
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2013 

The genetic basis of fitness: detecting inbreeding depression and The genetic basis of fitness: detecting inbreeding depression and 

selective sweeps in bighorn sheep selective sweeps in bighorn sheep 

Martin Dennis Kardos 
University of Montana, Missoula 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Kardos, Martin Dennis, "The genetic basis of fitness: detecting inbreeding depression and selective 
sweeps in bighorn sheep" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 10754. 
https://scholarworks.umt.edu/etd/10754 

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F10754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/10754?utm_source=scholarworks.umt.edu%2Fetd%2F10754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


THE GENETIC BASIS OF FITNESS: DETECTING INBREEDING DEPRESSION AND 

SELECTIVE SWEEPS IN BIGHORN SHEEP 

 
By 

Martin Dennis Kardos 

B.S., Montana State University, Bozeman, MT, 2005 

 

Dissertation 

presented in partial fulfillment of the requirements 

for the degree of 

 

Doctor of Philosophy 

in Organismal Biology & Ecology 

 

The University of Montana 

Missoula, MT 

 

December 2013 

 

Approved by: 

 

Sandy Ross, Dean of The Graduate School 

Graduate School 

 

Fred W. Allendorf, Co-Chair 

Division of Biological Sciences 

 

Gordon Luikart, Co-Chair 

Division of Biological Sciences, Flathead Lake Biological Station 

 

Jeffrey Good 

Division of Biological Sciences 

 

Jon Graham 

Department of Mathematical Sciences 

 

John McCutcheon 

Division of Biological Sciences 

 

 

 

 

 



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3611869

Published by ProQuest LLC (2014).  Copyright in the Dissertation held by the Author.

UMI Number:  3611869



ii 

 

Kardos, Martin D., Ph.D., Fall 2013                        Organismal Biology & Ecology 

 

Co-Chairperson:  Fred W. Allendorf 

Co-Chairperson:  Gordon Luikart 

 

ABSTRACT 

 

Understanding the fitness effects of inbreeding is a crucial and long standing goal in conservation 

and evolutionary biology. Many studies measure individual inbreeding (F, the proportion of genome 

that is identical by descent) and its fitness effects using either pedigrees or molecular markers. 

Knowing which genes most strongly affect fitness can help to explain why some individuals 

outperform others, and elucidate the mechanisms of inbreeding depression and adaptation. However, 

identifying adaptive genes is difficult in most species because of limited genomic resources.  

   

  I used simulations to evaluate the performance of marker- and pedigree-based measures of F and 

inbreeding depression. I found that FP was less precise than marker-based measures of F in a broad 

range of scenarios. For example, the true F was always more strongly correlated with heterozygosity 

measured with 5000 single nucleotide polymorphisms (SNPs) than with FP. F was also more strongly 

correlated with the proportion of the genome in long runs of homozygosity (FROH, estimated with 

35K SNPs) than with FP. I also show that heterozygosity-based estimates of the strength of 

inbreeding depression are precise in populations with high variance in F (e.g., σ2(F) ≥ 0.002). A 

potential solution to the imprecision of FP is to use genetic markers to correct for the kinship of 

pedigree founders. However, I found that founder kinship-corrected values of FP were also imprecise. 

These results show that F and inbreeding depression can be most reliably measured with genetic 

markers in most scenarios – countering the prevailing historical view that F is most reliably 

measured with pedigrees.  

 

  I used whole genome sequences of pooled DNA aligned to the domestic sheep genome to detect 

candidate adaptive genes in bighorn sheep. I detected selection signatures in 53 genomic regions 

containing genes. However, simulations suggest that some of these selection signatures may be false 

positives. Putatively selected genomic regions contained genes involved with traits known to affect 

fitness in bighorn sheep (e.g., horn and body growth). These results provide candidate genes for traits 

known to strongly influence fitness in bighorn, and illustrate the great promise of WGS for detecting 

selection signatures in small populations. 
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Figure 2-1. The variance of F (σ2(F)) in simulated random mating (A) and partially selfing (B) 
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) proportion of variance in Hs explained 

by F (+/- one standard deviation) versus the variance of F (σ2(F)). The data shown are from 

simulations of random mating populations with 6 diploid lethal equivalents, and using 100 SNPs (top 

row) and 500 SNPs (bottom row). Results are shown from simulations of genomes with 20 
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circles represent ),(ˆ2 FHr S
, and open circles represent ),(2 FHr S

.The dashed line represents r2 = 

0.8. Asterisks indicate a statistically significant difference between the mean ),(2 FHr S
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mean ),(ˆ2 FHr S
. Results from analyses based on microsatellite loci and different numbers of loci 

and are shown in the supplementary materials.  

 

Figure 2-4. The mean true (  Fsurvivalr ,2
) and estimated (  Fsurvivalr ,ˆ2

) proportion of variance 

in survival due to variation in F (+/- one standard deviation) versus the variance of F (σ2(F)).  The 

data shown are from simulations of random mating populations with 6 diploid lethal equivalents, and 

using 50 microsatellite loci and 500 SNPs. Asterisks indicate statistically significant differences 

between the median  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

. Open circles represent the true values of 

 Fsurvivalr ,2
, and closed circles represent  Fsurvivalr ,ˆ2

. Results for different numbers of loci 
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Figure 2-5. Errors of the estimated proportion of variance in fitness due to variation in F (

 Fsurvivalr ,ˆ2
) versus estimates of g2 (A) and the P-values from g2 tests for identity disequilibrium 

(B). Data are from all simulations with random mating and six lethal equivalents. The individual 

estimation errors are shown as gray points. The solid black lines are loess functions fit to the 5th and 

95th running quantiles of the estimation errors, and show how the precision of  Fsurvivalr ,ˆ2
 varies 

with g2 (A) and its associated P-value (B). The dashed black lines represent the value of g2 above 

which 95% of errors are within 0.2 units from one another (A), and the P-value below which 95% of 

estimation errors of  Fsurvivalr ,ˆ2
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Figure 3-1. ROH in a chromosome from the offspring resulting from one generation of selfing with 

(left) and without recombination (right). A single pair of homologous chromosomes are shown from 

a non-inbred parent (top) and the offspring of the individual (bottom). IBD segments occur in the 

offspring where both chromosomes are derived from a single chromosome in the parent. The mean 

PGIBD will be the same in both cases, but the variance of PGIBD is much greater without 

recombination. 

 

Figure 3-2. Barplots of the mean r2 (+/- 1 s.d. across 20 simulated populations) from regressions of 

FP, FH and FROH versus PGIBD. Results shown here are from simulations of genomes with a genetic 

map length of 3600 cM. Results from 20 partially isolated (m = 0.05) small populations (local Ne = 

20) are shown in the top row. The data shown in the bottom row are from 20 populations with a 

recent reduction in Ne (from Ne = 500 to Ne = 20). Horizontal dotted lines are placed at r2 = 0.9 to aid 

comparison of r2 across FP, FH and FROH. 

 

Figure 3-3. FP (A), FH (B), and FROH (C) versus PGIBD in a representative simulation of a partially 

isolated population with a genetic map length of 3600 cM. We used a pedigree that included 5 

generations to estimate FP. FH was estimated with 5K SNPs, and Froh was estimated with 35K SNPs. 

The dashed lines have an intercept of zero and a slope of one. Points below the lines represent 

underestimates of PGIBD.  

 

Figure 3-4. The bias of FP, FH, and FROH among simulations of genomes with a genetic map length 

of 3600 cM. Results from 20 simulations of partially isolated small populations are shown in the top 

row. Results from 20 simulations of populations with a recent reduction in Ne are shown in the 

bottom row. 

 

Figure 4-1. The estimated inbreeding coefficient (FP) versus the identical by descent (IBD) 

proportion of the genome (F). The results shown are from simulations of six generation pedigrees 

with 0-100% sibling founders (from the same pair of parents). The solid diagonal lines have intercept 

of zero and a slope of 1. Points below the line represent underestimates of F.  

 

Figure 4-2.  r2 from the regressions of the pedigree inbreeding coefficient (FP) and the corrected 

coefficient  FPC (using molecular markers) versus the true inbreeding (F; identitity by descent) 

plotted against the proportion of pedigree founders that were full siblings. 100 and 500 SNPs (mean 

He ≈ 0.3) were used to estimate founder kinship coefficients which were used to estimate FPC. Error 

bars represent the standard deviation of r2 among twenty replicate simulated populations.  

 

Figure 4-3. The r2 between the estimated inbreeding coefficient (FP) and the IBD proportion of the 

genome (F) (r2(FE, FT)) versus pedigree depth. The data are from the final generation (60 

individuals) of each of 50 independent simulations that were run for 70 generations with migration 

rates of 0.008 to 0.1 (0.5 - 6.0 migrants/generation). Error bars represent the standard deviation of r2 

among the 50 replicate simulations. Horizontal dashed lines in panel B represent the power to detect 

inbreeding depression using the true F. The vertical distance between the top of a bar and the dashed 

line of the same color represents the loss of power associated with imprecision of FP. 
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Figure 4-4. (A) The r2 between the pedigree inbreeding coefficient (FP) and the identical by descent 

proportion of the genome (F) [r2 (FP, F), open bars] and between the pedigree inbreeding coefficient 

corrected for founder kinship (FPC) and F [r2 (FPC, F), hatched bars] versus the pedigree depth. Error 

bars in panel A are the standard deviation or r2 among 50 replicate simulations. (B) The statistical 

power of tests for inbreeding depression using FP and FPC. Error bars in panel B are 95% confidence 

intervals for statistical power (the proportion of 50 replicate simulations with statistically significant 

tests [α = 0.05] for inbreeding depression). The dashed horizontal line in panel B represents the 

power to detect inbreeding depression when using the true individual inbreeding coefficient (F; 

genome identity by descent).The data shown are from simulated populations with a migration rate of 

0.017 (1 migrant/generation on average). Stars indicate a statistically significant difference between 

the mean r2 (FP, F) and mean r2 (FPC, F) among 50 replicate simulations. Results from simulations of 

other demographic scenarios are shown in Figure 4-S1. 

 

Figure 4-5. The estimated coefficient of kinship ( f̂ ) versus the true coefficient of kinship (f ) for all 

pairs of 60 simulated individuals. The data are from the final generation of a simualtions with m = 

0.017 that was run for 70 generations. The diagonal dashed lines have an intercept of 0 and a slope of 

1. Points above the line represent over estimates and points below the line represent under estimates. 

The solid lines are fitted 2nd degree loess functions.   

 

Figure 5-1. ZHP for the Teton populations (bottom panel) and ZFST (top panel) across the bighorn 

sheep genome. Chromosomes are arranged 1-26 (left to right). The red line represents the rolling 

mean across 100 sliding windows. The dashed lines represent the threshold of significance of 5 

standard deviations from the mean HP and FST across the whole genome.  

 

Figure 5-2. HP in the Teton pool and FST across putatively selected regions on chromosomes 10 (A), 

16 (B), 8 (C), and 2 (D). Orange points represent FST and blue points represent HP. FST and HP are 

shown in 100Kb windows in the top panels. FST and HP at individual SNPs in the putatively selected 

regions are shown in the bottom panels. Genes labeled as “UNC” are uncharacterized. 

 

Figure 5-3. ZHP sliding window estimates from 20 simulations of neutrally evolving populations 

with a demographic history approximately similar to the Teton populations. Simulations were run for 

100 generations with local Ne = 30 (top panel) and Ne = 20 (bottom panel). Two chromosomes were 

simulated for each population. The two chromosomes from each simulated population are 

represented by adjacent blocks of black and gray points. The simulations with 0.5 migrants per 

generation on average between the two Teton subpopulations and a large source population. There 

was a migration rate of 0.75 individual/generation on average between the two Teton subpopulations. 

The mean FST was 0.09 (min. = 0.05, max. = 0.12) among the 20 simulations of populations with Ne 

= 30. The mean FST across the 20 simulations with Ne = 20 was 0.1 (min. = 0.06, max. = 0.15). The 

dashed lines represent the threshold value of ZHP that we used for our empirical data to consider a 

window as being putatively selected
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Chapter 1: Introduction and Overview 

A major goal in evolutionary biology is to understand the genetic basis of phenotypic and fitness 

variation in natural populations. Two related areas of intense interest in evolutionary biology are 

(1) understanding the fitness effects of inbreeding (mating between relatives) in natural 

populations (Keller & Waller 2002); and (2) identifying loci that strongly affect fitness and 

adaptation in natural populations (Stinchcombe & Hoekstra 2007; Ellegren & Sheldon 2008; 

Barrett & Hoeskstra 2011). Inbred individuals often have reduced fitness because they are more 

likely to be homozygous at loci carrying deleterious recessive alleles or at loci with heterozygous 

advantage (Keller & Waller 2002). Inbreeding depression is thought to play an important role in 

the evolution of mating systems and inbreeding avoidance behaviors such as sex-biased dispersal 

and avoidance of mating with close relatives (Charlesworth & Charlesworth 1987). Additionally, 

inbreeding depression can increase the extinction risk of small and isolated populations (Mills & 

Smouse 1994; O'Grady et al. 2006; Saccheri et al. 1998; Westemeier et al. 1998). Researchers 

have been aware of inbreeding depression for well over 100 years (Darwin 1868). However, 

there is currently keen interest in understanding the genetic basis of inbreeding depression, and 

its importance to population growth and persistence (Ouberg 2010). 

 

Much of what we know about inbreeding depression is based on studies that have used 

pedigrees to measure individual inbreeding. This approach usually involves estimating the 

correlation between a fitness-related trait and the pedigree inbreeding coefficient (FP, Wright 

1922; Keller & Waller 2002). FP has historically been strongly preferred over marker-based 

measures of F (Pemberton 2004) because of the low precision of marker-based measures when 

relatively few loci are used (Balloux et al. 2004; Slate et al. 2004).  

 

Disadvantages and alternatives to pedigrees 

 

There are several disadvantages to using pedigrees to estimate F. First, F can vary greatly among 

individuals with the same pedigree (e.g., siblings) because of linkage and recombination 

(Franklin 1977; Stam 1980; Hill & Weir 2011). Second, pedigrees are often extremely difficult 

and time consuming to obtain in natural populations, and inferences drawn from pedigree studies 

can be sensitive to errors in the assignment of parentage (Pemberton 2008). Lastly, FP assumes 

that the founders of pedigrees are both non-inbred, and unrelated to one another (Keller & Waller 

2002). Neither of these assumptions is likely to hold in any natural population.  

 

There has been much interest recently in whether F could be more accurately measured 

with marker-based approaches that employ large number of markers (e.g., hundreds to 

thousands) than with pedigrees (Balloux et al. 2004; Slate et al. 2004; Szulkin et al. 2010; 

Forstmeier et al. 2012). Indeed, since the advent of genetic markers, researchers have used 

heterozygosity-fitness correlations (HFCs) to test for inbreeding depression in populations where 

pedigrees were unavailable (Szulkin et al. 2010; Chapman et al. 2009). HFCs can be caused by 

inbreeding depression because individuals with more closely related parents also have lower 

heterozygosity across the genome (Crow & Kimura 1970). However, there has been intense 
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debate about whether HFCs are generally caused by inbreeding depression or other mechanisms 

including selection at the genotyped markers themselves, or closely linked loci. 

  

There has until recently been an almost unanimous view that F could be more accurately 

measured with pedigrees than with genetic markers (Pemberton 2004; 2008; Balloux et al. 2004; 

Slate et al. 2004; Forstmeier et al. 2012). The broadly held view that F could be more precisely 

measured with pedigrees than with genetic markers is rooted in the observation of very high 

sampling variance in estimates of individual heterozygosity based on relatively few genetic 

markers (e.g., 5-20 microsatellite loci). However, thousands of single nucleotide polymorphisms 

can now be genotyped in any organism (Davey et al. 2011). The sampling error of marker-based 

measures of F depends crucially on the number of markers (David et al. 2007; Slate et al. 2004; 

Szulkin et al. 2010). Therefore F could potentially be more precisely measured using marker-

based approaches instead of pedigrees (Forstmeier et al. 2012; Robinson et al. 2013) particularly 

now that it is possible to type thousands of SNPs in non-model organisms.  

 

Identifying candidate adaptive genes 

 

Identifying genes with strong fitness effects can help to advance our understanding of the 

mechanisms of natural selection (Stinchcombe & Hoekstra 2007). Knowing what genes and 

physiological pathways most strongly affect fitness or are responsible for adaptation can help to 

explain why some individuals perform better than others, and how different populations or 

species become adapted to their habitats. Now that it is possible to type any organism at 

thousands of loci, scans for genomic signatures of selection are possible in most taxa. For 

example, genome scans for selective sweeps (a molecular signature of a response to directional 

selection) have been used to identify candidate adaptive genes in the wild (Turner et al. 2010), 

and in domesticated animals (Rubin et al. 2010; Axelsson et al. 2012).  

 

A pervasive challenge in studies of genomic signatures of selection, particularly in small 

populations, is to differentiate signatures of selection from similar molecular patterns caused by 

genetic drift (Jensen et al. 2007; Pavlidis et al. 2012). Some approaches have been devised to 

limit or quantify the likelihood of false positive signatures of selection (Neilsen et al. 2005; 

Pavlidis et al. 2012; Hohenlohe et al. 2010; Qanbari et al. 2012). However, these approaches 

either require an understanding of historical population dynamics (e.g., Neilsen et al. 2005) or 

assume that the minor allele frequencies at closely linked loci are independent (e.g., Hohenlohe 

et al. 2010; Qanbari et al. 2012). Thus, even with the availability of rigorous statistical methods 

to differentiate signals of selection from those of drift, doing so in small natural populations with 

limited information on historical demography is challenging.   

 

The overarching objectives of my dissertation were the following: 

 

1. Evaluate the performance of existing methods based on identity disequilibrium to 

a. Determine if observed HFCs are caused by inbreeding depression 

b. Accurately estimate the strength of inbreeding depression 
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2. Evaluate the relative performance of pedigree- and marker-based measures of F when 

large numbers of genetic markers are available (e.g., hundreds to thousands of SNPs) 

 

3. A. Evaluate the effects of related and inbred pedigree founders on the precision of FP  

 

B. Determine if incorporating estimates of founder kinship into pedigree analyses can 

substantially increase the precision of FP 

 

4. A. Identify genomic regions bearing signatures of directional selection in bighorn sheep 

 

B. Determine if the genomic regions showing signatures of selection vary among 

populations with differences in elevation and recent exposure to disease 

 

I used a combination of computer simulations and empirical whole genome sequences from 

bighorn sheep to address these objectives. Below I summarize the specific objectives, methods, 

and findings for Chapters 2-5. 

  

 

Research Objectives and Findings 

 

Evaluating the role of inbreeding depression in heterozygosity-fitness correlations: how useful 

are tests for identity disequilibrium? 

 

Researchers often use HFCs to test for the presence of inbreeding depression. However the 

presence of a statistically significant HFC does not prove that inbreeding depression has 

occurred. Additionally, an HFC alone does not provide an estimate of the strength of inbreeding 

depression. Therefore, researchers are keenly interested in being able to determine whether an 

HFC is likely to have been caused by inbreeding depression.  

 

Researchers often test for identity disequilibrium (ID, a non-random association of 

heterozygous genotypes between loci) to determine whether an HFC could have been caused by 

inbreeding depression. When F varies among individuals, ID exists between all pairs of loci 

across the genome. Estimates of ID (measured using the g2 statistic) can also be used to along 

with HFCs to estimate the correlation between F and fitness components. In Chapter 2, I asked 

the following questions: 

 

- How likely is ID to be detected when HFCs are caused by inbreeding depression?  

- How many single nucleotide polymorphisms (SNPs) and microsatellite loci are 

required to reliably detect HFCs and ID simultaneously?  

- How accurately can the correlation between heterozygosity and F, and the correlation 

between fitness components and F be estimated using HFCs and ID?  

 

I addressed these questions using individual-based simulations of randomly mating and 

partially selfing populations with inbreeding depression for juvenile survival. I found that ID was 

not detected in a large proportion of populations with statistically significant HFCs when the 

variance of F was low (e.g., σ2(F) ≈ 0.001). Therefore, failure to detect ID should not be 



4 

 

interpreted as strong evidence that an HFC was not caused by inbreeding depression. The 

number of markers necessary to simultaneously detect HFC and ID depended strongly on σ2(F). 

Thus the mating system and demography of populations, which influence σ2(F), should be 

considered when designing HFC studies. I also found that the correlation between heterozygosity 

and F could be precisely estimated using estimates of ID and the variance of heterozygosity 

across a broad range of simulated scenarios. Additionally, the correlation between fitness and F 

could be precisely estimated when ID was strong and highly statistically significant. ID should 

be used in conjunction with HFCs to estimate the correlation between fitness and F, because 

HFCs alone reveal little about the strength of inbreeding depression. Chapter 2 is published 

Molecular Ecology Resources (Kardos et al., 2013), coauthored by Fred Allendorf and Gordon 

Luikart. 

 

 

Measuring individual inbreeding in the age of genomics: marker-based measures are better than 

pedigrees 

 

Inbreeding (mating between relatives) can dramatically reduce the fitness of offspring by causing 

a fraction of the genome to be identical by descent. Thus, measuring individual inbreeding is a 

crucial part of many studies in ecology, evolution, and conservation biology. The classical and 

most commonly preferred measure of individual inbreeding is the pedigree inbreeding 

coefficient (FP). However, FP could be an imprecise measure of the proportion of the genome 

that is identical by descent (F) due to physical linkage and a limited number of recombination 

during meiosis. I addressed the following question in Chapter 3: 

 

- Which of three common measures of individual inbreeding best predicts the F in 

small populations: 1) FP; 2) the excess of individual homozygosity relative to Hardy-

Weinberg expected homozygosity (FH); and 3) the proportion of the genome inferred 

to be in long runs of homozygosity (FROH). 

 

I wrote an individual-based simulation model which accounts for physical linkage and 

recombination to address this question. I found that F was more strongly correlated with FH and 

FROH than with FP across a broad range of simulated scenarios when thousands of loci were used. 

This result demonstrates that F can be more precisely predicted with genetic markers than with 

pedigrees. Considering the imprecision of FP, and the great difficulty associated with obtaining 

reliable pedigrees, researchers should soon adopt genomic measures of F as the necessary 

resources quickly become available. Chapter 3 is in review for publication at Molecular Ecology 

Resources, coauthored by Gordon Luikart and Fred Allendorf. 

 

 

Cryptic pedigree founder relationships reduce the power to detect inbreeding depression: can 

genetic markers help? 

 

FP is often considered the most reliable measure of F. However, FP assumes that the pedigree 

founders are unrelated and non-inbred. Neither of these assumptions can hold in any real 

population. A critical need for our understanding of inbreeding and its effects on fitness is to 
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determine how related and inbred pedigree founders affect estimates of inbreeding the power to 

detect inbreeding depression. I addressed the following questions in Chapter 4: 

 

- When do inbred and/or related pedigree founders substantially reduce the precision of FP 

and the power to detect inbreeding depression?  

- Do genetic marker-based estimates of founder relatedness substantially improve the 

precision of FP and the power to detect inbreeding depression? 

  

I found that FP was an imprecise measure of F, and the power to detect inbreeding 

depression was severely reduced when a large proportion of pedigree founders were closely 

related. I also found that incorporating marker-based estimates of founder relatedness into 

pedigree analyses only marginally increased the precision of FP. However, accounting for 

founder kinship substantially improved the power to detect inbreeding depression when 

pedigrees included few generations (e.g., < 6 generations). Unfortunately, the power to detect 

inbreeding depression was still low (< 0.7) after accounting for founder kinship in shallow 

pedigrees.   These results suggest that FP, which has been considered the most reliable measure 

of individual inbreeding, is poor measure of F when founders are closely related. Additionally, 

this study suggests that marker-based measures of founder relatedness will not dramatically 

increase the imprecision of FP when founders are related. Chapter 4 will be submitted to 

Molecular Ecology Resources, coauthored by Gordon Luikart and Fred Allendorf.  

 

 

Whole genome sequencing identifies candidate adaptive loci in wild bighorn sheep 

 

A major goal in evolutionary biology is to understand the genetic basis of phenotypic and fitness 

variation in natural populations (Stinchcombe & Hoekstra 2007; Ellegren & Sheldon 2008; 

Barrett & Hoeskstra 2011). However, identifying candidate adaptive genes or genomic regions 

can be challenging in species lacking whole genome reference assemblies. Additionally, it can be 

difficult to statistically differentiate the genomic effects of selection from similar patterns caused 

by genetic drift (due to small Ne). In this chapter, I addressed the following questions: 

  

- What genomic regions bear signatures of directional selection in bighorn sheep?  

- Do the genomic regions showing signatures of selection vary among populations with 

differences in elevation and recent exposure to disease? 

 

My collaborators and I aligned whole genome sequences of pooled bighorn DNA to the 

domestic sheep whole genome reference assembly. We then scanned the bighorn genome for 

genomic regions bearing signatures of directional selection within pools (low heterozygosity) 

and strong genetic differentiation among pools (high FST) relative the genome-wide average. We 

identified several candidate adaptive genomic regions in bighorn. In particular, we found 

evidence for a selective sweep over a gene known to control horn development in domestic 

sheep (relaxin/insulin-like family peptide receptor 2 gene). We also identified selective sweep 

signatures over two genes involved with growth (the growth hormone receptor, and the insulin-

like growth factor II receptor). The genomic region around that growth hormone receptor was 

also substantially genetically differentiated among populations occupying different elevation 

winter ranges – suggesting that this gene may play an important role in adaptation to life at high 
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elevation in bighorn sheep. We showed that false-positive selection signatures were possible in 

study by repeating our analyses on simulated data of populations with similar demographic 

histories to our study populations. Thus the fitness effects of the candidate genes identified here 

should be verified in future studies of the genomic basis of horn and body growth and adaptation 

in other populations of mountain sheep.   

 

Chapter 5 will be submitted to PLoS Genetics and has several coauthors. James Kijas 

helped to design the study along with Gordon Luikart and me. James Kijas, Gordon Luikart, and 

Fred Allendorf helped to write the manuscript. Rowan bunch conducted whole genome 

sequencing of the DNA pools. Sean McWilliam aligned the sequence reads to the domestic 

sheep whole genome reference assembly and helped with variant calling. Sarah Dewey, John 

Stephenson, Jack Hogg, and Hank Edwards contributed tissue samples and expertise on bighorn 

spatial distribution and behavior.    

 

Synthesis and Significance 

 

Advancing our understanding of the genetic basis of fitness and adaptation has until recently 

been hindered by the limited availability large amounts of molecular genetic data. Fortunately, 

we are currently in the midst of a ‘genomics revolution’. The availability of massive amounts of 

molecular genetic information is increasing at an almost alarming rate. For example, thousands 

of SNPs can now be genotyped for any organism using new sequencing technologies (Davey et 

al., 2011). However, we still do not know exactly how dramatically huge amounts of molecular 

genetic information will advance our understanding of evolutionary processes beyond what was 

possible with, say, a few dozen microsatellite loci. Additionally, the software and statistical tools 

to handle large amounts of genomic data are still in their infancy.  

 

The results of my dissertation help to determine how F and inbreeding depression should 

be measured in this age when large numbers of genetic markers can be typed for any organism. 

Many studies have used tests for ID to determine whether HFC are caused by inbreeding 

depression. However, ID can also be used in conjunction with HFCs to estimate the strength of 

inbreeding depression (the correlation between F and fitness). Unfortunately, only rarely have 

HFCs been used in conjunction with estimates of ID to estimate the strength of inbreeding 

depression (Szulkin et al. 2010). Chapter 2 shows that the strength of inbreeding depression can 

be measured precisely in the populations that are most important to our understanding of the 

strength and genetic basis of inbreeding depression (i.e., populations with high variance in F). 

However, my results also suggest studies which detect HFCs in populations with low variance in 

F will often fail to detect ID. Therefore, the failure to detect ID should not be taken as evidence 

that an HFC was not caused by inbreeding depression. 

 

Pedigrees have historically been viewed as being vastly superior to marker based 

measures of F (e.g., Pemberton 2004, 2008). Indeed, FP has often been used as a standard against 

which to evaluate the precision of marker-based F measures (e.g., Slate et al. 2004, Balloux et al. 

2004; Ellegren et al. 1999). Until recently, the variance in the realized F among individuals with 

the same pedigree has rarely been considered in studies of inbreeding depression (but see 

Forstmeier et al. 2012). This is somewhat surprising because decades-old population genetics 

theory shows that F is not well predicted by the pedigree relationship of parents (Franklin 1977; 
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Stam 1980). In Chapter 3, my simulations of small populations with realistic genomic 

characteristics (e.g., recombination and linkage) show that the ‘old ways’ of measuring 

individual inbreeding with pedigrees (Pemberton 2004) are no longer the best. For example, F 

can now almost always be more precisely measured with thousands of molecular markers than 

with pedigrees. Thus, future studies of inbreeding depression should make every effort to use 

large numbers of genetic markers. Marker-based measures of F will advance our understanding 

of the frequency of inbreeding depression, its genetic basis, and its consequences for 

conservation in natural populations. 

 

The poor precision of FP shown in Chapter 3 has two potential causes including 1) 

linkage and a limited number of recombinations during meiosis; and 2) related and inbred 

pedigree founders. Chapter 4 builds on the results from Chapter 3 by evaluating the effects of 

related and inbred pedigree founders on the accuracy of FP. The results of Chapter 4 show that 

related pedigree founders can substantially weaken the precision of FP, particularly when a large 

proportion of founders are closely related (e.g., in partially isolated small populations). A 

potential solution for the imprecision of FP is to incorporate marker-based estimates of pedigree 

founder kinship into pedigree analyses. Unfortunately, I found that doing so only marginally 

increases the precision of FP and the power to detect inbreeding depression. Thus, Chapter 4 

further supports the idea that F and inbreeding depression can be most precisely estimated purely 

with molecular markers, rather than with FP.  

 

In Chapter 5, I show that genomic resources from model or agricultural species can be 

very useful for identifying candidate adaptive genomic regions in closely related non-model 

species in the wild. I identify strong selection signatures at genes that are related to traits known 

to affect fitness in bighorn horn (horn and body growth). Therefore, these genes should be 

considered as strong candidate genes in future studies of the genetic basis of fitness, horn 

morphology, and body growth in mountain ungulates. Our simulation results show that 

separating the genomic signatures of selection and genetic drift is difficult in small, isolated 

natural populations. Thus, this study illustrates the importance of considering realistic effective 

populations sizes when evaluating the possibility of false positive selection signatures. 

 

Dissertation Format 

 

The following chapters are the result of a collaborative efforts. Therefore, I use the collective 

term “we” to reflect the substantial contributions of my coauthors. Chapter formats vary 

according to specific journal editorial requirements. Appendices are intended for publication 

alongside the main body of each paper. Supplements are intended for publication on the 

worldwide web only.  
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CHAPTER 2: Evaluating the role of inbreeding depression in heterozygosity-fitness 

correlations: how useful are tests for identity disequilibrium?  

 

Abstract  

Heterozygosity-fitness correlations (HFCs) have been observed for several decades, but their 

causes are often elusive. Tests for identity disequilibrium (ID, correlated heterozygosity between 

loci) are commonly used to determine if inbreeding depression is a possible cause of HFCs. We 

used computer simulations to determine how often ID is detected when HFCs are caused by 

inbreeding depression. We also used ID in conjunction with HFCs to estimate the proportion of 

variation (r2) in fitness explained by the individual inbreeding coefficient (F). ID was not 

detected in a large proportion of populations with statistically significant HFCs unless the 

variance of F was high (σ2(F)≥0.005) or many loci were used (100 microsatellites or 1000 

SNPs). For example, with 25 microsatellites, ID was not detected in 49% of populations when 

HFCs were caused by six lethal equivalents and σ2(F) was typical of vertebrate populations 

(σ2(F)≈ 0.002). Estimates of r2 between survival and F based on ID and HFCs were imprecise 

unless ID was strong and highly statistically significant (P≈0.01). These results suggest that 

failing to detect ID in HFC studies should not be taken as evidence that inbreeding depression is 

absent. The number of markers necessary to simultaneously detect HFC and ID depends strongly 

on σ2(F). Thus the mating system and demography of populations, which influence σ2(F), should 

be considered when designing HFC studies. ID should be used in conjunction with HFCs to 

estimate the correlation between fitness and F, because HFCs alone reveal little about the 

strength of inbreeding depression.  

Introduction 

 

Correlations between fitness-related traits and individual heterozygosity (so called 

heterozygosity-fitness correlations, HFCs) have been observed for several decades in many 

species (Chapman et al. 2009). Despite the frequent detection of HFCs, surprisingly little is 

known about the relative importance of locus-specific versus genome-wide heterozygosity (i.e. 

individual inbreeding) as mechanisms causing HFCs. Therefore an important goal of studies that 

detect HFCs is to identify the most likely underlying mechanism(s) causing the observed 

correlations.  

 

There are three main hypotheses to explain the occurrence of HFCs. The hypothesis that 

HFC is caused by inbreeding depression is referred to as the ‘general effect’ hypothesis (David 

1997; David 1998; Slate et al. 2004). Individuals with related parents have lower heterozygosity 

because many loci are ‘identical by descent’ (IBD, derived from a single gene copy in a common 

ancestor of the parents). Under the general effect hypothesis, heterozygosity is informative of the 

proportion of the genome that is identical by descent (F) in the presence of inbreeding 

depression. The reduced fitness of individuals that are IBD at loci with heterozygous advantage 

or deleterious recessive alleles causes a correlation between heterozygosity and the affected 

fitness component(s).  
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The ‘local effect’ hypothesis suggests that HFCs are caused by linkage disequilibrium 

between genotyped markers and nearby loci displaying overdominance or carrying deleterious 

recessive alleles (Hill & Robertson 1968; Ohta 1971; David 1998; Chapman et al. 2009; Szulkin 

et al. 2010).  The ‘direct effect’ hypothesis proposes that HFCs are caused by selection at the 

genotyped loci themselves. Testing predictions of these three hypotheses is crucial to 

understanding the importance of inbreeding and locus-specific genetic variation to individual 

fitness and population performance. 

 

A requirement of the general effect hypothesis is that F (and thus genome-wide 

heterozygosity, H) varies among individuals. When F varies among individuals, heterozygosity 

measured in one part of the genome will be correlated with heterozygosity measured in any other 

part of the genome (Weir & Cockerham 1973; Slate et al. 2004; Szulkin et al. 2010). Correlated 

heterozygosity between loci is referred to as identity disequilibrium (ID) (Weir & Cockerham 

1973; Szulkin et al. 2010). Tests for ID between pairs of loci throughout the genome can be used 

to test if F varies among individuals and thus whether an observed HFC could potentially be 

caused by inbreeding depression. The two most commonly used methods to detect ID are the 

heterozygosity-heterozygosity correlation (HHC) test and the g2 estimator of identity 

disequilibrium.  

 

The HHC test repeatedly (e.g., hundreds of times) estimates the correlation coefficient 

between heterozygosity at one randomly chosen half of loci with heterozygosity calculated with 

the other half of the loci in a data set (Balloux et al. 2004). A mean HHC correlation coefficient 

that is statistically significantly greater than zero suggests that genome-wide ID is present. The 

HHC approach has been widely used (e.g., Acevedo-Whitehouse et al. 2006; Gage et al. 2006; 

Reid et al. 2007; Alho et al. 2009) but it has recently been criticized for lacking statistical rigor 

and for being only periferally related to HFC theory (Szulkin et al. 2010). The g2 statistic directly 

estimates ID as the excess of doubly heterozygous genotypes at all pairs of loci relative to a 

random distribution of heterozygous genotypes among individuals at each locus (David et al. 

2007; Szulkin et al. 2010; Ruiz-Lόpez et al. 2012; Luquet et al. 2012). The procedure described 

by David et al. (2007) uses a randomization test to evaluate the statistical significance of g2.   

 

In addition to detecting variation in F, ID (as quantified by g2) can be used in conjunction 

with HFCs to estimate how strongly heterozygosity and fitness components are correlated with F 

(Szulkin et al. 2010). Szulkin et al. (2010) derived the correlation coefficient between 

heterozygosity and F as 

 

 
 S

S
H

g
FHr



2
,   

 

where HS is standardized heterozygosity (Coltman et al. 1999), and σ(HS) is the standard 

deviation of HS among individuals. The correlation between a fitness component (W) and HS 

(r(W, HS)) is the product of the correlation between fitness and F (r(W, F)) and r(HS, F): 

 

),(),(),( FHrFWrHWr SS   
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(Szulkin et al. 2010). When HFC is caused solely by variation in F, ),( SHWr will be weaker 

than ),( FWr because r(HS, F) < 1. The previous equation can be rearranged to solve for 

),( FWr . Thus, combining estimates of HFC and ID provides a potentially powerful way to 

quantify the effects of inbreeding on individual fitness in non-pedigreed natural populations. 

Most recent HFC studies have tested for ID, but researchers have rarely used ID to quantify how 

strongly heterozygosity and fitness components are related to F (see the Supplementary 

Materials in Szulkin et al. (2010) for examples).  

 

Our objective was to evaluate and improve the usefulness of ID tests to detect and 

quantify inbreeding depression in HFC studies. We asked the following questions in order to 

address this objective: When HFCs are caused by inbreeding depression, how likely is ID to be 

detected? How many single nucleotide polymorphisms (SNPs) and microsatellite loci are 

required to reliably detect HFCs and ID simultaneously? How accurately can r(HS, F) and 

),( FWr  be estimated using HFCs and ID? We addressed these questions using individual-based 

simulations of randomly mating and partially selfing populations with inbreeding depression for 

juvenile survival.  

 

Methods 

 

Simulations of random mating populations 

 

We wrote an individual-based simulation model of a sexually reproducing, non-selfing species, 

with non-overlapping generations and random mating within populations. Our simulation model 

is written for the program R version 3.0.1 (R Core Team 2013). A simulation script is available 

in the Dryad data repository (see Data Accessibility). Population size was held constant at 60 

individuals to allow inbreeding to accumulate relatively quickly. Simulations were run for 50 

generations. Population founders and immigrants were non-inbred (F = 0) and unrelated to one 

another, and immigrants were unrelated to all residents. The sex ratio was 1:1, with each 

individual’s sex determined with a random number generator. Our simulations assumed Wright’s 

infinite island model of migration (Wright 1931).  

  

 The expected F of an individual is the pedigree inbreeding coefficient (FP). However, the 

observed F can deviate substantially from FP because of Mendelian segregation of chromosomes 

and recombination within chromosomes during meiosis (Franklin 1977; Hill & Weir 2011; Stam 

1980). The variance of F around the expected FP is higher among organisms with short genetic 

map lengths (i.e., fewer crossovers per meiosis) or with few chromosomes (Franklin 1977). We 

wanted our simulations to include realistic variation in F. Therefore we included linkage and 

recombination in our simulations. We simulated two different genomic architectures. First, we 

simulated 3 Gb genomes, with 20 chromosomes and a recombination rate of 1.2 cM/Mb (genetic 

map length = 3600 cM total). We also simulated 3 Gb genomes with 10 chromosomes and a 

recombination rate of 0.33 (genetic map length = 1000 cM). Our model of recombination follows 

Fisher’s theory of junctions (Chapman & Thompson 2003; Fisher 1965). The simulations 

assumes no interference, and a constant recombination rate across the genome and among 

individuals and sexes.  
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In order to generate variation in σ2(F) among simulated scenarios, we used eight different 

immigration rates (m) including m = (0.004, 0.006, 0.008, 0.017, 0.033, 0.1, 0.25, 0.75), where m 

is the probability of an individual being an immigrant with a genotype drawn from the same 

allele frequency distribution as the population founders (see below). We simulated 100 

independent replicate populations using each of the eight values of m. We calculated the F for 

each individual as the sum of the lengths of all IBD chromosome segments divided by the total 

genome size.  

 

Tests for ID and HFCs were limited to individuals born during generations 49-50 in order 

to achieve a realistic sample size of 120 individuals, which is in the middle of the range of 

sample sizes used in past HFC studies (Chapman et al. 2009). The distribution of σ2(F) in 

generations 49-50 for each value of m is shown in Figure 2-1. The range of simulated values of 

σ2(F) (Figure 2-1) were typical of values of σ2(FP) observed in studies of wild vertebrates 

(Grueber et al. 2011). 

 

To assess the effects of the type of genetic marker used, we simulated highly variable 

microsatellite-like loci, and less variable diallelic SNPs. Simulations were parameterized so that 

microsatellite loci had mean expected heterozygosity (He) of 0.65 (mean number of alleles per 

locus was 3.7), and SNPs had He = 0.30 on average in the final (50th) generation of the 

simulations. The microsatellite genotypes of population founders and immigrants were 

determined by randomly assigning two alleles selected from a pre-determined allele frequency 

distribution. Founder and immigrant SNP genotypes were determined by randomly choosing one 

of two alleles at each locus with a pre-determined minor allele frequency. Details of how founder 

and immigrant allele frequencies were determined are described in Appendix 1. The genotypes 

of all other subsequent individuals (descendants) were determined by random mating and 

Mendelian inheritance of chromosomes. We calculated HS for each individual using 100, 250, 

500, and 1000 SNPs, and 10, 25, 50 and 100 microsatellite loci.  

 

We conducted separate simulations using different numbers of lethal equivalents to 

explore the importance of the strength of inbreeding depression to how useful tests of ID are to 

detect variation in F in HFC studies. We simulated populations with 6 and 12 diploid lethal 

equivalents to model inbreeding depression for survival to reproduction. All non-inbred 

individuals (F = 0) survived to reproduction, but we reduced the survival probability of inbred 

individuals using the lethal equivalents model of Morton et al. (1956). The model of Morton et 

al. (1956) represents a linear decline in log(fitness) with increasing F (Keller & Waller 2002). 

We used the Morton et al. (1956) model of inbreeding depression instead of simulating the loci 

responsible for inbreeding depression in order to hold the strength of inbreeding depression 

constant. Simulating the phenotypically active loci would have created uncontrolled variation in 

the strength of inbreeding depression among populations (i.e., simulation replicates) and through 

time due to genetic drift and purging of deleterious recessive alleles. We used only six lethal 

equivalents when simulating populations with a short genetic map length (1000 cM) and 10 

chromosomes.  

 

We compared simulation model output to results predicted by population genetic theory 

in order to verify that simulations were consistent with theoretical expectations. We compared 

the theoretical expectations and the observed values of the relationship between heterozygosity 
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and F, the mean FP at migration-drift equilibrium, and the relationship between F and FP.  

Simulation model output agreed closely with theoretical expectations (Figures 2-S1 – 2-S3).   

 

Simulations of partially selfing populations 

 

To simulate partially selfing populations, we changed the simulation model described above so 

that all individuals were self-compatible hermaphrodites. We simulated 100 replicate closed 

populations containing 60 individuals using each of six selfing rates (S = 0.0, 0.04, 0.08, 0.12, 

0.16, 0.2), where each individual had a self fertilization probability of S + 1/Ns (where Ns is the 

number of individuals that survived to reproduce). The range of simulated values of S are typical 

of herbaceous and woody perennial plants (Barrett et al. 1996). Simulations of partially selfing 

populations were run for 15 generations, but we estimated HFCs and ID only among individuals 

in the last two generations of the simulations. All other aspects of the simulations of partially 

selfing populations were identical to the simulations of random mating populations. 

 

g2 and HHC test procedures 

 

We implemented the g2 estimator of ID as described by David et al. (2007) in a script written for 

the program R. The P-value for tests of the null hypothesis g2 = 0 was determined using the 

randomization procedure described by David et al. (2007). We also wrote an R script 

implementing the HHC method described by Balloux et al. (2004). For each simulated 

population, the loci were randomly split into two groups. The proportion of heterozygous 

genotypes (multiple locus heterozygosity, or ‘MLH’) was calculated for each of the two groups 

of loci. Then the correlation coefficient between MLH at one set of markers and MLH at the 

other set of markers was calculated using the cor function in the program R. This was repeated 

500 times for each simulated dataset. The P-value from the HHC test was defined as the 

proportion of the 500 repetitions with an HHC correlation coefficient ≤ 0. 

 

Statistical analyses 

 

We used Hs as a measure of individual heterozygosity because it is one of the most commonly 

used measures of heterozygosity. We used generalized linear models (GLMs) with a logit link 

function in the glm function (binomial error distribution) of the program R to test if survival to 

reproduction was significantly related to Hs in each simulated population (i.e., to test for HFC). 

We estimated the proportion of variance in survival explained by Hs (  SHsurvivalr ,ˆ2
) as the 

proportional reduction in deviance (sum of the squared deviance residuals) in the model relative 

to an intercept only model (Zheng 2000). We estimated the proportion of simulated populations 

with statistically significant HFCs that also had statistically significant tests for ID using the 

prop.test function in the stats package of the program R.    

  

Taking the square of r(HS, F) yields  FHr S ,2
, a parameter describing the true proportion 

of variance in HS explained by variation in F. We calculated  FHr S ,2
 for each simulated 

population from a linear regression of HS versus F. We then estimated  FHr S ,2
 for each 

simulated population as would be done in an HFC study without perfect information on F:  
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where 2ĝ is an estimate of the parameter g2, and  SH2̂ is an estimate of the variance in HS 

(Szulkin et al. 2010).  

 

Squaring  Fsurvivalr ,  yields  Fsurvivalr ,2
, a parameter which describes the 

proportion of variance in survival explained by variation in F. We calculated  Fsurvivalr ,2
 as 

the proportional reduction in the deviance of a logistic regression model of survival versus F 

relative to an intercept only model (Zheng 2000). We then estimated  Fsurvivalr ,2
 as  
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(Szulkin et al. 2010).   

 

We present our results on the precision and bias of  FHr S ,ˆ2
 and  SHsurvivalr ,ˆ2  from 

different simulations categorized according to σ2(F). We retained only simulated populations 

with σ2(F) > 0. We split the remaining simulations as evenly as possible into three groups based 

on σ2(F) for simulations with random mating. Specifically, we sorted the simulations according 

to σ2(F). We then grouped simulations that were in the bottom, middle and top thirds (based on 

the number of simulations) with respect to σ2(F). In our results, we label the simulations 

categorized according to σ2(F) with the mean σ2(F) for each category. For simulated partial 

selfing populations, we split all of the simulations as evenly as possible (as with simulations of 

random mating populations) into four groups based on σ2(F).  

 

We evaluated the precision of   FHr S ,ˆ2
 by comparing its standard deviation to the 

standard deviation of  FHr S ,2
 for each combination of number and type of loci and σ2(F). A 

standard deviation of   FHr S ,ˆ2
 that is substantially higher than the standard deviation of 

 FHr S ,2
 would suggest that  FHr S ,ˆ2

 was imprecise. We used F-tests to evaluate the 

statistical significance of the difference between standard deviations of  FHr S ,ˆ2
 and 

 FHr S ,2
. We used the same approach to test if the standard deviations of  Fsurvivalr ,ˆ2

 and 

 Fsurvivalr ,2
were statistically significantly different. 

 

 To evaluate the bias of  FHr S ,ˆ2
, we calculated the difference between the mean 

 FHr S ,ˆ2
 and the mean  FHr S ,2

 for each combination of number and type of loci and σ2(F). 

We used the same approach to evaluate the bias of  Fsurvivalr ,ˆ2
. We used a randomization 

procedure (Manly 2007) to test for a statistically significant difference between the mean 



14 

 

 Fsurvivalr ,2
 and mean  Fsurvivalr ,ˆ2

 for simulations in each category of σ2(F). We used the 

same randomization procedure to test if the mean  FHr S ,ˆ2  and  FHr S ,2  were significantly 

different for simulations in each category of σ2(F). The randomization test procedure is described 

in detail in the Supplementary Materials.  

 

Results 

 

Here we focus on the results from simulations with random mating and 6 diploid lethal 

equivalents only, 20 chromosomes, and a genetic map length of 3600 cM. The conclusions 

reached from analyses of other simulation scenarios are qualitatively similar, regardless of the 

mating system, strength of inbreeding depression, or genomic characteristics. The results from 

other simulation scenarios are provided in detail in the Supplementary Materials.   

 

The results of tests for ID using the 2ĝ and HHC procedures were equivalent in more than 

90% of simulated populations. Having found that the 2ĝ and HHC tests almost always provide 

the same results, we only present results from analyses using 2ĝ , as unlike HHC, 2ĝ  allows 

estimation  FHr S ,2
 and  (Szulkin et al. 2010). 

 

How often is ID detected in populations with HFCs caused by inbreeding depression? 

 

The probability of detecting ID given that an HFC was detected depended strongly on both the 

number and type of loci used, and σ2(F) (Figure 2-2). Approximately 4-8 times more SNPs than 

microsatellite loci were necessary to achieve a given probability of detecting ID in populations 

with detected HFCs.  σ2(F) ≥ 0.005 was necessary for the proportion of populations with HFCs 

with significant tests for ID to be above 0.8 for 25, 50, or 100 microsatellite loci. This proportion 

never exceeded 0.5 when 10 microsatellite loci were used. σ2(F) ≥ 0.002 was necessary for the 

proportion of HFCs with significant ID to exceed 80% for 500 and 1000 SNPs. σ2(F) = 0.005 

was necessary for 0.8 of simulations with detected HFCs to have significant tests for ID when 

250 SNPs were used. This proportion never exceeded approximately 0.75 when only 100 SNPs 

were used. The statistical power of HFC and ID tests (independent from one another) is 

described in the Supplemental Materials.  

 

Performance of methods to estimate r2(Hs, F) and r2(survival, F)  

 

The mean  FHr S ,ˆ2
 and  FHr S ,2

 were statistically significantly different in 5 out of 24 

combinations of the number and type of marker and σ2(F) (P ≤ 0.05, randomization tests) 

(Figures 2-3, 2-S5). The mean  FHr S ,ˆ2
 was slightly lower than the mean  FHr S ,2

 in 17 out 

of 24 combinations of the number and type of marker and σ2(F). The differences between the 

mean  FHr S ,ˆ2
and  FHr S ,2

 were small in all cases, ranging from 0.001 with 250 SNPs and 

σ2(F) = 0.005, to 0.06 with 1000 SNPs and σ2(F)  = 0.001.  

 

 Fsurvivalr ,2
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The standard deviation of  FHr S ,ˆ2  was statistically significantly higher than the 

standard deviation of  FHr S ,2  in 15 out of 24 combinations of the number and type of marker 

and σ2(F) (P ≤ 0.05, F-tests) (Figures 2-3, 2-S5). This difference ranged from 0.009 when 1000 

SNPs were used and σ2(F) was 0.005, to 0.06 when 1000 SNPs were used and σ2(F) was 0.001 

(Figure 2-S5). 

 

The mean  Fsurvivalr ,ˆ2
was always slightly lower than the mean  when 

σ2(F) was 0.002 or greater (Figure 2-4). Conversely,  Fsurvivalr ,ˆ2
was almost always slightly 

higher than  (in 7 out of 8 cases) when σ2(F) was 0.001. The mean 

 Fsurvivalr ,ˆ2
 and  were statistically significantly different only when 1000 

SNPs were used and σ2(F) was 0.001 (Figure 2-S6). Differences between the mean 

 Fsurvivalr ,ˆ2
and  ranged from 0.007 with 50 microsatellite loci and σ2(F)  = 

0.002, to 0.07 with 1000 SNPs and σ2(F)  = 0.001.  

 

The standard deviation of  Fsurvivalr ,ˆ2
was statistically significantly larger than the 

standard deviation of  in 17 out of 24 combinations of the number and type of 

marker and σ2(F). The difference between the standard deviations of  Fsurvivalr ,ˆ2
 and  

 was always substantially smaller when σ2(F) was 0.005 than when σ2(F) was 

0.001 (Figures 2-4 and 2-S6). For example, the difference between the standard deviations of 

 Fsurvivalr ,ˆ2
 and   was 0.1 when σ2(F) was 0.001 and 500 SNPs were used 

(Figure 2-4). However, when σ2(F) was 0.005 and 500 SNPs were used, the difference between 

the standard deviations of  Fsurvivalr ,ˆ2
 and   was 0.0002.  

 

Considering that difference between the standard deviations of  Fsurvivalr ,ˆ2
 and  

 depended strongly on σ2(F), estimates of 2ĝ  may be helpful to evaluate the 

reliability of a particular estimate of  Fsurvivalr ,ˆ2
. We assessed this with linear regression 

models of the running standard deviation of the error of  (

   FsurvivalrFsurvivalr ,,ˆ 22  ) versus 2ĝ  and the P-values from 2ĝ tests. The running standard 

deviation of  Fsurvivalr ,ˆ2
was strongly associated with 2ĝ  (P < 0.001, r2 = 0.35) and its P-

value (P < 0.001, r2 = 0.66). 95% of the estimation errors of  were ≤ 0.2 units 

from one another when when was ≥ approximately 0.002 and when P-values from g2 tests 

were ≤ 0.06 (Figure 2-5). 

 

Discussion 

 

We used simulations to evaluate the effectiveness of identity disequilibrium (ID) tests to help 

assess the role that inbreeding depression plays in causing HFCs. We often detected HFCs in 

populations where ID was not detected when σ2(F) was relatively low. ID and HFC exist in all 

populations where F varies and inbreeding depression occurs. However our results show that 

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,2

 Fsurvivalr ,ˆ2

 Fsurvivalr ,ˆ2

2ĝ
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tests for HFC and tests for ID will often fail to pass the statistical significance threshold 

simultaneously. This result suggests that studies will commonly detect HFCs that are caused by 

inbreeding depression but fail to detect ID, unless σ2(F) is high (e.g., in small recently admixed 

or partially selfing populations) or very large numbers of loci are used. Therefore, failure to 

detect ID should not be taken as strong evidence that inbreeding depression did not cause an 

HFC.  

 

Accuracy and precision of effect size estimates 

 

Previous studies (Slate et al. 2004; Szulkin et al. 2010) compared the correlation between HS and 

FP determined from pedigrees (  PS FHr ,ˆ ) to the correlation between HS and F (  FHr S ,ˆ ) 

predicted based on population genetic theory similar to that employed in our study. Our study 

builds on these previous studies by evaluating the precision and bias of  FHr S ,ˆ2  and 

 Fsurvivalr ,ˆ2
 using simulated data with error-free knowledge of the F. 

 

Our simulations showed that  FHr S ,ˆ2
 was essentially unbiased. There were several 

simulated scenarios with statistically significant differences between the mean  FHr S ,ˆ2
 and the 

mean  FHr S ,2
 (Figure 2-S5), but we believe the magnitude of the differences were too small to 

be meaningful in practice. This finding is in contrast to previous results (Slate et al. 2004; 

Szulkin et al. 2010) based on empirical data from intensively studied populations of mammals 

and birds. Despite  FHr S ,ˆ  being significantly correlated with  PS FHr ,ˆ  in Slate et al. (2004) 

and Szulkin et al. (2010),  PS FHr ,ˆ  was often weaker than  FHr S ,ˆ  on average.  

 

This difference between the results of our study and of Slate et al. (2004) is not 

surprising. Using simulations, we were able to compare  FHr S ,ˆ2
 to  FHr S ,2

 where F is the 

error-free proportion of the genome that is identical by descent. Because they used empirical data 

from real populations, Slate et al. (2004) and Szulkin et al. (2010) were only able to compare

 FHr S ,ˆ  to  PS FHr ,ˆ , where in FP is an imperfect pedigree-based estimator of the F due only to 

the known (recent) common ancestors of parents. Errors in pedigree construction, related or 

inbred pedigree founders (Slate et al. 2004), and variation in the proportion of the genome that is 

IBD among individuals with the same FP (Franklin 1977; Hill & Weir 2011) is expected to cause 

 PS FHr ,ˆ  to be weaker than  FHr S ,  on average. These results demonstrate that the error prone 

nature of FP should be considered when using pedigrees to evaluate the performance of marker-

based measures of inbreeding and inbreeding depression.  

 

The standard deviation of  FHr S ,ˆ2
 was only slightly higher than the standard deviation 

of  FHr S ,2
 on average among simulation repetitions across all scenarios. This suggests that 

 FHr S ,ˆ2
 can be estimated precisely in a wide range of scenarios. Therefore 2ĝ  appears to be a 

very useful tool to determine how strongly heterozygosity is related to individual inbreeding 

across a broad range of scenarios. Thus, we believe that estimating  FHr S ,ˆ2
 should be standard 

practice in HFC studies.  
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We found that  Fsurvivalr ,ˆ2
 tended to be only slightly biased in all simulated 

scenarios.  Fsurvivalr ,ˆ2
 was upwardly biased when σ2(F) was 0.001, and downwardly biased 

when σ2(F) was 0.002 or higher. We believe that the magnitude of this bias is so small such that 

it is not likely to be important in practice (Figures 2-4, 2-S6). Despite having low bias,

 Fsurvivalr ,ˆ2
 was imprecise (i.e., high standard deviation among replicates relative to

) when σ2(F) was low. This suggests that HFC-based estimates of the strength of 

inbreeding depression will be unreliable in many study populations. Fortunately, we found that 

both the magnitude and statistical significance of 2ĝ  are good predictors of the error of 

 Fsurvivalr ,ˆ2
 (Figure 2-5). We suggest that  Fsurvivalr ,ˆ2

should have acceptably low 

sampling error when 2ĝ  is greater than approximately 0.005 and highly statistically significant 

(P ≈ 0.01).  

 

Number of loci 

 

The ability to reliably infer the effects of inbreeding depression in HFC studies depends strongly 

on the number of loci used and σ2(F). When the variance of F is very high (e.g., in partially 

selfing or small recently admixed populations) relatively few loci will be sufficient. For example, 

our simulations show that 10-25 microsatellite loci are sufficient to reliably detect both HFC and 

identity disequilibrium, and to precisely estimate the strength of inbreeding depression when 

σ2(F) is very high (e.g., with selfing rates of approximately 12% or greater and σ2(F) ≥ 0.017, 

Figures 2-S13, 2-S17). Conversely, when σ2(F) is relatively low (σ2(F) ≈ 0.001), as in some 

random mating populations, even very large numbers of markers (100 microsatellite loci or 1000 

SNPs) are often insufficient to reliably detect ID when HFCs are detected. The recent historical 

demography and mating systems of study populations (when known) may provide some clues 

regarding whether σ2(F) is likely to be high or low, and thus whether large numbers of markers 

are necessary to achieve high power to detect HFC and ID. 

 

The necessary number of loci to detect both identity disequilibrium and HFC should vary 

with the number of sampled individuals in addition to σ2(F). The effects of sample size versus 

the number of loci on the detection of HFC and ID is beyond the scope of this study. We chose 

the sample size of 120 individuals (two generations) for HFC and ID tests because it is typical of 

previous HFC studies (Chapman et al. 2009). A given investment in increasing sample size could 

potentially increase the power to detect both ID and HFC more than a similar investment in 

increasing the number of loci. An interesting avenue of research for the future would be to 

evaluate the relative influence of sample size versus number of markers on the power to detect 

ID and HFC.  

 

When is σ2(F) expected to be high? 

 

The σ2(F) of a particular population is affected by the mating system, the local Ne (genetic drift), 

and gene flow from other populations. Our simulations covered a limited range of demographic 

and mating system scenarios so it is worth exploring how these factors are expected to affect 

σ2(F). Partially selfing populations (e.g., of some plant species) probably have some of the 

 Fsurvivalr ,2
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highest σ2(F) in natural populations due to a mixture of the highly inbred offspring resulting 

from self fertilization (FP ≥ 0.5) and the relatively non-inbred offspring of randomly mated 

parents. Populations with small Ne (strong drift) and occasional pulses of immigrants should also 

produce high σ2(F) (Figure 2-1). The mean F of residents in populations with small Ne should be 

high due to strong genetic drift, and offspring from matings between residents and unrelated 

immigrants will be non-inbred (F ≈ 0), creating a mixture of highly inbred and relatively outbred 

individuals.   

 

Grueber et al. (2011) compiled estimates of σ2(FP) from empirical studies of vertebrates. 

The highest observed values of σ2(FP) were from very small, highly inbred populations. σ2(F) 

was 0.015 in a population of large ground finches (Geospiza magnirostris) that was founded by 

two individuals and consisted of a mixture of highly inbred residents (FP ≥ 0.25) and relatively 

non-inbred offspring of immigrants (Grant et al. 2001). A captive population of grey wolves 

(Canis lupus) founded with only eight individuals (Hedrick et al. 2001) had σ2(FP)=0.019. These 

examples illustrate that σ2(F) or σ2(FP) can be very high in non-selfing populations with strong 

local genetic drift followed by admixture or gene flow. Bottleneck and assignment tests and 

estimates of Ne might together be applied to help identify populations that experienced strong 

local drift and recent admixture (Rannala & Mountain 1997; Luikart et al., 1998, 2010; Pritchard 

et al. 2000).  

 

Conclusions 

 

1. Studies that detect HFCs caused by inbreeding depression will commonly fail to detect ID, 

which is often tested for to detect variation in individual inbreeding (and thus inbreeding 

depression as a cause of HFC). This results from tests for ID and HFC failing to 

simultaneously cross the statistical significance threshold. Therefore, failure to detect ID 

should not be interpreted as strong evidence that an HFC was not caused by inbreeding 

depression.  

 

2. We suggest that using ID to estimate the association between heterozygosity and F should be 

standard practice in HFC studies. This procedure performs well across a wide range of 

scenarios, and reliably elucidates how informative heterozygosity is of F. Researchers can 

easily estimate g2 with the RMES program (David et al. 2007) available at 

http://www.cefe.cnrs.fr/en/genetique-et-ecologie-evolutive/patrice-david . 

 

3. We suggest focusing on the 2r̂  between fitness components and F, while considering the the 

magnitude and statistical significance of 2ĝ . A combination of relatively high 2ĝ  (e.g., 2ĝ  ≥ 

0.005) and high statistical significance (e.g., P ≈ 0.01) strongly suggests that the strength of 

inbreeding depression can be precisely estimated. HFCs alone (even with associated positive 

tests for identity disequilibrium) provide little information about how strongly inbreeding 

affects fitness components.  

 

4. The number of loci needed to reliably detect an HFC and ID depends strongly on σ2(F) and 

thus the mating system and recent demography (e.g., bottleneck and admixture history) of the 

study population. We believe that researchers should carefully consider these factors when 

designing and interpreting the results of HFC studies.   
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The combined use of the results and guidelines presented here, along with increasingly large 

genetic data sets, has enormous potential to increase our understanding of the effects of 

inbreeding on fitness in natural populations.   
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Figure 2-1. The variance of F (σ2(F)) in simulated random mating (A) and partially selfing (B) 

populations. The data are shown from the last two generations of 100 simulations for each of 

eight migration rates (m) and six selfing rates (S). 
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Figure 2-2. The proportion of simulations with statistically significant HFCs that also had 

statistically significant tests for identity disequilibrium plotted against the variance of F (σ2(F)). 

Results are shown from simulations using six diploid lethal equivalents, microsatellite loci (A), 

and SNPs (B). Error bars are 95% confidence intervals. The dashed lines represent 80% of 

simulations with statistically significant HFC also having statistically significant g2.  
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Figure 2-3. The true ( ),(2 FHr S ) and estimated ( ),(ˆ2 FHr S ) proportion of variance in Hs 

explained by F (+/- one standard deviation) versus the variance of F (σ2(F)). The data shown are 

from simulations of random mating populations with 6 diploid lethal equivalents, and using 100 

SNPs (top row) and 500 SNPs (bottom row). Results are shown from simulations of genomes 

with 20 chromosomes and 3600 cM (left column) and 10 chromosomes and 1000 cM (right 

column). Filled circles represent ),(ˆ2 FHr S , and open circles represent ),(2 FHr S .The dashed 

line represents r2 = 0.8. Asterisks indicate a statistically significant difference between the mean 

),(2 FHr S  and the mean ),(ˆ2 FHr S . Results from analyses based on microsatellite loci and 

different numbers of loci and are shown in the supplementary materials.  
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Figure 2-4. The mean true (  Fsurvivalr ,2
) and estimated (  Fsurvivalr ,ˆ2

) proportion of 

variance in survival due to variation in F (+/- one standard deviation) versus the variance of F 

(σ2(F)).  The data shown are from simulations of random mating populations with 6 diploid lethal 

equivalents, and using 50 microsatellite loci and 500 SNPs. Asterisks indicate statistically 

significant differences between the median  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

. Open circles 

represent the true values of  Fsurvivalr ,2
, and closed circles represent  Fsurvivalr ,ˆ2

. Results 

for different numbers of loci show a similar pattern, and are shown in Figure 2-S6.   
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Figure 2-5. Errors of the estimated proportion of variance in fitness due to variation in F (

 Fsurvivalr ,ˆ2
) versus estimates of g2 (A) and the P-values from g2 tests for identity 

disequilibrium (B). Data are from all simulations with random mating and six lethal equivalents. 

The individual estimation errors are shown as gray points. The solid black lines are loess 

functions fit to the 5th and 95th running quantiles of the estimation errors, and show how the 

precision of  Fsurvivalr ,ˆ2
 varies with g2 (A) and its associated P-value (B). The dashed black 

lines represent the value of g2 above which 95% of errors are within 0.2 units from one another 

(A), and the P-value below which 95% of estimation errors of  Fsurvivalr ,ˆ2
 are within 0.2 

units of one another (B). 
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CHAPTER 3: Measuring individual inbreeding in the age of genomics: marker-based 

measures are better than pedigrees 

 

Abstract  

 

Inbreeding (mating between relatives) can dramatically reduce the fitness of offspring by causing 

a fraction of the genome to be identical by descent. Thus, measuring individual inbreeding is a 

crucial part of many studies in ecology, evolution, and conservation biology. We used 

simulations to determine which of three common measures of individual inbreeding best predicts 

the proportion of the genome that is identical by descent (PGIBD) in small populations: 1) the 

pedigree inbreeding coefficient (FP); 2) the excess of individual homozygosity relative to Hardy-

Weinberg expected homozygosity (FH); and 3) the proportion of the genome inferred to be in 

long runs of homozygosity (FROH). PGIBD was more strongly correlated with FH and FROH than 

with FP across a broad range of simulated scenarios when thousands of SNPs were used. For 

example, PGIBD was more strongly correlated with FROH (estimated with ≥35000 SNPs) and FH 

(estimated with ≥5000 SNPs) than with FP, regardless of pedigree depth, in small partially 

isolated populations. PGIBD was always more strongly correlated with FH than with FROH when 

25K or fewer SNPs were used. However, the correlation between PGIBD and FROH was at least 

as strong as the correlation between PGIBD and FH when 35K or more SNPs were used. Our 

results suggest that PGIBD can be more precisely predicted with genetic markers than with 

pedigrees. Considering the imprecision of FP, and the great difficulty associated with obtaining 

reliable pedigrees, we encourage researchers to soon adopt genomic measures of PGIBD as the 

necessary resources quickly become available. 

 

Introduction 

 

Biologists have long recognized that inbred individuals (those whose parents are closely related) 

often have lower fitness than the offspring of unrelated parents (Darwin 1868). The cumulative 

effects of inbreeding on individual fitness can reduce the population growth rate and the 

probability of persistence (Madsen et al. 1999; O'Grady et al. 2006; Saccheri et al. 1998; 

Westemeier et al. 1998). Consequently, measuring individual inbreeding is a crucial part of 

many studies in ecology, evolution, and conservation biology.  

 

Inbred individuals have lower genome-wide heterozygosity because a fraction of loci are 

‘identical by descent’. A locus is identical by descent if it carries two gene copies that both 

originated from a single copy in a common ancestor of the parents. All measures of individual 

inbreeding seek to predict the proportion of the genome that is identical by descent (PGIBD). 

Unfortunately, it is has historically been very difficult to precisely measure PGIBD using either 

pedigrees or genetic markers. 

 

 The classical measure of PGIBD is the pedigree inbreeding coefficient FP (Keller & 

Waller 2002; Wright 1922). FP predicts PGIBD due to the known common ancestors of parents. 

FP has often been considered the best measure of individual inbreeding (Pemberton 2004; 

Pemberton 2008). However, pedigrees are often impractical because they require multiple 

generations of accurate parentage assignments. Additionally, some classical (Franklin 1977) and 
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recent research (Forstmeier et al. 2012; Hill & Weir 2011) cast doubt on the superiority of FP 

over marker-based approaches.  

 

PGIBD can very substantially among individuals with the same pedigree (Franklin 1977; 

Hill& Weir 2011). The standard deviation of PGIBD (σIBD) around the expected value of FP is 

higher among organisms with fewer chromosomes or a shorter genetic map length (Franklin 

1977; Hill & Weir 2011). For example, consider the offspring produced from one generation of 

selfing (Figures 3-1 & 3-S1). All of the offspring have FP = 0.5. When there is one chromosome 

without recombination, each gamete is derived from a single chromosome copy in the parent. In 

this case, half of the offspring have PGIBD = 0, the other half have PGIBD = 1, and σIBD among 

the offspring is 0.5. When the chromosome has a genetic map length is 100 cM (one 

recombination per meiosis on average), σIBD among the offspring is 0.31 (Franklin 1977). If we 

split the genome into  20 equally sized chromosomes and hold genetic map length at 100 cM, the 

expected σIBD among the offspring is then reduced to 0.096 (Franklin 1977). This example 

illustrates that FP can be an imprecise measure of PGIBD, particularly for organisms with few 

chromosomes or a short genetic map. Additional imprecision of FP can result from errors in 

pedigrees (e.g., due to false parentage assignments and missing individuals) or violating the 

assumptions of unrelated and non-inbred founders. Therefore FP may often be an imprecise 

measure of the PGIBD, even when pedigrees are free of errors. 

 

 The increasing availability of genomic resources (e.g., many thousands of mapped SNPs) 

is making it possible to more precisely measure PGIBD with genetic markers than ever before. In 

particular, genome-scale molecular genetic data might make it possible to more precisely 

estimate PGIBD with molecular genetic data than with pedigrees. For example, PGIBD can be 

estimated as the reduction of multiple-locus heterozygosity (MLH) relative to Hardy-Weinberg 

expected homozygosity (FH) (Purcell et al. 2007). This is possible because of the expected 

decline in MLH among individuals whose parents are more closely related. Heterozygosity-

based measures of inbreeding are expected to be imprecise when relatively few markers are used 

because of high sampling variance (Balloux et al. 2004; Slate et al. 2004; Szulkin et al. 2010). 

Fortunately, the precision of marker-based measures of PGIBD will increase as more molecular 

markers (e.g., thousands of SNPs) rapidly become available. 

         

IBD sites in the genome occur in contiguous homozygous chromosome segments (Figure 

3-1) commonly referred to as ‘runs of homozygosity’ (ROH) (Chapman & Thompson 2003; 

Fisher 1965; McQuillan et al. 2008). The distribution of ROH lengths within an individual is 

determined by the number of generations since the common ancestor(s) of the parents and the 

recombination rate (Chapman & Thompson 2003). Inbreeding due to recent ancestors creates 

very long ROH on average (e.g., up to dozens of megabases in length). Inbreeding due to very 

distant ancestors creates shorter ROH on average, because of an increased number of meioses 

separating an inbred individual from it parents’ common ancestor(s). ROH are expected to be 

longer in species with lower recombination rates due to fewer crossovers along a given 

chromosome throughout an inbred individual’s ancestry. 

 

It is possible to identify ROH as long consecutive runs of homozygous genotypes at 

mapped single nucleotide polymorphisms (SNPs). The fraction of an individual’s genome that is 

inferred to be in ROH (FROH) can then be used as an estimate of PGIBD (McQuillan et al. 2008). 
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FROH has been widely used in studies of individual inbreeding and inbreeding depression in 

humans (Kirin et al. 2010; McQuillan et al. 2012; McQuillan et al. 2008). Runs of homozygosity 

have seldom been analyzed in natural populations (e.g., Pollinger et al. 2011), but hold great 

promise for our understanding of inbreeding and its fitness effects in the wild.  

 

Little is known about the relative performance of FROH, FH and FP as measures of 

PGIBD. One previous study found that the number of homozygous rare alleles within an 

individual (a proxy for PGIBD) was more strongly correlated with FROH than with other marker-

based inbreeding measures or FP (Keller et al. 2011). However, their study was focused only on 

large populations (Ne ≥ 100) and did not account for the effects of genetic map length, 

chromosome number (e.g., they simulated 220 cM genomes with two chromosomes) or SNP 

density across the genome. As noted above, the genetic map length and chromosome number can 

strongly affect the precision of FP. It follows that FP should be more weakly correlated with 

PGIBD in organisms with shorter map lengths. We believe that a thorough evaluation of the 

relative performance of FP, FROH, and FH in small populations (where inbreeding depression is 

most likely to occur) is badly needed. Such an analysis would advance our understating of how 

PGIBD (and inbreeding depression) should be measured as we quickly move into an era when 

tens of thousands of genetic markers will be commonplace in genetic studies of natural 

populations.    

 

In this study, we asked whether PGIBD was better predicted by FP, FROH, or FH in small 

populations which are of the greatest concern for conservation. Specifically we evaluated the 

precision and bias of FP, FROH, and FH as measures of PGIBD in small populations with genomic 

characteristics typical of mammals. We addressed this objective while accounting for the depth 

of the pedigree used to estimate FP, the number of markers used to estimate FROH and FH, genetic 

map length of the genome, and demographic history. 

 

Methods 

 

Computer Simulation model 

 

We wrote a stochastic, individual-based simulation program for R version 3.0.1 (R Core Team 

2013). Below we describe the major components of the simulation program. An R script for our 

simulation model is available in the Dryad data repository (see Data Accessibility).  

 

We simulated a sexually reproducing, hermaphroditic, non-selfing species with non-

overlapping generations. We included recombination in our simulations and kept track of the 

ancestral origin of each chromosome segment. We simulated 3Gb genomes with 20 

chromosomes of equal size. We simulated only 20 chromosomes because the number of 

chromosomes is not expected to strongly affect σIBD when genetic map lengths are in the range 

we simulated (Figure 3-S1, Franklin 1977). We used two different recombination rates in order 

to evaluate the effect of genetic map length on the precision of FP, FROH, or FH. First, we 

simulated a recombination rate of 1.2 cM/Mb which is similar to humans (Jensen-Seaman et al. 

2004) and resulted in a genetic map length of 3600 cM. We also simulated a recombination rate 

of 0.27 cM/Mb which is typical of the lower end of the distribution of recombination rates 

among mammals (Dumont & Payseur 2008) and resulted in a genetic map length of 800 cM. 
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Most mammals have large genomes in terms of physical size (e.g., ≥ 2.5Gb) (Dumont & Payseur 

2008). However, the genetic map length varies considerably among mammals. For example, 

genetic map lengths ranged from approximately 650 cM in short-tailed opossum (Monodelphis 

domestica) to > 3600 cM in humans (Dumont & Payseur 2008).    

 

Our model of recombination is conceptually identical to the simulations of Chapman & 

Thompson (2012). This model of recombination is based on Fisher’s theory of junctions (Fisher 

1965). We assume no interference among chiasmata, and that the number of crossovers along a 

chromosome is Poisson distributed. We also assume that the recombination rate is constant 

across the genome and among individuals.  

 

Population founders (those in the first simulated generation) were unrelated and carried 

two unique copies of each chromosome; thus PGIBD for an individual is relative to the non-

inbred founders of the population. Our model is flexible in terms of the migration rate (m, the 

probability of an individual within a population being an immigrant) and temporal changes in 

population size. Simulation output included the true PGIBD for each individual in the final 

simulated generation. Simulation output also included genotypes at 100,000 SNPs with mean He 

= 0.3. We included only 100,000 SNPs because adding additional loci did not substantively 

affect the precision of the marker based measures of PGIBD in preliminary simulations (data not 

shown). SNP positions in the genome were randomly distributed across the genome using a 

random number generator.  

 

Simulated demographic scenarios  

 

We focused on two demographic scenarios for small populations. First we simulated partially 

isolated small populations (Ne = 20) receiving an occasional unrelated immigrant (m = 0.05, one 

immigrant per generation on average). This first scenario represents small populations on habitat 

islands with occasional immigration from a large source population – e.g., populations on 

oceanic islands with intermittent immigration from a large mainland population. Immigrants 

were unrelated to each other and to residents, and had genotypes drawn from the same allele 

frequency distribution as population founders. We ran simulations for this first scenario for 150 

generations. Second, we simulated closed populations that were initially large (Ne = 500) but 

then experienced a reduction in size to Ne = 20. This second scenario represents populations that 

have recently experienced a sharp reduction in Ne. We ran these simulations for 90 generations 

with Ne = 500, then reduced Ne to 20 for an additional 10 generations. We ran twenty replicate 

simulations for both scenarios. The mean and variance of PGIBD were 0.16 and 0.01 on average 

in simulated partially isolated populations.  In simulated populations with recently reduced Ne, 

the mean and variance of PGIBD were 0.22 and 0.003 on average.  

 

We also simulated an additional demographic scenario to determine if the relative 

performance of the different PGIBD estimators was sensitive to population size. For this 

demographic scenario, we simulated twenty replicates of populations with a constant size of Ne = 

100 and m = 0.01.  
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Measuring PGIBD 

 

We defined PGIBD so that we would account for inbreeding due to recent ancestors, excluding 

the effects of inbreeding due to very distant ancestors – an approach consistent with most studies 

of PGIBD in humans (McQuillan et al. 2012; McQuillan et al. 2008). We adjusted the minimum 

length of the ROH used to calculate PGIBD according to the genetic map length. The genetic 

map length strongly affected the distribution of ROH lengths in our simulations. For example, 

the mean ROH length was 23.8 Mb in partially isolated populations with a genetic map length of 

800 cM. However, in partially isolated populations with a genetic map length of 3600 cM, the 

mean ROH length was 6.2 Mb. Therefore, we defined PGIBD as the fraction of the genome in 

ROH that were 8 Mb or longer for simulations of 800 cM genomes. PGIBD was defined as the 

fraction of the genome in ROH that were 2 Mb or longer for simulations of 3600 cM genomes.  

 

We used the program PLINK (Purcell et al. 2007) to detect ROH in the genomes of 

simulated individuals. We chose PLINK because it is commonly used in ROH studies and it has 

been shown to more reliably detect ROH than other algorithms (Howrigan et al. 2011). PLINK 

slides a window of 50 SNPs across the genome to identify ROH. PLINK allows the user to 

define the criteria for assigning a chromosome segment as being in an ROH. Specifically, the 

user can define the minimum number of contiguous homozygous SNPs, a minimum marker 

density (expressed as Kb/SNP), and the minimum length in Kb for a homozygous region to be 

considered in an ROH. Additionally the user can specify the maximum gap between adjacent 

SNPs allowed within an ROH. We adjusted the ROH detection parameters in PLINK based on 

the number of loci being used and the length of ROH being evaluated. The PLINK ROH 

detection settings we used are shown in Table S1. We used PLINK ROH detection parameters 

similar to previous studies of humans that used different numbers of SNPs to detect ROH (Kirin 

et al. 2010; McQuillan et al. 2012).  

 

We estimated FROH as the sum of the lengths of all detected ROH that were 2 Mb or 

longer divided by the physical genome size (3 Gb) for simulations of 3600 cM genomes (typical 

of many vertebrates). For simulations of 800 cM genomes, we estimated FROH considering only 

detected ROH 8 Mb or longer. We used 15K-100K SNPs to estimate FROH and FH. We estimated 

FH as described in Purcell et al. (2007) using PLINK. There are several other heterozygosity-

based measures of individual inbreeding that could be used (Chapman et al. 2009). However, all 

of these measures are highly correlated and non-independent (Chapman et al. 2009). Thus using 

a different marker-based measure of PGIBD is unlikely to have substantively affected our 

results. We used the kinship2 package in the program R (Therneau et al. 2011) to estimate FP for 

each individual using 3-20 generations of pedigree information. 

 

Some studies put SNP genotype data through a process called ‘linkage disequilibrium 

pruning’ (LD pruning) before attempting to detect ROH (e.g., McQuillan et al. 2012). This 

involves removing from a data set one SNP from each pair of loci in a window of 50 SNPs that 

are above a user defined LD significance threshold. This is done in order to avoid detecting 

common ROH caused by high frequency ancestral haplotypes (e.g., due to natural selection). We 

chose not to use LD pruning here because our simulations did not include selection, so all long 

ROH should be reflective of parental relatedness and not of deep historical selection events. 
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Nevertheless, we reran analyses of partially isolated populations with a genetic map length of 

3600 cM after LD pruning, and found that our results did not change substantively (Figure 3-S2). 

 

Comparing the performance of FP, FH, and FROH  
 

We used the proportion of variance in PGIBD explained by FROH, FH and FP (r
2) from simple 

linear regression models to evaluate the precision of each measure of PGIBD. We conducted 

separate regressions of FROH, FH and FP versus PGIBD for the individuals in the final generation 

of each simulated population. We used a natural log transformation to normalize the distribution 

of FP before conducting regressions of FP versus PGIBD. We then used two tailed t-tests to 

determine if the mean r2 with PGIBD (among 20 replicate simulations) was statistically 

significantly different for FROH, FH and FP. We compared all possible combinations of pedigree 

depth (for FP) and number of SNP used (for FH and FROH) when testing if the mean r2 with 

PGIBD was statistically significantly different for FP versus FH or FROH. Likewise, we tested all 

possible combinations of the number of SNPs used to estimate FROH and FH when testing if the 

correlation with PGIBD was statistically significantly different for FROH and FH. We also used t-

tests to determine if the mean r2 with PGIBD was statistically significantly different for FROH, FH 

and FP when the genetic map length was 800 cM instead of 3600 cM.  

 

We measured bias as the mean amount by which FP, FH, and FROH over- or under-

estimated PGIBD. As with r2, we measured the bias of FP, FH, and FROH only considering 

individuals in the last generation of each simulated population.  

 

Results 

 

We first present results on the precision and bias of FP, FH, and FROH from simulations using a 

genetic map length of 3600 cM. We then describe the effects of the genetic map length on the 

precision and bias of the PGIBD estimators.  
 

Precision in partially isolated small populations 

 

The correlation of PGIBD with FH and FROH was almost always stronger than the correlation 

between PGIBD and FP in partially isolated populations (Figure 3-2). The correlation between FP 

and PGIBD was very weak when pedigrees included few (e.g., ≤5) generations in partially 

isolated populations. For example, the mean r2 between FP and PGIBD (across 20 simulation 

repetitions) was 0.32 when three pedigree generations were used (i.e., when using complete 

pedigrees three generations deep). However, when pedigrees included twenty generations, the r2 

between PGIBD and FP was 0.92. The r2 between FH and PGIBD was ≥ 0.88 when ≥ 1000 SNPs 

were used.  The r2 between PGIBD and FROH was > 0.97 when ≥ 35K SNPs were used.  

 

            The mean r2 between PGIBD and FH estimated with ≥5K SNPs was statistically 

significantly higher than the mean r2 between PGIBD and FP regardless of how many 

generations of pedigree were used to estimate FP (P < 0.002 for all comparisons, t-tests). FH 

estimated with 1K SNPS had a statistically significantly higher mean r2 with PGIBD than FP 

estimated with five or fewer generations of pedigree (P < 0.0001 for all comparisons, t-tests). 

The r2 between PGIBD and FROH estimated with 50K SNPs was statistically significantly higher 
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than the mean r2 between PGIBD and FP regardless of the number of pedigree generations used 

to estimate FP (P < 0.0001 for all comparisons t-tests).  

 

            PGIBD was more strongly correlated with FH than with FROH when relatively few SNPs 

were used (Figure 3-2). For example, the r2 between FH and PGIBD was statistically 

significantly higher than the mean r2 between FROH and PGIBD when 35K or fewer SNPs were 

used (P < 0.0001 for all comparisons, t-tests). However, the r2 between FH and PGIBD (mean r2 

= 0.99) was only slightly higher than the r2 between PGIBD and FROH (mean r2 = 0.97) when 

35K SNPs were used. Plots of FP, FH and FROH versus PGIBD from a representative simulation 

of a partially isolated population are shown in Figure 3-3. 

 

Bias in partially isolated small populations 

 

FP and FH consistently underestimated PGIBD in partially isolated populations (Figure 3-4). FP 

estimated with three generation pedigrees underestimated PGIBD by 0.14 on average. However, 

FP underestimated PGIBD by less than 0.05 on average when pedigrees included twenty 

generations. FH underestimated PGIBD by approximately 0.2 on average. The number of loci 

used to estimate FH had no effect on bias. FROH underestimated PGIBD when relatively few loci 

were used but this bias decreased as more SNPs were used (Figure 3-4). For example, FROH 

underestimated PGIBD by > 0.15 on average when 15K SNPs were used. However, FROH 

estimated with 100K SNPs was an unbiased estimator of PGIBD. 

 

Precision in populations with recently reduced Ne 

 

PGIBD was almost always more strongly correlated with FH and FROH than with FP in 

populations with recently reduced Ne. Increasing the depth of the pedigree beyond five 

generations had no effect on the r2 between FP and PGIBD in populations with recently reduced 

Ne (Figure 3-2). The mean r2 between FP and PGIBD was never higher than 0.66 in this 

demographic scenario. The mean r2 between PGIBD and FP estimated with a three generation 

pedigree was 0.49.  

 

             The mean r2 between PGIBD and FH estimated with 1K SNPs was statistically 

significantly higher than the mean r2 between PGIBD and FP estimated with three generation 

pedigrees (P < 0.0001, t-test). PGIBD was more strongly correlated with FH estimated with 5K 

SNPs than with FP regardless of pedigree depth (P < 0.0001 for all comparisons, t-tests). The r2 

between PGIBD and FROH estimated with 35K SNPs was statistically significantly higher than 

the mean r2 between PGIBD and FP regardless of pedigree depth. 

  

             The relative performance of FH and FROH was similar in populations with a recent 

reduction in Ne compared to partially isolated populations. For example, the mean r2 between 

PGIBD and FH was statistically significantly higher than the mean r2 between PGIBD and FROH 

when 35K or fewer SNPs were used (P < 0.0001 for all comparisons, t-tests). However, the 

magnitude of the difference in the correlation with PGIBD for FH and FROH was small when 35K 

SNPs were used. The r2 from regressions of PGIBD versus FH and FROH were slightly lower 

when 25-35K SNPs were used in populations with recently reduced Ne than in partially isolated 

populations (Figure 3-2). 
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Bias in populations with recently reduced Ne 

 

FP, FH, and FROH had very similar bias in populations with recently reduced Ne compared to 

small partially isolated populations (Figure 3-4). FP estimated with three generation pedigrees 

underestimated PGIBD by approximately 0.2 on average. FP again underestimated PGIBD by 

less than 0.05 on average when pedigrees included twenty generations. FH underestimated 

PGIBD by approximately 0.28 and the number of loci used to estimate FH again had no effect on 

bias. FROH underestimated PGIBD by > 0.2 on average when only 15K SNPs were used.  

However, FROH underestimated PGIBD by < 0.03 when 100K SNPs were used.  

 

Effects of the genetic map length on the precision and bias 

 

FP was a less precise measure of PGIBD when the genetic map length was 800 cM instead of 

3600 cM (Figures 3-2 & 3-S2). The difference in the mean r2 between PGIBD and FP across 

different genetic map lengths was statistically significant (P < 0.05 for all comparisons, t-tests) 

except when pedigrees included 3-5 generations in partially isolated populations. The difference 

in the precision of FP across different genetic map lengths was particularly large among 

simulations of populations with recently reduced Ne. For example, the mean r2 between PGIBD 

and FP estimated with a three generation pedigree was 0.49 when the genetic map length was 

3600 cM in populations with recently reduced Ne (Figure 3-2). However, when the genetic map 

length was 800 cM, the mean r2 between PGIBD and FP estimated with three generation 

pedigrees was only 0.24 in populations with recently reduced Ne (Figure 3-S2).  

 

            There was a smaller difference in the precision of FP across different genetic map lengths 

in partially isolated populations (Figures 3-2 & 3-S2). For example, the mean r2 between PGIBD 

and FP estimated with three generation pedigrees was 0.32 when the genetic map length was 

3600 cM in partially isolated populations. However, the mean r2 between PGIBD and FP 

estimated with three generation pedigrees was 0.27 when the genetic map length was 800 cM in 

partially isolated populations.  

 

            The genetic map length had little effect on the r2 between FH and PGIBD (Figures 3-2 & 

3-S2). For example, the difference in the r2 between PGIBD and FH across different map lengths 

was > 0.01 in magnitude and statistically significant (P < 0.05) only when 1000 SNPs were used. 

However, the r2 between FROH and PGIBD was higher when the genetic map length was 800 cM 

rather than 3600 cM and ≤ 35K SNPs were used. The mean r2 between PGIBD and FROH 

estimated 25K SNPs was 0.91 when the genetic map length was 800 cM and only 0.64 with a 

genetic map length of 3600 cM in populations with recently reduced Ne.  

 

            The bias of FP and FH were unaffected by the genetic map lengths of the simulated 

genomes (Figures 3-4 & 3-S3). However, FROH tended to be more downwardly biased among 

simulations with a genetic map lengths of 3600 cM; this difference in bias was similar for both 

demographic scenarios (Figures 3-4 and 3-S3). For example, the FROH estimated with 35K SNPs 

had a mean downward bias of 0.17 when the genetic map lengths was 3600 cM in populations 

with recently reduced Ne. However, the mean downward bias of FROH estimated with 35K SNPs 

was only 0.05 when the genetic map length was 800 cM. 
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            The results from our simulations of partially isolated populations with Ne = 100 were 

qualitatively similar to the results presented above (Figure 3-S5) and are thus not presented in 

detail. 

 

Discussion  

 

In this study, we asked whether FP, FH, or FROH better predicts PGIBD in small populations. We 

found that FP had the weakest correlation with PGIBD, particularly among simulations of 

genomes with short genetic maps. Additionally, PGIBD was more strongly correlated with FH 

than with FROH when fewer than 25-35K SNPs were used. Our results suggest that marker-based 

measures of PGIBD based on thousands of loci should be preferred over FP.  

 

Bias and precision 

 

The bias and imprecision of FP have two major sources. First, as discussed above, there can be 

high variance in PGIBD among individuals with the same FP (Franklin 1977; Hill & Weir 2011; 

Stam 1980). This imprecision may partially explain why MLH is usually only weakly related to 

FP, and why heterozygosity-fitness correlations are sometimes observed when FP-fitness 

correlations are absent (Forstmeier et al. 2012). Mendelian sampling and a finite genetic map 

length is expected to weaken the correlation between FP and PGIBD, but not to cause FP to 

underestimate PGIBD. The most likely cause of downward bias in FP in our study is close 

relatedness and inbreeding of pedigree founders. When founders are related, inbreeding due to 

common ancestors deeper in an individual’s ancestry is not accounted for, thus causing FP to 

underestimate PGIBD. Having high variance in founder relatedness could weaken the correlation 

between PGIBD and FP by causing variation among individuals in the magnitude of the 

underestimation of PGIBD. FP will also underestimate PGIBD for individuals whose parents 

have a common ancestor that is an inbred founder. A focus of future research should be to 

determine the relative influence of related or inbred pedigree founders versus Mendelian 

segregation and recombination on the weak correlation between FP and PGIBD.  

 

 Pedigrees are not only an imprecise and biased measure of PGIBD, they will also often 

be more difficult to obtain than sufficient molecular genetic data to precisely measure PGIBD. 

Very large numbers of SNPs can currently be typed for any organism, for example by restriction-

site-associated DNA sequencing (RAD-seq) (Davey et al. 2011), or targeted resequencing 

(Cosart et al. 2011). Such new sequencing technologies, along with the increasing number of 

whole genome reference sequences (Haussler et al. 2009) are making it possible to precisely 

measure PGIBD with molecular markers. Obtaining genotypes at very large numbers of SNPs is 

still expensive, but this cost will almost always pale in comparison to the difficulty of obtaining 

accurate, multi-generation pedigrees for free-ranging natural populations. Considering the 

imprecision of FP, and the great difficulty associated with obtaining reliable pedigrees, we 

encourage researchers to soon adopt genomic measures of PGIBD as the necessary resources 

quickly become available. 
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Effects of genetic map length on the relative performance of PGIBD estimators 

 

Our results suggest that the advantages of FROH and FH over FP are greatest in organisms with 

short genetic map lengths. The shorter simulated genetic map length (800 cM compared to 3600 

cM) reduced the precision of FP in our simulations (Figures 3-2 & 3-S2). The reduced precision 

of FP in organisms with shorter genetic maps was particularly strong in our simulations of 

populations with recently reduced Ne (Figures 3-2 and 3-S2). The reduced precision of FP among 

organisms with shorter map lengths is easily attributed to the higher variance in PGIBD among 

individuals with the same FP because of fewer crossovers per meiosis on average (Franklin 1977; 

Hill & Weir 2011). The correlation between PGIBD and FH was unaffected by map length. FROH 

had a stronger correlation with PGIBD when the genetic map length was 800 cM instead of 3600 

cM and relatively few SNPs (e.g., 25-35K) were used (Figures 3-2 & 3-S2). Longer ROH are 

expected to be more easily detected with a given number of markers. Thus the increased 

precision of FROH for genomes with a short map length is most likely due to a higher mean ROH 

length. These findings suggest that FP should be viewed with particularly strong skepticism when 

used as a measure of PGIBD in organisms with very short genetic map lengths. 

 

Effects of the number of loci on the performance of FROH and FH 

 

FROH was always weakly correlated with PGIBD when fewer than 25-35K SNPs were used. 

Additionally, FROH consistently underestimated PGIBD when fewer than 100K SNPs were used. 

The weak correlation with PGIBD and the downward bias of FROH are easily explained by a 

failure of low density SNPs to detect a large fraction of ROH. A larger fraction of ROH are 

detected when more markers are used, thus elevating the correlation with PGIBD and decreasing 

the downward bias of FROH (Figures 3-2 & 3-4). These results show that more markers are 

needed to obtain unbiased estimates of PGIBD than to obtain a strong correlation between FROH 

and PGIBD. The precision of FROH (i.e., its r2 with PGIBD) is probably more important than its 

bias to most researchers. The r2 between FROH and PGIBD is informative of whether individuals 

are correctly ranked with respect to PGIBD. Correctly ranking individuals with respect to 

PGIBD is the key to detecting inbreeding depression. However, as discussed below, unbiased 

estimates of PGIBD are also important in studies seeking to identify genes involved with 

inbreeding depression (Leutenegger et al. 2006).  

 

The number of SNPs necessary for unbiased and precise estimation of FROH in a given 

study system should depend on marker heterozygosity and genetic map length. First, mean 

heterozygosity of SNPs will strongly affect the precision and bias of FROH. Higher 

heterozygosity markers should provide higher power to correctly identify ROH. Long stretches 

of homozygous genotypes are less likely to occur just by chance outside of IBD chromosome 

segments when mean heterozygosity is high. Second, our results suggest that the genetic map 

length of the genome will affect the necessary number of markers. Organisms with longer 

genetic maps will require more SNPs to achieve the necessary minimum marker density to 

confidently detect ROH caused by recent ancestors. Organisms with shorter genetic map lengths 

will require fewer markers to confidently detect ROH caused by recent ancestors because of an 

increased average ROH length. Researchers could conduct simulations similar to the ones used 

in this study to evaluate the precision and bias of FROH given a particular genomic architecture, 

recombination rate, set of markers, and a range of likely demographic and inbreeding scenarios. 



35 

 

 

FH was always very strongly correlated with PGIBD (r2 > 0.9) when 5K or more SNPs 

were used in our study. However, FH consistently underestimated PGIBD and this magnitude of 

this bias was unaffected by the number of SNPs used. This bias can be explained by a 

discrepancy between the assumed and actual base populations used to estimate FH. FH and other 

similar heterozygosity-based statistics (e.g., Carothers et al. 2006) measure the proportional 

reduction of MLH relative to Hardy-Weinberg expected heterozygosity (He) (Purcell et al. 

2007). Individuals that have MLH < He are then inferred to be inbred. This approach implicitly 

assumes that an individual with MLH = He is non-inbred (i.e., its parents are unrelated). For this 

assumption to hold, the allele frequencies used to estimate He must be derived from a base 

population where all parents would be unrelated if mating occurred randomly. For example, 

consider an extremely large population (e.g., Ne ≈ ∞) with partial selfing. Here, genetic drift is 

essentially absent, and He would approximately equal the predicted MLH of an individual whose 

parents are unrelated. The proportional reduction in MLH relative to He would then provide an 

unbiased estimate of PGIBD (i.e., FH would equal zero for a non-inbred individual). However, in 

studies of real populations, allele frequencies are usually only available from one or a few small 

populations where inbreeding depression is of interest to a researcher. In this common scenario, 

He will not equal the MLH of a non-inbred individual because of historical genetic drift. 

Therefore, FH and other heterozygosity-based measures of inbreeding should be interpreted only 

after careful consideration of the individuals used to estimate allele frequencies. See Appendix 1 

for a mathematical treatment of the bias in FH.  

 

Relative benefits of FROH and FH 

 

FROH has several attractive qualities not shared by FH. First, analyses based on ROH can 

distinguish inbreeding due to recent versus distant ancestors (Kirin et al. 2010) whereas FH 

cannot. Inbreeding depression could often be caused mainly by inbreeding due to very recent 

ancestors if most deleterious recessive alleles are purged over many generations. FROH can 

specifically measure PGIBD due to recent ancestors by restricting analyses to very long ROH – 

thereby ignoring PGIBD due to distant ancestors which may not strongly affect fitness. 

Heterozygosity-based measures of PGIBD are affected by an individual’s entire ancestry. Thus 

the power and accuracy of tests for inbreeding depression might often by higher when PGIBD is 

measured with FROH instead of FH. However, it could be important to account for variation in 

PGIBD due to distant ancestors when purging is inefficient at removing a large proportion of the 

genetic load (e.g., when inbreeding depression is caused by many deleterious recessive alleles 

with small effect sizes). Deleterious recessive alleles with small effects could be found in ROH 

of all lengths as we expect them to persist for many generations. Thus, measuring inbreeding due 

to distant ancestors by using FH or by including short ROH in estimates of FROH could increase 

the power of tests for inbreeding depression in some studies. A logical approach would be to use 

both FH and FROH, and to test multiple minimum ROH length thresholds for inclusion in 

estimates of FROH.  

 

 A second strength of ROH-based methods in studies of inbreeding depression is that 

homozygosity mapping can be used to identify recessive variants responsible for inbreeding 

depression (Leutenegger et al. 2006). Homozygosity mapping takes advantage of the fact that 

affected inbred individuals should have ROH surrounding the genomic positions carrying 
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phenotypically active mutations (Leutenegger et al. 2006; McQuillan et al. 2008). Homozygosity 

mapping requires enough genetic markers to accurately estimate of genome-wide PGIBD in 

order to sufficiently control the type I error rate (McQuillan et al. 2008). Homozygosity mapping 

should be a powerful tool in the search for the genomic regions associated with inbreeding 

depression in natural populations.  

 

The current onslaught of DNA sequence data from non-model organisms is providing the 

tools necessary to use FROH in natural populations. Estimating FROH requires a reliable physical 

genome map. High quality reference genome assemblies from model or agricultural organisms 

can often be used as a physical genome map for closely related non-model study organisms 

(Cosart et al. 2011). Additionally, whole genome sequences are being constructed for many non-

model organisms (Haussler et al. 2009; Levine 2011). However, most species will lack reliable 

physical genome maps for some time. ROH-based approaches to studying inbreeding are not 

possible in such organisms. Fortunately, heterozygosity-based measures of PGIBD which do not 

require information on the location of markers in the genome, can precisely measure PGIBD 

when using only a few thousand loci. Additionally, our results suggest that FH will be 

substantially more precise measure of PGIBD than FROH when relatively few SNPs are available. 

When a reliable physical genome map and large numbers of SNPs are available, we suggest that 

FROH should be used to measure PGIBD because of its advantages discussed above.  

 

Conclusions 

 

In summary, our results suggest that genomic marker-based estimates of PGIBD are substantially 

more precise than FP. PGIBD is likely to be more precisely predicted with FH than with FROH 

when fewer than approximately 25-35K SNPs are available in organisms with genomic 

characteristics typical of mammals. When larger numbers of SNPs are available (> 

approximately 35K), FROH has several advantages including the ability to use homozygosity 

mapping to identify the loci causing inbreeding depression, and differentiating between 

inbreeding due to recent versus distant ancestors. The increased precision of FROH and FH over 

FP is greatest in organisms with short genetic maps. We encourage researchers to adopt Froh and 

FH (or other heterozygosity based measures of inbreeding) as the preferred measures of PGIBD 

as large numbers of markers and physical genome maps quickly become available for non-model 

organisms. 
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repository (doi:10.5061/dryad.54g7b). The Dryad DOI will not be active until the final version 

of the paper is published online. However, the script can be accessed for review here: 

http://datadryad.org/review?wfID=20036&token=b7e4c889-a18c-46c3-9eeb-3910cb21a756 
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Figure 3-1. ROH in a chromosome from the offspring resulting from one generation of selfing 

with (left) and without recombination (right). A single pair of homologous chromosomes are 

shown from a non-inbred parent (top) and the offspring of the individual (bottom). IBD segments 

occur in the offspring where both chromosomes are derived from a single chromosome in the 

parent. The mean PGIBD will be the same in both cases, but the variance of PGIBD is much 

greater without recombination. 
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Figure 3-2. Barplots of the mean r2 (+/- 1 s.d. across 20 simulated populations) from regressions 

of FP, FH and FROH versus PGIBD. Results shown here are from simulations of genomes with a 

genetic map length of 3600 cM. Results from 20 partially isolated (m = 0.05) small populations 

(local Ne = 20) are shown in the top row. The data shown in the bottom row are from 20 

populations with a recent reduction in Ne (from Ne = 500 to Ne = 20). Horizontal dotted lines are 

placed at r2 = 0.9 to aid comparison of r2 across FP, FH and FROH. 
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Figure 3-3. FP (A), FH (B), and FROH (C) versus PGIBD in a representative simulation of a 

partially isolated population with a genetic map length of 3600 cM. We used a pedigree that 

included 5 generations to estimate FP. FH was estimated with 5K SNPs, and Froh was estimated 

with 35K SNPs. The dashed lines have an intercept of zero and a slope of one. Points below the 

lines represent underestimates of PGIBD.  
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Figure 3-4. The bias of FP, FH, and FROH among simulations of genomes with a genetic map 

length of 3600 cM. Results from 20 simulations of partially isolated small populations are shown 

in the top row. Results from 20 simulations of populations with a recent reduction in Ne are 

shown in the bottom row. 
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CHAPTER 4: Cryptic pedigree founder relationships reduce the power to detect 

inbreeding depression: can genetic markers help?  

 

Abstract 

 

The pedigree inbreeding coefficient (FP) is often a poor predictor of the identical by descent 

proportion of the genome (F). Indeed, F can vary greatly among individuals with the same FP 

because of a limited number of recombinations during meiosis. Additionally, FP assumes that 

pedigree founders are unrelated and non-inbred. We used simulations to assess the precision of 

FP and the power to detect inbreeding depression when pedigree founders were inbred and 

related. We also assessed whether incorporating estimates of founder kinship (based on 100-500 

single nucleotide polymorphisms) into pedigree analyses substantially increased the precision of 

FP and the power to detect inbreeding depression. Inbred pedigree founders had no effect on the 

correlation between FP and F. However, FP was weakly correlated with F and the power to 

detect inbreeding depression was very low when most pedigree founders were related (e.g., in 

small partially isolated populations). Incorporating marker-based estimates of founder kinship 

into pedigree analyses increased the r2 between FP and F by < 20% in all simulated scenarios. 

However, accounting for founder kinship increased the power to detect inbreeding depression 

(caused by 10 lethal equivalents) by up to 25 times when pedigrees included ≤ 6 generations. 

Unfortunately, the power to detect inbreeding depression was still low (power < 0.7) after 

accounting for founder kinship in shallow pedigrees. We attribute the poor performance of FP 

corrected for founder kinship to strong downward bias and low precision of maximum likelihood 

kinship estimators. These results suggest that accounting for founder kinship will rarely result in 

precise pedigree-based estimates of F or high power to detect inbreeding depression. Future 

studies should consider using pure marker-based estimates of F and tests for inbreeding 

depression, particularly in populations with shallow or incomplete pedigrees. 

 

Introduction  

 

Individuals with related parents often have dramatically reduced fitness (Keller & Waller 2002). 

This phenomenon, known as inbreeding depression, can reduce population growth and the 

probability of population persistence (O'Grady et al. 2006; Saccheri et al. 1998; Westemeier et 

al. 1998). Additionally, inbreeding depression is thought to affect the evolution of inbreeding 

avoidance behaviors such as dispersal and kin avoidance (Charlesworth & Charlesworth 1987). 

Thus, measuring individual inbreeding is a crucial component of many studies in medicine, 

ecology, evolutionary genetics, and conservation biology.  

 

The classical measure of individual inbreeding is Wright’s pedigree inbreeding 

coefficient (FP) (Crow & Kimura 1970; Keller & Waller 2002; Pemberton 2004; Pemberton 

2008; Wright 1922). FP predicts the proportion of the genome that is identical by descent (F) due 

the known common ancestors of parents (Jacquard 1975; Keller & Waller 2002; Templeton & 

Read 1994). FP has historically been strongly preferred over marker-based measures of 

individual inbreeding (Pemberton 2004; Pemberton 2008). The general preference for FP is 

rooted in the perceived imprecision (high variance) of marker-based measures relative to FP 
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when relatively few loci are used (Balloux et al. 2004; Pemberton 2004; Pemberton 2008; Slate 

et al. 2004).  

 

However, FP itself can be an imprecise measure of F. First, FP assumes that the founders 

of a pedigree and immigrants are non-inbred and unrelated. Unfortunately, neither of these 

assumptions is likely to hold in any real population, particularly in small populations where 

inbreeding depression is a concern. When founders are related, pedigrees including few 

generations will fail to include many recent common ancestors of parents. Moving the reference 

population further back in time by adding more distant generations to the pedigree increases the 

FP of individuals in more recent generations. Additionally, F will be underestimated for those 

individuals whose parents share a common ancestor that is an inbred founder.  

 

FP can also be a poor predictor of F because F can vary substantially among individuals 

with the same pedigree (i.e., siblings) due to a limited number of recombination events during 

meiosis (Franklin 1977; Hill & Weir 2011). The variance of F among individuals with the same 

pedigree is higher in organisms with shorter genetic map lengths or fewer chromosomes (i.e., 

fewer recombination events per meiosis) (Franklin 1977). Recent simulations have shown that F 

is almost never precisely predicted by FP, and that pure marker-based measures of F are typically 

more strongly correlated with F when very large numbers of loci (e.g., thousands of single 

nucleotide polymorphisms, SNPs) are used (Kardos et al. in review, Chapter 3).  

 

A potential solution to the imprecision of FP is to incorporate genetic marker-based 

estimates of the kinship (f) of all founder pairs into pedigree analysis. Accounting for the f of 

founders might increase the precision of FP substantially if a large proportion of the imprecision 

of FP is due to related pedigree founders. Several methods use individual genotypes and allele 

frequencies to estimate pair wise relatedness (2×f ) (Blouin 2003; Wagner et al. 2006; Wang 

2007; Weir et al. 2006). Replacing the assumed f of zero among founders with estimates based 

on genetic markers might adequately account for founder relatedness (Rudnick & Lacy 2008). 

Incorporating estimates of founder f into pedigree estimates of inbreeding is easy, and should 

become standard practice if doing so substantially increases the precision of F and the power to 

detect inbreeding depression.  

   

 In this study, we asked the following questions: When do inbred and/or related pedigree 

founders substantially reduce the precision of FP and the power to detect inbreeding depression? 

Do genetic marker-based estimates of founder f substantially improve the precision of FP and the 

power to detect inbreeding depression?  

 

Methods 

 

The simulation model 

 

We wrote an individual-based simulation model for the program R version 3.0.1 (R Core Team 

2013). The model simulates a hermaphroditic, sexually reproducing, non-selfing, random-mating 

species with non-overlapping generations, and produces full pedigrees and simulated genotypes 

at 1500 diallelic SNP loci. The first simulated individuals in a population were given genotypes 

by randomly choosing two alleles with frequencies chosen so that He = 0.3 on average in the final 
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simulated generation. We simulated 3 Gb genomes with 20 chromosomes and a genetic map 

length of 3600 cM, which are typical genomic parameters among mammals (Dumont & Payseur 

2008). Population size was held constant at 60 individuals so that inbreeding would accumulate 

quickly, and so that the simulated effective population size would be similar to small natural 

populations where inbreeding depression is a concern. The F of each simulated individual was 

calculated as the proportion of the physical genome that was IBD. The details of our simulation 

program, and a comparison of simulation output with theoretical expectations are described 

elsewhere (Kardos et al. 2013). 

 

Simulating inbred pedigree founders 

 

To model the effects of inbred founders, we began by simulating 6 populations with 60 unrelated 

founders. Each simulated population had a different proportion of inbred founders. Specifically, 

we simulated populations with 0-100% of founders with FP = 0.25. We then simulated random 

mating in the each population for five additional generations. We used the pedigrees to calculate 

FP for each individual in the last (sixth) generation of the simulated populations. 

 

Simulating related pedigree founders 

 

We simulated pedigrees with extreme variation in the relatedness of founders in order to assess 

how related founders can affect estimates of inbreeding. We began each simulation by assigning 

60 non-inbred founders, with some proportion (0-100%) of them being full siblings. We then 

simulated random mating in the population for five additional generations. FP was calculated for 

each individual in the final simulated (sixth) generation.  

 

We conducted twenty replicate simulations for each of six simulated proportions of 

sibling or inbred pedigree founders. We used the squared correlation (r2) from linear regression 

models of FP versus F (r
2(FP, F)) to evaluate the precision of FP. 

 

Simulating pedigrees in approximate equilibrium populations with inbreeding depression 

 

Pedigrees built in natural populations will often have both inbred and related founders. The 

distribution of relatedness and inbreeding among individuals in a random mating population is 

determined by a combination of genetic drift within the population, and immigration of 

individuals from other (genetically differentiated) populations. Immigration produces a mixture 

of immigrants, hybrids, and pure residents. Higher immigration rates result in lower mean 

inbreeding and relatedness among individuals. Lower immigration results in a larger proportion 

of ‘resident’ individuals and higher mean inbreeding and relatedness among individuals in a 

population.  

 

We simulated populations with different migration rates (m, the probability of an 

individual being an immigrant) to mimic the distributions of founder relatedness and inbreeding 

expected with different amounts of population subdivision. We ran 50 replicate simulations 

using each of four migration rates (m = 0.0083, 0.017, 0.033, 0.1). These values of m are 

equivalent to 0.5-6 migrants arriving in a population per generation (on average). Each 

simulation was initiated with unrelated individuals, and ran for 70 generations to allow the 
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populations to reach approximate migration-drift equilibrium. Immigrant individuals were 

unrelated to residents, and had genotypes that were randomly drawn from the same allele 

frequency distribution as the individuals in the first generation of the simulation. We simulated 

inbreeding depression for survival to reproduction with 10 lethal equivalents per diploid genome, 

following the inbreeding depression model of Morton et al. (1956). We did not simulate the loci 

responsible for inbreeding depression so that the strength of inbreeding depression would be 

known, and constant across simulation repetitions. The distributions of the mean and variance of 

F for our simulated partially isolated populations are shown in Figure 4-S1. 

 

We used pedigrees including 2-20 generations to calculate FP only for individuals in the 

last generation of each simulation. We conducted statistical analyses only on individuals from 

the last simulated generation in order to hold sample size constant, and so that the amount of 

pedigree information used to estimate FP was constant among individuals in each analysis. We 

used r2(FP, F) to measure how informative FP was of F. We used generalized linear models to 

test for inbreeding depression on survival (α = 0.05) (Armstrong & Cassey 2007). We estimated 

statistical power as the proportion of simulated populations where tests for inbreeding depression 

were statistically significant (α = 0.05).  

 

Incorporating marker-based estimates of founder kinship 

 

We used 100 - 500 SNPs (He ≈ 0.3) to estimate the pair wise kinship (f ) of each pair of pedigree 

founders in our simulations of populations with sibling founders. The nine parameter relatedness 

estimator implemented in the program Coancestry (Wang 2007; Wang 2011) was multiplied 

times 0.5 to yield an estimate of pairwise kinship ( f̂ ) (Blouin 2003). The original assumed f for 

each pair of founders (which was zero) was then replaced with the marker-derived f̂ . We then 

calculated the pedigree inbreeding coefficient corrected for founder kinship (FPC). We estimated 

r2 from linear regressions of FPC versus F (r
2(FPC, F)) and tested for inbreeding depression using 

FPC in addition to FP. 

 

We used t-tests to determine if the mean r2(FP, F) and r2(FPC, F) were statistically 

significantly different among the replicate simulations for each simulated migration rate. The 

prop.test function in the program R (Harrell 2012) was used to test for a statistically significant 

difference in the statistical power of tests for inbreeding depression that used FP and FPC. 

 

Results 

 

Effects of inbred and related founders on r2(FP, F) 

 

The proportion of inbred (FP = 0.25) founders had very little effect on the correlation between FP 

and F in our simulations. There was no indication of substantive changes in the bias or precision 

of FP as the proportion of inbred founders increased (Figure 4-S2). Given the close agreement 

between FP and F when founders were inbred, we focus on the effects of related pedigree 

founders throughout the rest of the paper. 
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             FP became less precise as the proportion of sibling founders increased (Figures 4-1 & 4-

2). The mean r2(FP, F) across 20 replicate simulations was approximately 0.8 when all pedigree 

founders were unrelated (Figure 4-2). However when ≥ 60% of founders were siblings, the mean 

r2(FP, F) was always < 0.5. As expected, FP also became increasingly downwardly biased as the 

proportion of sibling pedigree founders increased (Figure 4-1). For example, FP was rarely > 0.0 

for individuals with F < 0.2 when all pedigree founders were siblings.  

 

How useful are marker-based estimates of founder kinship in populations with sibling founders? 

 

r2(FPC, F) was higher than r2(FP, F) on average when an intermediate proportion of pedigree 

founders were siblings (Figure 4-2). For example, the mean r2(FPC, F) among 20 replicate 

populations (using 100-500 SNPs to estimate founder f values) was statistically significantly 

higher than the mean r2(FP, F) when 40-80% of founders were full siblings. However, when 

either 0% or 100% of founders were full siblings there was no difference between the mean 

values of r2(FPC, F) and mean r2(FP, F). The largest increase in r2(FPC, F) relative to r2(FP, F) 

(21%) occurred when 60% of founders were full siblings (Figure 4-2).  

 

Effects of inbred and related founders on r2(FP, F) and the power to detect inbreeding 

depression in populations at approximate equilibrium  

 

The migration rate and the pedigree depth strongly affected r2(FP, F) and the power to detect 

inbreeding depression (Figure 4-3). The mean r2(FP, F) was ≤ 0.8 when pedigrees included fewer 

than 6 generations in all simulated demographic scenarios (Figure 4-3). The mean r2(FP, F) was 

never higher than approximately 0.7 for populations with the lowest migration rate (m = 0.008, 

0.5 migrants/generation) regardless of the depth of the pedigree (Figure 4-3). However, the mean 

r2(FP, F) was > 0.8 when pedigrees included six or more generations in populations with the 

highest migration rate (m = 0.1, six migrants per/generation).  

 

The power to detect inbreeding depression was always statistically significantly lower for 

FP than for F when pedigrees included 10 or fewer generations (Figure 4-3). Power to detect 

inbreeding depression using FP was always < 0.2 when pedigrees included on two generations. 

Power was < 0.8 for all simulated demographic scenarios when pedigrees included six or fewer 

generations. Power was never higher than 0.8 for simulations with m = 0.008 (0.5 migrants per 

generations).  

 

How useful are marker-based estimates of founder kinship in population at approximate 

equilibrium? 

 

Incorporating estimates of f for all pairs of founders into pedigree analyses only modestly 

increased (by < 22%) the precision of pedigree-based F estimates in all demographic scenarios 

(Figures 4-4 & 4-S2). We focus our results on simulations of populations with m = 0.017 (1 

migrant per generation on average), because the difference between r2(FPC, F) and r2(FP, F) was 

similar across all demographic scenarios. Complete results from simulations of other 

demographic scenarios are shown in Figure 4-S3.  
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The mean r2(FPC, F) across 50 replicate simulations was statistically significantly higher 

than the mean r2(FP, F) when the pedigree depth was less than 20 generations in simulations with 

m = 0.017 (Figure 4-4). For example, r2(FP, F) and r2(FPC, F) were 0.16 and 0.22, respectively, 

when 2 generation pedigrees were used. When six generation pedigrees were used, r2(FP, F) and 

r2(FPC, F) were 0.42, and 0.59, respectively. r2(FPC, F) was > 0.80 in simulations with m = 0.017 

only when pedigrees included 15 or more generations. r2(FPC, F) was never > 0.8 in simulations 

with m = 0.008, regardless of the depth of the pedigree (Figure 4-S2). 

 

             The power to detect inbreeding depression was dramatically higher for FPC than for FP 

when pedigrees included four or fewer generations in all demographic scenarios (Figures 4-4 & 

4-S3).  For example, the power to detect inbreeding depression was 25 times higher for FPC 

(power = 0.5) than for FP (power = 0.02) when pedigrees included three generations in 

simulations with m = 0.017 (Figure 4-4). Despite a large increase in the power to detect 

inbreeding depression with FPC compared to FP, power was still very low in most demographic 

scenarios when pedigrees included relatively few generations. For example, 10 to 15 generations 

of pedigree were necessary to achieve power > 0.8 for tests using FPC in simulations with m = 

0.017 and m = 0.033 (Figure 4-S3).  

 

Statistical performance of f̂  

 

Having found that incorporating founder f̂ values into pedigree analyses only marginally 

increased the correlation between the estimated and true F, we evaluated the statistical 

performance of f̂ . We simulated a population as described above with m = 0.017, and N = 60 

individuals for 70 generations. Then we calculated the true f – the actual proportion of alleles 

shared identical by descent – between each pair of individuals in the 70 generation of the 

simulation. We calculated f̂ as described above using 100-1000 SNPs. Plots of f̂ versus f are 

shown in Figure 4-5. Loess smoothing functions were fit to the data to determine how f̂ and its 

precision varied with f.  

 

            f̂ had very low precision when relatively few SNPs were used (Figure 4-5). The mean 

error (square root of the mean squared residual) from the loess model fits were 0.025, 0.041, 

0.009, and 0.007 for analyses based on 100, 250, 500, and 1000 SNPs, respectively. 

Additionally, we found that f̂ was extremely downwardly biased and insensitive to variation in f 

when f was below approximately 0.2 regardless of the number of SNPs used (Figure 4-5).  

 

Discussion  

 

Our results show that related pedigree founders can strongly reduce the precision of F and the 

power to detect inbreeding depression under many demographic scenarios. Unfortunately, 

incorporating marker-based estimates of founder kinship into pedigree analyses only marginally 

improved the precision of F. Although, the power to detect inbreeding depression was 

dramatically increased by accounting for founder kinship in pedigree analyses. Power was still 

often too low (< 0.7) after accounting for founder kinship to reliably detect inbreeding 
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depression. Below we discuss the implications of these findings for our understanding of 

inbreeding and inbreeding depression in natural populations.  

 

Effects of inbred founders on the correlation between FP and F 

 

We found that having inbred (but unrelated) pedigree founders rarely affected estimates of F. 

This makes sense because F can only be affected by founder inbreeding for individuals whose 

parents have a common ancestor who is a founder. This combination of events should be 

relatively rare compared to the frequency of related founders in large pedigrees. However, there 

are some circumstances when founder inbreeding might be very important. For example, if a 

pedigree consisted of only three generations, the only way for non-zero inbreeding to be detected 

is when a founder is a common ancestor of both the parents of an individual in the last (third) 

generation in the pedigree. Here the inbreeding of founders could be important as all known 

inbreeding loops end at individuals in the founding generation.  

 

Effects of related founders on r2(FP, F) 

 

We found that r2(FP, F) was ~ 0.8 on average when all pedigree founders were unrelated. 

However, r2(FP, F) was < 0.5 when the majority of pedigree founders were siblings (Figures 4-1 

& 4-2). The imperfect correlation between FP and F when founders are unrelated and non-inbred 

is caused purely by Mendelian segregational variance in F due to meioses that occurred after the 

founding generation.  

 

We believe there are two ways that related founders can reduce r2(FP, F). First, FP is an 

unbiased estimator of F for individuals whose parents do not have related founder ancestors 

(Figure 4-1). However, FP underestimates F on average for individuals who have closely related 

founder ancestors (Figure 4-1). When an intermediate proportion of founders are closely related, 

FP will be downwardly biased for some individuals and unbiased for others. Therefore, a mixture 

of closely related and unrelated pairs of pedigree founders should increase the variance of FP 

among individuals with the same F, thus weakening the correlation between FP and F.   

 

Second, the presence of related founders could increase the variance in F among 

individuals with the same FP due to Mendelian segregation. When founders are all unrelated, 

there is no variation in the proportion of the genome shared IBD among all pairs of founders. 

However, there can be high variance in the proportion of the genome shared IBD among 

founders when some founders are related (Hill & Weir 2011). Therefore related pedigree 

founders could introduce additional error variance in F due to Mendelian segregation – further 

weakening r2(FP, F).  

 

The correlation between FP and true F and the power to detect inbreeding depression in 

populations at approximate equilibrium 

 

r2(FP, F) was weak and the power to detect inbreeding depression was low in all 

simulated demographic scenarios when pedigrees included fewer than 6 generations. The 

precision of FP and the power to detect inbreeding depression were the lowest in populations 

with the lowest migration rate. There are two ways higher migration rates could increase the 
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precision of FP. First, immigration into a population reduces the frequency of closely related 

individuals in a population. Therefore pedigrees built in populations with frequent immigration 

from genetically differentiated populations should have fewer closely related pedigree founders. 

Second, higher immigration should reduce the mean number of generations that inbreeding loops 

extend through a pedigree. Therefore, the number of meioses contributing to Mendelian 

segregational variation in F should be lower in populations with more immigration.  

  

How useful are genetic marker-based estimates of founder relatedness? 

 

Incorporating estimates f for all pairs of founders does not solve the problem of related pedigree 

founders. We found that correcting for founder kinships only marginally increased r2(FP, F) for 

all simulated demographic scenarios. The benefits of using estimates of founder kinship were 

modest in most of the scenarios we simulated. r2(FPC, F) was never >20% higher than r2(FP, F) 

in our simulated populations. The power to detect inbreeding depression was substantially higher 

with FPC than with FP when shallow pedigrees (<6 generations) was used, which are typical in 

studies of natural populations. However the power to detect inbreeding depression with FPC was 

still very low compared to when the true F was used. Thus, our results suggest that using marker-

based estimates of founder kinship in pedigree analyses will not increase the precision of F 

estimates or the power to detect inbreeding depression to acceptable levels in most 

circumstances.  

 

Our results also suggest that F is hardest to measure precisely with pedigrees in isolated 

populations with little immigration. Such populations with high mean and variance in F (Figure 

4-S1) are arguably the most important to the research community because they offer the greatest 

potential to elucidate the genetic basis of inbreeding depression and its importance to population 

growth. Additionally, inbreeding depression is more likely to reduce the mean fitness in very 

small populations where genetic drift is strong and the mean F is high. Our results suggest that 

FP will usually be highly imprecise in such populations, even when pedigrees include many 

generations (e.g., 10-15 generations) and estimates are corrected for founder kinship.  

 

The limited benefit of using marker-based estimates of founder kinship in pedigree 

analyses is unfortunate, but not surprising. The triadic likelihood-based pair wise f estimator we 

used has been found to outperform other methods (Wang 2007). However we found that Wang’s 

2007 f estimator was dramatically downwardly biased and insensitive to kinship of individuals 

with f less than approximately 0.2 (Figure 4-5). Additionally the f estimator had low precision 

when few loci were used.  

 

The underestimation of the kinship of closely related individuals results from an 

assumption that allele frequencies were measured in a hypothetical base population where all 

genes are non-identical by descent (Wang 2007). Measuring allele frequencies in the current 

population being studied (which is normally the only option in empirical studies) makes 

individuals appear more distantly related than they really are. Using much larger panels of 

markers (e.g., high density SNP chips) could increase the precision of marker-based kinship 

estimates. However, increasing the number of markers should not decrease the bias of the 

likelihood kinship estimators.  
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When should purely marker-based measures of F be preferred over pedigrees? 

 

Pedigrees including many generations will often be impractical in studies of inbreeding in 

natural populations. Molecular measures of inbreeding have emerged that could provide a more 

practical and accurate way to measure F than pedigrees. For example, F has been found to be 

more strongly correlated with individual heterozygosity based on as few as 1000 SNPs than with 

FP, even when large numbers of generations are included in pedigrees (Kardos et al., in review, 

Chapter 3). Additionally, associations between heterozygosity estimated with small numbers of 

markers and fitness have been detected in studies where inbreeding depression was not detected 

via pedigree analyses (e.g., Forstmeier et al. 2012). New marker based measures of inbreeding 

that use physically mapped SNPs to identify IBD chromosome segments (Leutenegger et al. 

2006; McQuillan et al. 2008) can precisely estimate F when tens of thousands of markers are 

available (Kardos et al., in review, Chapter 3). Furthermore, methods using mapped SNPs can be 

used to identify chromosome segments contributing to inbreeding depression (Leutenegger et al. 

2006), which could greatly advance our understanding of the genetic basis of inbreeding 

depression.  

 

The results presented here, combined with previous findings (Kardos et al. in review, 

Chapter 3) suggest that pedigree-based measures of inbreeding and tests for inbreeding 

depression will rarely, if ever, have higher precision or power than currently available molecular 

approaches. Deep pedigrees (e.g., > 15 generations), used in conjunction with molecular 

estimates of founder kinships will provide precise estimates of F in partially isolated populations 

(Figures 4-3 4-4, Kardos et al. in review, Chapter 3). However, the precision of F appears to 

always be low in closed populations, even when very deep pedigrees are used (Kardos et al. in 

review, Chapter 3). Thus, we believe that future studies of inbreeding depression should employ 

pure marker-based measures of F using thousands of SNPs when possible. Tens of thousands of 

SNPs can now be genotyped in almost any organism using new sequencing technologies (Davey 

et al. 2011). The ability to easily type huge numbers of markers should facilitate the widespread 

use of molecular estimates of F in the near future. 

 

Conclusions 

 

The presence of related pedigree founders can dramatically recue the precision (variance) of the 

pedigree inbreeding coefficient (FP) and the power to detect depression when using FP. We 

found that incorporating marker-based estimates of founder kinship into pedigree analyses can 

dramatically increase power. However, using genetic markers to account for founder kinship did 

not result in acceptably high precision of the pedigree inbreeding coefficient or high enough 

power to reliably detect inbreeding depression unless pedigrees included many (> 6) generations. 

Using marker-based approaches to estimate founder kinship should not be considered an 

adequate solution to the imprecision of pedigree-based measures of inbreeding. We encourage 

researchers to consider pure marker-based measures of true F when large numbers of genetic 

markers are available (L > 1000), which is now feasible for virtually any species. 
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Figure 4-1. The estimated inbreeding coefficient (FP) versus the identical by descent (IBD) 

proportion of the genome (F). The results shown are from simulations of six generation 

pedigrees with 0-100% sibling founders (from the same pair of parents). The solid diagonal lines 

have intercept of zero and a slope of 1. Points below the line represent underestimates of F.  

 

 

 

 

 



52 

 

 
 

 

Figure 4-2.  r2 from the regressions of the pedigree inbreeding coefficient (FP) and the corrected 

coefficient  FPC (using molecular markers) versus the true inbreeding (F; identitity by descent) 

plotted against the proportion of pedigree founders that were full siblings. 100 and 500 SNPs 

(mean He ≈ 0.3) were used to estimate founder kinship coefficients which were used to estimate 

FPC. Error bars represent the standard deviation of r2 among twenty replicate simulated 

populations.  
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Figure 4-3. The r2 between the estimated inbreeding coefficient (FP) and the IBD proportion of 

the genome (F) (r2(FE, FT)) versus pedigree depth. The data are from the final generation (60 

individuals) of each of 50 independent simulations that were run for 70 generations with 

migration rates of 0.008 to 0.1 (0.5 - 6.0 migrants/generation). Error bars represent the standard 

deviation of r2 among the 50 replicate simulations. Horizontal dashed lines in panel B represent 

the power to detect inbreeding depression using the true F. The vertical distance between the top 

of a bar and the dashed line of the same color represents the loss of power associated with 

imprecision of FP. 
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Figure 4-4. (A) The r2 between the pedigree inbreeding coefficient (FP) and the identical by 

descent proportion of the genome (F) [r2 (FP, F), open bars] and between the pedigree inbreeding 

coefficient corrected for founder kinship (FPC) and F [r2 (FPC, F), hatched bars] versus the 

pedigree depth. Error bars in panel A are the standard deviation or r2 among 50 replicate 

simulations. (B) The statistical power of tests for inbreeding depression using FP and FPC. Error 

bars in panel B are 95% confidence intervals for statistical power (the proportion of 50 replicate 

simulations with statistically significant tests [α = 0.05] for inbreeding depression). The dashed 

horizontal line in panel B represents the power to detect inbreeding depression when using the 

true individual inbreeding coefficient (F; genome identity by descent).The data shown are from 

simulated populations with a migration rate of 0.017 (1 migrant/generation on average). Stars 

indicate a statistically significant difference between the mean r2 (FP, F) and mean r2 (FPC, F) 

among 50 replicate simulations. Results from simulations of other demographic scenarios are 

shown in Figure 4-S1. 
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Figure 4-5. The estimated coefficient of kinship ( f̂ ) versus the true coefficient of kinship (f ) 

for all pairs of 60 simulated individuals. The data are from the final generation of a simualtions 

with m = 0.017 that was run for 70 generations. The diagonal dashed lines have an intercept of 0 

and a slope of 1. Points above the line represent over estimates and points below the line 

represent under estimates. The solid lines are fitted 2nd degree loess functions.   
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CHAPTER 5: Whole genome sequencing identifies candidate adaptive genes in wild 

bighorn sheep 

Abstract 

 

Understanding the genetic basis of fitness and adaptation is a central goal in evolutionary 

genetics, agriculture, and conservation biology. However, identifying adaptive genes is 

challenging in non-model species lacking whole genome reference sequences. Our objective was 

to identify candidate adaptive genes in wild bighorn sheep. We aligned whole genome sequences 

of pooled DNA from four bighorn sheep populations (> 30x coverage) to the domestic sheep 

reference genome assembly. We then scanned the genome for evidence of selective sweeps. We 

identified 2.57 M single nucleotide polymorphisms and a number of putative selective sweeps. 

For example, there was strong evidence for a selective sweep shared across all our study 

populations at a gene known to affect horn development in domestic sheep (RXFP2). 

Additionally, selection signatures were found at the growth hormone receptor (GHR) and 

insulin-like growth factor 2 (IGF2R) genes which are both involved with growth early in life. We 

have identified strong candidate genes for two phenotypic traits known to strongly affect fitness 

in bighorn sheep – horn development and body growth. Our results also show that whole genome 

reference assemblies from agricultural species can be used to identify molecular signatures of 

selection in wild populations of related taxa.      

 

Key words:  fitness, local adaptation, selection signature, selective sweep, population genomics, 

computer simulations 

 

Introduction 

Understanding the genetic basis of fitness and adaptation is a central goal in evolutionary and 

conservation biology. An efficient way to detect candidate adaptive loci is to scan whole genome 

sequences of pooled DNA and test for chromosomal segments bearing molecular signatures of 

natural selection. This approach has recently been used to identify signatures of selection 

associated with domestication in chickens (Qanbari et al. 2012; Rubin et al. 2010) and dogs 

(Axelsson et al. 2013), and to identify loci involved with local adaptation in Arabidopsis 

thaliana (Turner et al. 2010; Fischer et al. 2013). Such an approach holds great promise for 

identifying candidate genes and physiological pathways for adaptation in natural populations. 

However, using a genome-wide scanning approach to detect signatures of selection is not 

possible in most species because of the lack of high quality whole genome sequence assemblies. 

The possibility of transferring high quality genomic resources from model or agricultural 

species to closely related taxa in the wild is particularly alluring (Haussler et al. 2009). Doing so 

might eliminate the need to develop de novo whole genome assemblies and annotations for many 

species with closely related species for which high quality whole genomes are available. The 

feasibility of transferring genomic resources within-genera has been demonstrated in agricultural 

species and in primates. For example, Cosart et al. 2011 used an exon capture array designed 

from the domestic cow (Bos taurus) reference genome to successfully capture and sequence 

thousands of exons in a wild bison (Bos bison). Additionally, a microarray designed from human 

sequence was used to capture Neanderthal exons (Burbano et al. 2010). These examples suggest 
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that genomic resources developed for other agricultural species, such as domestic sheep (Ovis 

aries) could be used to advance our understanding of the genetic basis of adaptation in wild 

sheep.   

Bighorn sheep (Ovis canadensis) are probably the best studied of all wild sheep. Several 

important sources of natural selection in bighorn have been identified by previous research. 

Genome scans for selection signatures in bighorn could identify candidate genes for phenotypic 

traits known to affect fitness. Additionally, outlier loci could uncover unexpected genetic and 

physiological pathways that are important to fitness and adaptation in bighorn. Bighorn often 

occupy extreme environments including steep terrain, high elevation, and low temperatures and 

deep snow during winter (Geist 1971). Bighorn sheep have a polygynous mating system with 

intense male-male competition for access to mates (Geist 1971; Hogg 1984). Male reproductive 

success is strongly affected by the size of horns (Coltman et al. 2002) which are used in physical 

combat and in dominance displays (Geist 1966). Additionally, bighorn are often exposed to 

diseases originating in domestic livestock which can cause massive population die offs 

(Buechner 1960; Monello et al. 2001). Lastly, body mass is thought to strongly affect juvenile 

survival and subsequent reproduction in adult bighorn (Festa-Bianchet et al. 1997; Festa-

Bianchet et al. 2000). Thus, genomic regions bearing genes involved with adaptation to extreme 

environments, sexual selection (e.g., horn development), disease resistance, and growth are 

likely to show signatures of selection in bighorn (e.g., very low heterozygosity).  

Distinguishing the genomic signatures of selection and genetic drift could be challenging 

in many bighorn sheep populations. Bighorn sheep have a naturally fragmented distribution, and 

often occur in small isolated populations (Geist 1971; Valdez & Krausman 1999). Therefore, 

large chromosomal segments could potentially drift to high frequency, closely mimicking the 

molecular genetic patterns caused by a response to strong directional selection (i.e., a selective 

sweep). Thus, the genomic signatures of selection could be difficult to distinguish from the 

effects of genetic drift due to the naturally fragmented distribution and small local effective 

population size (Ne) typical of bighorn sheep.   

In this study we addresses the following questions: What genomic regions bear signatures 

of directional selection in bighorn sheep? Do the genomic regions showing signatures of 

selection vary among populations with differences in elevation and recent exposure to disease?  

Materials and Methods 

 

Study populations 

 

Our study included four native bighorn sheep populations. First, we sampled bighorn sheep from 

the Teton Range in Grand Teton National Park in Northwestern Wyoming. Bighorn sheep in the 

Teton Range are split into genetically differentiated Northern (NT) and Southern (ST) 

subpopulations (FST = 0.1, based on analysis of whole genome sequence data, Table 5-S3). NT 

and ST have no known history of disease-related population declines and have tested negative 

for antibodies to many common pathogens in 2008 (data not shown). However, domestic sheep 

grazed in the Tetons in the early 1900s (Whitfield 1983). Therefore it is possible that bighorn in 

the Tetons may have been affected by diseases originating in domestic sheep at some time in the 
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early post-settlement era (Whitfield 1983). The Teton bighorn populations occupy high elevation 

ranges above 2700 m in both Summer and Winter (Whitfield 1983). However, sheep in the Teton 

Range occupied lower elevation Winter ranges before approximately 1940 (Whitfield 1983). 

Thus the Teton populations provide the opportunity to detect candidate regions/loci for recent 

adaptation to high elevation. We created a DNA pool from 9 individuals from ST and a DNA 

pool composed of 10 individuals from NT.  

 

Our ‘Sun River’ (SR) samples are from the Sun River Game Preserve in North-Western 

Montana. We sampled two groups of bighorn sheep with the SR (Gibson Dam, and ‘other’). 

There have been several documented population die-offs associated with pneumonia at SR in 

1925, 1927, 1932, and 1983 (Rush 1927; Andryk & Irby 1984). SR bighorn occupy relatively 

low elevation habitats of appx. 1500 m for at least part of the Winter, and higher ranges during 

the Summer. Our SR samples were collected in 1990. We created and DNA pool of 10 

individuals from the ‘other’ group of sheep and a pool of 8 individuals from the Gibson Dam 

group of sheep.  

 

Our Whiskey Basin (WB) study population is located in the Wind River Range of central 

Wyoming. WB also has a documented history of population die offs associated with pneumonia 

(e.g., 1991). Whiskey basin bighorn are mostly migratory, occupying distinct high elevation 

Summer ranges and lower elevation Winter ranges. We created one DNA pool from 10 

individuals sampled in 1989, and second DNA pool from 11 additional individuals sampled in 

2012. 

 

Sequencing and genome alignment 

 

The quality of DNA from each individual was assessed by separation on agarose gels before 

sample concentration was measured using the Nanodrop ND-1000 spectrophotometer 

(Wilmington, DE). Individual samples were normalized to 50 ng/ul, before equivalent amounts 

were mixed to form pools. To commence library construction, 2.5 ug of pooled DNA was 

sheared to an average insert length of 300 – 400 bp using a Covaris S220 (Woburn, MA, USA). 

Short insert libraries were prepared as described by the Illumina TruSeq sample preparation 

guide v2 (Illumina Inc, San Diego, CA). Sequencing was performed on an Illumina HiScan 

machine to generate 100 bp paired end (PE) reads. 

 

Quality trimming was performed on raw sequence reads in three steps using 

Trimmomatic (Lohse et al. 2012). First, leading and trailing bases with quality score (QS) < 5 

were removed. Secondly, average QS was calculated in 4 bp sliding windows. Bases were 

trimmed from the point in the read where average QS dropped below 15. Finally, reads were 

excluded that had < 50 bp following trimming. Quality trimmed reads were mapped against the 

domestic sheep reference genome assembly v3.1 (OARv3.1) using BWA (Li and Durban, 2009). 

OARv3.1 was obtained at www.livestockgenomics.csiro.au. The BWA-backtrack algorithm was 

used with default settings for the maximum allowable mismatches, mismatch and gap penalties. 

Averaged across the six libraries, 78% of raw reads from bighorn were successfully mapped to 

the domestic sheep reference assembly (Table 5-S2). Mapping raw reads from domestic sheep 

against OARv3.1 using the same method resulted in successful alignment of approximately 85% 
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of reads (Kijas et al, unpublished). This suggests around 5 – 6% of Bighorn reads failed to align 

due to sequence divergence between the species.  

 

Using a reference genome from a different species is a potential source of error in our 

data. However we believe that this is unlikely to be a substantial source of error because the 

other species is closely related (approximately 2 MY divergent) (Forbes et al. 1995). Poissant et 

al. (2010) showed that synteny was very similar between bighorn and domestic sheep. For 

example, among 250 microsatellites, Poissant et al. (2010) found only three markers that mapped 

to different relative genomic positions in bighorn compared to domestic sheep. This suggests that 

genomic architecture is highly conserved between bighorn and domestic sheep. Additionally a 

large fraction of sequence reads mapped to the domestic sheep genome with high confidence. 

Thus we believe genomic differences between bighorn and the domestic reference genome are 

unlikely to have dramatically affected our results.  

 

Variant calling 

 

We merged the mapped sequence reads from the SR Gibson Dam, SR ‘other’, WB new, and WB 

old to create a single pool of mapped sequence reads (SR/WB pool). We also merged the 

mapped sequence reads from NT and ST to create a second pool of mapped sequence reads 

(Teton pool). We then conducted variant calling on the SR/WB and Teton Pools separately.  

 

Variants in NGS sequence are typically detected as alternate bases during the comparison 

of reads from a given individual against a reference genome. In this study, reads from pooled 

samples were used for variant detection against the reference genome from a related species. 

Variant detection was performed using the SNVer program which was designed for use with 

pooled NGS reads (Wang et al. 2012). Particular attention was given to the consequence of 

performing variant detection in bighorn reads using the domestic sheep reference genome. 

Testing revealed modification was needed to the mapping quality (mq) and base quality 

thresholds (bq) to accurately call and remove fixed differences between species that are 

monomorphic within bighorn (Figures 5-S1 & 5-S2). Following optimization, variants were 

called using mq = 40 (default mq = 20), bq = 2 (default bq = 17) and default settings for all other 

variables.  

 

We summed the allele counts from the SR/WB and Teton pools to create an ‘all 

populations’ pool. From these summed allele counts we were able to estimate allele frequencies 

and test for selective sweeps across all study populations. 

 

SNP filtering 

 

Post-processing filters were applied to putative variants called by SNVer. First, to ensure 

sufficient reads were available to estimate allele frequencies, positions covered by < 19 reads 

(summed across the SR/WB and Teton pools) were excluded. To exclude variants likely to be 

located within structural variation (e.g., CNV), positions covered by > 100 reads (summed across 

the SR/WB and Teton pools) were excluded. Variants with a minor allele frequency < 0.05 were 

excluded. We identified 2.57 million SNPs after all filtering steps (Table 5-S1). Variant calling 

in 68 domestic sheep genomes returned an average of 7 M SNP per individual (Kijas et al, 
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unpublished). The finding that only 2.57 million SNP were called in our study suggests the 

variant calling and SNP filtering applied was highly stringent.  

Identification of selective sweeps 

 

We tested for selective sweep signatures in sequence data pooled from multiple populations with 

similar selection histories. The chance fixation of the same chromosome segment due to genetic 

drift is unlikely to occur in multiple populations. Thus analyzing sequence data from multiple 

populations pooled with similar selection backgrounds should reduce the likelihood of detecting 

selection signatures that are really caused by drift. The Teton pool provides the opportunity to 

test for selective sweeps associated with recent adaptation to high elevation. The SR/WB pool 

provides the opportunity to test for selective sweeps associated with recent exposure to disease. 

We analyzed our ‘all populations’ pool in order to detect genomic regions that have responded 

similarly to directional selection in all or most study populations.  

 

We used two approaches to identity genomic signatures of selection. First, we used 

sliding window estimates of expected heterozygosity (Hp) (Axelsson et al. 2013; Rubin et al. 

2010) to identify genomic regions with very low heterozygosity relative to the genome-wide 

average (putative selective sweeps) within each DNA pool. We used 100 Kb sliding windows 

with a 50 Kb step size. Extremely low heterozygosity is indicative of a response to directional 

selection at one or more loci within a region. Estimates of allele frequencies are more precise 

among SNPs with higher read depth. Thus SNPs with higher read depth are weighted so that they 

have a larger effect on Hp than SNPs with lower read depth. HP was calculated within each 

individual pool, independent of data from the other pool. Therefore analyses based on HP are 

likely to detect selection signatures that may be unrelated to the biological contrasts (e.g., 

elevation and disease) between pools.  

 

We also estimated FST (Weir & Cockerham 1984) for each window in order to identify 

genomic regions with very different allele frequencies between the two pools. FST measures 

genetic differentiation between pools. Therefore selection signatures identified on the basis of 

FST outliers are likely to be enriched for signatures present as a result of biological contrasts 

(e.g., elevation and disease). FST was statistically significantly negatively correlated with HP in 

both the Teton and SR/WB pools (P < 0.001 linear regression, Figure 5-S3). Windows 

containing few SNPs could have high false positive rates for selection signatures because the 

probability of all SNPs being homozygous in small windows can be high in non-selected 

genomic regions. Therefore we restricted our analyses to windows containing 10 or more SNPs.   

 

We wanted to identify windows with values of HP or FST that deviated substantially from 

the genome-wide average. Thus, we Z-transformed estimates of HP and FST (ZHP and ZFST) 

(Axelsson et al. 2013; Qanbari et al. 2012; Rubin et al. 2010). We focus on windows with HP or 

FST at least five standard deviations away from the genome-wide average (ZHP ≤ -5 or ZFST ≥ 5) 

as this represents the extreme ends of the distributions of ZHP and ZFST.  

 

We tested if any particular classes of genes (e.g., immune function genes) were 

represented within outlying windows more often than expected by chance. Therefore we tested 

the gene content of outlier windows for gene ontology (GO) term enrichment using the software 
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GOrilla as described by Eden et al. (2009). A background set of 15,186 genes with associated 

GO terms were used to evaluate genes identified by either ZHP or ZFST.  

 

Differentiating genomic signatures of selection, drift, and low mutation rate 

 

It is difficult to define threshold values of ZHP and ZFST that would confidently exclude false 

selection signatures that are really caused by drift (see Discussion). Separating the effects of drift 

and selection can be particularly difficult when Ne is small and when there is a very limited 

information on historical population dynamics.  

 

We used simulations to qualitatively evaluate the possibility that putative selective 

sweeps were caused by genetic drift rather than selection. Our simulation model is described in 

detail elsewhere (Kardos et al. 2013). Briefly, we used the program R to simulate populations 

with approximately similar Ne and levels of population connectivity as the Teton subpopulations. 

We chose to use simulations of the Teton populations because they are the smallest of our study 

populations, and presumably have very recent common ancestry. Therefore, false positive 

selection signatures were more likely to occur in the Teton pool than in the SR/WB pool. 

Estimates of Ne (Kardos et al. unpublished data) for NT (Ne = 15), and ST (Ne = 20) were based 

on 22 microsatellite loci and a linkage disequilibrium (LD) estimator of Ne (Hill 1981; Waples 

2006). We chose to simulate Ne of 20 and 30 for the Teton populations because the LD estimator 

of Ne is likely to be downwardly biased when multiple cohorts are included in a sample (Luikart 

et al. 2010). 

 

We simulated the approximate genomic characteristics of bighorn sheep, and assumed a 

‘best guess’ demographic scenarios for bighorn in the Teton Range. The assumptions of the 

simulations include 1) a homogeneous recombination rate of 1.24 cM/Mb (Poissant et al. 2010); 

2) moderate genetic differentiation between the North and South Teton populations (FST ≈ 0.1, 

based on out whole genome sequence data, Table 5-S3); 3) a small amount of immigration to the 

Teton populations from a large source population (0.5 immigrants/generation on average); 4) a 

similar density of SNPs as in our empirical data (1.05 SNP/Kb); and 5) an effective population 

size of Ne = 20-30 for each of the Teton subpopulations. We ran twenty replicate simulations for 

Ne = 20 and Ne = 20 separately. We pooled the simulated sequence data and tested for ZHP outlier 

windows in the same way as we did with our empirical data. Our model of recombination is 

based on Fisher’s theory of junctions (Fisher 1965), and assumes no interference. For 

computational efficiency we simulated genomes with two 123 Mb chromosomes (total map 

length =  305.1 cM), which is 10% the sex averaged map length estimated for bighorn (Poissant 

et al. 2010). We wanted to simulate a similar density of SNPs as was observed in our empirical 

sequence data from bighorn. We simulated 257,000 SNPs that were randomly distributed 

throughout the genome using a random number generator. We tested for selective sweeps in the 

simulated data using the same methods as for our empirical sequence data. 

 

We used the simulations only to qualitatively evaluate whether some of the selection 

signatures we detected were likely to be due to drift. We believe it would be a mistake to use the 

simulations to assign strict significance threshold values of ZHP and ZFST because we have very 

little information on the demographic history of the study populations. 
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A locally low mutation rate could cause a chromosome segment to have very low 

heterozygosity relative to the genome-wide average heterozygosity – creating a false positive 

signature of selection. Therefore we wanted to reduce the chances of identifying putative 

selective sweeps that were actually caused by a locally low mutation rate. To identify windows 

that are likely to have a locally low mutation rate, we calculated the number of fixed differences 

between bighorn sheep in the Teton populations and the domestic sheep reference genome for 

each 100 Kb window in the genome (Figures 5-S4 & 5-S5). We excluded windows with fewer 

than 200 fixed differences between bighorn and domestic sheep from consideration as a 

putatively selected region.  

Results 

Illumina sequencing produced a total of 256,408 Mb of 100 bp paired end sequence reads. 78% 

of the sequence reads aligned with high confidence to the domestic sheep reference genome.  We 

identified 2.57 million SNPs after quality control filtering. Mean sequence read depth across the 

2.57 M SNPs was 32.6 for the Teton Pool and 34.7 for the SR/Wb Pool. Mean HP for the Teton 

and SR/WB pools was 0.31 and 0.34, respectively. 

Identification of putative selection signatures 

We identified a total of 83 genomic regions showing signatures of selection (Figure 1, Tables 5-

S5, 5-S6, 5-S7). 56 of the regions with putative signatures of selection contained genes (Table 5-

S4). There were six genomic regions with ZHP ≤ -5 that contained at least one gene in the 

SR/WB pool. There were 28 genomic regions with ZHP ≤ -5 that contained at least one gene in 

the Teton pool. 22 putatively selected genomic regions that contained at least on gene were 

identified on the basis of ZFST ≥ 5 (Table 5-S4). We identified one genomic region in our ‘all 

populations’ pool with ZHP ≤ -5 (Figure 1). Summary statistics for each putatively selected 

window, including gene content, are provided in Tables 5-S4 – 5-S7. We focus on selection 

signatures found in three genomic regions that contain genes, and have clear biological 

interpretations given what is known about our study system and bighorn life history.  

Three putatively selected windows contained genes related to horn development or early 

body growth. A region on chromosome 10 with very low heterozygosity in the Teton pool (ZHP 

= -6.05), and in the ‘all populations’ pool (ZHP = -7.4) was located over the relaxin/insulin-like 

family peptide receptor 2 gene (RXFP2) (Figures 5-1 & 5-2). ZHP did not reach the threshold of 

ZHP ≤ -5 in the window containing RXFP2 in the SR/WB pool. However it is notable that ZHP 

was -3.65 for this window over RXFP2 in the SR/WB pool, which represents the bottom 0.18% 

of all ZHP windows across the genome. It is notable that the only outlying windows identified in 

out ‘all populations’ were over and adjacent to RXFP2 on chromosome 10 (Figure 5-1). RXFP2 

has been found to control the presence and size of horns in domesticated sheep (Johnston et al. 

2010; Johnston et al. 2013; Kijas et al. 2012).  

We also detected selection signatures in two genomic regions harboring genes involved 

with body growth. A putatively selected region on chromosome 16 in the Teton pool contained 

the growth hormone receptor gene (GHR, Figures 5-1 & 5-2, Table 5-S4). The region around 

GHR contained windows with both very high FST (ZFST = 5.01) and low HP (ZHP = -5.27) in the 
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Teton pool (Figure 5-2, Table 5-S4). GHR plays an important role in mediating the physiological 

effects of growth hormone (Argetsinger & Carter-Su 1996). Variation at GHR has been found to 

affect the expression of insulin-like growth factor I in cattle (Ge et al. 2003), and milk and fat 

production in cattle (Blott et al. 2003; Viitala et al. 2006). We additionally detected a putative 

selective sweep over the insulin-like growth factor 2 receptor on chromosome 8 (IGF2R, Figure 

5-2). IGFR2 was in a window with ZHP = -5.62 (Table 5-S4). IGF2R is thought to regulate fetal 

growth by binding and degrading the growth hormone IGF2 (Monk & Moore 2004). 

Additionally, IGF2R genotypes have been associated with growth traits in cattle (Berkowicz et 

al. 2012) 

The lengths of the genomic regions encompassing outlier windows was highly variable. 

Several of the outlier regions included a single 100Kb window while others included several 100 

Kb windows. For example, there was a 4 Mb outlier genomic region on chromosome 2 that 

contained six genes (Figures 5-1 & 5-2).    

Several gene ontology terms among the putatively selected windows were statistically 

significantly enriched (Table 5-S5). However all of the statistically significant terms were 

located in a single region on chromosome 5. Therefore we believe that this apparent enrichment 

is spurious.  

 

Differentiating signatures of selection from signatures of drift or low mutation rate 

 

We detected one genomic region with ZHP < -5 across 20 replicate simulations (40 

chromosomes) of neutrally evolving populations with Ne = 30. We detected three genomic 

regions with ZHP < -5 in our neutral simulations of populations with local Ne = 20. We excluded 

two ZHP outlier windows (on chromosomes 4 and 22) in the Teton pool that had < 200 fixed 

differences between bighorn and domestic sheep (Figure 5-S4). 

 

Discussion 

 

We identified several candidate selected genomic regions in bighorn sheep. In particular, we 

identified putative selection signatures in genomic regions harboring genes related to body and 

horn growth. 

 

Selection signatures at RXFP2 

 

We identified a selection signature (very low ZHP) around the RXFP2 gene in the Teton pool and 

in our ‘all populations’ pool. We believe this is strong evidence that RXFP2 was subjected to 

strong directional selection in our study populations. RXFP2 has been found to strongly affect 

horn development in domesticated sheep (Johnston et al. 2013; Johnston et al. 2011; Kijas et al. 

2012). For example, RXFP2 was a highly statistically significant FST outlier between horned and 

hornless domestic sheep (Kijas et al. 2012). Additionally, both horn length and size have mapped 

to the genomic region containing RXFP2 in Soay sheep – an ancient, free-ranging domesticated 

breed (Johnston et al. 2010). RXFP2 is thought to be under strong balancing selection in Soay 

sheep (Johnston et al. 2013). In particular Johnston et al. (2013) found a reproductive advantage 

of an RXFP2 allele associated with large horns, and a survival advantage of an allele associated 
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with small horns. The net effect of directional selection operating in opposing directions for 

different alleles has apparently maintained heritable genetic variation for horn size in Soay sheep 

(Johnston et al. 2013).  

 

Bighorn sheep have extremely large, energetically costly horns which can comprise up to 

8-12% of body mass in older rams (Geist 1966). These massive horns play a crucial role in 

dominance interactions and physical combat during competition for mates (Geist 1966; Geist 

1971). Horn size strongly affects male fitness and has been found to be heritable and to respond 

to directional selection in bighorn (Coltman et al. 2002; Coltman et al. 2003). Similar selective 

pressures to those observed in Soay sheep could explain the maintenance of heritability for horn 

size in bighorn sheep (Coltman et al. 2002; Coltman et al. 2003). Bighorn rams must make 

heavy energetic investments in the development of very large horns. Thus there could be 

substantial survival costs to having large horns due to the high energetic costs related to horn 

development. However, there is obviously strong sexual selection favoring males with very large 

horns in bighorn sheep.  

 

In contrast to Soay sheep, our results (i.e., a putative selective sweep over RXFP2) 

suggest that directional selection is the dominant evolutionary force affecting RXFP2, and 

presumably horn development, in our bighorn populations. FST was lower than the genome-wide 

average in both of the sliding windows that overlapped RXFP2 (ZFST = -0.72 and -1.13). Low 

genetic differentiation in the region of RXFP2 suggests that the same alleles were favored in 

populations comprising the Teton and SR/WB pools.  

 

An obvious potential explanation for strong directional selection on horn development is 

selective human harvest. It has been shown that selective harvest of large-horned rams can result 

in evolution toward smaller horn size in bighorn sheep (Coltman et al. 2003; Hedrick 2011). We 

have no data on horn size in any of our study populations, so it is impossible for us to explicitly 

test this idea. RXFP2 should be considered as a strong candidate gene in future studies of the 

genetic basis of horn development, male dominance, and reproductive success in mountain 

sheep. 

 

Selection signatures at growth genes 

 

We identified putative selection signatures at two genes involved with body growth: the growth 

hormone receptor (GHR) and insulin-like growth factor 2 receptor (IGF2R). GHR is a receptor 

for growth hormone (GH). The binding of GH to GHR initiates a metabolic cascade that triggers 

and regulates the expression insulin-like growth factor I (IGF-I) (Frago & Chowen 2005). The 

bulk of the effects of GH and GHR on the growth via the production of IGF-I are thought to 

occur during postnatal development (Frago & Chowen 2005). Variation at GHR has been found 

to affect the expression IGF-I, and milk fat percentage in cattle (Aggrey et al. 1999; Ge et al. 

2003). The genomic region around GHR had both very low heterozygosity (ZHP = -5.27) in the 

Teton pool and high FST (ZFST = 5.01) (Table 5-S4). Thus, it appears that an allele(s) at GHR 

was strongly favored in the Teton subpopulations but not in the SR and WB populations. This 

suggests that strong selection on GHR in the Tetons could be due to biological contrasts between 

the Teton and SRWB pools. For example, it is likely that lambs with very fast body growth have 
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a large selective advantage in high elevation habitats like to the Teton Range with a short 

growing season and extreme Winter conditions. 

 

The selection signature around IGF2R could be caused by its effects on prenatal growth. 

IGF2R is thought to regulate fetal growth by binding and degrading the growth hormone IGF2 

(Monk & Moore 2004), which modulates fetal and placental size (Constância et al. 2002). 

Survival of bighorn lambs and subsequent reproduction of adults has been shown to be related to 

growth early in life (Festa-Bianchet et al. 1997; Festa-Bianchet et al. 2000). Thus, IGF2R and 

GHR should be considered as a strong candidate gene for body mass of bighorn lambs, and 

subsequent reproduction of adults.   

 

Differentiating the genomic signatures of selection and drift 

 

Differentiating signatures of selection from similar molecular patterns caused be genetic drift is 

challenging (Jensen et al. 2007; Pavlidis et al. 2012). Some approaches have been devised to 

limit or quantify the likelihood of false positive signatures of selection (Hohenlohe et al. 2010; 

Nielsen et al. 2005; Pavlidis et al. 2012; Qanbari et al. 2012). However, these approaches either 

require knowledge of historical population dynamics (e.g., Neilsen et al. 2005) or assume that 

the minor allele frequencies at closely linked loci are independent (e.g., Hohenlohe et al. 2010; 

Qanbari et al. 2012). The approach of Neilsen et al. 2005 compares a test statistic (e.g., the 

composite likelihood ratio) against its null distribution taken from simulated population genomic 

data with no selection. In order to implement this approach, the researcher must have reasonable 

knowledge of the population history, including historical colonization and migration events, and 

fluctuations in population size. Unfortunately, such detailed historic demographic information is 

rarely available for natural populations.  

 

There is very limited information on historical population dynamics in our study 

populations. Thus, we believe it would have been inappropriate to use simulations to define strict 

threshold values of ZHP and ZFST beyond which a particular putative selection signature was 

considered ‘significant’. Nevertheless, our simulations suggest that it is likely that some of the 

putative selection signatures we detected in the Teton pool were false positives. However, the 

identification of selection signatures around genes related to functions known to strongly affect 

fitness in bighorn and domestic sheep gives us confidence that many of the putative selection 

signatures in the Teton pool were real. Given the strong possibility of false positives, the outliers 

we detected only in the Teton pool (e.g., GHR and IGF2R) should be considered only as 

candidate adaptive genes. The functional and fitness roles of these candidate genes should be 

confirmed by future genomic studies of bighorn and other mountain sheep.   

 

The results of our simulations are also informative of the potential usefulness of 

randomization procedures to evaluate the likelihood that putative selection signatures were 

indeed caused by selection. Hohenlohe et al. 2010 and Qanbari et al. 2012 proposed similar 

randomization-based tests to statistically differentiate true selection signatures from those caused 

by genetic drift. This approach first involves simulating the null distribution of a statistic (e.g., 

HP of FST) by estimating the statistic on thousands of sets of randomly chosen SNPs from across 

the genome. An empirical P-value for an observed estimate in a particular genomic window is 

determined as the proportion of the randomized estimates that are at least as extreme as the 
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observed value. This approach implicitly assumes that heterozygosity at closely linked loci is 

uncorrelated (as noted by Hohenlohe et al. 2010). However, as shown by our simulations (Figure 

5-3), heterozygosity at closely linked loci is not independent.  We believe that the non-

independence of heterozygosity at closely linked markers should be carefully considered in 

future studies of genomic signatures of selection. Specifically, the scenarios under which the null 

distribution of selection test statistics can be approximated via randomization of loci from across 

the genome may be limited to populations with extremely large Ne (e.g., Ne >> 1000). 

Additionally, every effort should be made to include realistic values of Ne and population 

admixture when using simulations to approximate the null distribution of selection signature test 

statistics, or evaluating the performance of a particular test for selection.  

 

Conclusions 

 

We have identified candidate adaptive genes associated with body growth and horn development 

in wild bighorn sheep. We found evidence of strong directional selection on RXFP2, which has 

been shown to affect horn development in domestic sheep. Thus RXFP2 has likely been strongly 

influenced by sexual selection via high increased reproductive success of rams with large horns, 

or alternatively by selective human harvest of large-horned rams. Selection signatures at the 

GHR and IGF2R further support the idea that growth is under strong selection in bighorn. 

Additionally, finding selection signatures at GHR and IGF2R suggests that these genes are 

responsible for heritable variation in growth. The best way to validate the fitness effects of these 

genes would be to focus on them in future studies of body and horn growth, and scans for 

selection signatures in other populations of mountain sheep. Lastly, this study demonstrates the 

power of whole genome sequencing when a high quality reference sequence is available, e.g., 

from a related model or agricultural species. Whole genome sequencing with a reference 

sequence has enormous potential to facilitate identification of selected genomic regions in 

natural populations.   
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Figure 5-1. ZHP for the Teton populations (bottom panel) and ZFST (top panel) across the 

bighorn sheep genome. Chromosomes are arranged 1-26 (left to right). The red line represents 

the rolling mean across 100 sliding windows. The dashed lines represent the threshold of 

significance of 5 standard deviations from the mean HP and FST across the whole genome.  
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Figure 5-2. HP in the Teton pool and FST across putatively selected regions on chromosomes 10 

(A), 16 (B), 8 (C), and 2 (D). Orange points represent FST and blue points represent HP. FST and 

HP are shown in 100Kb windows in the top panels. FST and HP at individual SNPs in the 

putatively selected regions are shown in the bottom panels. Genes labeled as “UNC” are 

uncharacterized. 
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Figure 5-3. ZHP sliding window estimates from 20 simulations of neutrally evolving populations 

with a demographic history approximately similar to the Teton populations. Simulations were 

run for 100 generations with local Ne = 30 (top panel) and Ne = 20 (bottom panel). Two 

chromosomes were simulated for each population. The two chromosomes from each simulated 

population are represented by adjacent blocks of black and gray points. The simulations with 0.5 

migrants per generation on average between the two Teton subpopulations and a large source 

population. There was a migration rate of 0.75 individual/generation on average between the two 

Teton subpopulations. The mean FST was 0.09 (min. = 0.05, max. = 0.12) among the 20 

simulations of populations with Ne = 30. The mean FST across the 20 simulations with Ne = 20 

was 0.1 (min. = 0.06, max. = 0.15). The dashed lines represent the threshold value of ZHP that 

we used for our empirical data to consider a window as being putatively selected.  
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Appendix 2-1 

 
The power to detect identity disequilibrium and inbreeding depression via HFCs is expected to 

be affected not only by σ2(F), but also by the heterozygosity of the typed loci (Slate et al. 2004); 

therefore we controlled for heterozygosity in our simulations.  We used the mean F of 

individuals in generations 49-50 of the simulated populations to determine how many equally 

frequent alleles in the first generation were necessary to produce expected heterozygosity (He) of 

0.65 for loci sampled in generations 49-50.  

 

We determined the mean F in generation 49-50 of the simulated populations as the 

observed mean F in generation 50 among 100 replicate preliminary simulations (parameterized 

as described above) using each of the eight immigration rates (m).  Expected heterozygosity (He) 

can be determined as 

 

He = H0(1- F)       eq. 1 

 

where H0 is the mean heterozygosity of non-inbred individuals and F is the mean IBD fraction of 

the genome among individuals in the population (Crow & Kimura 1970, p. 66).  We used 

equation 1 to determine the expected heterozygosity of immigrants and individuals in the first 

simulated generation (H0) needed to achieve 65.0eH  in generations 49-50.  Therefore we 

solved for H0 after substituting the mean F in generations 49-50 and the desired He of 0.65.  We 

then determined the number of equally frequent alleles necessary to achieve H0.  

He can be determined as 

 





n

i

ie pH
1

21     eq. 2 

 

where pi is the frequency of the ith allele.  If all alleles are equally frequent and N is the number 

of alleles, 1/N can be substituted for p in equation 2: 

 

N
N

H e

2
1

1 







  eq. 3 

 

We substituted H0 for He in equation 3 and solved for N to determine the number of equally 

frequent alleles to be included in the founding generation.    

 

We used the mean F of individuals in generations 49-50 of the simulated populations 

(determined as explained above for microsatellite loci) to determine the SNP minor allele 

frequency in the first generation that was necessary to produce a mean expected heterozygosity 

(He) of 0.30 for loci sampled in the final simulated generation.  We determined H0 as above for 

simulations with microsatellite loci.  We then solved the following equation for the minor allele 

frequency p: 
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H0 = 2p(1 – p)     eq. 4 

 

This approach is made possible by using a simulation framework where founders and 

their descendants are assigned genotypes after the demographic portion of the simulation is 

complete. The simulation model keeps track of the ancestral origin of each chromosome segment 

(i.e., the founder chromosome copy from which each chromosome segment in an individual 

originates). Founders are assigned genotypes after the last generation of the simulation. Then the 

descendants of founders are assigned genotypes based on the alleles found on the ancestral 

chromosome segments in the founders. 
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The randomization test for a difference between the mean estimated and true r2 between 

survival and F proceeded as follows: 
 

1. Calculate the raw difference between the mean estimated r2 and the mean true r2 between 

survival and F (  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

) for simulations within each category of 

σ2(F). 

 

2. For each simulation within each category of σ2(F), randomly reassign the values of 

 Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

 as being either  Fsurvivalr ,2
 or  Fsurvivalr ,ˆ2

. Repeat this 

10,000 times, each time recalculating the difference between the mean true r2 and mean 

estimated r2. This simulated the sampling distribution of the difference between means assuming 

there was no true difference. 

 

3. The P-value for the randomization test for a difference between the mean  Fsurvivalr ,2
 and

 Fsurvivalr ,ˆ2
 for a given category of σ2(F) was the proportion of the randomized estimates of 

the difference between means that was greater than or equal to the original difference between 

means.     

 

Agreement of simulation output with theoretical expectations 

 

The slope from a regression of multiple locus heterozygosity (MLH) scaled to H0 (MLH/H0) 

versus F ( ̂ = -0.99) closely agreed with the theoretically expected slope (β = -1.0; Figure 2-S1).   

The mean F at migration-drift equilibrium among 30 replicate simulations agreed closely with 

theoretical predictions (Figure 2-S2). The relationship between the proportion of the genome that 

is identical by descent (F) and the pedigree inbreeding coefficient (FP) agreed closely with 

theoretical expectations (Figure 2-S3).   
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Figure 2-S1. Multiple-locus heterozygosity (scaled to the heterozygosity of non-inbred 

individuals (H0)) measured at 5000 microsatellite loci plotted against F.  The data shown are 

from a single simulated population with constant size of N = 60 individuals, and m = 0.004.  The 

fitted line and slope ( = -0.99) are from a simple linear regression model.  

 

̂
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Figure 2-S2. The pedigree inbreeding coefficient (FP) versus time in generations. Here FP was 

calculated using pedigrees that included the entire ancestry of all simulated individuals. The data 

presented here are from 30 simulated random mating populations with an effective populations 

size (Ne) of 40. Each simulated population received one immigrant per generation on average (m 

= 1/40) and was initiated with unrelated and non-inbred individuals. The dashed line represents 

the theoretically expected mean FP at migration drift equilibrium which was calculated as

14

1




mN
F

e

P . Each gray line represents the mean FP for a single population across 200 

generations. The black points represent the mean FP across all 30 simulated populations each 

generation. We used FP here instead of F because our simulation program calculates F only for 

individuals in the last two generations of the simulation. The results would be equivalent with F, 

because FP is an unbiased estimator of F (see Figure 2-S3 below). 
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Figure 2-S3. The fraction of the genome that is identical by descent (F) versus the pedigree inbreeding 

coefficient FP. Data are from individuals in the last generation of each of 30 simulated populations with 

Ne = 40. Each population received one immigrant per generation on average. The simulated populations 

were founded by unrelated and non-inbred individuals. FP was calculated using pedigrees that included 

every simulated generation. When the founders of a pedigree are unrelated and non-inbred, FP is expected 

to be an unbiased estimator of F. Thus, we expect a linear regression of F versus FP to have an intercept 

of 0 and a slope of 1 (solid black line). The observed regression of F versus FP is represented by the 

dashed line. 
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Statistical Results 

Simulations with random mating and 6 diploid lethal equivalents 

Comparison of the statistical power of tests for HFC and ID  

 

The relative statistical power of HFC versus g2 tests for ID depended strongly on the number of 

loci used to calculate Hs, σ
2(F), and the strength of inbreeding depression (Figure 2-S4 below).  

The power to detect ID was significantly higher than the power to detect HFC in 23 out of 24 

simulate combinations of σ2(F), and the type and number of markers. The greatest observed 

difference in statistical power was with 100 microsatellite loci and σ2(F) = 0.002, where the 

power to detect ID was 0.69 greater than for HFC.  

Approximately five times as many SNPs than microsatellites were necessary to achieve a 

given statistical power to detect ID or HFCs (Figure 2-S4). For example, the power to detect 

HFC or ID were very similar when using either 50 microsatellite loci or 250 SNPs. Statistical 

power was lower than 80% for HFCs regardless of the type of marker, σ2(F), or the number of 

loci used. 25 and 100 microsatellites were necessary for statistical power of the g2 tests to exceed 

80% when σ2(F) was 0.005 and 0.002, respectively. Statistical power for ID tests never exceeded 

80% when σ2(F) was 0.001 regardless of the number and type of loci used. 100 and 250 SNPs 

were necessary for the power of ID tests to exceed 80% when σ2(F) was 0.005 and 0.002, 

respectively.  
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Figure 2-S4. The proportion of significant tests for g2 (open circles) and for HFC (closed circles) 

versus σ2(F) for simulations with random mating, six diploid lethal equivalents. Results are 

shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left column), 

and 100, 250, 500, and 1000 SNPs (right column).  Error bars are 95% confidence intervals for 

the proportion of significant tests. Statistically significant differences between the statistical 

power of HFC and g2 tests among simulations within each category of σ2(F) are labeled with 

asterisks. 
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Figure 2-S5. The true (open circles) and estimated (closed circles) proportion of variance in HS 

explained by F (  FHr S ,2
 and  FHr S ,ˆ2

) versus the variance of F (σ2(F)). The data shown are 

from simulations of random mating populations with 6 diploid lethal equivalents. Results are 

shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left column), 

and 100, 250, 500, and 1000 SNPs (right column). Error bars represent one standard deviation. 

Asterisks indicate statistically significant differences between the means of  FHr S ,2
 and 

 FHr S ,ˆ2
 among the simulations with each category of σ2(F). 
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Figure 2-S6. The true (open circles) and estimated (closed circles) proportion of variation in 

survival explained by F (  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

) versus the variance of F (σ2(F)).  

The data shown are from simulations of random mating populations with 6 diploid lethal 

equivalents, and using 10-100 microsatellites (left column) and 100-1000 SNPs (right column). 

Asterisks indicate statistically significant differences between the mean  Fsurvivalr ,2
 and

 Fsurvivalr ,ˆ2
 among simulations within each category of σ2(F). 
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Simulations with random mating and 12 diploid lethal equivalents 

 

 

 

Figure 2-S7. The proportion of significant tests for g2 (open circles) and for HFC (closed circles) 

versus σ2(F) for simulations with random mating, 12 diploid lethal equivalents. Results are 

shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left column), 

and 100, 250, 500, and 1000 SNPs (right column).  Error bars are 95% confidence intervals for 

the proportion of significant tests. Statistically significant differences between the statistical 

power of HFC and g2 tests among simulations within each category of σ2(F) are labeled with 

asterisks. 
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Figure 2-S8. The true (open circles) and estimated (closed circles) proportion of variance in HS 

explained by F (  FHr S ,2
 and  FHr S ,ˆ2

) versus the variance of F (σ2(F)). The data shown are 

from simulations of random mating populations with 12 diploid lethal equivalents. Results are 

shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left column), 

and 100, 250, 500, and 1000 SNPs (right column). Error bars represent one standard deviation. 

Asterisks indicate statistically significant differences between the means of  FHr S ,2
 and 

 FHr S ,ˆ2
 among the simulations with each category of σ2(F). 
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Figure 2-S9. Barplot of the proporion of simulations with significant HFCs that were also significant for 

g2 with 95% confidence itnervals. The data are from simulations of random mating populations with 12 

diploid lethal equivalents, microsatellite loci (upper panel) and SNPs (lower panel).  
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Figure 2-S10. The true (open circles) and estimated (closed circles) proportion of variation in 

survival explained by F (  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

) versus the variance of F (σ2(F)).  

The data shown are from simulations of random mating populations with 12 diploid lethal 

equivalents, and using 10-100 microsatellites (left column) and 100-1000 SNPs (right column). 

Asterisks indicate statistically significant differences between the mean  Fsurvivalr ,2
 and

 Fsurvivalr ,ˆ2
 among simulations within each category of σ2(F). 
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Simulations with partial selfing and 6 diploid lethal equivalents 

 

Figure 2-S11. The proportion of significant tests for g2 (open circles) and for HFC (closed 

circles) versus σ2(F) for simulations with partial selfing and six diploid lethal equivalents. 

Results are shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left 

column), and 100, 250, 500, and 1000 SNPs (right column).  Error bars are 95% confidence 

intervals for the proportion of significant tests. Statistically significant differences between the 

statistical power of HFC and g2 tests among simulations within each category of σ2(F) are 

labeled with asterisks. 
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Figure 2-S12. The true (open circles) and estimated (closed circles) proportion of variance in HS 

explained by F (  FHr S ,2
 and  FHr S ,ˆ2

) versus the variance of F (σ2(F)). The data shown are 

from simulations of partially selfing populations with 6 diploid lethal equivalents. Results are 

shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left column), 

and 100, 250, 500, and 1000 SNPs (right column). Error bars represent one standard deviation. 

Asterisks indicate statistically significant differences between the means of  FHr S ,2
 and 

 FHr S ,ˆ2
 among the simulations with each category of σ2(F). 
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Figure 2-S13. Barplot of the proporion of simulations with significant HFCs that were also significant for 

g2 with 95% confidence itnervals. The data are from simulations of partial selfing populations with 6 

diploid lethal equivalents, microsatellite loci (A) and SNPs (B). 
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Figure 2-S14. The true (open circles) and estimated (closed circles) proportion of variation in 

survival explained by F (  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

) versus the variance of F (σ2(F)).  

The data shown are from simulations of partial selfing populations with 6 diploid lethal 

equivalents, and using 10-100 microsatellites (left column) and 100-1000 SNPs (right column). 

Asterisks indicate statistically significant differences between the mean  Fsurvivalr ,2
 and

 Fsurvivalr ,ˆ2
 among simulations within each category of σ2(F). 
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Simulations with partial selfing and 12 diploid lethal equivalents 

 

 

Figure 2-S15. The proportion of significant tests for g2 (open circles) and for HFC (closed 

circles) versus σ2(F) for simulations with partial selfing and 12 diploid lethal equivalents. Results 

are shown from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left 

column), and 100, 250, 500, and 1000 SNPs (right column).  Error bars are 95% confidence 

intervals for the proportion of significant tests. Statistically significant differences between the 

statistical power of HFC and g2 tests among simulations within each category of σ2(F) are 

labeled with asterisks. 
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Figure 2-S16. The true (open circles) and estimated (closed circles) proportion of variance in HS 

explained by F (  FHr S ,2
 and  FHr S ,ˆ2

) versus the variance of F (σ2(F)). The data shown are 

from simulations of partial selfing populations with diploid lethal equivalents. Results are shown 

from analyses with Hs estimated using 10, 25, 50, and 100 microsatellites (left column), and 100, 

250, 500, and 1000 SNPs (right column). Error bars represent one standard deviation. Asterisks 

indicate statistically significant differences between the means of  FHr S ,2
 and  FHr S ,ˆ2

 

among the simulations with each category of σ2(F). 
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Figure 2-S17. Barplot of the proporion of simulations with significant HFCs that were also significant 

for g2 with 95% confidence itnervals. The data are from simulations of partial selfing populations with 12 

diploid lethal equivalents, microsatellite loci (A) and SNPs (B). 
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Figure 2-S18. The true (open circles) and estimated (closed circles) proportion of variation in 

survival explained by F (  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

) versus the variance of F (σ2(F)).  

The data shown are from simulations of partial selfing populations with 12 diploid lethal 

equivalents, and using 10-100 microsatellites (left column) and 100-1000 SNPs (right column). 

Asterisks indicate statistically significant differences between the mean  Fsurvivalr ,2
 and

 Fsurvivalr ,ˆ2
 among simulations within each category of σ2(F). 
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Simulations with random mating, 6 diploid lethal equivalents, and 1000 cM genomes with 

10 chromosomes 

 

 

Figure 2-S19. The proportion of significant tests for g2 (open circles) and for HFC (closed 

circles) versus σ2(F) for simulations with random mating, six diploid lethal equivalents and 

1000cM genomes with 10 chromosomes. Results are shown from analyses with Hs estimated 

using 10, 25, 50, and 100 microsatellites (left column), and 100, 250, 500, and 1000 SNPs (right 

column).  Error bars are 95% confidence intervals for the proportion of significant tests. 

Statistically significant differences between the statistical power of HFC and g2 tests among 

simulations within each category of σ2(F) are labeled with asterisks. 
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Figure 2-S20. The true (open circles) and estimated (closed circles) proportion of variance in HS 

explained by F (  FHr S ,2
 and  FHr S ,ˆ2

) versus the variance of F (σ2(F)). The data shown are 

from simulations of random mating populations with 6 diploid lethal equivalents, 1000cM 

genomes with 10 chromosomes. Results are shown from analyses with Hs estimated using 10, 

25, 50, and 100 microsatellites (left column), and 100, 250, 500, and 1000 SNPs (right column). 

Error bars represent one standard deviation. Asterisks indicate statistically significant differences 

between the means of  FHr S ,2
 and  FHr S ,ˆ2

 among the simulations with each category of 

σ2(F). 



104 

 

 

 

 

 

 

Figure 2-S21. The proportion of statistically significant HFCs that also had statistically significant tests 

for identity disequilibrium. Data are from random mating populations with 6 diploid lethal 

equivalents and 1000cM genomes with 10 chromosomes. Error bars are 95% confidence intervals. 

Barplot of the proporion of simulations with significant HFCs that were also significant for g2 with 95% 

confidence itnervals. The data are from simulations of random mating populations with 6 diploid lethal 

equivalents and 1000cM genomes with 10 chromosomes. HS was estimated with microsatellite 

loci (A) and SNPs (B). 
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Figure 2-S22 The true (open circles) and estimated (closed circles) proportion of variation in 

survival explained by F (  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

) versus the variance of F (σ2(F)).  

The data shown are from simulations of random mating populations with 6 diploid lethal 

equivalents, and 1000cM genomes with 10 chromosomes. HS was estimated using 10-100 

microsatellites (left column) and 100-1000 SNPs (right column). Asterisks indicate statistically 

significant differences between the mean  Fsurvivalr ,2
 and  Fsurvivalr ,ˆ2

 among simulations 

within each category of σ2(F). 
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Appendix 3-1 

 
Here we use basic population genetics theory to demonstrate why FH was a biased measure of 

PGIBD in our study. As mentioned in the main text, FH measures the reduction in multiple-locus 

heterozygosity relative to the Hardy-Weinberg expected heterozygosity (He). The formulation of 

FH used in this paper, and implemented in the program PLINK (Purcell et al. 2007) is 

 

 
 ii

ii
Hi

EL

EO
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


                                                       Equation 1 

 

where Oi is the observed number of homozygous SNPs for individual i, Ei is the Hardy-

Weinberg expected number of homozygous SNPs for individual i, and Li is the number of typed 

SNPs for individuals i. Equation 1 is equivalent to  
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        Equation 2 

 

where MLHi is the multiple-locus heterozygosity of individual i and  He is the Hardy-Weinberg 

expected heterozygosity of the typed SNPs. Equation two can be rearranged to yield 

 

)1( Hiei FHMLH  ,                                          Equation 3 

 

which is equivalent to the classical description of the relationship between individual 

heterozygosity and individual inbreeding:  

 

)1(0 ii FHH                                                       Equation 4 

 

where Hi is the genome wide heterozygosity of individual i, Fi is the PGIBD of individual i, and 

H0 is the genome-wide heterozygosity of a non-inbred individual (Crow & Kimura 1970, p. 66). 

It is obvious from a comparison of Equations 3 & 4 that He must be equal to H0 for FH to be an 

unbiased estimator of PGIBD.  

 

            He will not equal H0 when allele frequencies are measured in a population with Ne << ∞, 

because mating between relatives occurs in any finite population. From classical population 

genetics (Wright 1931), we expect a proportional increase in the population mean F, and a 

proportional decrease in He of 1/2Ne each generation as a result of genetic drift. Thus, allele 

frequencies must be measured from an historical population where the assumption of He = H0 is 

reasonable for FH to be an unbiased measure of PGIBD. Alternatively, allele frequencies could 

be measured across many different extant populations where the collective Ne is very large and 

the assumption that He would approximately equal H0. 
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Supplement to Chapter 3 

 

Table 3-S1. PLINK ROH detection settings for analyses based on different numbers of SNPs 

and minimum ROH lengths. The PLINK settings listed for > 100K SNPs were used in our 

preliminary simulations. The preliminary simulations showed that using more than 100K SNPs 

did not increase the correlation of PGIBD with FH or with FROH.  

 

Number of 

SNPs 

Minimum 

ROH 

length 

SNP Density 

(kb/SNP) 

Maximum Gap 

between Adjacent 

SNPs (Kb) 

Minimum number of 

SNPs/ROH 

20-100K 2 Mb 100 250 30 

200-300K 2 Mb 75 175 70 

≥ 400K 2 Mb 50 100 100 

20-100K 8 Mb 200 500 60 

200-300K 8 Mb 150 350 140 

≥ 400K 8 Mb 100 200 200 
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Figure 3-S1. The predicted standard deviation of PGIBD after one generation of selfing versus 

the number of chromosomes (Franklin 1977). Predictions from genomes with different genetic 

map lengths are represented by different line types.  
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Figure 3-S2. Barplots of the mean r2 (+/- 1 s.d. across 20 simulated populations) from 

regressions of FP, FH and FROH versus PGIBD. Results shown here are from simulations that 

used a genetic map length of 800 cM. Results are shown from 20 partially isolated (m = 0.05) 

small populations (local Ne = 20) in the top row. The data shown in the bottom row are from 20 

populations with recently reduced Ne (from Ne = 500 to Ne = 20). Horizontal dotted lines are 

placed at r2 = 0.9 to aid comparison of r2across FP, FH and FROH.  
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Figure 3-S3. The bias of FP, FH, and FROH among simulations that used a genetic map length of 

800 cM. Results from 20 simulations of partially isolated small populations are shown in the top 

row. Results from 20 simulations of populations with a recent reduction in Ne are shown in the 

bottom row.  
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Figure 3-S4. Barplots of mean r2 from regressions of PGIBD versus FP, FH, and FROH across 20 

simulations of partially isolated small populations (Ne = 20). The results presented here are from 

the same simulated partially isolated populations shown in Figure 3-2 in the main text, except 

here the SNP genotype data were LD-pruned using the default settings in PLINK (window size = 

50 SNPs, step size = 5 SNPs, minimum r2 threshold for removal of a SNP = 0.5). We only used 

up to 50K SNPs to estimate FH and FROH here because some loci were removed from the 100K 

simulated SNPs during LD pruning.  

 

 

 

 

 

 



112 

 

Figure 3-S5. Barplots of the mean r2 (+/- 1 s.d. across 20 simulated populations) from 

regressions of FP, FH and FROH versus PGIBD. Results shown here are from simulations that 

used a genetic map length of 3600 cM, Ne = 100, and m = 0.01.  
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Supplement to Chapter 4 

 

 
Figure 4-S1. The mean (A) and variance (B) of F versus the migration rates used in our 

simulations. The data shown are from 50 replicate simulations for each migration rate. 
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Figure 4-S2. FP versus the true F in from pedigrees with 0-100% inbred (FP = 0.25) founders.  

The solid line represents a slope of 1.0.  
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Figure 4-S3. (A) r2 from regressions of FP (open bars) and FPC (hatched bars) versus F plotted 

against pedigree depth. (B) The power to detect inbreeding depression using FP and FPC plotted 

against the pedigree depth. The colored dashed lines represent the statistical power to detect 

inbreeding depression when using the true F in each of the simulated demographic scenarios.  

Results from simulations using different migration rates are represented by different color bars. 

Scenarios where the r2 with F, or the power to detect inbreeding was statistically significantly 

different between FP and FPC are indicated with stars.  
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Supplement to Chapter 5 

 

 
Figure 5-S1. Variants were called in pooled data from the South Teton (triangles) and North Teton 

(squares) populations. The proportion of total SNPs is given for the full range (0 – 1) of alternate 

allele (AF) frequency. The result using default SNVer settings for read mapping quality (mq = 20) 

and nucleotide base quality (bq = 17) is shown in red. The increase in SNP with high AF (> 0.80) 

prompted manual inspection of individual variants using IGV (Thorvaldsdóttir et al. 2013).This 

revealed a large number of positions were fixed between species, however were assigned an AF 

value < 1.0. Variant calling was subsequently performed using an elevated threshold for mapping 

quality (mq = 40) to exclude reads incorrectly positioned due to sequence divergence between O. 

Canadensis and O. aries. For reads successfully mapped, almost all positions within a read were 

used for variant detection by reducing the bq value to 2. The result using these modified SNVer 

settings (mq = 40; bq = 2) is shown for both pools (green). Greater than 80% of variants in each 

pool had AF = 1.0 and the distribution for the remaining variants is almost flat. 
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Figure 5-S2. The total number of SNP called is given for each alternate allele frequency bin (AF) 

following SNP calling. The data is the same as given in Figure S1 however the absolute number 

of SNP is given in the Y axis. SNVer was used with default (red) or modified parameters (green) 

on two Bighorn populations: South Teton (lighter shade) and North Teton (darker shade). The 

modified parameters greatly reduced the number of SNP called in AF bins 0.70 – 0.95, while 

dramatically increasing the number of SNP (≈ 250,000) called with AF = 1. This reflects the large 

number of positions that are monomorphic within pools and fixed for an allele that is different to 

that residing within the reference genome assembly built from a domestic sheep. 
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Figure 5-S3.  FST versus HP for all sliding windows across the bighorn sheep genome. Data from 

the Teton pool are shown in the top panel and data from the SR/WB pool are shown in the 

bottom panel. The fitted lines are from linear regression of FST versus expected heterozygosity. 

Both linear regression models were highly statistically significant (P << 0.001) 
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Figure 5-S4. ZHP from the Teton pool versus the number of fixed differences between bighorn 

and the domestic sheep reference genome sequence. We excluded windows with fewer than 200 

fixed differences from consideration as putative selective sweeps.  
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Figure 5-S5. The number of fixed differences between Teton bighorn and the domestic sheep 

reference genome sequence in 100 Kb sliding windows. The red line is the rolling mean over 100 

windows. Chromosomes 1-26 are arranged left to right and are distinguished by bands of gray 

and black points.  
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Table 5-S1. Number of single nucleotide polymorphisms (SNPs)by chromosome number (after 

all filtering steps) across all 26 autosomes. 

 

Chromosome SNPs 

1 283323 

2 244915 

3 216929 

4 128111 

5 111328 

6 123827 

7 103156 

8 94989 

9 103082 

10 96742 

11 65119 

12 87459 

13 85201 

14 65171 

15 88237 

16 78674 

17 74719 

18 76991 

19 63199 

20 63009 

21 55536 

22 53288 

23 68998 

24 44372 

25 48116 

26 48373 

Total:  2572864 
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Table 5-S2. Sequence summary statistics for each of the six individual DNA pools. 

Population Abbrev Pool_N Altitude Disease Range Total Mb Aligned Mb 

Aligned 

(%) SNP 

Sun River Gibson Dam SRGD 8 Low Die-offs Migratory 22,082 17,761 80   

Sun River Other SRO 10 Low Die-offs Migratory 40,512 28,804 71  

North Teton NT 10 High Free Non-migratory 66,296 52,016 78   

South Teton ST 9 High Free Non-migratory 44,422 35,240 79  

Whiskey Basin New WBN 11 Mid - High Die-offs Migratory 41,242 33,084 80   

Whiskey Basin Old WBO 10 Mid - High Die-offs Migratory 41,854 32,433 77  

Total           256,408 199,337 78 2572864 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 

 

Table 5-S3. Pairwise estimates of FST between individual DNA pools. The FST estimates 

presented here are from 1.72 million SNPs identified via variant calling conducted on each of the 

six individual pools individually.  

 

Pool Combination FST 

Tetons vs. Sun River and Whiskey Basin 0.119 

Sun River Gibson vs. Sun River Other -0.045 

Whiskey Old vs. Whiskey New -0.016 

Whiskey Basin vs. Sun River 0.138 

North Teton vs. South Teton 0.098 
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Table 5-S4. All outlier regions containing genes. Regions were identified on the basis of ZHP in 

the Teton pool (A), ZHP in the SR/WB pool (B), and ZFST between pools (C). The z-scores listed 

are the lowest (for ZHP) or highest (for ZFST) among the 100 Kb windows making up an outlier 

region. Outlier regions are defined as contiguous blocks of outlier 100 Kb windows.  

 

Chr Start(Mb) Stop(Mb) Size(Kb) Region_N nSNP Z-score Genes 

(A) Teton Pool (TET) tested using ZHP     

1 62.15 62.30 150 1 210 -6.188 COL24A1 

1 258.25 258.35 100 5 188 -6.228 DSCAM 

2 162.00 162.10 100 7 113 -5.019 SLC25A23 

2 238.55 238.70 150 12 52 -5.435 AHDC1, FGR 

3 32.10 32.35 250 13 79 -6.528 ADCY3,CENPO,NCOA1,DNAJC27 

3 79.95 80.25 300 15 140 -5.314 PPM1B,SLC3A1,RPL7,LRPPRC 

3 141.70 141.80 100 16 398 -5.414 NELL2 

3 191.10 191.25 150 17 97 -6.040 SOX5 

3 197.65 198.00 350 18 99 -5.629 PGRMC2 

4 112.45 112.55 100 19 225 -5.166 A4IFP6, GIMAP1 

5 9.10 9.20 100 20 242 -5.396 ZNF333 

5 49.55 49.65 100 22 71 -5.346 PCDHB17,PCDHB4,PCDHB5,PCDHB6 

5 79.50 79.65 150 24 252 -6.324 ATP6AP1L,RPS23,GPR98 
5 88.00 88.10 100 25 63 -5.570 GPR98 

7 24.35 24.50 150 26 481 -6.053 OR4N2 

8 10.85 11.10 250 27 84 -6.254 C6ORF174,SNAP91,ECHDC1 

8 53.55 53.70 150 29 67 -6.009 PTPRK 

8 82.90 83.00 100 30 93 -5.622 IGF2R 

9 27.45 27.55 100 31 134 -5.636 E5KBL6 

9 28.95 29.05 100 32 97 -5.978 ANXA13,FAM91A1 

10 29.45 29.55 100 33 24 -6.055 RXFP2,EEF1A1 

12 44.55 44.70 150 35 59 -6.248 CAMTA1 

14 52.55 52.65 100 38 63 -5.032 HIF3A,CCDC61,NOVA2,PGLYRP1,IGFL1 

15 13.80 13.95 150 40 101 -5.552 MTMR2,CEP57 
15 16.40 16.50 100 41 61 -5.223 ALKBH8 

16 31.65 31.90 250 42 159 -5.652 CCDC152,SEPP1,GHR 

21 31.50 31.60 100 47 67 -5.783 ARHGAP32,KCNJ5 

26 36.05 36.20 150 48 315 -6.056 HOOK3,THAP1,RNF170 

        

(B) Sun River Whiskey Basin Pool (SRWB) tested using 

ZHP 

   

1 69.15 69.25 100 1 154 -5.911 EVI5, RPL5, FAM69A 

1 77.50 77.65 150 2 127 -6.187 DPH5 

7 69.95 70.05 100 9 121 -5.179 MNAT1, TRMT5, SLC38A6 

10 25.80 25.90 100 11 220 -5.569 DCLK1 

15 54.45 54.55 100 15 309 -5.759 ACER3 
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24 18.60 18.70 100 19 51 -5.951 DCUN1D3, F1RPB4, TIMM44, LYRM1 

        

(C) TET and SRWB Pools compared 
using ZFST 

    

1 104.65 104.75 100 2 58 5.305 MEX3A,LMNA,SEMA4A,UBQLN4, 
LAMTOR2,RAB25 

1 208.15 208.30 150 4 61 5.496 TBL1XR1 

2 65.75 65.85 100 5 33 6.038 SMC5,KLF9,F1MR21 

2 193.30 193.60 300 7 86 6.687 TMEFF2 

3 32.10 32.30 200 9 61 5.540 ADCY3,F1SDL0,CENPO,NCOA1, 
DNAJC27,F1AXJ8 

5 49.65 49.75 100 12 45 5.398 PCDHB18,RPSA,PCDHB15,PCDHB7, 
PCDHB13,PCDHB16,PCDHB17 

6 71.30 71.45 150 13 52 6.416 CEP135,ZC3H14,EXOC1 

8 53.60 53.75 150 14 77 6.110 PTPRK 

8 55.10 55.25 150 15 44 5.780 C6ORF191 

8 82.00 82.65 650 16 70 5.516 SOD2,TAGAP 

12 44.60 44.70 100 17 52 5.332 CAMTA1 

14 23.90 24.00 100 18 41 5.944 GNA0 

16 31.70 31.85 150 20 98 5.783 CCDC152,SEPP1,GHR 

20 16.70 16.80 100 22 56 5.098 KLC4,MRPL2,MEA1,KLHDC3,CUL7, 
PPP2R5D 

20 17.20 17.30 100 23 53 5.261 MRPS18A,DTD1,RSPH9,GTPBP2, 
MAD2L1BP,POLH 

20 44.50 44.60 100 24 69 5.059 GCNT2 

21 44.35 44.50 150 25 51 5.706 KDM2A,PC,ADRBK1 

22 31.45 31.60 150 27 75 6.165 POL 

22 33.20 33.35 150 28 127 6.599 NHLRC2,DCLRE1A 

26 18.00 18.10 100 29 48 5.008 FGL1,PCM1 

26 34.90 35.00 100 30 49 5.147 GINS4,GOLGA7 

26 36.20 36.30 100 31 152 5.127 SGK196,HGSNAT,FNTA 
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Table 5-S5. All outlier regions identified on the basis of ZHP in the Teton pool.  

 

Chr Start(Mb) Stop(Mb) Size(Kb) nSNP ZHP_Teton Genes 

1 62.15 62.30 150 210 -6.188 COL24A1 

1 75.30 75.40 100 142 -5.285  

1 173.80 173.90 100 63 -5.073  

1 223.35 223.45 100 277 -5.265  

1 258.25 258.35 100 188 -6.228 DSCAM 

1 259.10 259.20 100 196 -5.663  

2 162.00 162.10 100 113 -5.019 SLC25A23 

2 194.15 194.30 150 133 -5.492  

2 195.00 195.25 250 101 -5.577  

2 196.40 196.50 100 92 -5.284  

2 209.95 210.15 200 61 -6.552  

2 238.55 238.70 150 52 -5.435 AHDC1, FGR 

3 32.10 32.35 250 79 -6.528 ADCY3, CENPO, NCOA1, DNAJC27 

3 51.95 52.05 100 129 -5.096  

3 79.95 80.25 300 140 -5.314 PPM1B,SLC3A1,RPL7,LRPPRC 

3 141.70 141.80 100 398 -5.414 NELL2 

3 191.10 191.25 150 97 -6.040 SOX5 

3 197.65 198.00 350 99 -5.629 PGRMC2 

4 112.45 112.55 100 225 -5.166 A4IFP6, GIMAP1 

5 9.10 9.20 100 242 -5.396 ZNF333 

5 39.55 39.65 100 384 -5.029  

5 49.55 49.65 100 71 -5.346 PCDHB17,PCDHB4,PCDHB5,PCDHB6 

5 75.30 75.40 100 77 -5.361  

5 79.50 79.65 150 252 -6.324 ATP6AP1L,RPS23,GPR98 

5 88.00 88.10 100 63 -5.570 GPR98 

7 24.35 24.50 150 481 -6.053 OR4N2 

8 10.85 11.10 250 84 -6.254 C6ORF174,SNAP91,ECHDC1 

8 42.25 42.35 100 251 -5.244  

8 53.55 53.70 150 67 -6.009 PTPRK 

8 82.90 83.00 100 93 -5.622 IGF2R 

9 27.45 27.55 100 134 -5.636 E5KBL6 

9 28.95 29.05 100 97 -5.978 ANXA13,FAM91A1 

10 29.45 29.55 100 24 -6.055 RXFP2,EEF1A1 

12 6.50 6.60 100 317 -5.268  

12 44.55 44.70 150 59 -6.248 CAMTA1 

14 29.45 29.55 100 155 -5.617  

14 32.45 32.55 100 233 -5.428  

14 52.55 52.65 100 63 -5.032 HIF3A,CCDC61,NOVA2,PGLYRP1,IGFL1 

15 12.50 12.75 250 92 -5.454  
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15 13.80 13.95 150 101 -5.552 MTMR2,CEP57 

15 16.40 16.50 100 61 -5.223 ALKBH8 

16 41.50 41.60 100 192 -5.760  

16 52.10 52.20 100 408 -5.259  

19 9.70 9.80 100 89 -6.666  

20 22.90 23.05 150 111 -6.081  

21 31.50 31.60 100 67 -5.783 ARHGAP32,KCNJ5 

26 36.05 36.20 150 315 -6.056 HOOK3,THAP1,RNF170 

26 36.45 36.55 100 68 -5.799  
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Table 5-S6. Outlier regions identified on the basis of ZHP in the SR/WB pool. 

 

Chr Start(Mb) Stop(Mb) Size(Kb) nSNPHp ZHP_SRWB Genes 

1 69.15 69.25 100 154 -5.911 EVI5, RPL5, FAM69A 

1 77.50 77.65 150 127 -6.187 DPH5 

1 113.35 113.45 100 238 -5.341  

1 130.45 130.55 100 236 -5.371  

3 114.95 115.05 100 225 -5.062  

4 54.70 54.80 100 195 -5.318  

5 11.65 11.80 150 268 -6.404  

5 66.85 67.00 150 137 -6.525  

7 69.95 70.05 100 121 -5.179 MNAT1, TRMT5, SLC38A6 

8 42.45 42.55 100 320 -5.207  

10 25.80 25.90 100 220 -5.569 DCLK1 

10 62.35 62.45 100 234 -5.017  

11 0.05 0.25 200 123 -5.908  

15 11.40 11.50 100 567 -5.350  

15 54.45 54.55 100 309 -5.759 ACER3 

16 53.30 53.40 100 204 -5.810  

18 47.40 47.55 150 219 -5.758  

19 54.60 54.75 150 201 -5.622  

24 18.60 18.70 100 51 -5.951 DCUN1D3, F1RPB4, TIMM44, 
LYRM1 
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Table 5-S7. Outlier regions identified on the basis of ZFST estimated between the Teton and 

SR/WB pools. 

 
Chr Start(Mb) Stop(Mb) Size(Kb) nSNP ZFST Genes 

1 94.95 95.05 100 40 5.250  

1 104.65 104.75 100 58 5.305 MEX3A,LMNA,SEMA4A,UBQLN4,LAMTOR2,RAB25 

1 204.15 204.25 100 68 5.119  

1 208.15 208.30 150 61 5.496 TBL1XR1 

2 57.70 57.80 100 93 5.373  

2 65.75 65.85 100 33 6.038 SMC5,KLF9,F1MR21 

2 180.30 180.40 100 86 5.824  

2 193.30 193.60 300 86 6.687 TMEFF2 

2 193.90 195.30 1400 77 5.830  

3 32.10 32.30 200 61 5.540 ADCY3,F1SDL0,CENPO,NCOA1,DNAJC27,F1AXJ8 

3 52.05 52.15 100 95 5.423  

4 8.90 9.00 100 48 5.062  

5 49.65 49.75 100 45 5.398 PCDHB18,RPSA,PCDHB15,PCDHB7,PCDHB13, 
PCDHB16,PCDHB17 

6 71.30 71.45 150 52 6.416 CEP135,ZC3H14,EXOC1 

8 53.60 53.75 150 77 6.110 PTPRK 

8 55.10 55.25 150 44 5.780 C6ORF191 

8 82.00 82.65 650 70 5.516 SOD2,TAGAP 

12 44.60 44.70 100 52 5.332 CAMTA1 

14 23.90 24.00 100 41 5.944 GNA0 

15 11.35 11.55 200 466 7.258  

16 31.70 31.85 150 98 5.783 CCDC152,SEPP1,GHR 

19 9.70 9.85 150 62 6.285  

20 16.70 16.80 100 56 5.098 KLC4,MRPL2,MEA1,KLHDC3,CUL7,PPP2R5D 

20 17.20 17.30 100 53 5.261 MRPS18A,DTD1,RSPH9,GTPBP2,MAD2L1BP,POLH 

20 44.50 44.60 100 69 5.059 GCNT2 

21 44.35 44.50 150 51 5.706 KDM2A,PC,ADRBK1 

22 27.50 27.60 100 52 5.397  

22 31.45 31.60 150 75 6.165 POL 

22 33.20 33.35 150 127 6.599 NHLRC2,DCLRE1A 

26 18.00 18.10 100 48 5.008 FGL1,PCM1 

26 34.90 35.00 100 49 5.147 GINS4,GOLGA7 

26 36.20 36.30 100 152 5.127 SGK196,HGSNAT,FNTA 

 


	The genetic basis of fitness: detecting inbreeding depression and selective sweeps in bighorn sheep
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1470428171.pdf.EdGiD

