1988). Beavers have the potential to substantially impound and regulate 

the flow and exchange of surface and ground water in the low gradient flood channel 

networks of larger rivers (Gurnell 1998). Beavers could have large impacts on floodplain 

systems if they induce similar effects as seen on low order streams. For example, based 

on observations of beaver activity on the Bow River, in the Canadian Rocky Mountains, 

Rutten (1967) suggested that dams standing for decades in low gradient floodplains have 

the ability to confine the main channel, thus reducing floodplain complexity as sediments 

are deposited over time. Despite the generally observed substantial influence of beavers 

on large floodplain rivers, the extent and process of floodplain impoundment and water 

regulation by beavers has not been examined in detail, including influences on the 

distribution and abundance of aquatic organisms.  

The influence of beavers on fish 

The influence of beavers on stream fishes, including juvenile salmon, has been 

thoroughly studied in low order stream systems, resulting in both positive and negative 

effects (Collen and Gibson 2001, Kemp et al. 2011). The most commonly cited negative 

effect of beavers on fish include the impediment of fish movement because of dams 
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(Schlosser and Kallemeyn 2000, Mitchell and Cunjak 2007 ), declines in habitat 

characteristics that may influence fish habitat use and condition (e.g. low oxygen levels, 

Burchsted et al. 2010), and siltation of spawning grounds (Taylor et al. 2010). However, 

in most cases there is controversy over whether or not beaver impacts on fishes are 

actually negative. The movement and migration of fish that spawn in the autumn seem to 

be most strongly hindered by beaver dams (Cook 1940, Rupp 1955), however many 

studies show that both adult and juvenile fishes can move past dams at higher flows 

(Gard 1961, Bryant 1983, Murphy et al. 1989, Schlosser 1995). Similarly, the warming of 

stream temperature by beavers has been suggested to be detrimental to trout by some 

(Cook 1940, Rupp 1955), positive for production of trout by others (Huey and Wolfrum 

1956), and other work has found no consistent relationship between downstream 

warming and size and number of beaver impoundments (McRae and Edwards 1994). 

Additionally, beavers are often thought to damage spawning areas by causing excessive 

siltation but even this potential impact is contentious and dams may be beneficial in 

streams with high silt loads by reducing the overall silt-carrying capacity of the stream 

(Macdonald et al. 1995). 

A recent review of the effects of beavers on stream fish found that the benefits of 

beavers for stream fish are more often cited than negative impacts (Kemp et al. 2011). 

Beavers have been shown to positively influence salmon populations by improving 

habitat quality. For example, impounded habitats can provide good cover and increased 

production of invertebrate food resources (Hanson and Campbell 1963, Keast and Fox 

1990). Impounded sections of small streams have also been found to be more productive 

in number and size of fish (Gard 1961, Hanson and Campbell 1963, Bryant 1983, 
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Murphy et al. 1989, Leidholt Bruner et al. 1992, Schlosser 1995) and have had juvenile 

salmonids with higher survival rates (Bustard and Narver 1975, Quinn and Peterson 

1996). Faster growth rates have also been suggested based on the presence of larger 

juvenile coho in ponds (Bustard and Narver 1975, Swales and Levings 1989). Lastly, 

ponds have also been shown to have increased production of coho (Nickelson et al. 1992, 

Layman and Smith 2001, Pollock et al. 2004). 

Despite this body of research, little work has been done to understand how habitat 

modification by beavers may influence the ecology and production of juvenile salmon on 

expansive, multi-channel floodplains where habitat forming processes may be affected 

differently by beavers. 

The importance of large alluvial river floodplains for juvenile salmon rearing habitat 

Large alluvial rivers around the Pacific Rim have expansive floodplains which 

contribute habitat important for salmon production (Whited et al. 2013). In fact, forty-

percent of all salmon produced in the world come from western Kamchatka rivers 

(Augerot 2005) and these rivers have complex floodplain habitats. Within floodplains of 

these rivers, off-channel spring brooks provide primary nursery grounds for juvenile 

salmon including Oncorhynchus kisutch (coho salmon), O. tshawytscha (Chinook 

salmon) and O. nerka (Eberle and Stanford 2010, Armstrong and Schindler 2013). Higher 

densities of juvenile salmonids (up to 4-10 fish m-2) have been documented in spring 

brooks compared to main channel shallow shorelines and tributaries (Eberle and Stanford 

2010). Shallow spring brooks are fed by effluent from the floodplain aquifer,  have warm 

winter and cool summer temperature patterns, and have high ecological connectivity with 

riparian food webs; therefore enhanced growth and survival of juvenile salmon has been 
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documented in these habitats (Sommer et al. 2001, Jeffres et al. 2008, Bellmore et al. 

2013). 

Beavers and juvenile salmon in large alluvial river floodplains 

Off-channel spring brooks provide ideal habitats for beaver damming within 

floodplain networks of large rivers. As part of a project to compare physical features of 

salmon rivers around the North Pacific Rim (Luck et al. 2010, Whited et al. 2013), it was 

observed that in North American rivers native beavers routinely dam floodplain spring 

brooks creating massive pond complexes throughout the parafluvial (area of active scour 

near the main channel) and orthofluvial (area of deposition farther from the main 

channel) zones of many expansive floodplains.  It is unknown how beaver ponds might 

differ in physical characteristics based on their location within the complex network of 

channels in expansive floodplain settings and how they might vary in connectivity to the 

main channel. Understanding how beaver modified habitats vary in characteristics and 

connectivity is important because the dynamics and connectivity of different types of 

ponds could strongly influence the ability of aquatic organisms to access and use riverine 

floodplain habitats. By modifying the habitat use and distribution of juvenile salmon 

beavers have the potential to influence the production of juvenile salmon from large 

alluvial floodplains. Chinook and coho salmon may be strongly influenced by beavers 

because they spend 2-3 years rearing in off-channel habitats. Moreover, they are 

preferred by subsistence fishers and are of great conservation concern. 

STUDY SITE  

 I conducted the first study of habitat modification by beavers and the subsequent 

influence on the habitat use, growth and production of juvenile coho and Chinook salmon 
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in an expansive alluvial floodplain river. My focal study site was the Kwethluk River, a 

5th order tributary of the Kuskokwim River on the west coast of Alaska with a 3,787 km2 

catchment. The Kwethluk enters the Kuskokwim River just above the tidally influenced 

lower reach, approximately 15km upstream of Bethel, AK. I chose to work on the 

Kwethluk River because it was part of a larger suite of research on salmon rivers of the 

Pacific Rim. Moreover, beavers are prevalent on the floodplain and have coevolved with 

salmon for hundreds of years in this river. The river also has the characteristics of a 

natural undisturbed system, allowing me to test my hypotheses without the added 

complexities of modified hydrologic cycles. A long term record of spawner counts at a 

weir also exists and the Kwethluk is protected from development within the Yukon Delta 

National Wildlife Refuge. The Kwethluk Village people harvested beaver extensively in 

the river until lower prices for fur reduced incentive for trapping; very little or no harvest 

occurs today, so beavers are very abundant in the floodplain.  

 My study reach was an expansive anastomosing floodplain underlain by a shallow 

alluvial aquifer that is located between 37 and 64km (from Three-Step to Elbow 

Mountain) above the confluence of the Kwethluk with the Kuskokwim. The 27-km long 

reach is characterized by a laterally migrating main channel, coupled with anabranching 

avulsion events that create a complex network of flood and secondary channels and 

gravel bars. Many channels disconnect from the main river at upstream ends during base 

flow conditions. This process is mediated through sediment accretion or wood-jam 

levees. Channel beds that have been scoured low enough to intercept the shallow aquifer 

result in spring brooks that flow along the abandoned channels and into backwaters that 

connect to the main river.  Spring channels that have been dammed by beavers are 
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abundant in the study reach. The reach ends at Three-Step Mountain where the river 

switches to a torture meander as the river reaches base level influenced by the tidally 

induced backwater effects in the main Kuskokwim River.  

 I compared salmon metrics from the Kwethluk River with the Kol River, a 5th 

order river in southwestern Kamchatka without beavers (Russian Federation) 

(N53º49.506’E156º3.716’), to gain inference regarding how the presence of beaver-

modified habitat might influence the production of juvenile salmon from an entire river 

floodplain. The Kol study reach was an expansive floodplain similar in features to the 

Kwethluk River, with a river formed of a complex network of anastomosing channels. 

Similar habitat forming processes occurred on the Kol as on the Kwethluk, with a 

laterally migrating main channel and anabranching avulsion events creating a complex 

network of flood and secondary channels. Spring channels are formed in a similar manner 

and are abundant throughout the entire floodplain (because no dams are present).  

PURPOSE AND OVERARCHING QUESTION 

 The overarching goal of this dissertation was to determine how beavers influence 

aquatic habitats, thereby potentially modifying the production of juvenile salmon on a 

large alluvial river floodplain. As described above, the influence of beavers on fishes is 

well studied in small streams, as are the habitat forming processes of large alluvial 

floodplain rivers, allowing us to (1) ask questions about how beavers influence aquatic 

habitats, juvenile salmon habitat use, and juvenile salmon production in large river 

floodplains, and (2) compare our results for juvenile salmon in a beaver-dominated 

floodplain to one without beavers. The Kol floodplain served as an excellent comparison 
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site for our study because it is a similarly complex floodplain located in Russia where 

beavers have never been present.  

This study is important scientifically because most studies of beaver impacts on 

salmon have been on low order, tributary streams. However, some of the world's most 

important juvenile salmon producing habitats are in complex, large river floodplains. 

Despite the importance of these systems, no previous study has focused on the effects of 

beavers as a biotic driver of salmon productivity in a large alluvial river floodplain.  

Moreover, the study is a seminal investigation of beavers and salmon in a primary 

successional context (i.e., as the ponds age, does the habitat quality for salmon also 

change?).  

Initial observations on the Kwethluk River indicated that beavers had the ability 

to exert strong influences on floodplain habitat structure by building extensive dam 

complexes. Because off-channel habitats are important for juvenile salmon, it was 

possible that by altering off-channel habitats beavers would have the ability to influence 

the habitat use and production of juvenile salmon. Therefore, I generated the working 

hypothesis that the presence of beaver ponds on floodplain spring brooks increases 

salmon production in the parafluvial zone of a large river floodplain because abundant 

lentic food and lower fish densities in ponds enhance growth in comparison to undammed 

spring brooks or spring brooks below beaver dams. Although I hypothesized that 

production would be positively influenced within the parafluvial zone, I also 

hypothesized that the influence of beavers on juvenile salmon production would be 

negative at the scale of the entire floodplain. Specifically, even if beavers stimulate the 

growth of fishes within beaver ponds of the parafluvial zone, they may still negatively 
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impact production at the floodplain scale by blocking orthofluvial off-channel rearing 

habitats from use by juvenile salmon. 

OVERVIEW OF CHAPTERS 

 This dissertation consists of three chapters which address the overarching 

hypothesis through comparative and experimental studies. Chapters are presented in 

manuscript format with co-author names omitted for the purpose of the dissertation. 

Chapter 1 presents the first analysis of beaver influences on an expansive floodplain of a 

large alluvial (gravel-bed) river. I quantified the distribution and abundance of aquatic 

habitat types, how different habitat types varied in physical characteristics, how the 

composition of macroinvertebrate forage items and fishes differed by habitat type, and 

finally, how different habitats varied in connectivity and if connectivity influenced the 

habitat use and movement of juvenile salmon. In this floodplain beavers predominantly 

dam off-channel spring brooks which are very important rearing habitats for juvenile 

salmon. Because of this I addressed these questions in spring brooks with and without 

dams and in different successional stages of beaver ponds. I found that 87.5% of the off-

channel aquatic habitat of the expansive floodplain was altered by beavers damming 

spring brooks. Physical characteristics were similar among different types of beaver 

ponds and among different types of spring brooks, indicating that all habitat types were 

suitable habitat for juvenile salmon. However, beavers reduced habitat connectivity and 

added variability to macroinvertebrate assemblages within habitats by damming 

floodplain spring brooks. Early-successional ponds had high hydrologic synchrony values 

(closely tracking water fluctuations in the main channel), while mid- and late-

successional ponds, being farther from the main channel with more dams blocking flow 
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paths, had lower and highly variable synchrony values. Corresponding with these 

differences in connectivity, total species and salmon species richness was 2-3x higher, the 

proportion of fish captured in sites that were young-of-the-year was over 50% compared 

to <5%, and densities of juvenile salmon were 5-7x higher in spring brooks and early-

successional beaver ponds compared to late-successional ponds. I also showed that 

though virtually no movement of juvenile salmon occurred past beaver dams at base 

flow, flooding mediated movement of juvenile salmon past beaver dams. Lastly, chapter 

1 sets the stage for the following two chapters, which investigate the growth and 

production of juvenile salmon in the parafluvial zone of a beaver dominated riverscape 

and compare production in floodplains with and without beavers at the floodplain scale. 

In chapter 2, I examine how the presence of beaver dams influences the 

production of juvenile salmon in the parafluvial zone of the floodplain study reach. I 

measured multiple factors that could influence the production of juvenile coho and 

Chinook salmon, including habitat, prey and diet characteristics. I conducted detailed 

habitat specific studies of the growth, survival, movement, and production of juvenile 

coho and Chinook in the parafluvial zone using a multistate robust closed capture design. 

Because beavers most strongly influence off-channel habitats by damming springbrooks 

(over 80% of the springbrooks in the entire floodplain were dammed, chapter 1) I focused 

study of juvenile salmon in 3 off-channel habitat types that serve as nurseries for the 

target species, specifically: a) early-successional beaver ponds, b) beaver-influenced 

springbrooks (i.e., the lotic reaches downstream from dams, connected downstream to the 

main channel network), and c) beaver-free springbrooks (i.e., free flowing from aquifer 

outflow to main channel confluence). I excluded study of older successional pond sites 
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because they were largely devoid of juvenile salmon, apparently because dam complexes 

blocked immigration from parafluvial spawning sites (see Chapter 1).  I assessed the 

influence of beavers by comparing salmon metrics in beaver-influenced and beaver-free 

habitats and by estimating potential production from the parafluvial zone if beavers were 

absent and all spring brooks were free flowing. I found that beavers stimulated the 

growth of young-of-the-year coho and Chinook in early-successional ponds compared to 

both beaver-influenced and beaver-free spring brooks (3.1 ± 0.1 vs. 1.83 ± 0.14 and 2.0 ± 

0.3 %mass/day for coho and 1.8 ± 0.08 vs. 0.93 ± 0.16 and 1.35 ± 0.32 %mass/day for 

Chinook). Although growth rates were highest in early-successional beaver ponds, 

survival rates were consistently highest (46 to 80%) each month in beaver-free 

springbrooks where densities of juvenile coho and Chinook were highest. Ponds 

produced less juvenile coho and Chinook salmon biomass per unit area than beaver-free 

and beaver-influenced springbrooks (1.87 ± 0.57 vs. 2.98 ± 1.22 and 3.23 ± 0.73 g/m2). 

However, due to the larger areal extent of early-successional pond habitat in the 

parafluvial zone, ponds produced a greater biomass of juvenile salmon than either type of 

spring brook habitat (175 vs. 149 and 140 kg). In contrast to biomass, early-successional 

beaver pond habitat reared about half the individuals that reared in beaver-free 

springbrooks (~24,100 salmon vs. ~41,400 salmon). I estimated that if beavers were not 

present, slightly less biomass would be produced but off-channel habitats in the 

parafluvial zone would be able to rear 1.5-2x more individuals, showing that beavers may 

be able to limit production on the floodplain.   

In Chapter 3, I determine the influence of beavers on juvenile salmon production 

at the scale of the entire floodplain, by comparing two large alluvial rivers known for 
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their production of salmon, one with beavers, the Kwethluk, and one without beavers, the 

Kol. My goal was to provide perspective on the likely influences of beavers on juvenile 

salmon habitat use and production by comparing two rivers with similar physical drivers 

but that differed due to the presence of beavers in one river. I compared species richness, 

densities, condition and growth of juvenile coho and Chinook salmon between parafluvial 

and orthofluvial habitats within both rivers, as well as between the rivers. Determining 

how parafluvial and orthofluvial habitat use compared in a beaver free river allowed me 

to infer how the orthofluvial zone might be used in the Kwethluk if beavers and dams 

were not present. These comparisons were necessary because experimental approaches to 

determine if beavers compromise salmon habitat and production at the scale of entire 

river floodplains are problematic because beavers would have to be removed over 

massive scales (hundreds of km2), which is not feasible. Species richness was similar by 

habitat type in the Kol (without beavers). In contrast, in the Kwethluk (with beavers) 

parafluvial habitats had twice as many species as orthofluvial habitats. Salmon density 

was similar in all habitat types in the Kol, but in the Kwethluk coho densities were 8-12x 

higher in off-channel spring brooks vs. the main channel and Chinook densities were up 

to 2x higher in parafluvial spring brooks than other floodplain habitats. In the Kol there 

was no difference in coho condition by habitat type but Chinook condition was highest in 

orthofluvial spring brooks. Within the Kwethluk there was no difference in Chinook 

condition, but the condition of coho was lowest in main channel versus all other habitats 

(0.89 vs. 0.99 – 1.10). I found that the Kol produces an order of magnitude more salmon 

biomass and 40x the individuals than the Kwethluk. I estimated that in the absence of 
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beavers the Kwethluk floodplain could produce 2x the biomass (between June-August, 

1174 vs. 667kg) and 3x the number of salmon (370,000 vs. 140,000).  

BROADER IMPACTS 

 Beavers are a dominant feature of North American salmon rivers and the findings 

of this study suggest that beavers can lower the production potential of large alluvial river 

floodplains by damming spring brooks and creating a mosaic of beaver ponds in the place 

of very productive salmon rearing habitat (i.e. spring brooks). Essentially, the presence of 

ponds near the main river resulted in decreased production potential because fewer 

individuals reared in them. Additionally, I found that the low connectivity between late-

successional ponds (farther from the main channel) strongly limited the use of the entire 

outer portion of the river floodplain. In comparison, in a river in Russia with no beavers, 

juvenile salmon were able to utilize the entire floodplain. Thus, beavers have the 

potential to limit production on the floodplain if the availability of freshwater habitat is a 

limiting factor for the population. 

For beavers to actually lower production of juvenile salmon on the floodplain, 

they would have to induce density dependent effects resulting in lower survival and 

growth of juvenile salmon. Beavers do not determine the number of eggs or the number 

of fry that emerge (unless spawning habitat is limited by beavers). These numbers are 

determined by the number of adults returning to the basin to spawn. It is possible that 

densities in ponds are highly variable and dependent on the number of returning adults. 

For example, more juveniles might rear in ponds when there are more of them on the 

floodplain. This was a short term study, whereas beavers and salmon have occupied the 

same river for centuries. It appears that beavers may negatively impact salmon 
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populations by building dams and ponds that limit the use of portions of the floodplain 

and produce fewer individuals, but it is not clear how dynamic the use of different 

habitats might be over time. It would be very interesting to study density dependent 

effects in different habitats over different escapements to determine if beavers are 

actually limiting production through habitat modification. 

The potentially negative influence of beavers on salmon production in large 

alluvial river floodplains is not currently part of the conversation regarding beaver 

reintroduction and management of salmon in large river basins. It is important to consider 

how the potentially negative impacts of beavers might balance the positive effects that 

have been documented (e.g. increased water storage, biodiversity, etc.), because beavers 

are regularly being reintroduced to salmon streams in the U.S. Furthermore, there is 

currently controversy over how reintroduction of Eurasian beavers might influence 

Atlantic salmon in Scotland and other European countries. Beaver introductions to South 

America (Tierra del fuego) show extreme habitat modification but no negative influences 

on introduced trout have been documented (Anderson et al. 2009, Moorman et al. 2009).  

Because of wide scale reintroductions, and cited positive effects of beavers on fishes 

(Kemp et al. 2011), it is important that the potentially negative influence of wide scale 

modification of low-gradient floodplain systems become part of the discussion regarding 

beaver reintroductions into large salmon rivers. Thus this work contributes to the science 

of salmon management and is potentially transformative of how we think about beavers 

influencing salmon in large basins with expansive floodplains.  

 Additionally, the question of how beavers influence salmon is an important topic 

regionally in western Alaska. Within western Alaska there is a cultural view that beavers 
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are detrimental to salmon and many people view the decline in salmon stocks in western 

Alaska at least in part as being the result of beavers and their dams. Providing 

information on how beavers may influence juvenile salmon production in a large alluvial 

river floodplain is important for management of beavers and salmon in Alaskan rivers. It 

seems unlikely that recent declines in salmon returns (i.e. over the past decade) are due 

specifically to beavers because beavers have been present in Alaskan river systems over 

much longer time periods (since the early Holocene, see Robinson et al. 2007).  

As a society, we view salmon as valuable for their cultural, economic, and 

ecological roles and thus the conservation of salmon populations is an important goal for 

many. Because some of the most important rearing habitat for salmon is located where 

there are strong impacts by beavers it is important to understand how the influence of 

beavers may influence salmon populations. 

RELATION TO SYSTEMS ECOLOGY PROGRAM 

The Systems Ecology program focuses on the “understanding of interactions of 

physical, chemical and biological factors affecting ecological systems across spatial and 

temporal scales and the factors affecting coupled natural and human systems.” This 

dissertation fits into the Systems Ecology framework by describing and investigating a 

natural floodplain ecosystem in the context of both physical (river processes) and 

biological (ecosystem engineering by beavers) factors that influence the production of 

juvenile salmon across spatial scales spanning from individual rearing habitats to the 

entire floodplain. 

River floodplains are ideal systems in which to study the processes that create and 

maintain environments and to quantify the effects of heterogeneous environments on the 
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function of ecosystems and on biodiversity (Tockner et al. 2009). Floodplains are 

complex systems that exist where four major habitat zones and their associated 

communities (riparian vegetation, main channel, off-channel, and aquifer) are 

interconnected energetically by the flux of water, materials, and organisms.  Physical 

processes maintain a shifting mosaic of floodplain habitats (Stanford et al. 2005) and a 

complex network of channels, and the composition and spatial arrangement of patches 

controls the movement of organisms and materials to other patches.  Beavers have the 

ability to strongly alter floodplain systems spatially across the floodplain and temporally 

as dams built by beavers can last for centuries. In this dissertation I investigate how 

herbivory and dam building by beavers interacts with physical river processes to form the 

habitat mosaic that influences the distribution, growth and production of juvenile salmon.   

Furthermore the Kwethluk River is a good example of a coupled natural/human 

system in that the floodplain produces salmon which provide subsistence fisheries that 

are extremely important for many people. Though the Kwethluk River is largely 

uninfluenced by humans in a physical habitat sense, the subsistence fisheries strongly 

influence escapement (the number of adults returning to spawn) which will in turn 

strongly influence how many salmon can be produced by the river. It is important that we 

understand the ecological interactions and factors associated with beavers in large 

alluvial river floodplains that may influence the production of salmon, especially since 

most large North American Rivers that produce salmon also have beavers.  
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CHAPTER 1: BEAVERS (Castor canadensis) INFLUENCE HABITAT AVAILABITY 
AND USE BY MACROINVERTEBRATES AND JUVENILE SALMON IN A LARGE 

ALASKAN RIVER FLOODPLAIN.  

SUMMARY  
1. Our objective was to determine how beavers impact habitats and influence 

macroinvertebrates and juvenile salmon. This study on the Kwethluk River in 
western Alaska represents the first analysis of beaver influence on rearing habitat 
carried out on an expansive North American floodplain river known to be 
important for producing salmon.   

2. Habitat modification by beavers was quantified using 3 years of satellite imagery 
to assess the amount and spatial distribution of potential juvenile rearing habitat. 
Macroinvertebrate composition and juvenile salmon abundances within identified 
juvenile salmon habitats (e.g. beaver ponds, spring brooks with and without 
upstream beaver dams, and main channel shorelines) were quantified to determine 
beaver influence. Presence of beaver dams and time-series measures of water 
levels were used to assess hydrologic connectivity and fish access between sites 
and the river as modified by beavers.  

3. 87.5% of the off-channel aquatic habitat was altered by beavers damming spring 
brooks.  
 

4. Physical characteristics were similar among different successional stages of 
beaver ponds and among different types of spring brooks (by NMDS ordination), 
indicating that all habitat types are suitable habitat for juvenile salmon. 

5. Aquatic macroinvertebrate community composition differed between beaver 
ponds and spring brooks (by NMDS ordination) with differences driven by larval 
mayflies and stoneflies in spring brooks compared to cladocerans, snails, 
copepods, and freshwater clams in beaver ponds.  

6. Chinook and coho salmon were predominant in all habitat types except late-
successional ponds. Total fish species and salmon species richness was 2-3x 
higher, the proportion of young-of-the-year salmon was over 50% compared to 
<5%, and densities of juvenile salmon were 5-7x higher in spring brooks and 
early-successional ponds compared to late-successional ponds.  

7. Early-successional ponds had high hydrologic synchrony values (closely tracking 
water fluctuations in the main channel), while mid- and late-successional ponds, 
being farther from the main channel with more dams blocking flow paths, had 
lower and highly variable synchrony values. 

8. Almost no movement of juvenile salmon past dams occurred at base flow. 
However, summer and fall flooding mediated movement past dams, allowing 
individuals to “escape” ponds or enter ponds to rear overwinter. 
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9. Beavers reduced habitat connectivity and added variability to macroinvertebrate 
assemblages within habitats by damming floodplain spring brooks, which are 
extremely important rearing areas for juvenile salmon in rivers that do not have 
beavers. Nonetheless, juvenile salmon were able to effectively inhabit and move 
between early-successional ponds and spring brooks in the Kwethluk, though the 
presence of beaver dams strongly limited the use of late-successional ponds on the 
large alluvial river floodplain. 

 

INTRODUCTION   

Large animals, especially herbivores like moose, elk (Collins and Helm 1997, 

Beschta 2003, Butler and Kielland 2008) and beavers (Castor canadensis) have the 

ability to strongly modify habitats and influence the availability of resources for other 

organisms (Naiman 1988, Jones et al. 1994, Naiman and Rogers 1997). Beavers are well 

known to shape the physical environment by cutting vegetation and building dams that 

impound small streams and create ponds. In low order streams, beaver damming results 

in lentic habitats with altered nutrient and carbon cycles (Francis et al. 1985, Naiman et 

al. 1991, Naiman et al. 1994), increased nutrient availability (Wilde et al. 1950, Naiman 

and Melillo 1984, Pinay and Naiman 1991), altered fluxes of organic matter, sediment, 

and heat (Naiman et al. 1986, Naiman et al. 1994, Rosell et al. 2005) and increased 

overall biocomplexity (Naiman and Rogers 1997, Gurnell 1998, Wright et al. 2002, 

Rosell et al. 2005).  

Most of our understanding of beaver effects on lotic processes and organisms 

comes from studies on low order streams that are generally considered preferred beaver 

habitats (Beier and Barrett 1987, Suzuki and McComb 1998, Pollock et al. 2004).  

However, beavers are also ubiquitous inhabitants of large North American rivers 

(Naiman et al. 1988). Beavers have the potential to substantially impound and regulate 

the flow and exchange of surface and ground water in the low gradient flood channel 
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networks of larger rivers (Gurnell 1998). For example, based on observations of beaver 

activity on the Bow River, a floodplain river in the Canadian Rocky Mountains, Rutten 

(1967) suggested that dams standing for decades in low gradient floodplains have the 

ability to confine the main channel, thus reducing floodplain complexity as sediments are 

deposited over time. Despite the generally observed substantial influence of beavers on 

large floodplain rivers, the extent and process of floodplain impoundment and water 

regulation by beavers has not been examined in detail, including influences on the 

distribution and abundance of aquatic organisms.  

Large alluvial river floodplains are characterized by a shifting habitat mosaic 

(SHM) (Stanford et al. 2005) that encompasses a catena of habitat types and rate of 

change which may be influenced by beavers. Off-channel habitats include an array of 

spring brooks, ponds and wetlands that occur at base flows within the network of 

abandoned flood channels (Bayley 1995, Brown 1997, Petry et al. 2003, Stanford et al. 

2005). Because flood channels scour the bed and intercept the water table, spring brooks 

develop in abandoned channels making them ideal sites for construction of beaver dams 

creating ponds. As part of a project to compare physical features of salmon rivers around 

the North Pacific Rim (Luck et al. 2010, Whited et al. 2013), we observed that in North 

American rivers native beavers routinely dam floodplain spring brooks creating massive 

pond complexes throughout the parafluvial (area of active scour near the main channel) 

and orthofluvial (area of deposition farther from the main channel) zones of many 

expansive floodplains. Understanding how extensively beavers can modify large alluvial 

river floodplains and how the resulting suite of beaver ponds may differ in physical 

characteristics based on their location within the floodplain and successional stage (see 
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Mouw et al., 2012), is important because habitat quality is a critical controlling influence 

on the distribution and abundance of biota. In this study we were particularly interested in 

the influence of beaver ponding on the ecology of juvenile salmon.    

The potentially strong influence of floodplain impoundment by beavers may be 

expected to strongly influence forage (macroinvertebrates) and consumer (salmon and 

other fishes) communities by creating lentic habitats in areas that would otherwise be 

lotic. Macroinvertebrate community composition, richness and diversity have been 

shown to be altered by beaver activities in low order stream systems (McDowell and 

Naiman 1986, Smith et al. 1989, Hammerson 1994). Impounded sections of low order 

streams have also been found to have greater numbers and sizes of fish (Hanson and 

Campbell 1963, Leidholt Bruner et al. 1992, Schlosser 1995), though in other cases 

reduced habitat quality has negatively impacted fish habitat use (e.g. low oxygen levels, 

Burchsted et al. 2010). How strongly the presence of beaver dams and ponds influences 

the composition and distribution of juvenile salmon and their food resources on an 

alluvial river floodplain should depend on the amount of habitat dammed and the degree 

to which habitat quality differs. 

In addition to altering habitat quality, beavers may change the physical and 

hydrological connectivity of floodplain habitats, which in turn may strongly influence 

juvenile salmon movement and habitat use.  In the absence of beavers, off-channel 

habitats, including spring brooks, have been shown to be very important rearing areas for 

juvenile salmon (Morley et al. 2005, Eberle and Stanford 2010). However, access to off-

channel rearing habitats could be limited if beaver dams block fish movement and limit 

physical connectivity (Schlosser and Kallemeyn 2000, Mitchell and Cunjak 2007 ). 
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Despite the potential for limited movement, many studies have shown that movement of 

adult and juvenile fish does occur past beaver dams, especially at higher flows (Bryant 

1983, Murphy et al. 1989, Schlosser 1995). Both the magnitude and patterns of flooding 

could determine when dammed habitats are inundated and accessible, and whether or not 

juvenile salmon can utilize these habitats for rearing and then leave the habitats in order 

to outmigrate to the ocean. Thus, understanding how beavers influence the hydrological 

dynamics of a floodplain system is critical in determining whether juvenile salmon 

distributions may be influenced by beavers.   

Herein we present the first analysis of beaver influences on an expansive 

floodplain of a large alluvial (gravel-bed) river. Our study site was the Kwethluk River in 

western Alaska, a typical example of a North American floodplain river that is known to 

be an important salmon producer (Miller and Harper 2012). Specifically, we addressed 

the following questions:  

1) What proportion of the floodplain is influenced by beavers, what types of 

habitats are present, and has the influence of beavers been relatively constant over the last 

decade?  

2) How do different habitat types vary in physical characteristics and habitat 

qualities that may be important for salmon production?  

3) How does the composition of macroinvertebrate forage items and fishes differ 

by habitat type? 

4) Do different habitat types vary in physical and hydrological connectivity, and 

does this influence habitat use and movement of juvenile salmon? 
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METHODS 

Study Area 

 The Kwethluk River is a 5th order tributary of the Kuskokwim on the west coast 

of Alaska with a 3,787 km2 catchment. The Kwethluk enters the Kuskokwim River just 

above the tidally influenced lower reach, approximately 15 km upstream of Bethel, AK. 

It is protected from development and flow regulation by inclusion within the Yukon 

Delta National Wildlife Refuge. We choose to study the influence of beavers on this 

floodplain landscape because beavers are prevalent and their long term presence has 

resulted in altered successional pathways of riparian vegetation on the floodplain (Mouw 

et al. 2012).  

 The study reach is an expansive anastomosing floodplain that is located between 

37 and 64km (from Three-Step to Elbow Mountain) above the confluence of the 

Kwethluk with the Kuskokwim (FIGURES 
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Figure 1.1). The floodplain is underlain by an extensive alluvial aquifer that maintains a 

robust riparian zone, in this case mainly composed of willow (Salix spp.), alder (Alnus 

spp.) and cottonwood (Populus balsamifera), with white spruce (Picea glauca) as the 

climax riparian species (Mouw et al. 2012). The floodplain has a laterally migrating main 

channel, that coupled with frequent occurrences of anabranching avulsions (mediated by 

gravel bar and drift wood deposition), creates a complex channel network of primary, 

secondary and tertiary channels that flow continuously (as described by Arscott et al. 

2002 generally for gravel bed rivers). Flood channels disconnect from the main river 

during base flow conditions owing to levee formation from wood jamming and sediment 

accretion at upstream ends (Lorang and Hauer 2006). Spring brooks form in abandoned 

flood channels from upwelling groundwater during base flow and remain free-flowing 

(beaver-free spring brook) or are dammed by beavers. Dammed spring brooks form 

ponds that often have multiple dams and ponds in a downstream sequence to the main 
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channel confluence or, alternatively, have one or two dams and ponds that feed a spring 

brook to the river confluence (beaver-influenced spring brook) ( 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2).   

Our floodplain reach ends at Three-Step Mountain where the river switches to 

torture meander morphology due to the tidally induced backwater effects in the main 

Kuskokwim River. The change in elevation from the top of the 27 km study reach to the 
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bottom is ~ 68m, resulting in an overall floodplain slope of 0.0025. The floodplain is 

surrounded on both sides by permafrost tundra (~3m higher in elevation). The river 

generally experiences spring (from snowmelt) and fall (from rain events) flooding that 

can inundate the entire floodplain or at lower levels simply activate some portion of the 

flood channel network.  

Field and Laboratory Methods 

Spatial and Temporal Habitat Composition 

 To measure spatial modification of the floodplain by beavers we quantified the 

types, amount and distribution of aquatic habitats in the entire study reach from 

Quickbird satellite multispectral imagery for 2004, 2008, and 2011. Initially, pixels 

associated with water bodies were classified and delineated using Definiens Developer 

(version 8.6; Definiens, Westminster, Colorado; www.ecognition.com/) and Erdas 

Imagine (version 9.3; Intergraph, Norcross, GA; www.geosptail.intergraph.com) 

software. Following delineation, habitat patches (i.e., ponds, spring brooks, and main 

channel shallow shorelines) were manually demarcated using heads-up digitizing 

(manually drawing polygons around features) in Arc/Map (version 10; ESRI, Redlands, 

California, USA; www.esri.com) for each year, following similar methods used by 

Whited et al. (2013).  We classified three types of beaver ponds (early-, mid-, and late-

successional) based on the dominant vegetation surrounding ponds.  Ponds were 

classified as early-successional if they were embedded in willow/alder (Salix and Alnus 

spp. – see Mouw et al. 2012). Ponds were classified as mid-successional if they were 

embedded in meadows and as late-successional if embedded in spruce forest (P. glauca). 
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Image classifications were validated from field observations of these habitats at specific 

study sites.  

We analyzed temporal variation in floodplain habitats with three images, for a 

total of two time steps between 2004-2008 and 2008-2011. We calculated the amount of 

area in the following cover type classes for both time steps: restored spring brooks 

(following dam blow out, i.e. dam present in the first image but not in the second), 

recently dammed spring brooks (free flowing in first image, dammed in the second), new 

spring brooks with dams (spring brook not present in first image but present and dammed 

in second), and new free flowing spring brooks (present only in the second image and not 

dammed). Classifications were made by visual inspection of the imagery and confirmed 

for a portion of the 2011 image through a field survey. 

Habitat Characteristics 

We compared physical characteristics among different types of beaver ponds 

(early-, mid-, and late-successional) and among different types of spring brooks (beaver-

free or beaver-influenced). We selected a subset of each habitat type identified in the 

satellite image for on the ground study and refer to individual study “sites.” We selected 

6 early-, 4 mid-, and 3 late-successional beaver pond sites, as well as 3 beaver-free and 4 

beaver-influenced spring brook sites along the length of the floodplain. We 

systematically selected representative sites based on the distribution and accessibility of 

habitat types. It is common for multiple ponds and a beaver-influenced spring brook to be 

present and connected in one area, which we call a “complex”. Four beaver-influenced 

spring brooks were located in the same complexes as 4 early-successional ponds, 

resulting in the 17 beaver-influenced sites being located within 13 complexes. Thus, we 
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had a total of 20 study sites, located within 16 study areas on the floodplain (13 beaver 

complexes and 3 beaver-free spring brooks, FIGURES 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1). 
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Site area and perimeter was measured from satellite imagery using Arc/Map and 

on the ground validation was completed by hiking the perimeter of the pond with a 

handheld Trimble GeoXM 2005 GPS (Trimble, Sunnyvale, California) for a subset of 

sites. Conductivity and pH were measured in ponds and spring brooks with an Oakton 

handheld meter (Waterproof pH/CON 10 Series, Oakton, Vernon Hills, IL; 

www.4oakton.com) because these metrics typically vary significantly between 

groundwater and surface water sources. Width and depth was measured on cross 

sectional transects every 10m along the length of each spring brook site. At 100 locations 

(every 1m) along each spring brook, a rock was randomly selected and its size and 

embeddedness was measured (Davis et al. 2001). We monitored water temperature 

hourly at each site year-round using HOBO and Vemco data loggers from 2006-2011 

(Vemco, Halifax, Nova Scotia; www.vemco.com). Cumulative degree days were 

calculated by summing the mean daily temperatures for each site above 0 degrees. Mean 

diel change in temperature was calculated by subtracting the minimum temperature from 

the maximum temperature for each day and taking the average for the study period.  

 Multivariate techniques were used to test for differences in physical habitat 

characteristics by pond type and spring brook type. Site characteristics were analyzed 

using nonmetric multidimensional scaling (NMDS) (Kruskal and Wish 1978) because it 

does not require linear relationships between variables. Metrics used in the pond analysis 

included cumulative degree days, mean diel change in temperature, vegetation type, site 

area and perimeter, mean conductivity and mean pH. Metrics used in the spring brook 

analysis included cumulative degree days, mean substrate embeddedness and size, mean 

width and depth, and mean pH and conductivity. We used multiresponse permutation 
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procedures (MRPP) to test for significant differences in variable composition by habitat 

type (Mielke and Berry 2001).  

Macroinvertebrate and Fish Composition 

Macroinvertebrates 

 We sampled study sites to determine if macroinvertebrate communities varied 

among habitat types on the floodplain. We collected samples of macroinvertebrates at a 

subset of the habitat sites including, 4 early-, 3 mid-, and 3late-successional beaver ponds 

as well as 4 beaver-influenced and 3 beaver-free spring brooks for a total of 17 sites. At 

each pond site we collected 3 replicate samples by sweeping a D-net (125 µm mesh) 

through vegetation, along logs and over the substrate for 1 minute. In spring brooks, 3 

replicate samples were obtained from riffles selected systematically from each site by 

disturbing bed-sediments within a .25m2 area for 1 minute (upstream of a 125 µm kick 

mesh net). All samples from ponds and spring brooks were sorted in the field for one 

hour or until no more specimens were visible; samples were preserved in ethanol until 

identified to order or family in the laboratory.  

 We also used NMDS (Kruskal and Wish 1978) to identify possible patterns in 

macroinvertebrate taxonomic composition among the 5 habitat types. We used relative 

abundance values for taxa for all NMDS ordinations because of high variation in raw 

values. We excluded rare taxa (relative values, <5%) from the data set to reduce 

skewness in the data. We used multi-response permutation procedures (MRPP) to test for 

significant differences in community composition by habitat type. 

Fish Composition and Juvenile Salmon Density 
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 The abundance and distribution of fish in the shallow water habitats of an 

expansive alluvial floodplain likely is determined by the availability and characteristics 

of different habitat types. In 2006 we conducted a preliminary study to determine the 

density of juvenile salmon in beaver-free spring brooks (n=5) and main channel shallow 

shorelines (n=5) by electrofishing, and in early- (n=4), mid- (n=4), and late-successional 

(n=3) ponds by depletion minnow trapping. Depletion sampling was conducted in known 

areas and population estimates made using a regression of catch to previous total catch 

(Zippin 1958). Between 2009-2011 we sampled to determine how fish species richness 

and composition, and the size distributions and condition of juvenile salmon varied by 

habitat type by sampling 16 beaver complexes and 3 beaver-free spring brooks. We 

sampled entire beaver complexes rather than just individual sites to increase our sample 

size and to allow for potential detection of fish movement (see below). The 16 beaver 

complex sites included the same sites sampled for habitat characteristics, as well as two 

additional early-successional and one late-successional beaver complex (FIGURES 
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Figure 1.1). Each habitat was sampled once a month during (June-September) using 

minnow traps placed throughout the habitat at ~5m intervals. To standardize trapping 

effort baited traps soaked for 2 hours and were removed in the order they were deployed.  

Captured fish were held in buckets with aerators. Fish were identified and measured and 

a subset was weighed. For each sampling date and site we calculated Fulton’s condition 

factor, K (Ricker 1975), for each fish by dividing weight (g) by length (mm) cubed and 

multiplying by a scalar of 105.  

 The effect of habitat type on juvenile salmon density, total species richness, 

salmon richness, condition, and proportion of young of the year was analyzed using one-

way analysis of variance (ANOVA)(PROC GLM, SAS Institute Inc., Cary, North 

Carolina). Pairwise comparisons among the least squares means for habitat type were 

assessed using Tukey’s honestly significant difference (HSD). All data sets were tested 

36 
 



for normality and, where necessary, 1og10 transformed to improve normality and 

homogeneity of variance prior to statistical analysis. 

Connectivity and Movement 

Physical Connectivity 

Distance and the number of dams may influence the ability of juvenile salmon to 

move in to different habitat types. We measured physical connectivity among sites 

relative to the active channel network from the Quickbird satellite imagery (as described 

above) using five metrics: 1) upstream aquatic distance along the shortest flow path from 

the site to the main channel, 2) downstream distance of the shortest flow path, 3) 

perpendicular distance (closest straight line distance to the main channel), 4) number of 

upstream dams (along the shortest flow path), and 5) number of downstream dams (along 

the shortest flow path). Juvenile salmon could enter or leave rearing habitats by following 

aquatic flow paths upstream or downstream of the site (from the main channel), or if 

overland flooding occurred by moving perpendicularly to access a site. 

The effect of pond type on physical connectivity metrics was analyzed using one-

way analysis of variance (ANOVA)(PROC GLM, SAS Institute Inc., Cary, North 

Carolina). Pairwise comparisons among the least squares means for habitat type were 

assessed using Tukey’s honestly significant difference (HSD). Data violating parametric 

assumptions were transformed or a non-parametric Kruskal Wallis test was performed. 

Because five comparisons of physical connectivity were made a Bonferroni correction 

factor was used to determine significance at P<0.01 (.05/5).  

Hydrological Connectivity  
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 The hydrological connectivity of habitats to the main channel may influence 

juvenile salmon movement because some habitats may constitute a sink or trap as the 

hydrology of the channel-floodplain system varies in relation to discharge. We monitored 

changes in site stage height relative to changes in the main channel with HOBO pressure 

transducer data loggers (Onset, Pocasset, Massachusetts; www.onsetcomp.com). Loggers 

were anchored on the bed in 13 of the study sites (2 main channel, 2 spring brook, 4 

early-successional, 3 mid-successional, and 2 late-successional ponds). Year-round 

hourly changes in habitat stage height were determined from pressure data and accuracy 

was checked by coherence of logger data with visual measurements on staff gauges. 

Though water depth data spanned from 2006 to 2011, data were only available for every 

logger between 10/17/07-12/14/07 and 5/14/08-9/27/08 and these data were used for 

water fluctuation analyses. 

Synchrony analysis was used to assess the seasonal patterns in beaver pond 

hydro-dynamics in relation to the river. Temporal coherence, or synchrony, measures the 

similarity between a pair of sampling sites (e.g., Soranno et al. 1999, Kling et al. 2000, 

Karaus et al. 2005, Patoine and Leavitt 2006). Synchrony was calculated as the Pearson 

product-moment correlation coefficient (r) between time series of data for each site 

paired with the main channel (sites responding similarly to the main channel will have 

high values, close to 1). To avoid bias from differences in ranges of water level 

fluctuations all time-series data were Z-transformed to standardize variances (Rusak et al. 

1999). Plots of daily fluctuations and normalized depth plots were used to visually 

investigate patterns in water level fluctuations. 

Juvenile Salmon Movement 
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 We conducted an elastomer tagging study from 2009-2011to measure if juvenile 

salmon could move past beaver dams. Nine of the sixteen beaver complexes (described 

above) were sampled for the movement study because they contained at least 2 (and up to 

6) adjacent habitats separated by dams (either multiple ponds, or early-successional 

pond/s and a beaver-influenced spring brook), for a total of 32 discrete sampling habitats. 

Salmon 55mm and larger were implanted with visual implant elastomer (VIE) tags 

(Northwest Marine Technology, Shaw Island, Washington; www.nmt.us) in the caudal 

and anal fins to allow recognition of tagged individuals moving between discrete habitat 

units each month. VIE tags have been applied to a wide variety of small fish without 

compromising their growth, survival or behavior (Bailey et al. 1998, Hale and Gray 1998, 

Garcia et al. 2004, Walsh and Winkelman 2004, Kano et al. 2006). Movement rates were 

calculated as a percentage (the number of fish that moved from one habitat to another/the 

total number tagged in the original habitat). 

RESULTS 

Spatial and Temporal Habitat Composition 

Spatial Habitat Composition 

 Eighty-seven and a half percent of the entire off-channel aquatic habitat was 

comprised of ponds and beaver-influenced spring brooks in 2011 (FIGURES 
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Figure 1.1). Mid- and late-successional pond habitats made up the majority of off-channel 

habitats (38% and 27%, respectively), with early-successional ponds making up the next 

largest portion (15%, FIGURES 
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Figure 1.1). Spring brooks made up 11% of the total off-channel habitat but half of them 

were located downstream of beaver dams (i.e., beaver-influenced, FIGURES 
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Figure 1.1). The smallest portion included parafluvial ponds (0.9%, see Crete 2012 ) and 

backwaters (1.5%). Beaver-free and beaver-influenced spring brooks and early-

successional beaver ponds were located in the parafluvial zone, while mid- and late-

successional ponds were located farther from the main channel in the active and passive 

orthofluvial zones ( 
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Figure 1.3). 

Temporal Habitat Composition  

 Over almost a decade there was little temporal variation in the total amount of 

beaver modified habitat. The percent of off-channel habitat modified by beavers 

generally increased with 70.9% dammed in 2004, 81.7% in 2008, and 80.2% in 

2011(Error! Reference source not found.). The total number of dams in the study reach 

was 369 in 2004, 414 in 2008, and 373 in 2011. However, some of these differences 

could be due to variation in imagery leaf cover or discharge between years (August 2004 

vs. October 2008). 

From 2004-2008 7.8% of all off-channel aquatic habitats changed (i.e. new spring 

brooks formed, new dams were built, spring brooks were restored, etc; Table 1.2.1). The 

damming of existing spring brooks (i.e. brooks free flowing in 2004, but dammed by 

2008; 3.42 ha, 64%), followed by the formation of new spring brooks (1.4 ha, 25%) made 

up most of the change. Dammed spring brooks blowing out (0.3 ha, 6%) and newly 

formed spring brooks being dammed (0.2 ha, 5%) contributed much less to habitat 

change. From 2008-2011 slightly less of the total off-channel aquatic habitat changed 

(5.1%, Table 1.2.1). During this period the dominant habitat change (40%, 1.6ha) was 

caused by the restoration of dammed spring brooks (i.e. dams blew out); but, almost as 

much habitat change (1.2 ha) was composed of existing and newly formed spring brooks 

being dammed (0.6ha, 15% and 0.6ha, 14%, respectively). Despite these dynamics, there 

was little cumulative change in total amount of each habitat type over time. Between 

2004 and 2011 channel avulsions occurred in the study reach altering the path of the main 
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channel predominantly within the parafluvial zone, with little change occurring in the 

orthofluvial zone (see  
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Figure 1.4).   

Habitat Characteristics 

Physical Characteristics 

 Habitat characteristics were similar among different stages of ponds, suggesting 

that all types of ponds should be equally suitable for juvenile salmon. The NMDS 

ordination of seven site characteristics yielded a solution that represented 98.5% of the 

total variation among sites on 2 axes, but ponds in different habitat categories (early-, 

mid-, and late-successional ponds) were not significantly separated in habitat space 

(MRPP, A = -0.0642, P = 0.7718). Habitat characteristics were also similar among the 

two types of spring brooks, with the NMDS yielding a solution that represented 93.9% of 
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the total variation among sites on 1 axis and no separation of spring brook type in habitat 

space (MRPP, A = -0.0096, P = 0.4666).  

Temperature 

 The presence of ponds and spring brooks provided a wide range of thermal 

habitats for aquatic organisms with temperatures between 4ºC and 15ºC available on the 

floodplain during a given day during the ice free period. Over the course of one year 

there was a marginally significant difference in degree days between successional stages 

of beaver ponds, with early-successional ponds generally being warmer than mid- and 

late-successional ponds (734 ± 56 vs. 581 ± 141 and 607 ± 153 DD, respectively; F2,12 = 

3.233, P = 0.0753). However, there was no difference in growing degree days by spring 

brook type for a portion of the year (274 ± 36 vs. 304 ± 57 DD, respectively; t = 2.776, P 

= 0.4860). 

Macroinvertebrate and Fish Composition 

Macroinvertebrates  

 Assemblage composition of macroinvertebrates differed across habitat types 
(Figure 1.5). The NMDS ordination, based on the relative abundances of 35 taxa groups, 
yielded a solution that represented 90.4% of the total variation among sites on 2 axes 
(Figure 1.5). Sites in different habitat categories were significantly separated in 
community ordination space (MRPP, A = 0.231, P = 0.0005), with beaver ponds being 
significantly different than spring brooks (P < 0.029). There was no significant difference 
among types of beaver ponds (P > 0.217) or among types of spring brooks (P = 0.347), 
though there was some separation in species space by spring brook type (see  
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Figure 1.5). Habitat types most strongly separated along Axis 1, which explained 72.2% 
of the variation in assemblage structure. Larval stoneflies and mayflies, Platyhelminthes, 
Oligochaeta, Tipulidae, and Simuliidae (see  
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Figure 1.5 for correlation values) were more predominant in spring brook habitats than in 

beaver ponds. Small crustaceans, Gastropods, Diptera, Pelecypoda, Acari, and 

Dytiscidae had higher relative abundances in beaver ponds than in spring brooks.  
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Fish  

Fish species composition varied by habitat type ( 

 

 

 
 

Figure 1.6). Coho (O. kisutch) salmon were dominant in both types of spring 

brooks and early- and mid-successional ponds (65-79%), while Chinook (O. tshawytscha) 

salmon were found in the greatest proportions in early-successional ponds (28%), 

followed by beaver-influenced spring brooks (22%). Late-successional ponds had greater 

proportions of Alaska blackfish (Dallia pectoralis, 27%) and Ninespine stickleback 

(Pungitius pungitius, 28%) compared to all other habitats (0-1%). Total species richness 

and salmon richness varied significantly by habitat type (F[4,26] = 5.11, P = 0.0036 and 

F[4,26] = 6.99, P = 0.0006). Both types of spring brooks and early-successional ponds had 

2x the total fish species as late-successional ponds (7 ± 0, 6.4 ± 1.7, 6.3 ± 1.6 vs. 3 ± 1.2; 
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Tukey’s HSD, P < 0.0339). Spring brooks, early-, and mid-successional ponds had 

significantly more salmon species then late-successional ponds (4.3 ± 0.6, 4.1 ± 1.0, 3.9 ± 

1.0, 3.3 ± 1.0 vs. 1.3 ± 1.5; Tukey’s HSD, P < 0.0035).  

Densities of juvenile salmon varied strongly by habitat type (F [4,17] = 15.23, P < 

0.0001;  
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Figure 1.7A). Spring brooks and early-successional ponds had higher juvenile 

salmon densities than mid- and late-successional ponds (Tukey’s HSD, P < 0.0044). 

Spring brooks had significantly higher densities and early-successional ponds had 

marginally higher densities than main channel habitats (Tukey’s HSD, P = 0.0015 and P 

= 0.0794, respectively). The percentage of young-of-the-year (YOY, fish less than 

70mm) also varied by habitat type ( 
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Figure 1.7B; F[4,23] = 11.56, P <0.0001). Spring brooks had higher proportions 

than mid- and late-successional ponds (Tukey’s HSD, P ≤ 0.0224) and early-successional 

ponds had higher proportions than late-successional ponds (Tukey’s HSD, P = 0.0006).  

The condition of juvenile coho and Chinook was highly variable by habitat type 

and over time, but there was no significant difference in mean condition of coho or 

Chinook by habitat type for the entire season (F < 0.8395, P > 0.5171). However, coho in 

late-successional ponds and spring brooks did exhibit the largest drop in condition by 

September.  

Connectivity and Movement 

Physical Connectivity 
 

The length of pathways that juvenile salmon could follow to enter and rear in sites 

varied significantly by habitat type (F [2,14] > 11.04, P < 0.0013).  Both mid- and late-

successional ponds were marginally farther from the main channel in the upstream 

direction than early-successional ponds (Tukey’s HSD, P < 0.0362). Late-successional 

ponds were significantly farther from the main channel than both early- and mid-

successional ponds in the downstream direction (Tukey’s HSD, P < 0.0109). There was 

also a significant difference in the number of dams present between sites and main 

channel in the downstream direction (χ2
[2, N = 14], P = 0.0041) and a marginally significant 

difference in the number of dams between sites and the main channel in the upstream 

direction (χ2
[2, N = 14], P = 0.0219).   

Hydrological Connectivity 

 Synchrony values varied by habitat type and with distance of the site from the 
main channel ( 
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Figure 1.8). Spring brooks and early-successional ponds consistently had higher 
synchrony values (0.53 ± 0.13 and 0.54 ± 0.14), compared to mid- and late-successional 
ponds which exhibited high variation (0.17 ± 0.57 and 0.21 ± 0.72). For spring brooks 
and early-successional ponds, synchrony values generally declined with increasing 
distance (along the shortest upstream aquatic flow path) to the main channel; mid- and 
late-successional sites were more variable ( 
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Figure 1.8). 

 Differences in synchrony were reflected in daily water level fluctuations ( 
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Figure 1.9). Spring brook depth tracked fluctuations in the main channel most closely, 

except for two peak events which may have been caused by avulsions or the formation of 

debris jams ( 
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Figure 1.9A). In comparison, all beaver ponds exhibited multiple depth changes that were 

greater in magnitude than changes in the main channel ( 
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Figure 1.9B-D). These fluctuations were likely due to water retention by the dams during 

flood events and subsequent dam repair and building activities by beavers. Cumulative 

water-level change (sum of the absolute values of depth changes recorded each hour) 

ranged from 8.6 to 12.6m for pond habitats and from 12.8 to 12.9m for spring brooks, as 
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compared to 18.2m for the main channel of the river (Figure 1.10), showing that beaver 

dams in flood channels buffered flow dynamics compared to the main channel. 

 Normalized depth plots illustrate differences in flood pulse response by habitat 

type and floodplain position (Figure 1.11). Main channel sites exhibited fast inclines and 

declines in depth as flood waters pulsed through the system and were closely tracked by 

rising and falling limbs in spring brook habitats (MS, SS, BS in blue, Figure 1.11A&B). 

In contrast, the ponding behind beaver dams prolonged the flood pulse (Figure 

1.11C&D). Early-successional ponds responded faster and more strongly to the flood 

pulse than mid- and late-successional ponds, illustrating a greater degree of connectivity 

to the main channel. Additionally, floodplain position influences flood response. Note in 

particular in Figure 1.11A that the flood wave passing through the upstream main river 

site (KC) lagged 1-2 days behind the flood wave for the downstream most site (WK). 

This illustrates a fact common to alluvial floodplains but one that is infrequently 

documented: downstream areas of the floodplain flood before upstream areas. This 

apparently occurs because the expansive alluvial aquifers are typically losing channels at 

the upstream end and gaining channels on the downstream end, hence the floodplain 

subsurface has to fill to capacity before overland flooding can occur (except perhaps in 

very sudden spates, see Helton et al. 2012).  This phenomenon is enhanced on the 

Kwethluk owing to the beaver ponds that impound nearly all of the flood channels.   

Movement 

The only movement of juvenile salmon past dams was detected in early-

successional pond complexes. No tagged salmon were detected moving past dams in 

mid-successional pond complexes and too few salmon were present in late-successional 
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ponds to tag. Within the early-successional complexes we documented almost no 

movements past beaver dams when the river remained near base flow. Only 3 out of 8229 

(0.04%) elastomer tagged individuals moved between ponds and spring brooks and this 

was detected following the one minor flood event. Very low movement rates of 

individuals between separate beaver ponds within the same complexes occurred at the 

same time (i.e. past dams, 0.12%, from 8 coho and 2 Chinook). During this time we did 

detect slightly higher movement rates between unique spring brooks within a complex 

where no dams blocked potential movements (0.4%, 39/1020 coho and Chinook).  

During baseflow ponds were discrete units (the white boundary in  

 

 

 

 

 

 

Figure 1.12) but at high flows there were many potential paths for fish to leave or enter 
ponds (arrows in  

 

 

 

 

 

 

Figure 1.12).  During a season with multiple flood events we detected higher 

movement rates, suggesting that flooding mediates movement in and out of beaver ponds. 

60 
 



Prior to large floods we documented 25 out of 1762 marked individuals moving (1.4%; 

15 fish from ponds into spring brooks and 10 from spring brooks into ponds). Following 

flooding we documented an additional 95 fish (of 5102, 1.9%) move between habitat 

types. Fish “escaped” beaver ponds (49), but a surprising number of fish (46) moved in 

the opposite direction, upstream from spring brooks into ponds. It is likely that movement 

rates were even higher (we couldn’t sample every pathway). Despite the ability of salmon 

to leave beaver ponds during flooding many fish stayed in the ponds to overwinter. 

Recapture rates during the flood ranged between 16-35% in August and remained as high 

as 22% (range: 1-22%) in beaver ponds in September. 

DISCUSSION 

By modifying the physical connectivity and hydrological dynamics of floodplain 

habitats beavers have the potential to strongly influence juvenile salmon populations. 

Beaver ponds are characteristically different habitats than lotic streams and spring brooks 

(Naiman et al. 1988) and the presence of ponds introduces a fundamentally different 

habitat type for use by juvenile salmon. Beaver modified habitats occupied eighty-seven 

percent of all aquatic off-channel area on the Kwethluk River floodplain. Modified 

habitat included beaver-influenced spring brooks, and early-, mid-, and late-successional 

beaver ponds. Despite the presence of different types of ponds, habitat characteristics of 

all ponds were very comparable; suggesting all provided similar quality rearing habitats. 

However, different successional stages of ponds varied from each other and from spring 

brooks in their hydrological and physical connectivity to the main channel. Reduced 

connectivity to late-successional pond habitat resulted in a large portion of the floodplain 

having very low densities of juvenile salmon (and often no salmon at all). By reducing 
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connectivity to a large portion of the off-channel floodplain habitat, the presence of 

beaver ponds and dams strongly influenced the habitat use and distribution of juvenile 

salmon.  

We documented little temporal change in the total amount of habitat influenced 

by beavers, but the location of individual spring brooks and ponds did shift, especially in 

the parafluvial zone. Hence beavers are influencing shift component of the SHM (sensu 

Stanford et al. 2005). Approximately 6% of the parafluvial zone actively shifted in spring 

brook location due to flood driven processes that blew out beaver dams and created new 

spring brooks for beavers to dam. However, little change occurred in the orthofluvial 

zone (see  
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Figure 1.4), compared to the documented channel avulsions in the main channel 

and parafluvial zone. If beavers act to confine the main channel over time as suggested by 

Rutten (1967), then the levee effect of extensive dam complexes would decrease lateral 

connectivity in large floodplains and potentially increase channel incisement. This effect 

could reduce the power of flood waters across the floodplain and potentially confine the 

erosive power of the main channel network within the parafluvial zone.  Reducing the 

river's ability to avulse and cut through new sections of the floodplain could be a positive 

feedback mechanism promoting additional development of late-successional beaver 

complexes and late successional species like P. glauca. Indeed, Mouw et al. (2012) found 

that ~65% of the Kwethluk floodplain area was comprised of P. balsamifera galleries and 

P. glauca forest.  Due to long-term beaver habitat modification, the Kwethluk floodplain 
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is dramatically changed from what we would predict it would look like just based on the 

SHM, with beaver ponds making up a majority of the off-channel habitat ( 
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Figure 1.13A&B).  

By changing the types and availability of freshwater rearing habitats, beavers 

have the ability to strongly influence the distribution of juvenile salmon on the 

floodplain. Both total fish and salmonid species richness was lower in mid- and late-

successional ponds as compared to early-successional ponds and spring brooks. 

65 
 



Furthermore, densities of juvenile salmon were lowest in late-successional ponds in the 

passive orthofluvial zone, illustrating the fact that habitat connectivity influences juvenile 

salmon distributions. In addition to altering juvenile salmon distributions in general, we 

also observed differences in the distribution of individual salmon species. As expected, 

higher proportions of coho occurred in early-successional ponds and spring brooks. Coho 

fry are typically found in pools and off-channel habitats, including beaver ponds (Sedell 

et al. 1984, Murphy et al. 1989, Swales and Levings 1989, Leidholt Bruner et al. 1992). 

More surprisingly, we also found higher proportions of Chinook salmon in some beaver 

ponds, including age 1+ Chinook (up to 107mm, R.M. personal observation), despite the 

fact that Chinook generally occupy different habitat types than Coho (i.e. river vs. off-

channel habitats, Stein et al. 1972, Murphy et al. 1989). The presence of ponds may be 

influencing the life history of Chinook, resulting in some Chinook rearing in freshwater 

for longer than the typical 0-1 summers (Quinn 2005). 

Altered physical connectivity of off-channel habitats is a likely mechanism 

explaining juvenile salmon distributions on the floodplain. Beavers can be detrimental to 

fish populations by blocking fish movements (Schlosser and Kallemeyn 2000, Mitchell 

and Cunjak 2007 ). It is clear from our work that while some habitats behind dams are not 

utilized (late-successional ponds), others are strongly used by juvenile salmon (early-

successional ponds). The early-successional complexes, where juvenile salmon densities 

were higher, were located within the parafluvial zone and only had one to a few dams 

present between the sites and main channel. In contrast, the mid- and late-successional 

ponds in which we detected lower densities (or no salmon) were typically located farther 

away from the main channel behind multiple dams. Understanding whether or not 
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juvenile salmon can move in and out of different off-channel floodplain habitats is 

important for three reasons: 1) Inaccessible habitats may be effectively removed from 

salmon production, 2) If juvenile salmon aren’t able to leave ponds after accessing them, 

they will never contribute to the population, and 3) When conducting studies, if juvenile 

salmon move between habitats too much, then measured responses may not be habitat 

specific. It is clear that juvenile salmon can pass beaver dams to enter early-successional 

ponds and rear (because adult salmon do not spawn in the ponds), but late-successional 

ponds may have too many dams blocking fish passage for these habitats to be used for 

rearing.  

Variation in the hydrological connectivity of different habitats will determine if juvenile 
salmon are able to pass over dams and rear in different portions of the floodplain. Spring 
brooks and early-successional ponds exhibited higher synchrony with the main channel 
compared to mid- and late-successional ponds which were much more variable. This 
reflects the fact that spring brooks and early-successional ponds were more strongly 
connected to the main channel, quickly becoming inundated during flooding. We 
expected that synchrony would be lower for mid- and late-successional ponds because of 
their location in the orthofluvial zone. However, these sites exhibited both high and low 
synchrony values, which was likely due to variation in site position relative to the main 
channel and beaver activity. For example, the mid-successional site with the highest 
synchrony value (CB, 0.76,  
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Figure 1.8) was located below a bend of the main river, while the mid-successional site with a 
negative synchrony value (TC, -0.40) was located downstream of a tundra tributary and had a very 
active beaver (that was observed repairing and rebuilding the dam on multiple occasions). By 
repairing and building dams beavers are able to raise pond levels even as the main channel drops 
and these activities seem to be reflected in patterns of daily water level fluctuations and normalized 
depth plots for the ponds ( 
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Figure 1.9 and Figure 1.11). Beaver dams also hold back and slowly release water 

following the time when the river and spring brooks have already receded (see  
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Figure 1.9 and Figure 1.11) which may increase viability as potential juvenile 

salmon rearing habitat over spring brooks that would dry up without the ponds and pond 

maintenance by the beavers. Water storage varied with pond type and location, creating a 

dynamic template of water levels that could influence the amount of habitat available for 

juvenile salmon rearing and site accessibility (for example when ponds are inundated 

upstream pathways are present for fish movement, see  
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Figure 1.12). The storage of more water in the floodplain through summer and in 

to the winter could also have important consequences for over-winter habitat for aquatic 

organisms (Malison 2013).   

The movement of juvenile salmon past dams varied based on habitat type and was 

mediated by flooding. Reflecting their higher connectivity with the main channel, early-

successional ponds tended to fill even during small flood events, providing more 

opportunities for juvenile salmon to move into these habitats ( 

 

 

 

 

 

 

Figure 1.12). We expect that it would take much larger flood events to inundate 

the floodplain sufficiently for juvenile salmon to utilize late-successional pond habitat. 

Such large floods might connect late successional ponds, but would have devastating 

effects on early-successional ponds, most likely removing them entirely from the 

floodplain. In the case of such a large flood event, late-successional ponds might become 

survival refuges for both beavers and salmon. Despite the ability of juvenile salmon to 

enter and rear in early-successional beaver ponds, the movement rates past dams 

separating early-successional beaver ponds from beaver-influenced spring brooks was 

extremely low at base flow. We documented the movement of more individuals between 

ponds and spring brooks in both directions during flood events (when multiple flow paths 

were possible,  
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Figure 1.12), which suggests that salmon are not trapped once they enter the 

ponds (also see Malison 2013), as long as natural flow regimes (including flood events) 

occur.  

 By damming significant amounts of off-channel floodplain habitats beavers may 

impact the production of juvenile salmon. Spring brooks have been shown to be among 

the most important rearing habitats for juvenile salmon (Eberle and Stanford 2010). In 

large alluvial rivers, like the Krutogorova (Kamchatka, Russia) that have no beavers, 

floodplains are very complex with dynamic channels and alluvial spring brooks are full 

(up to 5 fish per m2 often including 3 or more salmonid species) of juvenile salmonids 

throughout the parafluvial and orthofluvial zones (Stanford et al. 2002). In contrast to the 

Krutogorova, over 80% of the spring brooks in the Kwethluk have been dammed on the 

floodplain, which may result in portions of off-channel habitat generally being lost to use 

by juvenile salmon. Though we have shown that juvenile salmon can and do use pond 

habitats, especially early-successional ponds, it remains unclear as to how this modified 

landscape might influence the growth, survival and overall production of juvenile salmon 

on a large alluvial river floodplain. If early-successional ponds stimulate the growth and 

production of juvenile salmon by reducing competition in larger rearing areas, then the 

overall impact of beavers on juvenile salmon could be positive. However, if substantial 
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habitat is lost from use in the orthofluvial zone, that would otherwise be full of juvenile 

salmon (as is the case in the Krutogorova), then the overall influence of beavers on 

juvenile salmon could be negative (see Malison 2013). 
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Table 1.2. Area and percent of total for habitats influenced by beavers on the Kwethluk 
floodplain and analyzed for temporal change based upon classification of multispectral 
imagery from the Quickbird satellite obtained in August 2004, October 2008, and 
September 2011.  
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. The lower floodplain of the Kwethluk River extends approximately 27 km (by 
air). Beaver modified habitat is highlighted in yellow and the main (base flow) channel 
network is highlighted in blue. Red circles show location of 13 beaver pond complexes 
where individual sites (including ponds of 3 successional stages and beaver-influenced 
spring brooks) described in text were sampled. Black circles show the location of beaver-
free spring brooks and white circles show the location of the additional 3 beaver 
complexes sampled for fish. Inset gives total habitat area (ha) of the 5 primary habitat 
types in 2011.   
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Figure 1.2. (A) Aerial view showing the main river (top) and dammed (circled) off-
channel habitats. Beaver-free spring brooks (B), beaver-influenced spring brooks (C, with 
upstream dam), early-successional beaver ponds (D, embedded in willow and alder), mid-
successional beaver ponds (E, embedded in meadow), and late-successional beaver ponds 
(F, embedded in spruce forest) are present on the floodplain. White dots in some pictures 
are floats attached to minnow traps.  
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Figure 1.3. Distribution of the predominant off-channel habitats on the Kwethluk River 
floodplain. 
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igure 1.4. Time series of the position of main channel network at base flow, illustrating 

 

F
channel avulsions in the parafluvial zone (right side of dotted line) and formation of new 
spring brooks at arrows. Only very minor changes occurred in the orthofluvial zone (left 
side of the dotted line).    
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igure 1.5. Nonmetric multidimensional scaling (NMDS) ordination plot of relative 

pace 

 

.  

 

 

F
abundance of macroinvertebrates (beaver-free spring brooks: SB, beaver-influenced 
spring brooks: BSB, early-successional beaver ponds: EP, mid-successional beaver 
ponds: MP, late-successional beaver ponds: LP). Site position in species ordination s
is shown relative to Axis 1 and 2. Circles enclose groups of sites that were significantly 
different based on multi-response permutation procedure analysis by habitat type: spring
brooks and ponds segregated nicely. Data in the plot are mean abundances by site and 
percent of total variation explained by each axis is given in parentheses. Pearson’s 
correlation coefficients between taxa and the axes are given. Taxa with highest 
correlation values most strongly drive differences in sites with community space
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igure 1.6. Fish species composition by habitat type (SB = beaver-free spring brooks, 

(Pungitius 

 

F
BSB = beaver-influenced spring brooks and Early, Mid and Late representing 
successional stage of the beaver ponds sampled). Species included Stickleback 
pungitius), Alaska blackfish (Dallia pectoralis), Coho salmon (Oncorhynchus kisutch), 
Dolly Varden (Salvelinus malma), Chum salmon (O. keta), Rainbow trout (O. mykiss), 
Sockeye salmon (O. nerka), Slimy sculpin (Cottus cognatus), and Chinook salmon (O. 
tshawytscha).  
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igure 1.7A&B. A) Mean (±1 SE) juvenile salmon density and B) Proportion coho and 
 

e 

 

 

 

 

F
Chinook salmon that were young of the year (out of total including all young of the year
and age 1+ or 2+) among primary habitat type (SS = main channel shallow shore, SB = 
beaver-free spring brooks, BSB = beaver-influenced spring brooks and Early, Mid and 
Late represent successional stage of the beaver ponds sampled). Differences among wer
determined by one-way analysis of variance and pairwise comparisons using Tukey’s 
honestly significant difference (HSD).   
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igure 1.8. Synchrony values (correlation of water level relative to the main channel) for 

 

F
each site plotted against nearest upstream distance along the shortest flow path. Symbols 
represent synchrony values between the main channel and different habitat types: Dash = 
another main channel site, diamonds = spring channels, circles = early-successional 
ponds, x's = mid-successional ponds, and pluses = late-successional ponds. 
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igure 1.9. Daily water-
vel changes of A) 

 

ter 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
le
spring channels, B) 
early-successional 
beaver ponds, C) mid-
successional beaver
ponds, and D) late-
successional beaver 
ponds relative to wa
level changes for the 
main channel (MC blue 
line in all panels).    
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Figure 1.10. Cumulative water level change over the study period for each habitat type. 
Cumulative change calculated as the sum of the absolute values of depth changes 
measured each hour. Main channel habitats shown in dark blue, beaver-free spring 
channels in light blue, early-, mid-, and late-successional ponds in green, orange, and 
gray respectively. 
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Figure 1.11. Normalized depth plots for one week in April 2008. A) represents two main 
channel sites in differenct floodplain positions (dark blue lines, WK = downstream site, 
KC = upstream site), B) represents the close tracking of main channel flucations by 
spring brook sites (light blue), C) represents differences in water level fluctuations 
between early-successional beaver pond sites (green) compared to the main channel sites, 
and D) shows differences in stage height between all successional stages of beaver ponds 
and the main channel (early-successional = green, mid-successional = orange, and late-
successional = grey).  
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Figure 1.12. A section of the study reach illustrating a beaver complex with an early-
successional beaver pond and beaver-influenced spring brook below (between the pond 
and the main channel). At low flow movement between the pond and spring brook was 
limited (i.e. fish stayed within the white pond boundary), but at high flow fish were able 
to move between the two habitats. The brown shape shows the location of the beaver dam 
and arrows indicate potential pathways of connectivity for juvenile salmon at high flows. 
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Figure 1.13. (A) The 3-D structure of alluvial floodplains without beavers, emphasizing 
dynamic longitudinal, lateral, and vertical dimensions and recruitment of wood debris. 
(B) Beavers influence the shifting habitat mosaic, creating a variety of beaver influenced 
habitats that modify the structure of alluvial floodplains. Beaver habitat modification 
results in the presence of additional aquatic habitat types on the floodplain including 
beaver influenced spring brooks, and early-, mid-, and late-successional beaver ponds 
(modified from Stanford et al. 2005, illustrated by Joe Giersch).  
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CHAPTER 2: JUVENILE SALMONID GROWTH, SURVIVAL, AND PRODUCTION 
IN A LARGE RIVER FLOODPLAIN MODIFIED BY BEAVERS (Castor canadensis). 

ABSTRACT  

By damming floodplain springbrooks that provide primary rearing areas, beavers may 
influence the production of juvenile salmon. We hypothesized that the presence of beaver 
modified habitat on a large alluvial floodplain would increase juvenile salmon production 
in the parafluvial zone because ponds provide more favorable habitat that increase growth 
rates. We studied three habitats important for rearing salmon in the Kwethluk River, 
Alaska: free-flowing and beaver-influenced springbrooks, and early-successional beaver 
ponds. We focused on early-successional ponds in the parafluvial zone of the river, 
because fish presence in later successional ponds on springbrooks in the orthofluvial zone 
is vastly reduced owing to lack of access past multiple dams. We measured multiple 
factors that could influence the production of juvenile coho and Chinook salmon, 
including habitat, prey and diet characteristics. We conducted a multistate robust design 
capture-mark-recapture study that allowed us to measure juvenile salmon growth, 
movement, survival and densities by habitat type. Though beaver ponds cover 
substantially more area than spring brooks, other habitat characteristics and the biomass 
of prey in diets was similar for all habitats. Beavers increased the growth of young-of-
the-year coho and Chinook in early-successional ponds compared to beaver-influenced 
and beaver-free springbrooks (3.1 ± 0.1 vs. 1.83 ± 0.14 and 2.0 ± 0.3 %mass/day for coho 
and 1.8 ± 0.08 vs. 0.93 ± 0.16 and 1.35 ± 0.32 %mass/day for Chinook). Nonetheless, 
survival rates were consistently highest (46 to 80%) each month in beaver-free 
springbrooks even though densities of juvenile coho and Chinook were highest in the 
same habitat. Survival rates varied more for beaver ponds and beaver-influenced 
springbrooks (6 to 73%). Ponds produced less juvenile coho and Chinook salmon 
biomass per unit area than beaver-free and beaver-influenced springbrooks (1.87 ± 0.57 
vs. 2.98 ± 1.22 and 3.23 ± 0.73 g/m2). However, due to the larger areal extent of early-
successional pond habitat in the parafluvial zone, ponds produced a greater biomass of 
juvenile salmon than either type of spring brook habitat (175 vs. 149 and 140 kg). In 
contrast to biomass, ponds reared about half the individuals that reared in beaver-free 
springbrooks (~24,100 salmon vs. ~41,400 salmon). If beavers were not present and all 
springbrooks were free flowing, we calculated that slightly less biomass would be 
produced from the parafluvial zone of the floodplain but 1.5-2x more individuals would 
be reared, showing that beavers may be able to limit production on the floodplain. The 
difference would be much greater if orthofluvial springbrooks on the floodplain were 
accessible to young of the year salmon. 
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Key words: coho salmon, Chinook salmon, beavers (Castor Canadensis), river, 
floodplain, winter ecology, growth, survival, production, food web, Kwethluk River, 
Kuskokwim River 

INTRODUCTION 

Large alluvial rivers of the North Pacific Rim have expansive floodplains that 

provide abundant spawning and rearing habitat for wild salmonid fishes (Whited et al. 

2013). In fact, forty-percent of all wild Pacific salmon are produced in the expansive 

floodplain rivers of Kamchatka, Russia, and the large floodplain river and lake systems of 

Alaska and British Columbia make up most of the balance (Augerot 2005). These 

floodplains are characterized by a shifting habitat mosaic (SHM) for aquatic and riparian 

organisms that is created by cut and fill alluviation, channel avulsion, riparian plant 

succession, ground- and surfacewater exchanges and erosion and deposition of live and 

dead wood (Stanford et al. 2005). The floodplain SHM encompasses a complex network 

of channels, ponds and wetlands with attendant riparian vegetation and alluvial aquifers 

fed by the river. In addition to the main channel, many off-channel floodplain aquatic 

habitats (located lateral to the main channel and inundated during flooding) provide 

important habitats for a variety of aquatic organisms. In fact, floodplain springbrooks 

have protective and productive qualities (Morley et al. 2005, Eberle and Stanford 2010) 

that often result in high densities of juvenile salmonids being present in these habitats (up 

to 4-10 fish m-2) compared to main channel shallow shorelines and tributaries (Eberle and 

Stanford 2010). Enhanced growth and survival of juvenile salmon has also been 

documented (Sommer et al. 2001, Jeffres et al. 2008). Floodplain springbrooks provide 

critical nursery grounds for juvenile salmon including Oncorhynchus kisutch (coho 

salmon) and O. tshawytscha (Chinook salmon). Coho salmon fry rear in freshwater 1-2 
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years prior to seaward migration as smolts, whereas ocean-type Chinook salmon emigrate 

following emergence, and stream-type Chinook generally rear in freshwater for 1 year 

and emigrate to the ocean the following spring (Quinn 2005).  

Rearing space and food for juvenile salmon controls the size and production of 

smolts (Quinn 2005). Thus, modification of important nursery habitats may influence 

salmon productivity. Beavers have the ability to strongly influence aquatic environments 

by cutting vegetation and building dams, thereby creating lentic habitats that would 

otherwise be free flowing (Naiman et al. 1988). Malison et al. (In review) found that 80% 

of the springbrooks of an expansive floodplain in western Alaska were impounded by 

beavers, which strongly influenced hydrologic connectivity and juvenile salmon 

densities. Juvenile salmon densities were 5-7 times higher near the main channel in 

springbrooks and early-successional beaver ponds, than in mid- and late-successional 

ponds that were more disconnected from the active channel network by complexes of 

beaver dams and ponds.  

By modifying floodplain rearing habitats beavers may influence the survival, 

density and production of juvenile salmon from expansive alluvial floodplains. In studies 

of small, low-order streams, beaver dams have been shown to impede movement 

(Schlosser and Kallemeyn 2000, Mitchell and Cunjak 2007 ), cause siltation of spawning 

sites (Taylor et al. 2010), and cause hypoxia and elevated temperatures above thresholds 

conducive to salmonid growth and survival (Burchsted et al. 2010). Beaver damming of 

springbrooks in floodplain settings could have similar effects. On the other hand, a recent 

review of the effects of beavers on stream fish found that the benefits of beavers are more 

often cited than negative impacts (Kemp et al. 2011), especially related to the growth and 
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production of fish. For example, beavers can have positive impacts because their ponds 

often provide good cover and increased production of invertebrate food resources 

(Hanson and Campbell 1963, Keast and Fox 1990). Impounded sections of low order 

streams have also been found to be more productive in number and size of fish (Gard 

1961, Hanson and Campbell 1963, Bryant 1983, Murphy et al. 1989, Leidholt Bruner et 

al. 1992, Schlosser 1995) and can have higher survival rates for juvenile salmonids 

(Bustard and Narver 1975, Quinn and Peterson 1996). Faster growth rates have been 

suggested based on the presence of larger juvenile coho in ponds (Bustard and Narver 

1975, Swales and Levings 1989) and ponds have also been shown to have increased 

production of coho (Nickelson et al. 1992, Layman and Smith 2001, Pollock et al. 2004). 

These tradeoffs have never been examined in expansive floodplain rivers of North 

America (beavers do not exist in Kamchatka and the Asian Far East), in spite of the 

acknowledged importance of these rivers to overall productivity of Pacific salmon and 

the predominance of beavers in many large floodplain rivers. 

The presence of beavers may affect juvenile salmon production in large alluvial 

rivers if impounded habitats have different habitat characteristics than lotic habitats. 

Some possible mechanisms behind differences in fish growth and survival include 

variation in temperature, habitat area and subsequently lower densities, prey availability, 

and overwintering conditions. Temperature influences juvenile salmon growth and 

survival (Brett 1952, 1971, Thomas et al. 1986). The impoundment of water by beaver 

dams results in greater habitat area (Naiman et al. 1988), which may correspond with 

lower fish densities, thereby enhancing growth rates. Impoundment of streams and 

surrounding riparia may also influence the composition and quantity of aquatic and 
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terrestrial prey for juvenile salmon (McDowell and Naiman 1986, Naiman et al. 1988, 

Smith et al. 1989). All of these factors may influence juvenile salmon survival and 

growth rates, thus influencing production. Furthermore, larger individuals have also been 

shown to have higher overwinter and marine survival rates (Holtby et al. 1990, Zabel and 

Achord 2004), which may also influence production.  Lastly, ponds that freeze solid or 

experience winter de-oxygenation may substantially reduce survival of coho and Chinook 

juveniles whose life cycles are keyed to at least one over-winter period before emigration 

to the ocean.  

In this study we investigated how beavers influence the production of juvenile 

coho and Chinook salmon on an expansive floodplain of a 5th order river in Western 

Alaska. We hypothesized that the presence beaver ponds on floodplain springbrooks 

increases salmon production in the parafluvial zone of a large river floodplain because 

abundant lentic food and lower fish densities in the ponds substantially enhance growth 

in comparison to undammed springbrooks or springbrooks below beaver dams. Thus we 

expected that the production potential of the parafluvial zone of the floodplain is higher 

than it would be if beavers were not present. From our working hypothesis we made the 

following predictions: 1) Habitat quality (including physical characteristics and prey 

availability) will be greater in beaver ponds compared to springbrooks, but juvenile 

salmon might not survive overwinter in ponds due to harsh winter conditions; 2) The 

growth and condition of juvenile salmon will be higher in beaver ponds than in 

springbrooks; 3) Movement rates of juvenile salmon will be higher in spring brooks than 

in ponds because springbrooks are more accessible; and 4) Survival rates will be higher 

in ponds. Thus, we expected the cumulative production from early-successional ponds 
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will be higher than production from all springbrooks in the entire parafluvial zone due to 

increased fish growth rates and the large area covered by early-successional beaver 

ponds. 

METHODS 

Study Floodplain and Sampling Sites 

 The study was conducted on the lower floodplain of the Kwethluk River, a 

tributary of the Kuskokwim River in western Alaska (Figure 2.14 and Figure 2.15). The 

Kwethluk is in the Yukon Delta National Wildlife Refuge and enters the Kuskokwim 

River approximately 15 km upstream of Bethel, AK. We choose to study the influence of 

beavers on juvenile salmon production on this unregulated and productive salmon river 

(Miller and Harper 2012) because beavers are prevalent throughout the floodplain 

reaches of the Kwethluk. Beaver ponds varied in age from brand new in recently-formed 

flood channels that cut through early successional vegetation (Salix spp. and Alnus spp.) 

in the parafluvial zone of the river, to 100+ year old ponds persisting in old growth 

riparia (Populus balsamifera and Picea glauca) in the orthofluvial zone (Mouw et al. 

2012). Moreover, the habitat is mostly unaltered by humans (though it is an important 

subsistence fishing area) and the floodplain experiences naturally occurring flood-pulse 

cycles. 

 The study reach is an expansive anastomosing floodplain that is located between 

37 and 64km above the confluence of the Kwethluk with the Kuskokwim. The 27-km 

long reach is gravel-cobble bedded and characterized by a laterally migrating main 

channel, coupled with anabranching avulsion events that create an intricate network of 

flood and secondary channels and gravel bars (as described by Arscott et al. 2002 
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generally for gravel bed rivers). Springbrooks occur in the parafluvial (annually scoured) 

and orthofluvial (mainly depositional) zones of the floodplain (after Stanford et al. 2005) 

and are located lateral to the main channel network in areas inundated by direct 

connection to the main channel only during flooding. During base-flow periods, 

springbrooks are maintained as aquatic systems by outflows from the alluvial aquifers 

that exist in the bed sediments of all alluvial floodplains. Flood channels throughout the 

floodplain that are scoured deep enough to intercept the shallow aquifer contain 

springbrooks that flow along the abandoned channels and into backwaters that connect to 

the main river. Springbrooks may be free flowing from the source of upwelling to the 

main channel network at base flow (beaver-free springbrooks), or they may be 

impounded by one or more beaver dams upstream of a flowing section (beaver-

influenced springbrooks). We selected study sites on beaver-free spring brooks, beaver-

influenced spring brooks, and early-successional beaver ponds in the parafluvial zone of 

the floodplain ( 

 

Figure 2.16). We focused study on parafluvial springbrooks and ponds because Malison 

et al. (In review) showed that all orthofluvial springbrooks were so impounded by 

beavers that flooding rarely overtopped the dams and as many as 10 to 25 dams were 

present on single springbrooks. These later successional ponds contained very few 

juvenile salmon because access was substantially blocked by lack of flooding over 

multiple dams or because overwinter survival was problematic.     

All five species of Pacific salmon are present in the Kwethluk River: Chinook, 

coho, sockeye (O. nerka), chum (O. keta), and pink (O. gorbuscha). Other fish species 
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include rainbow trout (O. mykiss), Dolly Varden (Salvelinus malma), stickleback 

(Pungitius pungitius), Alaska blackfish (Dallia pectoralis), and slimy sculpin (Cottus 

cognatus). Round whitefish (Prosopium cylindraceum) and pike (Esox lucius) are also 

present but were not found in springbrooks or beaver ponds (Malison et al. In review). 

We focused on Chinook and coho salmon because they are abundant and spend 2-3 years 

rearing in floodplain habitats and thereby may be strongly influenced by beavers. 

Moreover, they are preferred by subsistence fishers and are of great conservation 

concern. Adult Chinook salmon spawn in the main channel network primarily in tailouts 

whereas coho spawn in a nearly all habitats in the main and distributary channels and 

even springbrooks if they are deep enough.  

Study Design   

 Our goal was to determine the influence of beavers on the production of juvenile 

coho and Chinook salmon from the parafluvial zone of the expansive lower floodplain of 

the Kwethluk River. We selected sampling sites to encompass the 3 habitat types that 

serve as floodplain nurseries for coho and Chinook salmon, specifically: a) early-

successional beaver ponds, b) beaver-influenced springbrooks (i.e., the lotic reaches 

downstream from dams, connected downstream to the main channel network), and c) 

beaver-free springbrooks (i.e., free flowing from aquifer outflow to main channel 

confluence). Representative sites were selected systematically along the length of the 

study reach. For routine analyses we selected 3 beaver-free springbrooks, and 4 beaver-

influenced springbrooks, each with an early-successional beaver pond upstream, as study 

sites (7 springbrooks and 4 ponds) within the parafluvial zone of the floodplain (Figure 

2.2 and 2.3). All beaver ponds were early-successional and exhibited patterns in 
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hydrology that were highly synchronous with the main channel (Malison et al. In review). 

Again, we emphasize that we excluded study of later successional pond sites because 

they were largely devoid of juvenile salmon apparently because dam complexes blocked 

immigration from parafluvial spawning sites (Malison et al. In review).  

At each of the 11 sampling sites we measured key biophysical factors that most 

likely influenced production of juvenile coho and Chinook salmon (Figure 2.17, detailed 

methods below). We then scaled-up the data to the entire parafluvial zone of the 

floodplain using habitat area data from satellite imagery (methods below) to estimate 

overall floodplain production from the parafluvial zone. Finally, the influence of beavers 

was assessed in two ways.  First, we compared distribution, abundance and growth of the 

two salmon species in beaver-influenced habitats in relation to data from beaver-free 

spring brooks. Second, we compared floodplain-scale production of the parafluvial zone 

to an estimate of potential production that likely would occur if beavers were not present 

and all parafluvial springbrooks were free flowing.   

Habitat Characteristics 

 At each of the 11 sampling sites we measured key physical variables that likely 

influence juvenile salmon population dynamics and production. We monitored water 

temperature every hour year-round using HOBO pressure transducer data loggers (Onset, 

Pocasset, Massachusetts; www.onsetcomp.com) and Vemco data loggers (Vemco, 

Halifax, Nova Scotia; www.vemco.com) from 2009 to 2011. Growing degree days was 

calculated using the following equation (Elliott 1994, McMaster and Wilhelm 1997): 

Cumulative Degree Days (DD) = ∑[(Maximum Daily Temperature + Minimum Daily 

Temperature)/2]-4, for the time period between June and August. Dissolved oxygen was 
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measured with an Oakton handheld meter (Waterproof DO 300, Oakton, Vernon Hills, 

IL; www.4oakton.com) during each mark-recapture visit. Although concentrations of DO 

change seasonally and daily in response to temperature and degree of photosynthesis and 

respiration (Elliott 1994), measuring DO allowed us to determine if the sites had 

sufficient oxygen to avoid fish stress. Conductivity and pH were measured in ponds and 

spring brooks with an Oakton handheld meter (Waterproof pH/CON 10 Series, Oakton, 

Vernon Hills, IL; www.4oakton.com). Site area was measured from satellite imagery 

collected in 2011 using Arc/Map (for detailed methods see Malison et al. In review) and 

on the ground validation was completed with a handheld Trimble GeoXM 2005 GPS 

(Trimble, Sunnyvale, California) at a subset of sites.  

The effect of habitat type (beaver-free springbrook, beaver-influenced 

springbrook, or early-successional beaver pond) on temperature, dissolved oxygen, pH, 

conductivity, and site area was analyzed using one-way analysis of variance (ANOVA; 

PROC GLM, SAS Institute Inc., Cary, North Carolina). Pairwise comparisons among the 

least squares means for habitat type were assessed using Tukey’s honestly significant 

difference (HSD). All data sets were tested for normality and, where necessary, 1og10 

transformed to improve normality and homogeneity of variance prior to statistical 

analysis. All statistical tests were analyzed in SAS 9.3 and were considered significant 

where P<0.05.   

Prey Availability 

 We sampled allochthonous and autochthonous prey resources at each site to 

investigate potential differences in prey availability because both the amount and 

composition of available food could influence the caloric content of fish diets and growth 
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rates (Probst et al. 1984, Pope et al. 2001). We used floating pan traps (at each site four, 

0.348 m2, opaque pans) to measure the flux (mg/day/m2) of allochthonous inputs once 

each month into each site (June-September) for period of 2-5 days (concurrent with 

mark-recapture sampling). Samples were sorted in the field and preserved in ethanol for 

later identification and drying in the laboratory. Invertebrates were identified to family 

and dried at 60 ̊C to obtain measures of biomass. Total site input (g/day) was calculated 

by extrapolating flux values to the entire habitat (pond or springbrook) by multiplying by 

total site area. Site area (instead of perimeter) was used to calculate total input because of 

the prevalence of overhanging vegetation and emergent vegetation within the aquatic 

habitats that could contribute fluxes of invertebrates. The effect of habitat type on fluxes 

of invertebrates was analyzed using one-way analysis of variance (ANOVA; PROC 

GLM, SAS Institute Inc., Cary, North Carolina). Pairwise comparisons among the least 

squares means for habitat type were assessed using Tukey’s honestly significant 

difference (HSD). Invertebrates were also classified as either terrestrial or aquatic (flying 

adults of aquatic taxa) to determine whether there were more terrestrial prey in beaver 

ponds. The caloric value and nutrient content of prey taxa are highly variable (Brodmann 

and Reyer 1999, James et al. 2012), suggesting that differences in prey composition may 

result in differences in prey quality. We analyzed the relative abundance of taxa at each 

site with nonmetric multidimensional scaling (NMDS) (Kruskal and Wish 1978) to 

evaluate differences among habitat types. We excluded rare taxa (relative values, <5%) 

from the data set to reduce skewness in the data. We used multiresponse permutation 

procedures (MRPP) to test for significant differences in community composition by 

habitat category. 
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To compare biomass of benthic and drifting macroinvertebrates between beaver-

free and beaver-influenced springbrooks, we sampled once a month using a kick net (125 

µm, 0.25m2 metal frame). Replicate samples were collected from 3 riffles selected from 

each springbrook reach by disturbing the bed-sediments for 1 minute. Each sample was 

then sorted in the field for one hour, or until no more specimens were visible. Most 

samples were completely sorted, with a similar effort exerted for each sample and both 

large and small individuals were collected (as small as zooplankton). We sampled 

drifting prey in springbrooks using three drift nets (0.10m diameter opening, 125 µm 

mesh) which were deployed overnight once each month (June-September) at each site. 

Drift nets were placed in riffles distributed along the length of each springbrook and 

velocity at the net opening was measured to calculate volume of water sampled in each 

net. All samples were picked at the stream side for up to one hour, or until no more 

macroinvertebrates were visible and then preserved in ethanol until identification in the 

lab. In the laboratory the samples were identified, dried, weighed, and recorded as dry 

mass per taxon. The effect of habitat type on benthic and drift biomass was analyzed 

using t-tests.   

 To determine composition of prey in ponds 3 replicate sweep net samples were 

collected once a month during the study period. For each replicate a D-net was swept 

through vegetation and along logs in the pond for 1 minute. Each sample was sorted in 

the field for one hour, or until no more specimens were visible and samples were 

preserved in ethanol until identified, dried and weighed in the lab. 
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Fish Diets 

 To determine how diets related to prey availability and if fish were food limited 

we examined the amount of food consumed (biomass of fish diets) and the composition 

of prey in diets three times per site in 2010 (for four paired beaver pond and 

springbrooks) and four times per site in 2011 (for three beaver-free springbrooks). We 

collected diet samples from a subset of the fish collected during mark-recapture sampling 

events each month (see below). Twenty coho (CO) and Chinook (TW) were sampled per 

site in 2010 (CO: 59-117mm and TW: 61-87mm) and 20 coho (58-114mm) were 

sampled per site in 2011 in the evening at each site. Nonlethal stomach-content samples 

were collected via lavage (stomach-flushing). Gut contents for each site were pooled into 

a composite sample and preserved in ethanol. In the laboratory we identified individuals 

to Order or family. Identified samples were then dried at 60 ̊and weighed for biomass (g). 

Taxa were categorized as either terrestrial or aquatic, with aerial stages of aquatic insects 

categorized as aquatic to differentiate prey by origin and percent composition by number 

and biomass were calculated.  

The effect of habitat type on fish diet biomass was analyzed using one-way 

analysis of variance (ANOVA; PROC GLM, SAS Institute Inc., Cary, North Carolina). 

Pairwise comparisons among the least squares means for habitat type were assessed using 

Tukey’s honestly significant difference (HSD). We used a nonmetric multidimensional 

scaling analysis (NMDS) (Kruskal and Wish 1978) to evaluate differences among habitat 

types in the composition of fish diets. We used relative abundance values for taxa 

because of high variation in raw values and excluded rare taxa (relative values, <5%) 

from the data set to reduce skewness in the data. We used multiresponse permutation 
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procedures (MRPP) to test for significant differences in diet composition by habitat 

category. 

Fish Growth and Condition  

To measure growth rates and calculate fish condition we individually tagged fish 

as part of a capture-mark-recapture study at the eleven sampling sites in 2010 and 2011, 

using Pollock’s robust design of both closed and open sampling periods (Pollock 1982). 

We routinely sampled each site during 3 consecutive days in June, July, August and 

September of the respective year. Fish were sampled using minnow traps baited with 

salmon roe placed in film canisters with small holes (to have an attraction scent but 

ensure eggs were unavailable for consumption) and soaked for two hours (standardizing 

effort) during each sampling session to collect juveniles. Traps were placed throughout 

each entire site at approximately 5m intervals. During each sampling event all fish were 

measured and weighed after being anesthetized with MS-222. Juvenile coho and Chinook 

greater than 58mm were implanted with 12mm HDX or FDX PIT-tags into the 

abdominal cavity (ORFID, Portland, Oregon; www.oregonrfid.biz). Each PIT-tagged fish 

was given a secondary mark with visual implant elastomer (VIE) on the caudal fin 

(Northwest Marine Technology, Shaw Island, Washington; www.nmt.us). We implanted 

up to 300 individuals at each site each day with PIT-tags, the exact number depending on 

tag availability and number of individuals captured. We sampled each site for 3 days each 

month to recover marked fish and PIT-tag a proportion of new unmarked fish. Any coho 

and Chinook 58mm or larger that did not receive a PIT-tag (because we did not have 

enough tags for every fish) was implanted with a site specific elastomer mark. By 

measuring biomass of fish repeatedly captured in successive sampling events, we 
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estimated growth rates. Growth rates were calculated for individual coho and Chinook 

salmon for each age class (age 0 and age 1+) for each sample time period and presented 

as % daily growth in both length and mass. For each sampling date and site we calculated 

Fulton’s condition factor, K (Ricker 1975), for each fish by dividing weight (g) by length 

(mm) cubed and multiplying by a scalar of 105. 

The effect of habitat type on %daily growth rates was analyzed using one-way 

analysis of variance (ANOVA; PROC GLM, SAS Institute Inc., Cary, North Carolina). 

Pairwise comparisons among the least squares means for habitat type were assessed using 

Tukey’s honestly significant difference (HSD).  

Population Dynamics 

Our overall objective was to compare habitat specific production, which required 

measuring dynamics of movement (Ѱ), survival (ϕ), and population sizes and linking site 

specific population data to growth estimates. We estimated survival, movement and 

population sizes for each of the seven habitat complexes (4 paired beaver-influenced 

spring brooks and ponds and 3 beaver-free spring brooks) using the software Program 

Mark using a Multistate Robust Closed Capture model (White and Burnham 1999). 

Complexes were either composed of three states including a paired beaver pond (a) and 

beaver-influenced springbrook (b) with the main channel (c) network (n=4) or two states 

including a beaver-free springbrook (a) and the main channel (b) network (n=3, for a total 

of 7). The main channel network (i.e. “the river”) was included specifically because fish 

needed to be assigned to a state when they left the complex and could no longer be 

recaptured. We used a Multistate Robust Closed Capture model because low movement 

rates occurred between states (<5%, i.e. between ponds and springbrooks and between 
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springbrooks and the river). Within a complex each fish had a capture history 

representing its location during each sampling event. Even though fish size can influence 

capture probability, size was not included as a covariate because of the small range in fish 

sizes (60-100mm). We confirmed that recapture rates did not vary by fish size by 

comparing recapture rates for coho across four size classes for each site (50-59mm, 60-

69mm, 70-79mm, and 80+ mm). Recapture rates were similar among all fish size classes 

for all habitat types each month (F[2,8] < 3.76, P > 0.0871). Fish were detected in beaver 

ponds or springbrooks by minnow trapping during sampling events. Fish were detected 

moving into the river using PIT-tag antennae HDX readers (model LF HDX RFID, 

ORFID, Portland, Oregon) placed at the mouth of two beaver-influenced springbrooks in 

2010 and two beaver-free springbrooks in 2011. The antenna systems were installed in 

June and ran until September and the portions of the springbrooks not encompassed by 

the antenna were blocked with mesh panels. Antennae ran continuously when functioning 

but they were inoperable for 23 days in 2010 due to flooding (Figure 2.18). Though 

flooding also occurred in 2011, the antennae remained operable.    

Individual habitat complexes were analyzed separately in Program Mark. For a 

beaver complex the most “saturated” model with unique combinations of ϕ, Ѱ, p, and c, 

and N by group and time contained 99 parameters. We held certain parameters constant 

based on study design and little detected movement between certain states.  Survival and 

recapture probability within the river was fixed at zero because we did not tag or capture 

fish in the main channel network (Φ: C:C = 0; c of C:C = 0). Of course we recognized 

that coho and Chinook also rear in shallow shoreline areas of the main channel network 

(Malison et al. In review), but our intent here was to demonstrate the influence of beavers 

109 
 



 

in the floodplain environment. Because we did not detect movement of tagged fish 

returning from the river into ponds or springbrook states (i.e. once fish left a complex 

they did not come back) these movement rates were fixed at zero (Ѱ C to A and Ѱ C to B 

= 0). Ponds were discrete units for most of the study period and if movement from the 

pond directly to the river did occur we could not estimate it, so movement from the ponds 

directly to the river was fixed at zero (Ѱ A to C = 0). We followed the strategy of Zabel 

and Achord (2004) by analyzing the detection and recapture probabilities before 

modeling survival and movement rates. By doing so, we first set the structure of 

“nuisance” parameters and then focused on investigating which models with biologically 

relevant ϕ and Ѱ parameters ranked the highest. For each complex, we began with the 

null model; designated as ϕ(.),Ѱ(.),p(.),c(.),N(gt), with the previously described 

parameters fixed at 0. Then we tested models with different combinations of p and c 

varying over group or sampling session. To examine the contribution of different 

combinations of parameters to model fit, we compared alternative models comprising 

various combinations of variables using Akaike’s Information Criterion (AIC). We 

selected the best model and if the top models did not vary more than 2 ΔAIC values then 

we took the average of the model estimates, or reported the best model if results were 

very similar. After the structure of p and c parameters was set, we developed alternative 

models comprising of various combinations of ϕ and Ѱ parameters. In general we 

compared models of the parameters varying over state (pond vs. springbrook) or by 

session (so that parameters varied over time during open sessions but were constant 

during the closed period). Again, we selected the best model using the criteria listed 

above (see Table 2.1 and 2.2 for models).    
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We calculated monthly population estimates for each site in Program Mark. 

However, Program Mark estimated population sizes using only data from PIT-tagged 

individuals. Because we had a limited number of PIT-tags a large percentage (40-80%) of 

the juvenile coho and Chinook were only batch marked with elastomer even though they 

would have ideally been pit-tagged at each site. This may have resulted in Program Mark 

underestimating population sizes which would be a problem because then production 

estimates would be biased low; though no habitat or site should have been biased over 

another (i.e. all habitats had extra fish that weren’t PIT-tagged). We compared Program 

Mark population estimates to population estimates made using all large fish captured at 

each site. To do so we calculated population estimates using all captured fish (PIT-tagged 

and batch marked individuals combined) for each mark-recapture site using a Schnabel 

estimate. To incorporate survival rates into the Schnabel estimate we assumed that PIT-

tagged and batch marked juvenile coho and Chinook in the same site had similar survival 

rates. Then we used the site specific survival rates calculated in Program Mark to modify 

the number of previously marked fish available at the beginning of each month that went 

in to the Schnabel estimate. Using a Schnabel estimate without any associated mortality 

would overestimate population sizes. We then compared our population estimates using 

all captured fish to those made in Program Mark using only PIT-tagged fish. We 

calculated site specific densities by dividing population estimates by site area.  

Floodplain Production by Habitat Type 

 We estimated the amount of biomass produced in each site from June-August. We 

calculated the mean biomass accumulated per individual (g) by taking the mean of the 

biomass accumulated for individuals tagged in June and recaptured in August for each 
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site. We then multiplied mean accumulated biomass by August population estimates for 

each site to calculate site specific production in kg. To extrapolate production estimates 

to the entire parafluvial zone of the floodplain we multiplied mean biomass produced per 

unit area for each habitat type by the total area of early successional beaver ponds, 

beaver-influenced springbrooks, and beaver-free springbrooks in the parafluvial zone 

(quantified from satellite imagery, see Malison et al. In review).  

In addition to the biomass produced per habitat type, an understanding of the 

number of individuals that reared in each habitat type is important. Due to differences in 

accessibility (i.e. ponds are more difficult to enter than free-flowing springbrooks) the 

importance of higher growth rates in ponds may be negligible if few fish rear in pond 

habitats. To determine the abundance of individuals rearing in the entire parafluvial zone 

we used September densities (from each site, multiplied by site area) to determine the 

abundance of juvenile salmon by habitat type for the entire parafluvial zone. We used 

September densities because the population in the fall represents the number of 

individuals that will overwinter. We viewed the abundance of individuals as an important 

proxy for floodplain production because it is possible that patterns in biomass 

accumulation may be substantially different than the number of individuals produced.  

Overwinter Survival 

To determine if juvenile salmon could survive overwinter in our study ponds, we 

conducted winter field work in April 2011. We drilled holes in our four study ponds at 

deep pools and obtained dissolved oxygen profiles with a Hydrolab ds5 sonde 

(www.hachhydromet.com, Hach Hydromet, Loveland, CO, USA). Where possible, we 

placed two minnow traps baited with salmon roe overnight. We identified, measured and 
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weighed all fish and checked for tags. Presence of healthy juveniles under the ice 

(especially marked individuals that we measured in the same habitats in the previous fall) 

was used to indicate overwinter survival. We calculated Fulton’s condition factor, K 

(Ricker 1975), for each fish by dividing weight (g) by length (mm) cubed and 

multiplying by a scalar of 105. 

RESULTS 

Habitat Characteristics 

Overall, all habitats exhibited similar temperatures, dissolved oxygen, pH and 

conductivity, and none of these variables were deemed limiting to salmon growth and 

survival.  Indeed, all mark-recapture sites exhibited optimal temperatures for growth 

during the summer months (ranging between 6-12 ºC, Brett 1952), but ponds generally 

had the highest temperatures (8-12 ºC vs. 7-10 ºC for beaver-free spring brooks). Degree 

days varied for mark-recapture sites between June and August (though not significantly, 

F[2,7] = 3.37, P = 0.0945), with beaver ponds being 1.3x warmer than beaver-free 

springbrooks (Tukey’s HSD, P = 0.0851). Dissolved oxygen, pH and conductivity were 

similar for all habitat types (F[2,6] < 3.30, P > 0.1078). However, habitat area was 

significantly variable among habitat types (F[2,8] = 7.57, P = 0.0143), with beaver ponds 

having 8.4x the area as beaver-free springbrooks (Tukey’s HSD, P = 0.0144) and 2.5x the 

area as beaver-influenced springbrooks (Tukey’s HSD, P = 0.0607). 

Prey Availability 

Aerial food resources were similar in the different habitat types on a unit area 

basis. Pan traps in beaver-free springbrooks received 1.4-1.8x higher fluxes (mg/m2/day) 

of invertebrates than traps in beaver-influenced habitats but no statistically significant 
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difference occurred in any month (Figure 2.19A; F[2,8] ≤ 2.97 , P ≥ 0.1082). In contrast, 

after extrapolating to the area of complete habitat units (i.e. entire ponds or 

springbrooks), beaver ponds had 2.4-7x higher total inputs (mg/day) of invertebrates than 

spring brooks though differences were only significant for one month (Figure 2.19B; 

August: F[2,6] = 13.1, P = 0.0065; June, July and September: F[2,8] ≤ 3.91, P ≥ 0.0653). 

Aerial inputs were dominated by adult Diptera (true flies, both aquatic and terrestrial), 

collembolan (springtails), adult Trichoptera (caddisflies), adult Tipulidae (crane flies), 

Hemipterans (true bugs) and Coleoptera (beetles). Inputs into beaver-free springbrooks 

were comprised of 1.2-1.3x higher proportions of aquatically derived invertebrates than 

beaver-influenced springbrooks and beaver ponds, though the only significant difference 

by habitat type occurred in July (F[2,8] = 5.34, P = 0.0336; June, August and September 

(F[2,8] ≤ 3.94, P ≥ 0.0645). The composition of aerial inputs were similar for all habitat 

types (NMDS ordination; A = 0.017, P > 0.129).  

Overall mean total biomass of benthic prey was similar between beaver-free and 

beaver-influenced springbrooks (t = -2.05, P = 0.1692), though beaver-free springbrooks 

had on average 2.8x greater biomass (but sample variance was high). Some qualitative 

differences occurred in the community structure of benthic prey between the two 

springbrook types, with some mayflies and stoneflies being more predominant in beaver-

free springbrooks (see Malison et al. In review for NMDS results). Benthic samples were 

generally dominated by Chironomidae, Platyhelminthes and Oligochaeta. The biomass of 

drifting prey was low in all samples and similar in beaver-free vs. beaver-influenced 

springbrooks (0.028 ± 0.033 vs. 0.025 ± 0.025 mg/m3; Z = -0.5303, P = 0.5959). Drift 

samples contained organisms from both the falling inputs and benthic samples but the 
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predominant taxa were all aquatic including larval Chironomidae and larval Trichoptera, 

cladocerans, Oligochaeta (worms) and Ostracoda.  

Sweep net samples collected from within ponds contained on average 96% (± 

0.02) aquatic organisms (i.e. taxa entering ponds from aerial inputs were 

underrepresented in sweep samples), and had different species compositions compared to 

both types of springbrooks (also see Malison et al. In review for NMDS results). 

Dominant invertebrate taxa within the ponds included Chironomidae (nonbiting midges), 

cladocerans and copepods (small crustaceans), and gastropoda (snails), with Ostracoda 

(small crustacean) and Trichoptera making up slightly less of the samples. A few adult 

aquatic dipterans including Ceratopogonidae (biting midges), Chironomidae, Culicidae 

(mosquitos) and Simiuliidae (black flies) made up 1-6% of the sweep samples, and a 

small number of terrestrial organisms including Araneae (spiders), Collembolan, 

terrestrial Diptera, and Hemipterans made up 1-4% of the sweep samples. 

Fish Diets   

Diet samples from juvenile coho and Chinook in all habitat types had a similar 

biomass of prey in all months (F[2,8] < 4.16, P > 0.0644). The occurrence of empty fish 

stomachs was rare in all sampling sites. Though the mean total biomass of diets was 

similar, strong differences in the origin (aquatic vs. terrestrial) and composition of diets 

by habitat type may have contributed to differences in growth rates. Terrestrially derived 

taxa made up a greater proportion of diets in beaver ponds and aquatically derived taxa 

made up greater proportions of beaver-free springbrook diets (Figure 2.20). Sixty-percent 

of diet items of pond fish were aquatically derived each month compared to eighty-four 

and ninety-two percent of prey items being from aquatic sources in beaver-influenced and 
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beaver-free springbrooks. The composition of prey in fish diets also differed by habitat 

type. The NMDS ordination of mean relative abundance of 41 taxa groups found in diets 

yielded a solution that represented 87.8% of the total variation among sites on 2 axes 

(Figure 2.21). Diets from sites in different habitat categories were significantly separated 

in community ordination space (MRPP, A = 0.335, P = 0.0006). Beaver pond diet 

composition was different than beaver-influenced springbrook diet composition (P = 

0.024), but diets from these two habitat types were still more similar to each other than to 

beaver-free springbrook diets (P < 0.010). Habitats were most strongly separated in diet 

composition space along Axis 1, which explained 63.7% of the variation. Larval 

Chironomidae were predominant in beaver-free springbrook diets, while Coleoptera, 

Simuliidae, Heptageniidae, Phoridae, Oligochaeta, Ceratopogonidae, Nematoda, 

Empididae, Trichoptera, and Tipulidae were associated more strongly with beaver pond 

and beaver-influenced springbrook diets (see Figure 2.21 for correlation values). 

Corixidae and Coleoptera most strongly drove separation in diet space along Axis 2, 

which represented 24.2% of the variation.   

Fish Growth and Condition 

In total, slightly over 8100 juvenile coho and Chinook were PIT-tagged at the 11 

sites. Growth rates were calculated from individuals tagged at each site originally in June 

and recaptured in August (spring brooks, n=136, beaver-influenced spring brooks, n=140, 

ponds, n=176). Habitat type had a significant effect on % daily growth rates (in length 

and mass) for young-of-the-year (YOY) coho growing between June and August ( 

Figure 2.22A&B; F[2,8] = 11.68, P = 0.0042 and F[2,8] = 16.89, P = 0.0013, 

respectively). The greatest difference in YOY coho growth rates in % daily length was 
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between beaver ponds and beaver-influenced springbrooks (1.6x higher in beaver ponds, 

Tukey’s HSD, P = 0.0034), and though not significant, rates were 1.3x faster in beaver 

ponds than in beaver-free springbrooks (Tukey’s HSD, P = 0.0605). For % daily mass, 

YOY coho in beaver ponds grew faster than YOY coho in both beaver-influenced and 

beaver-free springbrooks (Tukey’s HSD, P ≤ 0.0069). Percent daily growth rates were 

similar in length and weight for Age 1+ coho by habitat type, largely due to high variance 

in growth rates in beaver-free springbrooks ( 

Figure 2.22A&B; F[2,8] ≤ 2.86, P ≥ 0.1371). A key finding concerning growth was 

that young of the year coho were the same size in June but grew faster in beaver ponds 

resulting in September sizes of fish being 10-15mm longer in beaver ponds than both 

types of spring brooks (Figure 2.23; F[2,8] = 19.68, P = 0.0008). 

Growth of YOY Chinook followed patterns similar to coho although young of the 

year Chinook were not large enough to tag until July, so data are only presented for July-

August. Growth rates (% daily, in length and mass) differed significantly for young of the 

year Chinook from July to August ( 

Figure 2.22A&B; Length: F[2,3.74] = 20.18, P = 0.0099 and Mass: F[2,8] = 6.49, P = 

0.0212), with Chinook in beaver ponds growing significantly faster than those in beaver-

influenced springbrooks (Tukey’s HSD, P = 0.0134 and 0.0171, length and weight 

respectively).  

The size and condition of fish going into winter is important because it influences 

the decision of when to smoltify for coho (at age 1+ or 2+) and may influence the 

survival of both species. By the end of the growing season (just before winter), the 

condition of coho was not significantly different among sites (F[2,8] = 3.14, P = 0.0983), 
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but coho in ponds had 2-3% higher condition factors than coho in both types of 

springbrooks. The condition of Chinook was similar for all habitat types in September 

(F[2,8] = 0.28, P = 0.7656). 

Population Dynamics 

Model selection results are presented for the 4 beaver complexes (Table 2.1) and 

3 beaver-free springbrooks (Table 2.2). The best models selected and used to estimate 

movement, survival, and population sizes are shown in bold with asterisks. We used 

Program Mark to model movement rates (Ѱ, psi) from beaver ponds to springbrooks and 

from springbrooks to beaver ponds within beaver complexes, as well as movement rates 

out of one beaver-free and one beaver-influenced springbrook. Movement rates varied by 

complex, but were similar from ponds to springbrooks and from springbrooks to ponds (t 

= -0.66, P = 0.5367, Figure 2.24A&B). We were able to model emigration over time for 

the beaver-free springbrook and found that emigration was very low early in the season 

and increased to a level similar to that estimated for beaver-influenced springbrooks by 

the end of the season (Figure 2.24). Unfortunately the best models for the beaver complex 

with double antennae could not estimate movement varying over time (see Table 2.1), so 

the same value represented emigration each month (see Figure 2.24). Despite, the 

difficulty modeling emigration over time for the beaver-influenced springbrook, we did 

observe more individuals emigrating through the pit-tag antennae over the course of the 

sampling season (similar to what we saw for beaver-free springbrooks).  

Survival rates were similar among habitat types from June to July, declined for 

both beaver ponds and beaver-influenced springbrooks from July to August, and were 

similar among all habitat types from August-September, except for two beaver ponds ( 
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Figure 2.25). Even though we documented emigration at some sites with 

antennae, it is possible that sites without antennae had higher emigration rates which may 

have confounded survival estimates (resulting in exceptionally lower rates for two sites;  

 

 

 
 
 
 
 
 
 
 
 

Figure 2.25). Additionally, the decreased survival for both beaver ponds and 

beaver-influenced springbrooks from July to August could have been confounded by 

missed emigration when pit-tag antennae arrays were not functioning.   

Population estimates were divided by habitat area and data presented as densities 

to compare different habitat types. The density of PIT-tagged juvenile coho and Chinook 

varied by habitat type and over time (Figure 2.26A). However, the densities calculated 
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using only PIT-tagged individuals in Program Mark underestimated densities by 3-14x 

compared to densities calculated using all PIT-tagged and elastomer tagged individuals 

(Figure 2.26B). The density of all tagged coho and Chinook (PIT and elastomer tags) 

differed significantly by habitat type (F[2,8] = 9.09, P = 0.0087), with higher densities 

present in beaver-free springbrooks than in early-successional beaver ponds (Tukey’s 

HSD, P = 0.0074; Figure 2.26B).  

Floodplain Production by Habitat Type 

 Accumulation of juvenile coho and Chinook biomass per sq. meter was generally 

higher for beaver-free springbrooks and beaver-influenced springbrooks compared to 

beaver ponds, although the difference was not statistically significant (F = 0.857, P = 

0.4601, Figure 2.27A). By extrapolating habitat specific biomass accumulation to the 

entire parafluvial zone of the floodplain, the total production of juvenile coho and 

Chinook biomass (kg) was highest in beaver ponds (175 kg) compared to either type of 

springbrook habitat (beaver-free, 140kg, or beaver-influenced, 149 kg), due higher 

growth rates and the greater areal extent of the ponds. However, the combined areas of 

both spring brook types produced a greater total biomass of juvenile salmon compared to 

the ponds. In total, we estimated that the three habitat types produced 463 kg of juvenile 

salmon biomass, or ~ 7.7kg/day, between June and August.  

Without beavers, all floodplain habitats accessible to juvenile salmon would be 

free flowing springbrooks, totally usable as natal habitat. To make a rough estimate of 

what production might be like without beavers, we estimated that approximately 45% of 

early-successional pond area would remain as free flowing springbrooks (because less 

area is inundated without dams). If that was the case the total production of juvenile coho 
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and Chinook biomass would be 13% lower (403 vs. 463 kg) in the parafluvial zone of the 

floodplain. Without beavers a large amount of rearing area and associated high growth 

rates would be lost, corresponding with the decrease in biomass produced.   

In contrast to biomass, juvenile coho and Chinook salmon were most abundant in 

beaver-free springbrook habitat, were least abundant in early-successional beaver pond 

habitat, and beaver-influenced springbrook habitat fell intermediate (Figure 2.27B). 

Juvenile coho and Chinook salmon were almost 2x more abundant in beaver-free 

springbrook habitat (~41,400) than in beaver ponds (~24,100) and almost 1.5x more 

abundant in beaver-free compared to beaver-influenced springbrook habitat (~20,500). If 

beavers were absent on the floodplain we estimate that almost 1.5x more individuals 

would be able to rear in parafluvial habitats (~119,300 vs. 93,800), because densities 

were 1.5-3.5x higher in beaver-free springbrooks than in beaver-influenced springbrooks 

and beaver ponds. These numbers increase substantially (119,300 to 370,000) if 

orthofluvial springbrooks were also available as natal habitat (see chapter 3).   

Overwinter Survival 

 In April 2011 all ponds and spring brooks were covered in ice. Ice on beaver 

ponds was 0.65 to 0.90m thick and half of them were frozen solid in the locations where 

we drilled (though this does not indicate that ponds were frozen throughout their entire 

area), but the others had fish surviving overwinter. In the two ponds where we found 

water, depth varied between 0.42 and 0.83m and mean dissolved oxygen concentrations 

indicated that oxygenated water was upwelling under the ice (56.2% ±9.1 and 7.3 mg/L 

±1.2 and 77.4% ±1.5 and 10.0 mg/L ±0.3 for the two sites). We documented juvenile 

salmon overwinter survival in the two beaver ponds where we drilled to water. We 
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captured a total of 27 coho, 42 Chinook, and 3 sockeye salmon. Of the 27 coho, 7 were 

tagged at the same sites in the summer/fall of 2010. Of the 42 Chinook, 9 were tagged in 

2010. Fish condition was lower for juvenile coho and Chinook captured during the winter 

compared to fish sampled at the same sites during the summer and fall of 2010 (0.93 ± 

0.02 vs. 1.10 ± 0.02 for coho and 0.95 ± 0.03 vs. 1.10 ± 0.05 for Chinook), but all 

juveniles were healthy. 

DISCUSSION  

 We hypothesized that production would be increased by the presence of beaver 

ponds because ponds would stimulate the growth of juvenile salmon. Indeed, growth 

rates for young-of-the-year coho and Chinook were higher in early-successional beaver 

ponds than in springbrooks and similar patterns were seen for age 1+ coho. Additionally, 

the ponds provided the same quantity of rearing habitat as both types of springbrooks 

(beaver-free and beaver-influenced) combined. Increased growth rates and the large 

habitat area of ponds corresponded with a slightly higher biomass of juvenile salmon 

being produced with beavers in the parafluvial zone than if beavers were absent. 

However, in spite of higher growth rates in the ponds, the number of juveniles rearing in 

ponds was limited, resulting in pond densities being 3x lower than spring brook densities. 

It seems likely that densities were lower in ponds both due to the larger area of the ponds 

and limited accessibility compared to spring brooks. Surprisingly, high survival rates did 

not correspond with low densities and were actually similar among all habitat types, with 

the lowest rates observed between August and September in two of the beaver ponds. We 

did document individuals surviving in ponds under the ice during the winter in two of our 

study ponds, suggesting that ponds are not sinks for salmon production. In the ponds that 
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were frozen solid where we drilled, it is likely that we missed pockets of open water in 

which juvenile salmon may have been overwintering.   

The differences that we observed in growth rates by habitat type could have a 

variety of mechanistic explanations. Reduced competition and decreased energy 

expenditure has resulted in increased growth rates for Atlantic salmon in both lake and 

beaver pond habitats (Hutchings 1986, Sigourney et al. 2006). Like Atlantic salmon, coho 

and Chinook display territorial behavior and similar mechanisms may be driving the 

observed differences in growth rates (Chapman 1966). Juvenile salmon densities were 

lower in ponds vs. springbrooks which could have stimulated growth rates due to 

decreased competition. In fact, Malison (2013 chapter 3) found that growth rates were the 

same in early-successional ponds and spring brooks when densities were held at the same 

level in enclosures. Lower densities likely occurred in ponds because of two reasons: 1) 

fewer young of the year were able to find pathways into ponds and 2) habitat area of 

ponds is large. Indeed we found that in total a similar number of age-1+ coho were 

captured from springbrooks and ponds (3,142 vs. 3,258), but over three-fold more age-0 

coho were caught in springbrooks than in beaver ponds (10,009 vs. 2,971). The 

marginally warmer temperatures in beaver ponds could also have contributed to 

increasing fish metabolic rates and consequently growth rates. It is likely that a 

combination of the above mechanisms, as well as the lower maintenance costs of lentic 

environments contributed to the increased growth rates in ponds (Enders et al. 2003).   

Fewer fish combined with generally greater inputs of food resources could have 

resulted in less competition in the ponds which would promote higher growth rates, 

especially for young-of-the-year which had 1.5-3.5x higher densities in springbrooks. 
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Other studies have found that increased prey resources promote increased growth of 

juvenile salmon in beaver ponds (Peterson 1982). Ponds received up to 2.4-7x as much 

allochthonous prey inputs as spring brooks per unit area, though the composition was 

similar for all habitat types. Furthermore, benthic prey was on average 2.8x greater in 

beaver-free vs. beaver-influenced springbrooks. Though the biomass of diet samples was 

similar by habitat type it is possible that variation in the time of sample collection and the 

composite sampling technique introduced error that masked any differences. Variation in 

the quality of prey in different habitat types could be important because we did find 

differences in the composition of diets by habitat type. Diets of beaver-free spring brook 

fish, which exhibited intermediate growth rates, were dominated by Chironomidae, while 

multiple prey taxa dominated diets of beaver pond fish, which grew the fastest. 

Furthermore, aquatically derived taxa made up greater proportions of beaver-free 

springbrook diets while terrestrial taxa were more important in pond diets. 

 By the end of the summer the size of young of the year coho in beaver ponds was 

10-15mm higher than in both types of springbrooks, which could have important 

implications for survival. Larger parr and smolts have been shown to have higher 

overwinter (Zabel and Achord 2004) and higher marine (Holtby et al. 1990) survival 

rates. Survival during the time that smolts first enter the ocean is an important 

determinant of subsequent adult populations (Zabel and Achord 2004, Quinn 2005). If 

ponds produce more robust individuals then these individuals may have higher survival 

rates. If this is the case, then a greater proportion of the salmon produced in ponds may 

return to spawn than those produced in springbrooks. Consequently, the greater number 

of smolts that reared in springbrooks may not be as important as the larger individuals 
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produced in the ponds. Nonetheless, larger smolts do not always have consistently higher 

survival rates (Holtby et al. 1990) and it is questionable whether higher survival rates for 

beaver pond fish would make up the difference for the greater number of individuals 

rearing in springbrooks. Tracking the return of adult salmon tagged as juveniles in known 

freshwater habitats would provide the necessary information to determine if any 

differences in marine survival occurred in relation to freshwater rearing habitat.  

The survival and movement of fish strongly influenced habitat specific population 

sizes and densities. We expected that patterns in survival rates would be similar to growth 

rates and higher in ponds, but this was not the case. Some ponds did exhibit similar 

survival rates to beaver-free springbrooks between June-July and from August-

September, but the consistently highest survival rates were exhibited by beaver-free 

springbrooks over the entire course of the study period. In general, survival rates in ponds 

had greater variation and survival rates were reduced for both beaver ponds and beaver-

influenced springbrooks from July-August. However, it seems likely that the estimated 

rates for beaver influenced habitats from July-August were biased low because of 

untracked emigration when PIT-tag antennae were incapacitated. Similarly, the extremely 

low survival rates for two ponds from August-September (54 and 88% lower than all 

other sites) may be underestimates if these sites (that did not have antennae) had higher 

emigration rates than the site with the double antennae.  

We found that salmon densities varied with habitat type, though growth rates did 

not always follow the expected pattern. Using population estimates from all juvenile coho 

and Chinook large enough to tag (>58mm, both elastomer and pit-tags) we found that 

densities were highest in beaver-free springbrooks, intermediate in beaver-influenced 
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springbrooks, and lowest in early-successional beaver ponds. If small young-of-the-year 

(too small to tag) were also included in the estimate this relationship may change and 

would result in densities being the highest in beaver-influenced springbrooks. The 

influence of small young-of-the-year could help explain why even though the highest 

growth rates corresponded with lowest densities in beaver ponds, the same relationship 

did not hold for densities and growth in the two types of springbrooks. Beaver-free 

springbrooks had higher growth rates and higher densities than beaver-influenced 

springbrooks when only fish large enough to tag were considered, but if young-of-the-

year were included then higher densities in beaver-influenced springbrooks could help 

explain why growth rates were lower in this habitat type if competition between age 

classes occurred.  

We determined that beavers may increase production from the parafluvial zone in 

terms of biomass by increasing growth rates, but may limit the total number of 

individuals that may rear in the parafluvial zone. We estimated that if ponds and beaver-

influenced springbrooks were present as beaver-free springbrooks these habitats would 

rear 1.5-2x more individuals. However, in order to make a more robust estimate of what 

production might be like without beavers we need to have a much better understanding of 

how rearing habitat availability would change if beavers weren’t present (i.e. exactly how 

much area would be covered by spring brooks if dams were absent). Additionally, we 

need a better understanding of whether or not rearing habitat availability is actually a 

limiting factor for juvenile salmon production on the floodplain. The presence of ponds 

(that rear lower densities of juveniles) may not limit production if juvenile salmon 

densities are not at carrying capacity. It seems unlikely that rearing habitats are saturated 
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at the current level of escapement for both coho and Chinook on the Kwethluk River 

because escapement levels have declined by 12-15x over the past 9 years (Miller and 

Harper 2012). Additionally, we observed lower (Eberle and Stanford 2010) or similar 

densities of juvenile salmon than have been observed in other salmon rivers (Murphy et 

al. 1986, Murphy et al. 1989), suggesting that perhaps density dependent factors are not 

be playing a large role. Studying how habitat specific densities change over different 

escapement levels would shed more light on how limiting the conversion of springbrooks 

to beaver ponds may actually be for the system.  

We determined the presence of beavers and ponds results in a tradeoff, ponds 

grow larger fish, but fish are more abundant in spring brooks. If all spring brooks in the 

parafluvial zone were free flowing at the floodplain scale then production would 

potentially exceed the existing beaver-influenced system because greater numbers can 

rear in spring brooks. Even stronger differences in production may exist when the entire 

floodplain, with both parafluvial and orthofluvial zones included, is considered. In 

beaver-free floodplains, like the Kol and Krutogorova Rivers in Russia, juvenile salmon 

are able to rear in springbrooks spanning the floodplain from the parafluvial zone out in 

to the orthofluvial zone (Stanford et al. 2002). The springbrooks in beaver-free systems 

are extremely important spawning habitats and rearing areas because they tend to be quite 

large with dependable flows and good access to riparian food resources (Eberle and 

Stanford 2010). Whereas, in a beaver dominated floodplain like the Kwethluk, late-

successional beaver complexes in the orthofluvial zone seem disconnected physically and 

ecologically (Malison et al. In review). Thus, overall beavers could reduce juvenile 

salmon production at the floodplain scale (including both parafluvial and orthofluvial 
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zones) even more so than illustrated for the parafluvial zone if they block significant 

amounts of orthofluvial rearing habitat. In fact, Malison (2013 chapter 3) estimates that in 

the absence of beavers the entire Kwethluk floodplain could produce 2x the biomass 

(1174 vs. 667kg) and 3x the number of salmon (370,000 vs. 140,000).   
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TABLES 
 
Table 2.1. Models used to estimate survival, movement and population sizes are 
compared and results given for the 4 beaver complexes. Bold text and an asterisk indicate 
the best model for each paired beaver pond and beaver influenced spring brook complex. 
A model result highlighted in grey indicates that at least some of the parameters could not 
be estimated so that model was rejected. Bold text indicates the null model with the best 
p and c parameters that were then used to run different combinations of survival (S) and 
movement (Ѱ, psi) parameters. Hash marks indicate certain models weren’t for some 
complexes (because they contained the wrong selection of p and c parameters). 
 

Complex 1 
(BU) 

Complex 2 
(SB) 

Complex 3 
(LB) 

Complex 4 
(A) 

Model AICc AICc AICc AICc 

S(null)psi(gt)p(g,se)c(g,se)N(gt) - - -6726.5 - 

S(null)psi(g)p(g,se)c(g,se)N(gt) - - -6729.3 - 

S(null)psi(gt)p(g)c(g,se)N(gt) - -9770.4 - -10153.9 

S(null)psi(g)p(g)c(g,se)N(gt) - -9770.3 - -10124.5 

S(null)psi(gt)p(g)c(se)N(gt) -6972.1 - - - 

S(null)psi(g)p(g)c(se)N(gt) -6949.9 - - - 

S(gt)psi(gt)p(g,se)c(g,se)N(gt) - - -6780.9 - 

S(gt)psi(gt)p(g)c(g,se)N(gt) - -9777.1 - -10296.2 

S(gt)psi(gt)p(g)c(se)N(gt) -7020.3 - - - 

S(gt)psi(g)p(g,se)c(g,se)N(gt) - - -6784.5 - 

S(gt)psi(g)p(g)c(g,se)N(gt) - *-9776.6 - *-10266.4178 
S(gt)psi(g)p(g)c(se)N(gt) *-6999.3 - - - 

S(g)psi(gt)p(g,se)c(g,se)N(gt) - - -6749.6 - 

S(g)psi(gt)p(g)c(g,se)N(gt) - -9768.8 - -10181.0 

S(g)psi(gt)p(g)c(se)N(gt) -6991.0 - - - 

S(g)psi(g)p(g,se)c(g,se)N(gt) - - -6753.1 - 

S(g)psi(g)p(g)c(g,se)N(gt) - -9768.7 - -10145.4 

S(g)psi(g)p(g)c(se)N(gt) -6969.7 - - - 

S(gt)psi(null)p(g,se)c(g,se)N(gt) - - *-6775.7 - 

S(gt)psi(null)p(g)c(g,se)N(gt) - -9768.0 - *-10268.1 
S(gt)psi(null)p(g)c(se)N(gt) -6874.1 - - - 

S(g)psi(null)p(g,se)c(g,se)N(gt) - - -6741.7 - 

S(g)psi(null)p(g)c(g,se)N(gt) - -9760.0 - -10147.0 

S(g)psi(null)p(g)c(se)N(gt) -6844.0 - - - 

Null + p(g,se)c(g,se)N(gt) -7479.0 -10053.5 -6716.9 -10557.6 

Null + p(g,se)c(g)N(gt) -7468.1 -9983.4 -6660.4 -10551.0 

Null + p(g,se)c(se)N(gt) -7483.0 -10049.0 -6707.2 -10527.4 

Null + p(se)c(g,se)N(gt) -6826.6 -9812.2 -6552.3 -10305.9 

Null + p(se)c(g)N(gt) -6813.6 -9742.0 -6495.7 -10299.2 

Null + p(se)c(se)N(gt) -6830.5 -9807.7 -6542.6 -10275.6 
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Null + p(g)c(g,se)N(gt) -6816.1 -9761.7 -6473.2 -10125.7 
Null + p(g)c(g)N(gt) -6803.1 -9691.5 -6416.6 -10119.1 

Null + c(g)N(gt) -6633.7 -9499.7 -6304.2 -10010.5 

Null + p(g)c(se)N(gt) -6820.1 -9757.1 -6463.5 -10095.4 

Null + p(g)N(gt) -6798.8 -9689.4 -6412.9 -10085.9 

Null + N(gt) -6630.3 -9497.6 -6300.4 -9977.3 

Null + N(g) -6586.0 -9422.5 -6257.7 -9834.0 

Null -6509.5 -9421.2 -6253.2 -9834.9 
 
 
Table 2.2. Models for survival, movement and population sizes are compared and results 
given for the 3 beaver-free springbrooks. Bold text and an asterisk indicate the best 
model for each spring brook. A model result highlighted in grey indicates that at least 
some of the parameters could not be estimated so that model was rejected. Bold text 
indicates the null model with the best p and c parameters that were then used to run 
different combinations of survival (S) and movement (psi) parameters. Hash marks 
indicate certain models weren’t for some complexes (because they contained the wrong 
selection of p and c parameters). 
 

Site 5 (CR) Site 6 (CT) Site 7 (NN) 
Model AICc AICc AICc 

S(t)psi(t)p(se)c(se)N(t) - - 
*-

1538.8397 
S(t)psi(t)p(g)c(se)N(t) *-3156.1 *-2755.5255 - 

S(t)psi(null)p(se)c(se)N(t) - - -1538.8 

S(t)psi(null)p(g)c(se)N(t) -3134.8 -2755.5 - 

S(null)psi(t)p(se)c(se)N(t) - - -1533.3 

S(null)psi(t)p(g)c(se)N(t) -3143.0 -2708.9 - 

Null + p(se)c(se)N(t) -3304.4 -2829.7 -1533.3 
Null + p(g,se)N(t) -3292.4 -2753.7 -1529.6 

Null + p(se)N(t) -3135.4 -2753.7 -1529.6 

Null + p(g)c(se)N(t) -3122.7 -2708.9 -1473.4 

Null + p(g)N(t) -3110.7 -2632.9 -1469.7 

Null + N(t) -3023.1 -2632.9 -1469.7 

Null -3018.4 -2629.2 -1470.3 
 
 
 
 
 



 

 
FIGURES 

 
 
Figure 2.14. The Kwethluk River floodplain study area, a tributary of the Kuskokwim 
River, located in western Alaska. 
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Figure 2.15. The 27-km study reach with water shown in blue and beaver influenced 
areas shown in yellow. Circles show the locations of mark-recapture study sites (paired 
beaver ponds and beaver-influenced springbrooks in red and beaver-free springbrooks in 
black). The inset illustrates an example of one beaver complex (beaver pond in blue and 
beaver-influenced springbrook in orange) and a beaver-free springbrook (in green). The 
black arrow indicates direction of flow. 
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Figure 2.16. Study sites located in parafluvial habitats, including (A) beaver-free spring 
brooks, (B) beaver-influenced spring brooks, and (C) early-successional beaver ponds 
(embedded in willow and alder). (D) Dams on early-successional ponds range from 1.1– 
2m in height.  
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Figure 2.17. Flow diagram of factors and study design used to determine the influence of 
beavers on production of juvenile coho and Chinook salmon from the parafluvial zone of 
the Kwethluk River.  
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Figure 2.18. Photos contrasting conditions at base (A) and flood (B-D) flows.  Double 
pit-tag antennae are visible on a beaver-influenced springbrook at base flow (A), but the 
antennae are submerged during flood flows (B). During floods, water flows over (C) and 
around (D) beaver dams during flooding, enhancing possible fish passage between the 
habitats.  
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Figure 2.19A&B. Flux and inputs of aerial invertebrate biomass into floodplain habitats. 
(A) Mean (±1 SE) flux (mg/m2/day) of invertebrates into pan traps in 4 beaver ponds 
(BP), 4 beaver-influenced springbrooks (BSB), and 3 beaver-free springbrooks (SB) 
during four sampling periods (June, July, August, and September). (B) The same data 
given in A) but mean total input is calculated by scaling flux values to the entire area of 
each site and averaging by habitat type.  
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Figure 2.20. Mean composition of juvenile coho and Chinook diets by habitat type (BP = 
beaver pond, BSB = beaver influenced springbrook, SB = beaver-free springbrook). 
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Figure 2.21. Ordination plot obtained by nonmetric multidimensional scaling of the 
relative abundance of macroinvertebrates in diets of juvenile coho residing in beaver-free 
springbrooks (SB), beaver-influenced springbrooks (BSB), and beaver ponds (BP). Site 
position in diet space is shown relative to axes 1 and 2 and diets in the three habitat types 
were significantly different.  Numbers in parentheses next to axis titles represent the % 
variation explained by each axis. Relative importance of each taxon is indicated by 
ranking of Pearson correlation coefficients between taxon and each axis as given below 
the ordination plot. Aerial (A) and Larval (L) forms of macroinvertebrates were present 
in the diets. 
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Figure 2.22. Mean (±1 SE) growth for age-0 and age-1+ coho in A) % daily length and 
B) % daily mass, and for age-0 Chinook in C) % daily length and D) % daily mass, for 4 
early-successional beaver ponds (BP), 4 beaver-influenced springbrooks (BSB), and 3 
beaver-free springbrooks (SB) based on fish recaptured during June to August.  
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Figure 2.23. Length of age-0 coho by habitat type from June to September (black = 
beaver ponds, dark grey = beaver influenced springbrooks, light gray = springbrooks). 
Different symbols within each color group represent individual sites. Young of the year 
were about the same size in June but grew faster over the summer in beaver ponds than in 
the springbrooks.   
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Figure 2.24. Movement rates (% of marked fish that moved) of juvenile salmon (coho 
and Chinook data pooled) among habitat types based upon mark-recapture data obtained 
in the four beaver complexes and one of the spring brook sites studied. (A) Mean (±1 SE) 
movement rates of juvenile coho and Chinook from beaver ponds to beaver-influenced 
springbrooks (BP to BSB) and from beaver-influenced springbrooks into beaver ponds 
(BSB to BP). (B) Mean (±1 SE) movement rates with sites pooled by habitat type (closed 
diamonds: from beaver ponds to beaver-influenced springbrooks (BP to BSB); from 
beaver-influenced springbrooks to beaver ponds (BSB to BP); from beaver-influenced 
springbrooks to the river (BSB to river) average over the entire summer period; and open 
symbols: from beaver-free springbrooks to the river (SB to river) over three time periods 
(open diamond = June-July (no fish moved), open circle = July-August, open square = 
August-September). Asterisks indicate sites with PIT-tag antennae; emigration data from 
these sites were used to parameterize the models in Program Mark.  
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Figure 2.25. Survival rates (±1 SE) of juvenile coho salmon in beaver ponds (BP, closed 
diamonds), beaver-influenced springbrooks (BSB, open diamonds), and beaver-free 
springbrooks (SB, closed circles) for three time periods: (A) June-July, (B) July-August, 
and (C) August-September. * indicate survival rates that may be underestimates due to 
emigration. 
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Figure 2.26. (A) Mean (±1 SE) juvenile coho and Chinook density of pit-tagged fish by 
habitat type for the 4 capture-mark-recapture sites (SB = beaver-free springbrooks, BSB 
= beaver-influenced springbrooks, and BP = early successional beaver ponds). (B) Mean 
(±1 SE) juvenile coho and Chinook density in September for pit-tagged fish (light grey) 
and all juveniles large enough to be tagged (pit-tagged and elastomer tagged, dark grey) 
for beaver-free springbrooks (SB), beaver-influenced springbrooks (BSB), and early-
successional beaver ponds (BP).  
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Figure 2.27. (A) Mean Biomass (± 1 SE, g) of juvenile salmon per sq. meter of each 
habitat type (SB = beaver-free springbrooks, BSB = beaver-influenced springbrooks, and 
BP = early successional beaver ponds) for the 7 study sites. (B) Number of individuals 
rearing in each habitat type for the entire floodplain.  
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CHPATER 3: BEAVERS REDUCE HABITAT CONNECTIVITY AND SALMON 
PRODUCTIVITY IN EXPANSIVE RIVER FLOODPLAINS 

Abstract. We compared two large alluvial rivers known for their production of salmon to 
determine how beavers might influence juvenile salmon at the floodplain scale. Our goal 
was to provide perspective on the likely influences of beavers on juvenile salmon habitat 
use and production by comparing two rivers with similar physical drivers but that 
differed due to the presence of beavers in one river. We compared species richness, 
densities, condition and growth of juvenile coho and Chinook salmon between parafluvial 
and orthofluvial habitats within both rivers, as well as between the rivers. Species 
richness was similar by habitat type in the Kol (without beavers). In contrast, in the 
Kwethluk (with beavers) parafluvial habitats had twice as many species as orthofluvial 
habitats. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk 
coho densities were 8-12x higher in off-channel spring brooks vs. the main channel and 
Chinook densities were up to 2x higher in parafluvial spring brooks than other floodplain 
habitats. In the Kol there was no difference in coho condition by habitat type but Chinook 
condition was highest in orthofluvial spring brooks. Within the Kwethluk there was no 
difference in Chinook condition, but the condition of coho was lowest in main channel 
versus all other habitats (0.89 vs. 0.99 – 1.10). We found that the Kol produces an order 
of magnitude more salmon biomass and rears 40x the individuals compared to the 
Kwethluk. We estimated that in the absence of beavers the Kwethluk floodplain could 
produce 2x the biomass (between June-August, 1174 vs. 667kg) and rear 3x the number 
of salmon (370,000 vs. 140,000).  

Key words: Beaver (Castor canadensis), Pacific salmon, ecosystem engineering, salmon 
ecology, alluvial river floodplains, salmon production 

 

INTRODUCTION 
Forty-percent of all wild Pacific salmon are produced in the expansive floodplain 

rivers of Kamchatka, Russia, with most of the rest coming from the large floodplain 

river-lake systems of Alaska and British Columbia (Augerot 2005). The expansive 

floodplains of large rivers provide abundant spawning and rearing habitat for wild 

salmonids. Dynamic floodplain environments are maintained by processes of cut and fill 

alluviation, channel avulsion, riparian plant succession, ground- and surface water 

exchanges and erosion and deposition of live and dead wood that interact to create a 
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complex shifting habitat mosaic  (Stanford et al. 2005). Spring brooks in abandoned flood 

channels often are a dominant habitat type in expansive floodplains (Whited et al., 2013) 

and are known to be primary rearing areas for all species of Pacific salmon, trout and 

char (Eberle and Stanford 2010, Armstrong and Schindler 2013). Shallow spring brooks 

form by water upwelling from the floodplain aquifer,  have warm winter and cool 

summer temperature patterns, and have high ecological connectivity with riparian food 

webs; therefore enhanced growth and survival of juvenile salmon has been documented 

in these habitats (Sommer et al. 2001, Jeffres et al. 2008, Bellmore et al. 2013).  

 Beavers in North American rivers typically dam spring brooks adding extensive 

pond complexes to the habitat mosaic of the floodplain (Malison et al. In review); 

whereas, beavers do not exist in the very productive salmon rivers of the Asian Far East, 

including Kamchatka.  So, the interesting conservation question of whether beavers are 

good for salmon or not, can be approached by contrasting salmon ecology in rivers with 

and without beavers.   

Beavers are well known to exert strong influences on growth and productivity of 

stream fishes by altering habitat characteristics in low order streams, but ultimate effects 

are both negative and positive. In low order streams beaver dams may impede or limit 

fish movement (Schlosser and Kallemeyn 2000, Mitchell and Cunjak 2007 ), promote 

siltation of spawning grounds (Taylor et al. 2010) and ponds may be hypoxic owing to 

microbial decomposition of retained organic matter (Burchsted et al. 2010). On the other 

hand, positive effects in low order streams include increases in the production of 

invertebrate food resources (Hanson and Campbell 1963, Keast and Fox 1990), increased 

density and sizes of fish, including salmon (Gard 1961, Hanson and Campbell 1963, 
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Bryant 1983, Murphy et al. 1989, Leidholt Bruner et al. 1992, Schlosser 1995), higher 

survival rates (Bustard and Narver 1975, Quinn and Peterson 1996), faster growth rates 

(Bustard and Narver 1975, Swales and Levings 1989) and increased production 

(Nickelson et al. 1992, Layman and Smith 2001, Pollock et al. 2004). Less is known 

regarding the interactions of beavers and salmon in expansive floodplain settings of large 

rivers even though beavers are ubiquitous in large rivers throughout the range of salmon 

in North America. 

The few studies addressing impacts of beavers on juvenile salmonids in expansive 

floodplains suggest that the potential for beavers to influence the ecology and production 

of salmon in rearing habitats is high. For example, in a large Alaskan river floodplain 

beavers dammed 80% of all spring brook habitats (Malison et al. In review). Parafluvial 

spring brooks occur close to the active channel network and are scoured annually by 

floods while orthofluvial spring brooks are located farther from the channel where 

flooding is infrequent. By building large dam complexes beavers may shrink the usable 

portion of the floodplain for juvenile salmon. In fact, the conversion of spring brooks to 

dammed ponds strongly restricted the ability of juvenile salmon to use orthofluvial 

habitats farther from the channel in an Alaskan river (Malison et al. In review). However, 

it is difficult to determine how the loss of orthofluvial floodplain habitats may influence 

salmon production. For example, if beavers were removed from a river, would juvenile 

salmon use of orthofluvial habitats be similar to their use of parafluvial habitats close to 

the main channel, or are orthofluvial habitats less important?  

If beavers are able to influence juvenile salmon habitat and productivity this could 

have important implications for salmon conservation. The issue is extremely relevant 
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because beaver populations have expanded in Alaska (with declining demand for pelts) 

and the re-establishment of beavers in rivers where extirpation occurred decades ago 

often is considered a management option to enhance salmonid production. However, the 

massive conversion of floodplain habitat by beavers may actually limit salmon 

production. Experimental approaches to the question are problematic. Measuring total 

salmon production in one or more beaver modified rivers prior to and following beaver 

removal would be ideal; but such an approach is simply not feasible owing to the massive 

scale (hundreds of km2) of beaver activity in these floodplain settings (Malison et al. In 

review). However, lack of beavers in the salmon rivers of the Kamchatka Peninsula 

(Russian Federation) offers an interesting comparison to shed light on the issue. Thus, 

our approach was to compare and contrast habitat use and production of juvenile salmon 

on expansive floodplains of two geomorphically similar salmon rivers, the Kol in 

Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers). 

We focused studies on coho (Oncorhynchus kisutch) and Chinook (O. tshawytscha) 

because they rear in off channel habitats the longest out of the Pacific salmon and may be 

most strongly influenced by beavers. 

Although many other factors, notably harvest, species composition of the 

ichthyofauna and supporting food webs, and import of marine derived nutrients, certainly 

also influence salmon productivity in the two rivers, we expected that the potential 

productivity of coho and Chinook would be much greater in the Kol (without beavers) 

than in the Kwethluk (with beavers) because spring brooks are more productive habitats 

than beaver ponds (see chapter 2).  Our intent in this paper simply was to contrast the 

ecology of the two rivers and thereby provide a conservation perspective on the likely 
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influences that beavers have on floodplain rivers. Thus, we measured rearing habitat 

availability by type (main channel shallow shorelines, tributaries, parafluvial and 

orthofluvial spring brooks, and early-, mid- and late-successional beaver ponds) in 

relation to species composition, densities, condition, and growth of juvenile salmon 

within the parafluvial and orthofluvial zones of the two rivers. Additionally, we 

conducted an experiment to determine if orthofluvial beaver ponds on the Kwethluk were 

of sufficient quality that juvenile salmon would rear and grow in them if they could be 

accessed. Lastly, we determined how beavers influence the production of juvenile salmon 

at the floodplain scale.  

METHODS  

Study Areas  

The Kol is a 5th order river originating in the Central Mountain Range of the 

Kamchatka Peninsula, Russia (Figure 3.28). Floodwaters inundate the floodplains to the 

valley walls frequently, especially in the spring and fall (Eberle and Stanford 2010). The 

Kol study reach is an expansive anastomosing wandering river that reworks the entire 

floodplain. Channel avulsions are common, creating a complex network of flood 

channels that disconnect from the main channel through sediment accretion or levees 

mediated by wood jams (Figure 3.29). Channel beds that have been scoured low enough 

to intercept the shallow aquifer result in parafluvial spring brooks that flow along the 

abandoned flood channels near the river and older orthofluvial spring brooks farther from 

the river. The Kol is an extremely productive salmon river; with 3-10 million fish 

returning annually (6 salmon species + anadromous O. mykiss and 2 char species). Pink 

salmon dominate anadromous runs with 5-7 million returning on even years and 
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approximately 500,000 on odd years (Pavlov et al. 2009). This productivity is largely due 

to a huge marine derived nutrient (MDN) subsidy and extensive networks of spring 

channels in both the parafluvial and orthofluvial zones which have strong trophic 

linkages to an expansive and productive floodplain forest (Eberle and Stanford 2010).  

The Kwethluk River is a 5th order tributary of the Kuskokwim River on the west 

coast of Alaska. Similar to the Kol, floodwaters inundate the floodplains in the spring and 

fall. The study reach is an expansive anastomosing floodplain located between 37 and 

64km (from Three-Step to Elbow Mountain) above the confluence of the Kwethluk with 

the Kuskokwim (Figure 3.28). Similar to the Kol, a complex network of flood channels is 

present and spring brooks persist at base flow in flood channels where the river has 

scoured sediments below the water table (Figure 3.29). However, due to abundant beaver 

habitat modification, combined with riparian plant succession over time, a complex 

mosaic of early-, mid-, and late-successional beaver ponds are distributed throughout the 

parafluvial and orthofluvial zones of the river (as described by Mouw et al. 2012) and 

beavers have reduced the anabranching extent and frequency as compared to the Kol. In 

fact, 80% of all off-channel habitats are located behind beaver dams (Malison et al. In 

review). The Kwethluk has far fewer fish return than the Kol but is still an important 

salmon river in the Kuskokwim basin, AK. Up to ~200,000 fish return annually (all 5 

species – O. mykiss is resident only - over the past ten years) with coho and chum 

dominating the runs.  

Both rivers have a long legacy of commercial and subsistence salmon harvest, 

however long-term harvest rates likely are 2-3x higher in the Kwethluk because the Kol 
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is largely uninhabited whereas the Kwethluk Village sits at the base of the Kwethluk and 

town of Bethel is located downstream (Augerot 2005, Pavlov et al. 2009). 

Data Collection 

Floodplain Characteristics and Rearing Habitat Availability 

 To compare floodplain characteristics between the Kol and Kwethluk Rivers we 

obtained habitat complexity metrics from the Riverscape Analysis Project, which is a 

publicly available geospatial database of riverine and watershed physical structure of 

basins around the Pacific Rim (Whited et al. 2012). We quantified spring brooks and 

beaver ponds in relation to the shallow shorelines of the channel networks at base flow by 

classifying Quickbird satellite multispectral imagery collected on the Kol in 2004 and the 

Kwethluk in 2011. Initially, pixels associated with water bodies were classified and 

delineated using Definiens Developer (version 8.6; Definiens, Westminster, Colorado; 

www.ecognition.com/) and Erdas Imagine (version 9.3; Intergraph, Norcross, GA; 

www.geosptail.intergraph.com) software. Following delineation, habitat patches (i.e., 

ponds, spring brooks, and main channel shallow shorelines) were manually demarcated 

using heads-up digitizing (manually drawing polygons around features) in Arc/Map 

(version 10; ESRI, Redlands, California, USA; www.esri.com), following similar 

methods used by Whited et al. (2013). Image classifications were validated from field 

observations.  

Juvenile Salmon Metrics 

In the spring, summer and fall of 2004-2008 we routinely sampled juvenile 

salmon in representative main channel shallow shoreline, tributary, and parafluvial and 

orthofluvial spring brook sites on the Kol and Kwethluk River floodplains through the 
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Salmonid Rivers Observatory Network program (SaRON), a research and conservation 

cooperative of the Flathead Lake Biological Station, Moscow State University, the Wild 

Salmon Center (Portland, OR) and the Gordon and Betty Moore Foundation (see 

http://www2.umt.edu/flbs/Research/SaRON.aspx). Representative sampling sites within 

in each habitat type were distributed throughout the length of each of the two floodplains. 

We determined fish density by species in lotic habitats (main channel shallow shoreline, 

tributary and parafluvial and orthofluvial spring brooks) using 3-pass depletion 

electrofishing over 50m reaches delimited by block nets. We routinely sampled juvenile 

salmon in beaver ponds (of all successional stages) in 2006 and 2009-2011 through the 

SaRON program and as  part of complimentary studies (Malison 2013 chapter 2, Malison 

et al. In review). Ponds were sampled by depletion minnow trapping in 2006 and by 

using capture-mark-recapture minnow trapping in 2009-2011. In all cases, fish were held 

in buckets with aerators, anesthetized with clove oil or MS-222, and then identified, 

measured and weighed. We calculated fish population densities from data collected in 

both rivers from 2004-2008 using Bayesian inference for depletion estimates (Wyatt 

2002). We calculated Fulton’s condition factor, K (Ricker 1975), for each fish by 

dividing  mass (g) by length (mm) cubed and multiplying by a scalar of 105 to determine 

if condition varied by habitat type or by river floodplain. We also calculated % daily 

batch growth rates in mass (mn) for coho and Chinook in each habitat type in both rivers. 

Percent daily growth in mass was calculated using the formula: ((m2-m1)/(m1*(t2-

t1)))*100. To determine accuracy of batch growth rates we compared batch growth rates 

to individual growth rates (from PIT-tagged individuals) from habitats sampled on the 

Kwethluk during 2009-2011.  
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Enclosure experiment 

To determine if use of orthofluvial habitats by juvenile salmonids was restricted 

because of poor habitat quality we conducted an enclosure experiment in five habitat 

types including: the main channel, beaver-influenced spring brooks, and early-, mid- and 

late-successional beaver ponds in the Kwethluk River. Beaver-influenced spring brooks 

were added as a habitat type in 2009 because they made up a significant portion of the 

parafluvial habitat used by juvenile salmon. We placed two enclosures (1m x 1m x 2m) in 

3 replicates of each habitat type between June 14 and August 22, 2011. We placed eight 

individually marked coho in each enclosure and measured and weighed each individual 

every two weeks to calculate growth rates. If individuals died they were replaced with 

new individuals to keep densities the same in each enclosure. We used growth as a 

surrogate for habitat quality to determine how late-successional pond habitat in the 

orthofluvial zone compared to parafluvial habitats. 

Floodplain production  

 We estimated the biomass of individuals produced from off channel habitats in 

both floodplains by extrapolating biomass/m2 (calculated from batch growth rates and 

density estimates) to the total area of each habitat type for each floodplain for the time 

period between June and August. Because growth data were sparse for Chinook we used 

coho growth rates for the production estimates. We used the combined density of coho 

and Chinook in production calculations. We calculated production from off-channel 

habitats for both rivers (i.e. parafluvial and orthofluvial spring brooks in the Kol and 

beaver-free spring brooks, beaver-influenced spring brooks, and early-, mid-, and late-

successional beaver ponds in the Kwethluk) because the way in which beavers may 
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influence production is by damming off-channel habitats. Malison (2013 chapter 2) 

calculated total production of juvenile coho and Chinook for the parafluvial zone of the 

Kwethluk floodplain (including spring brooks, beaver-influenced spring brooks, and 

early-successional beaver ponds). We calculated total production for mid- and late-

successional habitats and combined these data with the estimates from Malison (2013 

chapter 2) to determine production from the entire off-channel floodplain study reach. 

We also estimated the number of individuals that reared in each habitat type because it is 

possible that patterns in biomass accumulation may be different from the number of 

individuals produced. 

We also estimated what the floodplain scale production of juvenile coho and 

Chinook would be in the Kwethluk in the absence of beavers by estimating production if 

all spring brooks were free flowing. To estimate the area that would be covered by free 

flowing spring brooks instead of ponds we used satellite imagery in ArcMap to delineate 

known channel courses (i.e. previous spring brook paths) in pond complexes and 

calculated the percentage of area that would be covered if dams were not present. We 

estimated that roughly 45% of the area currently covered by beaver ponds in the 

orthofluvial zone would be covered by orthofluvial spring brooks if dams weren't present. 

Because juvenile salmon habitat use, condition and growth were similar in the parafluvial 

and orthofluvial zones of the Kol River (without beavers), we used density and growth 

estimates from beaver-free parafluvial spring brooks in the Kwethluk to estimate what 

production might be from beaver-free orthofluvial spring brooks. This gave an estimate 

of the magnitude of production that could be lost due to beaver habitat modification on 

the Kwethluk.  
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Statistical Analyses 

 We analyzed the effect of habitat type on the number of species, density, 

condition, batch growth and enclosure growth rates of juvenile coho and Chinook in each 

river using one-way analysis of variance (ANOVA)(PROC GLM, SAS Institute Inc., 

Cary, North Carolina). Pairwise comparisons among the least squares means for habitat 

type were assessed using Tukey's honestly significant difference (HSD). All data sets 

were tested for normality and, where necessary, log10 transformed in SAS to improve 

normality and homogeneity of variance prior to statistical analysis. Where the assumption 

of homogeneity of variance assumption could still not be met Welch's ANOVA was used 

because the probability of a false positive may be much higher than 5 percent in the one-

way ANOVA.  

 Comparisons of the effect of river type (with or without beavers) were made using 

t-tests. Because multiple comparisons were done for each variable (for multiple habitat 

type comparisons) a Bonferroni correction factor (Rice 1989) was used to determine the 

significance level by dividing 0.05 by the number of tests. All statistical tests were 

considered significant where P<0.05, unless a Bonferroni correction was applied.  

RESULTS 

Comparative Floodplain Characteristics 

The Kwethluk has a larger catchment area and larger total floodplain area than the 

Kol River, but the mean floodplain elevation, number of floodplains, floodplain to 

watershed ratio, floodplain sinuosity, and number of nodes is similar for both rivers 

(Table 3.3). The Kol has over twice as many nodes per length of floodplain as the 

Kwethluk, showing that the Kol floodplains are more complex. Both rivers are bounded 
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by tundra at the edges of the floodplains and are free from human alteration. The focal 

study reaches of the two rivers have similar slopes (Kwethluk, 0.0020 and Kol, 0.0022), 

river width (Kwethluk, 42m and Kol, 50m) and types of sediment supplies (dominated by 

gravel and cobble) indicating that the primary physical drivers of floodplain complexity 

are similar. Within the study reaches, the Kol River has almost 1.5x more total aquatic 

habitat than the Kwethluk but the percentage of off-channel habitat is similar for both 

rivers (20.5 vs. 22.6 %, Table 3.3). However, over 99% of off-channel aquatic habitats in 

the Kol are comprised of parafluvial (55%) and orthofluvial (45%) spring brooks (the 

small remainder being parafluvial ponds) while in the Kwethluk only 17% of the off 

channel habitat is comprised of spring brooks as a result of beaver interventions. In fact, 

the majority of off-channel habitat in the Kwethluk is located behind beaver dams (80%) 

of varying successional stages (described by Mouw et al. 2012).  

Species Composition and Fish Densities 

Species Composition 

Within the Kol River all twelve fish species known to occur in Kamchatka were 

found in all habitat types (Figure 3.30A). Dolly Varden (Salvelinus malma) made up the 

greatest proportion of fish in main channel habitats and the least in orthofluvial habitats. 

Coho were most abundant in orthofluvial spring brooks and least abundant in main 

channel habitats. The total number of fish species and the number of salmon species was 

similar for all floodplain habitats at the Kol (F[3,22] = 1.72, P = 0.1919 and F[3,22] = 1.57, P 

= 0.2251).      

Within the Kwethluk floodplain, sculpin (Cottus cognatus) was the most abundant 

taxon in main channel and tributary habitats, coho and Chinook salmon were co-
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dominant in backwaters and coho salmon dominated spring brooks and beaver ponds 

(Figure 3.30B). In contrast to the Kol, the total number of fish species varied significantly 

with habitat type in the Kwethluk (F[8,53] = 3.03, P = 0.0070). Significantly more species 

were present in parafluvial spring brooks and early-successional beaver ponds than in 

late-successional ponds (Tukey’s HSD, P < 0.0361), and though not significant, 2x more 

species were present in tributaries than in late-successional beaver ponds (Tukey’s HSD, 

P <0.0791). The number of salmon species also varied by habitat type (F[8, 15.94] = 2.50, P 

0.0566), with 1.7-2x more species of salmon present in main channel shallow shorelines, 

tributaries, spring brooks and early- and mid-successional ponds than in late-successional 

beaver ponds (Tukey’s HSD, P < 0.0476). 

Though species composition varied by river, coho predominated in off channel 

habitats in both rivers (44% in the Kol and 46% in the Kwethluk; Figure 3.30A&B). 

Chinook salmon were less abundant in the Kol vs. the Kwethluk (3 vs. 25%). Coho, 

sockeye (Oncorhynchus nerka), and lamprey (Lampeta spp.) made up greater proportions 

of the fish in orthofluvial vs. parafluvial habitats in the Kol River. This suggests that 

orthofluvial habitats would be important habitats for coho and sockeye in the Kwethluk if 

beaver dams weren’t present.  

Density 

 In the Kol River total fish, coho, and Chinook densities were similar for all habitat 

types (F[3,28] = 2.70, P = 0.065, F[3,7.7543] = 3.06, P = 0.0937, and F[3,5.6905] = 3.15, P = 

0.1125; Figure 3.31A).  

In contrast, densities of all fish, coho, and Chinook varied by habitat type in the 

Kwethluk River (F[3,28] = 12.8, P <0.0001, F[3,28] = 6.37, P = 0.002, and F[3,28] = 2.94, P = 
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0.0505; Figure 3.31B). Main channel habitats had lower densities compared to off-

channel parafluvial and orthofluvial spring brooks (Tukey’s HSD, P < 0.0099). 

Tributaries also had lower total densities compared to parafluvial spring brooks (Tukey’s 

HSD, P = 0.0069). Coho and Chinook densities were lower in main channel habitats 

compared to parafluvial spring brooks (Tukey’s HSD, P = 0.0014 and P = 0.0462). 

Compared to main channel, tributary and spring brooks habitats, densities were 3-12x 

lower in mid- and late-successional beaver ponds (see Malison et al. In review).  

 All habitats of the Kol had higher total densities compared to the Kwethluk (t > 

2.18, P <0.0112), except for parafluvial spring brooks (t = 2.57, P = 0.1108). Coho 

densities were higher in main channel habitats in the Kol vs. the Kwethluk (t = 2.20, P = 

0.0012), but similar for other habitats. Chinook densities were higher in Kol main 

channel habitats than in Kwethluk main channel habitats (t = 2.16, P = 0.0052).  

Fish Condition and Growth 

Fish Condition 

Juvenile coho in main channel, parafluvial and orthofluvial spring brook habitats 

all had similar condition factors in the Kol River (F[2,15] = 0.82, P = 0.4582). However, 

the condition of Chinook did vary by habitat type (F[2,12] = 7.49, P = 0.0077), being 

higher in orthofluvial vs. parafluvial spring brooks (Tukey’s HSD, P = 0.0107) and 

higher in main channel habitats vs. parafluvial spring brooks (Tukey’s HSD, P = 0.0317).   

In contrast, the condition of juvenile coho varied significantly by habitat type for 

the Kwethluk River (F[6,15.4581 = 10.28, P = 0.0001). Main channel coho had lower 

condition factors than coho in all other habitat types (Tukey’s HSD, P < 0.0015), except 
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for orthofluvial spring brooks which were similar to the main channel. The condition of 

juvenile Chinook did not differ by habitat type (F[6,39] = 1.45, P = 0.2204).   

Comparing the two rivers, we found that juvenile coho were in better condition in 

all habitat types in the Kol River (t > 2.11, P < 0.0043). Juvenile Chinook were in better 

condition in main channel and orthofluvial habitats in the Kol vs. the Kwethluk (t> 2.13, 

P < 0.0042).   

Growth Rates  

Within the Kol River mean batch growth rates varied by habitat type for age-0 

coho (F[3,4] = 10.47, P = 0.023; Figure 3.32A), with main channel and orthofluvial spring 

brook habitats having higher growth rates than parafluvial spring brooks (Tukey’s HSD, 

P < 0.029). Growth rates of age 1+ coho did not differ by habitat type (F[3,5] = 2.28, P = 

0.197). 

Within the Kwethluk mean batch growth rates were similar among all habitat 

types for age-0 and age 1+ coho (F[6,18] = 1.64, P = 0.193 and F[4,14] = 1.70, P = 0.207; 

Figure 3.32B). In the one late-successional pond with juvenile salmon (other late-

successional sites had no salmon), batch growth rates were 2x lower than in spring 

brooks and 3-4x lower than in early- and mid-successional ponds.  

 In comparing the two rivers, age-0 coho grew almost 3x faster in parafluvial 

spring brooks in the Kwethluk than in the Kol, though the difference was not significant 

after Bonferroni correction (t = 2.36, P = 0.0166). Age-0 coho in main channel shallow 

shorelines, tributaries, and orthofluvial spring brooks grew at similar rates in both rivers 

(P > 0.2515). Age 1+ coho grew at similar rates in parafluvial and orthofluvial spring 
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brooks in both rivers (P > 0.1375). Chinook also grew at similar rates in main channel 

habitats of both rivers (t = 4.30, P = 0.4684).   

Batch growth rates differed significantly and underestimated growth compared to 

growth rates from individually tagged coho for age-0 fish (F[4,45] = 20.64, P = <0.0001). 

In contrast, growth rates calculated from individuals were similar to batch growth rates 

for age-1+ coho (F[4,50 ] = 1.54, P = 0.2059). Using batch growth rates likely 

underestimates growth, mainly because newly emerged age-0 fish continually enter the 

sampling pool as they grow large enough to be captured. Though batch rates likely 

underestimate production estimates we used the same methods in both floodplain reaches, 

allowing comparisons to be made. 

Kwethluk Enclosure Study 

Growth rates varied significantly by habitat type in both % daily mass and % 

daily length (F[4,9] = 8.13, P = 0.0047 and F[4,9] = 7.54, P = 0.006, respectively, Figure 

3.33) for juvenile coho reared in enclosures. Juvenile coho in main channel enclosures 

grew significantly faster than coho in beaver-influenced spring brooks and early- and 

mid-successional beaver ponds based on increases in mass and length (Tukey’s HSD, P < 

0.0249 and P < 0.0374, respectively). Coho growth in late-successional enclosures was 

similar to all other habitat types (Tukey’s HSD, P > 0.1129). Thus we concluded that the 

late-successional beaver ponds in the orthofluvial zone would be suitable rearing habitats 

if they could be accessed.    

Floodplain Scale Production – The Kol  

Parafluvial and orthofluvial spring brooks produced a similar biomass of juvenile 

coho and Chinook per square meter (Figure 3.34A). For the entire floodplain, we 
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estimated that parafluvial spring brooks produced 49 kg/day (2692 kg in total) and reared 

2,333,549 individuals while orthofluvial spring brooks produced 45 kg/day (2712 kg in 

total) and reared 2,523,407 individuals for a total of 5404 kg and 4,856,956 individuals 

(Figure 3.35A). 

Floodplain scale production – The Kwethluk with and without beavers 

 Biomass produced per square meter varied by habitat type on the Kwethluk (F[4,14] 

= 4.61, P = 0.0139; Figure 3.7B). Production from the parafluvial zone (including 

beaver-free and beaver-influenced spring brooks, and early-successional beaver ponds) 

was estimated to be 7.7 kg/day (464 kg in total) and 93,750 individuals were reared. We 

estimated that an additional 3.3 kg/day (199 kg in total) was produced from and ~43,400 

individuals were reared in mid-successional beaver pond habitats on the Kwethluk 

(Figure 3.35B). Production from late-successional ponds was extremely low, with almost 

50x less salmon being produced than from mid-successional ponds at 0.07 kg/day (4 kg 

in total) and only 3,100 individuals were reared (Figure 3.35). Combining all parafluvial 

and orthofluvial off-channel habitats we estimate that 667 kg of biomass was produced 

and 140,300 juvenile coho were reared in the presence of beavers (Figure 3.35B). 

 Based on habitat availability in the Kol River we assumed that if beavers were not 

present on the Kwethluk River, all off-channel habitats would be free-flowing, connected 

to the main channel, and ideal rearing habitats as they are on the Kol River. In the 

absence of beavers we estimated that the parafluvial zone would produce 1.5x less 

biomass but would rear 1.2x the numbers of juvenile coho and Chinook. In the 

orthofluvial zone, replacing mid-successional ponds with orthofluvial spring brooks 

would result in 1.5x the biomass (287 kg vs. 199 kg) and a two-fold increase in the 
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number of individuals (~96,300 ind. vs. ~43,400 ind.). Replacing late-successional ponds 

with orthofluvial spring brooks would result in a fifty-fold increase in production (207 kg 

vs. 4 kg, and ~154,100 ind. vs. ~3,100 ind.; Figure 3.35). In total for the floodplain we 

estimated production of biomass would be 2x higher between June-August (1,174 kg vs. 

667 kg), and almost 3x the number of individuals would be reared (370,000 vs. 140,000 

individuals; Figure 3.35) if beavers were not present. Compared to the Kwethluk, the Kol 

River produces an order of magnitude greater biomass (in just two months) and rears 

almost forty times more juveniles per year from off-channel habitats.  

DISCUSSION 

 Beavers reduce the production potential of large alluvial river floodplains by two 

mechanisms. First and foremost, modification of shallow water habitats essentially 

shrinks the usable portion of the floodplain by blocking off much of the orthofluvial 

zone. Very few salmon were present in orthofluvial habitats farther from the main 

channel in the Kwethluk River, compared to the Kol River where juvenile salmonids of 

all species were present in all habitats and were very abundant in spring brooks 

throughout the floodplain. Our enclosure experiment on the Kwethluk showed that 

growth rates were similar in late-successional pond enclosures compared to all other 

habitats, suggesting all ponds could support salmon. However, we know nothing about 

overwinter survival, so the problem could be a combination of access and overwinter 

survival. In any case, orthofluvial habitats on the Kwethluk are not significantly utilized 

by any of the salmon species because access is limited. Second, within the parafluvial 

zone where juvenile salmon predominantly reared, the presence of ponds resulted in 

fewer individuals being produced per unit area in ponds compared to spring brooks 
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(Malison 2013 chapter 2). Thus, by reducing connectivity and impounding habitats that 

are less productive (on a per unit area basis) beavers reduce juvenile salmon production.  

  The floodplains of both rivers are complex but at the Kol all habitats are 

completely connected to the main channel. As a result we found that orthofluvial spring 

brooks were just as important rearing habitats as parafluvial springbrooks and main 

channel shallow shorelines. In comparison, the Kwethluk floodplain, while equally 

complex, is largely disconnected due to beaver activity. Because fish condition and 

densities were similar for the parafluvial and orthofluvial zones of the Kol River, we 

inferred that juvenile salmon would use parafluvial and orthofluvial spring brooks of the 

Kwethluk similarly in the absence of beavers. We estimated that over twice the biomass 

might be produced and that the floodplain could rear three times the number of juvenile 

salmon if extensive beaver complexes did not shrink the usable floodplain on the 

Kwethluk River. Thus, we conclude that beaver modification of spring brook habitats 

reduces production potential of salmon rivers with expansive floodplains.   

We estimated that production from the Kol River was an order of magnitude 

higher in biomass and that 40x more individuals could be reared compared to the 

Kwethluk. However, factors other than available rearing habitat, such as escapement and 

basin fertility could strongly influence these estimates. We know that reductions in 

escapement (i.e. the number of adults returning to spawn) can strongly impact food 

availability and growth rates of juvenile salmon by influencing riverine fertility (Bilby et 

al. 1996, Wipfli et al. 2003 ). The spawning and death of salmon clearly influences the 

overall productivity of streams (Richey 1975, Wipfli et al. 1998) and this subsidy of 

marine derived nutrients (MDN) induces positive feedback loops where increases in 
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juvenile salmon production occurs in response to increased MDN in productivity of 

multiple trophic levels (Wipfli et al. 1998, Schindler et al. 2005). Thus differences in 

escapement between the Kwethluk and Kol should result in differences in fertility. 

Indeed, Morris et al. (2013) found that rivers around the Pacific Rim varied with relation 

to MDN loading from returning salmon, and that the Kwethluk exhibited much lower 

foliar δ15N than the Kol. Thus the Kwethluk may have lower production potential 

because of reduced escapement and fertility owing to harvest management. Nonetheless, 

it is quite clear that beavers reduce the usable habitat for salmon on the Kwethluk 

floodplain compared to the Kol.  

 Regardless of the potential for beavers to influence salmon production, beavers 

and salmon evolved together in North American rivers and beavers have been part of the 

North American landscapes since the early Holocene (Robinson et al. 2007). The benefits 

of beavers for restoration have been recognized (Pollock et al. 2007, Burchsted et al. 

2010) and beavers are currently being reintroduced into low order systems in the west as 

part of restoration efforts.  Even if beaver ponds were replaced with spring brooks on the 

Kwethluk River, it is unclear how the overall production of juvenile salmon on the 

floodplain would be influenced and the long-term legacy of beaver modification of the 

floodplain would still be present. If overall salmon production were to increase following 

dam removal that would suggest that habitat limitation and density dependent effects are 

currently occurring on the Kwethluk River. However, habitat limitation seems unlikely, 

even in the presence of beavers, as escapement levels have declined by 12-15x for coho 

and Chinook in the Kwethluk River over the past 9 years (Miller and Harper 2012). 

Furthermore, we documented much higher densities of juvenile salmon in the Kol River 
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than the Kwethluk River (up to 14.9 coho/m2) and these fish also had high condition 

factors. The Kol floodplain seems to have a much higher capacity to produce salmon 

smolts than the Kwethluk River. Even if beavers were not present on the Kwethluk our 

estimates still show that the Kol River could produce 5 times the biomass and 14 times 

the individuals as the Kwethluk might without beavers, likely due to the 1-2 orders of 

magnitude higher escapement levels that the Kol receives. Beavers are part of the North 

American landscape and their modification of off-channel floodplain rearing habitats may 

result in lower production potentials for North American rivers as compared to far eastern 

rivers without beavers.  
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Table 3.3. Watershed and study reach characteristics for the Kwethluk River, AK and the 
Kol River, Kamchatka Russian Federation. Habitat complexity metrics for comparison of 
the Kwethluk and Kol Rivers were obtained from the Riverscape Analysis Project, which 
is a publicly available geospatial database of riverine and watershed physical structure of 
basins around the Pacific Rim (Whited et al. 2012). Multispectral imagery from the 
Quickbird satellite for 2004 was quantified for the Kol and imagery from 2011 was 
quantified for the Kwethluk to determine the types and amounts of aquatic habitats for 
both study reaches. 
  Kwethluk Kol 
Watershed area 3846 km2 1502 km2 

Total Floodplain area 2.49 x 10^8 m2 
1.04 x 10^8 

m2 
Mean floodplain elevation 212 m 280 m 
Floodplains (#) 10 8 
Floodplain: Watershed Ratio 0.06 0.07 
Floodplain Sinuosity 1.68 1.20 
Nodes (#) 224 192 
Nodes per length of 
Floodplain 0.86 1.81 
Total aquatic habitat 283 ha 409 ha 
Main Channel total area 219 ha 325 ha 
Off-channel habitat area 64 ha 84 ha 
Spring brook total area 11 ha 83 ha 
% off-channel spring brook 
area 0.17 0.99 
Beaver pond area 51 ha 0 
% off-channel beaver pond 
area 0.80 0 
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 FIGURES 

 

Figure 3.28. Locations of the two study rivers, the Kol River on the Kamchatka 
peninsula, Russian Federation, and the Kwethluk River, a tributary of the Kuskokwim in 
western Alaska.  
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Figure 3.29. Portions of each of the study floodplains contrasting the Kol (A) without 
beavers and the Kwethluk (B) with 80 percent of the off channel habitats dammed by 
beavers. Dark blue = main channel, Green = beaver-free spring brooks, Orange = beaver-
influenced spring brooks, Light blue = early-successional ponds, Yellow = mid-
successional ponds, and Red = Late-successional ponds.  
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Figure 3.30. Proportion of fish species in the various off-channel habitat types on the Kol 
(A) and Kwethluk (B) Rivers. Data are means of samples from 2004-2011 (Kol: main 
channel, n=12; tributaries, n=4; parafluvial spring brooks, n=5; orthofluvial spring 
brooks, n=5. Kwethluk: main channel, n=11; tributaries, n=3; parafluvial spring brooks, 
n=11; orthofluvial spring brooks, n=6; beaver-influenced spring brooks, n=6; early-
successional ponds, n=9; mid-successional ponds, n=4; and late-successional ponds, n=5. 
Species included rainbow trout (Oncorhynchus mykiss), coho salmon (O. kisutch), 
Chinook salmon (O. tshawytscha), chum salmon (O. keta), sockeye salmon (O. nerka), 
Dolly Varden (Salvelinus malma), three-spined stickleback (Gasterosteus aculeatus), 
ninespine stickleback (Pungitius pungitius), lamprey (Lampetra spp.), cherry salmon (O. 
masou), pink salmon (O. gorbushcha), white spotted char (S. leucomaenis), arctic 
grayling (Thymallus arcticus), slimy sculpin (Cottus cognatus), round whitefish 
(Prosopium cylindraceum), and Alaska blackfish (Dallia pectoralis).  
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Figure 3.31. Density (± 1 SE) of all salmonids (totals) and Chinook and coho in main 
channel (M.C.), tributary, parafluvial spring brook (PFSB), and orthofluvial spring brook 
habitats (OFSB) for the Kol (A) and the Kwethluk (B) Rivers. T-tests contrasting habitat 
types were significant at p< 0.05. 
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Figure 3.32. Mean (± 1 SE) batch growth rates (mass per day) from June-August of 
unmarked coho sampled in habitats on (A) the Kol and (B) Kwethluk Rivers (main = 
main channel shallow shorelines, trib = tributaries, PFSB = parafluvial spring brooks, 
OFSB = orthofluvial spring brooks, BSB = beaver-influenced spring brooks, Early = 
Early-successional beaver ponds, and Mid = Mid-successional beaver ponds).  
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Figure 3.33. Percent daily growth (in mass and length, data are means ±1 SE bars) from 
June through August of juvenile coho reared within enclosures on the Kwethluk River in 
five different habitat types: MC = main channel, BSB = Beaver-influenced spring brooks, 
EP = early-successional beaver ponds, LP = Late successional beaver ponds (n = 3 for 
each habitat). Tukey HSD tests contrasting habitat types were significant at p< 0.05. 
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Figure 3.34. Mean (±1SE) juvenile salmon biomass produced per unit area for off 
channel floodplain habitats in (A) the Kol and (B) the Kwethluk. (PFSB = parafluvial 
spring brooks, OFSB = orthofluvial spring brooks, SB = beaver-free spring brooks, BSB 
= beaver-influenced spring brooks, EP = early-successional beaver ponds, MP = mid-
successional beaver ponds, and LP = late-successional beaver ponds) 
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Figure 3.35. The total number of juvenile coho and Chinook reared in floodplain habitats 
for (A) the Kol River, and (B) for the Kwethluk River with beavers currently, and 
estimations if beavers were removed. Note the scale of Kol graph is six times larger than 
that of the Kwethluk. 
 

 

 
 

 

 

 

183 
 



 

MAJOR CONCLUSIONS FROM EACH CHAPTER 

Chapter 1: Beavers (Castor canadensis) influence habitat availability and use by 
macroinvertebrates and juvenile salmon in a large Alaskan River floodplain 

• By damming spring brooks beavers significantly modified a large alluvial 
floodplain of the Kwethluk River, with 87.5% of the entire off-channel aquatic 
habitat being composed of beaver ponds and beaver-influenced spring brooks. 

• Three successional stages of ponds were present on the floodplain as a result of 
vegetation succession following initial impoundment of spring brooks. Early-
successional ponds were generally closer to the main channel and had high 
synchrony values (closely tracking water fluctuations in the main channel), while 
mid- and late-successional ponds were farther from the main channel with more 
dams blocking aquatic routes and were highly variable in flood response relative 
to the main channel. 
 

• Physical characteristics were similar among different successional stages of 
beaver ponds and among different types of spring brooks (by NMDS ordination), 
indicating that all habitat types were suitable rearing habitats for juvenile salmon. 

• Aquatic macroinvertebrate communities differed between beaver ponds and 
spring brooks with significant differences in species space (by NMDS ordination) 
driven by the importance of larval mayflies and stoneflies in spring brooks, while 
cladocerans, snails, copepods, and freshwater clams were dominant in beaver 
ponds.  
 

• The presence of different types of beaver modified habitats on the floodplain 
altered the distribution and habitat use of juvenile salmon. Total species and 
salmon species richness was 2-3x higher, the proportion of fish captured in sites 
that were young-of-the-year was over 50% compared to <5%, and densities of 
juvenile salmon were 5-7x higher in spring brooks and early-successional beaver 
ponds compared to late-successional ponds. 

• Beaver ponds had different water level patterns relative to the main channel and 
spring brooks. Early-successional ponds had high hydrologic synchrony values 
(closely tracking water fluctuations in the main channel), while mid- and late-
successional ponds, being farther from the main channel with more dams blocking 
flow paths, had lower and highly variable synchrony values. 

• Almost no movement of juvenile salmon past dams occurred at base flow. 
However, summer and fall flooding mediated movement past dams, allowing 
individuals to “escape” ponds or enter ponds to rear overwinter. 
 

• Beavers reduced habitat connectivity and added variability to macroinvertebrate 
assemblages within habitats by damming floodplain spring brooks, which are 
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extremely important rearing areas for juvenile salmon in rivers that do not have 
beavers. Nonetheless, juvenile salmon were able to effectively inhabit and move 
between early-successional ponds and spring brooks in the Kwethluk, though the 
presence of beaver dams strongly limited the use of late-successional ponds on the 
large alluvial river floodplain. 
 

Chapter 2: Juvenile salmonid growth, survival, and production in a large river floodplain 
modified by beavers (Castor canadensis) 

• Beavers increased the growth rates of young-of-the-year coho and Chinook in 
early-successional beaver ponds compared to both beaver-influenced and beaver-
free spring brooks (3.1 ± 0.1 vs. 1.83 ± 0.14 and 2.0 ± 0.3 %mass/day for coho 
and 1.8 ± 0.08 vs. 0.93 ± 0.16 and 1.35 ± 0.32 %mass/day for Chinook) 
 

• Different growth rates resulted in larger coho parr being produced in early-
successional beaver ponds by September than both types of spring brooks, even 
though juvenile coho started out at similar sizes in June. 
 

• Despite higher growth rates and lower densities in ponds, survival rates were 
consistently highest in beaver-free spring brooks compared to both early-
successional ponds and beaver-influenced spring brooks. 
 

• Similar movement rates occurred from spring brooks into beaver ponds and from 
beaver ponds into spring brooks, both of which were lower than emigration rates 
out of spring brooks into the main channel complex (1-5% vs. 10-25%).  
 

• Ponds produced a greater biomass of juvenile salmon than either type of spring 
brook (175 vs. 149 and 140 kg), but reared only about half the individuals that 
reared in beaver-free spring brooks (24,100 vs. 41,400).  
 

• I found that juvenile salmon were able to survive overwinter in beaver ponds 
under almost a meter of ice, suggesting that ponds are not “sinks” for juvenile 
salmon production.  
 

• If beavers were not present and all springbrooks were free flowing, I calculated 
that slightly less biomass would be produced from the parafluvial zone of the 
floodplain but 1.5-2x more individuals would be reared, showing that beavers 
may limit production from the parafluvial zone of the floodplain. 
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Chapter 3: Beavers reduce habitat connectivity and salmon productivity in expansive 
river floodplains 

• Species richness was similar by habitat type in the Kol River (without beavers). In 
contrast, species richness of all fish and of salmon differed by habitat type for the 
Kwethluk River (with beavers), with twice as many total species and salmon 
species in parafluvial spring brooks and early-successional beaver ponds in the 
parafluvial zone versus late-successional beaver ponds in the orthofluvial zone 
(8.5 ± 1.9 and 7.3 ± 1.2 vs. 3.8 ±1.1; 3.7 ± 0.5 and 3.7 ± .4 vs. 1.8 ± 1.3).  
 

• Salmon density was similar by habitat type in the Kol (without beavers). 
However, in the Kwethluk coho densities were 8-12x higher in off-channel spring 
brooks than the main channel and Chinook densities were up to 2x higher in 
parafluvial spring brooks than other habitats. 
 

• Because species richness, densities and growth were similar among habitats in the 
parafluvial and orthofluvial zones in the Kol River I inferred that if beavers were 
not present in the Kwethluk River than all floodplain habitats would be free 
flowing spring brooks that would be utilized by salmon (in both the parafluvial 
and orthofluvial zone). 
 

• Through an enclosure experiment I found that late-successional ponds in the 
orthofluvial zone successfully reared juvenile salmon (growth rates were similar 
to all other habitats), suggesting that underutilization of late-successional ponds 
may be due to problems of habitat access vs. habitat quality.  
 

• I estimated that if beavers weren’t present on the Kwethluk floodplain that there 
could be twice as much biomass produced between June-August (1174 vs. 667kg) 
and three times more salmon could be reared on the floodplain (370,000 vs. 
140,000). 
 

• Compared to the Kwethluk the Kol can produce an order of magnitude greater 
biomass (2692 kg in just two months), and rear almost 40x more juvenile salmon 
from floodplain habitats. Even if beavers were not present on the Kwethluk, the 
Kol could still produce 5 times the biomass and rear 14x the individuals.  
 

• Therefore, I conclude that presence of beavers may limit the production potential 
of large alluvial river floodplains, especially at high escapement levels. However, 
the Kol is still more productive, likely due to the 1-2 orders of magnitude higher 
escapement levels that the Kol receives.   
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Synthesis 

Beavers modified the majority of the off-channel habitat of a large alluvial river 
floodplain. This resulted in a mosaic of different successional stages of beaver ponds that 
were similar in physical characteristics, but strongly differed in physical and hydrological 
connectivity to the main channel. The presence of beaver modified habitats strongly 
influenced the distribution and densities of juvenile salmon on the floodplain. By 
combining the total area of each habitat type with differences in habitat specific growth 
rates and fish densities I found that the presence of dammed habitats limits the production 
potential of the floodplain. Primarily this occurred because late-successional ponds in the 
orthofluvial zone were effectively removed as rearing habitat for juvenile salmon, 
shrinking the usable portion of the floodplain. Additionally, densities were lower in early-
successional beaver ponds, resulting in a lower biomass per unit area being produced in 
ponds compared to spring brooks in the parafluvial zone. By comparing the ecology of 
juvenile salmon in parafluvial and orthofluvial habitats of the Kol River, without beavers, 
I inferred that juvenile salmon would utilize the entire floodplain (i.e. both parafluvial 
and orthofluvial spring brooks) of the Kwethluk River if beavers were not present. 
Beavers are part of the North American landscape and their modification of off-channel 
floodplain rearing habitats may in part result in lower production potentials for North 
American rivers as compared to far eastern rivers without beavers. However, the large 
difference in production and the number of juvenile salmon rearing in the Kwethluk vs. 
the Kol floodplain is likely driven by the large difference in availability of returning adult 
spawners and associated marine derived nutrient inputs into the basin.  

 


