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a b s t r a c t

The bounded-delay packet scheduling (or buffer management) problem is to schedule
transmissions of packets arriving in a buffer of a network link. Each packet has a deadline
and a weight associated with it. The objective is to maximize the weight of packets that are
transmitted before their deadlines, assuming that only onepacket canbe transmitted in one
time step. Online packet scheduling algorithms have been extensively studied. It is known
that no online algorithm can achieve a competitive ratio better than φ ≈ 1.618 (the golden
ratio), while the currently best upper bound on the competitive ratio is 2

√
2− 1 ≈ 1.824.

Closing the gap between these bounds remains a major open problem.
The above mentioned lower bound of φ uses instances where item weights increase

exponentially over time. In fact, all lower bounds for various versions of buffermanagement
problems involve instances of this type. In this paper, we design an online algorithm for
packet scheduling with competitive ratio φ when packet weights are increasing, thus
matching this lower bound. Our algorithm applies, in fact, to a much more general version
of packet scheduling, where only the relative order of the deadlines is known, not their
exact values.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The bounded-delay packet scheduling (or buffer management) problem is to schedule transmissions of packets arriving
at a network link. Arriving packets are stored in a buffer whose size is unbounded. Each packet has a deadline and a
weight associated with it. The time is discrete and only one packet can be transmitted in one time step. The objective is
to maximize the weight of packets that are transmitted before their deadlines expire. Online packet scheduling algorithms
have been extensively studied in the literature [1–9]. It has been known for some time that no online algorithm can
achieve a competitive ratio better than φ ≈ 1.618, the golden ratio [1,3]. The greedy algorithm, which always transmits
the maximum weight pending packet, is 2-competitive [5,6] and, after a sequence of improvements, the best upper bound
on the competitive ratio has been now reduced to 2

√
2−1 ≈ 1.828 [4]. Online algorithmswith ratioφ have been developed
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Fig. 1. An example of an online algorithm A collecting items from a dynamic queue. Items are identified by their weights. Collected items are shaded.
Initially the queue contains items 25, 40 and 35. In the first step, A collects item 25. After the first step items 25, 40 are deleted and item 20 is inserted
right before item 35. In the second step, A collects item 35. After the second step item 20 is deleted. In the last step (not shown) item 35 will be deleted,
completing the computation.

for some special cases, including the 2-bounded case [6], where each packetmust be transmittedwithin atmost two steps, or
the more general case of agreeable deadlines [8], where the items are released in order of non-decreasing deadlines. For the
general case, closing the gap between these bounds remains a major open problem in the area of online buffer management
algorithms.

In the companion paper [10], we introduced a more general version of packet scheduling, where only relative order of
the deadlines is known, not their exact values. This model is motivated by packet scheduling problems in networks with
tiered traffic, competition with other traffic streams, interference on wireless links, or other situations where access to the
communication channel is intermittent and unpredictable. In [10], the model is described as follows: we have a dynamic
queue S that stores items with weights. At each time step, some items can be inserted into S at arbitrary locations, and a
prefix of S can be deleted. We can collect one item from S at each step, with the restriction that each item can be collected
at most once. (The collected item stays in the queue. Put another way, we actually only collect the value of the item.) The
objective is to maximize the total weight of collected items. For brevity, we will refer to this problem as the weighted item
collection problem.

In the case of packet scheduling, items represent packets, with the queue S containing all packets that have been released
but have not yet expired, ordered by their deadlines. As new packets are released they are inserted into S in appropriate
locations, consistent with the ordering. At each step the expired packets are removed from S. Due to their ordering, this will
indeed result in removing a prefix of S. Collecting an item represents transmitting the corresponding packet. (Note that the
buffer will then contain the items in S that have not been transmitted by the algorithm.) The difference between the two
problems can be delineated as follows: while in packet scheduling the arrivals of packets are unpredictable, once a packet
arrives its exact deadline is revealed. In the item collection problem, both arrival and expiration times are not known; we
only know that the items will expire in the order determined by the queue.

Since packet scheduling is a special case, a lower bound of φ applies to the weighted item collection problem as well.
In fact, in our setting the proof can be considerably simplified, as we will demonstrate shortly. A stronger lower bound of
≈ 1.633was shown in [10]. As for upper bounds, the greedy algorithm generalizes naturally to the weighted item collection
problem and it remains 2-competitive. The main result of [10] is a better upper bound of≈1.89.

In weighted item collection, the online algorithm faces the trade-off between the number of items it can collect and their
total weight. To collect more items, it is better to collect those early in the queue, since they will be deleted first. On the
other hand, items later in the queue may have higher weights, but if we collect those items we may end up with fewer
items overall, because the earlier items can get deleted. This trade-off is illustrated by the example in Fig. 1, where an online
algorithm A collects items 25 and 35. In hindsight, in the first step it would have been better to collect item 40, since it was
deleted at the same time as 25, and in the second step it would have been better to collect 20, since then A could still collect
35 in the next step. In this example, A’s gain is 25+ 35 = 60, while the optimum gain is 40+ 20+ 35 = 95.

Let us consider another example, which is actually an adversary strategy that proves the lower bound of φ on the
competitiveness of any online algorithm. Suppose that the queue initially contains two items, of weights 1 and φ, in this
order. If the algorithm collects the item of weight 1, then let both items be deleted after the first step, in which case the
optimum gain is φ. If the algorithm collects the item of weight φ, then let only the first item be deleted after the first step.
As a result, the algorithm’s gain is φ, while the optimum gain is 1 + φ = φ2. In both cases, the optimum gain is φ times
the algorithm’s gain, proving a lower bound of φ on the competitive ratio. Note that this lower bound strategy cannot be
emulated in the packet schedulingmodel, since the second item is released at the beginning but its expiration time depends
on the algorithm’s choice in the first step. (The lower bound of φ for packet scheduling in [1,3] is much more involved.)
Our results. We design an online algorithm for weighted item collection with competitive ratio φ for instances where item
weights are increasing with respect to their ordering in the queue. (See the formal definition in the next section.) Since the
lower bound presented above uses an instancewith increasingweights, this establishes a tight bound ofφ for such instances.

The assumption about increasing weights is motivated by the lower bound techniques for bounded-delay packet
scheduling [1,3,5], which use instances where the weights of packets increase with respect to their deadlines. (In fact, these
weights increase exponentially.) Our result implies that for such instances the ratio of φ is tight. Lower bound strategies
that use increasing weights are commonly used in various packet buffering models; other examples include lower bounds
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for packet scheduling for 2-bounded instances and 2-uniform instances [11], or lower bounds for buffer management with
bounded-size buffers [1,6,12].

The significance of our contribution can be summarized as follows. If there exists a φ-competitive algorithm for packet
scheduling, the ideas from our work should be useful in designing such an algorithm. On the other hand, if the optimal ratio
for packet scheduling is larger thanφ, then our proof shows that the lower bound construction for a better boundwill require
new ideas, based on a non-increasing sequence. It could be possible, for example, to adapt the approach from [10] that uses
a bitonic (U-shaped) sequence. We also point out that for decreasing sequences the obvious greedy algorithm computes an
optimum solution.
Note. A preliminary version of this work appeared in the Proceedings of the 20th ACM–SIAM Symposium on Discrete
Algorithms (SODA’09) [13]. Other results from [13] have been published separately in the companion paper [10].

2. Preliminaries

We adapt the notation and terminology from [10]. At any time step, the items currently in the queue S (that is, the items
already inserted but not yet deleted) are referred to as active. The queue ordering relation is denoted ‘‘▹", that is a▹bmeans
that a precedes b in the queue. Deleted items cannot be reinserted into the queue, so this relation is well defined. We can
extend ‘‘▹" to a linear order on the whole instance by letting a ▹ b if a was deleted from the queue before b was inserted.
This is summarized in the following observation.

Fact 1. At any time, relation ‘‘▹" is a total order on all already released items, with the currently active items forming a suffix of
this ordering.

The weight of an item x is denoted by wx or w(x). We extend this notation to sets: the total weight of a set X of items is
denoted by w(X). To simplify the arguments we assume that all weights are different; otherwise we can modify the weight
comparison relation so that for any two items of equal weight the one later in the queue is considered heavier. We will
say that an instance of the item collection problem is monotone if any two items a, b with a ▹ b satisfy wa < wb. (By our
assumption that there are no two items of the same weight the latter is equivalent to wa ≤ wb.) In particular, at any time
step the weight of the active items increases with respect to their position in the queue. Further, all already deleted items
have smaller weights than all active items.

We use standard terminology from competitive analysis. An algorithm A is called online if at each step its decision as to
what item from S to collect is independent of future queue updates. A is called R-competitive if its gain on any instance I is
at least the optimum gain on I divided by R. The competitive ratio of A is the smallest R for which A is R-competitive.

An item is called pending for an online algorithm A at a given step if it is active but not yet collected by A.
It is easy to show that, without loss of generality, optimal (the adversary’s) solutions satisfy the following property:

Earliest-Expiration-First (EEF) Property: For any two active items a▹b, if the adversary collects b at the current time
step, then the adversary will not collect a in the future.

If such b is collected, we will say that the adversary forfeits a. We say that an item a is pending for the adversary at a certain
time step if it can be collected later by the adversary satisfying the EEF property. In other words, this a is active, and neither
collected nor forfeited by the adversary. Note that the concept of pending items is different for online algorithms and the
adversary.

3. AlgorithmMark&Pick

In this section, we present an online algorithm Mark&Pick that is φ-competitive for monotone instances, namely when
item weights are increasing with respect to the queue order, as defined in the previous section. Recall that all weights are
assumed to be different.

We think of each time step as consisting of two parts. In the first part a prefix of the queue is deleted and some items are
inserted into the queue. In the second part, the algorithm can collect an item.

Algorithm 1Mark&Pick (single step)
/* update queue */
if there is no pending item then skip this step
m← the heaviest unmarked item (not necessarily active)
mark m
collect the earliest pending item ℓ with wℓ ≥ wm/φ

It is not obvious that this algorithm is well defined. A formal proof, given in the next section, involves defining a number
of invariants and showing that they are preserved throughout the computation. To gain some intuition, assume that in all
previous steps the items m and ℓ were well-defined. Thus, at each previous step, Mark&Pick marked a single item and
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collected a single item. The consequence of this is that at the beginning of the current step the number of marked items is
equal to the number of collected items. Thus, if there is a pending item then there must also be an unmarked item in the
instance (possibly already deleted from the queue). This implies that m is well-defined. Furthermore, if m is pending, then
m itself is a candidate for ℓ, so ℓ is also well-defined in this case. However, the proof of the existence of ℓ when m is not
pending is more involved.

3.1. Dominance relation

Let U , V be two sets of real numbers. We say that V dominates U , denoted V ≽ U , if and only if there is an injection
f : U → V such that f (u) ≥ u for all u ∈ U . From the definition, V ≽ U implies that |V | ≥ |U|. (To emphasize, we do not
require that |U| = |V |.)

For a set X and an element x, we write X ∪ x = X ∪ {x}, for simplicity. We now show that, under some conditions, adding
u to U and v to V may preserve the dominance relation V ≽ U . In the lemma below, we assume that max(∅) = −∞.

Lemma 1. Let Π be a finite set of real numbers and U, V ⊆ Π , where V ≽ U. Consider two numbers u ∈ Π \U and v ∈ Π \ V .
If v ≥ u or v = max(Π \ V ), then V ∪ v ≽ U ∪ u.

Proof. If v ≥ u then the claim clearly holds: it is enough to take the injection f : U → V showing that V ≽ U and extend it
to u, by putting f (u) = v. So, in the following, we assume that v = max(Π \ V ) < u.

For any X ⊆ Π and x ∈ Π , let |X |≥x = |{z : z ∈ X, z ≥ x}| denote the number of elements in X that are at least x. It is
easy to see that V ≽ U if and only if |V |≥x ≥ |U|≥x for all x ∈ Π . We use this characterization in the proof.

For x ≤ v, it holds that

|V ∪ v|≥x = |V |≥x + 1 ≥ |U|≥x + 1 = |U ∪ u|≥x .

For v < x note that, as v = max(Π \ V ), it holds that |V |≥x = |Π |≥x and so

|V ∪ v|≥x = |V |≥x = |Π |≥x ≥ |U ∪ u|≥x .

This concludes the proof. �

It will be convenient to extend the dominance relation to sets of items A, B: We will write A ≽ B if the same relation
holds for the weights in A and B, that is, {wa : a ∈ A} ≽ {wa : a ∈ B}. Generalizing it further, for any real numbers α and β ,
we write αA ≽ βB if {αwa : a ∈ A} ≽ {βwa : a ∈ B}.

3.2. Correctness

We introduce several dynamic sets of items that will be used in the analysis. Let Mt , Lt and Zt denote, respectively, the
sets of items marked by Mark&Pick, collected by Mark&Pick, and collected by the adversary up to and including step t .
Whenever we need to refer to specific items from these sets, mt , ℓt and zt denote, respectively, the item m marked by
Mark&Pick, the item ℓ collected by Mark&Pick, and the item collected by the adversary in step t . Note that for some steps
t each of items ℓt , mt , or zt may be undefined.

Lemma 2. At each time t:

(i) if there is an item pending forMark&Pick, then there is an unmarked item; further, if mt is the heaviest unmarked item then
there is a pending item ℓt such that φw(ℓt) ≥ w(mt),

(ii) Mt ≽ Lt ,
(iii) φLt ≽ Mt , and
(iv) |Mt | = |Lt |.

Proof. The proof is by induction on the number of steps. The hypothesis trivially holds at the beginning (for t = 0), when
both setsM0 and L0 are empty and there are no active items.

For the induction step, suppose that t > 0 and that all claims (i)–(iv) hold right after time step t ′ = t − 1. Insertions and
deletions of items at the beginning of step t do not affect the validity of claims of the lemma for sets Lt−1, Mt−1 and Zt−1,
since they do not change these sets.

By the inductive assumption (iv) we have |Lt−1| = |Mt−1|, so if there is an item pending for Mark&Pick in step t , then
there is also an unmarked item (not necessarily pending), which proves the first part of (i), i.e., the existence ofmt . To prove
the second part of (i), i.e., that ℓt exists as well, we consider two cases. Ifmt is not active, then, by themonotonicity, any item
a pending for Mark&Pick satisfies w(a) ≥ w(mt), so ℓt exists. Otherwise, when mt is active, let B be the set of all items b
such that b D mt . (So all items in B except mt are in Mt−1.) By Fact 1, all items in B are active, and hence, by monotonicity, B
contains the |B| heaviest items inserted till step t . Since mt ∈ B \ Mt−1, the assumption that Mt−1 ≽ Lt−1 implies that Lt−1
contains at most |B| − 1 items from B, so there is at least one item a ∈ B \ Lt−1. As w(a) ≥ w(mt), this proves the existence
of ℓt , completing the proof of (i).
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In this step, Mark&Pick marks mt and collects ℓt , so Mt = Mt−1 ∪ mt and Lt = Lt−1 ∪ ℓt . We now apply Lemma 1 with
Π being the set of all items inserted in steps 1, 2, . . . , t , V = Mt−1, v = mt = max(Π \ Mt−1), U = Lt−1, and u = ℓt . This
implies thatMt ≽ Lt , showing (ii). Moreover, since φLt−1 ≽ Mt−1 and φw(ℓt) ≥ w(mt) by (i), we also obtain that φLt ≥ Mt ,
as claimed in (iii).

Lastly, since ℓt and mt were chosen in step t , and |Lt−1| = |Mt−1| by (iv), it follows that |Lt | = |Mt | and so (iv) holds for
step t , completing the inductive step and the proof of the lemma. �

Lemma 2 implies that Algorithm Mark&Pick is well-defined, that is, whenever Mark&Pick has a pending item then the
itemsmt and ℓt defined in the algorithm exist as well.

3.3. Partition into phases

Wenow show that, without loss of generality, we can divide the computation into a sequence of disjoint and independent
phases. In each phase the adversary collects items in each step, whileMark&Pick collects items up to a certain step and then
stays idle till the end of this phase. The intuition behind the phase partition is that ifMark&Pick does not have any pending
items at some step then we can postpone all queue updates until the adversary completes collecting all his pending items.

We now formalize the definition of phase partitioning. Specifically, we want to show that, without loss of generality,
we can assume that the input instance consists of a sequence of disjoint phases, where each phase satisfies the properties
(a)–(e) below (where T denotes the number of steps of a phase and the steps in the phase are numbered 1, . . . , T ):

(a) Both the adversary andMark&Pick collect only items that were released in this phase.
(b) Mark&Pickmarks only items that were released in this phase.
(c) Mark&Pick collects an item in each step 1, 2, . . . , T − k, for some k, and has no pending items in steps T − k+ 1, . . . , T .
(d) The adversary collects an item in each step 1, . . . , T . Further, at step T − k+ 1, there are k active items not collected by

the adversary, and the adversary collects these items in steps T − k + 1, . . . , T . (Thus right after step T all active items
are collected by the adversary.)

(e) There are no insertions nor deletions in steps T − k+ 1, . . . , T .

Note that we do not assume that all active items are deleted after step T ; we explain the reason at the end of this section.
The properties above are shown in the following lemma.

Lemma 3. Each instance I can be converted into an instance I ′ that has a partition into phases that satisfy properties (a)–(e). The
gain of the adversary on I ′ is at least as large as that on I and the gain of Mark&Pick on I ′ is at most as large as that on I.

Proof. In the proof we will modify both the instance and the schedules of Mark&Pick and the adversary, so that the new
schedules satisfy the conditions (a)–(e).

Our modifications of the adversary schedule may produce schedules that may not have the EEF property. Hence, for the
purpose of our construction we will ignore the concept of the adversary forfeiting some items, and allow him to collect any
item that is active but not yet collected. As explained earlier, the modified schedule can be converted into one that satisfies
the EEF property, without decreasing the adversary’s gain.

We first show the first property in (d): that it is possible to modify the instance and the adversary’s strategy, so that he
collects an item in each step. Note that we can assume that the adversary always collects an item if there exists an active
and not yet collected item, for otherwise the adversary can collect such an item now rather than later (or not at all). Thus,
we only need to be concerned with steps where all active items have already been collected by the adversary.

Consider an arbitrary instance, and choose s such that Mark&Pick collects items in steps 1, 2, . . . , s and does not have a
pending item after step s. We can assume that s ≥ 1, since otherwise no item was released at step 1 and we can simply
remove this step from the instance.
Claim A. Without loss of generality, the adversary collects items in each step 1, 2, . . . , s.

To prove this claim, we show that if there is a step t , 1 ≤ t ≤ s, where the adversary is idle, then we can modify the
adversary strategy so that he collects all items collected before, plus one additional item; thus increasing his gain.

So suppose that such step t exists. We construct a sequence t0 = t, t1, t2, . . . , tq of different time steps such that
1 ≤ ti < t and zti = ℓti−1 for i = 1, 2, . . . , q and ℓtq /∈ Zt−1. This is quite straightforward: By our earlier argument, at
step t all active items are already in Zt−1; in particular ℓt ∈ Zt−1. It means that ℓt = zt1 for some 1 ≤ t1 < t . If ℓt1 /∈ Zt−1
then q = 1. Otherwise, we find t2 such that zt2 = ℓt1 , and so on. Since |Lt | > |Zt−1|, such a chainwill eventually be found.We
modify the adversary schedule by collecting each ℓti at step ti, i = 1, 2, . . . , q, and leaving other steps unchanged. Note that
ℓt1 , . . . , ℓtq are active in these steps, as Mark&Pick collects them at these steps. As a result, the adversary collects all items
collected before, plus the item ℓtq that was not collected in the previous schedule (because ℓtq /∈ Zt and ℓtq is not active at
time t). The resulting schedule can be then converted into the EEF form.

This completes the proof of Claim A, and at this point we can assume that both Mark&Pick and the adversary collect
items in steps 1, 2, . . . , s, and thatMark&Pick has no pending items right after step s.

Let k be the number of items that are active right after step s that have not been yet collected by the adversary.
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Claim B. Without loss of generality, the instance contains steps s+ 1, . . . , s+ k. Furthermore,

(i) these steps do not involve any queue updates,
(ii) the adversary collects one item in each of these steps,
(iii) Mark&Pick is idle in these steps since it has no pending items.

Let q, 0 ≤ q ≤ k, be the largest integer for which steps s + 1, . . . , s + q satisfy the conditions in Claim B. Suppose that
q < k. Then right after step s+ q there are still active items not collected by the adversary.

If step s + q + 1 does not exist, add another step to the instance, with no queue updates, in which the adversary will
collect another available item. Suppose that step s+ q+ 1 exists. If there are queue updates in step s+ q+ 1 (deletions or
insertions), we do this: we ‘‘insert" a new step between s+ q and s+ q+ 1 with no updates and have the adversary collect
any active uncollected item. We then modify the subsequent collection schedule to take into account that this item is no
longer available for the adversary after this step.

By iterating the above process, wewill modify the computation so that Claim B is satisfied.We now define the first phase
to consist of steps 1, 2, . . . , T = s + k. As needed, the adversary collects all items that were collected before, and perhaps
collects more items, whileMark&Pickwill mark and collect exactly the same set of items.

Iterating this procedure leads to a partition of all steps into subsequent phases. Properties (c)-(e) follow straight from
the construction. To see that (a) holds as well notice that, according to the transformation, right after the last step of the
phase, but before insertions in the next phase, both the adversary and Mark&Pick do not have any pending items. Thus,
they cannot collect any item from this phase in the following phases.

Showing property (b) is a littlemore involved. One snag is that some items could be active during several phases, although
only in the first of these phases they can be pending for the adversary or forMark&Pick. First we show the following:
Claim C. When a phase ends, all active items are marked.

Consider the set A of the active items right after the current phase ends. By the definition of phases, they are all already
collected by Mark&Pick, that is A ⊆ Lτ , where τ is the total number of steps up to and including the current phase. By
Fact 1, all deleted items are before each item in A in the queue order ‘‘E". In other words, items of A form a suffix of all items
released so far, i.e., they are the heaviest items released so far. Since also Lτ ≼ Mτ (from Lemma 2), and |Lτ | = |Mτ |, we can
conclude that A ⊆ Mτ as well. Thus Claim C holds.

Claim C gives us the following separation property: at the beginning of a phase, unmarked items from the previous
phases are already deleted, and therefore they are lighter than the items inserted in the current phase. This allows us to
show property (b): consider a t-th step of a phase, for t ≤ T − k. At least t items were inserted in this phase till step t ,
and in step t at least one of them is not marked. As mentioned above, this item is heavier than all unmarked items from the
previous phases, soMark&Pickwill not mark any item from the previous phases. �

Properties (a)–(e) imply that there is no interaction between phases: in each phase items are marked and collected as if
both Mark&Pick and the adversary started a new instance in this phase. For this reason, throughout the rest of the paper,
we restrict our attention and the analysis to instances that consist of a single phase. Notice that there is a little subtlety
here: it might happen that some items from previous phases are still active, though they cannot be marked nor collected by
Mark&Pick or the adversary in this phase. Thus we can simply disregard these items in our analysis, as they do not affect the
actions of the adversary and Mark&Pick; the computation in each phase would be identical if the previous phases did not
exist at all. Hence, in the rest of the paper, whenever we write ‘‘active’’ or ‘‘deleted’’, we in fact mean ‘‘active and released
in this phase’’ or ‘‘released in this phase and deleted’’, respectively.

A reader might ask at this point why we cannot simply delete all active items after a phase ends, thus making the phases
completely disjoint. The reason is that this could violate the assumption about the weight monotonicity if items released in
the next phase are lighter than the active items from the previous phase.

3.4. Competitive analysis

As explained in the previous sub-section, we can assume from now on that the instance consists of one phase of T steps
satisfying properties (a)–(e), withMark&Pick collecting T − k items in steps 1, 2, . . . , T − k, for some k, and the adversary
collecting an item at each step.

Define L′t ⊆ Lt to be the set of items collected byMark&Pick that are going to be collected by the adversary in the future,
i.e.:

L′t = Lt ∩ (ZT \ Zt) .

We are particularly interested in the set L′T−k.

Lemma 4. L′T−k = ZT \ ZT−k = {zT−k+1, . . . , zT }.

Proof. Since L′T−k = LT−k ∩ (ZT \ ZT−k), it is enough to show that ZT \ ZT−k ⊆ LT−k, i.e., that the items zT−k+1, . . . , zT were
collected byMark&Pick before step T − k. This is quite straightforward: all these items are active in step T − k+ 1, because
they are pending for the adversary. AsMark&Pick has no pending items at step T −k+1, it must have collected these items
before step T − k+ 1. �
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In some sense, the items in L′T−k are ‘‘extra’’ for the adversary: in the last k steps, the adversary collects these k items
while Mark&Pick is idle. A reader may wonder whether L′T−k simply contains the k heaviest items collected by Mark&Pick
(in the current phase). However, this is not true: Fix any adversarial strategy for a single phase, andmodify it by prepending
it with k additional steps. At the beginning of these steps, the adversary releases a set H of k very heavy items that will be
collected by both the adversary and Mark&Pick during initial k steps. The behavior of the algorithm and the adversary on
the steps from the original strategy remains unchanged. This way, L′T−k and H will be disjoint.

Wewould like to keep track of the steps that contribute extra items. Simply looking at the increases of |L′t | does not serve
our purpose because this value may fluctuate, increasing and decreasing over time, while we need a quantity that increases
monotonically. So for t = 1, . . . , T − kwe define

ξt = min
t≤τ≤T−k

|L′τ | .

By definition, ξt ∈ {ξt−1, ξt−1 + 1} for all t = 1, . . . , T − k (we assume that ξ0 = 0), and ξT−k = k. Now, the steps can be
classified using the values of ξt . A step t is increasing, if t ≤ T − k and ξt = ξt−1 + 1. All other steps are non-increasing; this
includes steps t > T − k. Moreover, let

Z ♯
t = {zj : j ≤ t, j is an increasing step}, and
Z ◦t = {zj : j ≤ t, j is a non-increasing step}.

Thus |Z ♯
t | = ξt and |Z ◦t | = t − ξt for t ≤ T − k.

We now describe the fundamental idea of the proof. We begin by presenting two simple instances, on which the
competitive ratio of AlgorithmMark&Pick is not better than φ.

Example 1. Consider an instance inwhich all items are inserted at the beginning at once. There are 2n items in total, n items
of weight 1 followed by n items of weight φ. (To simplify description, we allow items of equal weight in our examples.) After
n steps all items are deleted. Mark&Pick will mark the n heavy items and collect the n light items, while the adversary can
collect the n heavy items.

Example 2. The second instance is very similar: n items of weight 1 followed by n items of weight φ + ϵ, for some small
ϵ > 0, with all items inserted at the beginning. After the first n steps all items of weight 1 are deleted and the items of
weight φ + ϵ are deleted after 2n steps. In the first n stepsMark&Pickwill mark and collect the n heavy items, after which
it will remain idle. The adversary can collect all items. The competitive ratio tends to φ with ϵ → 0.

Let us now examine these two examples more closely and relate it to the notations introduced earlier. In Example 1,
T = n and the algorithm collects the same number of items as the adversary, that is, k = 0. Furthermore, in each step L′t is
empty, hence all steps are non-increasing. Since w(ℓt) ≥ w(mt)/φ at each step, Mark&Pick’s gain is at least the weight of
themarked items divided byφ, that isφw(LT ) ≥ w(MT ). On the other hand, no feasible schedule can have its gain larger than
the total weight of the set of marked items (which may not even be feasible), whence the φ-competitiveness ofMark&Pick
follows.

Example 2 represents the other extreme scenario, where the adversary collects twice as many items asMark&Pick. Here
we have T = 2n and k = n. For all t ≤ T − k we have Lt = L′t , and all the first n steps are increasing. It can be shown that
for such instances MT/2 = LT/2, i.e. Mark&Pick collects the T/2 heaviest available items. The idea here is that the items in
Z ♯

T/2 = ZT/2 are light: in each step t ≤ T/2 the item zt was available forMark&Pick but not chosen. Hencew(zt) ≤ w(mt)/φ.
Summing over all t ≤ T/2 gives w(ZT/2) ≤ w(MT/2)/φ, the latter is equal to LT/2/φ, by our earlier observation. The items
collected by the adversary in the ‘‘extra’’ steps are exactly the items collected by Mark&Pick, i.e. MT/2. Thus, the total gain
of the adversary is at most w(ZT/2)+ w(MT/2) ≤ w(MT/2)/φ + w(MT/2) = φw(MT/2), as claimed.

In both instancesMark&Pick’s gain is only 1/φ times the gain of the adversary, although in the first instanceMark&Pick
collects as many items as the adversary, whereas in the second one only half as many. The competitive analysis for these
two types of instances requires different accounting: in the first case, each item a of the adversary is charged, one to
one, to an item collected by Mark&Pick of weight at least wa/φ; in the second case, we need to charge disjoint pairs of
adversary’s items, each to a different item of Mark&Pick, such that a pair a, b is charged to an item of weight at least
(wa + wb)/φ. An arbitrary instance could be a mixture of such two types of instances, in which case constructing such
mappings becomes challenging. The rough idea of the analysis is to use the classification into non-increasing and increasing
steps to define the two mappings. In a non-increasing step t , we would like to charge zt to ℓt , since then w(ℓt) ≥ w(zt)/φ.
For an increasing step t , we would like to charge zt and ℓt (which will be collected by the adversary later) to ℓt = mt ,
since then w(ℓt) ≥ (w(zt)+ w(mt))/φ. But there are several difficulties that need to be overcome. For example, unlike in
Example 2, in general it is not necessarily true thatmt = ℓt in increasing steps; as a matter of fact,mt may not be collected
by Mark&Pick at all, or it could be collected at some other step (increasing or non-increasing).

Although this intuition reflects the fundamental idea behind our argument, in the formal proof that follows we will not
give an explicit construction of these two mappings; instead, we show how to relate the adversary gain and the algorithm’s
gain to the weight of marked items. Precisely speaking, we will show thatMT−k ≽ φZ ♯

T and MT−k ≽ Z ◦T .
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Fig. 2. The relations between sets Z ◦t , Ct and L′t . Items in Z ◦t are drawn as discs and those in L′t as squares, with items in Ct filled solid.

Lemma 5. If t is an increasing step, then

(i) ℓt ∈ ZT \ Zt (and thus ℓt ∈ L′t as well),
(ii) zt /∈ Lt , and
(iii) φw(zt) < w(mt).

Proof. Denoting Z ′ = ZT \ Zt , the definition of L′t gives us that

L′t = (Lt−1 ∪ ℓt) ∩ Z ′ and L′t−1 = Lt−1 ∩ (Z ′ ∪ zt) .

Thus, both these sets have cardinalities either |Lt−1 ∩ Z ′| or |Lt−1 ∩ Z ′| + 1. Since t is an increasing step, |L′t | > |L
′

t−1|, and
therefore |L′t | = |Lt−1 ∩ Z ′| + 1 and |L′t−1| = |Lt−1 ∩ Z ′|. The first equality implies that ℓt ∈ Z ′ = ZT \ Zt , completing the
proof of (i). The second equality implies that zt /∈ Lt−1. Since ℓt /∈ Zt and zt ∈ Zt , these two items are different, i.e., ℓt ≠ zt .
Therefore zt /∈ Lt−1 ∪ ℓt = Lt , proving (ii).

Finally, we prove (iii). By (ii), zt /∈ Lt . Further, zt must be active, because zt is pending for the adversary at the beginning
of step t . Therefore zt is pending for Mark&Pick as well. By already proven (i), ℓt = zt ′ for some t ′ > t . Both zt ′ and zt are
pending for the adversary at step t , yet the adversary collects zt , which implies that zt ▹ zt ′ , by the EEF assumption. Also,
both zt ′ and zt are pending forMark&Pick at the beginning of step t so, sinceMark&Pick chooses ℓt = zt ′ , we can conclude
that φw(zt) < w(mt). The proof is now complete. �

Corollary 1. MT−k ≽ φZ ♯

T .

Proof. Since steps T − k+ 1, . . . , T are non-increasing, Z ♯

T = Z ♯

T−k. We prove a more general claim, namely that Mt ≽ φZ ♯
t

for t = 0, . . . , T − k.
The proof is by induction on t . The claim is clearly true for t = 0. Consider any step t > 0. If step t is non-increasing then

Z ♯
t = Z ♯

t−1 and Mt = Mt−1 ∪ mt , so the claim follows trivially. If step t is increasing, then by Lemma 5 (iii) and Lemma 1,
Mt = Mt−1 ∪mt ≽ φ(Z ♯

t−1 ∪ zt) = φZ ♯
t . �

The innocent-looking lemma below is in fact the critical part of our analysis, as it will allow us to bound the adversary
gain in non-increasing steps by the weight of marked items.

Lemma 6. The set Z ◦T can be collected in the steps 1, . . . , T − k.

Proof. Note that the steps T − k+ 1, . . . , T are non-increasing by definition. Thus, by Lemma 4,

Z ◦T = Z ◦T−k ∪ L′T−k . (1)

(The sum above is disjoint). We give a strategy of collecting items in steps 1, . . . , T−k. By ct wewill denote the item collected
in step t , and we let Ct = {c1, c2, . . . , ct}. For each t , set Ct will satisfy

Z ◦t ⊆ Ct ⊆ Z ◦t ∪ L′t . (2)

Note that the sets Z ◦t and L′t are disjoint: the former is a subset of Zt and the latter of ZT \Zt . Further, |Z ◦t | = t−ξt because
exactly t − ξt steps among 1, . . . , t are non-increasing. This in turn implies that

|Ct ∩ L′t | = ξt (3)

for all t = 1, 2, . . . , T − k. See Fig. 2 for illustration.
Next, let us check that condition (2) is sufficient to show the lemma. From (3) we have |CT−k ∩ L′T−k| = ξT−k = k and, by

Lemma 4, |L′T−k| = k. Thus, (2) and (1) imply that

CT−k = Z ◦T−k ∪ L′T−k = Z ◦T ,

proving the lemma. It thus remains to show how the items in CT−k can be collected.
The rest of the proof gives the strategy for collecting items c1, . . . , cT−k. Consider a step t , and assume that condition (2)

holds in steps 1, 2, . . . , t − 1. The choice of ct depends on whether t is an increasing step and whether zt ∈ Ct−1.
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Case 1: t is an increasing step. By the case assumption,

Z ◦t = Z ◦t−1 , (4)

and moreover, by Lemma 5 (i),

L′t = L′t−1 ∪ ℓt . (5)

In this case, we will choose ct = ℓt . Trivially, ℓt /∈ L′t−1 and, again by Lemma 5 (i), ℓt /∈ Zt . Therefore the choice of ct is valid,
that is, ct /∈ Ct−1. So

Ct = Ct−1 ∪ ℓt . (6)

By (4), the induction assumption that (2) holds for t − 1, and by (6), we have Z ◦t = Z ◦t−1 ⊆ Ct−1 ⊆ Ct . Similarly, using (6),
the inductive assumption, (4), and (5), we get Ct = Ct−1 ∪ ℓt ⊆ Z ◦t−1 ∪ L′t−1 ∪ ℓt = Z ◦t ∪ L′t . Thus (2) holds for step t .

Case 2: t is a non-increasing step. By the case assumption,

Z ◦t = Z ◦t−1 ∪ zt . (7)

Furthermore,

L′t−1 ⊆ L′t ∪ zt . (8)

We now distinguish two sub-cases. If zt /∈ Ct−1, then we can choose ct = zt obtaining

Ct = Ct−1 ∪ zt . (9)

Using (7), the inductive assumption, and (9), we have Z ◦t = Z ◦t−1 ∪ zt ⊆ Ct−1 ∪ zt = Ct . Similarly, from (9), the inductive
assumption, (8), and (7), we have Ct = Ct−1 ∪ zt ⊆ Z ◦t−1 ∪ L′t−1 ∪ zt ⊆ Z ◦t−1 ∪ L′t ∪ zt = Z ◦t ∪ L′t . Therefore (2) holds for t in
this sub-case.

The second sub-case is when zt ∈ Ct−1. By the inductive assumption that (2) holds for step t − 1, Z ◦t−1 ⊆ Zt−1, and L′t−1 ∩
Zt−1 = ∅, we obtain that Ct−1 \ Zt−1 = Ct−1 ∩ L′t−1. Obviously, zt /∈ Zt−1, and thus using (3),

|Ct−1 \ Zt | = |Ct−1 \ Zt−1| − 1 = ξt−1 − 1 = ξt − 1 .

But |L′t | ≥ ξt , so L′t \ (Ct−1 \ Zt) ≠ ∅. This, in turn, implies that L′t \ Ct−1 ≠ ∅, because L′t ∩ Zt = ∅. We choose as ct any item
from L′t \ Ct−1, and thus

Ct = Ct−1 ∪ ct , for ct ∈ L′t . (10)

From (7), the inductive assumption, zt ∈ Ct−1, and (10), we get Z ◦t = Z ◦t−1 ∪ zt ⊆ Ct−1 ∪ zt = Ct−1 ⊆ Ct . To obtain the
second inclusion in (2), we use (10), the inductive assumption, (8), (7), and the fact that ct ∈ L′t , getting Ct = Ct−1 ∪ ct ⊆
Z ◦t−1 ∪ L′t−1 ∪ ct ⊆ Z ◦t−1 ∪ L′t ∪ zt ∪ ct = Z ◦t ∪ L′t . This proves that (2) holds for step t , completing the proof. �

Corollary 2. MT−k ≽ Z ◦T .

Proof. We prove the following, more general claim: if a set C of T − k items can be collected in steps 1, 2, . . . , T − k then
MT−k ≽ C . This will imply the lemma because in Lemma 6 we proved that the items in Z ◦T can be collected in steps 1, . . . ,
T − k.

Fix a schedule for collecting the items in C . Let ct be the item collected in step t and Ct = {c1, c2, . . . , ct}. So, in particular,
C = CT−k.

To prove our claim,we show thatMt ≽ Ct after each step t = 0, . . . , T−k. The proof is by induction on t . The claim trivially
holds for t = 0. In any step t > 0 it is enough to apply Lemma 1 with V = Mt−1, U = Ct−1, v = mt = max(Π \ Mt−1),
u = ct , where Π is the set of items inserted in steps 1, 2, . . . , t . �

Theorem 1. Mark&Pick is φ-competitive.

Proof. For the purpose of this proof let m1, . . . , mT−k denote the elements of MT−k in order of decreasing weights. A similar
convention is used for LT−k = LT . Recall that by the definition of a phase,monotonicity, and themarking scheme,m1, . . . ,mk
are the heaviest k items released in a phase. We first show that these items will be collected byMarkAndPick, i.e., that

(m1, . . . ,mk) = (ℓ1, . . . , ℓk) . (11)

By Lemma 2 (ii), MT−k ≽ LT−k ≽ L′T−k. By Lemma 4, |L′T−k| = k, and thus this dominance relation implies that
{m1, . . . ,mk} ≽ L′T−k. As all items in L′T−k are active in step T − k + 1, so must be the items m1, . . . , mk, due to weight
monotonicity and Fact 1. Since Mark&Pick has no pending item at this step, these items were already collected, which
implies (11).
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To prove the theorem, we will show that w(ZT ) ≤ φw(LT ). We now give a derivation of this inequality and later justify
each step:

w(ZT ) = w(Z ♯

T )+ w(Z ◦T )

≤
1
φ

k
i=1

w(mi)+

T−k
i=1

w(mi) (12)

= φ

k
i=1

w(mi)+

T−k
i=k+1

w(mi) (13)

≤ φ

k
i=1

w(ℓi)+ φ

T−k
i=k+1

w(ℓi) = φw(LT ) . (14)

We now justify steps (12)–(14). By Corollary 2, w(Z ◦T ) ≤ w(MT−k) =
T−k

i=1 w(mi). Similarly, by Corollary 1 and |Z ♯

T | = k,
it holds that {m1, . . . ,mk} ≽ φZ ♯

T , and hence w(Z ♯

T ) ≤ 1
ϕ

k
i=1 w(mi). Together, these bounds imply (12). Equation (13)

follows from 1+ 1/φ = φ and simple algebra.
By (11), it holds that

k
i=1 w(mi) =

k
i=1 w(ℓi), and Lemma 2(iii) implies that w(mi) ≤ φw(ℓi) for each i. (Here we use

the fact that there is a mapping supporting the dominance φLT−k ≽ MT−k which maps ℓi to mi, for each i.) Inequality (14)
follows, and the proof is now complete. �

4. Conclusion

We have given a φ-competitive algorithm for collecting items with increasing weights from a dynamic queue, matching
the lower bound for such instances. While attaining this competitive ratio for the general item collection problem is
not possible [10], the best lower bound for a well-studied restriction of item collection, namely the bounded-delay
packet scheduling problem, uses monotone instances [1,3,5]. Therefore, our results imply that if no φ-competitive packet
scheduling algorithm exists, then the lower bound strategy used in the proof must be non-monotone. Additionally, if it is
possible to achieve the ratio of φ for packet scheduling, the techniques introduced in this paper may be of help in designing
a φ-competitive algorithm.

One interesting idea to pursue (as suggested by an anonymous referee) would be to study the dependence of the
competitive ratio on the maximum number of items that can expire at any given step. If at most one packet is allowed
to expire, then the algorithm that always collects the first item in the queue is 1-competitive. If more than one item is
allowed to expire per step, the optimum ratio for monotone instances is φ (whether only two or more items can expire), as
demonstrated byMark&Pick and the trivial lower boundwe have given in the Introduction. For general instances, the lower
bound of≈ 1.633 from [10] holds even if at most four items are allowed to expire at each step. Of course, the same question
can be studied for the packet scheduling problem as well, where it is closely related to the study of so-called s-bounded
instances [2,14]. For s-bounded instances one can, without loss of generality, restrict attention to instances where at most s
packets expire at each step.
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