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ABSTRACT:  Host associated systems are of particular interest to many microbiologists 
because invasion of these systems can lead to disease.  One important host-associated 
systems is the intestinal microbiome, but in many studies, including those on 
pathogenesis, this system is represented by samples from one location (generally the 
feces or cecum). This body of work was initiated in part because I wondered why a large 
and diverse ecosystem was being was being represented by samples from only one 
habitat.  
  The biogeography of living organisms has an impact on landscape ecology studies, 
including those in the field of invasion ecology. Despite several studies that specifically 
investigate the biogeography of the intestinal microbiome, there has been a general 
failure to describe the luminal biogeography of the lower intestinal tract, primarily due to 
“noise” introduced by inter-subject variation. Herein, the biogeography of the mouse 
lower intestinal tract was mapped using novel techniques to overcome problems caused 
by inter-subject variance.  These techniques were then used to reveal nuances of invasion 
in the lower intestine by Clostridium difficile.  
  C. difficile is an invader of the intestinal microbiome that is well-known for its ability to 
cause disease following antibiotic treatment.  I observed large changes with the 
introduction of antibiotics to this system, resulting in a series of “blooms” of various taxa, 
most likely an indication of successional changes due to the effects of antibiotics.  I also 
found that without antibiotic treatment, C. difficile, is still associated with changes in the 
intestinal microbiome. This is an important development, as it suggests that small 
changes associated with normal colonization by introduced species may be compared 
with range expansion by the same species. 
  This body of work was primarily done in order to apply ecological theory to 
microbiome studies and in doing so gave rise to new techniques and new methods of 
looking at systems.  It is my hope that these advances will result in contributions both to 
investigations of the intestinal microbiome as an ecological system as well as how as it 
relates to disease. 
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Chapter 1:  Introductory Overview of Biogeography and Invasion in the 
Mouse Intestine 
 

Introduction: 

Studying biogeography and invasion in a host-associated community system is 

important for several reasons:  First of all, host-associated microbial communities (also 

called microbiomes) are colonized through natural processes and exhibit features of 

biogeography, invasion, and other ecological developments, and therefore are excellent 

model systems for examining basic ecological concepts at relatively small spatial and 

temporal scales.  In addition, host–microbiome systems can be manipulated and 

replicated more readily than can most other ecosystems.  Finally, these systems are 

relevant not only as ecosystem models, but medically as well, potentially leading to new 

therapeutics, prebiotics and probiotics to maintain host health and protect against 

invasion by pathogens.  This manuscript is an attempt to provide a more detailed picture 

of the biogeography and invasion of the intestinal microbiome. 

 

Glossary: 

Microbial ecology integrates two disciplines:  microbiology and ecology and 

microbial ecologists often try to employ key concepts and principles from general 

ecology to facilitate understanding of microbial systems.  These two disciplines often 

have differing definitions for the terms used to describe biogeography and invasion.  In 

part, this is because the history of microbiology in many ways is synonymous with that of 

medicine. In addition, microbes differ in many ways from macroorganisms.  For instance, 
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they have shorter generation times, propagate differently from and are disseminated 

differently from macroorganisms.  Because the body of work presented in this thesis 

seeks to explore how the mouse intestinal microbiome can be used as an ecosystem 

model, some ecological terms need to be contextually or operationally defined to 

understand how they apply to microbial systems: 

 

Biogeography:  Patterns of species abundance and distribution over space and time are 

commonly called biogeography.  Thus, populations rather than communities are 

associated with biogeography.  Here, because of the manner in which microbial 

communities are sampled and compared, using next generation sequencing techniques to 

identify community members together, the term, biogeography will be applied on the 

community level.  There is some precedence for this with regard to systems in which the 

authors refer to community biogeography or to biogeographical provinces (Costello et al., 

2009; Follows et al., 2007; Udvardy, 1975). 

Microbiome: The term “microbiome” has been used to mean the total genetic component 

of the microorganisms associated with a host species (Hooper and Gordon, 2001).  It has 

also been used to denote a characteristic microbial community associated with a specific 

habitat that has distinct physicochemical properties (Whipps, 1988).   This manuscript 

examines only the bacterial communities associated with specific locations within the 

host (i.e. within specific compartments and sub-compartments of the mammalian lower 

gastrointestinal tract), thus the term “microbiome” will be used hereafter to denote 

bacterial communities that fit the latter definition. 
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Invasion:  The fields of ecology and microbiology have differing definitions of what 

constitutes invasion.  At this time, the most common ecological definition is that invasion 

is “the incursion of a novel organism in an ecosystem outside its host range and generally 

propagated by humans” (di Castri, 1990).  Thus, an invasive organism is by definition, 

not a native (di Castri, 1990; Lockwood, 2013).  In microbiology, the definition of 

invasion is that an organism must invade host tissues (Silva, 2012).  Thus an invader 

could potentially be an organism native or endemic to an environment that invades a host 

also living in that environment (Ribet and Cossart, 2015; Todar, 2005).  Additionally, as 

the term “colonization” merely implies the ability to live on and adhere to a host, both 

native and non-native microbes can colonize a given host, which can itself be thought of 

as an ecosystem. However, the first definition of invasion given above fails to integrate 

basic ecological theory regarding dispersal and colonization (succession) of a new 

environment by either natives or exotics (Davis et al., 2001).  It also fails to account for 

natives (such as beavers or honey mesquite trees) that successfully expand their native 

ranges to become successful “invaders” in new areas adjacent to their former native range 

(Clements, 1991; Thompson et al., 1995; Wilson et al., 2001).  Here, the ecological 

definition of ‘invasion’ will be integrated with basic community ecology to describe an 

organism, native or non-native that is able to successfully colonize the intestine and 

expand its range.  Thus, in strictly medical terms Clostridium difficile is not invasive, but 

by ecological definition, with respect to the mouse intestinal microbiome, it is an invasive 

organism that is native to the intestine and may still successfully invade a new host or 

specific environment within the host intestinal tract.   
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Microbial Biogeography on Living Hosts: 

General ecological theory predicts that different environments will select for 

different communities (Baas-Becking, 1934; Pocheville, 2015), producing patterns of 

species abundance and distribution that we call biogeography.  Microorganisms have 

their own levels of community organization within environments that that may otherwise 

be abiotic, or may intersect with other living organisms.  In common with other 

organisms, microbes disperse to environments in which they can live and multiply,  The 

resulting patterns of distribution of microbial taxa (whether at species or higher levels, or 

even operationally defined) are the biogeography of microorganisms.   

There are many microbial ecologists who might be surprised to hear that the 

concept of microbial biogeography is controversial (O'Malley, 2008; Whitfield, 2005).  

After all, species of microbes have differential distributions and some species cannot be 

found in some environments.  Environmental factors affect microbes in a similar manner 

to the way they affect other organisms; however many biogeographers consider that 

biogeography is not just the study of how species are distributed at any given time, but 

must take into account the manner in which species dispersed and other geological, 

geographical and environmental factors affecting dispersion, endemicity and speciation 

(Fontaneto and Brodie., 2011; O'Malley, 2008).   

Classical biogeography is the study of how organism dispersal is affected by 

geological features (Fontaneto and Brodie., 2011).  Several studies have found that free-

living microbes appear to be ubiquitous, with environmental factors not appearing to 

limit their dispersal (Finlay, 2002; Gibbons et al., 2013; MacDonell and Colwell, 1984).  
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This suggests that they are evenly dispersed and only environmental selection determines 

distribution.  Thus, in terms of endemicity and speciation, there would be no 

biogeographical distribution of microbial organisms. These arguments are based in part 

on several studies done in aquatic systems (Finlay, 2002; Gibbons et al., 2013).  

Conversely, several studies also carried out in aquatic systems, have reached 

contradictory conclusions (Ghiglione et al., 2012; Hambright et al., 2015) finding that 

microbes are not necessarily ubiquitous and there are dispersal patterns indicating 

endemicity within specific areas. 

 Thus, microbes present a challenge to biogeographers.  Their lineages are very old 

and they disperse easily, making it difficult to apply a dispersal pattern to modern species 

distributions.  Because many microbes are considered ‘cosmopolitan’, it is difficult to 

determine whether geographical features are even factor in their distribution.  Speciation 

is in microbial taxa is likewise difficult to determine due to horizontal gene transfer as 

well as the other attributes listed above (Rout, 2011).   

Biogeographical analyses of microbes have also been hampered by problems of 

scale.  A majority of the studies purporting to look at the biogeography of 

microorganisms do so at a human, or even super-human scale (Achtman, 2008; Finlay, 

2002; Follows et al., 2007; Ghiglione et al., 2012; Hambright et al., 2015) rather than at 

the more intimate scale of the microorganisms themselves, where barriers for dispersal 

and distribution patterns might be more apparent.  Analyses of the biogeography of 

microorganisms are further confounded by under-sampling, which stem from the inability 

to access the full diversity of any particular environment and the difficulty of identifying 

(i.e. classifying) many microorganisms found down to the species level. 
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Considering a living terrain as being composed of similar barriers to dispersal as a 

geological terrain is not a typically a consideration of biogeographers, but host associated 

microorganisms appear to demonstrate the existence of microbial biogeography.  Most 

host organisms start by being either sterile or lightly colonized (Favier et al., 2002; 

Mitsuoka, 1996; Schaedler et al., 1965; Todar, 2005).  This situation provides a perfect 

model for exploring the processes leading to biogeography, as any microbe that colonizes 

a new host must first disperse to that host, and then disperse on or within the host. 

There are a number of suggested instances of how microbial biogeography applies 

to microbes living on other organisms (Achtman, 2008; Costello et al., 2009; Leff et al., 

2015).  It has been known for a long time that particular pathogens prefer certain 

environments.  Tuberculosis affects the lungs.  Clostridium difficile Associated Disease 

(CDAD) primarily affects the colon, while Klebsiella and Shigella prefer the environment 

of the small intestine.  Examining how pathogens interact with a host on the scale of the 

individual host demonstrates that biogeography plays a part in host – microorganism 

interactions.  Differential distributions of microbial pathogens associated with a host 

organism provide fundamental evidence that microbial biogeography exists and is 

important.  Microorganisms are separated from the majority of the hosts’ systems by a 

variety of physical and physiological barriers.  If a barrier is breached, then the 

microorganism can, in theory, move throughout the host.  Thus the host provides barriers 

in a similar manner to the barriers that exist to dispersal in the macro-environment.  

Beyond physical barriers to dispersal, it appears that there are preferred environments on 

or within the host, which microbial taxa find to be most optimal for their persistence.  
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Both physical barriers and preferred niches determine what communities exist both on 

different host organisms and also in different areas of a host organism (Todar, 2005). 

While nutrient type and availability varies along the intestinal tract and has been 

considered to be a major factor driving microbial distribution (Gonzalez et al., 2011), 

there are other environmental factors that may limit or aid microbial dispersal in this 

system.  Some of these include pH, the physical conformation of the gut, peristalsis, 

water and oxygen availability, as well as secretions from the host.  These factors, as well 

as others comprise the barriers and niches that determine how far a microorganism will 

be able to disperse within the intestine and thereafter provide an environment that selects 

for those microorganisms best able to persist.  Thus, microbiomes provide examples that 

free-living microorganisms can disperse and are prevented from doing so by 

environmental factors that are both biotic and abiotic.  As such, microorganisms should 

be considered to exhibit biogeography.   

 

 

The Microbial Biogeography of Mammals 

In the last two decades, new tools have been developed that have revolutionized 

the field of microbial ecology.  These techniques, which include new bench methods, 

computational tools and sequencing platforms, have expanded our knowledge of bacterial 

genetic and biochemical diversity and given us new insights into production of useful 

natural products, effects of bacterial communities on climate change, and biodegradation 

of harmful materials, as well as the potential health benefits from understanding roles and 

activities of the microbes that are host-associated.  The health benefits to be derived from 
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understanding the human microbiome have been considered so potentially important that 

The National Institutes of Health (NIH) established the 5 year Human Microbiome 

Project (HMP) to investigate the impacts that the bacteria that live on and inside us have 

on our health (NIH HMP Working Group, 2009). 

The HMP and other studies have sampled a variety of systems on and in humans 

and other animals.  The basic considerations concerning biogeography from the 

microbiome of any physiological system can be applied to all of them.  Most 

biogeographical studies focus on the skin, oral and intestinal microbiomes.  Studies using 

animal models also focus on those microbiomes.  For that reason, only a short synopsis of 

the skin and oral microbiomes are covered here.   

 

Population and Small Group Oriented Studies of Biogeography  

With the advent of culture independent studies to examine cross-sections of host 

associated bacterial communities, the idea of studying community biogeography of the 

host-associated landscape has become popular.  Despite this, there are many 

biogeographical studies of the mammalian microbiome that use culture techniques to 

identify bacterial distribution patterns (Dubos and Schaedler, 1964; Keith et al., 1979; 

Lloyd et al., 1979; Montes and Wilborn, 1970).  Of necessity, these examined the 

distribution of populations, or at most small groups, across the landscape provided by the 

host.  In addition, there have been several studies done that use culture independent 

techniques such as Fluorescence in Situ Hybridization (FISH) to look at the biogeography 

of small groups of microbes or populations of one species in situ within the lower gut 

(Sarma-Rupavtarm et al., 2004; Swidsinski et al., 2005a; Swidsinski et al., 2005b).  These 
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types of studies examined only small groups of bacterial taxa so they had an advantage 

that many later studies do not – They naturally eliminated the noise that is produced by 

analysis of a complete community.  These population studies showed that there are 

differences in species patterns between different areas of the body, including distinct 

locations of the lower intestine in both humans and mice (Dubos et al., 1965; Sarma-

Rupavtarm et al., 2004; Schaedler et al., 1965; Swidsinski et al., 2005a; Swidsinski et al., 

2005b; Zilberstein et al., 2007).   

Studies of the skin have distinguished between locations on the skin, as well as 

community differences due to the variety of niches that exist, such as hair/fur or 

sebaceous glands (Keith et al., 1979; Lloyd et al., 1979; Montes and Wilborn, 1970).  In 

the oral cavity, distribution patterns have been shown to vary between the gingival 

plaque, the sub-gingival plaque, the teeth and other areas of the oral cavity (Gibbons and 

Van Houte, 1975; Minah et al., 1985; Van Houte et al., 1972).  Although the intestinal 

tract is less accessible than either the skin or the mouth, its biogeography has also been 

explored using these methods (Sarma-Rupavtarm et al., 2004; Swidsinski et al., 2005a; 

Swidsinski et al., 2005b; Zilberstein et al., 2007).  Mouse studies were among the first to 

confirm that the stomach has a microbiome and described differences in the microbiomes 

of discrete areas of the intestine (Dubos et al., 1965).  The mouse studies are interesting 

in that they not only include culture-based methods but also include a variety of 

histochemical and microscopy protocols, including FISH.  The FISH studies have been 

done more recently and sought to look at microbiome biogeography in situ within the gut.   

The first of these studies was done using mice (Swidsinski et al., 2005a), but the 
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technique has proven strong and has since then been used to distinguish between disease 

states in humans in conjunction with colonoscopy (Swidsinski et al., 2005b).   

The main problem with the above techniques is that relatively few taxa can be 

explored.  The culture-based methods suffer because only a minority of all environmental 

microbes can be cultured, even from within the gut.  The FISH-based protocols suffer 

from the same problem, but with those methods, the problem is that a limited number of 

probes can be used without the probes interfering with one another.  At this time, the 

limit is 6 – 12 organisms, but it is hoped that combinatoric techniques combined with 

better computational algorithms will enable more taxa to be investigated in situ (Valm et 

al., 2012).  Despite this limitation, such techniques are useful for exploring the 

biogeography via bacterial populations of host-associated microorganisms. 

 

Community Oriented Studies of Biogeography 

The skin microbiome 

As culture independent techniques have developed and become less expensive, 

they have become popular.  They allow community analyses, on several levels such as 

population studies in situ using FISH (mentioned above), shot-gun analyses of potential 

functions, RNA analyses of gene expression and 16S rRNA (16S) analyses which give a 

“snapshot” of the community at a specific place and time.  These methods have all been 

used to examine the mammalian microbiome.   

One important lesson taken from these types of studies that have been done is that 

there is no definition of a healthy microbiome (Proctor, 2011).  Instead, the definition of 

what is healthy for a host seems to vary between individuals, including identical twins 
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(Arumugam et al., 2011; Turnbaugh et al., 2009a).  The HMP and other community 

studies have also reaffirmed what earlier studies had demonstrated – that different sites 

on the body have different bacterial communities (Costello et al., 2009; Ding and 

Schloss, 2014).  Thus any one community on an individual host is specific to that host, as 

well as being specific for that location on the host.  The definition of a healthy 

microbiome is highly individual and needs to be considered for the goals of personalized 

medicine.  Indeed, medicine cannot only address how host genetics affect uptake of 

drugs, but must consider effects of the host’s microbiome as well (Swanson, 2015).  

Despite this, the HMP and other studies have shown that it is possible to discern 

characteristics of disease states (Keku et al., 2014; Miyake and Yamamoto, 2013; 

Proctor, 2011; Rolig et al., 2013; Turnbaugh et al., 2009a).  Some continuing concerns 

include whether a more diverse community protects the host from disease and if so what 

type(s) of disease, whether there are markers specific to the microbiome that delineate 

disease states/types and whether all changes to the host are reflected in its microbiome.  

These questions are dependent on the host landscape and therefore on the biogeography 

of the microbiome. 

Our understanding of the biogeography of the skin microbiome and the oral 

microbiome benefited greatly from the HMP and other studies both associated with and 

independent of the HMP.  Because both the skin and oral microbiomes can be accessed 

fairly easily, biogeographical studies have been fairly common.  Studies of the skin have 

shown that there are a variety of environments on the skin surface that support their own 

communities and differ from one another due to differing environments.  In addition 

specialized small niches of the skin have been explored and compared such as the skin 
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surface, sebaceous glands, sweat glands and hair follicles on both humans and mice and 

were found to have bacterial communities that differ from one another in many ways 

(Costello et al., 2009; Grice et al., 2009; Oh et al., 2014; Schommer and Gallo, 2013).  

Oh et al., taking a metagenomic approach, describe differences in bacterial, viral 

and eukaryotic communities at different locations and niches provided by the skin (Oh et 

al., 2014).  In particular, the sebaceous environment has a much greater viral component 

than do the other locations sampled, while the dry and moist environments seem to be 

more diverse than either the sebaceous or toenail environment.  The latter could be seen 

as specialized environments that select for specific community elements.  The 

populations of bacteria commonly found in most environments on the skin appear to have 

strain heterogeneity in the populations sampled across the landscape.  In addition, 

differing communities also appear to have different functional potentials within the 

different environments – something that has not been suggested in other studies (Oh et 

al., 2014).  

Recently, mass spectrometry in conjunction with 16S rRNA data has been used to 

build a landscape of microbial metabolites, human metabolites and the skin microbiome.  

This technique was used to look at approximately 400 sites on two subjects, making the 

sampling sites more continuous than in previous studies.  One goal of the study was to 

correlate the microbiome with metabolites on the skin and build a 3D landscape giving 

the biogeography of the microbiome with regard to byproducts produced by bacteria on 

the skin.  The group was not able to correlate community differences with metabolite 

differences, but they were able to associate some genera with metabolites on the skin 

surface.  While it is still in its infancy, this technique shows great promise with regard to 
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being able to connect bacteria to their immediate environment; however a major problem 

with this type of study is the amount of computational effort needed (Bouslimani et al., 

2015). 

 

Oral microbiome  

The oral cavity, or mouth, includes several distinct microbial habitats, such as 

teeth, gingival sulcus, attached gingiva, tongue, cheek, lip, hard palate, and soft palate. 

Similar results to studies on the skin have been obtained with differing communities 

found in different habitats (Dewhirst et al., 2010; Segata et al., 2012).    

Groups studying the oral microbiome have developed several interesting 

techniques for both laboratory work and analysis.  The first is that of Combinatorial 

Labeling and Spectral Imaging (CLASI) FISH in which two or more FISH probes are 

assigned to the same taxa and then combined during imaging analysis to discriminate 

between taxa in situ.  This allows FISH of more than 6 phylotypes at one time (Valm et 

al., 2012).  This technique, while promising, is still in early stages of development.  

Another technique, called oligotyping, allows discrimination of taxa at the strain level 

using the 16s rRNA gene.  This technique is computational and was developed to get a 

resolution of taxa that goes beyond the genus level.  Oligotyping uses the information 

that species and strain differences are generally associated with one area of the gene, 

while sequencing errors will be randomly distributed.  This technique has been used to 

distinguish between hundreds of oral phylotypes, many of them at a species level or finer.  

Although, this still limits the number of taxa that can be identified at the species level, it 

allows the distribution of those species to be mapped (Eren et al., 2013).   
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In addition to the above techniques that are associated with sequence-based 

methods, a multivariate statistical approach to determining whether there are significant 

differences between communities has been developed. This technique is based on the 

consideration that Operational Taxonomic Units (OTUs) from microbial communities 

conform to a dirichlet distribution (Holmes et al., 2012).  This technique can be used to 

test differences in treatments (such as location or disease).  It also is used for power 

analyses that define the minimum number of subjects necessary to discriminate between 

treatments (La Rosa et al., 2012).  In fact, power analyses done in this study showed that 

20+ subjects would be needed to discriminate between locations in the oral cavity.  As 

the community differences between locations appear to be stronger for the oral 

microbiome than the lower intestine, this implies that at least that many subjects should 

be used for intestinal studies as well.  While this technique can be used for power 

analyses and hypothesis testing, it does not contain information about how communities 

differ from one another.  

The skin and oral microbiomes have been sampled extensively.  The communities 

have been identified down to the genus level and the biogeography of these areas 

explored in detail.   In many cases, microbiome members have been identified down to 

the strain level, but this has been possible only for some community members.  Other 

areas of the body that require invasive techniques, have seen less progress both on 

discriminating between locations and gaining a finer taxon resolution.   One of these is 

the intestinal microbiome. 

 

Biogeography of the Intestinal Microbiome 
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One of the mammalian microbiomes of primary interest is located within the host 

organism – the intestinal microbiome.  The intestinal microbiome is considered so 

significant that the greatest number of returns from a search for “mammal and 

microbiome” on PubMed are articles on the intestinal microbiome (~7,500), and it has 

been suggested that it acts as a separate major organ within the host (Marchesi et al., 

2015; Seksik and Landman, 2015; Swanson, 2015).  In fact, recently some authors have 

used the term “human microbiome” (which refers to all environments on a human host) 

to mean the intestinal microbiome only (Beasley et al., 2015; Shen and Clemente, 2015).  

Yet we still don’t have a good understanding of the composition and spatial organization 

of the various bacterial communities that make up the intestinal microbiome and how 

they are affected by exposure to allochthonous (introduced from outside) bacteria. 

 There are several reasons why our knowledge of the biogeography of intestinal 

microbiome has lagged behind that of other areas of the body.  Some of these include 

that: 1. Fecal samples have been considered to be representative of the entire 

microbiome; 2. Samples other than fecal samples are generally much more difficult to 

obtain, requiring invasive techniques and extra expense in both humans and animal 

models; 3. Microbiome compositional  differences (especially in the lower intestine) are 

swamped by ‘noise’ resulting from intersubject variation; and 4. Useful techniques for 

winnowing through the datasets to pick out relevant aspects of the information have 

lagged behind the techniques for generating large datasets.  This has resulted in an 

incomplete picture of the biogeography of the human intestinal microbiome (Costello et 

al., 2009; Ding and Schloss, 2014; Segata et al., 2012), as well as for the intestinal 

microbiomes of several promising animal models (Isaacson and Kim, 2012; Turnbaugh et 
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al., 2009b; Yasuda et al., 2015).  Further, this truncated picture of the biogeography of 

the intestinal microbiome likely affects our understanding of how bacteria that pass 

through the gut (i.e. transient populations) function to digest food, interact with more 

permanent members of the microbiome (i.e. resident populations) and potentially invade 

habitats within the gut. 

 It has been shown that the intestinal microbiome is a major barrier to colonization 

by bacterial pathogens (Stecher et al., 2013).  In addition, it is established that pathogens 

have preferred locations within the intestine to invade (Aktan et al., 2007; Hoffmann et 

al., 2009), probably due to several factors, one of which may be variation in the intestinal 

microbiome by location.  Thus, it has been suggested that the biogeography of host-

associated bacteria needs to be delineated in order to examine the factors that contribute 

to colonization resistance, community changes due to both pathogens and non-pathogens, 

and better use of therapeutics (especially pre- and probiotics) (Costello et al., 2009).  

That community differences in different locations of the intestine exist is 

suggested by the environmental differences that exist between different sections of the 

intestine.  Changes in metabolites, nutrients and moisture content are visibly evident 

throughout the intestinal tract including the lower intestine.  For instance, within the 

colon, digesta enter the colon as liquefied slurry but by the time the digesta exit the colon 

in most healthy mammals, it has solidified.  There are color changes as well, indicating a 

different chemical compostion.  pH also changes within the colon, with pH increasing 

from the proximal colon to the distal colon (Kawamata et al., 2006; Kohl et al., 2013).  

Thus, it should be possible to map community differences that occur with these changes.  

Nonetheless, this has yet to be achieved for the lower portion of the intestinal tract.  Most 
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microbiome studies of the intestinal tract only examine one site as a proxy for the lower 

intestine because invasive techniques are needed to investigate the biogeography of the 

intestinal microbiome.  The most popular sampling sites are the feces (humans, mice, 

wildlife), the tip of the cecum (mice) and the cecum (mice) (Arumugam et al., 2011; Cani 

et al., 2007; Ding and Schloss, 2014; Ley et al., 2005; Ley et al., 2008).  Stool samples in 

particular are commonly used to represent the lower intestinal microbiome as a whole 

because they are easy to sample and inexpensive.  While stool samples can and should be 

used to distinguish between broad health and disease states, there are other types of 

studies for which they are not so well suited.  Studies that examine interactions within the 

microbiome, between the host and the microbiome or the microbiome and invasive 

organisms, should not use stool samples, as detailed analysis of either invasion or disease 

states are dependent on the biogeography of the intestinal microbiome (Costello et al., 

2009; Schubert et al., 2015).   

Eckburg (2005), based on characteristics of biopsies recovered during 

colonoscopy of healthy people indicated that the bacterial biogeography of the human 

colon appeared to be patchy and heterogenous (Eckburg et al., 2005), but human studies 

have suffered from several problems.  One is that samples can only represent a small 

portion of the contents of the human intestine, or for that matter the mucosal layer.  

Another is that biogeographical studies use biopsies recovered during colonoscopy as 

samples.  The preparation for colonoscopy requires purging of the intestinal contents 

using substances that are somewhat inflammatory.  There is some evidence that this type 

of inflammation may change the composition of the intestinal microbiome (Jalanka et al., 

2015).  Finally, the process of getting samples from humans is highly invasive and 
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expensive, so most human studies are small (for instance the study by Eckberg et al 

above, has only 3 subjects), thereby automatically not allowing for discrimination 

between contiguous sites due to noise caused by intersubject variation (La Rosa et al., 

2012).  

Several recent studies of the human intestinal microbiome have been done that 

examine the biogeography of the lower intestinal tract.  One of the studies sampled the 

cecum and rectum of 9 healthy subjects and also compared the lumen of the intestine to 

the mucous layer and epithelial layers using terminal restriction fragment length 

polymorphism (T-RFLP).  This study found no differences in communities longitudinally 

but did find differences between luminal and mucosal communities (Lavelle et al., 2013).  

Two other studies with 10 healthy subjects apiece purported to find differences in 

communities located along the intestine.  One of these used a variety of statistical 

techniques but the results were not convincing (Zhang et al., 2014).  The second used 

correspondence analysis to examine differences based on location in the intestine as well 

as differences due to sex.  While they found differences longitudinally within the 

intestine, the results merely state that certain genera and/or families are different between 

communities without showing clear differences (Aguirre de Carcer et al., 2011). 

Despite advances in mouse and animal models as well as sampling techniques, 

very few animal studies have been done that examine the lower intestine in detail, taking 

samples both within compartments as well as between compartments.  One mouse study 

took 1cm samples from the stomach to the cecum, but neglected to continue the fine 

resolution sampling for the cecum and colon (Turnbaugh et al., 2009b).  Another sampled 

3 sites in the lower intestine (cecum, proximal and distal colon) as a part of a study on the 
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effects of an infectious agent.  The esophagus and stomach were found to have distinct 

differences, differences within the two compartments were not found.  The small intestine 

was found to have community differences longitudinally which corresponded with 

nutrient digestion and the influx of bile elements and other digestive enzymes (Hoffmann 

et al., 2009).  Both studies noted significant differences between luminal and mucosal 

samples.  Despite strong visual evidence that the contents of the colon vary greatly 

between the proximal and distal portions of the colon, no longitudinal differences were 

found within the lower intestine at the genus level.  A rhesus macaque study had similar 

results, at the genus level (Yasuda et al., 2015).  Both human and animal studies have 

noted that differences between subjects were greater than longitudinal differences in the 

lower intestine (Eckburg et al., 2005; Hoffmann et al., 2009; Lavelle et al., 2013; 

Turnbaugh et al., 2009b; Yasuda et al., 2015). 

 

Conclusion 

It is interesting to note that despite the early advances made in understanding the 

biogeography of host-associated microbial communities, the field has not advanced much 

between 2008 and the present.  In 2009, Costello et al. produced a study using 7 – 9 

subjects and up to 27 body sites, most of them the skin. The Costello paper, clearly gives 

the following as recommendations based on their conclusions:  1.  The body habitat 

should be specified when conducting in-patient microbial surveillance studies designed to 

examine the flow of normal and pathogenic organisms into and out of different body sites 

in patients and their health care providers;  2.  The local biotic and abiotic conditions of 

subsites of a given body habitat should be determined to understand why some subsites 
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are more or less resistant to invasion; and  3.  Those sites that are amenable to 

transplantation of microbial communities with natural or engineered metabolic capacities 

that would be beneficial to a host should be designated (Costello et al., 2009).  In 2014, 

Ding and Schloss examined HMP data from 300 healthy adults and the 18 body sites 

sampled in the HMP.   They came to the same conclusions regarding the biogeography of 

the human microbiome, as the earlier study (Ding and Schloss, 2014).  Both studies 

examined biogeography over time as well as at different locations.  The main difference 

is that the 2014 study included a larger number of subjects.  Both studies therefore link 

knowledge of microbial biogeography to invasion and pathogenesis of disease. 

 

 

Invasion in the intestinal microbiome 

Many studies have been done on invasion of the intestinal tract by 

microorganisms.  Most studies of invasion focus on pathogens because of the medical 

relevance.  Generally, these studies examine direct interactions between the host and the 

invader.  Here, the emphasis will be on interactions between invaders and the intestinal 

communities.  One advantage to studying host-associated invasion is that the system is a 

naturally occuring intact ecosystem.  As the invasion occurs over a shorter period of time 

than in larger systems, there can be many replicates of the experiments.  By careful 

selection of an animal model, they occur over both time and spatial scales that are 

relevant to the microorganisms rather than the host as well as being observed in context 

of a natural ecosystem.  The main advantage gained by studying invasion on a 

microscopic scale is that it is possible to examine how invaders gain a foothold in order 
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to successfully colonize, something that has been quite difficult to study at larger scales.  

Pathogenic invasion is well known both in domestic animals and humans, and the 

mechanisms of invasion in many cases have been explained. 

 

Colonization 

The first step of invasion, colonization, depends on many of the same mechanisms 

within the intestine as invasion of any landscape.  In general, two basic factors of the 

invaded community are thought to impact colonization and invasion.  The first, whether 

the diversity of the invaded community plays a part in invasion has been tested with 

ambiguous results (Kennedy et al., 2002; Levine and D'Antonio, 1999).  The second, 

whether disturbance of the invaded community plays a part in invasion, is also to some 

degree controversial.  This is due to differing types and amounts of disturbance having 

different effects on invasion (Lockwood, 2013).  Several studies have indicated that 

perhaps the  major factor in invasion is that the invaded habitat be similar to the native 

habitat (Fitzpatrick et al., 2007; Montemayor et al., 2015; Thompson et al., 1995). 

Some invaders create environmental changes that help them to invade more 

easily.  These types of invaders are called ecosystem engineers (Lockwood, 2013).  

Microbes are good ecosystem engineers.  They are capable of using the host immune 

response as well as toxins that they release to effectively clear the ground so that they can 

increase their range.  The mechanism by which Salmonella typhimurium  achieves a 

foothold has been known for a while and in common with many other enteric pathogens 

depends on individual cells causing an inflammatory response through Type III secretion 

systems (TSS) and flagella (Ackermann et al., 2008; Ribet and Cossart, 2015).  
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Essentially S. typhimurium, causes an inflammatory response from the host that clears the 

indigenous community from that area.  This sacrifices the Salmonella that cause the 

response as well commensal bacteria.  Salmonella uses phenotypic noise to overcome this 

problem.  Although the population may be clonal, and most of the population expresses 

TSS, a small proportion of the population do not and therefore are not attacked by the 

immune system.  Thus Salmonella takes advantage of the variation in phenotypic traits by 

sacrificing a large portion of the infecting propagule and killing the commensal 

community while allowing a small portion of the population to persist and infect the host 

without competition from the indigenous community.  The sacrifice of a portion of the 

population contributes to the good of the population and therefore is able to persist even 

though a proportion of the population dies.  The mechanism of sacrificing a portion of the 

population is fairly common among bacterial pathogens.  Similar enteric pathogens, such 

as Escherichia coli also use secretion factors to clear an area of competing indigenous 

community members.  A number of other pathogens must release their inflammatory 

signals by cell lysis, but the mechanism is essentially the same.  One of these is 

Clostridium difficile, which must lyse itself to release TcdA, a toxin that causes 

inflammation in the host cells.  While C. difficile may use its ability to do this in order to 

compete with other commensals, it apparently relies on other forms of disturbance to 

spread throughout the intestine (Ackermann et al., 2008; Koenigsknecht et al., 2015; 

Lessa et al., 2012). 

Pathogens often utilize types of disturbance that occur naturally or from sources 

foreign to the intestine.  These disturbances may be quite noticeable or somewhat subtle. 

C. difficile utilizes the community disturbance caused by antibiotics(Koenigsknecht et al., 
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2015; Lessa et al., 2012).  Without antibiotics to cause a disturbance, it either passes 

through the intestine or may become a permanent member without causing disease.  

Studies of how antibiotics affect the intestinal microbiome show that there are large 

community shifts when an antibiotic is given.  The community changes are in part 

dependent on the antibiotic given and generally last between 2 – 6 weeks before 

gradually shifting back towards the original community composition, without ever quite 

returning to the composition that was present before being given antibiotics (Hill et al., 

2010; Jernberg et al., 2010).  While some forms of antibiotics appear to be fairly 

innocuous, others may create large enough shifts in community composition that a 

pathogen such as C. difficile may invade.  A recent study suggests that these types of 

community shifts combined with the original community composition may play a large 

part in whether C. difficile can successfully invade the large intestine (Schubert et al., 

2015).   

Nutritional changes also cause shifts in community composition that permit 

invasion of the intestine.  Campylobacter jejuni is a pathogen that lives as a commensal 

in all species other than humans.  In humans it is a pathogen.  In mice, which have a 

colonization resistance to C. jejuni, alteration of the intestinal microbiome allows 

colonization by C. jejuni.  By increasing the percentage of E. coli in mice, colonization 

resistance to C. jejuni is eliminated, resulting in successful colonization and symptoms of 

disease (Haag et al., 2012).  While humanized mice normally have colonization 

resistance to Campylobacter, that can be overcome by feeding them human food.  The 

change in diet causes changes in the intestinal microbiome, including an increase in 

proteobacteria, leading to successful invasion by C. jejuni (Bereswill et al., 2011). 
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There are other forms of disturbance that may also favor colonization by 

pathogens.  For instance young, old and immune compromised animals are more prone to 

colonization by pathogens.  In all these cases, the immune system does not function 

optimally.  This might be seen as being comparable either to the enemy release 

hypothesis used to explain successful colonization and spread of macroorganisms in 

larger ecosystems or to a change in climate at the microscopic scale.  Essentially, 

selective pressure on an organism is removed or mediated to favor the invasive organism 

and thus the invader can outcompete indigenous organisms that still must contend with 

that stress.  A variety of pathogens that normally would not cause disease are considered 

pathogens to the elderly or people with autoimmune diseases including indigenous 

microorganisms that normally are not considered pathogens (Brode et al., 2015; 

Fernandez-Natal et al., 2015; Ihde and Armstrong, 1973). 

One unique aspect of microscopic studies that is seen rarely or not at all at larger 

scales is invasion of one community by another community.  Most people have heard 

about fecal transplants being used to treat C. difficile.  Treating a person with recurrent C. 

difficile with another person’s feces can reverse the community changes caused by the 

disease (Brandt, 2015; Konturek et al., 2015).  Another example that is just as interesting 

is that of mixtures of “probiotic” organisms in yogurt, kefir and other fermented foods.  

These communities of bacteria have been marketed to the general public as healthful and 

people consume them every day.  The two examples are interesting in that they are very 

different from one another.  The bacterial communities that are eaten as probiotics, tend 

not to colonize the intestine and therefore to get their benefits, one has to eat them every 
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day.  On the other hand, the community changes caused by fecal transplants have been 

shown to cause permanent changes in the host intestinal community.  

Probiotic foods, particularly yogurt (known to be probiotic), introduce a small 

artificially created community into the intestinal tract.  There have been several studies 

that examine how the probiotic bacteria function on their own when introduced into the 

intestine (Lee et al., 2013; Majamaa et al., 1995; Nyangale et al., 2015).  In addition, 

there have been numerous studies indicating that the probiotic species in yogurt do confer 

benefits to the host (Nabavi et al., 2014; Pei et al., 2015). There is no indication that the 

probiotics used in yogurt are able to colonize the intestine or repopulate the gut after 

taking antibiotics (Derrien and van Hylckama Vlieg, 2015; Shahani and Ayebo, 1980).  

Despite this, probiotics may have an effect on antibiotic associated diarrhea, but the 

studies done have been small and are somewhat controversial (Fox et al., 2015; Patro-

Golab et al., 2015; Shahani and Ayebo, 1980).   Not many studies have been done on the 

bacteria from yogurt and how they interact with the intestinal microbiome.  Until recently 

there was no real evidence that these bacteria modulated the intestinal microbiome 

directly (Eloe-Fadrosh et al., 2015). 

Another use for community inoculations has been the treatment of disease.  

Recently, people with recurrent C. difficile have been treated with feces from people who 

were healthy.  In most cases, the person treated has recovered.  Due to the relatively 

small number of cases complications from this treatment are undetermined.  Still, in one 

case, a patient underwent a fecal transplant to treat recurrent C. difficile and then gained a 

large amount of weight (Alang and Kelly, 2015).  In the case of fecal transplant, it was 

found that the complex community of a healthy person would essentially change the 



 26 

intestinal community created by C. difficile to one where C. difficile is unable to act as a 

pathogen.  A more controlled study where mice were inoculated with 6 bacterial species 

found normally in the intestine, had the same result (Lawley et al., 2012).  It is clear that 

a small number of bacteria are capable of restoring health under these circumstances.   

This may be because the intestines of people suffering from recurrent C. difficile are less 

diverse than those of healthy people (Gu et al., 2015).   

Spread of invasion 

For a successful invasion, an invader must not only gain a foothold within the 

landscape, but must either become integrated into the indigenous community or increase 

its range at the expense of the native community.  Most studies of invasion in the 

intestinal microbiome have to do with colonization and establishment of the invader 

within the intestine and possible spread from intestine to other parts of the body of the 

host.  Very few studies concern themselves with the spread of the invader to other 

portions of the intestine.  As most invasions involve pathogens, this focus on colonization 

makes sense, as the purpose of understanding invasions by pathogens is either to interfere 

with colonization or to treat disease once it is established.  Most enteric disease can be 

prevented by not allowing exposure of the host to the pathogen (for instance by providing 

a clean water source) so the focus is on prevention.  Once a pathogen has established 

itself, stopping it or modulating its behavior is difficult.  Typically for bacterial disease, 

treatment has consisted of antibiotic therapy but antibiotic resistance has become a 

problem with all pathogens treated this way.  In addition, antibiotic resistance of the 

intestinal microbiome has also become a concern, as the resistance can potentially be 

transferred to pathogens within the gut (Jernberg et al., 2010).  
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Despite this, there are reasons to study the spread of invasion within the intestine.  

One of these is that antibiotic resistance has become common and is no longer a 

treatment option in many cases.  Study of how a pathogen behaves after it gains a 

foothold may inform new therapies.  Another is that not all colonization may end in 

disease and understanding why this happens may lead to understanding why colonization 

resistance varies between hosts.  There is evidence that the host microbiome may be 

integral to this, with variation of the microbiome leading to differences in how invasion 

may progress (Schubert et al., 2015). Although there aren’t many studies that explore 

how an invader spreads, a couple of them have shown that even highly virulent diseases 

which need only a few propagules to colonize the intestine have distinct patterns of 

invasion (Hoffmann et al., 2009; Koenigsknecht et al., 2015) and tend to reshape the 

intestinal microbiome as a whole.  In addition, in some cases, recovery from an invasion 

depends on retaining certain members of the intestinal microbiome.  In cases where 

essential members of the community are lacking, it appears that recovery is uncertain 

(David et al., 2015; Schubert et al., 2015).   

By necessity, most studies of invasion focus on the invader.  When commensals 

are considered, they may be considered peripherally and not in detail.  Determination of 

which taxa are important at the genus and species level and what they contribute has not 

been successful.  While some taxa are considered to be important, they are not found in 

all subjects, implying that either a specific function that they fulfill is absent or that the 

function is fulfilled by another taxon.  Where absent, the host may or may not be 

susceptible to disease.  Consortia of commensals are thought to be important, but in most 

cases taxon resolution is only taken to the family level.  The protective effects of a 
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specific taxon may not be able to be resolved at that level.  As many families, (indeed 

genera) contain both pathogens and probiotic organisms, family resolution may not be 

enough to fully understand deficits in the indigenous community that allow invasion.  

Comparison of functionality to try and understand whether certain taxa have functions 

that are interchangeable with other taxa in another host is difficult because of the amount 

of information available, while the lack of resolution gives a blurred picture at best of a 

functioning community. 

 

Conclusions 

Both studies of biogeography and of invasion in the gut have been hindered by 

several problems:  1.  Cost restraints and invasive techniques have kept subject numbers 

low.  2.  Laboratory methods are not universally effective in extracting DNA from all 

community members.  3.  Intersubject variation in many cases overwhelms subtle 

distinctions between locations.  

One problem is that due to cost restraints and invasive techniques, subject 

numbers in most studies are still very low, making discrimination between treatments 

difficult.  This has been further obstructed by not having a method for doing power 

analyses for microbiome studies.  With the recent development of a method for doing 

that, new studies should be able to determine how many subject they need before starting 

a study and plan accordingly (La Rosa et al., 2012).  As the minimum number of subjects 

needed is often between 20 and 40, this may not change the problem of expense.  One 

solution is for more laboratories to cooperate on laboratory methods so that analysis can 

be done over multiple data sets.   
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It is well known that differing laboratory methods contribute to perceived 

differences in community composition (Delmont et al., 2012; Salonen et al., 2010).  In 

particular, reconciling the need to recover DNA from particular taxa while maintaining 

an accurate picture of the entire community has not been adequately addressed.  This is 

an important problem in studies where the bacterial taxa of interest might be either 

recalcitrant to lysis by normal means or may consist of sporulating forms where 

discrimination between spores and vegetative forms may cause problems.  This problem 

is being addressed by the development of laboratory methods that address these problems 

directly ((Kuske et al., 1998; Zhang et al., 2012) See chapter 2). 

Noise created both by intersubject variation and large amounts of data is increased 

under conditions where there are few subjects.  One common comment made on 

biogeographical studies of the lower intestine is that longitudinal variation in the lower 

intestine is less than intersubject variation (Lavelle et al., 2013; Turnbaugh et al., 2009b; 

Yasuda et al., 2015).  This does not mean that longitudinal variation is negligible and can 

be ignored.  Rather, it means that the noise created by differences between subjects 

swamps out the information about biogeography that might be important.  This may 

result in small, but important community differences being lost.  Computational analysis 

reduces the problem to some extent, but there are still problems with determining which 

data is relevant. While new computational tools exist, they have been primarily used to 

increase the numbers of sequences that can be analyzed and to provide analyses that may 

show differences between communities exposed to different medical treatments.  This 

may be why biogeographical studies of the lower intestinal lumen fail to distinguish 

community differences between locations that have distinct visible environmental 



 30 

differences. As discussed above, advances in distinguishing between subtle treatments 

have not occurred.  For example, although differences between locations in the lower 

intestine may be observed, they cannot be discerned by typical methods of sequence 

analysis.  

One method for getting around some of these problems is to reduce the resolution 

of the analysis.  This is one reason for many analyses being done at the family, or even 

phylum level.   This may not be helpful when different species or strains of bacteria 

perform differently from one another creating yet another form of noise.  For instance 

different strains of E. coli and different species of Lactobacillus have differing impacts 

on the lower intestine.  E. coli as a species consists of strains that cause acute and life 

threatening disease, as well as strains that are considered probiotic (Stecher et al., 2013).  

The genus Lactobacillus also contains species that cause disease as well as ones that are 

considered probiotic (Cannon et al., 2005).  Using family level resolution means that 

discrimination between these forms is lost and that only broad differences between 

treatments may be discerned.  Another method for dealing with the problems created by 

too much data is to reduce the amount of data gained.  Thus, many studies use 

microarrays to determine what sequences are present.  But this may result in missing 

important community components due to individual nature of the data.   

As communities that have fewer members (such as the small intestine) seem to be 

amenable to analysis, the above problems may result from the complexity of the 

communities being analyzed.  Perhaps typical ecological methods of community analysis 

cannot work with communities that are as complex as the ones in the lower intestine.  

Thus, some method of reducing the complexity without reducing resolution must be 
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found.  In the next few chapters we propose new workflows that use tested methods.  The 

first is used in the laboratory to find possible under-represented taxa within a community.  

The second is a new computational workflow that filters noisy data to find taxa that 

discriminate between treatments.  These two workflows have allowed us to re-examine 

the luminal biogeography of the lower intestine, and to examine invasion of this 

community with regard to the biogeography of the lower intestine. 
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Summary 
 
Studies that are concerned with interactions between a microbiome and selected taxa of 

bacteria have a unique problem in that they need to provide both a broad ‘view’ of the 

total bacterial community sampled, and at the same time accurately represent the taxa of 

interest.  Thus, the method of DNA purification is critical as it must adequately capture 

DNA from the total microbiome and at the same time very effectively capture genomic 

DNA from the taxa of interest.  It has been shown previously that different DNA 

purification methods result in differing ‘views’ of bacterial communities based on 

effectiveness of lysis and recovery of DNA from all of the various taxa that comprise that 

microbiome.  Here, we describe a novel method developed to efficiently obtain lactic 

acid bacterial DNA along with general microbiome DNA and compare it to a commonly 
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used commercial ‘kit-based’ method developed for purifying microbiome DNA. Our 

method provides far greater yields of total microbiome DNA as well as recovering a 

greater proportion of Lactic Acid Bacteria DNA, perhaps at the expense of DNA from 

easily lysed non-target bacterial taxa such certain Gram-negative bacteria.  The kit-based 

method appears to primarily recover DNA from bacteria that are easily lysed, while 

underrepresenting more recalcitrant bacteria such as the Lactic Acid Bacteria.  

 
 
Introduction 
 

Microbiome studies are dependent on community ecology analyses to 

discriminate between treatments.  As in most community studies, it is important to 

sample accurately and to understand where sampling bias occurs, so that it can be 

corrected for, or at least taken into consideration.  If a given DNA recovery method 

affects sampling (i.e. is biased) then the results gained will not be strictly quantitative, but 

can still be quite useful in comparative analyses.  This appears to be a truism, but 

sampling methods can be elaborate, especially in the field of microbial ecology, where 

the methods used downstream of the original sampling are, in effect, a form of sampling 

themselves.  Thus, DNA purification, amplification and even sequencing are all biased 

forms of sampling that may affect how the original community is perceived and analyzed. 

Most studies of bacterial communities rely on analysis of community composition 

as determined from some sort of phylogenetic classification of DNA sequence reads. It is 

well known that different DNA purification protocols give rise to different results 

regarding community assemblages – even when the original samples are considered 
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identical (Delmont et al., 2012; Kennedy et al., 2014; Salonen et al., 2010), although 

these differences may appear to be minor or negligible (Delmont et al., 2012).   

Methods that purport to examine the effects of one or more taxa on a community 

(such as those examining effects of pathogens or probiotics) are especially vulnerable to 

differences in microbiome DNA recovery methods as even slight differences in 

efficiency of recovery may result in misrepresentation of the taxa of interest, or of total 

community composition.  It is often difficult to determine in exactly what ways different 

methods result in different community profiles other than on a very broad level.  For 

instance, previous studies have shown that DNA yields, alpha diversity measures and 

community compositions can differ when different methods are used on identical samples 

(Delmont et al., 2012; Maukonen et al., 2012; Salonen et al., 2010).  Exactly how these 

differences should be interpreted and what they mean for any particular study is 

unknown; however, the protocol chosen should fit the study needs, providing a 

reasonably accurate representation of the community in question as well as an accurate 

representation of the taxa of interest.  As more studies attempt to address questions 

regarding community and population interactions, growth, functionality and effects due 

to treatments, it is necessary to know that the methods used will be relevant to the study 

questions. 

One problem with community and population sampling is that particular species 

of interest may be underrepresented.  That is, they are either not detected, or are detected 

in reduced numbers not accurately reflecting their true population size.  This is a common 

problem in ecological studies—when populations are small, sampling may be limited due 

to time or financial constraints, and/or species that are difficult to accurately sample (Gu 
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and Swihart, 2004; MacKenzie et al., 2004).  This can be a problem in microbiome 

studies, where some areas of the body, such as the skin, present challenges to detecting 

particular species (e.g. those low in relative abundance or difficult to lyse) and therefore 

present the possibility of underrepresentation in the data obtained (Garcia-Garcera et al., 

2013).   

Another example highly relevant to the research presented herein is when 

working with intestinal samples of small laboratory animals, where, even though it is 

possible to sample the entire contents of the intestine, the samples do not yield equivalent 

amounts of DNA when different DNA recovery methods are used ((Ferrand et al., 2014); 

also see Figure 1).  Some problems that may result in underrepresentation of particular 

microbes include failure to lyse sporulated bacteria as well as bacteria having cell walls 

that are resistant to ordinary lysis methods (Ferrand et al., 2014; Filippidou et al., 2015; 

Kuske et al., 1998; Zhang et al., 2012).  Methods that produce higher yields of DNA, as 

well as DNA from greater numbers of recalcitrant and sporulating bacteria, would seem 

to be optimal for analysis of bacterial communities rather than methods that result in low 

yields of DNA. This is particularly true where individual samples have low or variable 

biomass between individuals. Nevertheless, there are caveats. Examples of such include 

where such methods may result in misrepresentation of the remainder of the community, 

or where kit-based protocols are much faster and less expensive yet are suitable for use in 

comparative analyses.  Thus, the method used for recovery of microbiome DNA should 

be selected to fit the purpose of the study. 

The mammalian intestinal microbiome consists of a wide variety of organisms 

that vary depending on time of day, nutritional status, and other environmental factors 
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(Arumugam et al., 2011; Zarrinpar et al., 2014).  Changes in the intestinal microbiome 

have been associated with changes in the health status of the host (Earley et al., 2015; 

Henao-Mejia et al., 2013; Turnbaugh et al., 2006; West et al., 2014).  The intestinal 

microbiome has been shown to affect not only the intestinal tract, but other organ systems 

within the body, including the liver, circulatory system and nervous system (El Aidy et 

al., 2016; Ma et al., 2015; Vinje et al., 2014).   

Profound changes to the intestinal microbiome may be induced via food, water or 

therapeutic regimens (Derrien and van Hylckama Vlieg, 2015; Hill et al., 2010; Jernberg 

et al., 2010; Wolf et al., 2014).  One method by which these changes may be effected is 

via the introduction of new microbial taxa that interact with the microbiome in any of a 

variety of ways.  For example, many pathogens affect both the microbiome and the host 

(Ackermann et al., 2008; Ribet and Cossart, 2015).  Another example is the introduction 

of probiotic bacteria, commonly introduced via food, as well as on their own (Eloe-

Fadrosh et al., 2015).   

One of the largest groups of probiotic bacteria is the lactic acid bacteria (LAB) 

that are found in many cultured or fermented foods such as yogurt.  In addition, the LAB 

typically form a large proportion of the autochthanous (indigenous) flora of the gut in 

many mammals (Hooda et al., 2012; Isaacson and Kim, 2012; Minamoto et al., 2012; 

Reuter, 2001; Tomas et al., 2012).  Having an accurate representation of the composition 

and abundance of LAB in the gut is essential both to studies of the effects of probiotic 

species on the intestinal microbiome and also to studies where LAB make up a significant 

proportion of the microbiome or perform essential community functions. 
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LAB are very difficult to lyse or even permeate for analysis with oligonucleotide 

probes due to the thickness and density of their cell walls (Quevedo et al., 2011; Scornec 

et al., 2014).  Thus evaluation of the identity and numbers of LAB in a bacterial 

community, or an evaluation of how introduced LAB interact with rest of the microbiome 

is dependent on the use of a metagenomic DNA recovery method that is able to 

effectively lyse these bacteria.  A search of the primary literature found that many DNA 

recovery methods rely on the enzyme lysozyme to weaken or lyse LAB cell walls in 

order to permeate or lyse them (Bianchi et al., 2004; Brown et al., 1962; Chassy and 

Giuffrida, 1980; Ferrand et al., 2014; Quevedo et al., 2011; Scornec et al., 2014).  Thus, 

we hypothesized that a metagenomic DNA recovery method that included lysozyme to 

lyse the cells comprising the microbial community should result in more complete lysis 

(and subsequent detection) of LAB than other physical and/or chemical lysis methods. In 

addition, initial work with luminal contents from various locations along the mouse lower 

intestinal tract showed that the most widely used kit for microbiome DNA recovery did 

not reliably obtain microbiome DNA from many of these samples, suggesting low 

efficiency of recovery with that approach. Since mouse models are central to essentially 

all of the studies presented herein, and LAB were key foci in some of the work, we 

deemed it necessary to develop a superior method for recovery of metagenomic DNA 

from mouse luminal microbiome samples including LAB. 

To accomplish this, we modified an earlier protocol devised by this group for 

recovery of microbiome DNA from intestinal microbiome samples from various animals 

(Apajalahti et al., 1998).  The earlier protocol combines freezing and thawing with 

chemical lysis by lysozyme (hereafter, FTL) to break bacterial cell walls.  The 
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modificiation was to subsequently purify metagenomic DNA from this process using 

anion exchange columns from Qiagen (Valencia, CA) rather than the cesium chloride-

ethidium bromide equilibrium density gradients employed in the original protocol.   

This modified protocol was directly compared to use of the MoBio Power Soil kit 

(hereafter MPS), which is very widely used in the microbiome research community for 

extraction of metagenomic DNA from fecal samples.  MPS uses bead beating combined 

with a proprietary surfactant as well as SDS for lysis of bacterial cell walls, followed by 

purification using proprietary silicon membrane columns. The FTL extraction method 

resulted in greater total yields of metagenomic DNA, as well as enhanced detection of 

LAB due to more effective recovery of DNA from these cells. 

 
Experimental Procedures: 

 
Animal Models and Sampling: 

We employed laboratory rats for this study in order to reliably have larger 

individual intestinal samples that could be split in two to allow direct comparison of 

results from the two protocols.  All animal care and treatment protocols were approved 

by the Institutional Animal Care and Use Committee (IACUC) at the University of 

Montana under AUP# LAR 009-11.  All animals were housed, fed and otherwise treated 

identically in order to control for variability that might result from differing 

environmental conditions.  Samples of opportunity were taken from eight 6 – 8 week old 

Dolly-Sprague rats from 3 litters that were euthanized by The University of Montana 

Laboratory Animal Facility.  Luminal intestinal samples were taken from three locations 

in the lower intestine: the cecum (hereafter, Ce), the proximal colon (hereafter, PC) and 

the distal colon (hereafter, DC), resulting in 24 samples. 
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The luminal contents of surgically removed samples were recovered by cutting 

out the intestinal section with the contents intact and placing each into an individual 

sterile microcentrifuge tube. All samples were immediately placed on ice during 

collection and then stored at -70 ˚C prior to downstream processing. The three samples 

from within each rat were considered to be linked and therefore were processed for 

microbiome DNA recovery, PCR amplification and amplicon sequencing together. All 

rats were given a number and sets of samples were identified by that number and 

processed randomly using a random number table (Rand Corporation, 2001).  

   

Microbiome DNA Recovery, Amplification and Sequencing:  

Microbiome DNA was recovered from each sample using each of the two 

protocols:  1.  The FTL protocol uses differential centrifugation, five freeze-thaw cycles 

and lysozyme treatment combined with the Qiagen genomic tip protocol. This is a 

modification of the Apajalahti et al. protocol (Apajalahti et al., 1998) that was shown to 

provide highly effective recovery of bacterial DNA from chicken GI tract.  2.  The MPS 

protocol was performed exactly according to the manufacturer’s protocol including the 

additional steps for recalcitrant samples.    

In order to provide identical samples for both methods, the digesta were first cut 

from the intestinal tissue aseptically and cut in half lengthwise in sterile dishes on ice to 

keep them frozen.  The half-samples to be processed that day were kept on ice, while the 

other halves of the samples were immediately placed back at -70˚ C until further 

processing.  All samples were weighed before further processing.  Sample weights and 
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nanophotometer (Implen P 300, Implen, Inc., Westlake Village, CA) readings were used 

to calculate DNA yields. 

FTL digesta samples were placed into sterile Oak Ridge tubes containing 10 mL of 

sterile wash buffer (0.5 M sodium phosphate [pH 8.0]; 0.1% Tween-80) and washed 4 

times as follows. Samples were vortexed briefly before being shaken at high speed on a 

reciprocating shaker for 10 min.  Next, samples were centrifuged at 30,000 x g for 15 min 

at room temperature, after which the supernatant was removed by aspiration and the 

samples resuspended in 10 ml of wash buffer. Following the final wash step and 

centrifugation, the samples were resuspended in 3 ml of Qiagen Buffer B1 (50 mM 

sodium EDTA; 50 mM Tris base [pH 8.0]; 0.5% Tween-20; 0.5% Triton X-100; Qiagen, 

Valencia, CA) to which RNase A was added to a final concentration of 200 µg/ml, then 

stored at -70˚C to initiate the 5 freeze-thaw cycles that facilitate bacterial cell lysis. The 

samples were thawed and refrozen a total of 5 times by being placed in a water bath at 

40˚C for 15 min, then placed back at -70 ˚C for at least 1 h before being thawed again. 

Following the final thaw, 50 µL of lysozyme (200 mg/ml) and 90 µL of proteinase K (20 

mg/ml) were added. Samples were then incubated in a water bath at 37˚C for 45 min, 

after which 1 mL of Qiagen B2 buffer (3 M guanidine HCl, 20% Tween-20) was added. 

The samples were incubated in a water bath at 50˚C for 45 min, then centrifuged for 10 

min at 5,000 x g at 4˚C. The supernatant was transferred to a sterile microcentrifuge tube 

and vortexed for 10 sec. At this point, the Qiagen Genomic Tip 20G protocol was 

followed precisely to elute microbiome DNA, except that 1 extra 70% ethanol wash was 

performed. Finally, the dried samples were resuspended in 50 ml of TE (10 mM Tris [pH 

8.0], 1 mM EDTA).  
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MPS samples were processed exactly according to directions contained in the 

MoBio PowerSoil kit with the following modifications.  During the bead-beating step, the 

samples were beaten for a total of 15 minutes (5 extra minutes) as per the manufacturer’s 

instructions for lysis of potentially recalcitrant material.  Sterile TE was used to elute the 

DNA at the final step.  Both sets of samples were quantified using the Implen 

nanophotometer. 

Partial 16S/18S rRNA gene sequences encompassing regions V4 & V5 were PCR 

amplified from the microbiome DNA (25 ng) using the highly conserved primers 536f 

and 907r (25), which were barcoded for pyrosequencing. Where samples were not of 

sufficient concentration to provide 25 ng for PCR, 3 µl of purified microbiome DNA was 

used as template. The resulting 16S amplicons were gel purified from 18S and other 

spurious products using the Qiagen Gel Purification kit per manufacturer’s instructions, 

then further purified through two successive rounds using Agencourt AMPure XP 

magnetic beads per manufacturer’s instructions (Beckman Coulter Inc., Brea CA). 

Purified DNA was quantified, multiplexed, and sequenced by the Utah State University 

Center for Integrated Biosystems using the 454 Roche GS FLX system (454 Life 

Sciences, Roche Diagnostics, Indianapolis, IN). 

 

Data Analysis and Statistics: 

 Determination of DNA yields 

 DNA yields for each sample were calculated using the weight of the sample in 

grams and the DNA concentration (mg/ml) as determined by spectrophotometry.  
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 Identification of OTUs and taxa summary tables 

 Sequences were ‘denoised’ and identified to the genus level using the Quantitative 

Insights Into Microbial Ecology (QIIME) pipeline (Caporaso et al., 2010) and the number 

of reads per sample determined.  OTUs were discriminated at 97% similarity. 

A taxa summary table was built containing a row for each sample (one for each 

locational sampling point for each mouse) and a column for each genus identified. The 

entries in the matrix were the number of reads in the sample represented by the associated 

genus. Any reads that were unclassified at the genus level were removed from further 

consideration. Frequency matrices were created for both cohorts.  A further matrix was 

made using the proportion of reads following the same method.  This matrix was used to 

determine the proportions of the pie charts for the core microbiome (see Fig. 4). 

 

Test for Differences in Population Means  

The two-tailed Wilcoxin Rank Sum Test was used to test whether there were 

differences in the population means for 5 genera that were found in all samples.  

Streptococcus was added to the analysis even though it does not occur in all samples, 

because it is one of the LAB.  A Bonferroni correction was used and the alpha-level was 

set at 0.005 (Table 1). 

    

Abundance Plots and Bar Charts 

Abundance plots of treatments at all locations were made using the mean number of 

reads for all genera for each sampling site (location).  These were then separated by 

method.  A histogram was made using the mean number of reads for each genus in each 
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location and method.  For each location, those genera that have zero reads for a method 

were marked with an asterisk (see Figure 2). 

 For side-by-side bar charts of mean abundance, the number of reads for all genera 

at any sampling location were found and then separated by method. The arithmetic mean 

was calculated for each genus at each location and method.  The plots were made using a 

log10 transform for the x-axis. 

 

 Core Microbiome Determination 

The core microbiome for each of the treatments as well as sampling locations 

within the lower GI tract was determined to the genus level. A genus was considered a 

part of the core microbiome if all samples for that treatment (whether by method or 

location) from all animals contained that genus.  

 

Diversity of Bacteroidetes and LAB 

The diversity of the phylum Bacteroidetes and of LAB for both methods was 

determined by using the taxa summary tables produced from the QIIME pipeline.  LAB 

were selected for the reasons described above, which include resistance to lysis, presence 

in the intestinal microbiome and biological significance.  Bacteroidetes were selected for 

this analysis because they are easily lysed, present in large numbers within intestine and 

of biological significance (Maukonen et. al., 2012, Turnbaugh et. al., 2006).  Taxa of 

interest were transferred to Excel where the sums of the proportions in all samples for 

each taxon were calculated.  Taxa were considered to be present in a method if the sum 

was greater than zero. 
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Results: 
 DNA yields were significantly greater in the cecum and distal colon for FTL than 

for MPS (Fig. 1) ranging from 1 – 2 orders of magnitude greater than those of MPS.  The 

yields for FTL were also more variable, especially for the proximal colon, where the 

range of the yields is almost 1 order of magnitude (with a commensurate loss of statistical 

significance between the two methods for this chamber). 

 

 
Figure 1:  Average yields of DNA for each method by sample site.   
 

The mean average number of reads of Lactobacillus in each of the FTL samples at 

all locations was greater than all other genera in those samples and much greater than that 

of Lactobacillus in the MPS samples.  Evenness of the communities can be seen in the 
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first set of abundance plots (Fig. 2 top), which are truncated to mitigate the much greater 

abundance of Lactobacillus in the FTL processed samples for visualization purposes.  

With the amount of Lactobacillus plotted to full scale with the rest of the taxa, the 

evenness in the abundance plots for each treatment at each location appear similar (Fig. 2 

top).   

In order to more closely examine meaningful differences in abundance resulting 

from the different extraction protocols, we created ‘side-by-side bar charts’ which show 

the number of reads of the genera for each method at each of the sampling sites (Fig. 2 

bottom).  Of the 36 identified genera, only Bacteroides, Lactobacillus, Ruminococcus, 

Parabacteriodes and Oscillospira were found in all samples.  Of these, there are 

significant differences in the amount of Lactobacillus, Bacteroides and Parabacteroides 

between the two DNA recovery methods.  In addition, Streptococcus abundance was also 

monitored, as a member of LAB (Table 1).  Some of the more scarce genera are absent 

entirely from samples processed by one method or another (Table 1), but whether these 

differences are biologically significant was difficult to determine.   

Interestingly, Facklamia another member of the LAB is only present in samples 

processed using the FTL method (Table 1).  As expected, the numbers of LAB were 

higher in the FTL processed samples than in the MPS processed samples and these 

differences are collectively the most noticeable aspect of all of the abundance graphs.  Of 

the 5 families identified belonging to the order Lactobacillales, only Lactobacillus and 

Streptococcus were present in the samples processed with the MPS method. 
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Figure 2:  Top:  Abundance charts comparing evenness of the methods at each sampling 
site.  Bottom:  Side by side comparisons of mean number of reads for each extraction 
method for each sampling location. 
 

Table 1:  Left:  Wilcoxin Rank Sum Results for LAB and genera found in all samples.  Right:  
Genera found only in samples processed using one treatment 

A.  Wilcoxin Rank Sum Results  B. Genera Present for One Method Only 
Genera Tested ∞Significant  

a-level = 0.005 
 FTL MPS 

Lactobacillus* Yes (FTL>MPS)  Anaerofustis Anaerovorax 
Bacteroides Yes (MPS>FTL)  Facklamia* Escherichia 
Streptococcus* Yes (FTL>MPS)  Friedmanniella Victivallis 
Oscillospira No (P = 0.0797)  Hymenobacter  
Ruminococcus No (P = 0.4833)  Kineococcus  
Parabacteroides Yes (MPS>FTL)  Rothia  
∞A. Bonferroni Correction = 0.05/6 = 0.008.  P-values are below the level of detection 
unless otherwise indicated.   
B: List of genera detected from one method only.  

MPS 

Cecum Proximal Colon 

FTL 

Distal Colon 
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*Denotes members of the LAB group classified to the genus level. 
 

Core microbiomes were generated for each method as a whole by combining all 

sequence reads from all three compartments for each method (Fig. 3).  The core 

microbiome for the FTL method was a higher proportion of the whole than for the MPS 

approach, and is more diverse.  Lactobacillus itself dominates the FTL core microbiome, 

while Bacteriodes and Lactobacillus together make up the largest proportion of the core 

for the MPS method.  All genera that comprise the core microbiome for MPS are also 

included in the core microbiome of FTL, which, in addition, contains Blautia, Dorea, 

Coprococcus, and rc4-4. 

 

 
 
Figure 3:  Core microbiome indicated as a function of DNA recovery method.  The 
smaller pie charts show the proportion of the core microbiome to non-core taxa (shown in 
white).  The larger charts depict the core microbiome in more detail and indicate the 
number of reads for the more predominant genera.  Top:  MPS, Bottom: FTL 
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More detailed analysis of the core microbiomes by both sampling location and 

DNA recovery method clearly reflects the predominance of Lactobacillus in the 

metagenomic DNA recovered by the FTL method of DNA extraction (Fig. 4). The core 

taxa derived from metagenomic DNA recovered by the MPS method are dominated by 

Lactobacillus and Bacteroides, along with a slightly smaller proportion of Oscillospira.  

The core to non-core ratios across all sites for each method were relatively consistent. 

 

 
Figure 4:  Core microbiome by sampling site and method.  Small pie charts give the 
proportion of core to non-core (in white) for each sampling site/method. 
 
 We compared the indicated diversity of two important groups of bacteria 

(Bacteroidetes and LAB) to assess whether there were differences in the data obtained 

using the two methods.  Five groups of Bacteroidetes were present, with three identified 

to the genus level, in samples extracted by either of the two methods (Table 2).  Thus, the 

indicated diversity of this group was consistent for both methods.  By contrast, five 

families of LAB were indicated from FTL-recovered DNA, with three of those classified 

MPS 

FTL 

Cecum Proximal Colon Distal Colon 
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to the genus level (Table 2), while only 3 were detected from DNA recovered using the 

MPS approach.  

 

Table 2: Comparison of Bacteroidetes and LAB diversity between methods.   

 FTL MPS 
Bacteroidetes Bacteroides Bacteroides 
 Parabacteroides Parabacteroides 
  Hymenobacter Hymenobacter 
 Rikenellaceae (F)* Rikenellaceae (F) 
 S24-7 (F) S24-7 (F) 
LAB Lactobacillus Lactobacillus 
 Streptococcus Streptococcus 
 Facklamia Not present 
 Enterococcaceae (F) Not present 
 Carnobacteriaceae (F) Not present 
*Taxa classified only to the family level are denoted by (F); otherwise they are classified 
to the genus level.   
Taxa not detected in samples extracted by one of the methods are marked “Not present”. 
 
 
Discussion: 
 
 Numerous studies have demonstrated how metagenomic DNA extraction methods 

affect the indicated composition of the sampled community following sequence analysis, 

and some examined whether some particular feature of the extraction process had more 

effect than another (Carrigg et al., 2007; Ferrand et al., 2014; Kennedy et al., 2014; 

Maukonen et al., 2012; Yuan et al., 2012).  Yet very few of those studies have described 

the problems associated with studying a particular taxon or group of bacteria of interest, 

while maintaining an accurate representation of the remainder of the bacterial community 

(Ferrand et al., 2014; Kuske et al., 1998; Maukonen et al., 2012).  This topic is potentially 

of great importance in forensics, (where often it is necessary to recover taxa of interest 

while not destroying community DNA which may provide contextual information), in 
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studies intended to examine introduced taxa and how they affect total community 

dynamics, or in studies that examine the role(s) that particular taxa play in overall 

community dynamics (Filippidou et al., 2015; Kuske et al., 1998; Maukonen et al., 2012).   

 Lysis of the bacterial cell wall is an important aspect of DNA recovery methods 

and many of the studies done on community DNA extraction have focused on cell wall 

lysis being the determining factor in how extraction techniques result in differing 

community compositions (Carrigg et al., 2007; Maukonen et al., 2012).  The relative 

contribution of lysis techniques to variations in the perceived community composition 

caused by differing extraction methods is somewhat controversial.  At least one study 

found that lysis methods don't contribute to community differences (Kennedy et al., 

2014).  By contrast, other studies have found that the method of lysis is a strong driver in 

determining how various metagenomic DNA recovery methods result in differing DNA 

yields as well as different indications of bacterial community composition (Carrigg et al., 

2007; Maukonen et al., 2012; Salonen et al., 2010).   

The lysis approach that has been determined to be the most generally successful 

by many groups is mechanical lysis, such as bead beating, although it may result in more 

DNA shearing than other methods (Olson and Morrow, 2012; Salonen et al., 2010).  

Although the FTL approach has lower throughput and is more time consuming, its gentler 

method of combined freeze-thaw and enzymatic cell wall degradation represents an 

alternative method of bacterial cell lysis, that produces greater yields of DNA.  

presumably due to less physical disruption of DNA molecules following release from 

cells.  
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The two methods compared in this paper resulted in greatly different DNA yields 

with the FTL method giving metagenomic DNA yields one to two orders of magnitude 

greater than is obtained from identical samples by the MPS method.  These results are 

congruent with other studies showing that the MPS protocol produced lower yields of 

DNA than many other DNA extraction methods (Delmont et al., 2012; Kennedy et al., 

2014).  On the other hand, a limitation of the FTL method is that it is more expensive in 

time and materials than MPS and other kit-based DNA recovery approaches (this work).   

At least one study showed that various kit methods appeared to give community 

profiles that are similar to one another (Kennedy et al., 2014).  Further, as discussed 

above, reliable but less quantitative recovery of metagenomic DNA can suffice for some 

comparative analyses of samples.  Thus, unless a particular study asks direct questions 

about the relative abundance of LAB or other difficult to lyse microbes, or the samples 

have limited extractable biomass or otherwise produce very low yields of metagenomic 

DNA, the MPS technique (or a comparable kit-based approach) may suffice for some 

analyses of bacterial community composition with less expense and time.  However, the 

additional time and expense necessary for the FTL extraction process can be offset if one 

is able to subsequently forgo using qPCR or other techniques in order to make sure that 

taxa of interest are represented accurately. 

A major difference between the two methods was the enhanced detection of LAB 

taxa in the samples processed using the FTL method (Table 1), including 3 families not 

found in any of the samples processed with the MPS approach.  LAB are significant in 

their own right as autochthonous members of the intestinal microbiome (Hooda et al., 

2012; Isaacson and Kim, 2012; Minamoto et al., 2012; Reuter, 2001).  LAB also are an 
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important constituent of the oral microbiome (Gibbons and Van Houte, 1975; Quevedo et 

al., 2011).  They are also highly valuable to the food industry and as potential probiotics 

(Lefeber et al., 2011; Messaoudi et al., 2013; Pei et al., 2015; Wouters et al., 2013).  

Thus, being able to accurately detect LAB taxa, both autochthonous and introduced, in 

both control and experimental subjects can be paramount for some studies, particularly 

those that examine how introduced LAB affect the host’s indigenous microbiome.  In 

these cases, employing the FTL extraction method is highly advisable and would reward 

the extra time, effort and expense invested into metagenomic DNA recovery. Such is the 

case with much of the work described in the remaining chapters of this thesis dissertation. 

Interestingly, the enhanced detection of LAB with the FTL approach is concurrent 

with decreases in the proportion of Bacteroides and Parabacteroides detected, as 

compared to the proportions found in the communities when using the MPS method of 

extraction. One explanation for the proportional decreases in these genera is that they are 

easily lysed and thus are lost due to excessive lysis and DNA degradation in the FTL 

extraction process.  A more likely explanation is that the larger total yields of DNA along 

with larger proportional amounts of DNA from LAB (Lactobacillus, in particular) 

effectively “dilutes” the abundance of target DNA representing the Bacteroidetes 

phylum.  This conclusion is supported by the maintenance of diversity in that phylum 

despite the decrease in the proportion of those taxa (in terms of numbers of sequence 

reads) obtained from samples processed using the FTL approach.   

Another way to consider this point is that once metagenomic DNA is recovered 

from a set of samples, the laboratory and analytical workflow downstream can be thought 

of as a ‘closed system’.  Thus, a significant increase in the proportional amounts of DNA 
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from one group of taxa (e.g. LAB) in a metagenomic DNA sample would result in a 

concurrent decrease in the proportional amounts of DNA from other taxa.   

Despite the more effective detection of LAB taxa afforded by our approach, when 

the large amounts of Lactobacillus (in this case) are taken into account, the overall 

composition of the communities determined by the FTL method are not especially 

different from the composition indicated by the MPS method.  While the proportional 

amount of DNA from Bacteroidetes is decreased in the FTL samples, the diversity of this 

phylum is maintained.  With respect to rare genera, samples from both methods contain 

genera not present in samples processed by the other method.  Indeed, the MPS method 

resulted in greater loss of rare taxa than the FTL method.   

The FTL method of metagenomic DNA recovery proved very useful in the 

additional studies described herein, where the use of the MPS approach with samples 

from mouse models produced inconsistent metagenomic DNA yields and many samples 

that couldn’t be PCR amplified in a preliminary study (data not shown).  The FTL 

approach is also recommended for studies where the numbers of LAB within a 

community is important, such as studies of the oral and intestinal microbiome, as well as 

studies examining effects of introducing probiotic bacteria on the indigenous microbiome 

as described in the next Chapter.  

As with other comparisons of DNA extraction methods, this investigation underscores the 

importance of selecting an appropriate DNA recovery method and of using it in a 

normalized and consistent way where results from multiple experiments, treatments 

and/or timepoints are to be pooled and compared with one another.  Caution should be 
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taken when comparing seemingly related studies within the literature that did not use the 

same method of DNA recovery. 
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Abstract: The mammalian gastrointestinal (GI) microbiome is involved in host 

health, nutrition and immunological status via intimate, sometimes intricate, interactions 

with the host and the intestinal environment. Despite increasing awareness and extensive 

research on the roles and importance of the GI microbiome, a clear vision of how 

individual bacterial taxa are distributed along the ‘landscape’ of the lower GI tract is 

almost entirely lacking. Using a mouse model, key ecological concepts and a novel 

combination of computational, statistical and bioinformatic tools, we show that there is a 

clear biogeographical distribution of bacterial taxa down to the genus level along the 

lower intestinal tract. We expect that intestinal microbiome biogeography is widespread 

in other mammalian and non-mammalian hosts and, given the immunological, nutritional 

and health-related roles ascribed to host-associated microbes, will prove to be a key 

element governing host physiology and disease etiology. 

 

Background:  

Within the GI tract microbes mediate many key metabolic reactions of which the 

host is incapable, thereby facilitating digestion to the nutritional benefit of both microbes 
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and host. GI bacteria are also increasingly shown to be critical in priming and tuning the 

host immune response to commensals, pathogens and self (Chang et al., 2014; Rolig et 

al., 2013; West et al., 2014). Further, there is progressively more evidence that GI 

microbiome composition and stability is an important determinant of the outcome of 

infection by pathogens and parasites (Rolig et al., 2013; Schubert et al., 2015; Yurist-

Doutsch et al., 2014), as well as being involved in a number of multifactorial diseases 

such as irritable bowel disease (IBD), diabetes, rheumatoid arthritis, obesity and cancer 

(Cani, 2014; Cani et al., 2012; Li et al., 2015; McLean et al., 2015; Zackular et al., 2013).  

 General ecological theory predicts that different environments will select 

for different communities (Baas-Becking, 1934; Pocheville, 2015), producing patterns of 

species abundance and distribution (i.e. biogeography). The lumen of the lower intestine 

in mammals exhibits pronounced regional differences in pH, oxygen availability, 

moisture content and nutrient composition (Heinzmann and Schmitt-Kopplin, 2015; 

Kawamata et al., 2006; Louis et al., 2014), yet, to date, no reports have clearly 

demonstrated spatial patterns in the distribution of its resident microbes. One obstacle to 

intestinal biogeography analyses is that inter-subject variation obscures patterns of 

regional differentiation (Eckburg et al., 2005; Lavelle et al., 2013; Rogers et al., 2014). It 

has also been suggested that mixing of luminal contents by peristalsis would obscure 

biogeographical distributions resulting from local environmental differences (Zoetendal 

et al., 2002).  In addition, mouse studies have found that differences due to housing mice 

in separate facilities, cages (cage effects), as well as those due to different litters may be 

just as significant as intersubject variation and also confound the ability to discriminate 

between treatments (Ericsson et al., 2015; Rogers et al., 2014).  
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Some human studies have indicated differences in microbiome composition 

between luminal and mucosal communities, but failed to detect longitudinal differences 

(Lavelle et al., 2013). Others based on colonoscopy samples suggest longitudinal 

differences only for bacteria closely associated with the intestinal mucosa (Aguirre de 

Carcer et al., 2011; Eckburg et al., 2005; Zhang et al., 2014; Zoetendal et al., 2002), 

which is not surprising given the intense purging of luminal contents prior to the 

procedure. Mouse studies have not fared much better, tending to be either broadly 

comparative, focused on particular taxa, or both (Hu et al., 2010; Nava et al., 2011; 

Sarma-Rupavtarm et al., 2004; Swidsinski et al., 2005a; Turnbaugh et al., 2009b). As a 

result, microbiome studies to date have lacked taxonomic and locational resolution, 

generally describing ‘dysbioses’ between healthy and diseased individuals wherein the 

proportions of phylum- or family-level groups differ between healthy and diseased 

individuals (Li et al., 2015; Turnbaugh et al., 2006).  

In the current study, a mouse model, next generation sequencing (NGS) and a 

novel computational and bioinformatic workflow were used to demonstrate that distinct 

luminal microbial communities can be differentiated at the genus level among the various 

compartments and regions comprising the lower GI tract. We hypothesized that spatial 

variation in physicochemical properties such as pH, oxygen availability, water content 

and nutrient composition along the intestinal tract would influence which bacterial genera 

predominate at different locations. The rationale is that bacterial genera have fairly 

coherent physiological, biochemical and metabolic properties and thus would have 

preferred locations in this system. Herein, we demonstrate differential distribution of 

bacterial genera (i.e. biogeography) along the lower intestinal tract, providing a high-
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resolution demonstration of biogeography for the luminal microbiome of the mammalian 

lower GI tract.  

  

Materials and Methods: 

Animal Models and Sampling: 

All animal treatments were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Montana under AUP# Holben 007-12. Ten 

week old female C57Bl/6 and ICR (here called CD-1) mice were provided by Taconic 

Laboratories (Hudson, NY) and held for 3 weeks to establish that their health was stable. 

In independent experiments, two cohorts a year apart (consisting of 10 and 24 mice, 

respectively), with each cohort comprised of both inbred C57Bl/6 mice (6 in cohort 1, 12 

in cohort 2) and outbred CD-1 mice (4 in cohort 1, 12 in cohort 2) were analyzed, 

producing a total of 204 samples from six sampling locations. To maintain their native 

microbiome, the mice were isolated from environmental bacteria using HEPA-filtered air 

in positive pressure cages. The mice were given sterile food, bedding and water, with all 

cage changes performed aseptically. The food (NIH-31) was the same diet they received 

at Taconic. Following the 3-week holding period, the mice were euthanized humanely 

and luminal intestinal samples taken from the indicated locations (see Fig. 1). To control 

for unintended environmental variables, a random number table (Rand Corporation, 

2001) was used to select cages at the same time on 3 separate days (for each cohort) and 

all samples for that day were collected within 1 h of each other.  

Total microbiome DNA was purified from intestinal contents (digesta) at six 

sampling sites along the lower intestinal tract of two cohorts of mice, with each cohort 
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comprised of both inbred C57Bl/6 mice and outbred CD-1 mice to increase host genetic 

variation. All mice were housed, fed and otherwise treated identically to minimize 

variability that might result from differing environmental conditions. Sampling points 

were the distal ileum (defined as the last 3 cm of the ileum), the cecum, the tip of the 

cecum, the proximal colon (the region nearest the cecum containing liquid digesta), the 

mid-colon (the mid-portion containing the first-formed, soft, ‘pre-fecal’ pellets), and the 

distal colon (defined as the last 2 cm including fully formed fecal pellets and the rectum) 

(Fig. 1).  

 

Figure 1: Sampling sites along the lower intestinal tract. 

 

The luminal contents of surgically removed samples were recovered by gentle 

squeezing into sterile microcentrifuge tubes, which were kept on ice during collection 

then stored at -70 ˚C prior to downstream processing. All samples from within each 

mouse were considered to be linked and therefore were processed for microbiome DNA 

recovery, PCR amplification and sequencing together. Sample sets were identified by 
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cage number and mouse number and processed in an order determined by a random 

number table (Rand Corporation, 2001).  

 

Microbiome DNA Recovery, Amplification and Sequencing:  

Microbiome DNA was recovered using a protocol adapted from Apajalahti et al. 

(Apajalahti et al., 1998) that was shown to provide highly effective recovery of bacterial 

DNA from GI tract samples. Digesta samples were placed into sterile Oak Ridge tubes 

containing 10 mL of sterile wash buffer (0.5 M sodium phosphate [pH 8.0], 0.1% Tween-

80) and washed 4 times as follows. Samples were vortexed briefly before being shaken at 

high speed on a reciprocating shaker for 10 min. Next, samples were centrifuged at 

30,000 x g for 15 min at room temperature, after which the supernatant was removed by 

aspiration and the samples resuspended in 10 ml of wash buffer. Following the final wash 

step and centrifugation, the samples were resuspended in 3 ml of Qiagen Buffer B1 (50 

mM sodium EDTA, 50 mM Tris base [pH 8.0], 0.5% Tween-20, 0.5% Triton X-100; 

Qiagen, Valencia, CA) to which RNase A (200 mg/L) was added to a final concentration 

of 200 µg/ml, then stored at -70˚C to initiate the 5 freeze-thaw cycles that facilitate 

bacterial cell lysis. The samples were thawed and refrozen a total of 5 times by being 

placed in a water bath at 40˚C for 15 min, then placed back at -70 ˚C for at least 1 h 

before being thawed again. Following the final thaw, 50 µL of lysozyme (200 mg/ml) 

and 90 µL of proteinase K (20 mg/ml) were added. Samples were then incubated in a 

water bath at 37˚C for 45 min, after which 1 mL of Qiagen B2 buffer (3 M guanidine 

HCl, 20% Tween-20) was added. The samples were incubated in a water bath at 50˚C for 

45 min, then centrifuged for 10 min at 5,000 x g at 4˚C. The supernatant was transferred 
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to a sterile microcentrifuge tube and vortexed for 10 sec. At this point, the Qiagen 

Genomic Tip 20G protocol was followed precisely to elute microbiome DNA, except that 

1 extra 70% ethanol wash was performed. Finally, the dried samples were resuspended in 

50 ml of TE (10 mM Tris [pH 8.0], 1 mM EDTA) and quantified using a nanophotometer 

(Implen P 300, Implen, Inc., Westlake Village, CA).  

Partial 16/18S rRNA gene sequences encompassing regions V4 & V5 were PCR 

amplified from the microbiome DNA (25 ng) using the highly conserved primers 536f & 

907r (25), which were barcoded for pyrosequencing. Where samples were not of 

sufficient concentration to provide 25 ng for PCR, 3 µl of purified microbiome DNA was 

used as template. The resulting 16S-sized amplicons were gel purified using the Qiagen 

Gel Purification kit per manufacturer’s instructions, then further purified through two 

successive rounds using Agencourt AMPure XP magnetic beads per manufacturer’s 

instructions (Beckman Coulter Inc., Brea CA). Purified DNA was quantified, 

multiplexed, and sequenced by the Utah State University Center for Integrated 

Biosystems using the 454 Roche GS FLX system (454 Life Sciences, Roche Diagnostics, 

Indianapolis, IN).  

Data Analysis and Statistics: 

 Sequences were ‘denoised’ and identified to the genus level using the 

Quantitative Insights Into Microbial Ecology (QIIME) pipeline (Caporaso et al., 2010) 

and the number of sequences per sample determined. Sample datasets containing fewer 

than 750 or 1000 sequences were eliminated from cohort 1 and 2, respectively. A taxa 

summary table was built containing a row for each sample (one for each locational 

sampling point for each mouse) and a column for each genus identified. The entries in the 
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matrix were the proportion of reads in the sample represented by the associated genus. 

Any reads that were unclassified at the genus level were removed from further 

consideration. Frequency matrices were created for both cohorts. 

A combined cohort 1 & 2 frequency matrix was created for each of the 

comparisons that were to be plotted. Each plot was for either the C57Bl/6 or CD-1 mouse 

strain, and was for a specific subset of longitudinal sample locations (ileum, caecum, 

proximal colon and distal colon; the caecum and tip of caecum; and the proximal, mid, 

and distal colon). These matrices provided the data for the three pairs of plots depicted in 

Figs. 2 and 3. 

An important part of this analysis was identifying which genera were associated 

with each longitudinal location along the GI tract. We accomplished this with a feature 

selection algorithm known as floating search (described below; in this case the important 

features being identified are the genera). This approach presented a challenge for the 

analysis. Because we used a classifier (Linear Discriminant Analysis, LDA) to determine 

whether microbial community composition could be used to discriminate between sample 

locations, cross-validation was required to provide confidence in the results. In a two-step 

process like this (feature selection followed by classification), the feature selection should 

be performed for each fold in a cross-fold validation process, just as the training phase is 

performed during each fold. This meant that, potentially, a different subset of genera 

might have been identified during each fold of the cross-fold-validation process, leading 

to the problem of which genera to use for visualization. We employed a computational 

voting process (described below) to identify which genera to use during visualization in 

the LDA scatter plots. The more often a given genus was selected as being important for 



 77 

discrimination during the cross-validation process, the more likely it was ultimately used 

for visualizing the results. 

Another challenge was identification of the proper number of features (genera) to 

utilize in the analyses. In machine learning, this is often accomplished by examining 

classifier performance across different numbers of features, and choosing the number of 

features that provide the best classifier performance. The observation of classifiers 

operating best at a specific number of features is known as the ‘peaking phenomenon’ 

(Trunk, 1979). This also helps prevent over-fitting (the classifier becoming overly 

sensitive to nuances in the data). The approach we chose for identifying the number of 

genera, or dimensions, to use was to run the classifier on various datasets (cohort 1, 2, 

and 1 & 2) at various numbers of dimensions (from 7 to 23 genera) with various levels of 

‘pre-pruning.’ Pre-pruning involved the removal of genera if they were not present in at 

least 1 sample (equivalent to no pruning), and in 3%, 5%, 8%, and 16% of all samples. 

This provided 15 accuracies at each number-of-dimensions tested for each classifier. A 

different classifier was used for each LDA scatter plot. These accuracies were visualized 

in a boxplot format (Supplementary Figs. S1 - S3).  

To remove human bias from the process, we determined the appropriate number 

of features by choosing the number with good performance (classifier median accuracy), 

low variation (accuracies at that number of features tend to have low variance), and a 

larger number of dimensions. This was accomplished with a Pareto-front-analysis 

(Hwang and Masud, 1979) (Supplementary Figs S4 - S6). All data points on the Pareto 

front are of equivalent multi-objective quality. A representative number of dimensions 
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was chosen for visualization from the set on the Pareto front and presented in Figs. 4 and 

5.  

This strategy also facilitated the voting process. The genera chosen in each of the 

folds of the leave-one mouse-out cross-validation runs (because samples from the same 

mouse were considered linked) for each of the three datasets (cohorts 1, 2, and 1 & 2) and 

for each of the five pre-pruning levels contributed to the voting tallies. Those with the 

highest normalized tallies were used for visualization purposes. By ‘normalized’ it is 

meant that each vote was weighted according to its achieved accuracy. That is, a genus 

chosen during a fold that achieved a greater accuracy was given more weight than one 

that did not perform as well. A schematic diagram of the bioinformatic and computational 

workflow is presented in Fig. 2, while example code listings for generation of LDA plots 

and cross validation, respectively, are presented in Supplementary Fig. S7. 
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Figure 2:  Process flow diagram of the computational methods employed. 
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 Core Microbiome Determination: 

 The core microbiome for each of the six sampling locations within the 

lower GI tract was determined to the genus level for Cohorts 1 & 2. A genus was 

considered a part of the core microbiome if all samples for that location from all animals 

for both mouse strains contained that genus. The effect of sampling depth on core 

microbiome composition was determined by successively eliminating all sample data sets 

with less than 3,000, 2,500, 2,000, or 1,500 sequences, respectively.  

 

Results: 

Conceiving of the ~10 cm-long mouse lower intestinal tract as a bacterial 

‘landscape’ is facilitated by considering that bacteria are roughly 1/2,000,000 the size of 

humans (~1 µm versus ~2 m). Indeed, 1 cm of distance between two bacterial cells is 

equivalent to 20 km of physical separation between two humans, with all of the potential 

environmental variations that come into play at that scale (e.g. rivers, highways, 

mountains, altitude, local weather). In mice, intersubject differences may be due to 

genetic, nutritional, housing or other environmental effects. Differences in housing have 

been shown to be significant, and possibly as great as those caused by intersubject 

variation.  Cage effects in particular have been shown to be a significant source of noise 

when doing community comparisons even when treatments don’t involve the subtle 

differences found along the lower intestine (Ericsson et al., 2015; Rogers et al., 2014).   
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Figure 3:  Left:  Two treatments in mice cannot be discriminated using a beta 
diversity measure (Unifrac) combined with PCoA.  Right:  Cages as the discriminating 
factor are shown, showing how cage effects can confound results. 

 

For this intestinal landscape study, discerning differences between locations along 

this landscape required overcoming the challenges posed by inter-subject compositional 

variation, cage effects and other causes of noise. This was accomplished using a novel 

bioinformatic workflow that employs a computational ‘feature selection’ technique to 

identify genera that differentiate between intestinal locations, in combination with a 

‘locational classifier’ that predicts location based on microbiome composition.  

The feature selection step employed the ‘floating search’ algorithm (Pudil et al., 

1994), while the classification step involved the use of Linear Discriminant Analysis 

(LDA) applied to the selected genera to predict the location from which the sample was 

taken. To ensure the validity of this approach, each of the feature selection and locational 
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classification steps were performed within a cross-fold validation process. Each fold 

involved withholding data from the sample sites within a single mouse, then testing the 

classifier’s ability to predict the location from which the withheld samples were drawn. 

For visualization purposes, a computational voting process identified the relevant genera 

across all instances of feature selection (Table 1).  Two separate overall accuracies were 

reported for each plot (Figs. 4 and 5) based on whether the genera were selected using 

floating search within each fold of the cross-validation process (compiled to give the 

overall accuracy), or using the voting approach. The ‘floating search within each fold’ 

accuracy is the more conservative technique, while the vote-generated set of genera was 

used for visualization because a fixed set of genera is required when plotting results. 

 

Table 1: Selected genera visualized in Figs. 4 & 5* 

 
*Genera within each column are listed in their rank order, which represents the 

frequency that the floating search chose them, affirmed by cross-fold validation, and 
weighted by LDA performance in the voting process. 

 

When LDA was applied to feature selected data from four sites that are well 

separated and anatomically distinct—the ileum, caecum, proximal colon and distal 

Oscillibacter Lactobacillus Lactobacillus Sporacetigenium Oscillibacter Bifidobacterium
Lactobacillus Dorea Parabacteroides Lactobacillus Robinsoniella Dorea
Robinsoniella Turicibacter Bacteroides Butyricicoccus Dorea Parasutterella
Ruminococcus Oscillibacter Turicibacter Ruminococcus Butyricimonas Turicibacter
Barnesiella Sporacetigenium Robinsoniella Coprobacillus Alistipes Anaerotruncus
Dorea Robinsoniella Butyricimonas Oscillibacter Ruminococcus Akkermansia
Coprobacillus Akkermansia Mucispirillum Parabacteroides Barnesiella Lactobacillus
Coprococcus Marvinbryantia Barnesiella Asaccharobacter Bacteroides Sporobacter
Butyricimonas Asaccharobacter Holdemania Johnsonella Coprobacillus Coprobacillus
Blautia Anaerotruncus Lactonifactor Turicibacter Enterorhabdus Bacteroides
Turicibacter Bacteroides Anaerovorax Roseburia Blautia Robinsoniella
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Parabacteroides Papillibacter Holdemania
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colon—we found that the selected genera separated readily into clusters, thereby 

indicating biogeography with respect to microbiome composition (Fig. 4). The process is 

robust given that the inclusion of samples from two very different strains of mice (one 

inbred, the other outbred), and from two independent experiments a year apart, produced 

highly similar results (Fig. 4). 

An attractive and important outcome of the combined feature selection and LDA 

analysis is that the visualization reflects the biogeography of the sampled communities. 

That is, data-point clusters from sample sites closer together in the intestinal tract tend to 

be situated near one another, while clusters from locations farther apart tend to be more 

separated (Fig. 4). Thus, the biogeographical relationships between microbiome 

communities located longitudinally along the mouse lower intestine appear to be a 

function of the degree of observable environmental differentiation between locations. For 

example, the ileum, a compartment physically proximal to, but environmentally distinct 

from, the caecum is widely separated from that compartment based on this analysis (Fig. 

4). 
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Figure 4: Linear Discriminant Analysis (LDA) of the four main compartments 
sampled from C57Bl/6 strain mice (left panel) and CD-1 strain mice (right panel). 
Filled circles and open circles represent cohorts 1 and 2, respectively. ● Ileum, ● 
Caecum, ● Proximal Colon, ● Distal Colon. Black dots represent the centroid for each 
cluster and ellipses indicate 1 standard deviation. The arrows show the flow of digesta 
between chambers. The plots were made using vote-determined genera. The accuracies 
were 78.79% (62.12%) (left panel) and 63.93% (65.57%) (right panel). The first 
accuracies listed used vote-determined genera, while accuracies in parentheses were for 
genera identified using ‘floating search within each fold’.   

 

In terms of biogeographical resolution, this study further shows that samples from 

different regions within the same chamber (e.g. within the caecum or within the colon) 

can also be differentiated, suggesting that localized physicochemical variations within 

compartments are sufficiently strong to produce differences in microbiome composition. 

For example, microbiome composition of the main body of the caecum is distinct from 

that of the tip of the caecum (Fig. 5, top panels), presumably reflecting differences such 

as moisture content, solidity and composition of digesta, and greater bacterial density in 

the tip (as indicated by microbiome DNA yield per mg of digesta; not shown). 
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Microbiome composition also differed among the proximal, middle and distal colon, 

which exhibited visibly distinct features (morphology, digesta/fecal pellet appearance) 

that were used to select sampling sites (Fig. 5).  

 

Figure 5:  LDA of the Tip of the Cecum and Cecum (top panels) and 
Proximal, Mid and Distal Colon (bottom panels) for C57Bl/6 mice (left) and CD-1 
mice (right).   ● Cecum, ● Tip of the Cecum, ● Proximal Colon, ● Mid-Colon, ● 
Distal Colon.  Filled circles and open circles represent cohorts 1 and 2, respectively.  
Black dots represent the centroid for each cluster and ellipses indicate 1 standard 
deviation.  The plots were made using vote-determined general.  The accuracies were 
93.55% (77.42%) (top left), 71.88% (62.50%) (top right), 62.00% (52.00%) (bottom left), 
58.70% (50.00%) (bottom right).  The first accuracies listed used vote-determined 
genera, while accuracies in parentheses were for genera identified using ‘floating search 
within each fold’. 
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Given the genus-level resolution afforded by this approach, we also assessed 

whether there was a distinguishable ‘core microbiome’ for the different sampling 

locations. To detect core genera, we examined all samples from each location in cohorts 1 

and 2 to determine whether there were any genera present in all individuals from both 

mouse strains at that location. Even given these strict criteria, some genera qualified as 

core constituents of the microbiome for each intestinal location (Table 2). Differences in 

the core microbiome for each location support the differences seen in the LDA plots, 

providing further evidence for longitudinal biogeography along the lower intestinal tract. 

The core microbiome for each location did not change as a function of sequence depth as 

determined for samples having 3,000, 2,500, 2,000, or 1,500 sequences (not shown), 

suggesting that the identified core genera and the criteria used to detect them are 

insensitive to sampling depth, both in terms of identity and proportional composition. 

Interestingly, core genera that reside in more than one intestinal location (e.g. 

Lactobacillus) represent a different proportion of the microbiome depending on location, 

which we suggest is a manifestation of broader tolerance of varying environmental 

conditions (e.g. pH and oxygen), while still exhibiting a preferred or optimal site (niche).  

To date, it has not been possible to determine a ‘universal’ laboratory mouse core 

microbiome due to differences between strains and environments at different animal 

facilities (Ericsson et al., 2015). Similarly, it seems likely that efforts to establish wild 

mouse, human, or other core microbiomes might be challenged by differences in local 

foods and environmental parameters. Nonetheless, the data herein support the concept of 

a core microbiome at each sampling location for both cohorts and both strains of mice in 
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our study, likely because the experimental design tightly controlled for potentially 

confounding environmental factors.  

 

 
Table 2: Core microbiome genera for each sampled lower intestinal tract 
location  

*Percentage given is the median value for cohorts 1 and 2 and both strains. 

§Percentages in parentheses are the range of values for cohorts 1 and 2 and both 

mouse strains. 

  

Discussion: 

Previously, a variety of methods have been used to distinguish between locations 

in the lower intestinal tract that either involve beta diversity measures, basic statistical 

analyses with PCoA or PCA used to visualize biogeography in the lower intestinal tract.  

These methods have been unsuccessful at discriminating differences between locations.  

One particular issue is the lack of whole community assessments that give a sense of 

which taxa contribute to the differences between treatments.  At most, this type of study 

Ileum Caecum Tip of Caecum Proximal Colon Mid Colon Distal Colon
Lactobacillus  

60.76%*            
(12.54-90.62%)§

Lactobacillus    
11.80%                

(2.55-21.12%)

Lactobacillus    
8.62%                 

(0.53-18.11%)

Lactobacillus    
14.83%                

(2.61-40.73%)

Lactobacillus    
28.94%               

(6.36-57.15%)

Lactobacillus       
22.90%                 

(1.52-63.46%)
Turicibacter       

7.19%                  
(0.17- 57.63%)

Dorea            
0.58%             

(0.18-1.45%)

Dorea            
0.74%                      

(0.19-1.90%)

Dorea          
0.39%                     

(0.08-1.54%)

Dorea             
0.24%                     

(0.08-1.08%)
Oscillibacter           

1.61%                  
(0.86-4.16%)

Oscillibacter           
1.60%                   

(0.52-2.76%)

Oscillibacter           
1.07%                 

(0.18-3.57%)

Oscillibacter           
0.34%                   

(0.05-2.04%)
Robinsoniella           

0.75%                   
(0.07-3.05%)

Robinsoniella           
0.85%                    

(0.05-3.81%)

Bacteroides        
0.51%             

(0.05-2.46%)

Bacteroides        
1.16%             

(0.10-7.49%)

Bacteroides        
0.88%             

(0.09-4.27%)
Parabacteroides           

0.54%                  
(0.04-1.68%)

Coprobacillus 
0.24%            

(0.01-1.53%)

Holdemania  
0.31%                  

(0.03-1.87%)
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has specified that selected genera are present or absent based on evidence that the taxa in 

question may be physiologically important to the host (Ding and Schloss, 2014; Zhang et 

al., 2014).  The most successful study to date that addresses these problems is a human-

based on microarray analysis from colonoscopy biopsies to examine biogeography; 

however, in addition to using methods from numerical ecology, it used pairwise 

comparisons between sites rather than multivariate methods (Aguirre de Carcer et al., 

2011).  One could also argue that the use of a micro-array is, in itself, somewhat biased as 

a form of subsampling taxa of interest. 

The current study shows that we can discriminate genus-level differences in 

microbiome composition among geographically distinct intestinal environments, i.e. 

biogeography. The notion of a biogeographically-focused microbiome controlled by the 

local environment is consistent with the current vision of the ecophysiology of the GI 

tract, where food becomes progressively digested, degraded and transformed through host 

and microbial activities. Importantly, this approach identifies the genera that are 

exhibiting differential localization (Table 1). The observed localization supports the 

hypothesis that these genera are responsive to their local surroundings and potentially key 

in microbiome functionality rather than just transitory taxa introduced with food or from 

the environment (i.e. just passing through).  

This demonstration of genus-level biogeography was possible because of the 

novel combination of computational, statistical, and bioinformatic approaches, namely 

feature selection, LDA, and voting, that comprise the data analysis workflow described 

herein. Through broader application to existing datasets, this new workflow may add 

value to prior studies where the effects of various diseases, treatments, or environmental 
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parameters on microbiome or microbial community composition were obscure or of 

lower resolution. 

Biogeography in the intestinal microbiome very likely influences host health, 

immune system function, and the ability to digest food and absorb microbial and host 

metabolites. For example, it has been shown that nutrients that affect bacteria in the GI 

tract may have a profound impact on multifactorial diseases such as cancer or obesity 

simply by changing how bacterial metabolites are distributed longitudinally along the 

colon (Cani, 2014; Louis et al., 2014). In addition, microbiomes that are able to block 

pathogens from colonizing their preferred environments through competitive exclusion or 

predation may provide host resistance to pathogens, thereby explaining why some 

individuals are less susceptible to diseases than others. Enhanced knowledge of the 

distribution and activities of intestinal microbiome taxa afforded by this and other 

approaches should lead to greater understanding of host health, better insights into the 

etiology of many pathogen-based and chronic illnesses, and new or better-targeted 

therapeutics, prebiotics or probiotics.  
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 Supplementary Figures: 

 

 
Supplementary Figure S1: Box plots showing cross-validation accuracies 

when feature selection was performed inside of cross-validation to different 
numbers of dimensions. The base dataset used was Cohorts 1&2 with mouse strain B6 
(top) and strain CD1 (bottom) filtered to 4 chambers: Ileum, Cecum, Proximal Colon, and 
Distal Colon. The green line shows accuracies when using Pruning level 1 (P1) i.e. the 
complete dataset. The orange line shows accuracies using the P16% dataset (refer to 
METHODS). The blue line shows accuracies when feature selection was performed 
outside (before) cross-validation. The red line shows accuracies when data from feature 
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selection inside of cross-validation was compiled and used to select genera outside 
(before) cross-validation was performed. 
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Supplementary Figure S2: Box plots showing cross-validation accuracies 

when feature selection was performed inside of cross-validation to different 
numbers of dimensions. The base dataset used was Cohorts 1&2 with mouse strain B6 
(top) and strain CD1 (bottom) filtered to 2 chambers: Cecum and Tip of Cecum. The 
green line shows accuracies when using Pruning level 1 (P1) i.e. the complete dataset. 
The orange line shows accuracies using the P16% dataset (refer to METHODS). The 
blue line shows accuracies when feature selection was performed outside (before) cross-
validation. The red line shows accuracies when data from feature selection inside of 
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cross-validation was compiled and used to select genera outside (before) cross-validation 
was performed. 
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Supplementary Figure S3: Box plots showing cross-validation accuracies when 
feature selection was performed inside of cross-validation to different numbers of 
dimensions. The base dataset used was Cohorts 1&2 with mouse strain B6 (top) and 
strain CD1 (bottom) filtered to 3 chambers: Proximal Colon, Mid Colon, and Distal 
Colon. The green line shows accuracies when using Pruning level 1 (P1) i.e. the 
complete dataset. The orange line shows accuracies using the P16% dataset (refer to 
METHODS). The blue line shows accuracies when feature selection was performed 
outside (before) cross-validation. The red line shows accuracies when data from feature 
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selection inside of cross-validation was compiled and used to select genera outside 
(before) cross-validation was performed. 
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Supplementary Figure S4: Scatter plot of the 3D-Pareto frontiers when 

Supplementary Figure 4 box plot data are optimized by median accuracy, lowest 
variance, and number of dimensions. Green points represent boxes that are dominated 
by other boxes, while red points represent boxes that are dominated by no other box, thus 
representing equally optimal solutions. The orange border is a series of triangles drawn 
when the red points are sorted by median accuracy and sets of 3 points are taken using a 
sliding window to draw n – 2 triangles. The blue point in the background represents the 
origin (0,0,0) as a frame of reference. 
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Supplementary Figure S5: Scatter plot of the 3D-Pareto frontiers when 

Supplementary Figure 5 box plot data are optimized by median accuracy, lowest 
variance, and number of dimensions. Green points represent boxes that are dominated 
by other boxes, while red points represent boxes that are dominated by no other box, thus 
representing equally optimal solutions. The orange border is a series of triangles drawn 
when the red points are sorted by median accuracy and sets of 3 points are taken using a 
sliding window to draw n – 2 triangles. The blue point in the background represents the 
origin (0,0,0) as a frame of reference. 
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Supplementary Figure S6: Scatter plot of the 3D-Pareto frontiers when 6 box 

plot data are optimized by median accuracy, lowest variance, and number of 
dimensions. Green points represent boxes that are dominated by other boxes, while red 
points represent boxes that are dominated by no other box, thus representing equally 
optimal solutions. The orange border is a series of triangles drawn when the red points 
are sorted by median accuracy and sets of 3 points are taken using a sliding window to 
draw n – 2 triangles. The blue point in the background represents the origin (0,0,0) as a 
frame of reference. 
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Code Listing 1 
Function LMO-CV( matrix, n_genera ): 
 n_samples = number of rows of matrix 
 n_correct = 0 
 for each mouse m (LMO fold): 
  The test samples are those from mouse m 
  The training samples are all remaining samples 
  Do floating search on training samples using n_genera genera 
  Build LDA model using training data filtered to selected genera 
  Predict test data using LDA model 
  n_correct += number samples correctly classified 
 return n_correct/n_samples 
 
Code Listing 2 
Function choose_genera( matrix, n_genera, information generated by LMO-CV ) 
 for each LMO-CV: 
  cv_accuracy = accuracy returned by LMO-CV 
  for each genus g: 
   count_folds[g] = 0 
   for each fold of CV: 
    if fold chooses g then count_folds[g] += 1 
   accuracy[g] += count_folds[g]*cv_accuracy 
 sort genera into descending order by accuracy[g]  
 Return set of the best n_genera genera 
 
Supplementary Figure S7: Example code listings for generation of LDA plots 

and cross validation, respectively. 
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Chapter 4:  Carpe Diem – C. difficile invasion and the Intestinal 
Microbiome 

 
Abstract: 

 Clostridium difficile associated disease has a high (5-9% in 2011) and 

growing prevalence rate in hospitalized patients and appears to be moving to increased 

prevalence in long-term care and community reservoirs. It is an excellent model for the 

study of interactions between opportunistic pathogens and the intestinal microbiome, in 

part because the antibiotic treatment that enables C. difficile invasion in the intestine can 

be experimentally manipulated.  Here, a detailed examination of the distribution of and 

associations between CDAD and commensal bacterial taxa (the microbiome) combined 

with the biogeography of the intestinal microbiome provides insight into how such 

associations facilitate or mitigate the progression of Clostridium difficile associated 

disease.   Major changes were found in both the core micriobiome and distribution maps 

of major taxa during both antibiotic treatment and C. difficile infection.  In addition we 

found that C. difficile appears to affect the intestinal microbiome when introduced 

without prior antibiotic treatment.  Finally, we found that C. difficile distribution along 

the intestinal tract changed during vancomycin treatment, suggesting that in some 

individuals C. difficile may be sequestered in the cecum and appendix during vancomycin 

treatment, thus resulting in recurrence of the disease following the discontinuation of 

treatment. 

 
 

Introduction: 

Opportunistic bacterial pathogens such as Clostridium difficile (C. difficile) 

exhibit many hallmarks of invasive macroorganisms such as plant and animal pests that 
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operate at landscape scales of meters, kilometers and greater.  The GI tract represents a 

landscape of environmental parameters that vary at centimeter to meter scales yet 

produce quite distinct environments (‘compartments’) distinguished by factors such as 

pH, enzymatic activities, oxygen status, nutrients, and water availability.  Like larger 

invasive organisms, invading opportunistic bacteria must become established in the face 

of the indigenous community (here, the host microbiome) to cause disease. However, 

little is known regarding the biogeographical distribution of indigenous microbiome taxa 

across the GI landscape and, until recently, studies have failed to examine the positive 

and negative associations between C. difficile and the component taxa of the microbiome 

across this landscape.   

C. difficile is a good model for the study of mechanisms that predispose for 

disease caused by opportunistic pathogens. It is one of the most emergent nosocomial 

(i.e. hospital-acquired) diseases in the world (Clements et al., 2010; Shin et al., 2008; Tae 

et al., 2009; Weiss et al., 2009).  Of the individuals that contract the disease, 20 – 30% 

will develop recurrent disease, leading to life-threatening complications.  Basic 

conditions for precipitating C. difficile associated disease (CDAD) have been described 

and involve gross changes to the intestinal microbiome due to prior antibiotic treatment 

for other infections (Bartlett, 1979; Viswanathan et al., 2011).  Several good mouse 

models for CDAD have been developed that exhibit a similar etiology to the human 

disease, making unraveling the invasion and establishment processes more tractable 

(Chen et al., 2008; Lawley et al., 2009; Reeves et al., 2011).   

While the clinical conditions that precipitate changes in the intestinal microbiome 

leading to CDAD are reasonably well understood, how these changes permit C. difficile 
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to initially invade or allow its recurrence is not well understood, although recent studies 

done on C. difficile colonization and the intestinal microbiome suggest that the 

composition of the microbiome has a large effect on whether the initial colonization by 

C. difficile will be successful (Schubert et al., 2015).  It is also unknown whether or 

where C. difficile becomes sequestered during therapeutic treatment in those who suffer 

from recurrent infections, though the appendix has been suggested as a potential site for 

sequestration (Bollinger et al., 2007; Laurin et al., 2011).   

Interestingly, in many invasive systems, including plants, animal pests, and 

disease systems, invasive organisms have been shown to be capable of altering the 

invaded environment (so-called ‘ecological engineering’) to make it more hospitable to 

the invader and more hostile to its indigenous competitors (Cuddington and Hastings, 

2004; Karatayev et al., 2007; Knodler et al., 2010; Nolte, 2011).  C. difficile has also been 

shown to be an ecosystem engineer—using a form of ‘phenotypic noise’ to clear an area 

for colonization (Ackermann et al., 2008).  In this scenario, a proportion of the C. difficile 

population lyses itself to release TcdA, a toxin which causes inflammation in host cells, 

allowing the remaining viable C. difficile population to invade the newly cleared area.  

How important the ability to engineer colonization is when compared to the greater 

generalized impact of community perturbation due to antibiotic use, is difficult to 

determine, but changes in the microbiome due to C. difficile alone might play a part in 

both initial colonization and recurrent disease.  Thus, although we know that the 

intestinal microbiome as a whole changes when antibiotics are administered, and that C. 

difficile appears to take advantage of these changes, we have no knowledge of what 

interactions occur between C. difficile and other members of the intestinal microbiome, 
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either during disease, when C. difficile is present without disease, or during the 

phenomenon of recurrence. 

Although excellent work has been done recently on the effect of microbiome 

interactions on C. difficile invasion, those models relied on fecal samples alone to explore 

the interactions (Schubert et al., 2015).  In addition, the effects and outcomes of C. 

difficile introduction alone when not preceded by antibiotic treatment have not been 

studied in detail.  The primary goal of the current study were to examine a recurrence 

model of C. difficile to determine whether recurrence could be due, at least in part, to 

sequestration of C. difficile in a particular gut compartment.  Another goal was to 

determine whether the composition and biogeography of the lower gut microbiome plays 

a role in successful colonization.  Finally, the effects of C. difficile when not preceded by 

antibiotic treatment were examined to assess whether C. difficile itself has an effect on 

the intestinal microbiome.  

 
Methods: 

 
Animal Model and Sampling: 

 
Animal Model 

 All animal treatments were approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Montana under AUP# 045-13.  Three week 

old-female C57Bl/6 mice were purchased from Envigo (http://www.envigo.com/about-

envigo/ (formerly Harlan Laboratories)) and housed locally until 21 weeks of age to 

allow their intestinal microbiome to acclimate to environmental conditions in the animal 

care facility at the University of Montana.  During this time, they were handled on a daily 
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basis, and in addition to their regular food (NIH 31), were fed small amounts of fresh 

apple each day. 

 Two weeks prior to the start of the experiment, the mice were weighed and 

categorized into three weight classes:  low (15 – 21 g), medium (> 21 – 30 g) and high (> 

30 g) to facilitate the administration of antibiotics and other treatments.  The housing was 

rearranged so that mice from one weight range were caged together in groups of 3 per 

cage.  The day prior to the start of the experiment, the mice were weighed again.  The 

three weight classes were maintained to allow for more accurate dosage of the mice with 

antibiotics, but to accommodate the experimental protocol of 6 mice per group, the 

middle class was subdivided either into the low weight class (≤ 27 G. ea.) or high weight 

class (> 27 G. ea.).  These two groups consisted of equal numbers of cages, which were 

randomly assigned into experimental groups using a random number table (Rand 

Corporation, 2001), but allowing for one high- and one low-weight cage (2 cages, 6 mice 

total) per sampling time for a total of 36 mice per group (refer to Fig. 1).   
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Figure 1:  Experimental groups and schematic diagram of the experimental set-up.  The 
point of administration of C. difficile is day 0.  The 6 sampling timepoints are indicated 
with asterisks (Chen et al., 2008). 

 
All animal treatments followed the experimental protocol described by Chen et al. 

(2008) model of C. difficile infection in mice (Fig. 1) with the following modifications:  

All mice received small amounts of pasteurized applesauce in addition to their food, and 

all food and bedding was pre-sterilized from this point on in the study.  According to 

weight class, mice were given a cocktail of antibiotics (kanamycin (40 mg/kg), 

gentamicin (3.5 mg/kg), colistin (4.2mg/kg), metronidazole (21.5 mg/kg), and 

vancomycin (4.5 mg/kg), or a sterile water placebo via gavage each day over a 3-day 

period.  The relevant groups of mice (groups 2, 4 and 5) were given clindamycin IP (10 

mg/kg) 30 h prior to challenge with C. difficile.  Cages of mice to be challenged with C. 

difficile (groups 3, 4 and 5) were moved into the BSL II area of the animal care facility.  

These mice were inoculated with 105 CFU of C. difficile strain BI17 spores in sterile 

water via gavage.  Strain BI17 was used because it had been demonstrated in this model 

to cause CDAD without concurrent mortality (Chen et al., 2008).  One day (24 h) post-
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inoculation, vancomycin (50 mg/kg) was administered to the relapse group (group 5) 

once a day for 7 days.  Following this, the mice were observed for clinical signs of 

CDAD twice daily to monitor for indications of relapse (e.g. febrility, weakness, 

diarrhea). 

 
Table 1:  List of experimental abbreviations used. Numbers following abbreviations 
denote experimental time points (refer to Fig. 1). 

H2O1 Negative control, time point 1 
ABX2 Antibiotic control, time point 2 (received antibiotic but not 

challenged) 
cH2O4 C. difficile control (challenged, but no antibiotic treatment),  

time point 4 
cABX

4 
received antibiotics prior to challenge with C. difficile, time 

point 4 
Van5 Antibiotic treatment, challenged with C. difficile and treated with 

vancomycin, time point 5 
Van6 Antibiotic treatment, challenged with C. difficile, treated with 

vancomycin, then sampled after vancomycin therapy was stopped 
(relapse), time point 6 

time1, 
2, etc. 

Shorthand for time point 1, 2, etc. 

 
C. difficile Spore Preparation and Plating 

BI17 cells were received frozen from Dale N Gerding, MD and were used to 

produce spores for gavage.  Spores were produced in one large batch.  Brain-Heart 

Infusion (BHI) plates were reduced overnight using the anaerobic GasPak system and 

chambers (Becton, Dickinson and Company, Franklin Lakes, NJ).  One hundred ml of 

glycerol stock cells were used to inoculate 4 Blood Agar Plates (BAP) (company ,state), 

which were placed in anaerobe chambers with 2 GasPaks and an anaerobic indicator 

strip, then incubated at 37˚ C for 6 d.   

The plates were scraped of cells and spores using a sterile spatula and then 

transferred into 10 ml of 1X Phosphate Buffer Solution (pH 7.4) in a 35 ml Oak Ridge 
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tube and centrifuged for 5 minutes at 6,500 x g.  The pellet was resuspended with 5 ml of 

PBS and then heat-shocked at 56˚ C. for 10 minutes to kill any remaining vegetative 

cells, then incubated on ice for 10 min.  This suspension was again centrifuged at 6,500 x 

g. , after which the pellet was resuspended in 9.0 mL PBS and stored at -70˚ C. until 

further use.   

Spores were titrated via serial dilution IN PBS and plating onto pre-reduced (i.e. 

anaerobic) TFA plates (Merrigan et al., 2010), then incubated overnight in an anaerobic 

GasPak chamber at 37˚ C.  

 

Sampling 

As at time point 1 all mice were equivalent to negative control mice, it was 

deemed unnecessary to sample 30 mice (i.e. 6 from each of the 5 treatment groups).  

Instead, 12 mice were sampled at timepoint 1, prior to the beginning of the experiment.  

The subsequent timepoints were at -3 d (pre-infection), just prior to infection, 24 h post-

infection, 4 d post infection and 9 d post-infection (this last timepoint was empirically 

determined as when clinical signs showed the mice had active CDAD (i.e. they relapsed).  

At each sampling timepoint, mice were euthanized humanely in a CO2 chamber. 

Intestinal tract samples were then surgically removed from each of 6 sampling points 

(Fig. 2).  The sampling points comprised the distal ileum (defined as the last 3 cm of the 

ileum), the cecum, the tip of the cecum, the proximal colon (the region nearest the cecum 

containing liquid digesta), the mid-colon (the mid-portion containing the first-formed, 

soft, ‘pre-fecal’ pellets), and the distal colon (defined as the last 2 cm including fully 

formed fecal pellets and the rectum). Due to the low numbers of mice being sampled and 
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the need to keep experimental groups separate, randomization of sampling was not 

required. 

 

 
 
Figure 2:  Sampling sites along the mouse lower intestine. 
 
 The luminal contents of surgically removed samples were recovered by 

gentle squeezing into sterile microcentrifuge tubes, which were kept on ice during 

collection then stored at -70 ˚C prior to downstream processing. All samples from within 

each mouse were considered to be linked and therefore were processed for microbiome 

DNA recovery, PCR amplification and sequencing together.  The processing order of the 

samples was randomized using a random number table (Rand Corporation, 2001). 

 
 Microbiome DNA Recovery, Amplification and Sequencing.   

Microbiome DNA was recovered using a protocol adapted from Apajalahti et al. 

(Apajalahti et al., 1998) that was shown to provide highly effective recovery of bacterial 

DNA from GI tract samples. Digesta samples were placed into sterile Oak Ridge tubes 

containing 10 mL of sterile wash buffer (0.5 M sodium phosphate [pH 8.0], 0.1% Tween-

80) and washed 4 times as follows. Samples were vortexed briefly before being shaken at 

high speed on a reciprocating shaker for 10 min. Next, samples were centrifuged at 

Distal Colon 

Proximal Colon 
Mid-Colon Ileum 

Cecum 

 Tip of the Cecum 



 112 

30,000 x g for 15 min at room temperature, after which the supernatant was removed by 

aspiration and the samples resuspended in 10 ml of wash buffer. Following the final wash 

step and centrifugation, the samples were resuspended in 3 ml of Qiagen Buffer B1 (50 

mM sodium EDTA, 50 mM Tris base [pH 8.0], 0.5% Tween-20, 0.5% Triton X-100; 

Qiagen, Valencia, CA) to which RNase A was added to a final concentration of 200 

µg/ml, then stored at -70˚C to initiate the 5 freeze-thaw cycles that facilitate bacterial cell 

lysis. The samples were thawed and refrozen a total of 5 times by being placed in a water 

bath at 40˚C for 15 min, then placed back at -70 ˚C for at least 1 h before being thawed 

again. Following the final thaw, 50 µL of lysozyme (200 mg/ml) and 90 µL of proteinase 

K (20 mg/ml) were added. Samples were then incubated in a water bath at 37˚C for 45 

min, after which 1 mL of Qiagen B2 buffer (3 M guanidine HCl, 20% Tween-20) was 

added. The samples were incubated in a water bath at 50˚C for 45 min, then centrifuged 

for 10 min at 5,000 x g at 4˚C. The supernatant was transferred to a sterile 

microcentrifuge tube and vortexed for 10 sec. At this point, the Qiagen Genomic Tip 20G 

protocol was followed precisely to elute microbiome DNA, except that 1 extra 70% 

ethanol wash was performed. The dried samples were resuspended in 50 ml of TE (10 

mM Tris [pH 8.0], 1 mM EDTA) and then the eluted DNA was centrifuged at maximum 

speed using a microfuge (Eppendorf 5415C) for 15 minutes to remove any contaminating 

particulates.  The supernatant, which contained purified DNA was quantified using a 

nanophotometer (Implen P 300, Implen, Inc., Westlake Village, CA). 

To compare microbiome composition among samples, partial 16/18S rRNA gene 

sequences encompassing regions V4 & V5 were PCR amplified from the microbiome 

DNA (25 ng) using barcoded versions of the highly conserved primers 536f and 907r 
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(Holben et al., 2004), which span variable regions V4 & V5. Where samples were not of 

sufficient concentration to provide 25 ng for PCR, 3 µl of purified microbiome DNA was 

used as template. The resulting 16S-sized amplicons were gel purified using the Qiagen 

Gel Purification kit per manufacturer’s instructions. Purified DNA was quantified, 

multiplexed and sequenced at the UC Davis Genome Center DNA Technologies Core 

(http://dnatech.genomecenter.ucdavis.edu/) The DNA was sequenced using Illumina 

Miseq technology (Illumina; http://www.illumina.com/, San Diego, CA, USA).  

 
Data Analysis and Statistics.  

Identification of OTUs and core diversity 

Sequences were received as paired-end reads and joined using fast-q join 

(https://code.google.com/p/ea-utils/).ddswwwwwq11).   After changing the header 

conformation of the sequences and compiling the sequences into one file using fna 

format, the sequences were processed using the Quantitative Insights Into Microbial 

Ecology (QIIME) pipeline (Caporaso et al., 2010).  A combination of both closed and 

open reference was used to identify sequences to the genus level with UClust using a 

97% similarity cut-off (Caporaso et al., 2010). The number of taxa (i.e. OTUs) were 

identified for each sample. To generate diversity plots, a 4,300 rarefaction cut-off was set 

to retain an appropriate number of samples to support downstream analyses. Alpha 

diversity plots were run using QIIME, and PD whole tree, Chao 1 and observed OTU 

numbers were all calculated and plotted. Unifrac beta diversity was also calculated in 

QIIME using the same rarefaction cut-off. 
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Feature Selection and LDA 

A taxa summary table was built containing a row for each sample (one for each 

locational sampling point for each mouse) and a column for each genus identified. The 

entries in the matrix were the proportion of reads in the sample represented by the 

associated genus. Any reads that were unclassified at the genus level were removed from 

further consideration.   

Clostridiaceae and Peptostreptococcaceae were identified as families of taxa of 

which C. difficile was possibly a member (Yutin and Galperin, 2013). All sequences in 

these families were identified and processed using the Ribosomal Database Project 

(RDP) Sequence Match (SeqMatch (Cole et al., 2009)) to the species level to determine 

the amount of C. difficile in each treatment at any timepoint .  These numbers were then 

used downstream for feature selection, statistical and co-occurrence analyses. 

Due to individual variation between animals, we found it difficult to distinguish 

between treatment types using typical beta diversity measures such as Unifrac 

((Lozupone and Knight, 2005) supplementary Fig. S1); however, we were able to 

distinguish between treatments and sampling locations using a novel bioinformatics 

workflow developed in support of this work. This approach employs a feature selection 

algorithm known as floating search (in this case the important features being identified 

are the genera (Pudil et al., 1994)) combined with a classification step that involved the 

use of Linear Discriminant Analysis (LDA) applied to the selected genera to predict the 

location from which the sample was taken. For visualization purposes, a computational 

voting process identified the relevant genera across all instances of feature selection (see 

below).  
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This approach presented a challenge for the analysis. Because we used a classifier 

(LDA) to determine whether microbial community composition could be used to 

discriminate between sample locations, cross-validation was required to provide 

confidence in the results. Thus, each of the feature selection and locational classification 

steps were performed within a cross-fold validation process. Each fold involved 

withholding data from the sample sites within a single mouse, then testing the classifier’s 

ability to predict the location from which the withheld samples were drawn. The feature 

selection should be performed for each fold in a cross-fold validation process in a two-

step process like this (feature selection followed by classification), just as the training 

phase is performed during each fold. This meant that, potentially, a different subset of 

genera might have been identified during each fold of the cross-fold-validation process, 

leading to the problem of which genera to use for visualization. To overcome this, we 

employed a computational voting process (described below) to identify which genera to 

use during visualization in the LDA scatter plots. The more often a given genus was 

selected as being important for discrimination during the cross-validation process, the 

more likely it was ultimately used for visualizing the results. 

Another challenge was identification of the proper number of features (genera) to 

utilize in the analyses. In machine learning, this is often accomplished by examining 

classifier performance across different numbers of features, and choosing the number of 

features that provide the best classifier performance. The observation of classifiers 

operating best at a specific number of features is known as the ‘peaking phenomenon’ 

(Trunk, 1979). This also helps prevent over-fitting (the classifier becoming overly 

sensitive to nuances in the data). The approach we chose for identifying the number of 
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genera, or dimensions, to use was to run the classifier on the datasets (treatments at each 

timepoint) at various numbers of dimensions (from 5 to 30 genera) with various levels of 

‘pre-pruning.’ Pre-pruning involved the removal of genera if they were not present in at 

least 1 sample (equivalent to no pruning), and in 3%, 5%, 8%, and 16% of all samples. 

This provided 15 accuracies at each number-of-dimensions tested for each classifier. A 

different classifier was used for each LDA scatter plot. These accuracies were visualized 

in a boxplot format (Figs. S2 – S4).  

To remove human bias from the process, we determined the appropriate number 

of features by choosing the number with good performance (classifier median accuracy), 

low variation (accuracies at that number of features tend to have low variance), and a 

larger number of dimensions. This was accomplished using a Pareto-front-analysis 

((Hwang and Masud, 1979) Figs S5 – S7). All data points on the Pareto front are of 

equivalent multi-objective quality. A representative number of dimensions was chosen 

for visualization from the set on the Pareto front and presented in Fig. 4.  

This strategy also facilitated the voting process. The genera chosen in each of the 

folds of the leave-one mouse-out cross-validation runs (because samples from the same 

mouse were considered linked) for each of the timepoint datasets and for each of the five 

pre-pruning levels contributed to the voting tallies. Those with the highest normalized 

tallies were used for visualization purposes. By ‘normalized’ it is meant that each vote 

was weighted according to its achieved accuracy. That is, a genus chosen during a fold 

that achieved a greater accuracy was given more weight than one that did not perform as 

well. A schematic diagram of the bioinformatic and computational workflow is presented 
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in Supplementary Fig. S8, while example code listings for generation of LDA plots and 

cross validation, respectively, are presented in Supplementary Fig. S7 in Chapter 3.  

 

Distribution of Peptoclostridium across all treatments 

 C. difficile has been reclassified recently as Peptoclostridium difficile and 

is found under that nomenclature within the RDP, as well as the Green Genes database 

(DeSantis et al., 2006). We used the QIIME interface to subsample all 

Peptostreptococcaceae sequences and submitted them to RDP via Sequence Match 

(SeqMatch) for identification at the species level. 

Peptoclostridium and Clostridium Group XI sequences were graphed using Excel 

to demonstrate the distribution of sequences across all treatments for all locations (Fig. 5 

and 6). In addition, because it was possible that the Clostridium Group XI sequences 

contained Peptoclostridium sequences, we submitted 498 Peptoclostridium sequences to 

the European Bioinformatics Institute (EMBL-EBI; http://www.ebi.ac.uk/ ). These were 

aligned using MUltiple Sequence Comparison by Log-Expectation (MUSCLE (Edgar, 

2004)) and then a consensus sequence was made using MView (Brown et al., 1998).  The 

consensus sequence was used to identify sequences within the Clostridium Group XI that 

were Peptoclostridium sequences. 

 

Core Microbiome Determination: 

 The core microbiome for each of the main treatments for each timepoint 

was determined to the genus level and used to generate pie-chart plots (Fig. 9). A genus 
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was considered part of the core microbiome if all samples for that treatment or location 

from all animals contained that genus. 

 

Analysis of mean proportion of reads by sample location and treatment 

 The average proportion of reads for the 15 most abundant taxa as well as 

for Peptoclostridium and Clostridium Group XI, were calculated using Excel.  These 

were graphed for each treatment as well by sampling site (Fig. 6, 7, 10 – 13, some data 

not shown). 

  
 

Results: 
Clinical signs in animals and treatment effects on major phyla: 

 Only animals that were challenged with C. difficile showed clinical signs 

of illness. The animals challenged with the antibiotic cocktail alone had soft stools and 

moved more slowly than usual for approximately 24 h after being challenged with C. 

difficile, but this was the extent of clinical signs seen in those mice. Mice that were given 

vancomycin after being challenged with C. difficile all became sick within 24 hours after 

the vancomycin treatment was discontinued, as evidenced by the presence of diarrhea in 

all cages. All mice in the group that had been treated with vancomycin and then 

discontinued had soft stools but most ate and drank normally.  One mouse became 

moribund during the vancomycin treatment and had to be euthanized.  Another died 

overnight after discontinuing the vancomycin. 

The graph below (Fig. 3) can be considered a general diagram of how different 

treatments affect the intestinal microbiome on a general (i.e. low-resolution) level during 

the course of this experiment. The three major phyla found in the intestinal microbiome 
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are Firmicutes, Bacteroidetes and Proteobacteria, of which Proteobacteria are normally 

not seen in great numbers as indicated by the negative controls (Fig. 3). As the 

experiment began, Proteobacteria levels were barely above the limit of detection. The 

administration of clindamycin stimulated a short period of outgrowth of Proteobacteria, 

while the relative proportions of Firmicutes and Bacteroidetes decreased. The proportion 

of Firmicutes dropped to below 50% of the proportion observed in the control animals.  

Challenging the mice with C. difficile with no antibiotic pre-treatment did not produce an 

increase in Proteobacteria. In mice challenged with C. difficile while being treated with 

antibiotics, the course of the experiment appears much the same as in those that weren’t 

challenged – except that some mice exhibited clinical signs of CDAD. Finally, the 

administration of vancomycin, (first measured 4 days into a 7-day treatment regimen) 

produced a sustained increase in the relative proportion of Proteobacteria detected within 

the intestinal microbiome. As vancomycin treatment was discontinued, and overt clinical 

signs of disease were observed in the mice, the relative proportion of Firmicutes and 

Proteobacteria decreased, while that of Bacteroidetes rose.   
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Figure 3: Mean proportional differences in major phyla as a function of treatment. 
*Denotes antibiotic administration **Denotes C. difficile challenge. H2O4 and ABX4 
occur at the time of challenge, but the mice were not exposed (as indicated by bracketing 
asterisks), although they continued to be handled. H2O: Negative controls (water or saline 
in place of treatments); ABX: Antibiotic controls; cH2O: Challenged controls; cABX:  
Challenged with antibiotic treatment prior to C. difficile challenge; Van5: Vancomycin 
given for 4 days, starting 24 h after C. difficile challenge; Van6: Relapse after course of 
Vancomycin terminated. 
 

 
 
 
Alpha and Beta Diversity: 

Three different indices of alpha diversity gave similar results (Chao1 is depicted 

in Fig. 4, see also Supplementary Table 1). There were significant difference in diversity 

due to antibiotic treatment at times 2, 3, and 4, and between the controls and the 

vancomycin treated mice at time 5. Although there was no significant difference between 

groups with respect to the C. difficile challenge, there was a suggested trend among the 

antibiotic treatments in that the cABX mice appeared to have a slightly higher alpha 
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diversity than those from the antibiotic treatment group that was not challenged with C. 

difficile. 

Unifrac was applied to the dataset with a sequence cut-off (so-called, rarefaction) 

of 4300 sequences; however, Unifrac was unable to distinguish between all treatments. 

(Supplementary Fig. 1).  Because of this, we used feature selection with LDA analysis to 

determine whether there were differences between treatments within timepoints. 
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Figure 4:  Chao1 alpha diversity plots, showing alpha diversity for samples from different 
points in time.  The plot for the Time1 (H2O1) controls is overlaid on each plot to enable 
comparisons.  A:  Timepoint 2, B:  Timepoint 3,  C:  Timepoint 4, D:  Timepoint 5, E:  
Timepoint 6. H2O: water treatment (negative controls); ABX: antibiotic treatment; Van5: 
vancomycin treatment; Van6: halting of vancomycin treatment (relapse). 

 
Feature Selection and LDA: 

Feature Selection distinguished clearly between groups within timepoints and LDA plots 

(Fig. 5) show clear separation between treatment groups, except in the case of timepoint 4 

and timepoint 6 (Fig. 5E).      
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Figure 5:  Feature selection combined with LDA showing that within different sampling 
timepoints, treatments can be distinguished from one another.   The plots were made 
using vote-determined genera. The first accuracies listed used vote-determined genera, 
while accuracies in parentheses were for genera identified using ‘floating search within 
each fold’.   Black dots represent the centroid for each cluster and ellipses indicate 1 
standard deviation.  Cross-validation accuracies:  A:  Timepoint 2 accuracies:  
83.33%(74.07%), 10 taxa; B.  Timepoint 3 accuracies:  93.1% (74.14%), 12 taxa; C.  
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Timepoint 4 accuracies:  81.51%(75.63%), 17 taxa; D. Timepoint 5 accuracies:  
80.24%(68.86%),18 taxa; E.  Timepoint 6 accuracies:  73.56%(81.03%), 18 taxa 
 

 
Distribution mapping of C. difficile prevalence across all samples, treatments and 

timepoints 

C. difficile has been reclassified recently as Peptoclostridium difficile and is found 

under that nomenclature within the RDP, as well as the Green Genes database (DeSantis 

et al., 2006); however, due to the widespread use of the older designation, “Clostridium 

difficile” in the experimental and medical literature, the older term is used herein. 

Although good experimental technique was used to select a clonal colony to plate for 

spores, we found that we had a mixture of results, with some sequences being identified 

as Peptoclostridium difficile, but the majority were identified as being in Clostridium 

Group XI (the group that contains C. difficile).  While all identified members of 

Peptoclostridium difficile were limited to the mice that had been experimentally treated 

with C. difficile, the Clostridium Group XI were not (Figs. 6 and 7).  We therefore used 

the Peptoclostridium difficile sequences to create a consensus sequence.  Unfortunately, 

the best consensus was only at 97% identity for the entire alignment, limiting our ability 

to use the sequence to identify Peptoclostridium difficile sequences that might be among 

those contained in the Clostridium Group XI file.  

 Using this approach, distribution mapping of C. difficile (Peptoclostridium 

difficile) shows that it was detected only in mice that were challenged with C. difficile. 

Furthermore, in this set of experiments it was detected only in the mice pretreated with 

antibiotics.  Although a supershedder state has been reported previously in some other 

facilities for mice not pre-treated with antibiotics (Buffie et al., 2012; Lawley et al., 
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2009), we did not find this here. The proportion of OTUs is highest in the mice that 

showed the most severe clinical signs – those that had received vancomycin and were 

allowed to relapse.   

The presence and proportions of C. difficile in mice was found to be quite variable 

between compartments, treatments and timepoints (Fig. 8), but both the Ileum and the tip 

of the cecum were found to have the highest mean proportion of reads.  Small amounts of 

C. difficile were found in the one mouse that became moribund (49.1) while on 

vancomycin.  In that mouse, C. difficile was detected in the tip of the cecum, as well as 

the cecum with some in the mid-colon. 

 

 
Figure 6:  Distribution of Peptoclostridium difficile reads across all sampling 
times/treatments 
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Figure 7: Distribution of Clostridium Group XI showing the more broad dispersal across 
treatments that implies that other members of Clostridium Group XI are present in 
addition to C. difficile. 
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Figure 8:  Proportion of Peptoclostridium reads for individual mice from times 4, 5, and 6 
showing variation of Peptoclostridium in individuals.  Top:  Mice at timepoint 4, 
previously treated with antibiotics, showing variable detection of Peptoclostridium 
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between individual mice. Middle:  Peptoclostridium was only detected in one mouse 
during vancomycin treatment (49.1).  Bottom:  Mice at timepoint 6 (during relapse).  
Peptoclostridium was detected in all mice, but variability between individuals can be 
seen.  Mouse 49.1 (from timepoint5, during vancomycin treatment) is shown on the right 
to give an indication of the difference in the amount of Peptoclostridium found during 
vancomycin treatment and that found during relapse 
 

 
Core microbiome analysis: 

The core microbiome at the genus level was determined for all treatments by 

timepoint (Fig. 9). Lactobacillus, Parabacteroides, Bacteroides and Escherichia were the 

predominant taxa observed as a function of the different treatments administered.   

The core plots provide a simple method for following key genera as they change 

with the experimental regime over time.  Notably, antibiotic treatment causes a loss in 

core microbiome diversity. The antibiotic cocktail, as well as the vancomycin treatment 

appeared to cause a short-term increase in the proportion of Lactobacillus within the 

intestine, which rapidly diminished in favor of Parabacteroides along with Escherichia. 

Over the course of the experiment, there appeared to be a shift in the core microbiome of 

mice that were treated with antibiotics to include a greater proportion of Bacteroides 

along with Parabacteroides and Dorea. Clindamycin, while sustaining the decrease in 

core diversity, did not cause a similar proportional increase in Lactobacillus. Changes in 

the control samples (Fig. 9, top row) appeared to reflect the initiation of experimental 

manipulations (Time 2, top row) with a commensurate increase in core diversity that is 

not reflected in the alpha diversity plots (Fig. 1A). By timepoint 3, the core community 

for the controls reverted to looking much the same as at the start of the experiment 

(timepoint 1). One unique aspect of the control cores was that they were enriched in the 

proportion of Turicibacter relative to the other treatments.     
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Figure 9:  Core plots of treatments.  Genera represented in any core plot are present in all 
samples for that treatment at that timepoint.  From Left to Right, columns are:  
timepoint1 (control), timepoint 2 (antibiotic treatment), timepoint 3 (clindamycin 
treatment), timepoint 4 (C. difficile challenge), timepoint 5 (vancomycin treatment), and 
timepoint 6 (Relapse (vancomycin removed).  From top to bottom, rows represent 
treatments:  1. Negative controls (water only)), 2. antibiotic treatments only, 3. C. difficile 
challenge, 4.  C. difficile challenge combined with antibiotic treatment, 5. Vancomycin 
treatment and relapse (far right bottom).  The dark blue/purple in the relapse treatment is 
Peptoclostridium, the genus that contains C. difficile alongside Escherichia. 

 
Interestingly, the core plots for the C. difficile treated controls (no antibiotics) 

looked much like the core plot for the control at timepoint 2, with many of the same taxa 

present in both, but the C. difficile treated controls also exhibited an increased proportion 

of Parabacteroides. We had also expected to detect C. difficile, but saw no evidence of 

its presence in the C. difficile control core plots or samples. The timepoint 2 control also 

contained a small proportion of Blautia, which is a member of the Clostridium XIV 



 130 

Group, which contains many taxa that are considered beneficial to the host, while Blautia 

didn’t appear in the core microbiome of the C. difficile controls. 

The core communities from mice challenged with C. difficile after having been 

given antibiotics were less diverse than those that were exposed to antibiotics. There was 

a modestly increased proportion of Escherichia along with Parabacteroides, which 

progressed to a core community dominated by Parabacteoides and Parasutterella. 

Treatment with vancomycin following challenge with C. difficile exhibited 

predominance by Lactobacillus and Escherichia, both of which subsequently diminished 

in favor of an increased proportion of Enterococcus. 

 
 
Biogeographical Analysis 

Distribution graphs (by treatment and location) were made for several taxa 

including C. difficile (Figures 5 and 6). Only some of these suggested differences  in 

distributional patterns associated with C. difficile, and these are presented below in Figs. 

10-14. Of all of these taxa, Lactobacillus was found in the greatest proportional 

abundance, which is of interest given that bacteria in this genus supposedly afford 

protection against C. difficile infection (Lawley et al., 2012; Schubert et al., 2015). The 

distribution graph for Lactobacillus (Fig. 10) shows that normally (i.e.in mice not 

challenged with antibiotics) Lactobacillus is primarily found in the ileum, with the next 

most preferred site being the mid-colon. When mice were administered antibiotics, there 

was a general increase in the proportion of Lactobacillus across the rest of the 

compartments of the lower gastrointestinal tract. This is most apparent at Timepoint 2 

following treatment with the antibiotic cocktail (ABX2), as well as at timepoint 5 during 
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vancomycin treatment (Van5).  At these timepoints, the distribution pattern for 

Lactobacillus proportional abundance increased, with it being detected at higher levels in 

all locations of the intestine. Interestingly, during relapse (timepoint 6), the distribution of 

Lactobacillus proportional  abundance reverted to being similar to that found normally in 

control mice (Fig. 10). 

 

 
Figure 10:  Distribution of Lactobacillus by treatment and location 
 
 
 
Bacteroidetes are also an important group of bacteria in the gut, but haven’t been 

shown to have an influence on the outcome of infection by C. difficile. The genus 

Parabacteroides was found in high proportion in many of the samples in this experiment, 

particularly in mice that were treated with antibiotics (Fig. 11). Where proportionally 

abundant, Parabacteroides had a fairly even biogeographical distribution across all of the 

sampling sites. Following cessation of antibiotic treatment, the distribution patterns 

became less even, with Parabacteroides being more prevalent in the mid colon and distal 

colon. Antibiotic treatment appeared to be the primary reason for increased levels of 

Parabacteroides, given that C. difficile challenged mice exhibited a similar profile to 
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those that were not challenged. Interestingly, when compared to the negative controls, 

Parabacteroides did reflect the effects of C. difficile challenge in the absence of 

antibiotic treatment. Mice that were challenged without antibiotics showed an increase in 

the proportion of Parabacteroides compared to the negative controls (Fig. 11).  In this 

case, instead of the fairly even profile seen for other treatments involving antibiotics, the 

profiles were uneven, making it difficult to determine where Parabacteroides were found 

in the greatest proportional numbers in those mice.     

 

 
Figure 11:  Distribution of Parabacteroides by treatment and location 

 
 
The genus Bacteroides also showed differences in distribution patterns due to C. 

difficile challenge alone; i.e. with no antibiotics (Fig 12). Antibiotic controls that weren’t 

challenged were in decreased proportion in Bacteroides in the first 24 h after being given 

clindamycin. Twenty-four hours later they had rebounded and high proportions of 

Bacteroides were found throughout the lower intestine except for the distal ileum, with 

the highest proportions found in the mid colon and distal colon.  Mice challenged with C. 

difficile showed a decrease in the proportion of Bacteroides associated with clindamycin 

treatment, but the levels never reached those of the mice that weren’t challenged. Despite 
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this, the highest proportions of Bacteroides in the C. difficile challenged mice were in the 

colon (Fig. 12). 

 

 
Figure 12:  Distribution of Bacteroides by treatment and location 

 
 
 
The genus Alistipes (Fig. 13) is a Bacteroidete that may protect against C. difficile 

infection (Schubert et al., 2015). The observed proportional distribution of this genus is 

paradoxical to that notion in that challenge with C. difficile is associated with changes in 

where the highest proportions of Alistipes were found. Prior to C. difficile challenge and 

in unchallenged controls, the highest proportions of Alistipes were found in the proximal 

colon. By contrast, following challenge with C. difficile, the highest proportions were 

observed in the mid-colon. In antibiotic treated mice, Alistipes proportions dropped 

below the level of detection and then rebounded. The highest proportions of Alistipes 

were found at timepoint 3 and were the most proportionally abundant in the mid colon 

and distal colon. Upon treatment with clindamycin, the proportion of Alistipes dropped 

below the level of detection. By contrast, in C. difficile challenged mice, Alistipes 

remained at fairly normal levels (compared to negative controls), although the highest 
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proportions within the colon were found in the mid-colon in these mice (representing a 

change in predominant location) (Fig. 13). 

 

 
Figure 13:  Distribution of Alistipes by treatment and location 

 
 
 

 
Figure 14:  Distribution of Escherichia by treatment and location 

 
 The genus Escherichia was normally present in low abundance within the 

intestine (Fig. 14, H2O1 – H2O6). Increased numbers of Escherichia were detected after 
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antibiotic administration. While Escherichia has been positively associated with overt 

CDAD (Lawley et al. 2012; Schubert et al., 2015), in this experiment it was barely above 

the limit of detection in mice that were challenged with C. difficile but not pretreated with 

antibiotics. 

 

Discussion: 

Following the development of mouse models for CDAD that correspond closely 

with the course of the disease in humans, there have been many excellent studies 

examining C. difficile colonization and its potential interactions with the intestinal 

microbiome (Koenigsknecht et al., 2015; Lawley et al., 2012; Schubert et al., 2015; Sun 

et al., 2011).  In the current study, for the first time, the interactions of C. difficile with 

the intestinal microbiome are explored at the genus level along the landscape of the lower 

intestinal tract.  In addition to examining the effect of C. difficile on the intestinal 

microbiome during overt disease, the effects of C. difficile in the absence of perturbation 

(antibiotics) were examined, as well as during antibiotic treatment and relapse. This 

approach was both promising and rewarding in that it examined how C. difficile might 

behave under a variety of conditions, providing considerable insight into its etiology. 

CDAD has been associated with reduced alpha-diversity in the intestinal 

microbiome (Buffie et al., 2012; Young and Schmidt, 2004), which is most likely due to 

its relationship to treatment with antibiotics in its host. Here, we show that while the 

antibiotic regimen significantly decreased the alpha diversity of the intestinal 

microbiome, the introduction of C. difficile alone did not significantly lower alpha-

diversity (Fig. 4, Supplementary Table 1). This observation lends substantive credibility 
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to the notion that the course of antibiotic treatment itself altered the intestinal 

microbiome, resulting in a decrease in diversity in those prior studies. Our findings are 

also concordant with prior work suggesting that C. difficile takes advantage of the 

disturbance of the microbiome brought on by antibiotic treatment in order to invade the 

intestine.  In this etiology, timing may play an important role, as C. difficile and other 

pathogens appear to be dependent on the series of successional changes that take place as 

the intestinal microbiome recovers from perturbation (Fig. 8, see also David et al., 2015; 

Schubert et al., 2015)   

Another goal of this study was to determine whether C. difficile had an effect on 

the intestinal microbiome without prior disturbance due to antibiotic treatments. To do 

this, negative control samples were compared to C. difficile control samples. There have 

been prior reports in the literature suggesting that a “super shedder state” is created when 

mice are exposed to C. difficile without antibiotic treatment (Buffie et al., 2012; Lawley 

et al., 2009), but this did not occur in this study, as spores were never recovered by 

plating from these samples (data not shown). However, reports of the super shedder state, 

as well as other disease states with mouse models appear to be dependent on differences 

between animal facilities (Buffie et al., 2012; Lawley and Young, 2013).   

Unifrac was not able to discriminate between the negative control and the C. 

difficile control at time 4 (Supp. Fig. 1). By contrast, while the LDA plot associated with 

feature selection appeared to have failed to separate the two treatments (Fig. 5C), the 

cross validation values obtained (81.51% and 75.63% for cross validation inside and 

outside of feature selection, respectively) indicate that this approach was, in fact, able to 

discriminate between all of the time 4 treatments including the negative control and the 
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C. difficile control. Feature selection and LDA done at later time points confirmed that 

feature selection successfully discriminated between the two control treatments, 

indicating that were indeed different from one another. 

Interestingly, in this study, C. difficile itself was never found in the C. difficile 

controls (Fig. 6), although it may have been present as a member of the Clostridium XI 

Group. We attempted to try and create a 100% identity consensus sequence using the C. 

difficile sequences in order to query Clostridium Group XI sequences for potential C. 

difficile candidates to obtain a better distribution map, but this was unsuccessful when we 

barely achieved a 90% identity consensus.  The poor success rate developing a consensus 

was likely due to the fact that C. difficile genome contains between 10 and 12 rRNA 

operons, most of which appear to be functional (van Eijk et al., 2015). Sequence 

differences between these operons, including their respective 16S rRNA genes were an 

obvious explanation for our lack of success, as well as probably being the reason why 

identification of recovered C. difficile sequences was divided between Peptoclostridium 

and Clostridium XI at the genus level. 

Core plot analysis not only helped in selecting genera of interest for distribution 

maps from among 300+ genera, but also gave pertinent information at the genus level on 

changes in ‘major players’ as different experimental treatments were applied (Fig. 8). For 

instance, the C. difficile control core communities appear to be enriched in 

Parabacteroides as compared to the negative control core communities. Parabacteroides 

are able to digest resistant starches (making them likely members of the mouse intestinal 

microbiome (Flint et al., 2012), but the role they play in C. difficile infection when 

antibiotics are not present is not clear and may reward future investigation(s). 
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Additionally, Parabacteroides and Bacteroides have been found to harbor resistance 

genes to a variety of antibiotics (Nakano et al., 2011), which perhaps explains their 

ability to survive in the face of multiple rounds of antibiotic treatments. While 

Bacteroides did not fare well with respect to the vancomycin treatments, Parabacteroides 

was one of the few community members to thrive during this treatment, along with 

Escherichia and Lactobacillus. 

The core plots also present an interesting picture of what appear to be “waves” of 

succession in microbiome composition, as a variety of taxa increase in proportional 

abundance (i.e. “bloom”) and then decrease in abundance, only to be followed by 

“blooms” of other taxa. For example, in following the antibiotic treatments over time 

(Fig. 8, row 2), a “bloom” of Lactobacillus occured within 24 hours after the 

administration of antibiotics. This swiftly declined again and was followed by a “bloom” 

of Parabacteroides at time 4 (which can be seen within the core microbiome at time 

three). A third “bloom” followed, with Lactobacillus and Bacteroides in approximately 

equal proportions, which declined by time 6. 

Both Escherichia and Lactobacillus have been associated with CDAD, but 

Lactobacillus has been suggested to be protective against C. difficile infection, while 

Escherichia has been shown to facilitate infection (Lawley et al., 2012; Schubert et al., 

2015). In the current study, high levels of Escherichia were detected in the intestine 

following antibiotic treatment and just before challenge with C. difficile (Fig. 8 and 14). 

This appears to affirm their role as facilitating C. difficile infection. Lactobacillus, on the 

other hand, also increased proportionally following antibiotic treatment and was much 

more prevalent than Escherichia (Figs. 8 and 9). However, Lactobacillus only increased 
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in prevalence following the first treatment with the antibiotic mixture, not following 

clindamycin treatment (Time 3). This means that it was present in normal amounts prior 

to challenge with C. difficile. The role that Lactobacillus might play in protection against 

CDAD is also called into doubt by its rather puzzling presence during vancomycin 

treatment and prior to relapse (Fig. 9). One interpretation is that Lactobacillus only 

provides protection prior to colonization by C. difficile and that once C. difficile is 

established, Lactobacillus cannot not prevent its overgrowth (i.e. range expansion).   

There are a couple possible scenarios for how this might work.  A recent study 

has postulated that the microbiome works as a consortium to provide colonization 

resistance to C. difficile (Schubert et al., 2015).  In this scenario, vital members of the 

protective consortium are depleted by continued antibiotic use and even though one or 

more members may be present in increased proportions, they can’t protect against C. 

difficile invasion, leading to recurrent disease as more antibiotics are used to control 

CDAD in the host. In another scenario, different members of the genus Lactobacillus 

form a mixed species group in which some taxa are protective and others are not (and 

may even facilitate invasion). In this case, antibiotics select for specific species of 

Lactobacillus that are protective leaving the host with other species of Lactobacillus that 

don’t provide protection against C. difficile invasion and/or relapse.  This is supported by 

other work done in our lab on how Lactobacillus species change during invasion of 

probiotic species in yogurt (supplementary Fig. S9). The second scenario is also 

supported in part by particular changes illustrated in the distribution map that show the 

biogeographical distribution of Lactobacillus throughout the experiment (Fig. 9).  Those 

data show that Lactobacillus is located in high proportions within the ileum prior to 
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antibiotic use. At timepoint 2 Lactobacillus had rapidly expanded it range to be found in 

large quantities throughout the lower intestine. By time 3, the Lactobacillus population 

has decreased to less than normal proportions, with the highest proportion again in the 

ileum.  Lactobacillus does not appear to be much affected by clindamycin, (administered 

prior to timepoint 3), but responded to vancomycin treatment by again expanding its 

range to include the entire lower intestinal tract. 

Another objective of this research was to investigate whether C. difficile was 

sequestered somewhere in the lower intestinal tract during treatment with vancomycin, 

leading to recurrent disease from this reservoir as opposed to simply reinfecting the host 

de novo following the end of the antibiotic treatment. We found some evidence 

supporting both alternatives in this study. Of the 6 mice sampled during vancomycin 

treatment, 5 appeared to have cleared C. difficile, or if present, it was below the limit of 

detection (Fig. S8, middle panel). However, one mouse did have C. difficile present in 

detectable abundance and actually became morbid during the vancomycin treatment. The 

C. difficile was, however, present in very low abundance, leading to a question of 

whether it was cause of the mouse being ill. Considering the biogeographical distribution 

maps for C. difficile, it can be seen that while C. difficile is found in a variety of locations 

within the lower intestine, it is primarily found in the ileum in infected mice that are not 

being concurrently treated with antibiotics (Fig. 3, points ABX4 and Van6). In the one 

mouse that was infected during vancomycin treatment, the C. difficile was located 

primarily in the cecum and tip of the cecum (the latter equivalent to the appendix in the 

mouse), although a smaller amount was detected in the mid-colon as well. While this is 

certainly not overwhelming support for C. difficile sequestration while under vancomycin 
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treatment, it is interesting to note that 1 mouse out of 6 is consistent with the recurrence 

rate of 20% given in the literature (Ananthakrishnan, 2011). Thus, the mouse results 

mirror human disease with 5 mice appearing to clear the disease and then getting 

reinfected, while 1 mouse contained sequestered C. difficile, which expanded its 

distribution once the antibiotic was removed. 

This is probable, considering that the intestinal microbiome is an ecosystem with 

all of the complexity and ‘checks and balances’ thereof. A major disturbance of the 

system can lead to opportunities both for pathogens and possibly probiotic bacteria, thus 

facilitating disease or preventing it. One challenge with this hypothesis is that every 

individual appears to have a different microbiome, creating intersubject variation that 

may lead to high levels of variation during experimental work or interfere with patient 

care during clinical work. For instance in this study, Alistipes was found in mice that had 

C. difficile (Fig. 13). Conversely, in another study it was not present in any animals that 

had CDAD and therefore was considered to be protective against infection with C. 

difficile (Schubert et al., 2015).  Thus, the interpretation of any study as it applies to 

specific taxa and their roles in disease etiology should be received with caution, just as in 

any other ecosystem study specific to that system. Nonetheless, the current study and 

others can be read with cautious optimism as different methods of examining the effects 

of invasion on the intestinal microbiome substantiate information about the system as a 

whole.   

Here, we have shown the value of using feature selection to discriminate between 

taxa and combined that with analysis of the proportional abundance and distribution of 

specific taxa to differentiate between locations within the intestine and provide insight 
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into how C. difficile infection progresses, as well as gaining insight into how C. difficile 

might survive antibiotic treatment within the host in order to cause recurrent disease. In 

addition, we have provided evidence that C. difficile is associated with changes to the 

intestinal microbiome even in the absence of antibiotic treatments (Figs. 5 and 6). By 

examining individual taxa, such as Lactobacillus, Escherichia and Parabacteroides, 

mechanisms for how their abundance and distribution change during antibiotic treatment 

and C. difficile infection, as well as possible mechanisms for changes in the intestinal 

microbiome during the course of CDAD have been suggested. This is important in 

searching for taxa that interact directly with C. difficile to facilitate or protect against 

disease. It is only by examining how members of the intestinal microbiome interact with 

medical treatment and nutrition as well as invaders, pathogenic or otherwise, that we can 

begin to develop new treatment regimes and therapeutics based on the microbiome itself. 

 
  
 

  



 143 

    
 
 

Literature Cited: 
 
Ackermann, M., Stecher, B., Freed, N.E., Songhet, P., Hardt, W.D., and Doebeli, M. 
(2008). Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987-990. 
 
Ananthakrishnan, A.N. (2011). Clostridium difficile infection: epidemiology, risk factors 
and management. Nat. Rev. Gastroenterol. Hepatol. 8, 17-26. 
 
Apajalahti, J.H., Sarkilahti, L.K., Maki, B.R., Heikkinen, J.P., Nurminen, P.H., and 
Holben, W.E. (1998). Effective recovery of bacterial DNA and percent-guanine-plus-
cytosine-based analysis of community structure in the gastrointestinal tract of broiler 
chickens. Appl. Environ.Microbiol. 64, 4084-4088. 
 
Bartlett, J.G. (1979). Antibiotic-Associated Pseudomembranous Colitis. Reviews of 
Infectious Diseases 1, 530-539. 
 
Bollinger, R.R., Barbas, A.S., Bush, E.L., Lin, S.S., and Parker, W. (2007). Biofilms in 
the large bowel suggest an apparent function of the human vermiform appendix. J Theor 
Biol 249, 826-831. 
 
Brown, N.P., Leroy, C., and Sander, C. (1998). MView: a web-compatible database 
search or multiple alignment viewer. Bioinformatics 14, 380-381. 
 
Buffie, C.G., Jarchum, I., Equinda, M., Lipuma, L., Gobourne, A., Viale, A., Ubeda, C., 
Xavier, J., and Pamer, E.G. (2012). Profound alterations of intestinal microbiota 
following a single dose of clindamycin results in sustained susceptibility to Clostridium 
difficile-induced colitis. Infect. Immun. 80, 62-73. 
 
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, 
E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. (2010). QIIME allows 
analysis of high-throughput community sequencing data. Nat. Meth. 7, 335-336. 
 
Chen, X., Katchar, K., Goldsmith, J.D., Nanthakumar, N., Cheknis, A., Gerding, D.N., 
and Kelly, C.P. (2008). A mouse model of Clostridium difficile-associated disease. 
Gastroenterology 135, 1984-1992. 
 
Clements, A.C., Magalhaes, R.J., Tatem, A.J., Paterson, D.L., and Riley, T.V. (2010). 
Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. 
Lancet Infect. Dis. 10, 395-404. 
 
Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-
Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. (2009). The 



 144 

Ribosomal Database Project: improved alignments and new tools for rRNA analysis. 
Nucleic Acids Res. 37, D141-145. 
 
Cuddington, K., and Hastings, A. (2004). Invasive engineers. Ecol. Model. 178, 335-347. 
 
David, L.A., Weil, A., Ryan, E.T., Calderwood, S.B., Harris, J.B., Chowdhury, F., 
Begum, Y., Qadri, F., LaRocque, R.C., and Turnbaugh, P.J. (2015). Gut microbial 
succession follows acute secretory diarrhea in humans. mBio 6, e00381-00315. 
 
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., 
Dalevi, D., Hu, P., and Andersen, G.L. (2006). Greengenes, a chimera-checked 16S 
rRNA gene database and workbench compatible with ARB. Appl. Environ.Microbiol. 72, 
5069-5072. 
 
Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high 
throughput. Nucleic Acids Res 32, 1792-1797. 
 
Flint, H.J., Scott, K.P., Louis, P., and Duncan, S.H. (2012). The role of the gut microbiota 
in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577-589. 
 
Holben, W.E., Feris, K.P., Kettunen, A., and Apajalahti, J.H. (2004). GC fractionation 
enhances microbial community diversity assessment and detection of minority 
populations of bacteria by denaturing gradient gel electrophoresis. Appl. 
Environ.Microbiol. 70, 2263-2270. 
 
Hwang, C.L., and Masud, A.S.M. (1979). Multiple objective decision making, methods 
and applications: a state-of-the-art survey (Springer-Verlag). 
 
Karatayev, A.Y., Boltovskoy, D., Padilla, D.K., and Burlakova, L.E. (2007). The invasive 
bivalves dreissena polymorpha and limnoperna fortunei: parallels, contrasts, potential 
spread and invasion impacts. J. Shellfish Res. 26, 205-213. 
 
Knodler, L.A., Vallance, B.A., Celli, J., Winfree, S., Hansen, B., Montero, M., and 
Steele-Mortimer, O. (2010). Dissemination of invasive Salmonella via bacterial-induced 
extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107, 17733-17738. 
 
Koenigsknecht, M.J., Theriot, C.M., Bergin, I.L., Schumacher, C.A., Schloss, P.D., and 
Young, V.B. (2015). Dynamics and establishment of Clostridium difficile infection in the 
murine gastrointestinal tract. Infect. Immun. 83, 934-941. 
 
Laurin, M., Everett, M.L., and Parker, W. (2011). The cecal appendix: one more immune 
component with a function disturbed by post-industrial culture. Anat. Rec. (Hoboken) 
294, 567-579. 
 
Lawley, T.D., Clare, S., Walker, A.W., Goulding, D., Stabler, R.A., Croucher, N., 
Mastroeni, P., Scott, P., Raisen, C., Mottram, L., et al. (2009). Antibiotic treatment of 



 145 

clostridium difficile carrier mice triggers a supershedder state, spore-mediated 
transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661-
3669. 
 
Lawley, T.D., Clare, S., Walker, A.W., Stares, M.D., Connor, T.R., Raisen, C., Goulding, 
D., Rad, R., Schreiber, F., Brandt, C., et al. (2012). Targeted restoration of the intestinal 
microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile 
disease in mice. PLoS pathog. 8, e1002995. 
 
Lawley, T.D., and Young, V.B. (2013). Murine models to study Clostridium difficile 
infection and transmission. Anaerobe 24, 94-97. 
 
Lozupone, C., and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing 
microbial communities. Appl. Environ.Microbiol. 71, 8228-8235. 
 
Merrigan, M., Venugopal, A., Mallozzi, M., Roxas, B., Viswanathan, V.K., Johnson, S., 
Gerding, D.N., and Vedantam, G. (2010). Human hypervirulent Clostridium difficile 
strains exhibit increased sporulation as well as robust toxin production. Journal of 
bacteriology 192, 4904-4911. 
 
Nakano, V., Nascimento e Silva, A., Merino, V.R., Wexler, H.M., and Avila-Campos, 
M.J. (2011). Antimicrobial resistance and prevalence of resistance genes in intestinal 
Bacteroidales strains. Clinics 66, 543-547. 
 
Nolte, A.W. (2011). Dispersal in the course of an invasion. Mol. Ecol. 20, 1803-1804. 
 
Pudil, P., Novovicova, J., and Kittler, J. (1994). Floating Search Methods in Feature-
Selection. Pattern Recogn. Lett. 15, 1119-1125. 
 
Rand Corporation (2001). A Million Random Digits with 100,000 Normal Deviates 
(Glencoe, IL USA: Rand Corporation), pp. B1 - 8. 
 
Reeves, A.E., Theriot, C.M., Bergin, I.L., Huffnagle, G.B., Schloss, P.D., and Young, 
V.B. (2011). The interplay between microbiome dynamics and pathogen dynamics in a 
murine model of Clostridium difficile Infection. Gut microbes 2, 145-158. 
 
Schubert, A.M., Sinani, H., and Schloss, P.D. (2015). Antibiotic-Induced Alterations of 
the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against 
Clostridium difficile. mBio 6. 
 
Shin, B.M., Kuak, E.Y., Yoo, H.M., Kim, E.C., Lee, K., Kang, J.O., Whang, D.H., and 
Shin, J.H. (2008). Multicentre study of the prevalence of toxigenic Clostridium difficile 
in Korea: results of a retrospective study 2000-2005. J. Med. Microbiol. 57, 697-701. 
 
Sun, X., Wang, H., Zhang, Y., Chen, K., Davis, B., and Feng, H. (2011). Mouse relapse 
model of Clostridium difficile infection. Infect. Immun. 79, 2856-2864. 



 146 

 
Tae, C.H., Jung, S.A., Song, H.J., Kim, S.E., Choi, H.J., Lee, M., Hwang, Y., Kim, H., 
and Lee, K. (2009). The first case of antibiotic-associated colitis by Clostridium difficile 
PCR ribotype 027 in Korea. J. Korean Med. Sci. 24, 520-524. 
 
Trunk, G.V. (1979). A problem of dimensionality: A simple example. IEEE Trans. 
Pattern Anal. Mach. Intell. 1, 306 - 307. 
 
van Eijk, E., Anvar, S.Y., Browne, H.P., Leung, W.Y., Frank, J., Schmitz, A.M., Roberts, 
A.P., and Smits, W.K. (2015). Complete genome sequence of the Clostridium difficile 
laboratory strain 630Deltaerm reveals differences from strain 630, including translocation 
of the mobile element CTn5. BMC genomics 16, 31. 
 
Viswanathan, V.K., Mallozzi, M.J., and Vedantam, G. (2011). Clostridium difficile 
infection: An overview of the disease and its pathogenesis, epidemiology and 
interventions. Gut Microbes 1, 234-242. 
 
Weiss, B., Kleinkauf, N., Eckmanns, T., an der Heiden, M., Neumann, M., Michels, H., 
and Jansen, A. (2009). Risk factors related to a hospital-associated cluster of Clostridium 
difficile PCR ribotype 027 infections in Germany During 2007. Infect. Control. Hosp. 
Epidemiol. 30, 282-284. 
 
Young, V.B., and Schmidt, T.M. (2004). Antibiotic-associated diarrhea accompanied by 
large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 
1203-1206. 
 
Yutin, N., and Galperin, M.Y. (2013). A genomic update on clostridial phylogeny: Gram-
negative spore formers and other misplaced clostridia. Environ. Microbiol. 15, 2631-
2641. 
  



 147 

 
Supplementary Figures and Tables: 
 

Supplementary Table 1:  Table of PD_Whole_Tree, Chao1 and observed species 
diversity indices and averages. 
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Supplementary Figure S1:  Left:  Unifrac for timepoint 1 and 4.  Right Unifrac for total 
experiment. 

 
 

 
 

Supplementary Figure S2: Box plots showing cross-validation accuracies when feature 
selection was performed inside of cross-validation to different numbers of dimensions. 
The base dataset used was CDF time1 and 2 filtered to 2 treatments: Water and 
Antibiotics. The green line shows accuracies when using Pruning level 1 (P1) i.e. the 
complete dataset. The orange line shows accuracies using the P16% dataset (refer to 
METHODS). The blue line shows accuracies when feature selection was performed 
outside (before) cross-validation. The red line shows accuracies when data from feature 
selection inside of cross-validation was compiled and used to select genera outside 
(before) cross-validation was performed. 
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Supplementary Figure S3: Box plots showing cross-validation accuracies for 2 LDA runs 
when feature selection was performed inside of cross-validation to different numbers of 
dimensions. The base dataset used was CDF filtered to 4 treatments: Water, Antibiotics 
Water, Cdiff and Antibiotics, Cdiff. The green line shows accuracies when using Pruning 
level 1 (P1) i.e. the complete dataset. The orange line shows accuracies using the P16% 
dataset (refer to METHODS). The blue line shows accuracies when feature selection was 
performed outside (before) cross-validation. The red line shows accuracies when data 
from feature selection inside of cross-validation was compiled and used to select genera 
outside (before) cross-validation was performed. 
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Supplementary Figure S4: Box plots showing cross-validation accuracies for 2 LDA runs 
when feature selection was performed inside of cross-validation to different numbers of 
dimensions. The base dataset used was CDF filtered to 5 treatments: Water; Antibiotics; 
Water Cdiff, Antibiotics, Cdiff; Vancomycin, Cdiff. The green line shows accuracies 
when using Pruning level 1 (P1) i.e. the complete dataset. The orange line shows 
accuracies using the P16% dataset (refer to METHODS). The blue line shows accuracies 
when feature selection was performed outside (before) cross-validation. The red line 
shows accuracies when data from feature selection inside of cross-validation was 
compiled and used to select genera outside (before) cross-validation was performed. 
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Supplementary Figure S5: Scatter plot of the 3D-Pareto frontiers when Supplementary 
Figures 2 and 3 box plot data are optimized by median accuracy, lowest variance, and 
number of dimensions. Green points represent boxes that are dominated by other boxes, 
while red points represent boxes that are dominated by no other box, thus representing 
equally optimal solutions. The orange border is a series of triangles drawn when the red 
points are sorted by median accuracy and sets of 3 points are taken using a sliding 
window to draw n – 2 triangles. The blue point in the background represents the origin 
(0,0,0) as a frame of reference. 

 

 
 
 

Supplementary Figure S6: Scatter plot of the 3D-Pareto frontiers when Supplementary 
Figures 4 and 5 box plot data are optimized by median accuracy, lowest variance, and 
number of dimensions. Green points represent boxes that are dominated by other boxes, 
while red points represent boxes that are dominated by no other box, thus representing 
equally optimal solutions. The orange border is a series of triangles drawn when the red 
points are sorted by median accuracy and sets of 3 points are taken using a sliding 
window to draw n – 2 triangles. The blue point in the background represents the origin 
(0,0,0) as a frame of reference. 
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Supplementary Figure S7: Scatter plot of the 3D-Pareto frontiers when Supplementary 
Figure 6 box plot data are optimized by median accuracy, lowest variance, and number of 
dimensions. Green points represent boxes that are dominated by other boxes, while red 
points represent boxes that are dominated by no other box, thus representing equally 
optimal solutions. The orange border is a series of triangles drawn when the red points 
are sorted by median accuracy and sets of 3 points are taken using a sliding window to 
draw n – 2 triangles. The blue point in the background represents the origin (0,0,0) as a 
frame of reference. 
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Supplementary Figure S8:  Process flow diagram of the computational methods 
employed. 
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Supplementary Figure S9:  The abundance and location of Lactobacillus spp. changes 
due to introduction of yogurt into the intestine.  Crosshatching indicates Lactobacillus 
delbrueckii 

 


