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DelVecchia, Amanda, Doctor of Philosophy, May 14, 2016   Systems Ecology 

 

Ecology of the alluvial aquifer of the Nyack Floodplain, Middle Fork of the Flathead River, 

Montana 

Chairperson:  Dr. Jack Stanford 

The pristine Nyack Floodplain on the Middle Fork of the Flathead River in Northwestern 

Montana contains an expansive alluvial aquifer that is extremely limited in organic carbon, yet 

supports abundant and diverse hyporheic stoneflies.  My dissertation focused broadly on how 

these large consumers persist in such an oligotrophic system.  In particular, I studied the 

ecological role of methane dynamics.   

I found that most of the dissolved methane in the aquifer was biogenic.  Methane carbon 

ranged in age from modern to 6,900 years BP.  Stonefly biomass in the Nyack floodplain 

included 37.3 to 66.5 % methane derived carbon contributions, even including sites where 

methane concentrations were low to immeasurable.  Stonefly biomass carbon ages ranged up to 

6,900 years BP, showing the incorporation of up to 20% ancient carbon, or 41% millennial-aged 

carbon.  When I expanded analysis of methane-derived carbon in biomass to three other 

floodplains across Montana and Washington, I found that 8-41% of biomass in other floodplains 

was comprised of methane-derived carbon.  Stonefly species had distinct trophic positions as 

demonstrated by δ
13

C and δ
15

N analysis of biomass.   The differences in trophic positions 

between species likely resulted from varying abilities of each species to access methane-derived 

carbon resources at oxic-hypoxic interfaces, as suggested by respirometry experiments and 

analysis of 16S rRNA sequences in stonefly gut contents.  Species-specific δ
13

C signatures were 

consistent with variation in species assemblages because stoneflies with more depleted δ
13

C 

signatures indicating assimilation of methane derived carbon in biomass tended to be present in 

wells with higher methane concentrations.  Dissolved methane concentrations explained 19% of 

the variation in stonefly species assemblages.  While none of the biogeochemical variables 

studied were consistently significant in predicting trophic positions, dissolved methane 

concentrations alone explained 19% of the variation in stonefly species assemblages.  Finally, 

not only were species adapted to the use of methane-derived carbon resources, but they were 

adapted to the lack of temporal variation in temperature within the aquifer: these hyporheic 

stonefly species had desynchronized growth and emergence patterns uncharacteristic of most 

stonefly species. 

 This was the first report of a freshwater ecosystem to contain consumers dependent on 

ancient methane derived carbon.  By demonstrating the role of methane in supporting these 

consumers, my work developed the contemporary understanding of basal resources supporting 

riverine productivity.  It also underscored the of biogeochemical heterogeneity for maintaining 

productivity. 
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Chapter 1: Introduction 
 

River ecosystems are complex because they are dynamic across three dimensions.  

Interactions across each of these dimensions are spatially and temporally structured and vary 

along the river corridor (Stanford and Ward 1993, Stanford et al. 2005).  The most apparent 

dimension of exchange in these systems is longitudinal, as was emphasized when rivers were 

first viewed as driven by upstream nutrient export in the river continuum concept (Vannote et al. 

1980). The role of lateral interactions as maintained by flooding and exchange with the riparian 

zone was recognized with the flood pulse concept (Junk et al. 1989) and the partitioning of 

productivity in these systems into both autochthonous and allochthonous carbon supplies (e.g. 

Thorp and Delong 1994, 2002).  Finally, the role of vertical exchange between the surface and  

hyporheic zone (alluvial aquifer) in floodplains was recognized by the concept of the hyporheic 

corridor (Stanford and Ward 1993).  Floodplains are distributed along rivers “like beads on a 

string” and they provide a dynamic ecotone where surface and ground water components of the 

river constantly interact through the exchange of water, materials, and biota (Stanford and Ward 

1993, Stanford et al. 2005). 

These floodplains are valuable as hot spots of biodiversity and productivity, yet they are 

also some of most threatened ecosystems in the world due to damming, channelization, 

development, and other anthropogenic influences (Tockner and Stanford 2002).  In gravel-

bedded rivers, the alluvial aquifers of these floodplains are in fact expansive hyporheic zones 

with extensive exchange with the floodplain surface (Stanford et al. 2005).  In particular, the 

Nyack Floodplain in Northwestern Montana has served as a long term (40 year) study site for 

research on the shallow alluvial aquifer of a gravel-bedded floodplain.  The Nyack is unique for 
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being so expansive, yet relatively pristine.  The aquifer itself is unique for its diversity and 

abundance of invertebrates living in an extreme oligotrophic and carbon-limited system, and for 

its extensive interaction with the surface water environment (Boulton et al. 1998, Craft et al. 

2002, Stanford et al. 2005).  Here the fields of river ecology and groundwater ecology have been 

advanced with detailed studies on groundwater biota (macroinvertebrates, meiofauna, and 

microbiota), biogeochemistry, and flowpath dynamics.   

 The legacy of Nyack research facilitated me to build on a poorly understood but 

important aspect of river and groundwater ecology: carbon cycling within the aquifer.  The 

biggest conundrum in Nyack research prior to my dissertation was: how do such high numbers of 

large-bodied hyporheic stoneflies survive in a system that is dark, cramped, and extremely 

limited by paucity of labile organic carbon?   As described in more detail in my first chapter, the 

previous work on the Nyack demonstrated an imbalance in the aquifer carbon budget (Appling 

2012), that could be explained by methanogenesis providing labile organic carbon fixation 

(Helton et al. 2015).  I furthered this work by studying the ecological role of methane in the 

aquifer, especially in regards to how it supports top consumers, hyporheic stoneflies.  I was also 

able to expand our understanding of these macroinvertebrates by studying how their life histories 

vary within the heterogenous environment of the aquifer. 

 My second chapter focused on the source of the methane, its carbon contribution to 

stonefly biomass, and the widespread occurrence of methane derived carbon in stonefly biomass 

in floodplains across Montana and Washington.  Most of the methane in the aquifer was 

methanogenic, but the data indicated a potential thermogenic methane contribution, possibly 

from the Kishenehn shale formation underlying the aquifer (Constenius and Dyni 1983).  On the 
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Nyack, overall biomass averaged 41.5 to 66.5 percent methane derived carbon, even including 

sites where methane concentrations were low to immeasurable.  The three other floodplains 

examined averaged 8 - 41 % methane derived carbon in biomass.  This was the first report of a 

freshwater ecosystem to contain consumers dependent on ancient methane derived carbon and 

showed that the Nyack aquifer was one of the most expansive ecosystems to contain a majority 

of site-wide biomass comprised of methane derived carbon.  This paper developed the 

contemporary understanding of basal resources supporting riverine productivity.  The paper is 

currently in review at Nature Communications. 

 The overarching objective of my third chapter was to understand how methane dynamics, 

specifically as related to various other biogeochemical and hydrologic conditions, influenced the 

ecology of top consumers in the aquifer.   I found that dissolved methane concentration was the 

best predictor of dissolved organic carbon concentration in the aquifer, while methane 

concentration was best predicted by dissolved oxygen concentration.  Stoneflies had distinct 

isotopic niches (trophic positions) as defined by δ
13

C and δ
15

N signatures.  The differences in 

trophic positions between species likely resulted from varying abilities to access methane-

derived carbon resources at oxic-hypoxic interfaces, as shown by respirometry experiments and 

analysis of 16S rRNA sequences in gut contents.  While none of the biogeochemical variables 

studied were consistently significant in predicting trophic positions, dissolved methane 

concentrations alone explained 19% of the variation in stonefly species assemblages, while the 

combination of all biogeochemical variables considered explained 22%.  We concluded that 

methanogenic methane was clearly important for production in this system, as shown by its 

correlation with DOC, varying levels of carbon contribution to individual stonefly species, and 

significance in structuring stonefly species assemblages.  Furthermore, this work showed that 
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hyporheic stoneflies have unique adaptations to the heterogenous and carbon-limited 

environment.   This chapter was prepared for submission to Ecological Monographs. 

 The fourth chapter elaborated a major gap in hyporheic stonefly ecology: how is growth 

and emergence synchronicity affected by aquifer temperature and dissolved oxygen conditions?  

Temperature is the most important variable in determining stream stonefly growth and 

emergence patterns because stoneflies require both accumulation of degree days and a threshold 

temperature in order to mature and emerge (Ward and Stanford 1982).  Aquifer temperature 

patterns are different from those of stream environments in which stonefly ecology has 

previously been studied because in the aquifer, temperatures at longer flowpaths remain at 

approximately the mean annual air temperature of 6-7°C year-round.  Five species of hyporheic 

stonefly are common in the Nyack aquifer: Paraperla frontalis, Kathroperla perdita, Isocapnia 

crinita, Isocapnia grandis, and Isocapnia integra.  All species had desynchronized emergence, 

while P. frontalis, the most abundant species in our samples, additionally had desynchronized 

growth across the aquifer.  P. frontalis growth was correlated with well, river, and air 

temperature patterns.  Mean daily air temperature was the only significant predictor of P. 

frontalis emergence.  We concluded that the constancy of temperature patterns in habitats within 

this expansive aquifer contributed to this desynchronization of both growth and emergence in 

hyporheic species, highlighting another stonefly behavioral adaptation to the aquifer 

environment.   

 The overall findings of my dissertation showed the importance of complex ecological 

interactions for maintaining consumer productivity in expansive floodplain aquifers, especially 

that of the Nyack.  Biogeochemical heterogeneity within the aquifer was necessary for methane 

cycling and for the coexistence of various stonefly species.  Methane cycling provided a carbon 
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source that both structured stonefly species assemblages and comprised up to a majority of 

biomass.  The stonefly species in the aquifer were able to coexist because they had niche 

differences related to their use of methane resources: they displayed varying levels of reliance 

upon methane derived carbon, adaptations that facilitated their access to methane-derived carbon 

resources, and the ability to persist despite desynchronization in growth and emergence.  In 

summary, my dissertation work suggested a need to reconsider the basal sources of productivity 

in the shallow aquifers of gravel bedded floodplains, some of the most biodiverse and valuable 

environments in the world. 
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Summary 

 

While most global productivity is driven by modern photosynthesis, river ecosystems are 

supplied by locally fixed and imported carbon that spans a range of ages.  Alluvial aquifers of 

gravel-bedded river floodplains present a conundrum: despite no possibility for photosynthesis in 

groundwater and extreme paucity of labile organic carbon, they support diverse and abundant 

large-bodied consumers (stoneflies, Insecta: Plecoptera).  Here we solve this long standing 

problem by showing that up to a majority of the biomass carbon composition of these top 

consumers in four floodplain aquifers of Montana and Washington is methane-derived.  The 

methane carbon ranged in age from modern to up to >50,000 years old, mostly derived from 

biogenic sources although some thermogenic contribution cannot be excluded.  This the first 

report of a freshwater ecosystem to contain consumers dependent on ancient methane derived 
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carbon, and one of the most expansive ecosystems to contain a majority of site-wide biomass 

comprised of methane derived carbon, transforming our contemporary understanding of basal 

resources supporting riverine productivity. 
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Introduction 

 

 Two landmark papers in Science and Nature in 1974 and 1988, respectively, 

revolutionized our view of river systems 
1,2

.  These works demonstrated that the shallow alluvial 

aquifers of river floodplains were abundantly populated by diverse large-bodied hyporheic 

stoneflies (Insecta:Plecoptera) that spent their nymphal stages entirely underground before 

emerging from the river channel as flying adults.  The finding highlighted the broad extent of 

surface and groundwater interchange, and additionally underscored the importance of 

connectivity for maintaining biodiversity and productivity.  In the decades that followed, our 

knowledge of the shallow aquifer has developed, but the question has persisted: how do these 

abundant large-bodied consumers survive in the highly oligotrophic, dark, and carbon-limited 

environment of the aquifer? 

River floodplains worldwide are underlain by shallow alluvial aquifers where interstitial 

flow is driven by penetration of river water into the bed sediments.  In gravel-bed systems these 

aquifers are extremely porous and generally well-oxygenated.  The aquifers may contain diverse 

and abundant meiofauna as well as large-bodied stoneflies (Extended Data Fig. 1) 
1–3

.  The 

presence of these speciose communities is a conundrum because productivity is generally limited 

by labile organic carbon availability and microbial productivity is extremely low 
3–5

.  The Nyack 

Floodplain on the Middle Fork of the Flathead River in northwestern Montana (Fig.1), provides a 

well-documented example of an expansive alluvial aquifer that is ultra-oligotrophic, yet 

paradoxically supports a diverse and productive food web with large (up to 3 cm length) stonefly 

larvae as top consumers (Extended Data Fig. 1, Extended Data Fig. 2). 
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The Nyack aquifer is contained in gravel and cobble bed sediments that were deposited 

during the last glacial retreat approximately 7,000 to 10,000 years ago 
6,7

 and subsequently 

reworked by cut and fill alluviation associated with river flooding 
6
.  The 20 – 50+ m thick 

aquifer is occluded by Precambrian bedrock overlain by glacial outwash clays and a Tertiary 

shale (Kishenehn) formation that is carboniferous and thus a potential source of thermogenic 

carbon 
8
.  The aquifer is characterized by extreme hydraulic conductance up to 11.6 cm/sec 

9
 and 

is exclusively recharged by the river.   It is therefore considered an voluminous “hyporheic” zone 

6
 where surface- and groundwater processes interchange.  Water residence times vary from hours 

to three years in relation to lengths of flow paths from the river through the aquifer 
9
.  Overall, 

the aquifer is well oxygenated because oxygen diffuses from the vadose zone of the floodplain 
10

 

and microbial productivity is ultra-limited by paucity of labile organic carbon (DOC <2 mg/L) 
11

.  

Along short flow paths near the river (i.e., through gravel bars), respiration of allochthonous 

carbon results in a predictable drop in DO (dissolved oxygen) and DOC (dissolved organic 

carbon) 
12

. However, along longer flow paths through the entire aquifer, an anomalous increase 

in organic carbon lability occurs, suggesting carbon fixation as might occur through 

chemoautrophy and/or methanotrophy 
12

.  The occurrence of chemoautotrophy and/or 

methanotrophy in the aquifer has also been proposed as a solution to imbalance in the Nyack 

aquifer carbon budget 
13

. 

Thus, we investigated the source and role of methane as a subsidy to floodplain aquifer 

food webs, mainly at Nyack but also at three other locations: the Kalispell floodplain on the main 

stem of the Flathead River in Northwest Montana, the Jocko River floodplain in Southwest 

Montana, and the Methow River floodplain in Washington. At each of these sites a grid of 

slotted, but not screened, groundwater monitoring wells was available for sampling. Of this suite 
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of aquifers only the Nyack is underlain by a hydrocarbon-containing shale formation.  We 

posited: 1) what is the source of the methane, 2) what are the contributions of various methane 

sources to stonefly biomass, and 3) is a methane subsidy in alluvial aquifers a widespread 

phenomenon?  In order to identify methane sources, we measured the carbon and deuterium 

stable isotope ratios of dissolved methane, and the radiocarbon ages of dissolved methane along 

with methane, ethane, and propane concentrations.  In order to understand the contributions of 

various methane carbon sources to biomass (question 2), we measured carbon stable isotope 

ratios and radiocarbon ages of stonefly biomass and organic matter, and then incorporated these 

values into Bayesian mixing models parameterized using a suite of scenarios to give a range of 

reasonable and conservative estimates of source contributions to biomass. Question 3 was 

addressed by comparing results among of study sites.  

  

Methane sources 

 At Nyack, we collected samples from two depths, 1 and 4 m below the baseflow water 

table, at seven wells (Fig. 1) previously shown to contain the full suite of aquifer biota (Extended 

Data Fig. 1).  One of the wells had a residence time of 45 days while all others ranged from 117 

to 305 days (Extended Data Table 1) 
9
.  We sampled an additional depth near the bottom of one 

well (HA10; Fig 2), specifically to target potential shale off-gassing of methane, because this 

well had the highest concentration at the deepest depth sampled on each sampling date. Only 

three wells, HA10, HA12, and HA17, yielded methane concentrations higher than >1 µmol/L 

(Extended Data Fig. 3A).  These three were the only wells with methane concentrations high 

enough to measure stable isotope values.  Only HA10 and HA12 occasionally had high enough 

concentrations to measure radiocarbon.  In these two wells, maximum concentration reached 
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10% saturation (Extended Data Fig. 3B).  In wells HA10, HA12, and HA17, we compared 

methane stable isotope ratios to known characterizations of methane sources based on the ratios 

of deuterium and carbon stable isotope signatures (Fig. 2A) 
14–18

.  While methanogenic 

signatures typically are easy to identify as having light (low) carbon and hydrogen isotopic 

ratios, any deviation from these combinations leads to uncertainty as to whether the heaviness 

might be caused by variable sources, such as a thermogenic methane contribution, or by 

microbial oxidation of biogenic methane, which leaves the residual methane pool heavier in 
13

C.  

Our measured methane stable isotopic ratios (δ
13

C and δ
2
H) generally clustered at values 

suggesting a mix of acetoclastic (reduction of organic carbon) and hydrogenotrophic (reduction 

of carbon dioxide) methanogenesis (Fig. 2A).  HA10 samples deviated from the clustering, 

suggesting either high levels of microbial oxidation or a thermogenic methane contribution, 

likely from outgassing of the underlying Kishenehn shale formation (Fig. 2A).  We therefore also 

measured concentrations of higher chain hydrocarbons – ethane and propane – in these three 

wells (Fig. 2B).  The high ratios of methane concentrations to concentrations of these higher 

chain hydrocarbons suggested that the aquifer did not contain a thermogenic methane subsidy 

16,19,20
.  However, none of the samples from which we were able to measure ethane and propane 

concentrations coincided with heavy carbon isotopic ratios.  Therefore, the cause of the heavy 

isotopic ratios of methane was still unresolved and the possibility of a thermogenic methane 

subsidy remained valid. 

 Of the three wells with methane present, only HA10 and HA12 had high enough 

concentrations to determine radiocarbon ages.  The methane in well HA10 was consistently older 

than that of HA12, and all methane samples that we aged corresponded with methanogenic 
13

C 

signatures and a lack of measurable higher level hydrocarbons.  Methane in HA12 ranged from 
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335 ± 15 years BP to 1970 ± 20 years BP, and methane in HA10 ranged from 2350 ± 15 years 

BP to 6910 ± 140 years BP (Extended Data Table 2).  Because radiocarbon ages of dissolved 

methane samples are the average ages of all sources of methane present, the highly aged methane 

from HA10 could have included a substantial proportion of ancient methane that is radiocarbon 

dead; radiocarbon-dead methane could have come from off-gassed methane from the Tertiary 

age shale underlying the floodplain.  For example, the most aged HA10 sample of 6900 years BP 

(11/24/2014, Extended Data Table 2) could have included up to 58% radiocarbon-dead methane  

with 42% modern methane: if we assumed that thermogenic methane had a δ
13

C value of  -50 ‰ 

14,15
 and that microbial methane had a δ

13
C value of -100 ‰ (see methods), then the same sample 

which had a measured δ
13

C value of -70.6‰ could have included a maximum of 59% 

thermogenic methane. The closeness of these estimates suggested that this sample in particular 

could have had a substantial thermogenic contribution, though we did not have measured ethane 

and propane concentrations from the same day to verify or refute this possibility.  We concluded 

that measurable dissolved methane in the aquifer was mainly produced via microbial 

methanogenesis of modern and ancient organic matter, but a subsidy from thermogenic methane 

was likely, at least in the HA10 well. 

Methane derived carbon in stonefly biomass 

 Four species of amphibitic stoneflies were very abundant in our samples: Paraperla 

frontalis, Isocapnia grandis, Isocapnia crinita, and Kathroperla perdita 
3
.  P. frontalis was the 

most common and widespread.  Both P. frontalis and K. perdita have mouth parts typically 

associated with carnivory, but the Isocapnia spp have mouthparts characteristic of grazers 

(Extended Data Fig. 1). Stonefly samples from each species had a wide range of variation in δ
13

C 

(Table 1).  This indicated that the stoneflies were consuming methane derivedcarbon, rather than 
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deriving low δ
13

C values from a symbiosis with methanogenic microbes 
21

.  Our δ
13

C values 

were also significantly different between species and between dates of collection (ANOVA 

analysis Pr|>F| p < 0.05).  However, both of these variables interacted with the well of collection 

for each sample because stonefly species each had unique habitat preferences.  We therefore 

pooled both species and dates of collection by well for all subsequent analyses. 

 We used standard linear two-source mixing models to determine the methane 

contribution to stonefly biomass in the aquifers 
22

.We accounted for methane carbon isotope 

fractionation by MOB by implementing the most conservative possible estimate of the MOB 

δ
13

C signature as our lower boundary, and the average of our methane δ
13

C signatures as an 

upper boundary, terming these our “conservative” and “average” estimates of methane 

dependence, respectively (see Methods).  We found that stonefly biomass from all wells, 

including those with no measurable methane, had high methane derived carbon contributions 

(Extended Data Fig. 5).  Using a stratified average of both the conservative and average 

estimates of methane dependence at each well on the floodplain, we determined that 40.4 to 

70.8% of stonefly biomass was comprised of methane derived carbonat Nyack.  Our results 

therefore showed that the biomass of top consumers at Nyack was substantially dependent on 

methane derived carbon.   

Biomass subsidized by ancient carbon 

 Wells HA10 and HA12 were the only wells from which we were able to date the 

dissolved methane because methane concentrations were low to undetectable in the other wells.  

Thus only in these two wells were we able to compare methane and stonefly biomass ages.  To 

measure a biomass age most representative of river-supplied carbon, we additionally dated 

stonefly biomass from the well with the shortest flow path and the lowest overall stonefly 
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methane dependence: well HA02 (Extended Data Table 1, Extended Data Fig. 5).  Biomass 

radiocarbon ages of individual stoneflies from these three wells were strongly correlated with 

calculated levels of methane derived carbon contribution (log (Age + 1000) regressed against the 

average estimate of methane dependence per individual; R
2
 = 0.56, p = 2.328 ∙10

-10
, n=52) (Fig. 

3).  This indicated that: a) a broad range of methane ages was present in the aquifer, b) the non-

methane derived carbon was modern, and c) stoneflies assimilated methane carbon at least 6,900 

years BP old. 

 We used the measured radiocarbon and δ
13

C  values of stonefly biomass, methane, and 

organic matter to parameterize a Bayesian mixing model 
23

 to estimate the contribution of  aged 

or ancient methane to stonefly biomass in all wells.  We estimated the distribution of radiocarbon 

values for organic matter (or all non-methane carbon sources) by weighting stonefly biomass 

ages by the percent non-methane contributions calculated from a two-source mixing model of 

13
C signatures.  We then created four scenarios considering two possibilities that represented 

opposite ends of ranges for each methane δ
13

C values and the oldest possible methanogenic 

methane contribution (Extended Data Table 4).  Regardless of scenario, the δ
13

C values and 

radiocarbon ages of the stoneflies were significantly different among the three wells (Fig 4), 

suggesting that stoneflies were in fact dependent on local food resources that varied spatially.  

Where river-supplied carbon was in lower availability (i.e. in wells HA10 and HA12 with longer 

flow paths, Extended Data Table 1) stoneflies were dependent on methane.  Only individuals 

collected from HA10 relied on aged to fossil methane, supporting the possibility that an ancient 

shale methane subsidy might indeed exist at this location.  In any case, it was clear that the top 

consumers in the food webs of the Nyack aquifer were dependent on a methane subsidy from 

ancient carbon.   
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Methane dependency is widespread 

 We collected dissolved methane concentrations and stonefly samples from wells across 

the three other river floodplains to understand if a methane subsidy to the groundwater food web 

was a widespread phenomenon.  We used the same standard two-source mixing model on δ
13

C 

values used on Nyack to estimate ranges of proportions of stonefly biomass that were methane-

derived carbon at all floodplains.  We parameterized the model using the source estimates for 

organic matter and methane calculated at Nyack.  We found higher estimates of methane 

dependence at Nyack than at any other floodplain, but overall methane contributions were high 

across the other floodplains as well, ranging from 8.5 to 36.5 % (Fig. 5, Table 1).  This was 

surprising given that, of fifteen wells analyzed across all other floodplains, only three (two at 

Methow, one on the Jocko) had measurable dissolved methane (Extended Data Fig. 6).  This was 

similar to the case we found at Nyack, where methane dependence existed at all wells regardless 

of methane concentrations. 

 

Discussion  
 

 The data showed that the Nyack food web was heavily subsidized by methane carbon 

with various ages (from modern to millennial aged or fossil), most of which was 

methanogenically produced.  Although we could not verify a thermogenic methane contribution 

through presence of ethane and propane concentrations, the documented existence of 

carboniferous shale at Nyack 
8
, presence of highly aged carbon, and  presence of heavy methane 

δ
13

C added credence to the possibility of a thermogenic contribution to the aquifer food web.  

Because methanogenesis occurs mainly in anoxic environments and MOB flourish in opposing 
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gradients of methane and oxygen 
24

, it is likely that stoneflies were directly or indirectly 

consuming resources produced at these interfaces (i.e. either grazing or consuming via an 

intermediate trophic link).  In fact, the heaviness of biofilm and organic matter δ
13

C signatures 

relative to stonefly biomass signatures suggested that stoneflies preferentially consume methane 

derived carbon.  This could explain their survival in such a carbon-limited system.  Furthermore, 

because stoneflies emerge from the river as flying or crawling adults, they are exporters of labile 

organic carbon from the aquifer to the floodplain surface as well as top consumers in a food web 

that assimilates a greenhouse gas and potential water contaminant. 

 This is the first report of methane dependence in top consumer species across multiple 

river ecosystems, and the first report of an ancient methane subsidy to a freshwater food web.  

While methane cycling and aged carbon have each been studied in rivers 
25–28

, the few published 

studies that document a river food web methane subsidy are site-specific) .  For example, Caraco 

et al. documented an ancient carbon subsidy to zooplankton in the Hudson River Estuary
28

, 

Kohzu et al. showed that some macroinvertebrate production was fueled by biogenic methane 

produced from detritus in backwater pools
29

, and Trimmer et al. showed that caddis fly species 

derived up to 30% of their biomass from methanogenic methane in the River Lambourn
30

.  Each 

of these studies was site-specific and none of these studies found that ancient carbon was 

integrated in a methane-based food source.  Additionally, much work in lake ecosystems has 

documented methane subsidies in midge (Insecta: Chironomidae) species, but still information is 

lacking on the frequency and circumstances of methane carbon contributions to aquatic food 

webs
31

.  Additionally, these aquifers with methane derived carbon subsidies are dark 

environments with no potential for photosynthesis, so the depletion measured in the stoneflies 
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could not have occurred from a basal resource of depleted CO2 being converted by 

photosynthesis as has been suggested previously
32

.   

All of the floodplains which we studied had substantial site-wide methane subsidies to top 

consumers, and Nyack additionally had a millennial-aged to fossil methane subsidy.  There are 

multiple possibilities for the origin of the millennial-aged to ancient methane: if methanogenic, it 

could have been produced from buried organic matter such as that which would have been 

deposited during the last glaciation
e.g. 33

; it also could have come from thermogenic methane 

outgassing.  

 The stoneflies with such high proportions of methane derived carbon in biomass as 

described herein exemplify the need for unperturbed spatial and biogeochemical complexity in 

floodplains, not just for sustaining biodiversity and productivity, but also for the natural filtration 

processes provided by surface and groundwater exchanges in the alluvial aquifers.  River 

floodplains are among the most threatened ecosystems in the world 
34

 and the surprising details 

of groundwater ecology described herein provide a broader basis for river protection and 

conservation.    

Methods 

Sample Collection and Processing 

 The Nyack floodplain was equipped with seven 3-inch PVC wells with 2 mm slot 

openings down the length of the pipe.  The wells were drilled 8-10 m using a hollow auger 

drilling rig See Extended Data Table 1–for aquifer characteristics measured at each well.  Wells 

HA02, HA07, HA08, HA10, HA12, and HA15 (Fig 1) were equipped with sensors and data 

loggers that recorded dissolved oxygen, temperature, depth and specific conductance on an 

hourly basis.  We used a peristaltic pump equipped with PTFE (Teflon) tubing to draw water 
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from two to three depths at each well - 1 and 4 m below the baseflow water table at all wells, 

with an additional depth of 0.5 m above bedrock (well base) at well HA10.  The Kalispell 

floodplain had seven existing wells drilled similarly (slotted but not screened, and drilled to 

maximum possible depth).  The Jocko had three wells, and the Methow four.  We sampled these 

wells also at 1 and 4 m below the base flow water table. 

 We sampled methane concentrations approximately every three weeks at all wells on 

Nyack and in Kalispell for two years, from August 2013 to August 2015.  We sampled four 

times during 2014-2015, once in July 2014 and four times from March to September 2015 on the 

Jocko and on the Methow.  We used a modified active-sampling method: we pumped sample 

water into a BOD bottle, allowing it to overflow for one to two minutes before withdrawing 1-7 

mL using a 22-gauge needle attached to a two-way stopper and 10 mL syringe.  In the lab, we 

had capped 9.83 mL glass scintillation vials with PTFE-lined grey butyl stoppers and crimp 

seals, then flushed them three times with ultra-high-purity N2.  We simultaneously injected field 

samples to the sample vials while allowing excess N2 to drain into a second syringe.  We 

poisoned the samples to 0.5% ZnCl2 and stored them upside down at 4° C until analysis within 

one week of collection.   We analyzed samples on a greenhouse gas chromatograph (SRI 

Instruments model 8610C) equipped with a flame ionization detector and SRI PeakSimple 

Software.  We calculated headspace methane concentrations using a three-point calibration with 

Scotty gas standards (Air Liquide America).  We then used Henry's Law to calculate dissolved 

methane before headspace equilibration using the solubility constant documented by Yamamoto 

et al. (1976) 
28

.  Error averaged 0.08 µmol/L initial aqueous concentration and our detection limit 

was 0.11 µmol/L. 

 We collected samples for measurement of ethane and propane concentrations beginning 
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in Spring 2015 using similar methods as for methane collection.  The discrepancy in timing arose 

because only by Spring 2015 did our stable isotope results reflect a potential thermogenic 

contribution.  We used similar methods as for collection of samples for measurement of 

dissolved methane concentrations, but instead injected 30-mL samples to 38.25 mL glass serum 

vials capped with thick black butyl stoppers.  We did this to minimize our detection limit of 

ethane and propane by maximizing the equilibrium headspace concentrations of ethane and 

propane, which we expected to be present at low concentrations if at all.  We used Henry’s Law 

and solubility constants documented by Hine and Mookerjee (1975)
35

 to calculate the dissolved 

concentrations of ethane and propane in waters. 

 We collected samples for analysis of dissolved methane stable isotope composition from 

wells HA10, HA12, and HA17 using acid-washed Teflon tubing and the same active sampling 

methodology used for collecting concentration measurements.  However, we instead injected 

samples into evacuated Exetainers® vials (Labco Limited), then similarly poisoned them to 0.5% 

ZnCl2.  We sent samples to the University of California at Davis Stable Isotope Facility for 
2
H 

and 
13

C analyses, where they were analyzed on a Thermo Scientific Delta V Plus isotope ratio 

mass spectrometer (IRMS, Thermo Scientific, Bremen, DE) according to the methods of Yarnes 

et al. (2013) 
36

.  Long-term standard error was 0.2 ‰ for δ
13

C and 2 ‰ for δ
2
H. 

 When methane concentrations were at a minimum of 10 µmol/L, we were able to collect 

samples for radiocarbon analysis of dissolved methane.  We pumped water into an acid-washed 

and baked 1 L glass microculture bottle, keeping the hose at the bottom of the bottle and timing 

until it filled.  We then inverted the bottle underwater and allowed water to flush through for the 

duration of time it took for the bottle to fill; this also allowed for the capture of any outgassed 

components.  We capped the bottle in this state with blue butyl and crimp seals, poisoned the 
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sample with 10 mL 50% ZnCl2, and transported it back to FLBS on ice, where we injected a 4 

mL UHP N2 headspace and shipped samples to UC-Irvine's Keck Carbon Cycle AMS facility. 

Upon arriving at the UC-I Keck lab, ~15% headspace was created in the sample bottle by 

injecting ultra zero air with a syringe and removing the displaced volume of water in the same 

time.  Samples were shaken for 1 minute and allowed to settle for 30 minutes before extraction. 

An evacuated 2 L stainless steel canister attached to a needle was used to extract headspace gases 

from the water bottle. The canister was then filled to 1 atm pressure with ultra zero air, which 

served as a carrier gas in the latter extraction. On a flow-through vacuum line, the headspace 

CH4 and CO2 were separated, combusted and purified 
37

, and graphitized by the sealed tube Zn 

reduction method 
38

 then measured for radiocarbon (
14

C) on a compact accelerator mass 

spectrometer (AMS, National Electrostatics Corp.) 
39

.  For dry stoneflies, the samples were 

weighed into prebaked quartz tubes with prebaked CuO, evacuated, sealed then combusted at 

900°C for 2 hours.  After combustion, sealed tubes were cracked and CO2 was extracted on a 

vacuum line, graphitized and measured for 
14

C using the same method mentioned above. Data 

presented here are expressed as radiocarbon age (year, BP) and Δ
14

C (‰) as well. Both were 

normalized to radiocarbon activity of an oxalic acid standard OX1 and isotopic fractionation 

corrected to -25‰ 
40

. For Δ
14

C, standard OX1 was also decay corrected to 1950. Δ
14

C (‰) =/> 0 

can be used to indicate ‘modern’ carbon (1950 to present), and Δ
14

C (‰) < 0 for “aged” carbon 

(pre-1950), and Δ
14

C (‰) = -1000‰ for “fossil” or 
14

C dead carbon. The Δ
14

C analytical error 

was ~ 2‰ for modern sample, based on long-term measurements of secondary standards.  

13
C analysis was made on CO2 subsampled from the vacuum line and measured by using a Gas 

13
C analytical error was 

± 0.15‰ based on long-term measurements of secondary standards. 
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 On the same days when we collected methane samples, we collected as many stonefly 

nymphs as possible via trapping methods.  To trap, we suspended nylon ropes in the wells on 

which the emergent and resident stoneflies could climb.  We checked the ropes every two weeks 

and collected larvae if present.  Every six weeks, we additionally pumped the wells using a gas-

operated diaphragm pump.  Samples were kept at a minimum of three meters from the pump 

while the pump was running to avoid potential contamination.  All output water was transferred 

through 2.5” Tigerflex tubing and emptied into a 330 micron Nitex mesh net.  We elutriated the 

retained samples, collecting stoneflies caught in the net and transferring them to distilled water 

(DI).  We kept the stoneflies at 4°C for a minimum of 24 hours to clear gut contents, then 

identified them to species level 
41,42

, rinsed them in DI water, and transferred them into 

individual sterile cryovials.  We froze samples and stored them at -80° C until preparation for 

stable isotope analysis.  We took the same collection approach for collecting organic matter and 

biofilm samples for stable isotope analysis, but samples were collected in June to July 2013.  We 

used 64 and 500 µm Nitex mesh to parse out fine and coarse organic matter, respectively.  These 

samples were also frozen until preparation for stable isotope analysis.   

We collected biofilm samples by suspending ashed and autoclaved gravel bags at all 

sampling depths for ten weeks during July and August 2013.  We collected samplers into sterile 

Whirl-paks and froze them.  To remove biofilm and strongly associated particulate matter for 

stable isotope analysis, we defrosted and filled Whirl-paks with 200 mL ultra-pure distilled 

water, then sonicated for 40 minutes.  We poured the solution into sterile glass beakers, rinsed 

the remaining gravel into the beakers, and dried the beakers at 60˚C until water evaporated 

(usually 3-4 days).  We then scraped the samples into silver capsules and acidified them using 

them 
43

. 
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 To prepare stoneflies and organic matter for stable isotope analysis, we defrosted them at 

room temperature, rinsed the stoneflies  a second time in DI, and then transferred them directly 

to aluminum foil to dry at 60°C for at least 48 hours.  We then milled them into a fine 

homogenous powder using steel milling capsules and a grinding mill for 20 seconds each.  We 

subsampled 0.8 to 1.2 mg of each stonefly into tin capsules and replicated approximately once 

per 15 samples (replicate coefficient of variation = 0.2%).  Samples were analyzed on a PDZ 

Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass 

spectrometer (Sercon Ltd., Cheshire, UK) at the UC Davis Stable Isotope Laboratory.  Stable 

isotope ratios were expressed relative to international standards: V-PDB (Vienna PeeDee 

Belemnite) for 
13

C and air for 
15

N.  

 

Methane source determination 

 In order to calculate potential methane source contributions, we considered three sources: 

modern methanogenic methane, ancient methanogenic methane, and thermogenic methane 

(shale).  Both classifications of methanogenic methane are biologically produced anaerobically 

through either acetoclastic methanogenesis or hydrogenotrophic methanogenesis.  In the former 

scenario, methanogenic archaea require an organic carbon source. The second scenario is an 

autotrophic process in which methanogenic archaea produce methane from carbon dioxide and 

hydrogen.  In both forms of methanogenesis, the methane produced is drastically depleted in 
13

C 

(-50 to -80 ‰) due to methanogens preferentially assimilatinglighter carbon isotope in their 

metabolism (
12

C) 
15

.  Methane in freshwater systems can also be released from thermogenic 

sources such as shale or coal, though this has not previously been documented as an ecological 

subsidy.  In this case, hydrocarbons are produced as a result of abiotic pressure and temperature 
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conditions.  Thermogenic methane carbon and hydrogen are both isotopically heavier than the 

methanogenic methane, and usually accompanied by higher level hydrocarbons such as ethane 

and propane 
14,16

.  It is also radiocarbon-dead, or greater than 50,000 years in age.  Ancient 

organic matter can also be methanogenically decomposed to produce highly aged methane.  All 

methane can then be consumed by methane oxidizing bacteria (MOB), which fractionate the 

dissolved methane by preferentially assimilating the lighter carbon isotope, leaving the residual 

methane enriched in the heavier isotope.  In the exponential phase of MOB growth, fractionation 

in MOB biomass is 30.3 ‰ 
20

.  During normal growth phases, fractionation is 16 ‰ 
17,20

.  A 

graphical summary of source determination using carbon and hydrogen isotopes is overlaid on 

Figure S3A.  We used isotopic signatures in combination with radiocarbon dating, and 

measurement of ethane and propane concentrations to determine the methane sources.   These 

results are displayed in Figure S3. 

 Our results suggested that the majority of dissolved methane was derived from a mixture 

of acetoclastic and hydrogenotrophic methanogenesis.  The samples that deviated from this 

general classification were both taken from well HA10 deep.  Methane oxidation involves wide 

variation in deuterium fractionation depending on temperature and all thermogenic methane 

tends to have heavier deuterium isotopes 
16–18

.  Therefore, these samples could have resulted 

from high levels of oxidation or a contribution from a thermogenic methane source.  This range 

of possibilities was reinforced by radiocarbon dating, which showed that dissolved methane 

collected from HA10 was consistently older than dissolved methane from HA12.   

 We therefore began to collect samples for the measurement of ethane and propane 

concentrations in May 2015.  These samples corresponded with stable isotope signatures and 

insect and radiocarbon ages.  None of the samples from which we measured ethane and propane 
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concentrations were found to be isotopically heavy but insects were consistently aged up to 6900 

years BP.  However, none of the samples we measured had ethane or propane concentrations 

high enough to suggest a thermogenic methane contribution.  In general, if the ratio of methane 

concentration to the summed concentrations of ethane and propane is <100, then the source is 

thermogenic.  If it is >1000, then the source is methanogenic 
44

.  Anything in between is 

considered a mix.  No samples had ratios significantly lower than 1000 (Figure S3B).  We 

therefore concluded that the samples which we measured had no thermogenic methane 

contribution, though we HA10 deep might still have a thermogenic methane contribution that is 

so minimal and unpredictable that we very occasionally have the opportunity to measure it.   

 

Causes of stonefly biomass δ13C depletion 

 We also measured the age of dissolved CO2, which ranged from 1310 ± 15 to 1970 ± 20 

years BP, suggesting that older methane carbon contributions were from organic matter rather 

than DIC which would be similar to the dissolved CO2 (Extended Data Table 2).  The δ
13

C 

values ranged from -19.2 to -14.8‰ (n=6), which further indicates this carbon pool is not likely 

the main contributor for the stonefly biomass.  Although the carbon isotope fractionation 

indicated by the low δ
13

C values in these estimates (Table 1) can occur via other pathways such 

as ammonium oxidation and sulfur oxidation, the resulting δ
13

C values would be far heavier than 

those we observed.  Ammonium oxidation produces bulk biomass depleted in δ
13

C by 20‰ 

relative to CO2, which we measured as -16.6 ± 0.7 ‰ 
45

, and sulfur oxidation produces bulk 

biomass depleted in δ
13

C by 24.6 to 25.1 ‰ relative to CO2 
46

.    

 

Methane contribution to stonefly biomass: δ13C models 
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 Regardless of methane source, it was necessary to account for the variation in isotopic 

signatures of methane across the floodplain as we proceeded to calculate methane derived carbon 

contributions to stonefly biomass.  We assumed that stoneflies consumed MOB as is suggested 

by the large variation in stonefly biomass δ
13

C values even within species (Table 1).   

 We used a two-source mixing model 
22

 on stonefly biomass signatures to calculate 

relative contributions of MOB and organic matter using δ
13

C values (Eq. 1):  

 

 

 

To represent any possible contribution of organic matter to stonefly diet, we used ‘organic 

matter’ as a surrogate for any component of the stonefly biomass that was not methane-derived 

carbon.  Means and standard errors of δ
13

C values for each organic matter classification are 

displayed in Extended Data Table 3.  Coarse particulate organic matter (CPOM) showed 

depletion relative to other organic matter pools because stonefly detritus was inevitably and 

visibly incorporated into the CPOM pools we collected via pumping.  We used a stratified 

average of all OM pools, -27.83 ± 2.49 ‰ which is very close to the literature estimate of 

photosynthetically fixed terrestrial carbon: -28 ‰
22

. 

 To estimate the δ
13

C value of MOB, we bracketed estimates using our measured values of 

methane itself and maximum levels of fractionation by exponential growth of MOB (α = 30.3 

‰)
20

.  We preferred to use a Keeling plot 
47

 to estimate methane signatures at the time of 

production, but our data showed extensive variation in isotopic signatures even in samples 

collected at times with high methane concentrations, making such an estimation technique 

unfeasible (Extended Data Fig. 4).  We therefore averaged all samples (n=32) collected at times 

100 % 13 13 

13 13 
 

   
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when methane concentration was >1 µmol, yielding -68.79 ± 8.52 ‰.  This was termed our 

“Average” estimate of source methane δ
13

C and therefore a suitable estimate for the heaviest 

possible isotopic ratio representative of MOB biomass.  We then applied the fractionation factor 

to this estimate, yielding a most conservative estimate (lightest possible isotopic ratio) of -100.86 

‰ using the equation  (Eq. 2) 
17

: 

 

 

 

We termed values of methane dependence using this estimate as our “Conservative” estimate.  W

e presented both sets of data in the results. 

We found a significant effect of species and date of collection on methane dependence us

ing simple linear regression models and ANOVA analysis (main text).  However, both of these v

ariables were strongly confounded with well of collection, as stonefly life history and well condit

ions inevitably determined the environment which they inhabited at the time of sample collection

 and thereby influenced the quantities of each measured.  In regards to date, we collected from ti

me points over four seasons and during 1-2 years at all sites to avoid bias from sampling time.  In

 order to compare overall levels of methane dependence across and within floodplains, therefore, 

we only considered wells as strata and pooled species at all times of collection.  Please see raw d

ata files for dates of sample collection at each well. 

  

Methane contribution to stonefly biomass: δ13C and Δ14C models 
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We submitted 52 stoneflies from wells HA02, HA10, and HA12 for combined stable 

isotope analysis and radiocarbon dating at the WM Keck facility at UC Irvine (see methods 

above).  We then were able to use both δ
13

C and Δ
14

C values for implementing a Bayesian 

framework stable isotope mixing model to infer contributions of various potential methane pools 

to stonefly biomass.  This model considered aged methane, ancient methane, modern methane, 

and modern organic matter as potential sources, using scenarios of both average and conservative 

MOB δ
13

C values. 

 We inferred the source values for organic matter by taking a weighted average of Δ
14

C 

values across the 53 stoneflies.  Our weights (OM dependence) were calculated as 1- (methane 

dependence obtained via Eq. 1).  Because we could calculate methane dependence using either 

the Average (Avg) or Conservative (Cons) approaches, we had two estimates for OM Δ
14

C: Avg: 

-13.7 ± 32.2 ‰ and Cons: -65.6 ± 75.9 ‰.  We used these in the Avg and Cons scenario types 

(Extended Data Table 4).   

 For each of the Avg and Cons scenarios, we also had two estimates for maximum 

methane age measured using Δ
14

C.  The radiocarbon ages that we measured in methane, ranging 

from 335 to 6900 years BP, were by definition an average of the various carbon ages present in 

that methane sample.  Each sample was therefore a mixture of methane source ages.  We 

therefore created one methane source to represent modern methane, taken as the Avg 

radiocarbon age of OM, and a second methane source as either aged or ancient methane.  Aged 

methane was given the Δ
14

C value of the oldest measured methane (-580 ± 7.2 ‰) and ancient 

methane was considered to be radiocarbon dead, or >50,000 years in age (-1000 ‰). This 

contributed another dimension to the scenarios needed: Aged and Anc (ancient) methane.  Again, 

the pathway for incorporation of either methane type to stonefly biomass would be via MOB and 
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we therefore needed to consider the possibilities of minimum and maximum fractionation (Avg 

and Cons).  The four scenarios and their associated source values and standard deviations are 

displayed in Extended Data Table 4. 

 We implemented the mixing model in the R platform 
48

 using the SIAR package 
23

.  The 

SIAR package allows for the input of source mean stable isotope signatures and their standard 

deviations.  It also requires the input of trophic enrichment factors and their standard deviation, 

which we took as widely used literature averages 
22

. Individual stoneflies were grouped by well.  

The SIAR package uses a Monte Carlo Markov Chain simulation to calculate a distribution of 

possible contributions of each source to each group.  We ran the model for 10,000 iterations with 

a burn-in of 1000 runs for each scenario.  We then compiled the run results and calculate mean 

and standard deviations of each source contribution to biomass in each well analyzed (HA10, 

HA12, and HA02).   Results for the four scenarios are all displayed in Figure 4 (main paper).   
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Table 1. Average and conservative estimates of methane dependence across floodplains 

 

Floodplain n Wells 

Sampled 

n Insects 

Sampled 

Conservative Estimate of 

 Methane Dependence (%) 

Average Estimate of  

Methane Dependence (%) 

Mean δ13C (‰) 

Nyack 7 528 37.3 ± 0.1 66.5 ± 0.1 -55.1 ± 0.1 

Kalispell 6 31 12.9 ± 0.4 23.0 ± 1.2 -37.3 ± 0.2 

Methow 4 145 8.5 ± 0.5 15.1 ± 0.2 -34.1 ± 0.1 

Jocko 3 14 20.5 ± 0.7 36.5 ± 2.4 -42.8 ± 0.4 

Species n Insects sampled Conservative Estimate of 

 Methane Dependence (%) 

Average Estimate of  

Methane Dependence (%) 

Mean δ13C (‰) 

I. crinita 23 38.8 ± 3.7 69.2 ± 6.7 -56.2 ± 2.7 

I. grandis 128 33.8 ± 2.2 60.2 ± 3.8 -52.5 ± 1.6 

I. integra 3 14.7 ± 0.9 26.2 ± 1.6 -38.6 ± 0.7 

P. frontalis 423 33.1 ± 1.0 59.1 ± 1.7 -52.0 ± 0.7 

K. perdita 95 18.3 ± 1.6 32.5 ± 2.8 -41.2 ± 1.1 

Isocapnia spp. 34 31.3 ± 3.6 55.9 ± 6.4 -50.7 ± 2.6 

 

Average and conservative estimates of methane dependence across floodplains were computed 

as stratified means ± standard error.  Sample sizes varied because a) available sampling wells 

varied among sites, and b) stonefly abundance varied among wells within sites.  Isocapnia spp. 

includes larvae of I. grandis and I. crinita, which could not be taxonomically segregated in the 

larval stage, but were very abundant as easily recognizable teneral adults in both wells. K. 
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perdita was the largest species, with carnivorous mouthparts, and was also methane dependent.  

This suggested that methane derived carbon could be a significant indirect subsidy to higher-

level consumers, or that even these presumably carnivorous species directly consume MOB.   
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Fig. 1.  Floodplain locations: A the four floodplains studied are overlaid on Google Earth 

Imagery.  The main research site was the Nyack Floodplain.  B.  Aerial imagery of the 

Nyack Floodplain shows the locations of the 7 wells studied (see ED Table 1).  .  C.  A 

view of the Nyack floodplain, near well HA02, shows the pristine nature, landscape 

complexity, and spatial heterogeneity typical of Nyack.  D.  A cross-section of the Nyack 

A 

D 

C 

B B 
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bed-sediments highlights the heterogeneity of the matrix: sorted cobbles allow extreme 

hydraulic conductivity, while the fine sediment presents the opportunity to retain organic 

matter and develop localized hypoxia or anoxia. 
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Fig. 2. Using stable isotopes to determine methane source A.  A Schoell plot (22) of deuterium 

isotopic signatures vs. carbon isotopic signatures in individual samples.  Symbols represent well; 

colors represent depth.   Most samples cluster at a methanogenic origin, while others at HA10 

deep and HA17 shallow suggest a thermogenic contribution and/or microbial oxidation.  

However, samples from the same day at other depths still cluster with methanogenesis.  B.  A 

Bernard plot (24) displays the ratio of methane concentration to summed concentrations of 

higher chain hydrocarbons (ethane and propane) vs the δ13C of methane.  The high ratios (above 

1000) within error, suggest a low probability of a thermogenic contribution. 
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Fig. 3. Radiocarbon age vs. methane dependence: radiocarbon ages of stonefly tissue (each point 

is one individual) were strongly correlated with calculated levels of methane dependence, 

suggesting that a) a broad range of methane ages is present in the aquifer, as shown by the high 

variation in age even at high levels of methane dependence; b) non-methane derived carbon was 

modern because low levels of methane dependence correspond with younger ages; and c) the 

maximum methane age could be much older than 6900 years, because all stonefly tissue 

measured was a mixture of various organic carbon sources. 
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Fig. 4.  Bayesian modelling outcomes: means and standard deviations of percentage source 

contributions to stonefly biomass from each of the three sources (modern methane, ancient 

methane, and organic matter) were plotted for each well (colors) for each of the four mixing-

model scenarios explained in text and ED Table 4 (symbols).  The shaded areasrepresent the full 

range of possibilities for source contributions considering the four scenarios.  The shaded lines 

on the methane axis (left) represent the potential mixtures of modern and ancient methane in 

each well from which we could measure methane ages (HA10 and HA12).  Wells HA10 and 

HA12 were the only two wells on the floodplain with high methane concentrations, and well 

HA02 was closest to the river with the shortest flow path and lowest levels of methane 

dependence in stonefly biomass across all samples.  
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Fig. 5.  Stonefly methane dependence across floodplains: boxplots of methane derived carbon 

contribution to stonefly biomass for each of the floodplains studied using both the average and 

conservative estimation techniques (see Table S1 for the two estimates).  These estimates each 

assumed an extreme end of a range of potential source δ
13

C values for methane (see text).  The 

values displayed above each bar are the average methane dependence values (stratified by well) 

for each floodplain.  Whiskers extend to 1.5 times the inter-quartile range for each set of 

floodplain estimates. 
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Extended Data 

 

a 

 

b 

 

 

 

Extended Data Figure 1 | Species documented on the Nyack Floodplain  A. A total of 104 

species have been documented in the hyporheic zone of the Nyack floodplain.  Seventeen are 

Plecoptera, but only 5 Plecoptera species were commonly occurred in well samples (Table 1) and 

they do not occur in the river channel, spending the entire larval life history in the aquifer.  

Gibert et al. (10), described this novel life history strategy as amphibitic – hatching and growth 

to larval maturity in the aquifer, adult emergence, mating and egg deposition focused in the river 

Plecoptera Species Duration larval stage Wells/locations where common Diet 

Isocapnia crinita 2 years HA02, HA07, HA10, HA15, HA17 Grazers 
Isocapnia grandis 2 years HA07, HA10, HA15, HA17, Kalispell, 

Methow 
Grazers 

Isocapnia integra 2 years HA02 Grazers 
Paraperla frontalis 2-3 years All Nyack wells, all floodplains Omnivorous 
Kathroperla perdita 2-3 years All Nyack wells, all floodplains Omnivorous 
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channel or potentially the adult stage can live in interstices in the floodplain bed sediments above 

the water table. B.  Descriptions and life history characteristics of the five common amphibitic 

(larval stage underground, adult emergence aboveground) Plecoptera species which were used in 

our analysis (8, 10, 14, 41, 42, 48).   

 

  



AG DelVecchia  51 

 

Extended Data Figure 2 | Surface and ground water connectivity A.  Large (~2.5 cm) 

stoneflies (Paraperla frontalis) perched on equipment partially removed from well HA05 (Fig 

1B) located 1.5 km from the river channel at Nyack.  B.  Aquifer water emerging at the surface 

of floodplain in a paleochannel located near the well in A during spring runoff, illustrating the 

ground and surface water connectivity characteristic of alluvial floodplains like the Nyack.  

Photos in A are a courtesy of Dr. Ashley Helton. 
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a 

 

b 

 

 

Extended Data Figure 3 | Methane concentrations in the Nyack aquifer  A. Boxplots of log-

transformed methane concentrations stratified per month show low (<1 µmol/L) methane 

concentrations in most wells sampled, with significant effects of depth (indicated by the star) 

occurring at HA10 and HA12.  In HA12, shallow methane samples tended to have higher 

methane concentrations, whereas in HA10 deeper samples tended to have higher methane 
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concentrations, displaying vertical heterogeneity within the aquifer.  B.  Methane concentrations 

are plotted by date sampled from February 2014 to September 2015 (average error <0.17 

µmol/L).  Deeper HA10 samples show erratic changes in concentration over time. 
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Extended Data Figure 4 | Using a Keeling Plot to determine methane source values A 

Keeling plot to indicate source δ
13

C values of methane that shows a broad range of variation in 

δ
13

C even during periods of high dissolved methane concentrations in the aquifer.  We used these 

relations to  parameterize the mixing models using two extreme estimates of source δ
13

C: the 

average of δ
13

C values in methane samples taken at > 1 µmol/L concentration, and this average 

fractionated by α = 30.3 ‰ (25). 
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Extended Data Figure 5 | Methane derived carbon contribution across the Nyack aquifer 

Average and conservative methane carbon contribution estimates are displayed for focal wells 

and all other wells (“Other”) analyzed in the study.  Well HA02, with much lower methane 
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dependence, was closest to the river and had the shortest residence time (45 days).  The rest of 

the wells were all at similar residence times 117 – 304 days (17) (Table S2).  Wells HA10 and 

HA12 both have high levels of measurable methane.  Despite these being the only wells with 

measurable methane, all wells but HA02 showed 40 to 80% methane dependence as measured by 

stonefly biomass. 
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Extended Data Figure 6 | Methane concentrations at other floodplains Log methane 

concentrations for wells at all other floodplains studied.  Most wells had less than 1 µmol/L 

dissolved methane over the course of study despite producing stoneflies which were clearly 

dependent on methane-derived carbon.   
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Extended Data Table 1 | Nyack well characteristics  Well residence times and typical 

dissolved oxygen concentrations are displayed alongside species which we typically observed in 

each well.  Note that we only found methane in wells with at least rare hypoxia.  

 

Well Easting Northing Shallow 

RT* 

Deep RT* DO character Observational Notes 

HA02 292244 5369912 45 60 Oxic Near river channel at head of floodplain 

HA07 290489 5372413 156 217 Oxic  

HA08 290564 5372617 210 263 Oxic  

HA10 290586 5373203 117 146 Occasional 

hypoxia 

Methane usually present 

HA12 292484 5370507 119 179 Occasional 

hypoxia 

Methane usually present 

HA15 291560 5371559 133 210 Oxic  

HA17 291846 5371524 167 304 Rare hypoxia Rare hypoxia in winter, occasionally has methane 

in low concentrations 

 
*RT = residence time (days).  Estimates taken from Helton et al. (2012) (17). 
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Extended Data Table 2 | Radiocarbon-aged methane samples  Sample information for all 

methane samples which were radiocarbon aged.  Ancient methane contribution estimates were 

calculated using the same two-source mixing model equation used for stonefly overall methane 

contributions, but using radiocarbon signatures and defining ancient methane as radiocarbon-

dead.  Sample sizes were limited because a) we needed to meet minimum methane 

concentrations for analysis, and b) sample radiocarbon dating was very cost-prohibitive.  Using 

this data, it is impossible to determine the maximum methane age, especially at HA10, and also 

to determine the depth at which methane is generated.  However, as shown in Figure S2B, 

methane concentrations tended to be higher at the deeper depth in HA10.   Well sample depths 

are indicated as following: S=shallow, D=deep, and WB=well base. 

 

 

  

Date 

Well and 

Depth 

Methane δ
13

C 

(‰) 

Methane Δ
14

C  

(‰) 

Methane age 

(years BP) 

Methane 

concentration 

(µmol/L) CO2 δ
13

C  (‰) CO2 Δ
14

C  (‰) 

CO2 age 

(years BP) 

Ancient 

methane 

contribution 

9/4/2014 HA12 S -70.49 ± 0.3 -122.6 ± 21.0 990 ± 200 21.99 ± 0.24 -15.7 ± 0.15 -160.4 ± 1.8 1340 ± 20 12.3 % 

9/17/2014 HA12 S -70.16 ± 0.3 -92.8 ± 19.7 720 ± 180 28.39 ± 0.24 -14.8 ± 0.15 -181.0 ± 4 1. 1545 ± 20 9.2 % 

11/24/2014 HA12 S -72.60 ± 0.15 -48.2 ± 1.7 335 ± 15 30.83 ± 0.24 -19.2 ± .15 -158.4  ± 1.7 1325  ±  20 0.5 % 

11/24/2014 HA10 S -70.61 ± 0.3 -580.0 ± 7.2 6910 ± 140 2.80  ± 0.24 -16.8 ± 0.15 -223.4 ± 1.5 1970 ± 20 58.0 % 

5/12/2015 HA10 D -70.76 ± 0.3 -328.5 ± 1.3 3200 ± 20  1.80  ± 0.09 -15.2 ± 0.15 -150.3 ± 1.5 1310 ± 15 32.8 % 

8/16/2015 HA10 WB -84.40 ± 0.15 -253.7 ± 1.3 2350 ± 15 4.92 ± 0.09 -14.9 ± 0.15 -217.2 ± 1.4 1965 ± 15 25.4 % 
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Extended Data Table 3 | Organic matter pools  Mean and standard error values for organic 

matter pools as measured during July 2013.  CPOM (Coarse particulate organic matter) 

incorporated some stonefly detritus, resulting in its low value.  FPOM stands for fine particulate 

organic matter. The average and standard error were incorporated into the Bayesian mixing 

model. 

  

OM Type δ
13

C Std. Deviation n 

Biofilm -28.50 1.81 
26 

CPOM -29.71 3.56 
28 

FPOM -25.28 1.65 
24 

Average -27.83 2.49 
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Extended Data Table 4 | Bayesian modeling scenarios  We used four scenarios to represent 

extremes of two ranges: methane δ
13 14

C.  These scenarios incorporated 

the displayed set of values used in parameterizing the Bayesian mixing model.  Please mote the 

13
C values used to 

calculate the weighted average of OM Δ
14

C (weighted by non-methane based biomass).  See 

methods for more information.   

 

 

 

  

Scenario ConsAge AvgAge ConsAnc AvgAnc 

α -30.3 ‰ 0 -30.3 ‰ 0 

Methanogenic methane m

ax age 

Measured (6900 yrs BP) Measured (6900 yrs BP) Radiocarbon-dead (>50,0

00 yrs BP) 

Radiocarbon-dead (>50,00

0 yrs BP) 

  δ
13

C Δ
14

C δ
13

C Δ
14

C δ
13

C Δ
14

C δ
13

C Δ
14

C 

Modern methane -100.8 ± 

8.5 

0 ± 7.2 -68.8 ± 8

.5 

0 ± 7.2 -100.8 ±

 8.5 

0 ± 7.2 -68.8 ± 8

.5 

0 ± 7.2 

Aged-Ancient methane -100.8 ± 

8.5 

-580 ± 7.2 -68.8 ± 8

.5 

-580 ± 7.2 -100.8 ±

 8.5 

-1000 ± 7.2 -68.8 ± 8

.5 

-1000 ± 7.2 

Organic matter -27.8 ± 

2.5 

-65.6 ± 75.9 -27.8 ± 

2.5 

-13.7 ± 32.2 -27.8 ± 

2.5 

-65.6 ± 75.9 -27.8 ± 

2.5 

-13.7 ± 32.2 
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Chapter 3: Methane dynamics drive the ecology of an expansive alluvial 

aquifer  
 

Abstract 
 

The alluvial aquifer of the Nyack Floodplain is an extremely oligotrophic system with large 

bodied hyporheic stoneflies (order: Plecoptera) as consumers.  Up to a majority of total stonefly 

biomass in the Nyack aquifer has been found to contain biogenic methane-derived carbon, 

clearly demonstrating the importance of methane in the system, but the ecological role of 

methane in the aquifer is still unexplored.  We investigated the role of methane at multiple 

scales: firstly, we analyzed dissolved organic carbon concentrations in relation to methane 

dynamics to understand the role of methane in providing an organic carbon source to this system.  

We then related these particular biogeochemical dynamics to the trophic and community ecology 

of aquifer biota, with a focus on top consumers: the hyporheic stoneflies.  We found that 

dissolved methane concentration was the best predictor of dissolved organic carbon 

concentration in the aquifer, while methane concentrations were best predicted by dissolved 

oxygen concentrations.  Stoneflies had distinct isotopic niches (trophic positions) as defined by 

δ
13

C and δ
15

N signatures.  The distinctions between species could be attributed to varying 

abilities to access methane-derived carbon resources at oxic-hypoxic interfaces: Isocapnia 

grandis and Kathroperla perdita showed tolerance to hypoxia and anoxia in respirometry 

experiments, and I. grandis and Paraperla frontalis both showed consumption of methanogenic 

and methanotrophic microbes found in 16S rRNA gene sequence analysis of gut contents.  While 
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none of the biogeochemical variables we studied were consistently significant in predicting 

trophic positions, dissolved methane concentrations alone explained 19% of the variation in 

stonefly species assemblages using NMDS analysis of 73 sampling events, while the 

combination of all biogeochemical variables considered explained 22%.  We concluded that 

methanogenic methane was clearly important for production in this system, as shown by its 

correlation with DOC, varying levels of carbon contribution to individual stonefly species, and 

significance in structuring stonefly species assemblages.  Our findings emphasized not only the 

unique adaptations of aquifer species to a heterogenous and carbon-limited environment, but the 

need to reconsider basal sources of productivity in a highly oligotrophic and light-limited system. 

 

Introduction 

 Over the past decades, the conceptualization of productivity in river systems has received 

multiple upgrades.  It has progressed from viewing these as heterotrophic ecosystems as mainly 

fueled by upstream nutrient export in the river continuum concept (Vannote et al. 1980) to 

including the importance of terrestrial-derived carbon with the flood pulse concept (Junk et al. 

1989) focusing on the dynamic processes that mediate nutrient transfer between various 

components of the landscape along the river corridor (e.g. Ward and Stanford 1983, Stanford et 

al. 2005), and partitioning productivity in these systems as driven by both autochthonous and 

allochthonous carbon (e.g. Thorp and Delong 1994, 2002).  The importance of both upstream 

and local processes is therefore clear in river ecology.  Despite the increasingly complex view of 

productivity in these systems, however, there remains a lack understanding of how a major 

component of river systems functions: the shallow alluvial aquifers which are distributed along 

gravel-bedded rivers “like beads on a string” (Stanford and Ward 1993). 
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 These floodplains are hot spots of biodiversity and productivity, yet they are also some of 

the most threatened ecosystems in the world due to damming, development, diversions, and other 

anthropogenic alterations (Tockner and Stanford 2002). They are characterized by hydrologic 

and biogeochemical interchange with the alluvial aquifer (Stanford et al. 2005).  The most well-

studied floodplain in the world, from which much of this understanding has been derived, is the 

Nyack Floodplain of Northwestern Montana (Stanford and Ward 1993, Ellis et al. 1998, Craft et 

al. 2002, Poole et al. 2002, Helton et al. 2014).  This alluvial floodplain sits on the 5
th

 order 

Middle Fork of the Flathead River at the southern boundary of Glacier National Park, 

encompassing a 3200 km
2 

catchment with approximately 9 km of anastomosed river (Figure 1) 

(Stanford et al. 2005).  Approximately 30% of base flow is influent to the aquifer at the upstream 

end of the floodplain, and upwelling occurs downstream in areas where topographic lows (such 

as channels and ponds) intersect the water table(Stanford et al. 2005).   

 The aquifer not only contains a large portion of total river flow, but it helps to maintain 

productivity and biodiversity (Pepin and Hauer 2002).  More than 70 taxa have been documented 

in the aquifer, 5 of which are large-bodied hyporheic stoneflies (Order: Plecoptera) that are 

present in the tens of thousands (DelVecchia et al. 2016).  These stoneflies spend 1-3 years 

maturing in the aquifer before emerging from the river channel to mate as short-lived winged 

adults (Stanford and Gaufin 1974).  Because the aquifer is highly oligotrophic and limited by 

paucity of dissolved organic carbon, the presence of such abundant large macroinvertebrates was 

a conundrum until it was discovered that 8-70% of consumer biomass was comprised of 

methane-derived carbon (DelVecchia et al. 2016).  The methane was methanogenically derived, 

and thereby helped to explain another paradox: labile carbon concentrations increase along 
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flowpaths in the Nyack aquifer, an occurrence that could be due to non-riverine influx or internal 

production of dissolved organic carbon (DOC) (Helton et al. 2015). 

Previous research in the Nyack aquifer has focused extensively on DOC and dissolved 

oxygen (DO) dynamics, with study of methane concentrations being thus far limited to its known 

presence in specific aquifer locations and ubiquitous across consumer biomass.   DOC and DO 

concentrations are interrelated and also correlated with other biogeochemical and hydrologic 

variables: residence time (e.g. Helton et al. 2015),  temperature, depth of the sample, and time of 

year (Figure 2).   Along flow paths, dissolved oxygen concentration (DO) and dissolved organic 

carbon concentration (DOC) both decrease due to respiration of river-supplied nutrients (Lowell 

et al. 2009, Helton et al. 2015), while temperatures stabilize to the mean annual air temperature 

at longer flowpaths (Anderson 2005, Poole et al. 2008).  DO and DOC can diffuse from the 

vadose zone, increasing concentrations at locations closer to the water table (Smith et al. 2011).  

The aquifer also contains matrix subsidies, having organic matter deposits that can subsidize the 

microbial metabolism in select locations (Reid 2007, Appling 2012, Valett et al. 2014), 

contributing to increased DOC but diminished DO by stimulating respiration.   

Though methane dynamics have not been directly studied in the Nyack aquifer, it is 

probable given previous Nyack study that locations exist which would be highly suitable for 

methanogenesis, which can occur in anoxia with or without an organic carbon source as the last 

and most metabolically inefficient step in microbial decomposition of organic matter (Bowman 

2006).  Furthermore, if that methane reached an oxic-anoxic interface, it would then stimulate 

production of methane oxidizing bacteria, or MOB, again contributing to DOC supply but 

diminishing the available methane and oxygen supplies (Bussmann et al. 2006).  All microbial 
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metabolic processes, including methanogenesis, are affected by changes in temperature (Stanley 

et al. 2016).   

Thus, previous research has elaborated the potential role of multiple biogeochemical and 

hydrologic processes in determining methane concentrations.   Furthermore, work both at Nyack 

and elsewhere has suggested that methanogenesis and methanotrophy, controlled by these 

processes, contributes DOC to a carbon limited system (Helton et al. 2015, Craft et al. 2002).  

Given that up to a majority of site-wide consumer biomass on Nyack is methane-derived carbon 

(DelVecchia et al.), the importance of methane in this system is clear.  However, methane 

dynamics have been implicated at two vastly different scales: flowpath-mediated 

biogeochemistry, or the suggestion that methanogenesis contributes to DOC at longer flowpaths, 

and entire-floodplain consumer biomass.  We aimed to relate these scales.  

Our overarching goal was to understand how methane dynamics, specifically as related to 

various other biogeochemical and hydrologic conditions, influenced the ecology of top 

consumers in the aquifer.  Our first objective was to build a more robust understanding of 

methane dynamics: because DOC limits production in the aquifer, we investigated the 

relationship between DOC and methane concentrations.  We coupled this with study of potential 

controls on methane production and assimilation: dissolved oxygen, temperature, residence time, 

timing, and location.  Given a better understanding of aquifer biogeochemistry, our second 

objective was to resolve relationships between these particular biogeochemical dynamics and the 

trophic and community ecology of aquifer biota, with a focus on top consumers: the hyporheic 

stoneflies.  We took four approaches: 1) we studied a subset of the aquifer food web, including 

macroinvertebrates, meiofauna, and organic matter types, to delineate stonefly and meiofauna 

trophic positions in relation to basal resources; 2) we explored potential adaptations of various 
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stonefly species that could facilitate them to access methane-derived carbon resources; 3) we 

analyzed relationships between local biogeochemical dynamics and stonefly trophic positions; 4) 

we analyzed relationships between local biogeochemical characteristics and stonefly species 

assemblages.  Overall, our approaches to these two objectives enabled us to elaborate the niche 

characteristics of individual stonefly species and how these characteristics, along with species 

assemblages, were related to methane biogeochemical dynamics within the aquifer (e.g. Figure 

2). 

 

Methods 
 

Study Site 

 

 The Nyack floodplain is a mosaic of diverse habitat patches arranged along a gradient of 

succession influenced by flood disturbance: cottonwoods (Populus spp.) and willows (Salix spp.) 

dominate early successional patches, mixed conifer forests dominate zones where flooding is less 

common, and alders (Alnus spp.) and birch (Betula spp) dominate the dense soils at the fringe of 

the wetlands (Mouw et al. 2009).  Underlying the floodplain is Pleistocene and recent alluvium 

of extremely high porosity (maximum hydraulic conductivity of 10 cm·s
-1

)
 
confined below by an 

impermeable clay layer of tertiary age(Stanford and Ward 1993). 

 The floodplain is equipped with nineteen 3-inch PVC wells with 2 mm slot openings 

down the length of the pipe (Figure 1).  The wells were drilled 8-10 m using a hollow auger 

drilling.  We sampled these wells for insects approximately every 3-6 weeks from June 2013 to 

October 2015.  We measured environmental variables at two depths - 1 and 4 m below the 
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baseflow water table – every 3-6 weeks from January 2014 to October 2015.  At seven of these 

wells, we sampled at additional times approximately every 3 to 4 weeks; winter sampling 

(November to March) was also restricted to these wells for feasibility.  We chose these wells for 

additional sampling because they were a) distributed across the entirety of the floodplain, b) 

were well represented in DelVecchia et al. (2016), and c) were equipped with the RiverNet 

continuous monitoring system, which we could use to check for consistency in the variables 

which we measured.  The RiverNet system recorded hourly measurements of dissolved oxygen 

and temperature at approximately 3m below the baseflow water table.  While this was not depth-

specific, it enabled us to quality control our meter measurements.  All analyses presented here 

were conducted using our meter measurements. 

Sample Collection 

 

 In order to sample environmental variables dissolved oxygen, dissolved organic carbon, 

dissolved methane, and temperature, we used a peristaltic pump equipped with PTFE (Teflon) 

tubing to draw water from depth at each well.  We let the pump run for two minutes into a 500-

mL Nalgene benthos jar, then proceeded to take measurements.  We measured dissolved oxygen 

concentration (DO) and percent dissolved oxygen saturation (%Sat) using a YSI 85 handheld 

meter.  We measured temperature using a Fisher Scientific high-accuracy (0.01 °C) portable 

corded thermometer.  We collected samples for measuring dissolved organic carbon 

concentrations (DOC) by using acid-washed 60 mL syringes, then filtering water through ashed 

Whatman 0.7 μm pore size glass filters (Freshwater Research Laboratory protocol).   We 

analyzed these samples on a Leco carbon analyzer according to standard Flathead Lake 

Biological Station protocol (Freshwater Research Laboratory protocol).  We sampled methane 

concentrations using a modified active-sampling method as described in DelVecchia (2016).  
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These samples were analyzed on a greenhouse gas chromatograph (SRI Instruments model 

8610C) equipped with a flame ionization detector and SRI PeakSimple Software (DelVecchia et 

al. 2016).  We calculated headspace methane concentrations using a three-point calibration with 

Scotty gas standards (Air Liquide America).  We then used Henry's Law to calculate dissolved 

methane before headspace equilibration using the solubility constant documented by Yamamoto 

et al. (1976).  Error averaged 0.08 µmol/L initial aqueous concentration and our detection limit 

was 0.11 µmol/L. 

 We collected stonefly samples using both trapping and pumping methods. To trap, we 

had suspended nylon ropes in the wells on which the emergent and resident stoneflies could 

climb.  We pumped the wells using a gas-operated diaphragm pump and collected samples using 

the methodology in DelVecchia et al. (2016).  We froze samples and stored them at -80° C until 

preparation for stable isotope analysis.  We took the same collection approach for collecting 

organic matter samples for stable isotope analysis, but samples were collected in June to July 

2013 and only at the RiverNet wells.  We used 64 and 500 µm Nitex mesh to parse out fine and 

coarse organic matter, respectively.  These samples were also frozen until preparation for stable 

isotope analysis.   

 We collected biofilm samples at the RiverNet wells by suspending ashed and autoclaved 

gravel bags at all sampling depths on the Nyack for ten weeks during July and August 2013, then 

again for six weeks each four times between May 2014 and May 2015 (DelVecchia et al. 2016). 

We collected and sieved 6-12 mm gravels from Beaver Creek on the Nyack Floodplain.  We 

rinsed and ashed the gravels, then packaged them in synthetic mesh bags.  We autoclaved these 

samplers and suspended them at the shallow and deep depths in each of the seven focal wells.  

We left them in the wells, undisturbed, for 10 weeks in July-August 2013.  Upon removal, we 
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kept gravel (in the whirl-paks) for stable isotope analysis.  To process the biofilm stable isotope 

samples, we defrosted and gently rinsed samples at the lab, added 150 mL of ultra pure de-

ionized water, and sonicated for 40 minutes.  We then poured the supernatant into a beaker and 

dried at 60°C until all water was evaporated.  We then scraped the beaker and treated the 

material as organic matter stable isotope samples. 

 To prepare stoneflies and organic matter for stable isotope analysis, we followed the 

methods of DelVecchia et al. (2016).  Samples were analyzed on a PDZ Europa ANCA-GSL 

elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon 

Ltd., Cheshire, UK) at the UC Davis Stable Isotope Laboratory.  Stable isotope ratios were 

expressed relative to international standards: V-PDB (Vienna PeeDee Belemnite) for 
13

C and air 

for 
15

N.   

 

Analysis methods, Objective 1: biogeochemical controls on dissolved organic carbon and 

dissolved methane concentrations 

 

 We used the same methods to understand controls on 1) dissolved organic carbon 

concentrations (DOC), and 2) dissolved methane concentrations (methane).   

 We performed all data analysis in R (R Core Team 2016).  We tested all continuous 

variables for normality using the Skewness-Kurtosis test, assessing skewness values between -

0.5 and 0.5 and kurtosis values less than 3 as symmetric and normal.  As both DOC and methane 

concentrations were highly right skewed, we used a log transformation on both variables.  In 

order to do so for methane, we added 0.001 µmol/L to all values of 0 before the transformation 

(thus the minimum log-transformed methane concentration was -3).  This value was <10% of 
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measurement error, which was 0.07 µmol/L; thus our addition was an order of magnitude lower 

than the error range.  In order to log-transform the DOC concentrations, we removed two 

samples of value 0 before the transformation.  We then removed all data points which did not 

have a complete set of temperature, dissolved oxygen (DO), DOC, and methane concentration 

measurements, bringing our sample size to n = 127. 

We also manipulated the day of year variable.  Because day was a circular variable, we included 

it as a fixed effect as follows (Stolwijk et al. 1999): 

𝛽1 ⌊sin (
2𝜋(𝑑𝑎𝑦)

365
) +  cos (

2𝜋(𝑑𝑎𝑦)

365
)⌋ 

We termed this our ‘day term’.   

 We tested variables for homoscedasticity using the Fligner-Killeen test.  We removed 

DOC outliers, which we defined as points which were 1.5 times the interquartile range above the 

third quartile or below the first quartile in each well.  We initially assessed potential correlations 

using ANOVA and Pearson correlation coefficients where assumptions of normality and 

homoscedasticity were met (all variables but Well and Sampling Depth).  We used a one-way 

test (oneway.test()) to evaluate relationships between variables where assumptions were not met; 

this was essentially an extension of the Welch t-test. 

   

We constructed linear mixed effects models using the R package nlme (Pinheiro et al. 

2016).  We assigned the well of collection as a random effect in order to account for unknown 

differences between the wells.  All other variables were assigned as fixed effects.  We first 

accounted for effects of the day term and depth differences in the model, which we inferred 
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would lead to a joint spatiotemporal correlation in our biogeochemical variables: DO, DOC, and 

methane.  We then assessed if additional predictors would improve the model and compared 

models using AIC (Akaike information criteria) scores (Akaike 1974). 

 

Analysis Methods, Objective 2, Approach 1: Trophic positions of aquifer macroinvertebrates 

and meiofauna 

 

 We analyzed δ
13

C and δ
15

N values in order to understand variation in basal carbon 

resources and variation in trophic position, respectively (e.g. Fry 2006).  We included stoneflies, 

organic matter, and meiofauna in this analysis in order to infer relative trophic positions.  We 

incorporated two previous stable isotope datasets from the Nyack floodplain specifically for this 

process: the first (n = 239) was collected during July 2012 by Flathead Lake Biological Station 

research staff, processed according to the same protocol that we used in the 2013-2015 samples, 

and also sent to the UC Davis Stable Isotope Facility for analysis.  The second (n = 61) was 

collected during 2004 and processed using the same protocol and facility, but also included 

meiofauna samples and stoneflies from additional wells.  Though stonefly stable isotope samples 

included one individual per sample, this was impossible to follow with meiofauna because of 

their low masses.  Therefore, approximately thirty meiofauna individuals were combined per 

well per taxa for the stable isotope analysis.  These two datasets, along with 2013 collected 

stoneflies from the focal dataset, were used only in construction of the food web because 

corresponding environmental data from the dates of collection of these samples was either 

unavailable or unreliable.  All stoneflies examined were later instar larvae because these stages 

are easiest to identify.  
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 We used all available stable isotope samples across datasets to assemble the food web 

structure.  Our large sample size (n=752) enabled us to resolve a persistent problem in 

interpretation of food web structure in systems with a methane subsidy: reliance upon methane-

derived carbon is known to be correlated with depletion in 
15

N (Conway et al. 1989, Lee and 

Childress 1994, Kohzu et al. 2004).  This is because MOB fractionate DIN as they preferentially 

uptaake ammonium and nitrate (Hoch et al. 1992, Lee and Childress 1994).  We therefore 

compared δ
13

C values, which indicated a gradient of methane derived carbon in biomass, with 

δ
15

N values.  We examined this relationship specifically in consumers (stoneflies and 

meiofauna), using a varying intercepts model.  We chose a varying intercepts model because the 

relationship between the signatures should remain constant across species, but intercepts should 

vary as a result of 
15

N increasing with progressive trophic levels.  We found that δ
15

N and δ
13

C 

were strongly correlated in all known consumers (𝑅2 = 0.627, 𝑝 <  10−4, 𝑛 = 719,  Fig. 4),  

  

We therefore applied this relationship to all consumers and organic matter pools andused y 

intercepts to represent trophic level differences between species independent of methane derived 

carbon reliance, making organisms and organic matter pools comparable using stable isotope 

differences.  We calculated the base trophic level for aquifer invertebrates as the average of 

FPOM and biofilm δ
15

N values.  We excluded CPOM because CPOM a) was generally too 

coarse for consumption by the invertebrates, and b) included stonefly detritus such as exuvia.  

The δ
15

N residual value that we used to represent the base food resource, or trophic level 1, was -

5.77 ‰.   
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 We used basic linear models compared using ANOVA to determine that well of 

collection could significantly affect δ
13

C and δ
15

N signatures, (Pr(>F) < 10
-13

).  Therefore we 

used an unweighted stratification of δ
13

C and δ
15

N values by well for each species and organic 

matter classification to account for uneven sampling between wells and unknown differences in 

abundance between wells.  We used these stratified means and standard error values to construct 

a biplot to understand the food web. 

 

Analysis Methods, Objective 2, Approach 2:  Potential adaptations of select stonefly species 

 

 We considered two potential adaptations of stoneflies that could facilitate them to access 

methane derived resources: 1) tolerance to hypoxia and anoxia and 2 consumption of 

methanotrophic and/or methanogenic microbes. 

1.  Stonefly respirometry 

 

In August 1994, preliminary respirometry experiments were conducted using individuals 

collected from the Nyack Floodplain.  Using miniature respiration chambers and oxygen 

microelectrodes, we examined the respiratory response of I. grandis and K. perdita to hypoxia. 

Individual stoneflies were placed in respiration chambers containing 0.2 µm Nucleopore filtered 

hyporheic water from the collection site. Respiration chambers were maintained at ambient 

temperatures (9.1 - 11.2 + 0.1°C) using a temperature-controlled circulating water bath. Copper-

constant thermocouples were used to monitor temperatures for consistency throughout 

experiments. Dissolved oxygen concentration was measured using Strathkelvin 781 oxygen 

meter with model 1302 oxygen microelectrodes (FEP membranes). Electrode calibration 
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followed Strathkelvin procedures with zero baseline utilizing 5% sodium sulphite and 100% DO 

saturation following bubbling. During incubation, oxygen concentration was measured every 10 

seconds using Datacan V data acquisition software by Sable Systems.  Organisms were placed in 

miniature respiration chambers containing pebbles (DI washed and autoclaved) suspended on a 

plastic mesh with a slowly circulating micro magnetic spinbar below. Chamber volume ranged 

from 2.4 to 39 ml, depending upon organism size. Initial oxygen saturation was 90 - 100% and 

the animal was allowed to remove oxygen from the water down to 0% saturation.  Respiration 

rates were standardized by body weight of each stonefly and recorded as µg O2 /XX/mg 

organism body weight.  After the experimental chamber reached 0% oxygen saturation, 

organisms were transferred to oxygen saturated water and the time to recovery was recorded, 

unless the organism died before reaching 0% oxygen saturation.  

2.  Stonefly gut contents 

 

 In order to assess whether or not these organisms consume methanogenic and 

methanotrophic microbes, we analyzed the 16S rRNA gene in stonefly gut contents and biofilm 

collected from the well gravel bag samplers.  We used 16 individuals collected during July 2013.  

Because our sample sizes were small, we regarded this as a qualitative analysis to understand 

what taxa were indeed present in both collection locations (gut and well), and to establish if there 

was indeed a significant contribution of methanogen/methanotroph taxa to the composition of 

stonefly gut contents.   

In order to collect DNA from stonefly gut contents, we immediately identified and froze 

stonefly nymphs using liquid nitrogen.  To later remove the gut contents, we defrosted and 

dissected each individual, cutting the abdomen to remove hindgut and foregut contents using 
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flame-sterilized tools (e.g. Blankenship and Yayanos 2005, Deagle et al. 2005).  For both gravel 

bag samples and gut samples, we extracted DNA using the MO-BIO Powersoil Kit, then stored 

extracted DNA at -80 C until samples were sent to the laboratory of Dr. Carl Yeoman (Montana 

State University) for amplification and sequencing on an Illumina MiSeq platform.  

We ran all analysis in QIIME (Caporaso et al. 2010).  We assembled the paired-end 

MiSeq reads using pandaseq (Masella et al. 2012).  We used the uclust method to choose OTUs 

(operational taxonomic units) with 97% sequence similarity and a 100 bp prefilter length.  We 

assigned taxonomy using the rdp classifier method with the most recent SILVA database 

(version 111, “SILVA Terms of Use/License Information”).  

 

Analysis Methods, Objective 2, Approach 3: relationships between local biogeochemical 

dynamics and stonefly trophic positions 

 

 In order to  understand potential explanations for stonefly trophic positions, we compared 

the inclusion of methane-derived carbon (MDC) in biomass as well as δ
15

N residuals to 

biogeochemical characteristics at the time of sample collection.  Though insect tissue stable 

isotope values turn over on the scale of hours to days, we hypothesized that MDC values would 

be correlated with biogeochemical characteristics because either a) stoneflies were within the 

vicinity the of the well for some time (hours to days) before collection, or b) well characteristics 

from a given day were representative of conditions in the preceding days.  We also assumed that 

the well conditions would be related to what food resources were available to the insects.  

Therefore, a correlation might imply suggest which biogeochemical characteristics would be 

most important in characterizing stonefly diets.   
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 We first corrected the δ
13

C values of stonefly, amphipod, and meiofauna biomass using 

the estimates of trophic level calculated using the δ
15

N residuals, as follows: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝜕13𝐶 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝜕13𝐶 − 0.5(𝑇𝐿 − 1) 

 Where TL represents the trophic level.  This adjustment was miniscule relative to overall δ
13

C 

values, as the mean trophic level adjustment was 2.2 ‰.   

 We used the corrected methane derived carbon (MDC) estimates and δ
15

N residual values 

from stonefly biomass to investigate potential correlations with environmental variables 

measured at the corresponding times and locations. We repeated the analysis for both depths at 

which these variables were measured, and focused on the “average” estimates of MDC.  We then 

calculated percent MDC in consumer biomass using a two-source stable isotope mixing model 

using δ
13

C values (Fry 2006) (Eq. 1):  

 

 

To represent any possible contribution of organic matter to stonefly diet, we used ‘organic 

matter’ as a surrogate for any component of stonefly biomass that was not methane-derived 

carbon.  For this purpose, we used a stratified average of δ
13

C values from all organic matter 

pools that we measured within the aquifer: FPOM, CPOM, and biofilm.  We used the methane 

δ
13

C values explained in DelVecchia et al. (2016) to represent a full range of potential methane 

contributions to stonefly biomass.   

 In analyzing potential effects of the well and day of collection (transformed to day term, 

as defined above) on each δ
15

N residuals and methane dependence, we were able to use the entire 
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dataset, which included 751 observations.  ANOVA analysis indicated that species and well of 

collection, but not day term, were significant in predicting MDC in the stoneflies (p<10
-16

).  We 

therefore took multiple approaches to understanding potential correlations with environmental 

variables: 1) we calculated Pearson correlation coefficients and f-test statistics using ANOVA for 

each variable individually for each species; 2) we used the same linear regression subsets 

approach that we used for the biogeochemical variables; 3) we ran linear mixed effects models 

using well as a random effect and included as fixed effects the species and day of collection, 

evaluating biogeochemical variable inclusion to the model as additional predictors.  We used the 

multiple analyses to search for consistencies.  We repeated each analysis for biogeochemical 

variables measured at the shallow and deep sampling depths in each well on each sampling day.  

We compared linear mixed effects models using AIC scores and log-likelihood values (Akaike 

1981).   All of these analyses were run using the 2014-2015 stable isotope dataset (n=127) 

because all stable isotope values in this dataset corresponded with measured biogeochemical 

variables. 

Analysis Methods, Objective 2, Approach 4: relationships between local biogeochemical 

variables and stonefly species assemblages 

 

 The purpose of approach 4 was to understand how the biogeochemical variables that we 

measured affected stonefly species assemblages.  In order to compare methane, DO, and DOC 

values to stonefly assemblages, we needed to subset the data to that which met the following 

requirements: a) species abundance values needed to correspond with a complete set of measured 

environmental variables, b) at least one individual of any species needed to be present in a 

sample, and c) only species which were found at more than 10 (half) of the wells could be 

considered.  These requirements were necessary to run a meaningful ordination analysis through 
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non-metric multidimensional scaling (NMDS).  NMDS is process to geometrically arrange 

samples such that inter-point distances reflect the experimental differences (Kruskal 1964).  

After screening for our set requirements for this analysis, we were able to include samples only 

from 2013-2015, eventually amounting to n=76.  We represented these samples in three 

dimensions. 

 We identified stoneflies according to multiple keys (Baumann et al. 1977, Stewart et al. 

1988, Zenger and Baumann 2004)and focused on rope (trapping) and pump collected insects.  In 

order to assemble the ordination data, we included only species Isocapnia grandis, Isocapnia 

crinita, Isocapnia integra, Paraperla frontalis, Kathroperla perdita, and Stygobromous spp. 

(amphipod) because these species were all abundant during multiple sampling events.  Because 

stonefly collections were not depth-specific, in order to compare stonefly assemblages to 

environmental variables we needed to average environmental variables for both depths measured 

on the day of collection at each well.  In addition, our stringent requirements for samples to be 

included caused discrepancies between sample sizes per well and sampling time.  We therefore 

included both variables in the analysis to ensure that any effects of environmental variables were 

true rather than a result of confounding with the well and day of collection (day term).  We then 

ran the NMDS analysis through the R platform using the vegan package (Oksanen et al. 2016).     

 

Results 
 

Results, Objective 1: Biogeochemical controls on dissolved organic carbon and dissolved 

methane concentrations 
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Our initial analysis of the variables using Pearson correlation coefficients, ANOVA, and 

one-way analysis of variation showed that well of collection and the day term all significantly 

affected each DO, DOC, and methane concentrations (Table 2).  This was expected given that 

each of these concentrations were known to vary spatiotemporally and this variation was evident 

in our data (Figure 3).  Methane was the only concentration that did not vary with the sampling 

depth, temperature, or residence time, suggesting that methane concentrations might not be as 

prone to flow path effects or potential diffusion from the vadose zone as the other two variables 

– DO and DOC -- could be.  However, the three concentrations were all significantly related.  

We had expected this because we had expected that all concentrations would be spatiotemporally 

correlated and therefore correlated with each other.   

We then progressed to using the linear mixed effects models to assess correlations 

between the variables.  We therefore evaluated linear mixed effects models including as fixed 

effects the day term and sampling depth and as a random intercept the well of collection, thereby 

accounting for variation occurring from spatiotemporal correlation.  We compared base models 

including these terms to models including temperature, residence time, DO, and either DOC or 

methane (Table 3).  We found that even after accounting for spatiotemporal correlation in the 

base models, methane and temperature were significant predictors of DOC, with methane being 

the most improvement to the base model (Table 4).  This suggested that methane and DOC were 

indeed correlated more extensively than both being affected by location and time of year.  

Similarly, dissolved oxygen, DOC, and residence time were significant predictors of methane, 

with DO making the biggest improvement to the base model.  This suggested that DO and 

methane were also correlated more extensively than joint spatiotemporal correlation. 
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Results, Objective 2, Approach 1: Trophic positions of aquifer macroinvertebrates and 

meiofauna 

 

 The plot of δ
15

N residuals vs δ
13

C showed clear differences between species which 

corresponded with trophic levels that have previously been determined using ecological 

observation (DelVecchia et al. 2016) (Fig. 5, Table 5).  The average invertebrate trophic 

enrichment factor is 2.2 ‰ (Fry 2006), so consumers should be 2.2 ‰ heavier than their food 

source.  Therefore, species with intercepts differing by at least 2.2 ‰ were considered one 

trophic level apart.  Both K. perdita and P. frontalis were significantly more enriched in 
15

N than 

I. grandis or I. integra, and all Isocapnia species appeared to feed at approximately the same 

trophic level.  This suggested that K. perdita and P. frontalis were more carnivorous than 

Isocapnia species.  We also have observed P. frontalis and K. perdita consuming early instar 

larvae. 

 The differences in δ
15

N values between stoneflies and organic matter pools were 

sufficiently different to show more than one trophic level of separation.  The same was true of 

the other consumers and organic matter classes.  However, δ
13

C was significantly more depleted 

in stoneflies than in all OM, meiofauna, and amphipod species examined.  This suggested that 

we did not measure a highly methane-derived organic carbon source that could be directly 

assimilated by the stoneflies.  This could indicate either a) that we did not measure MOB-

dominated biofilms, b) that stoneflies were preferentially feeding on MOB, or c) that additional 

intermediate trophic level MDC consumers were not measured (e.g. early-instar larvae).   

 We also found that δ
13

C signatures varied between species, suggesting in this case 

varying levels of MDC in biomass (Figure 5).  It also suggested a complexity to the food web, 
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because stoneflies could differ in their access to MDC resources.  For example, as methane in the 

Nyack aquifer was generally produced methanogenically, methane was likely produced in anoxic 

environments and oxidized at oxic-anoxic interfaces (Bussmann et al. 2006).  Differences in δ
13

C 

could then have arisen from species’ variable abilities to access the interface where MOB 

flourished.  

  

Analysis Methods, Objective 2, Approach 2:  Potential adaptations of select stonefly species 

 

Stonefly respirometry 

 

 I. grandis and K. perdita individuals both survived down to near-anoxia (<0.1 mg O2/L) 

or anoxia (Figure 6).  I. grandis 1 stayed below 5% DO saturation for 4.7 hrs, below 1% DO 

saturation for 47 minutes, and below 0.1% DO saturation for 29 minutes.  It then recovered in 

DO saturated water after 33 minutes recovery in 2 minutes.  I. grandis 2 was removed at 0% DO 

saturation and recovered in DO saturated water after 2 minutes.  Lines shown are Loess curves 

with span=0.7.  No data existed for the K. perdita individual other than that it drew down DO to 

0.1 mg/L before dying.  While I. grandis individuals rapidly dropped their respiration rates as 

DO %saturation dropped below approximately 25%, K. perdita maintained a steady respiration 

rate throughout the experiment.  We concluded that I. grandis individuals, given their ability to 

withstand and recover from anoxia, exemplified a potential ability of the species to withstand 

anoxic conditions.  K. perdita was unclear. 

Gut content analysis using 16S rRNA sequences 
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 When we analyzed 16S rRNA sequences in stonefly gut contents, we found an average 

read length of 444 bp, and an average of 41,871 reads per sample.  Gut content microbial 

communities showed the presence of both methanogenic and methanotrophic taxa (Table 6 and 

Figure 7).  The presence of methanogenic taxa in gut contents could suggest that the stoneflies 

were able to consume resources from anoxic zones, whereas the presence of MOB in gut 

contents suggested ability to access an oxic-anoxic interface.  While we acknowledge the 

possibility of incorporating gut microbiota into the sample, we consider it more likely that results 

indicate gut contents given that we used established dissection methods (Blankenship and 

Yayanos 2005, Deagle et al. 2005). 

Methanogenic and methanotrophic taxa were most abundant in samples collected from 

well HA10.  If indeed gut contents qualitatively reflect the microbial communities present in 

stonefly diets, then the abundance of these taxa in HA10 samples associates well with the fact 

that HA10 is one of two wells on the floodplain that commonly experiences hypoxia and has 

measurable methane concentrations.  However, samples collected in well HA12, another well 

with hypoxia and measurable methane concentrations, did not have higher proportions of 

methanogenic and methanotrophic taxa than the other samples.   

 

Results, Objective 2, Approach 3: relationships between local biogeochemical dynamics and 

stonefly trophic positions 

 

 We found that both MDC and δ
15

N residuals were correlated with species and well of 

collection, but not the day term (ANOVA, p<10
-16

, n=751).  When we used the subset data to 

compare each of these values to environmental variables, our linear regression analysis showed 
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that none of our biogeochemical variables greatly improved predictions of δ
15

N residuals or 

MDC.  However, the combination of day of collection, residence time, and methane predictors 

resulted in our highest adjusted R
2 

value of 0.24 (Table 7).  Our linear mixed effects model 

analysis accounted for the day of collection, species, and well before considering biogeochemical 

predictors, but showed that inclusion of biogeochemical variables made little improvement to the 

models (Table 8).   

The significance of the day and location of collection in all analyses indicated that the 

stoneflies’ diets varied significantly even within species.  The variation in MDC values indicated 

that the stoneflies did not rely upon consistent basal carbon resources, either because their direct 

consumption varied across species, or because a consistent direct food source had high variation 

in MDC.  However, the high levels of δ
13

C depletion relative to measured biofilm δ
13

C and all 

OM δ
13

C combined with observations of amorphous biofilm and organic matter in gut contents 

clearly suggested that the stoneflies selectively assimilated carbon from 

methanogenic/methanotrophic microbial components, whether this was a direct choice or one 

which had moved up the food web.  The lack of significance of biogeochemical variables, which 

could turn over on more rapid time scales, implied that the stoneflies were accessing resources 

either not directly measurable within well (e.g. fine-scale redox interfaces or hot spots of 

microbial production), not associated with the biogeochemical variables we measured, or 

associated with the long-term character of the well rather than immediate conditions (e.g. 

underlying geology).   

 

Results, Objective 2, Approach 4: relationships between local biogeochemical dynamics and 

stonefly species assemblages 

 



AG DelVecchia  85 

 After clipping the dataset to sampling events which met all of our assumptions (methods), 

we compared stonefly nymph and amphipod species relative abundance values to the 

biogeochemical characteristics of each sampling event using the non-metric multidimensional 

scaling (NMDS) analysis in the vegan package in R (Oksanen et al. 2016).  As we could only 

consider species with raw abundance values  >0 for the majority of sampling events, we 

considered I. crinita, I. grandis, I. integra, K. perdita, P. frontalis, and Stygobromous spp.  After 

running the NMDS modeling process with a max of 100 iterations, we achieved a stress value of 

0.09 and proceeded to compare results to biogeochemical predictors.  We found that after 

accounting for the well of collection, methane and DO concentrations were both significant 

predictors of community assemblages (Figure 8 and Table 8).  Together these variables 

explained 22% of the variation in community assemblages.  Methane concentrations alone 

explained 19% of the variation. 

 K. perdita and I. integra were consistently found at lower methane concentrations and 

higher dissolved oxygen concentrations, while I. crinita was commonly found at higher methane 

concentrations.  Stygobromous spp. tended to cluster at higher DOC concentrations.    P. frontalis 

and I. grandis clustered at the lower end of the DO gradient at intermediate methane 

concentrations.     

 

Discussion 
 

 Our first objective was to understand how DOC and methane dynamics were related to 

each other and to other biogeochemical and hydrologic variables.  Our results matched with what 

we would have expected under these two conditions: methane production and assimilation is 
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controlled by dissolved oxygen conditions (i.e. methanogenesis occurs anaerobically) (Stanley et 

al. 2016); and methane cycling stimulates production as evident by dissolved organic carbon 

concentrations (e.g. as suggested by Helton et al. 2015).   Indeed, all modeling approaches 

agreed that methane concentrations were best predicted by considering the sampling event and 

dissolved oxygen concentrations, while dissolved organic carbon concentrations were best 

predicted by dissolved methane concentrations. 

 The correlation between DOC concentrations and methane concentrations on the Nyack 

floodplain suggested that either a) that carbon fixation occurred via methanogenesis, or b) that an 

external methane source (if present) could have stimulated production of DOC at specific sites.  

In fact, DelVecchia et al. (2016) showed that methane measured in the Nyack aquifer was mostly 

methanogenic, but could have included a thermogenic contribution at HA10.  These findings, 

combined with those of Helton et al. (2015) showing that labile DOC increased along flow paths, 

our evidence that DOC concentrations were extremely low at all sites sampled (<2mg/L), and the 

carbon limitation present in the aquifer (Craft et al. 2002b) strongly suggest that methanogenic 

carbon fixation is a significant contribution to the aquifer DOC supply.  This conclusion was 

supported by our analysis of 16S rRNA sequences, which revealed the presence of 

hydrogenotrophic methanogens.    

 The correlation between methane concentrations and dissolved oxygen concentrations 

was most informative when considering that stoneflies across the floodplain had methane derived 

carbon in their biomass, that hypoxia was only present in the wells that did have methane 

concentrations, and that all methanogens documented in the 16S analysis were strict anaerobes.   

As insect tissue δ
13

C values have been found to turn over at rates of 6 hours to 22 days (Ostrom 

1996), we do expect that stonefly biomass δ
13

C values do, to an extent, reflect food resources 
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found in the vicinity of a well, even if they are mobile.   Together these show that the aquifer 

must contain fine-scale biogeochemical cycling, because methane must have been produced in 

zones of anoxia and consumed where oxygen was present, yet even where methane was not 

documented it showed presence in the food web.  We therefore suspect that the aquifer contains 

fine-scale biogeochemical heterogeneity such that anoxic pockets are present for the production 

of methane via anaerobic methanogenesis, as has been shown for oxygen (Malard and Hervant 

1999).  Because this methane is oxidized rapidly in oxic conditions (Bussmann et al. 2006), 

perhaps methane is only measurable where anoxic pockets are prevalent enough to show a DO 

decrease in the well itself.  

 However, given the carbon limitation present in the aquifer, it was surprising that 

methane was measurable even in oxic conditions at wells HA10 and HA12.  Given that we used 

a low-flow peristaltic pump to sample water from the wells, we do not expect to have greatly 

disturbed anoxic and oxic pockets during the pumping process.  Furthermore, pumping 

experiments showed that methane concentrations in the wells were high in wells HA10 and 

HA12 both before and after disturbing the surrounding water column using the gas diaphragm 

pump (DelVecchia et al. unpublished data).  Therefore, the only likely explanation for methane 

concentrations being measurable in oxic conditions is that the rate of methane production and 

diffusion into oxic zones surpassed the rate of methane oxidation in the oxic zones.  This could 

result from a biogeochemical limit to methane oxidation (e.g. by mineral nitrogen, Bodelier and 

Laanbroek 2004), or top-down control from stoneflies grazing on methanotrophs (e.g. Devlin et 

al. 2015).  We believe that the controls on methane oxidation in the Nyack aquifer merit further 

experimentation and observation. 
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 Our second objective was to resolve relationships between methane biogeochemical 

dynamics and the trophic and community ecology of hyporheic stoneflies.  We used four 

approaches: 1) we studied a subset of the aquifer food web; 2) we explored potential adaptations 

of various stonefly species that could facilitate them to access methane-derived carbon resources; 

3) we analyzed relationships between local biogeochemical dynamics and stonefly trophic 

positions; 4) we analyzed relationships between local biogeochemical characteristics and 

stonefly species assemblages.    Overall, our findings from these four approaches showed that 

aquifer macroinvertebrates were consistently distinguished in their ecological niche space by 

both the proportions of methane derived carbon in their biomass and their relative abundance in 

relation to methane and dissolved oxygen concentrations.  The differences between species could 

be attributed to their diet preferences or their ability to withstand the oxic-hypoxic interface.  

 When we used the full dataset (n=751) to construct the stable isotope biplot in approach 

(1), we found that both the species and well of collection were significant in determining stonefly 

biomass MDC and δ
15

N residuals.  This suggested intra-species and inter-species variation. Each 

stonefly species not only varied in basal carbon resources but also in the trophic levels at which 

they fed, as shown by the variation in δ
15

N residuals.  While trophic position (the combination of 

isotopic signatures) was significantly different between species, individual signatures were also 

significantly affected by the day of collection, DO, and dissolved methane concentrations as 

shown by the linear regressions and linear mixed effects models in approach (3).  This showed 

niche partitioning between species both in basal carbon resources and in trophic level, helping to 

explain how such diversity might exist in the aquifer.  A more complete survey of aquifer 

meiofauna communities could expand our understanding of the food web.  However, approach 
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(2) helped us to understand what adaptations of stoneflies could facilitate the  niche partitioning 

we observed. 

 Approach (2) led us to two major conclusions: some stonefly species have the potential 

for anoxia tolerance, and some stonefly species have also shown consumption of methanogenic 

and methanotrophic microbes which must be present in the aquifer.  The respirometry 

experiments showed that I. grandis has the ability to tolerate anoxia, and K. perdita has the 

ability to tolerate hypoxia at least for a limited time.   Despite this approach being limited to 

these two species, it provided evidence that some amphibitic species with partially hypogean life 

histories – the larval phase which we analyzed – have the ability to tolerate low oxygen 

conditions, which could facilitate access to oxic-anoxic interfaces.  These findings were similar 

to those on hypogean crustaceans which can tolerate hypoxia and anoxia for limited times 

(Malard and Hervant 1999).  These crustaceans are able to withstand and move through patches 

of anoxia, hypoxia, and oxygenated conditions because they maintain low metabolic rates and 

rapidly synthesize and store fermentable fuels such as glycogen (Malard and Hervant 1999).  

Additional experimental approaches to determine the adaptability of individual aquifer 

macroinvertebrates to low DO could quantitatively elaborate the roles of the various aquifer 

species.   

 While tolerance to hypoxia and anoxia allowed us to infer whether stoneflies might have 

the ability to access methane-based food resources, the 16S rRNA sequence analysis showed that 

I. grandis and P. frontalis do indeed consume methanogenic and methanotrophic taxa.  These 

findings make the stoneflies similar to lake profundal chironomid larvae, which graze on 

methane-cycling bacteria and also display highly depleted 
13

C signatures (Kiyashko et al. 2004, 

Jones et al. 2008).  Furthermore, these findings definitively showed the presence of these 
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methane-cycling taxa in the aquifer, especially in individuals collected from HA10, where 

methane was usually present at relatively high concentrations. 

 When we dissected variation in stable isotope values and biomass methane derived 

carbon contributions using approach (3), we could not directly and consistently relate stable 

isotope values to biogeochemical conditions in the well of collection on each sampling event.  

This could suggest that the well conditions did not reflect the areas in which the stoneflies had 

been feeding for the stable isotope turnover time preceding collection.  In other insects, whole-

insect stable isotope turnover time can be 21 days (Ostrom et al. 1996).  If the stoneflies have a 

similar turnover time for whole-insect biomass, these results suggest that the stoneflies are highly 

mobile or not accessing the resources we measure in-well.   Overall, the well of collection was 

clearly important for predicting stonefly stable isotope values but biogeochemical conditions 

were not, still showing heterogeneity across the floodplain. 

 Despite the coherence between biogeochemical measurements and stonefly stable isotope 

signatures in approach (3), approach (4) showed the importance of these variables in structuring 

species assemblages.  The findings from approach (4) were roughly consistent with conclusions 

from approaches (1) and (2).  In particular, K. perdita and I. integra were both found most often 

during low dissolved methane and high DO sampling events as shown by the NMDS analysis; 

both species were also the least comprised of MDC as shown by the stable isotope analysis in 

approach (1).  I. crinita was found at the highest methane concentrations, and was also the 

species with the highest levels of MDC.  In addition, I. grandis and P. frontalis were present at 

intermediate levels of both variables and I. grandis demonstrated the potential to tolerate hypoxia 

and anoxia, which we would expect in interfaces between methane production and assimilation 

zones.  Despite the highly oligotrophic nature of the aquifer, multiple stonefly species had 
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distinct isotopic niches and assemblages which were structured by the availability of dissolved 

methane, dissolved oxygen, and dissolved organic carbon.   Surprisingly, DO and methane were 

more significant than dissolved organic carbon in structuring species assemblages, updating 

previous work on the ecological role of aquifer biogeochemistry.  Specifically, Datry et al. 

demonstrated that organic carbon concentrations supplied by surface water recharge were 

significant in structuring biodiversity (2005).   

 We concluded from the intersection of the four approaches that the ability of aquifer 

macroinvertebrates to assimilate MDC was likely related to their ability to tolerate low DO, such 

as might be found at the interface between methane production and assimilation zones.  This was 

shown by the ability of some species to tolerate hypoxia and anoxia and the role of DO in 

structuring species assemblages.  The value of accessing oxic-anoxic interfaces was shown not 

only by the high proportions of MDC in biomass, but by the presence of methanogenic and 

methanotrophic microbes in gut contents as was demonstrated in approach (3).  The combination 

of these findings indicated that the macroinvertebrate species present in the aquifer are each 

uniquely adapted to survive in the highly oligotrophic environment.  These findings also 

underscored the ecological importance of methanogenic methane production. 

 

Conclusions 
 

 In conclusion, we found that methanogenic methane produced within the Nyack aquifer 

is valuable for stimulating production, as shown by both its correlation with DOC and its 

significant carbon contribution to consumer biomass.  DO affects methane concentrations, and 

thereby indirectly affects production within the aquifer.  Well measurements do not seem to 
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encompass the range of biogeochemical heterogeneity present on the floodplain, but stonefly 

tissue indicates that this heterogeneity must be present because methane is a contributor to 

biomass even in well-oxygenated wells.  Our evidence that these biogeochemical variables 

structure stonefly species assemblages not only shows the ecological importance of methane 

dynamics, but also emphasizes the unique adaptations present in each species that allow them to 

coexist in this system.  Overall, this study is evidence for the need to reconsider major sources of 

productivity in highly oligotrophic shallow aquifers. 
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Figure 1. A. A view of the Middle Fork of the Flathead, close to the head of the floodplain.  The 

cottonwood and spruce galleries, large woody debris, and active scour bars demonstrate the 

dynamic nature of the floodplain.  B. Beaver Creek is completely groundwater fed in the winter 

and is an example of a crucial off channel habitat on the floodplain.  C.  A volunteer assists by 

holding pumping gear for collection of water samples for dissolved oxygen, dissolved organic 

carbon, and dissolved methane.  RiverNet sensor setup is in the background.  D.  Insect samples 

were collected by using a diaphragm pump to filter water through mesh 330 micron netting.  E.  

Volunteers rinse netting to collect groundwater macroinvertebrates.  F.  Even in winter months, 

the groundwater is kept at near mean annual air temperature, making it a suitable habitat for the 

macroinvertebrates.  G.  An example collection from one pumping event on the floodplain – each 

insect in this example is approximately 2.5 to 3 cm long.  

 

  



AG DelVecchia  100 

 Figure 2. A simplified representation of processes that affect concentrations of the three focal 

biogeochemical constituents along flowpaths.  Overlaps indicate interactive processes, or those 

which occur when both constituents are present.  Arrows in and out indicate external subsidies or 

exports.  All constituents can change from flowpath mediated processes (e.g. respiration of river 

supplied nutrients along flowpaths) or from spatial subsidies (e.g. fossil methane subsidy, stored 

OM, or a vadose zone interaction).   

  



AG DelVecchia  101 

 Figure 3: Loess curves (span=0.5) of temporal patterns of biogeochemical constituent 

concentrations in four of the wells (HA02, HA07, HA10, HA12) which represent a broad range 

of characteristics.   HA02 is in the parafluvial zone with a RT of 45 days, so it receives more 

river-supplied DO and DOC, with negligible methane concentrations.  HA07 and HA12 are both 

at longer flowpaths in the orthofluvial zone, but HA12 is often hypoxic in the summer months 

and has measurable methane concentrations.  Methane is expressed in terms of log(umol/L), 

while DO and DOC are expressed in terms of mg/L.   
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Figure 4.  δ
15

N values are known to be depleted in methanotrophs and higher trophic levels 

which use methane derived carbon, thereby causing δ
15

N and δ
13

C to be correlated in methane-

dependent food webs.  We therefore used the linear regression of these stable isotope signatures 

to account for changes in δ
15

N as a result of methane assimilation, then regarded the intercepts as 

more indicative of changes in δ
15

N caused by trophic level differences alone.  Linear regression 

is shown with 95% confidence interval. 
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Figure 5.  A biplot of stable isotope values (intercepts from the relationship shown in Figure 4 vs 

δ
13

 C values) for each organism in the aquifer for which we had data.  Bars represent standard 

error.  Information on collection and sample sizes is displayed in Table 6.  Periphyton estimates 

adapted from Michelle Anderson. 
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Figure 6.  Three individual stoneflies were included in respirometry experiments in August 1994, 

showing the potential for these organisms to survive in low dissolved oxygen conditions for 

extended periods of time.  I. grandis 1 stayed below 5% DO saturation for 4.7 hrs, below 1% DO 

saturation for 47 minutes, and below 0.1% DO saturation for 29 minutes.  It then recovered in 

DO saturated water after 33 minutes recovery in 2 minutes.  I. grandis 2 was removed at 0% DO 

saturation and recovered in DO saturated water after 2 minutes.  Lines shown are Loess curves 

with span=0.7. 
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 Figure 7. Mean, minimum, and maximum values for the percentage contribution of each 

methanogen and methanotroph taxon to total number of 16S rRNA sequences identified in 

stonefly gut contents from each well.  The numbers above each set of bars indicate the total 

number of individuals examined for each well.  All individuals except those collected from 

HA07 were P. frontalis, while HA07 individuals were solely I. grandis.  Functional ecology for 

each taxon is displayed in Table 7. 
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Figure 8. NMDS plots for stonefly species assemblages in relation to concentrations of DO, 

DOC, temperature, methane, the well of collection, and the day of collection.   Arrows represent 

the strength and direction of correlations with each of the biogeochemical constituents.   

Distances are Bray-Curtis.  Correlation coefficients and significance values are displayed in 

Table 10. 
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Table 1.  Well residence times and coordinates  

Well  Easting (UTM)  Northing (UTM)  

Shallow Residence 

Time (Days)  

Deep Residence 

Time(Days)  

HA01  291112  5370422  164.1  219.9  

HA02  292244  5369912  45.4  60.5  

HA04  291796  5370827  54.2  139.0  

HA05  291080  5371541  180.1  270.2  

HA06  290976  5371934  156.4  217.8  

HA07  290489  5372413  156.4  217.8  

HA08  290564  5372617  210.6  263.0  

HA09  290386  5373176  178.0  284.5  

HA10  290586  5373203  117.4  146.8  

HA12  292484  5370507  119.7  179.7  

HA13  292498  5371054  46.9  159.6  

HA15  291560  5371559  133.3  210.3  

HA16  291770  5371453  167.1  304.5  

HA17  291846  5371524  167.1  304.5  

HA18  291626  5372018  110.1  221.9  

HA19  290984  5373323  147.8  291.7  

HA20  290870  5373349  147.8  291.7  

SarN  290740  5373291  130.7  277.3  

SarS  290731  5373249  117.4  146.8  
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Table 2.  Pearson correlation coefficients and ANOVA significance values were calculated for 

each of the interacting variables independently. Bold values are <0.05 p values.  Many variables 

are known to change along flowpaths and thus many were deemed significant in this preliminary 

test.  However, we suspect that the residence time was rarely significant in this procedure 

because the residence time estimates were similar for many of the wells (Table 1). 
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Table 3.  Linear mixed effects model summary statistics are displayed for all combinations of 

predictors assessed for each DOC and methane concentrations.  AIC scores represent the Akaike 

Information Criterion.  Bold models are those which we considered best.  All models included 

the well of collection as a random effect and the day term and sampling depth as fixed effects.  

We performed the analysis as such in order to assess which predictors could improve the model 

once variation caused by the nuances of sampling were accounted for. 
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Table 4.  Coefficients from the best linear mixed effects models indicated in Table 4.  Bold 

values indicate significance (p<0.05).
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Table 5.  Total number of individuals, wells from which they were collected, and datasets of 

origin are displayed with means and standard errors for each δ
13

C, δ 
5
N, and δ 

5
N 

residuals.
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Table 6. Functional ecology for each taxon in Figure 6.  *Bonin and Boone 2006, ^Balch et al 

1979, ‘ Garcia et al, **Bowman 2006, & Doronina 2014 
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Table 7. Linear mixed effects model summary statistics are displayed for all combinations of 

predictors assessed for each methane dependence and δ
15

N residuals.  AIC scores represent the 

Akaike Information Criterion.  Bold models are those which we considered best.  All models 

included the well of collection as a random effect and the day term and sampling depth as fixed 

effects.  We performed the analysis as such in order to assess which predictors could improve the 

model once variation caused by the nuances of sampling were accounted for.  
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Table 8. Correlations and significance values obtained using NMDS of stonefly species 

assemblages in relation to listed variables.  Significance values less than 0.05 are in bold. 
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Abstract 
 

Stoneflies (order: Plecoptera) are some of the most dominant macroinvertebrates in stream 

ecosystems, yet few of the species identified in North America have known life histories. The 

stoneflies with known life histories show remarkable synchronicity in emergence in relation to 

annual temperature patterns. However, little is known about the hyporheic stoneflies – 

amphibionts that spend their entire larval stages in the interstitial spaces of shallow aquifers 

before emerging as winged adults.  We studied the growth and emergence patterns of five 

hyporheic species that are notably abundant in the expansive alluvial aquifer (essentially a 

massive hyporheic zone) of the Nyack Floodplain on the Middle Fork of the Flathead River in 

Northwestern Montana.  We found desynchronized emergence in Isocapnia crinita, Isocapnia 

grandis, and Isocapnia integra, with extended emergence periods in Paraperla frontalis and 

Kathroperla perdita. None of the species had significant differences in emergence timing.  P. 

frontalis additionally had desynchronized growth across the aquifer, with significant effects of 

well, river, and air temperature patterns.  Mean daily air temperature was the only significant 

predictor of P. frontalis emergence, the most abundantly occurring species.  We concluded that 

the constancy of temperature patterns in habitats within this expansive aquifer contributed to 
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desynchronization of both growth and emergence in hyporheic species, highlighting a behavioral 

adaptation to the aquifer environment.   

Introduction 
 

 Plecoptera is one of the most dominant macroinvertebrate orders in cold stream 

ecosystems (Stewart et al. 1988) in temperate latitudes.  It is also one of the most important 

orders because these species are used as ecological indicators for stream water quality (Armitage 

et al. 1983).  In 1974, the discovery of stonefly nymphs living in subterranean interstitial spaces 

introduced a new facet to Plecoptera ecology, recognizing some of these species as amphibionts 

living in the hyporheic zone (Stanford and Gaufin 1974; Gibert et al. 2009).  Since then, 

surprisingly little has been documented regarding the ecology of these hyporheic taxa, which are 

distributed across the Rockies and Pacific Northwest north to Alaska (Stewart et al. 1988).   

 Hyporheic stoneflies are amphibionts which spend 1-3 years underground as larvae in the 

shallow but expansive alluvial aquifers of gravel bedded floodplains (Gibert et al. 1994b).  These 

are essentially massive hyporheic zones since predominate recharge is from the river (Boulton et 

al. 1998).  Amphibitic stoneflies display morphological and behavioral adaptations to life in the 

dark waters of alluvial aquifer systems: larvae have reduced eye size, loss of pigment at early 

instars, long bodies, reduced wing size, tolerance to hypoxia, and dependence on chemosynthetic 

carbon resources (Gibert et al. 1994b; DelVecchia et al. 2016).  These stoneflies presumably 

travel through the aquifer gradually maturing and then moving to the river channel to emerge as 

flying or crawling adults.  They deposit eggs in the river channel and the newly hatched larvae 

apparently emigrate into the aquifer in strong contrast to most stonefly species that stay in the 
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river channel and do not burrow beyond a few centimeters into the saturated bed 

sediments(Gibert et al. 1994b).    

 Previous study has suggested that Plecoptera require both the accumulation of degree 

days and a threshold temperature in order to emerge as adults (Ward and Stanford 1982).  

Emergence has been found to be earlier at lower elevations and in warmer years, and varying 

emergence patterns can temporally segregate coexistent species (Ward and Stanford 1982).   

Aboveground habitats contain more temporal temperature variation than the hyporheic and 

shallow aquifer environments, where temperatures stabilize at longer residence times to closely 

follow the mean annual air temperature of 6-7°C (; Poole et al. 2008 Stanford et al., 2016).  

Reduced temperature amplitude is expected to cause emergence patterns to desynchronize.   

  Indeed,  growth of a cavernicolous stonefly: Protonemura gevi, a Palearctic cave 

stonefly of the Iberian peninsula, Spain, was desynchronized in the constantly dark and stable 

temperatures of the cave environment, with a wide range of sizes are present at a given sampling 

time (López-Rodríguez and de Figueroa 2012).  Still, the cave environment, at 50m from 

opening to stream pool, is orders of magnitude smaller than the vast shallow aquifer environment 

in which hyporheic stoneflies persist.  Thus, more desynchrony might be expected in the aquifer 

where degree day accumulations and temperature thresholds have more potential to vary over 

longer residence times. 

 We studied the growth and emergence of the five common species of amphibitic 

stoneflies in the expansive alluvial aquifer of the Nyack Floodplain on the Middle Fork of the 

Flathead River, Montana: Isocapnia grandis, Isocapnia crinita, Isocapnia integra (formerly I. 

missourii), Paraperla frontalis, and Kathroperla perdita.  On this floodplain, we used a network 
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of twenty wells, six of which were equipped with continuous monitoring systems (‘RiverNet’) 

that logged temperature and dissolved oxygen (DO) data.  The wells a range of temperature and 

DO variation, with varying levels of cohesiveness with air and river conditions.  We therefore 

also analyzed how the growth and emergence patterns of the most abundant species, P. frontalis, 

related to temperature and dissolved oxygen concentrations across the aquifer. 

 

Materials and Methods 
 

Study Site 

 

 The Nyack floodplain is on the 5
th

 order Middle Fork of the Flathead River at the 

southern boundary of Glacier National Park, encompassing a 3200 km
2
 catchment with 

approximately 9 km of anastomosed river (Figure 1) (Stanford et al. 2005).  The floodplain is 

constrained by upstream and downstream knick points, with a 9x2 km floodplain area.  

Underlying the floodplain is 20-100m deep Pleistocene and recent alluvium of extremely high 

porosity (maximum hydraulic conductivity of 10 cm s
-1

) confined below by an impermeable clay 

layer of tertiary age (Stanford and Ward 1993).  Approximately 30% of base flow is influent to 

the aquifer at the upstream end of the floodplain, and upwelling occurs downstream in areas 

where topographic lows (such as channels and ponds) intersect the water table (Stanford et al. 

2005).   

 The floodplain was equipped with twenty instrumented 3-inch PVC wells with 2 mm slot 

openings down the length of the pipe (Figure 1).  The wells were drilled to 8-10 m using a 

hollow auger drilling rig.  Six of the wells were instrumented in 2012 with the RiverNet 
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continuous monitoring system, which recorded hourly measurements of depth, dissolved oxygen 

concentration and saturation (RDO dissolved oxygen probe), and temperature, all at 

approximately 3 m below the base flow water table.  The RiverNet system also recorded hourly 

measurements of air temperature at well HA07 (Figure 1) and river temperature.  DO sensors 

were calibrated monthly.   

Sample collection 

 

We sampled the RiverNet wells for stoneflies approximately every 2-6 weeks from June 

2013 to August 2015.   We sampled all other wells approximately every 6 weeks from April-

October each year.  We used two methods: trapping and pumping.  To trap, we suspended nylon 

ropes to the bottom of each well.  The ropes went to the top of the well, where they ended in a 

PVC trap for adults (inverted funnel, mesh).  These ropes enabled teneral adults to crawl up the 

rope emerge through the well where they would be caught in the PVC trap above.  Stonefly 

larvae were also able to perch on the rope.  We collected adults (trap collected) and larvae (rope 

collected) separately into 95% ethanol.  We only collected live adults, such that the number 

collected reflected individuals that had emerged in approximately the last day.  We pumped by 

using a gas-operated diaphragm pump that output water through 2.5” Tigerflex tubing into a 330 

micron Nitex mesh net.  We kept pumping time and speed constant between all wells and 

sampling events.  After pumping was completed, we elutriated the samples retained in the net, 

collecting stoneflies caught in the net and transferring them to distilled water (DI).  At the lab, 

we rinsed the stoneflies and transferred them to 95% Ethanol.  

We identified the stoneflies to the species level as much as possible using 6-50X 

magnification on a stereo-dissecting microscope fitted with 20X eyepieces.  We measured 
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growth as head capsule width (HCW): the widest distance across the eyes.  We measured this 

with a calibrated ocular micrometer attached to the microscope for pump-collected individuals 

specifically collected in 2014-2015 only.  We only measured pump individuals to avoid 

incorporating any bias from the rope samples (e.g. more likely for teneral individuals to be 

present on the rope).  We referred to multiple keys and reference collections from the Middle 

Fork of the Flathead to identify species  (Baumann et al. 1977; Stewart et al. 1988; Gibert et al. 

1994a; Zenger and Baumann 2004).  Identification was not possible in early instar Isocapnia 

larvae. 

Statistical Methods 

 

We used sampling data from all 20 wells in our analysis of desynchronization in growth 

and emergence across the floodplain (first objective).  Because six of these wells were 

instrumented, we constrained analysis of the factors affecting P. frontalis growth and emergence 

to those six wells (second objective). 

We performed all data analysis in R (R Core Team 2016).  We tested continuous 

variables for normality using the Skewness-Kurtosis test, assessing skewness values between -

0.5 and 0.5 and kurtosis values less than 3 as symmetric and normal.  Numbers of emerged 

stoneflies were right-skewed, so we used log transformations before data analysis.  We 

controlled for quality in the RiverNet data by removing any observations that changed 0.5°C 

relative to the observations the hour before and the hour after; this removed any sampling points 

that were the result of removing the sensors for calibration and sampling.  We averaged 

temperature readings from three different temperature probes per well (same depth), the 



AG DelVecchia  125 

calculated the mean and maximum temperature readings per day.  We also calculated mean DO 

concentration per day. 

In addition to the RiverNet variables, we measured the shortest linear distance to the river 

as the shortest linear distance from the well to the base flow water level on Google Earth 

Imagery from July 2014 (Google Earth Imagery 2014).  This was an important variable to 

consider because if hyporheic stoneflies emerge from the river as thought in previous study 

(Stanford and Gaufin 1974; Gibert et al. 1994b), they could be emerging from wells 

differentially as they make their way to the river.  We tested for significance of well locations, 

date, daily mean temperature (well, river, and air), daily maximum air temperature, daily mean 

DO concentration, and shortest linear distance to river. .  We used Pearson correlation 

coefficients to determine collinearity between variables (Table 1), using only those which were 

not significantly correlated in the linear mixed effects models, then used a linear mixed effect 

model with log-transformed Paraperla emergence as a response variable and well as a random 

effect with all other variables as fixed effects.  We used only the well temperature, distance to 

river, mean air temperature, day/month of year, and DO concentration as independent variables 

for predicting Paraperla growth and emergence (log-transformed) because all other variables 

were correlated with the mean air temperature. 

 

Results 

Temperature and DO conditions in the aquifer compared to the river channel 
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 RiverNet data showed that measured well variables had varying levels of correspondence 

in temperature patterns in wells with the river and with air temperature (Figure 2, 3A).  Well 

temperatures at longer residence times stabilized to the mean annual air temperature of 6-7°C. 

 DO patterns were similarly less synchronous with the river for wells at longer residence 

times.  The river was consistently close to 10 mg/L DO concentration, which is approximately 

saturation (Figure 2B).  Well HA02, closer to the river channel, more closely mimicked the DO 

patterns of the river but all other wells displayed consistently lower DO concentrations that are 

normally considered stressful for stream stonefly species (Nagell 1973).  In fact, wells HA10 and 

HA12 went hypoxic during the summer months. 

 

Synchronization in growth and emergence among the five widely distributed and abundant 

stonefly species 

 

 Larvae of all species were distributed across the wells sampled (Figure 4).  As shown in 

previous study of the Nyack aquifer (DelVecchia et al. 2016), abundance of each species varied 

between wells but the stoneflies were present throughout the well grid that spans the entire 

aquifer.  DelVecchia et al. (2016) found that dissolved oxygen and methane concentrations 

contributed to structuring stonefly species assemblages because individual species had varying 

reliance on methane derived resources and tolerance to hypoxic environments.  Therefore, we 

inferred that differences in abundance between species were a result of these factors. 

 The four Isocapnia species each had a wide range of HCW values, but too few 

individuals were found at each given time to determine larval life history duration.  Similarly, 

almost all individuals of K. perdita we collected were at later instars, with few individuals found 

with small head capsule sizes.  P. frontalis was the most abundant and ubiquitous, with a wide 
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range of head capsule widths represented in the samples.  P. frontalis was the only species for 

which we considered the sample size and range sufficient to examine distributions of head 

capsule widths over time.  We found that a wide range of P. frontalis sizes were present across 

the six wells at most sampling times and emergence and the emergence spanned 8-12 weeks 

(Figure 5).   By the large range of head capsule widths present even immediately preceding 

emergence, we determined that P. frontalis had at least a 2-year larval stage.  The lower 

quantities of Isocapnia species and K. perdita in our samples made it unclear as to how many 

cohorts were actually present, or if there was simply a continuous size range.  We did not have 

data on I. integra larvae head capsule widths because I. integra and I. crinita are particularly 

difficult to distinguish as larvae, though I. crinita develops some distinctive characteristics such 

as hoariness which can lead us to definitively identify that species. 

When we examined emergence patterns, we pooled the number collected by day across 

all wells sampled enabling us to qualitatively compare emergence of each species over time 

without incorporating effects of the well itself.  We found that I. integra showed extreme 

desynchronization, emerging yearlong from wells across the floodplain (Figure 6).  Many of the 

winter emergers which we examined were dwarf micropterous.  I. crinita and I. grandis had less 

desynchronization, but still emerged over five month periods from February to July.  P. frontalis 

and K. perdita had the most synchronized emergence of the species, but emerged over a two to 

three month period.  When we used ANOVA to test for correlations between the number of 

individuals emerged and the month of year and species, we found that the month was significant 

to p = 0.10 (p = 0.085) but the species was not (p = 0.249). 
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Synchronization in growth and emergence of P. frontalis compared to RiverNet variables  

 

We further analyzed P. frontalis growth and emergence in particular because P. frontalis 

had the most widespread and abundant specimens collected.  We found that the only significant 

variable in predicting P. frontalis emergence was the daily mean air temperature (Table 2).  We 

found that variation between wells was <10-9 of variation within wells, suggesting that the well 

explained a very low proportion of the variation in emergence values.  When we repeated the 

same analysis using P. frontalis head capsule widths, we found that all variables but DO were 

significant (p < 0.05, Table 3). 

The daily mean air temperature had a negative coefficient for the number of emerged 

insects occurred because the dataset did not include values of 0 for days when no emergent 

insects were found (Table 4).  Peak Paraperla emergence is in July, but peak air temperatures 

are in August.  Therefore, with this limited dataset, the model reflected that over the time period 

which Paraperla are emerging, numbers emerged decreased at higher air temperatures.   

The positive coefficients of air temperature and linear distance to river in relation to head 

capsule width could reflect that the most Paraperla are pre-emergence  (and thus at their largest) 

in the summer, so perhaps this is why the sizes are correlated with air temperature .  The sizes 

could be correlated with distance to river because perhaps the Paraperla are moving to the river 

as they prepare to emerge, but this conclusion can only be a vague speculation because these 

individuals were collected from only 7 wells that could not possibly encompass a continuous 

range of distance to the river. 
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Discussion 
 

 RiverNet data demonstrated a constancy of temperature at the annual mean air 

temperature at longer residence times, but wells closer to the river had more coherence with air 

and river temperatures. Dissolved oxygen was generally in lower concentrations in wells than in 

the rivers, with two wells exhibiting occasional hypoxia.  Nonetheless, the four stoneflies for 

which we included larval HCW data were distributed within the aquifer.  Abundance of each 

species varied between wells because species were dependant on the dissolved oxygen, dissolved 

methane, and dissolved organic carbon concentrations within wells, which have been found to 

explain 22% of the variation in stonefly species assemblages and thus were important for 

determining species abundance (DelVecchia et al. 2016). 

 When examining growth and emergence patterns among the five species across the 

aquifer, we found that synchronicity in growth and emergence patterns varied between species 

but were most desynchronized in the Isocapnia species.  The Isocapnia species were almost 

completely asynchronous, remarkably similar to the cave dwelling nemourid reported by López-

Rodríguez and de Figueroa (2012). I. integra emerged over the course of the year, though many 

of the winter-emerging individuals were dwarf micropterous, suggesting either a disadvantage to 

flying in the winter months, or a tradeoff to emergence during the winter  (Hynes 1976; Costello 

1988).  P. frontalis and K. perdita were somewhat more synchronous but in any case emergence 

timing was not significantly different between species.  All species had more extended durations 

of emergence timing than those previously described in aboveground ecosystems (eg. Stanford 

1976, Dewalt 1995).   
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 We analyzed P. frontalis to understand what might drive differences in growth and 

emergence.  For many aquatic insects in the temperate zone, temperature is the most important 

factor regulating these behaviors (Ward and Stanford 1982).  Individuals must acquire both 

sufficient degree days and a threshold temperature in order to emerge (Stanford 1975, p. 197; 

Ward and Stanford 1982).  While temperature patterns alone are complex in the aquifer’s 

network of residence times ranging from hours to years-long residence times (Helton et al. 

2014), there are many other complexities that could have affected desynchronized growth and 

emergence in this environment.  For example, DelVecchia et al. (2016) showed that I. grandis 

and K. perdita reacted to hypoxic conditions differently, with I. grandis being able to withstand 

almost an hour of complete anoxia before recovering in oxygenated water.  We therefore would 

expect that many of the hyporheic stoneflies, including P. frontalis, would have variation in 

tolerance to hypoxia, which was present in two of the six wells we used in this study.   When we 

examined temperature and DO patterns in relation to P. frontalis growth, our results showed that 

temperature was significant in predicting P. frontalis growth but dissolved oxygen was not.  We 

therefore inferred that species are constrained to habitats based on their dietary needs and DO 

preferences, but are subject to the temperature regimes of the aquifer environments that suit 

them.  If stoneflies are mobile and moving throughout the aquifer, accumulation of degree days 

can vary drastically by individual depending on its location, which we have no way of knowing 

for the period preceding collection. 

 Though in-well measured variables helped explain growth in P. frontalis, they were 

insignificant in predicting emergence timing.  Only the mean daily air temperature was 

significant in predicting quantities of emerged adults.  While the emergence of stream aquatic 

insects is closely tied to air temperatures (Ward and Stanford 1982), the same cue seems unlikely 
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in aquifer insects which are sometimes found 10m below the water table.  We inferred that either 

P. frontalis individuals are moving to the water table before emergence to actually respond to air 

temperature, or that air temperature was significantly correlated with another factor that we did 

not measure, such as the degree day accumulation by each individual. 

 

Conclusion 
 

  We concluded that amphibitic stonefly growth and emergence was radically 

desynchronized by temperature patterns that trend toward the mean annual air temperature of 6-

7° C at longer residence times.  The widespread distribution and abundance of these five species 

of hyporheic stoneflies across Nyack, despite such lack of synchronicity in growth and 

emergence, underscores unique behavioral adaptation of these hyporheic species to live in the 

expansive aquifer environment. As these species are distributed in alluvial aquifers across the 

Pacific Northwest and into Alaska (Stewart et al. 1988; DelVecchia et al. 2016), understanding 

their mechanisms for survival in such a unique environment is important for maintaining 

biodiversity.  Additionally, knowledge of the biology and functional roles of these organisms 

contributes to our ability to understand and conserve freshwater ecosystems. 
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Figure 1. Locations of the twenty aquifer monitoring wells installed in the Nyack floodplain 

where amphibitic stoneflies were sampled.  Those labeled HA were equipped with the RiverNet 

continuous monitoring system (see text) that measured dissolved oxygen concentration and 

temperature within the aquifer.  
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Figure 2.  Mean (black) and maximum (grey) daily air temperatures on the Nyack Floodplain 

from 2013-2016.  Temperatures were measured by a meteorological station located at well HA07 

(Figure 1).  
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A. 

B.  
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Figure 3.  Aquifer water temperatures and dissolved oxygen concentrations measured by the 

RiverNet monitoring system at each of the six wells (colored) compared to measurements in the 

river channel (grey).  Wells such as HA15 and HA08 at longer flowpaths tend to have dampened 

temperature and DO variation compared to the river.  Variation across the wells shows the 

diversity of habitat types for stoneflies within the  aquifer.  
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Figure 4.  Head capsule widths of amphibitic stoneflies in the Nyack aquifer sorted by species 

and measured over time in 5 wells that encompassed the range of temperature and dissolved 

oxygen in the aquifer. All species but I. integra were present across the floodplain (CRIN = I. 

crinita, GRAN = I. grandis, KATH = K. perdita, PARA = P. frontalis) . I. integra is not displayed 

because none of the larvae in our samples could be unequivocally identified as I. integra.   
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Figure 5.  P. frontalis head capsule widths per month, all well samples combined.  Arrows 

indicate that emergence occurred during that month.  Please note that sampling months are not 

spaced evenly.  The presence of early instar larvae in the aquifer even during emergence time 

and the wide distribution of sizes indicate a multi-year larval stage for P. frontalis.  
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Figure 6.  Quantities of teneral (newly emergent) adults of each species found on each sampling 

day by year, all well samples combined.  Please note that y axes are not even and species 

labeling as in Figure 4 Note in particular that teneral I. integra (INTE) were present year around, 

although peaking in early spring, strongly suggesting a completely desynchronized life cycle.  P. 

frontalis (PARA) and K. perdita (KATH) also had extended emergence periods of 2-3 months 

per year, but were more synchronized than the other species.  
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Table 1. Pearson correlation coefficients for each variable considered for inclusion in the linear 

mixed effects models.  Only mean air temperature, mean well temperature, mean DO 

concentration, and linear distance to river were included in the linear mixed effects models to 

avoid collinearity problems. 
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Table 2. ANOVA significance values for each variable tested as a predictor of growth and 

emergence of P. frontalis.  Bold values indicate significance (p < 0.05).  Emergence quantities 

were incorporated as log-transformed emergence per day.  

 

Variable  Growth  Emergence  

Month and day of year  0.003 0.174 

Daily mean well temperature  <0.0001  0.906  

Daily mean river temperature  0.013  0.236  

Daily mean air temperature  0.002  0.051  

Daily maximum air temperature  <0.0001 0.348  

Daily mean DO concentration  0.876  0.795  

Linear distance to river  <0.0001  0.824  

Well of collection  <0.0001  0.215  
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Table 3. AIC and R
2
 values for linear mixed effects models using various combinations of fixed 

effect variables. 
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Table 4. Coefficients, standard errors, and p values for each of the fixed effect variables used in 

the best fit model.
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Supplemental Table 1. Well coordinates, residence time estimates, and linear distance to river 

values.  Bolded well names are wells equipped with RiverNet, which were the wells we used in 

analysis of P. frontalis growth and emergence patterns. 
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Chapter 5: Synthesis 
 

 My dissertation work furthered the legacy of Nyack research and the fields of 

groundwater ecology and river ecology in three ways: it explained a long-standing conundrum 

on how diverse and abundant macroinvertebrate species survive in a dark and extremely carbon-

limited system, it developed a new conceptualization of basal productivity in river floodplain 

aquifers, and it underscored the unique adaptations of hyporheic stoneflies.   

 The second chapter demonstrated the importance of a chemoautotrophic carbon source in 

supporting consumer biomass.  It provided the first report of freshwater consumers supported by 

ancient methane-derived carbon and the most diverse and geographically widespread example 

thus far of a river ecosystem supported by methane-derived carbon.  Not only was a majority of 

site-wide stonefly biomass on Nyack comprised of methane derived carbon, but four other 

floodplain aquifers contained high proportions of methane derived carbon in biomass.  This 

chapter thereby emphasized the importance of unconventional carbon sources in river systems. 

 The third chapter focused on connecting the different scales at which methane has been 

implicated in the Nyack aquifer ecosystem.  Prior to my dissertation, methanogenesis was 

suggested as a potential explanation for the imbalance in the Nyack carbon budget and the 

increase in labile dissolved organic carbon along flowpaths.  My first chapter then showed the 

role of methane in supporting consumers.  My second chapter connected these scales by 

elaborating the ecological connections between methane and dissolved organic carbon 

biogeochemical dynamics and stonefly biology and ecology.  This work showed that methane 

concentrations were a predictor of dissolved organic carbon concentrations within the aquifer, 

that some stonefly species had tolerance to hypoxia and consumed methanogenic and 
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methanotrophic microbes, and that stonefly species assemblages were largely explained by 

methane and dissolved oxygen concentrations within the aquifer.  In summary, this chapter 

demonstrated the role of dissolved methane in trophic and community ecology within the 

aquifer.  It highlighted the functional roles of various stonefly species in a methane subsidized 

ecosystem.  

 Finally, the fourth chapter demonstrated that hyporheic stoneflies in the Nyack 

Floodplain were behaviorally adapted to the aquifer environment.  Temperature is known to be 

the most important cue for stonefly emergence, but in the aquifer temperature patterns had 

increasingly less coherence with the river at longer residence times, stabilizing to maintain the 

mean annual air temperature of 6-7°C year-round.    The constancy of temperature regime in the 

aquifer led to desynchronized growth and emergence in all five common hyporheic stoneflies 

that we studied because neither degree day accumulation nor threshold temperature cues had the 

same temporal variability in the aquifer as they did in the river channel.  Despite their 

desynchronized emergence, however, the stoneflies were still abundant across the aquifer, 

showing that they must be adapted to persist despite their emergence patterns.  These findings 

furthered those of the first two chapters because not only are the distributions of these stoneflies 

related to the biogeochemical heterogeneity of the aquifer, but their life history patterns reflect 

their adaptation to aquifer hydrology.   

 Overall, my dissertation work has contributed a comprehensive understanding of the 

ecology of the expansive alluvial aquifer, with a specific focus on dominant macroinvertebrates.  

It has explained how diverse and abundant consumers can survive in an extremely oligotrophic 

component of river ecosystems and thereby highlighted the role of landscape complexity in 

maintaining biodiversity and ecosystem function.  In addition, it has shown that an unperturbed 
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floodplain ecosystem is valuable for converting and assimilating a powerful greenhouse gas, 

elaborating a broader impact of my dissertation in showing that a natural floodplain ecosystem is 

valuable for maintaining ecosystem services.  Finally, my dissertation showed that the aquifer 

maintains functional diversity in addition to overall species diversity in terms of the unique 

adaptations of hyporheic stoneflies. 

 

Broader Impacts 
 

As stated, floodplains are valuable but threatened ecosystems.  My dissertation further 

elaborated why these ecosystems in their natural state are so valuable for maintaining 

productivity, biodiversity, and ecosystem services.  The shallow aquifer system produces, 

converts, and assimilates a powerful greenhouse gas, thereby maintaining productivity while also 

providing an ecosystem service.  In addition, it contains diverse species which are uniquely 

adapted to the carbon-poor and expansive aquifer environment, showing that the aquifer is 

valuable for maintaining functional diversity in addition to overall species diversity. 

My second and third chapters demonstrated the role of the aquifer in converting and 

assimilating methane, a powerful greenhouse gas and potential water contaminant.  The aquifer 

ecosystem, as it functions on the near-pristine Nyack floodplain, had such fine-scale 

heterogeneity that methane could be produced microbially in anoxic zones that we very rarely 

measured, then assimilated in zones where oxygen was replenished via flow from the river 

channel or exchange with the vadose zone.  Methane derived carbon provided a carbon source 

for production of large macroinvertebrates, which then subsidized the above-ground ecosystem 

when they emerged as adult stoneflies.  This methane cycle helped to explain why an aquifer 
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carbon budget that did not consider chemoautotrophy within the aquifer was unbalanced 

(Appling 2012).  Therefore, my dissertation showed that a complex biogeochemical mosaic 

within the aquifer was necessary for regulating an important aspect of the carbon cycle both in 

terms of greenhouse gas assimilation and maintaining productivity.  Furthermore, this work 

implied that if this cycle were to be disturbed, we could expect to lose productivity and perhaps 

have buildup of this greenhouse gas.   

My third and fourth chapters demonstrated the unique adaptations of hyporheic 

stoneflies, further developing the importance of the floodplain as a hotspot of biodiversity.  My 

second chapter showed that the five common species of stonefly had different niche 

characteristics related to their reliance on methane derived carbon.  These species had distinct 

trophic positions defined both by their trophic levels and the percentage of their biomass 

provided by methane-derived carbon.  The ability for these stoneflies to access methane derived 

carbon was provided by varying tolerance to hypoxia and consumption of methanogenic and 

methanotrophic microbes.   The role of methane derived carbon in community ecology was 

additionally shown by the fact that methane concentrations explained 19% of the variation in 

species assemblages across the aquifer.   

Not only did the stonefly species have specific niche characteristics that facilitated their 

coexistence in this methane-subsidized system, but they also demonstrated adaptation to the 

temperature regime of the aquifer.  My third chapter highlighted the uniqueness of these 

hyporheic species for their abundance despite desynchronization in growth and emergence.  

Most stream stoneflies emerge once they have acquired enough degree days and reach a 

threshold temperature; thus, emergence of a species generally occurs within a 20 day period 

(Dewalt and Stewart 1995).  The five hyporheic stoneflies that we studied emerged over periods 
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ranging from 2 to 10 months, likely because temperatures were constant over the course of the 

year.  Despite the desynchronization in their emergence, these stoneflies were still present in the 

aquifer in the tens of thousands, showing that they were able to persist despite potential difficulty 

of finding mates.  Together, the many extremely unique adaptations of these insects elaborated in 

chapters 2 and 3 showed that floodplains are hotspots of both species diversity and functional 

diversity. 

 

Application to Systems Ecology 
 

The Systems Ecology program is focused on “developing fundamental, interdisciplinary 

understanding of interactions of physical, chemical and biological factors affecting ecological 

systems across spatial and temporal scales and the factors affecting coupled natural and human 

systems”.   River floodplains are ideal systems in which to study systems ecology by linking 

patterns and processes across spatial and temporal scales.  They are especially conducive to 

understanding the processes that create and maintain environmental heterogeneity, and the 

effects of environmental heterogeneity on ecosystem functioning and biodiversity (Tockner et al. 

2010).  Heterogeneity, biodiversity, and productivity are maintained in floodplains by the flux of 

water, materials, and organisms between habitat patches that are spatially variable over time, as 

described by the shifting habitat mosaic (Stanford et al. 2005, Whited et al. 2007).  In particular, 

floodplains are characterized by extensive exchange between the aquifer and surface 

environments (Stanford et al. 2005). 

My dissertation demonstrated 1) that biogeochemical heterogeneity was crucial for 

maintaining biodiversity and productivity within the aquifer, and 2) that this heterogeneity was 
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spatially and temporally structured by nutrient and temperature dynamics maintained by flow 

path influence and surface-groundwater interactions.  Biogeochemical heterogeneity was 

necessary for microbial processes to produce and assimilate methane in varying dissolved 

oxygen conditions, and then for various stonefly species to differentially use this carbon source.  

Heterogeneity was maintained, among other factors, by varying levels of heat and dissolved 

oxygen supplied by river influence, thereby varying with the seasons and residence time length 

at each well location.   

Floodplains exemplify coupled human and natural systems because they naturally 

provide us disturbance regulation, water supply, and waste treatment, they are hubs of 

biodiversity and productivity, and yet they are also some of the most threatened ecosystems from 

uses such as damming, diversion, and development (Tockner et al. 2010).  Study of relatively 

pristine floodplains such as the Nyack are necessary for understanding a baseline status of these 

ecosystems, including the services that they can provide us in their natural state.   
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