
Theoretical Computer Science 4 (1977) 321-349.
@ North-Holland Publishing Company

Computer Science Division, Tel Aviv University, Tel Aviv, Israel

Communicated by Maurice Nivat
Received August 1976
Revised January 1977

Abstract. We deal with the problem of testing equivalence of two LL(k) grammars. The problem
had been shown to be decidable for general k by Rosenkrantz and Stearns [2], who so!ved it by
reductiorl into an equivalence Frobiem fur special DPDA’s. In a paper by Korenjak and Hopcroft
[l] the equivalence problem for LL(l) grammars is solved by a branching algorithm operating
directly on the grammars. Our work presents a direct branching algorithm for the general LL(k)
grammars equivalence problem.

ion

While the equivalence problem for general context free grammars is known to be
undecidable, the same problem for deterministic context free grammars is still an
open problem. There has been a considerable effort to identify the highest type of
deterministic grammars, for which equivalence is decidable. (See Friedman [3] and
Valiant [4] for such efforts.)

The equivalence problem for LL(k) grammars is kno\tlrl to be solvable for quite a
while. The first result in this direction was given by

reibach Normal Form.
construct a tree, co

322 T. Olshansky, A. Pnuelli

to keep the tree finite, there is an alternate process called splitting, which has to be
applia:d to nodes, whose equality contains words which have become too long. This
prccess will ensure a bounded length of the equalities in the nodes, and hence a
finitely terminating algorithm. It is proved by the authors that if during construction
of this comparison tree no contradiction is discovered, this proves the equivalence
of the grammars.

The decidability of equivalence for general LL(L) grammars was demonstrated
by Rosenkrantz and Stearns [2]. However, their equivalence testing algorithm does
not op.zrate directly on the grammars. Instead, they reduce the grammars to
corresponding special DPDA machines, and then construct a product machine,

ich simulates the joint action of the two automata, searching for a word which
dilfferentiates between the two. The final step is to test this joint machine for
emptiness.

The interest in equivalence problems for context free grammars and LL(k)
grammars in particular, has increased when the theory of recursive program
ghemas was qhown to be closely related to these grammars, having very similar
algorithm, and. often reducible to language theory. See references [5,6,7,3,&g, 13,
141.

The motivation for searching for a more “‘natural” (branching) equivalence test
for the general LL(E) case was therefore twofold:

(a) A direct eauivalence test for LL(R) may suggest a corresponding branching
algorithm for schemes, which will enable direct testing in schemas terms. (See [12]
for a corresponding algorithm.)

(b) Having an alternative equivalence test algorithm might suggest additional
subdeterministic class of grammars, whose equivalence will be decidable.

The described algorithm is essentially an extension of the Korenjak and Hopcroft
[I] algorithm, and uses the basic ideas of comparison tree, branching and splitting.
processes.

The following exposition is divided into six sections: The first and second sections
are an introduction, and some definitrons. The third section gives a detailed
description of the algorithm, outlining the main steps and situations that may arise,
including the fi 1 conclusion, which is that either a contradiction (inconsistency) is
dixovefed, or e algorithm terminates, and the grammars are equivalent.

n the Section 4 we give a proof of the correctness and termination (in finite time)
e proof relies on some properties of the phrases generated

e Section 5 provides

A direct algorithm for checking eqwiualence of LL (k) grammars 323

The last section completes the proof of the termination of the algorithm.

efinitions an6

e shall use capital Latin-alphabet letters for variables. Lower case letters at the
ning of the Latin alphabet are used for terminals. Strings of terminals are
ed by lower case letters near the end of the Latin alphabet, and strings of

ables are denoted by lower case Greek letters.
use the equivalence sign “ = ” between words to denote equality of the

respectively generated languages.

a! = p -L(a) = L(P).

We will also introduce a formal addition on words to denote union of the
respective languages, thus:

which is also used for multiple sums:

L (C Pi) = U L(Pi)*
iEI iEI

The components of a context free grammar are denoted as usual

G = (N, T, P, S!.

efinitim 2.1. Let G = (N, T, P, S) be a context free grammar. A word QI E N* is
ome positive integer k if for every two derivations:
==>IIlA@ ** WX,

(2) ~_j,tnw~~-_jhnwys**wy,
where “lm” means leftmost derivation, then if x/k = y/k, it follows that p = y.
Mere

x/k =
The prefix of length k

of X >
(X]>ic.

LL(k) word.
From now on e will call a cfg simply a grammar- In the sequel we will fix our

324 T. Olhmky, A. Pnuel’li

grammars to be in GNF form. Recall that any LL(L) grammar can be transformed
into aa LL(R + 1) GNF form grammar ([?I).

We use the notation ‘\’ for prefix removal:

u\L={u~vET*, UVEL}.

efinition 2.2. Equivalence between words. Q! = /3 is defined as L(cu) = E,(p). We
define also a F 16 for any w E T*$* as

w \(L(cw) l $I”‘) = w \(L(@) l $IW’)

i.e. the set of words with prefix w generated by cy l $Iw’ (a concatenated with 1 w 1

$-signs) is equal to the set of words with this prefix generated by /3 . $Iw!

We add the $I”! in order to be able to keep a look ahead of 1 w 1 letters. If we want
to derive from a given word a! a terminal word X, we’ll derive x . $Iwi from ac 9 $‘“I, so

when LY derives the last letter of X, we still have a 1 w j-look ahead of $IwJ.
Nlote that if w E T* then Q! - wp is equivalent to the simpler statement

Definition 2.3. For any given cy, the norm of cy, I] ca! I], is defined as:

]l~[]=rnin{]?I]cu +*t, tE T*}.

Note that in a grammar whose productions are in GNF, for each variable

AJIA 113 1.

finition 2.4. For a w E T*$* and (Y E N*$*, IIcu 11 zs I w 13 I a I (the restriction is
ays realized if I a f = I w in a grammar whose rules are in GNF) we define a I

prefix restricted variable (PRV), written as [w, a& This variable is an artificial
variable, whose derivation rules are defined using the participating variables
productions:

-a,,,,AfA2- A,], s s m be a PRV. Then for each derivation
I 2 0, in P we let

be a derivation for this PRV, where C, - l e Cs+,_, = B, l l . &A, l l l A,.

hn the case that s + 16 m the st

a 1 then [w, cu] = [w, CUD. Otherwise, for s 2 FEP~ we define:
.

This consists of a word of ien th s - m, whose s%t variable is a PEW the rest

Using the notation of P W’s it is possible to write the derivation rules
in a more compact manner:

If A -+ a/3 is a derivation in P we let law, ~&-=+a[~,&] for any ilAy;ia

1 QW 1 B 1 Ay I. T”!is will also imply that for any /Ay 11 B 1 aw 1

[awAy] +S a[~&$

For any w E T*$* and at E N*$* we denote by L(w, a) the
ed by L(w,cv)= w l (w \I&)). This is the set of all words out of

L(a) beginuning with the prefix w.

Definition 2.6. In a grammar, whose productions are in GNP we can define

grouped variables representing sums of words:

where each i, cui] is a PRW and wi # wi for i$ j. If cyI E ZV*, we will denote the set

of grouped riables over 1v by NO.

variable is also attributed derivation r

+[W‘,cYi] for i =I: iJ,...,ra,

Note that the derivation rules for rouped variables are no I

326 T. Qlshamky, A. Pnuelli

4y r p * w\(E(a)*$‘“‘)= w \(

w \(L@). $Iwl+lw’q = w \(

=$s w’\(w \(L(u)- ‘w’+iw”)) = w’\(w \(L(P) g $‘w’+‘w’l))

* (ww’)\(L(a) * $‘w’+‘w”) = (ww’)\(L(P) l $Iw’+lw”)

3 a==, 6. a

of T p -es+ L(w,u)= L(w,p) foruJ3 E Iv”, w E T”.

u 2 p 3 w\L(u)= w\L(Pj 1 w +U(~j)

= w l (w\L(@))I L(w,cY)=L(w,/q.

The other direction is similar. 0

. For a PRW [w,u], L([w,cu])= L(w,ar).

on the Jlengk sf VP If 1 w I= 1, w = a. We will show
ewrite or = Ay.

f ar =+ * x, and x/l = a, the first derivation rule used in the derivation ar =+ * x
was of the form A -a a/3. Hence one of the derivation rules of [a, culj is [a, rl-) a@y.

We have then:

tion: for 1 w I=

Hence
A‘-- P

y])= L(a,~,Ay).

)~(~))= Wi \ (j
(1=4f

328 T. Olshansky, A. Pnuelli

The algorithm operates on two LL(k) grammars 6;, and 62 in (GNF form, where
for i=l,2

In order that S, = Sz (i.e. L(S1) = L(&)) the two following conditions are
necessary and suffiicient:

(a) @&S1$k) = @k_l(Sz$k) (i.e. the set of all terminal prefixes of length k - 1
derivable from S1$k is equal to the similar set for S1$B).

(b) Far each w F @k_l{S$k), S: =&.
Corl.espondingly, we start an equivalence checking algorithm by constructing a
cordpxison tree whose root node contains the relation S1=,S2 for each w E
8k-$&$k).

A comparison tree is a labeled tree whose nodes are labeled by equivalence
r&Uions of the form

where a! E N+, p E .Yi and w E (T*$*)/(k - 1). (We denote N = N, U N2 U IV? U
J+c.)

Altogether there will be 1 @k-l(Sl$k)! such trees.
Each comparison tree is constructed by applying two basic steps to Its nodes: the

branching step and the splitting step. Both operate on a parent node to produce a
set of successor nodes, such that the relations labeling the successors hold if and
only if the relation at the parent node holds. Nodes whose labels appeared
elsewhere in the tree or which contain equality between the empty ,rYords on both
sides are not developed further. If during construction any of the steps fails the
relation at the root of the tree is concluded to be invalid (proved in Section 4.1). It
will also be proved (Section 4.2) that the construction of the tree must termintite,
and that if it has terminated successfully (no failure detected in any step) ~h_e
relation at the root is proved to be valid (proved in Section 4.1).

describe in detail the two steps used in developing the tree:

e reia.tion to be developed be:

A direct algorithm for checking equivalence of EL (k) grammars 329

Let b E (7 U $} such that wb E a$“). By the LL(k) proper-t
exactly one derivation rule for A such that starting with this ferivation
derive a terminal word with prefix wli. Let this rule be

If (B) is to hold, then also wb E Ok (&?$‘). If wb is not generable from

generable, then there must be exactly one rule for B which will lead to
’ eration of the prefix wb. Let it b.=

Since Aa = ,,d?@, it must also be true that Aa =W&B& owever, since for both A

&And B there is only one derivation under the restriction of requiring the prefix wb,
his is the same as

alYa a,..zk._ oaJv? *
(Lemma 2.8)

which is the same as

Ya a*. . z--,b w (Assertion 2)

This process can be repeated for each B E w \@k (A&‘). If we denote

{b I i i=l,.**yS}= w \ Ok (Aa$“) we get for each i = 1,. . . , s the successor relation

A special
variables a

simplification is required
grouped variable. Let 71s

the case that
i where

any of the yi has as its leftmost

then the relevanr relation isI

ince i iS a

which i is e

330 T. Obhansky, A. FnueNi

We can thus formally ktmmarize the branching step as follows:

B - step
Let (B) Aa a,,, B&! be the parent node

(w = Ql l @ ’ fz& E T*$*, r’icr E (N1 u Iv&v*, BP E N2+).

1. Check that w \ @- [Aa$“) = w \ 6% (Bp$‘). If they are not equal report a
failure.

2. Foreach lo i =l,..., s, &i~w\&(Aa$k).
Let A + alyj and B -+ a,& be the uniquely determined rules for prefix wbi. The set
of successor nodes to the given parent is given by

3. (Replacement Substep). Replace every relation of (Bi) of the form

where j is the (uniquely determined) index such that wi = Ui.

Justification of the R-step
It is obvious that (B) implies the set (Bi) i = 1,. . . , s. To observe the converse

assume that the set of (Si) holds. We wish to show that Aa =,,,Bp. Let x E ?‘*$* be
any word gener;lted by Aar$* with prefix w. Then x must be representable as
X = WE,y where bi E W \ @k (Aa$k).

Correspondingly its derivation must start by

Adk + al’yicY$k &ala2 l l l &&y.

Hence yia$ geklerates a20 l *a&g. By (Bi)

S,@$‘=> a2 l l - t&-*biY

and we have the derivation:

* alGiPV&i2; * l ’ Qkbiy = X.

Ah this shows that w\L(Aar$‘)C w \L(p$“). By a symmetric argument we
obtain AG -W.B@

The, refitting step is to be applied to relations which contain a word which have

A direct algorithm for checking equivalence of LL (k) grammars 331

grown undesirably long. Its purpose is to keep the length of the relations bounded.
Let, therefort, the parent relation be:

where we explicitly require that 11 y 115 k - 1. This requirement implies that
contain no $ letters.

Choose any x E T* which is one of the shortest words derivable fro
satisfy 1 x 12 k - 1, x/(k - 1) = w. Obviously, since A y =$+ * xy, the right hand side
(if they are to be equivalent under w) must also be able to derive a word with a
prefix x. However, it might do it in several different ways, generating di
sentential forms, all beginning with x.

Consider therefore, any wi E @&y), 1 Wi I= k - 1. From the given formula it
should also follow that

(Lemma 2.8)

We can now let both sides derive sentential forms with prefix x, looking ahead at wi.
This derivaaaon must be unique on both sides, and the left hand side must derive xy.
Let us partition + into three parts: Let cy be its initial part, which consists of all the
variables, participaiing in the derivation of x for any of the wi E &&). Let p be
the next k - 1 variables and /3 the remaining variables (it is assumed that + is also
sufficiently long). “tie can thus rewrite the equivalence as

t hand side derive x, looking ahead at wi, yielding:

Im

We have therefore

which is equvalent to

T. Bfsfaansky, .A. Pnue~ffi

at “,hm~ equal~ities can be summed, omitting the wi under the

st start with one of the Wi E 6&(r), and
In the same manner any word derivable

(see Definition [2.6])

US :~~la~~ the set of (Sji by

in) for y we get

Ass~~~Qn 2 of Section 5 below

e summarized as follows:

A direct algorithm for checking equivalence of LE (k) grammars 333

And the single node

(S2) 44 : aP

where

= [Wi, &p]-
Wi~~&-l(~)

hsfification
The fact that (S)i and (S2) follow from (S) is implied by the derivation process. To

show the converse let (S)i hold for each wi E k_1(y). Then summing up we obtain

y = M@. Concatenating p on the right to both sides of (S2) we obtain

which by substituting Mp = y yields (S).
What is the advantage gained by the splitting step? Obviously, in all equalities of

the (S)i type t.he left hand side is shortened by one variable, while in (S2) the left
hand side I* n3 of size 2. It is true that in the process we introduced a new grouped
variable M which actually stands for a sum of words but in the discussion on
terminatit-,n we will see that the number of such variables is bounded and so is the
length of the words they represent.

To the above two operational rules we add a stopping rule which checks for
imbalance between the two sides of an equivalence relatilon.

3.3. Stopping check

If the right hand side of an equivallence relation is longer than P times the length
of the left hand side, stop and report a failure.

P denotes here the maximal length of the shortest terminal wofd derivable from
any variable of IV, with a given k - 3 prefix. Thus, given any variable
k - 1 prefix w there is always a terminal word x, A -a * x suck that w is a
of x and IxlGt:

e stoplping check should be ;a] e as soon as it is generate
To justify the stopping rul6 let t

334 T. Olshansky, A. Ptwlli

3.4. bq&?s

To ikstrate the application of the algorithm, we bring two examples.

In this example there is no need for the splitting step and the checking
.

d by using branching afone.
nsider the following two candidates for equivalence. (Both are LLQ).)

-3 acE V+aQ

U+aP

Q+cY

The comparison tree generated by these grammars is given in Fig. 1. The leaves
(1) s1 = S

a ’

fi x (12) (2) bC = x CE =
b C

C

/ \

b

(31 C = 2 Es Y (13)
C b

a
v

C I
(6) cE = Q

C

b

I
(7) E = Y

A
a

(8) b = b A2 u (9)
$ a

4 b
I

(lOI bC 4 P
b

C

I

A direct algorithm for checkiq equivalence of LL (k) grammars 335

4, 8 are terminal identities. The leaves II,13 contain equalities which were
previously generated (nodes 3, 7 respe6 vely) and hence require no further
developemert.

Unfortunately, we cannot hope that any comparison tree, constructed by
branching only, will be finite. Actually, a finite branching tree will be generated for
bounded grammars only. Thus in the next example we must use splitting steps to

avoid unbounded proliferation of the tree.

Example Be Let us check the equivaBence of the two LL(2) grammars:

G2=

P*:

The tree generated by the algorithm is given in Fig. 2. The leaves 6, 22, 23 are
(i) sps,

(
‘_

n
(2) D& X

(2
0=X (3)
1

(4) BDzXX
\ I

/Y+ :
(10) DzS X

(2
(11) D=X (8) BBDzXXX (9) GZS xxx

1 1 (2
splitting splitting

x=1 x=0)

(24) BMzS XX (25) BMsXX (26) BM2.S XX
(2 1 (2

Fig. 2.

336 T. CMmnsky, A. Pnudli

identities. The leaves 7,10,11, K!, 13,15,16,24,25,26,27,28 contain equalitiw,

which were previously generated.
Let us follow the process of splitting U; node (9): BBD 5~~ &XXX;

Q1= s,x, p = x, p’= x.

S&XX&())[), XX] and ())[I, SXJQ

We define now M = [),X] -t- [(, S,X] and get 15, 16, and 1’7.
Let us follow now the splitting of (8): BBD =,XxX. Here

x=,) y=BD, a=x, p=x, p =I x.

BBD +)BD, XXX =S)[), XX] and)[(, F&.X].

e’ve got here the same M = [),X] + [(, Z&X] and get 12, 13, and 24.

0n the node (18) M = (S2X we apply replacement: we replace M by the
su’mmand, whose restriction is “(“, i.e. &X, and get 22.

As no contradiction has been discovered during the algorithm, the languages
hikve been verified to be equivalent.

ess and termination of the algorit!hm

4.1. Correctness

In order to prove the correctness of the algorithm described above, we show that
a contradiction is found in at least one of the trees if and only if the grammars are
not equivalent. If the algorithm terminates without encountering any contradic-
tions, then we can conclude that the grammars are equivalent.

1. If the grammars are not equivalent, then P r>*>tradiction must be found in one
of the trees.

Assume to the contrary, that no contradiction was detected during the process. If
the grammars are not equivknt, there are some. Fzsrds which separate them, i.e.

erated by one of the grammars but cot by the other.
at there exist nodes in the comparison trees which contain invalid
re exist words which separate the left hand side of su& a relation

if w E L(S,) and w e L(&),
ve at least one sue

e which has a
rtest words separating any

A direct algorithm for checking equivalence: of 61, (k) grammars 337

We may assume with no loss of generality that i? is not a terminal node, i.e. it has _

successors. Otherwise it has an earlier appearance elsewhere in the tree which has
successors and v02 may consider it instead.

Consider first the case that the node is developed by branching. In this cage let
?B’ = i21&*** &-l&y and Wi = ala2 l l l t&-l. E?iy the successful application of the

thing step we know that a! and p each have a unique derivation of a word
starting with al . - . &. Let these derivations be reSpeCtiVely cy + sly, p =$+

ad% Thus the considered node has a successor of the form:

Obviously, if w separates Q! from p under Wi so will a I \, w separate y from 6 under
a2 l l ’ ak contra&cting w’s minimdity.

A special case is when 1 w 1 s k - 1. Note first, that w# A since the node Q! zWi /3
is constructed only if both sides can derive each at least one word with prefix wi.
Thus when w = A, and both sides must be identical.

Assuming thexefore, that w = a1 * l l an, I s k - 1 we will have Wi = w !&k-1-f. AS
before w will separate the node under Wi only if a2 l l l af will separate one of its
successors under al \ (Wi $).

Consider now the case that the node

AY T crpp where u z-5: w J(k - 1)

is developed by splitting.
The descendants after splitting are:

y==M/3 (represents several nodes).

AM 2 cup,

supposed to separate Ay from app, the following possibi
can generate w and cypp cannot. Let us assume therefor

Ay&w=uy where ‘4 &e, and y

erate y, we get:

yk, we wit1 proceed wit

338 7’. Olshimsky, A. Pnuelli

separating word oyl. If ap can generate oyl then a@ * * vy1y2 = w, which
contradicts our original hypothesis that @? cannot generate w.

(b) @ can generate w but Ay cannot. By a similar argument, it can be shown
that one of the implied descendant relations (Sl) or (S2) is separated by a word
shorter that w.

e have thus shown, that if we enter a node wirith a word known to be separating,
then either this node generates a contradiction, which should have becq detected in
the construction of its descendants or one of its descendants must be separated by a
shorter subword of the original separating word. Contradicting the minimality of w.

2. The other direction of the correctness $ater :GF t claims that if an explicit
contradiction arises during construction, then tbie ghLtrTI&ars are inequivalent.

The justification of this claim flollows from. the f;tct that anywhere in the
constrticted trees, the validity of the descendants1 is equivalent to the validity of the
father node. Therefore any contradiction within the ?ee makes the equivalcs,ce
formula at the root’s node invalid, and hence .Ce equivalence of the grammars
invalid.

While the current presentation of the checking alogithm assumed that it was a
priori known that the grammars are LL(k) grammars, it is also possible to apply the
algorithm to aGy two arbitrary grammars in GNF form. At any branching step we
then verify that for the assumed w E (T*$“)/k there exists only a single applicable
rule on both sides. The algorithm may then terminate successfully, establishing not
only the equivalence of the grammars but also proving both to be LL(k:) grammars.
Alternately the algorithm may fail, showing either that one of the grammars is not
an LL(k) grammar, or that the grammars are inequivalent. In order to justify this
claim one has to show that all possible combinations of a variable with a right hand
context and generated terminal preGx do appear in the comparison tree, and this is
indeed the case.

We ar9 thankful to the referee for this paper for suggesting the above
observation.

ow that we can limit the length of the words in the left hand sides of
he length of those words can increase by applying a branching or a

In a branching step, one non-ter Inal is replaced by a string of non-terminals,

A direct algorithm for checking equivalence of LL (k) grammars 339

Let us choose any number s (at least s 2 k) as a criterion for applying the
splitting step, i.e. when we reach a node in which the length of the word on the left
hand side of the equality has grown beyond s, we apply the splitting step.

We have already seen, that the left hand sides of the equalities in the nodes
enerated during splitting are shorter than that of the father’s, anld if one of the sons
as got a left hand side word still longer than s, we simply apply to it another

splitting step. Consequently, with the splitting level set at s, and the maximal length
‘ncrease due to branching and replacements is bounded by !I, no left hand side can
::ver grow beyond s + b.

The above rule rantees boundedness of the left hand sides of the equalities,
By continuous ication of the stopping rule (3.3) it is ensured that the length

of the right hand sides of the equalities is also bounded. The only thing left to be
shown is that the number of variables, in particular the artificial variables generated
during the algorithm, is finite. Observing the conditions under whiclh these variables
are generated, we see that they are constructed gut of variables taken exclusively
from N2.

The grouped variables have the form

The length of each & depends on the: grammar only, and can be calculated (see
Section 6). It is clearly bounded, and so is the number of items in any such a sum,
(not more than 1 T Ik -‘, which is the number of distinct terminal words of length
k - 1). Consequently, the number of distinct sums is finite, and so is the number of
grouped variables.

We have shown that the numbler of distinct variables is finite, and that the length
of both sides of the equalities is bounded, hence the number of distinct equalities
which can be generated in the trees is finite. Since an equality which appears more
than once is not developed further, the trees are finite, and the algorithm must
terminate.

Because of a wish to keep the exposition as simple as possible, all the bounds are
by no means the best poss,,ble,’ and are probably very exaggerated. In all trial cases
we made on di;‘Ierent grammars, t e actual number of distinct aritficial

11. If one insists on de ving a bound on the nu
in a comparison tree, an upper bound is given y the constant

e=

structure of the two grammars, an’d computable from ?hem, such thlat if the
grammars are inequivalent, there exists a word shorter than D which separates
them.

This in priniciple gives an alternatilve checking algorithm (also implied by the
results in [I]), namely check whether any of the words over T shorter than B
separate the grammars. However, since our estimate for D is overby pessimistic we
believe the comparison algorithm to bie far superior.

5. LL(k) words and their praperties

Justification of the algorithm depends on the fact that every side in the: equalities
generated has the LL(k) property. This property states that any word anappearing
on any side of an equality can have at most one direct derivation, leading to a
terminal word with prefix w for a given w of length k.

The sentential forms of both grammars obviously have the LL(k) property, but
during the construction of the trees we get mixed words, consisting of variables
from both grammars, including artifilcial variables. In order to ensure for such
words the property of unique branching, we must extend the EL(k) property of the
sentential forms to the mixed words generated in our trees.

The more rigorous treatment in this chapter will present a sequence of simple
lemmas, leading to the two required main results: (a) Whether we apply a
branching, splitting or a replacement step to the father, the validity of the resuhing
sons is equivalent to the validity of the father node. (b) All mixed words appearing
in formulas at all nodes are LL(k) words, and therefore has a unique derivation rule
for each k prefix.

In the sequel, when we do not explicitly state otherwise, all words are assumed to
words over N = N 1 t.J IV2 W IV? W Nf; and all productions used are from

PI U Pz. We assume N1 n N2 = B) sind, hence a production for a variiable in Ni will
always be from Pi,

. A word q E N* is defined to be an LL(k)-word if for any two

s st to

t this is exactly the definition of L(k) words extended to mixed words.

A direct algorithm for checking equivalence of LL (k) grammars 341

The following simple properties can be verified for LL(k) words. Some of them
follow directly from the definition, the others require a proof which is identical to
the proof giben for the same property for LL(k) grammars. (See for example
Mopcroft and Ullman [IO].)

a 52. If a E .N* is an LL(k) word, and Q! + ;Lm fi, then fl is also an LL(k)
word.

Lemma 5.3. An LL(k) word is unambiguous. In other words, if q =$s ;“, x and 7 is
an LL (k) word, the derivation is unique.

Similarly to ILL(k) grammars, the notion of unambiguity extends to uniqueness in
derivation of two words with equal prefixes.

Lemma 5.4. FW an CL(k) word 7 which has two derivations
t

7p F wlAa! + w,~:(Y& IV+,
Im

q =g WA@ * Wl,,P& w*y,
lm

such that x/k = y/k, it follows that yl = Y? and cy = @.

Lemma 5.5. In ,Q single LL (k) grammar, all the sentential forms (including the
initial variable SJ are LL (k) words.

Lemma 5.6. If ~6 is an &L(k) word; so is 7.

Proof. Let 2 be any terminal word derivable from 5. The truth of the lemma
follows from the observation that for every two derivations for 7:

rl -% W&w
Im

.

77 + WA& wy,

such that x/k = y/k, we can consider the two

rlY wxz,

*

rll yt for any 2
Im

ere (xz he ukpeness of the
initial derivation. D

latter implies the uniqueness of the

342 T. Olshansky, A. huelli ,

emma 5.7. If a is an LL(k) w&d so is [w, cull. Since the derivations of f w, CU] are
part of the derivations of a, the mubt fOlbWS.

If wrl is an LL(k) word (w E T”, r) E N*), so is q.

Sometimes it is easier to verify that a word is an LL(k) word by using the
auxiliary concept of an LL(k) context:

5.9, A word 5 E N* is an EL(k) context of the variabfie A E IV if for
every two derivations

such that w,ik = w2/k, it follows that CY = #3.
We have the following obvious lemma:

Lemma 5.10, A word q is an LL(k) word if and only if for every derivation

‘I & wAac
Im

a. is an LL (k) context of A.

. If a is an LL(k) context of A, and iif L(cr)/(k -l)= L@)/(k - 1)
then p is also an LL(k) context of A,

FOQ& Let A/3 have two derivations:

xist two words w :, w: 0th generated
k - 1) = wi/(k - 1). 14s we deal
above implies (wl

Im

A direct algorithm for checking equivalence of LL(k) grammars 343

which by cy being a~ L.L(k) context of A lead to yl = y2 as required. 0

OF ry S If L (2) = L (/3), then if cy is an LL(k) context of A, so is /3.

ollowing sequence of assertions is intended to justify the operations done in
the Igranching and splitting steps of the algorithm and to show that all words

err atecl at tree nodes are LL(k) words.

Awertion 1. Right and lc:ft concatenation.
Let y E lV*, ey, rp E T”N”, w E T”.

a. Right concatenation
If 11 cy Ii,11 p 112 1 w 1 the;?

b. Left concatemiion
G.vm any two words cy, p E N* and a word x E T*, the following holds:

ertion 2. Right and Ir=ft cancellation.
Letcu,p~T*N*,yEN*,wET*,ayandpyareLL(k!words,jlarII,IIPII~Iwl.

ca. Right cancellatbn

(and from Lemma 56 it follows that both Q! and p are LL(k) words).

. Assume a!# /3, then ah&e exist, for example, wor
not in L(w,p).

Let x be one of the shortest words separating & (w, (r) from L (w,
at x/lw(= w.

t is obvioias

(ai) If we assume a =+&, y, it follows that a~ can derive xz in two different
ways, contrary to cy y being an LL(k) wad.

(b) Assume therefore, that Q * y. ‘I’hen y separates cy from p. I3ut

1 y 1 e f x 1, and x was cholsen as one of the shortest words separating L(w, a)
from L (w, p), again a contradiction.
The only possibility left is that #J +-L x: and y a& Z, thus Pr +$, xz.

Herlce it is impossible to find a (word x such as x /I w I = w, separating a from p, and
i4 follows that a ew & D

b. Left cancellation
We cancel only terminal words.

where
aJ3EN*,xwET*.

Proof. Immediate from the definitions. Cl

ssertion 3. Right substitution.
Let a,/3,y,SE N*, w E T*, a, /3, ‘y, 5 are LL(R) words. Then

(a) a/3=,ynp=Cl a6awy,
(b) a8 is an LL(k) word.

roof. (a) w\(L(y)$“)= w \(I&#)$“)= w \(L(a)L(P)$‘) = w \(L(a)L@)$‘)=
w \(L(aS)$‘). From the definition this implies a~/3 eWy.

(b) In order to prove that a6 is an LL(k) word, we prefer to invoke Lemma 5.10
and prove that in any word wAv derivable from a6,q is an LL(k) context of A.

Let a6 + ;Lm wAq. We distinguish two subcases:
1. w = wrw2 where a- =$+, wl, 6 =+-_I*m w2Aq.
In’this case we use the LL(L) property of 6 to conclude that q is an LL(R)

context of A.
2. 7 = ~$8 and a + Pm WA@. Consequently we also have a/3 =+ ;Pm WA+&

own to be an LL(k) word, $j3 is an LL(k) context of A. Since
m Lemma 5.11 that q3-6 is an LL(k) context of A. E3

n the splitting step applied on the equality (
Section 3 for details), a grouped variable is defined as

a

A direct algorithm for checking equivalence of LL (k) grammavs 345

It is also known ihat [wi, &I] is an LL(k) word for each i.

im. AM is an LL(k) word.

We’ll show first that M is an LL(k) word.

0 a‘ M &P wEq.
1;

All the derivation rules of M zlre of the form M + [Wi, Sip], SO the derivation
M =+ Tm wEq can be written as follows:

and as [Wj, sip] is an LL(k) word, 7 is an LL(k) context for E.

(b) there exist two derivations

and
x/k wi = wj,

hence i = and of the derivation is
Let show now that AM is an LL(k) word.

two subcases:

where
*

+‘wl and =3 ~26”
Im

In this case 4 is an LL(k) context of E because M is an L.L(k) word.

(2) WE{ = w&M,

ave to s

346 T, Blshansky, A. Pnuelli

On the other hand we also have

Since y = M#3 and Ay is an LL(k) word, we get that qy is an LL(k) context of E,
and, by Lemma 5.11, that v&4/3 is also an L-i(k) conkxt of E. Since l/MII 2 k - 1 it
is also true that L (qMp)/(k - 1~) = L (qM)/@ - I), which implies, again through
Lemma 5.11, that iN is also an EL(k) context sf E.

Conchxsions, We use now the previously established results to prove that all words
participating in the constructed trees are LJJc) words.

Consider first the branching process. Assertion 2 implies that if the father
contains LL(k) words, so do the sons.

Review next the splitting step. The descendant nodes of type (S)i contain
relations of the form

i(S)i Y T SiPP

each derived from a father .node of the form

Therefore, by assertion 2, both sides of each (S)i are again LL(k) words.
By summing the equalities (S)i we get

Y = C [Wi, &p]@

WE@%-l(P)

We next define a grouped variable M = ~wice~_,~y~ [w,~, Sip].
By Assertion 4 A Es an LL(k) word, so that the other descendant node

W) AM=ap
W

is also a relation between two LL(k) words.
nce in the tree constr’tiction is the replacement step, in which we

5. &p has been derived from a previous LL(k) word
app (the /3 cancelled on the right) and is therefore an LL(k) word too.

A direct algorithm for checking equivalence of LL (k) grammars 347

devising a criterion ‘for application of the splitting step in a way ensuring
boundedness of all generated words.

We first analyze the different types of equalities that can arise in the nodes. These
types differ by the presence of different alphabets on each side of the equality
relz tion.

The first type is that of Nt = IV:. Equalities of this type have variables out of N,
oa their left hand side, and variables out of N2 on their right hand side. The initial
eqealitiet; S1 :sw Sz are of this type.

pplication of branching on type 1 nodes produces again type 1 nodes.
pplicatiorr of splitting to type 1 nodes generates some nodes (the (S)i y zwl iiipp

nodes) which are also of type 1, but generates also a type 2 node, described
symbolically by NT NY = N2+* Here NF stands for grouped variables over N2. These
are equalities of the form AM ==,+I or @I’M =,,,$.

Applicatio!l of branching to type 2 equalities can result in other type 2 equalities,
but can also lead to disappearance of all N: variables from the left hand side. This
is type 3 equliity of the form NF= Nl. (Note that from this node on we are
exploring interrelaRions within GJ.

Application of splitting to a type 2 equality will yield equalities y ==w Sjpp which
can be of types 2 or 3, and to an equality AM =,,ap which is of type 2.

Equalities of type 3 will have only replacements applied to them, each generating
a type 4 equality of the form Ni = Nt.

By following these various types and their possible trzrsitions under branching,
splitting and replacements, we can arrive at the followmg transition diagram.

TYPe Form

1 N;c=N,’
2 NfNF= N;
3 NF=M;

4 N; = I”+.-;
5 Nz’N:= N;

UndPr branching

1
2,3

4
395

Under splitting

192
2,3

475
395

Under replacement
-_. _I

4

Every grouped variable defines a finite sum of words. We have to show that the
length of any element in this sum is bounded.

Denote by rl t e maximal length of the shortest terminal word derivable from
any variable of ZV, U _P&, with a given k - 1 pre*fix. Denote by t the maximal number
of variables in thl: right hand side of any of the production rules of the variables of

348 T. Okkansky, A. Pnudli

Consider the case o a MF~ in which only a part of ar participates in the derivation
of X. In order to deriv x from a, we must a tions, i.e. not more that
tl. Every such application can cause 8 to in re Ihan t - 1 variables,
since we use a production rule for a variable out ht hand side might
be of length t.

Consequently, application of rl rules may increase 6 by not more than (t - l)rt
variables, and together with the initial length of CY (which is contained in &) we get
a bound of (t - l)rl + tl - 1. We know that jp 1 s k - 1, so the length of &p is
bounded by

k(-j = (I - 1); -+ f-1 - l+k-l=t*t,+k-2.

This result ensures two important things:

(a) Every summand in a definition of a grouped variable cannot be longer than
Oe This and the fact that such a sum contains a finite number of summands ensures

together that the number of distinct grouped variables will be finite. In fact, we can
bound N?O by

e assume here that every grouped variable is a sum of exactly 1 TI”-’

summands!, each of the form [w, a] where w E Tk-*, (Y E (A$ Ul A)b, and the case in
which the grouped variable does not contain a summand [wi, cyi] for a particular Mti
is counted by letting ai be A.

(b) In a replacement step, we get an equality ol’ type 4 (h’2’ = Nl) where the left
hand side term is not Ion

In summary we have shown that the number of artificial variables introduced’
during the process is bounded. Consequently the number of possible distinct nodes
in the tree is finite.

ina Cohen of the echnion, Israel for helpful
e would also li e to thank the referee for this

merous ful correc-

rjpcroft, ~~~p~e deterministic languages, IEE
Automata Theory, pp. 36-46.

A direct algorithm for checking equivalence of LL (k) gram-nars 349

[2] D.J. Rosenkrantz and R.E. Ste, ns, Properties of deterministic top down grammars Information
and Contro 7 (3) (1973) 226-256.

[3] E.P. Friedman, Deterministic languages and monadic recursion schemes, Center for Research in
Computing Technology 9 Harvard University (1974).

[43’ LG. Valiant, Decision procedures for families of deterministic pushdown automata, Ph.D. Thesis,
ent of Computer Science, University of Warwick, Coventry, England (1973).

&oft, 2. Manna and A. Pnueli, Decidable properties of monadic functional schemes, .?,
20 (3) (1973) 489-499.
, Functional schemas with nested predicates, Information and Control 27 (4) (1975) 349-368.
lfrict, Some program schemes and formal languages, Lecture Notes in Computer Science,

;:inger-Verlag, Berlin, 1974).
and and D.C. Luckham, Program schemes, recursion schemes and formal languages, 3.

-?omp. System Sci. 7 (1973) 119-160.
Nivat, Sur l’interpretation des schemas de programme monadiques, Symposium XRIA --

tomata, Languages and Programming (North-Holland, Amsterdam, 1973).
Hopcroft and J.D. Ullman, Formal Languages and their Relation to Autamata (Addison-
ey, Reading, MA, 1969).
Aho and J.D. Ullman, 7&e Theory of Parsing, Translation and Compiling (Prentice-Hall, Inc.,

ewood Cliffs, NJ, 1972).
. Olshansky and A. PnueX, A direct algorithm for chxking equivalence of free N(k) schemes, to

[23] 11. Courcelle and J. Vuillemin, Completeness results for the equivalence of recursive schemes, J.
cornput. System Sci. 12 (1976) 179-197.

1141 B. Courcelle, Recun,lve schemes, algebraic trees and deterministic languages, 15th Annual
Symposium SWAT (1974) 52-62.

