Theoretical Computer Science 4 (1977) 321-349.
© North-Holland Publishing Company

A DIRECT ALGORITHM FOR CHECKING EQUIVALENCE OF
LL(k) GRAMMARS

Tmima OLSHANSKY and Amir PNUELI

Computer Science Division, Tel Aviv University, Tel Aviv, Israel

Communicated by Maurice Nivat
Received August 1976
Revised January 1977

Abstract. We deal with the problem of testing equivalence of two LL(k) grammars. The problem
had been shown to be decidable for general k by Rosenkrantz and Stearns [2], who sclved it by
reductio. into an equivalence problem for special DPDA’s. In a paper by Korenjak and Hopcroft
[1] the equivalence problem for LL(1) grammars is solved by a branching algorithm operating
directly on the grarmars. Our work preseiits a direct branching algorithm for the general LL(k)
grammars equivalence problem.

1. Introduction

While the equivalence problem for general context free grammars is known to be
undecidable, the same problem for deterministic context free grammars is still an
open problem. There has been a considerable effort to identify the highest type of
deterministic grammars, for which equivalence is decidable. (See Friedman [3] and
Valiant [4] for such efforts.)

The equivalence problem for LL(k) grammars is known to be solvable for quite a
while. The first result in this direction was given by Korenjak and Hopcrofi [1].
They propose a branching algorithm for deciding equivalence of two LL(1)
grammars in Greibach Normal Form. The basic idea in a branching algorithm is to
construct a tree, containing equivalence statements at its nodes. The root of the tree
contains the equality S, = S, where S; is the initial variable of the grammar G..
Branching is accomplished by considering different terminal letters as initial letter
in words g=nerated from S, and S.. For any letter a € T there can be by the LL(1)
property a: most one rule in each grammar, which produces from §; a word staiting
with a. Let these rules be

Sl"') aoy, Sz"'> (11 PR

Then one consequence of the equality S, = S; must be the equality a, = a,, which
we add as a node, branching from the root. Similarly, we consider other mmal
letters and then apply the branching process to the newly generated nodes. In order

321

322 - T. Olshansky, A. Pnuelli

to kerp the tree finite, there is an alternate process called splitting, which has to be
applied to nodes, whose equality contains words which have become too long. This
process will ensure a bounded length of the equalities in the nodes, and hence a
finitely terminating algorithm. It is proved by the authors that if during construction
of this comparison tree no contradiction is discovered, this proves the equivalence
of the grammars.

The decidability of equivalence for general LL(k) grammars was demonstrated
by Rosenkrantz and Stearns [2]. However, their equivalence testing algorithm does
nct operate directly on the grammars. Instead, they reduce the grammars to
corresponding special DPDA machines, and then construct a product machine,
which simulates the joint action of the two automata, searching for a word which
differentiates between the two. The final step is to test this joint machine for
emptiness.

The interest in equivalence problems for context free grammars and LL(k)
grammars in particular, has increased when the theory of recursive program
sciiemas was shown to be closely related to these grammars, having very similar
algorithm, and often reducible to ianguage theory. See references [5, 6,7, 3, 8, 9, 13,
14].

The motivation for searching for a more “‘natural” (branching) equivalence test
for the general LL(k) case was therefore twofold:

(a) A direct eauivalence test for LL(k) may suggest a corresponding branching
algorithm for schemas, which will enable direct testing in schemas terms. (See [12]
for a corresponding algorithin.)

(b) Having an alternative equivalence test algorithm might suggest additional
subdeterministic class of grammars, whose equivalence will be decidable.

The described zlgorithm is essentialiy an extension of the Korenjak and Hopcroft
{1] algorithm, and uses the basic ideas of comparison tree, branching and splitting .
processes.

The following exposition is divided into six sections: The first and second sections
are an introduction, and some definitions. The third section gives a detailed
description of the algorithm, outlining the main steps and situations that may arise,
including the final conclusion, which is that either a contradiction (inconsistency) is
discovered, or the algorithm terminates, and the grammars are equivalent.

In the Section 4 we give a proof of the correctness and termination (in finite time)
of the algorithm. The proof relies on some properties of the phrases generated
throughout the algorithm, whose proof is deferrred to the last section.

The Section 5 provides proofs of thz necessary properties of those generated
phrases. In particular we have to extend the property of being LL(k) grammars to
mixed words, containing variables from the two grammars. It also formally justifies
the basic steps of branching and splitting by showing that the equivalences

generated as descendant nodes hold if and only if the equivalence at the father node
holds.

A direct algorithm for checking equivalence of LL (k) grammars 323

The last section completes the proof of the termination of the algorithm.

2. Definitions and notations

We shall use capital Latin-alphabet letters for variables. Lower case letters at the
bezinning of the Latin aiphabet are used for terminals. Strings of terminals are
denoted by lower case leiters near the end of the Latin alphabet, and strings of
va:iables are denoted by lower case Greek letters.

‘¥e use the equivalence sign ““~" between words to denote equality of the
respectively generated languages.

a=p e L(a)=L(B).

We will also introduce a formal addition on words to denote union of the
respective languages, thus:

L(a+B)=L(«)UL(B),

which is also used for multiple sums:

L(Z#)= Y Le

The components of a context free grammar are denoted as usual

G=(N,T,P,S

Definition 2.1. Let G = (N, T, P, S) be a context free grammar. A word @ € N* is
an LL(k) word for some positive integer k if for every two derivations:

1) a =1 wAS =, WBs =" wx,

2) a =T WA = 1n WYl =" wy,
where “Im” mears leftmost derivation, then if x/k = y/k, it follows that 8 = y.
Here

X |x|<k,

xlk =

(The prefix of length k) x> k.

of x

We also denote L/k ={x/k |x € L}.

In other words, given a variable A within a derivation, it can have at most one
direct rule, leading ultimately to a word with prefix x/k.

A grammar G = (N, T, P, S) is an LL(k) grammar if the initial symbol § is an
LL(k) word.

From now on we will call a cfg simply a grammar. In the sequel we will fix our

324 T. Clskansky, A. Pnuelli

grammars to be in GNF form. Recall that any LL(k) grammar can be transformed
into an LL(k + 1) GNF form grammar ([2]).
We use the notation ‘\’ for prefix removal:

u\L={v|ve T* uwweL}

Definition 2.2. Equivalence between words. @ = B is defined as L () = L{B). We
define also a B for any w € T*$* as

w\(L(a)-$")=w\(L(B)-$")

i.e. the set of words with prefix w generated by a - $™' (a concatenated with |w |
$-signs) is equal to ihe set of words with this prefix generated by B - $™.

We add the $™' in order to be able to keep a look ahead of | w | letters. If we want
to derive from a given word « a terminal word x, we’ll derive x - $™' from a - $™, so
when a derives the last letter of x, we still have a |w|-look ahead of $™.

Note that if w € T* then a =~. B is equivalent to the simpler statement

w\(L(a))=w\(L(B)).

Definition 2.3. For any given a, the norm of a,| |, is defined as:

la|=min{|t||a =>*t t € T*}.

Note that in a grammar whose productions are in GNF, for each variable
AlAl=1.

Definition 2.4. For a w € T*$* and a« € N*$*, |a|=|w|=|a] (the restriction is
always realized if |a|=|w| in a grammar whose rules are in GNF) we define a
prefix restricted variable (PRV), written as [w, a]. This variable is an artificial
variable, whose derivation rules are defined using the participating variables
productions:

Let [a:a: " am, A1A2:+-A,], s<m be a PRV. Then for each derivation
A—-aB, - B, 120, in P we let

ﬂalaz Oy AJA As]]"" alﬂtlz @y, OG- Cm—l]]Cm RN ST
be a derivation for this PRV, where C,-+* Cisi-y =B+ B/A; -+ A,

in the case that s + I < m the sting C, - - - C,.,-, is obviously empty. In the case
that m =1 we omit the empty [A, A]. Let us denote the set of all PRV variables
over a set of variables N with |w|< k by N*. It is obvious that for any given finite
N, N*® is also finite. Note that under the assumption that G is in GNF form, all the
derivation rules of N§ are also in GNF.

For ||| >|w | we also define a prefix restricted word (PRW) denoted by [w, «] as
follows:

A direct algorithn for checking equivalence of LL (k) grammars 325
If |[w|=|a| then [w, a] = [w, a]. Otherwise, for s =m we define:
[aia. - a., ALA;--- Al=laia: am AA; - An]Ami o Al

This consists of a word of length s — m, whose first variable is a PRV and the rest
are variables of N.
Note that if |a|=|w| then

[w, B8] = [w,a]B.

Using the notation of PRW’s it is possible to write the derivation rules for PRV’s
in a more compact manner:

If A—ap is a derivation in P we let faw, Ay]— a[w, By] for any Ay =
|aw|=]| Ay]|. This will also imply that for any | Ay||=]aw|

[aw, Av] => a[w, By].
Definition 2.5. For any w € T*$* and a € N*$* we denote by L(w,a) the

language defined by L(w,a)=w - (w\IL.(a)). This is the set of all words out of
L (a) beginuing with the prefix w.

Definition 2.6. In a grammar, whose productions are in GNF we can define
grouped variables representing sums of words:

M= [w a]

t=1}

where each [w;, a;] isa PRW and w; # w; for 1 # j. If a, € N*, we will denotc the set
of grouped variables over N by N€.

A grouped variable is also attributed derivation rules by letting
M""[W“,a,‘] fori==i,2,...,n.

Note that the derivation rules for grouped variables are no longer in GNF form.

Definition 2.7. The set of prefixes of length [of a language L will be denoted by

G (L).
Thus

eL)=LJ/INT.
Lemma 2.8.

a=Ba=f

ww'

326 T. Olshansky, A. Pnuelli

Proof.
a=p=>w\(L(a)$")=w\(L(B) ")
= w\(L(a)-$""*")=w\(L(B) $"""™)
= w'\(w\(L(a)-$"""")=w'\(w\(L(B) $""™)
=> (ow)\(L(@)- 87 = (ww (L (B)- $")
= a=p 0
Lemma 2.9.
a=~fp <> L(wa)=L(w,B) fora, BEN*, weET*
Proof.

[}
i

a = BDw\L(@)=w\L(B)D w-(w\L(a))

=w+(w\L(B)) D L(w,a)=L(w,B).

The other direction is similar. [J

Lemma 2.10. For a PRW [w, «a], L([w, a])= L(w, a).

Proof. By induction on the lengih of w If |[w|=1, w=a We will show
L([a,a])= L(a, @). Rewrite a: = Ay.
If @ ==> *x, and x/1 = g, the first derivation rule used in the derivation o =>*x

was of the form A — ap. Hence one of the derivation rules of [a, a] is [a, 2] — aBy.
We have then:

»*
a == aBy==>x,
%
la,al=[a, Aly = aBy=>x.
Conversely, if [a, Ay]=>*x then clearly its first step has to be Ja, Aly =>
apy =>*x where A —ap is a derivation rule. Consequently, a = Ay =
aBy =>*zx.

Induction assumption: for {w|=n
L{lw,a])= L(w,).

We will show the property for a word of length n + 1, a,w for example.
Again we rewrite @ = Avy.

A direct algorithm for checking equivalence of LL (k) grammars 327

L([alww A')']) = U a,* L(fw, Br.v))

A= B, EP

= U al‘L(w’BtEY)

A~aify€P

by the induction assumption.
On the other hand:

LAY = U_a-LE)

A“‘*ﬂ"s‘ge

aw\L(Ay)= U . w\L(Bwy)

A=sayfy, C

L(a;W,A‘}‘) = U a,-L(w, 3“‘)’)‘

A=a By €P
Hence

L([a:w, Ay]) = L(ayw, Ay). O
Lemma 2.11. Let M b» a grouped variable defined as:

M = ‘_2 {}'Vn» 0]

Vijlwi|=]|w|; ifi#jthenw,#w,; Viw, € T*
Claim. Ma =, nia for any a.
Proof.

w\L{Ma)= w,\(L(M)L(a)) = w, \(L{ L(w,n,)L(a)

j=

pa S

=wA(0w\ L@IL(@)
=w\(L(n)L(a))=w\L(ne). O
Lemma 2.12. If Igll=|w| and w € T* then

a=8<>a=|[wg]

Proof.

wi\L(a)=w\L{B)=w\(w- -(w\L(BY)=w\L(w,B]).
(For every L.L = w\(w- L))
Hence

a = [wBl O

328 T. Olshansky, A. Pnuelli
3. The equivalence checking algorithm

The algorithm operates on two LL(k) grammars G, and G in GNF form, where
fori=1,2

Gi = (Na T;R’ Si)'

In order that §;,=8, (ie. L(S:)= L(S:)) the two following conditions are
necessary and sufficient:

(@) Or-i(S:1$%) = O:_,(S,$*) (i.e. the set of all terminal prefixes of length k — 1
derivable frem $,$* is equal to the similar set for S.$%).

(b) For each w € &,_,{5:$*), S:~.S..
Cor espondingly, we start an equivalence checking algorithm by constructing a
coraparison tree whose root node contains the relation S$,~,S, for each w €
_Qk ~1(51$k).

A comparison tree is a iabeled tree whose nodes are labeled by equivalence
relations of the form

a=p

w

where « € N*, B € N3 and w € (T*$*)/(k — 1). (We denote N = NyUN,UNSU
NZ%)

Altogether there will be | @,_;(S:$*)! such trees.

Each comparison tree is constructed by applying two basic steps to 'ts nodes: the
branching step and the splitting step. Both operate on a parent node to produce a
set of successor nodes, such that the relations labeling the successors hold if and
only if the relation at the parent node holds. Nodes whose labels appeared
elsewhere in the tree or which contain equality between the empty words oa both
sides are not developed further. If during construction any of the steps fails the
relation at the root of the tree is concluded to be invalid (proved in Section 4.1). It
will also be proved (Section 4.2) that the construction of the tree must terminate,
and that if it has terminated successfully (no failure detected in any step) the
relation at the root is proved to be valid (proved in Section 4.1).

We will now describe in detail the two steps used in developing the tree:

3.1. Branching

Let the reiation to be developed be:
(B) Ax = BB
where w = g, &, € T*$*, Aa € (N, UN,)N* and BB € N3. Ti will be proved

below (Saction 4.2) that all generated relations must be of that form. Moreover, it is
assumivd (and proved in Section 4.1) that both Aa and BB are LL(k) words.

A direct algorithm for checking equivalence of LL (k) grammars 329

Let b €{T U$} such that wb € O, (Aa$*). By the LL(k) property there is
exactly one derivation rule for A such that starting with this Gerivation Aa$* can
derive a terminal word with prefix wb. Let this rule be

A—ay vy € (IN; U N)*.

If (B) is to hold, then also wb € @, (BBS$*). If wb is not generable from BB$* the
step fails.

i wb is generable, then there must be exactly one rule for B which will lead to
gereration of the prefix wb. Let it b2

B—->a18, 5EN§.

Since Aa =, B, it must also be true that Aa =, BS. However, since for both A
.nd B there is only cne derivation ynder the restriction of reguiring the prefix wb,
this is the same as

aya, = adp, (Lemma 2.8)

which is the same as

ya = 8. (Assertion 2)

az- -ag—1b

This process can be repeated for each b€ w\BO.(Aa$*). If we denote
{b | i=1,...,5}=w\O(Aa$*)we get foreach i = 1,..., s the successor relation

(Bi) Ya =

az: -ag-1b;

A special simplification is required in the case that any of the y; has as its leftmost
variables a grouped variable. Let ¢, = Mk; where

M = Z [Wi’ni]’ niENg’
=
then the relevan: relation is
(Bi) Mka = 6B where u, = a;: - ax-1b.
Since for [# r, w,# w, ther: can be at most one j such that w, = u;. Since u; is a
generable prefix for the left hand side there must be exactly one.
We claim that in this case (Bi) is equivalent to
(Bi) [ws wilea = 68 (Lemma 2.11)

which in turn is equivalent to

(B1)’ nic: = 8,8 (Lemma 2.12)

330 - T. Olshansky, A. Pnuell
.) | |
We can thus formally summarize the branching step as follows:
B - step
Let (B) Aa =, Bj be the parent node
(w=a," - a1 € T*$*, Aa €(N,UN;)N*, BB € N3).

1. Check that w\@.(Aa$*)=w\ &, (BBS$*). If they are not equal report a
failure.

2. For each b, i =1,...,5 b €Ew\O: (Aa$*).
Let A — a,y: and B — a.8, be the uniquely determined rules for prefix wh.. The set
of successor nodes to the given parent is given by

(Bi) Yix = 5;[3

az---ag-idy

3. (Replacement Substep). Replace every relation of (Bi) of the form

{Z {wi, ﬂi]} ‘o = 8.
By (Bi)"

na 3 BB,

where j is the (uniquely determined) index such that w; = w.

Justification of the B-step

It is obvious ihat (B) implies the set (Bi) i =1,...,s To observe the converse
assume thut the set of (Bi) holds. We wish to show that Aa =, BB. Let x € T*$* be

any word generated by Aa$* with prefix w. Then x must be representable as
x = wky where b, € w\ @, (Aa$").
Correspondingly its derivation must start by

Aal* = aya$* =*>a.a2---ak_1biy.
Hence ya$* generates a.- - - a.-,by. By (Bi)
588" =>a, -~ a,iby
and we have the derivation:
BB = a,&;ﬁ$";;>a1 - aby = x.

All this shows that w\L(Aa$*)C w\L(BBS$*). By a symmetric argument we
obtain Aa =, BS.

3.2. Splitting

The splitting step is to be applied to relations which contain a word which have

A direct algorithm for checking equivalence of LL (k) grammars 331

grown undesirably leng. Its purpose is to keep the length of the relations bounded.
Let, thereforc, the parent relation be:

(S) Ay =y, Ay€E(N,UN,):-N*, Y € N3, weT!

where we explicitly require that ||y| >k - 1. This requirement implies that w
contain no $ letters.

Choose any x € T* which is one of the shortest words derivable from A, which
satisfy |x |= k — 1, x/(k — 1) = w. Obviously, since Ay =>* xy, the right hand side
¢ (if they are to be equivalent under w) must also be able to derive a word with a
prefix x. However, it might do it in several different ways, generating different
sentential forms, all beginning with x.

Consider therefore, any w; € @,._,(v), [wi| = k — 1. Fiom the given formula it
should also follow that

Ay = ¢ (Lemma 2.8)

We can now let both sides derive sentential forms with prefix x, looking ahead at w.
This derivation must be unique on both sides, and the left hand side must derive x7y.
Let us partition ¢ into three parts: Let « be its initial part, which consists of all the
variables, participaiing in the derivation of x for any of the w; € ©,_,(y). Let p be
the next k — 1 variables and B the remaining variables (it is assumed that ¢ is also
sufficiently long). We can thus rewrite the equivalence as

Ay o app.
Let the right hand side derive x, looking ahead at w;, yielding:
apf '—T? x8:pP.
We have therefore
xy 7 868
which is equivalent to
(S) v .2 6pP (Assertion 2)
These equalities are derived for all w; € 0,_(y).
vince the equality in (S) is significant only for words with prefix w;, we can

restrict the right hand side to derive only such words, and obtain for each i:

y = [w, 6p]B (by Lemma 2.12)

332 T. Olshansky, A. Pnuelli

We claim now that :hese equalities can be summed, omitting the w; under the
equality to get:

$3 v~ 3 [wénlB

w; €8s -1y}

Obviously, any word generated by v must start with one of the w; € @,_,(y}), and
then must be derivable from [w;, §p]B. In the same manner any word derivable
from any of the [w, 8;p]B is by (S): derivable from y.

If we introduce now a grouped variable (see Definition [2.6])

M= e "0 0]

it is easy to show that

MB= Y [w,dp]B.

w EG -1(v)
We can thus replace the set of (S) by
(81) y = MB.
By substitution of (§1) in (S) for y we get

52y AMB = apB
or equivalently, by Assertion 2 of Section 5 below
(S2) AM = ap.

The splitting step can therefore be summarized as follows:

S-step

Let the father node be
{3) Ay = apB,
where

apB EN3, AyE(N,UN,))N* weT', andl|y||=%-1.

Choose any x € T* such that A =>*x, x/(k —1)=w, and x is one of the
shortest words satisfying these conditions. Then the sons relations consist of the set
of equivalences:

(5} y = &pB for each w, € B._,(y)
where

&
o == xb.
£uy

A direct algorithm for checking equivalence of LL (k) grammars 333

And the single node
(S2) AM = ap
where

M = 2 [W.~, &P]'

wi€6g —1(y)

Justification

The fact that (S); and (S2) follow from (S) is implied by the derivation process. To
show the converse let (S); hold for each w; € @_,(y). Then summing up we obtain
y = MB. Concatenating 8 on the right to both sides of (S2) we obtain

AMB = app

which by substituting MB = y yields (S).

What is the advantage gained by the splitting step? Obvicusly, in all equalities of
the (S): type the left hand side is shortened by one variable, while in (S2) the left
hand side is of size 2. It is true that in the process we introduced a new grouped
variable M which actuaily stands for a sum of words but in the discussion on
terminaticn we will see that the number of such variables is bounded and so is the -
length of the words they represent.

To the above two operational rules we add a stoppirg rule which checks for
imbalance between the two sides of an equivalence relation.

3.3. Stopping check

If the right hand side of an equivalence relation is longer than r times the length
of the left hand side, stop and report a failure.

r denotes here the maximal length of the shortest terminal word derivable from
any variable of N, with a given k — 1 prefix. Thus, given any variable A of N, and a
k — 1 prefix w there is always a terminal word x, A == * x such that w is a prefix
of x and [x|=r.

The stopping check should be applied to any node as soon as it is generated.

To justify the stopping rul€ let the offending relation be

Al...A‘ TBIBs

where s > rt.

We claim that the two sides cannot be equivalent. We can let each of the A,
derive its shorrest terminal word under the initial obligation w. By the definition of r
there is a terninal word y derivable from A, - - - A, whose length does not exceed
rt. On the oth:r hand all of the B; are out of N, and their derivation rules are in
GNF form. Consequently, the right hand side cannot derive a terminal! word
shorter than s, and in particular cannot derive y.

434 g o T. Oishansky, A. Pnu_elli

3.4. Examples
To illustrate the application of the algorithm, we bring two examples.
Example A. In this example there is no need for the splitting step and the checking

is completed by using branching alone.
Consider the following two candidates for equivalence. (Both are LL(2).)

S;—>abC|acE’ S,—aX
C—cBlc X—bZ|cY
E-bA|b Z-cV]e
A - abC Y—BIT|b
B — acE V—aQ
U— aP
Q->cY
P - bZ.

The comparison tree generated by these grammars is given in Fi3. 1. The leaves
(1) s

[

v (5)

fu

(o IRY

(10) bC = P

o

Cc
{11y ¢ Z

[2 I

Fig. 1.

A direct algorithm for checkin? equivalence of LL (k) grammars 335

4, 8 are terminal identities. The leaves 11,13 contain equalities which were
previously generated (nodes 3, 7 respectively) and hence require no further
developemert.

Unfortunately, we cannot hope that any comparison tree, constructed by
branching only, wil! be finite. Actually, a finite branching tree will be generated for
bounded grammars only. Thus in the next example we must use splitting steps to
avoid unbounded proliferation of the tree.

Example B. Let us check the equivalence 6f the two LL(2) grammars:
G,=(N;, T, P, S\); N,={S,, B, D} T={()}
P: S,—»D
D—(BD |)])s:
B—(BB])
G.={N,, T, P,, S»); N;={S,, X}

P: S,—{X|(§X

X—) I)S:
The tree generated by the algorithm is given in Fig. 2. The leaves 6, 22, 23 are
(1) S.=§,
1572
()
(2) D=5,X DxX (3)
()
) ($
N\
(4) BD=XX (5) BD=S,XX ())=) §,38, (1)
3 ($ ‘(
() (
——
(10> Ds§,X (11) D=X (8) BBD=XXX (9) BBD=S XXX
¢ ?)) ?
splitting splitting
x=) x=())

(14) BM=:X (13) BD=XX (10) BD=82XX (15) BDz52XX (16) BD=XX (17) BM*SQXX
()

)) ((
([~\~“N\~£-‘ ——-_________—.——L—~_——.—————————7§
(18) M:SZX (19) M=X (20 BBM=zS.XXX (21) BBM;XXX
() ¢ “
replacement replacement splitt%ng
\ x=()
(22) S, X=S.X (23) X=X (27) BM=S_XX (28) PMzXX
2t) (2)

(2)

Fig. 2.

(24) BM=S,XX (25) BMzXX (26) BM282XX
) (

336 T. Olshansky, A. Pnuelli

identities. The leaves 7,10,11,12,13,15,16,24,25,26,27,28 contain equalities,
which were pre’viously generated.
Let us follow the process of splitting ui node (9): BBD =($;XXX;

x=(), v=BD, a=8X p=X B=X
BBD=2>()BD, S:XXX==>())[),XX] and ()[(,S:XX].

We define now M =[), X]+[(, $.X] and get 15, 16, and 17.
Let us follow now the splitting of (8): BBD =, XXX. Here

x=), y=BD, a=X, p=X, B=X
BBD =>)BD, XXX =>)[),XX] and)[{,S:XX].

We’ve got here the same M = [), X]+[(, S:X] and get 12, 13, and 14.

On the node (18) M =~(S,X we apply replacement: we replace M by the
sUmmand, whose restriction is “(”, i.e. $;X, and get 22.

As no contradiction has been discovered during the algorithm, the languages
have been verified to be equivalent.

4. Correctness and termination of the algorithm

4.1. Correctness

‘In order to prove the correctness of the algorithm described above, we show that
a contradiction is found in at least one of the trees if and only if the grammars are
not equivalent. If the algorithm terminates without encountering any contradic-
tions, then we can conclude that the grammars are equivalent.

1. If the grammars are not equivalent, then a contradiction must be found in one
of the trees.

Assume to the contrary, that no contradiction was detected during the process. If
the grammars are not equivalent, there are some words which separate them, i.e.
can be generated by one of the grammars but not by the other.

This raeuns that there exist nodes in the comparison trees which contain invalid
relations, i.e. there exist words which separate the left hand side of suck a relation
from its right hand side. If w separates $; from S, then if w € L(S,) and w & L(5,),
Si=.S;withu = w/(k — 1) is such a node. so that we have at least one such node.

Among all nodes which have separa:ing words let us pick a node which has a

separating word w of a minimal length, i.e. one of the shortest words separating any
of the nodes in the trees.

Let the node associated with the word w be

a = f

A direct algorithm for checking equivalence of L (k) grammars 337

We may assume with no loss of generality that i: is not a terminal node, i.e. it has
successors. Otherwise it has an earlier appearance elsewhere in the tree which has
successors and wc may consider it instead.

Consider first the case that the node is developed by branching. In this case let
W =a,4; 0 G-y and w; = a;a, - - - ax-,. By the successful application of the
b:2nching step we know that @ and B each have a unique derivation of a word
starting with a,---a«. Let these derivations be respectively a = a,y, B =>
a.6. Thus the considered node kas a successor of the form:

Y 0 0.
Obviously, if w separates a from 8 under w; so will a,\ w separate y from & under
a,- - - a, contraldicting w’s minimality.

A special case is when |w | =< k — 1. Note first, that w # A since the node a ~,,
is constructed only if both sides can derive each at least one word with prefix w;.
Thus when w = A, w =$*"" and both sides must be identical.

Assuming therefore, that w = a,---a, | <k —1 we will have w; = w$* ', As
before w will separate the node under w; only if a,- - - a, will separate one of its
successors under a,\(w:$).

Consider now the case that the node

Ay = apB where u ==wj(k—1)
is developed by splitting.
The descendants after splitting are:
(31) v=M3 (represents several nodes).
(S2) AM = ap.

If w is supposed to separate Ay from app, the following possibilities exist:
(a) Ay can generate w and apfB cannot. Let us assume therefore that

% * *
Ay=>w =vy where A=>v and y=>y.

If now MB cannct generate y, we will rroceed with node (S1) (or actually the (S);
corresponding to w; =y /(k — 1)), with y us a separating word (shorter than w).
If MB does generate y, we get:
*®

*
M3 =>y=yy. where M=y, B=y,,
which gives the possibility
*
AM=>vy,.

If now a» cannot generate vy,, we wiil proceed with node (S2) with a shorter

338 T. Olshansky, A. Pnuelli

separating word vy,. If ap can generate vy, then apf = *vy,y.= w, which
contradicts our original hypothesis that ap8 cannot generate w.

(b) apB can generate w but Ay cannot. By a similar argument, it can be shown
that one of the implied descendant relations (S1) or (S2) is separated by a word
shorter that w.

. We have thus shown, that if we enter a node with a word known to be separating,
then either this node generates a contradiction, which should have bee detected in
the construction of its descendants or one of its descendants must be separated by a
shorter subword of the original separating word. Contradicting the minimality of w.

2. The other direction of the correctness stater .crt claims that if an explicit
contradiction arises during construction, then the gmmrhars are inequivalent.

The justification of this claim follows from the fict that anywhere in the
constructed trees, the validity of the descendants is equivalent to the validity of the
father node. Therefore any contradiction within the *.ee makes the equivalence
formula at the root’s node invalid, and hence .".e equivalence of the grammars
invalid.

While the current presentation of the checking alogithm assumed that it was a
priori known thai the grammars are LL(k) grammars, it is also possible to apply the
algorithm to ary two arbitrary grammars in GNF form. At any branching step we
then verify that for the assumed w € (T *$*)/k there exists only a single applicable
rule on both sides. The algorithm may then terminate successfully, establishing not
only the equivalence of the grammars but also proving both to be LL(k) grammars.
Alternately the algorithm may fail, showing either that one of the grammars is not
an LL(k) grammar, or that the grammars are inequivalent. In order to justify this
claim one has to show that all possible combinations of a variable with a right hand
context and generated terminal prefix do appear in the comparison tree, and this is
indeed the case.

We are thankful to the referee for this paper for suggesting the above
observation.

4.2. Termination

We want to show that we can limit the length of the words in the left hand sides of
the equalities. The length of those words can increase by applying a branching or a
replacement step.

In a branching step, one non-terminal is replaced by a string of non-terminals,
which is a right hand side of the derivation rule we have just used. Using the bound
on the longest right hand side o7 any of the production rules, we can bound the
amount of increases in each branching step.

The other case of length increase is replacement of a grouped variable M by one
of its summands. As is shown in Section 6, the length of these summands is also
bounded. Consequently, the length increase in any single step is bounded.

A direct algorithm for checking equivalence of LL (k) grammars 339

Let us choose any number s (at least s = k) as a criterion for applying the
splitting step, i.e. when we reach a node in which the length of the word on the left
hand side of th~ equality has grown beyond s, we apply the splitting step.

We have already seen, that the left hand sides of the equalities in the nodes
generated during splitting are shorter than that of the father’s, and if one of the sons
has got a left hand side word still longer than s, we simply apply to it another
splitting step. Consequently, with the splitting level set at s, and the maximal length
‘ncrease due to branching and replacements is bounded by b, no left hand side can
zver grow beyond s + b.

The above rule guarantees boundedness of the left hand sides of the equalities.

By continuous application of the stopping rule (3.3) it is ensured that the length
of the right hand sides of the equalities is also bounded. The only thing left to be
shown is that the number of variables, in particular the artificial variables generated
during the algorithm, is finite. Observing the conditions under which these variables
are generated, we see that they are constructed aut of variables taken exclusively
from N..

The grouped variables have the form

M= 3 [w,ép] 8,p € N3, lp|=k~-1.
wi €6 —1(y)
The length of each 8, depends on the grammar only, and can be calculated (see
Section 6). It is clearly bounded, and so is the number of items in any such a sum,
(not more than | T!* ", which is the number of distinct terminal words of length
k — 1). Consequently, the number of distinct sums is finite, and so is the number of
grouped variables.

We have shown that the number of distinct variables is finite, and that the length
of both sides of the equalities is bounded, hence the number of distinct equalities
which can be generated in the trees is finite. Since an equality which appears more
than once is not developed further, the trees are finite, and the algorithm must
terminate.

Because of a wish to keep the exposition as simple as possible, all the bounds are
by no means the best possible, and are probably very exaggerated. In all trial cases
we made on dierent grammars, the actual number of distinct aritficial variables
was very small. If one insists on deriving a bound on the number of possible nodes
in a comparison tree, an upper bound is given by the constant

C =TI+ 1) |NS|- (| Ny U N[o0,

where b, s, r were given before (r is the maximal leagth of the shortest terminal
word derivable from any variable of N with a given k -1 prefix). For bounding
purpose s can be taken as k.

The existence of this bound and a close examination of the comparison algorithm
actually establishes the existence of another bound D, dependent only on the

w T. Olshansky, A. Pnuelli

structure of the two grammars, and computable from them, such that if the
grammars are inequivalent, there exists a word shorter than D which separates
them.

This in priniciple gives an alternative checking algorithm (also implied by the
results in [1]), namely check whether any of the words over T shorter than D
separate the grammars. However, since our estimate for D is overby pessimistic we
believe the comparison algorithm to be far superior.

5. LL(k) words and their preperties

Justification of the algorithm dep=nds on the fact that every side in the equalities
generated has the LL(k) property. This property states that any word «.appearing
on any side of #n equality can have at most one direct derivation, leading to a
terminal word with prefix w for a given w of length k.

The sentential forms of both grammars obviously have the LL(k) property, but
during the construction of the trees we get mixed words, consisting of variables
from both grammars, including artificial variables. In order to ensure for such
words the property of unique branching, we must extend the LL(k) property of the
sentential forms to the mixed words generated in our trees.

The more rigorous treatment ir this chapter will present a sequence of simple
lemmas, leading to the two required main results: (a) Whether we apply a
branching, splitting or a replacement step to the father, the validity of the resulting
sons is equivalent to the validity of the father node. (b) All mixed words appearing
in formulas at all nodes are LL(k) words, and therefore has a unique derivation rule
for each k prefix.

In the sequei, when we do not explicitly state otherwise, all words are assumed to
be mixed words over N = N; U N, U N7 U N7F; and all productions used are from
P, U P,. We assume N; N N; =0 and hence a production for a variable in N; will
always be from P.

Definition 5.1. A word n € N* is defined to be an LL(k)-word if for any two
derivations

* *
n => wAa ==> wy,a=> wzx,
Im i

* &®
7 = wAa == wya==>>wy,
Im im

such that x/k = y/k, it follows tha: y, = y, (i.e. the rule applied to A is unique).

Note that this is exactly the definition of LL(k) words extended to mixed words.

A direci algorithm for checking equivalence of LL (k) grammars 341

The following simple properties can be verified for LL(k) words. Some of them
follow directly from the definition, the others require a proof which is identical te

the proof given for the same property for LL(k) grammars. (See for example
Hopcroft and Ullman [10].)

Lemma 5.2. Ifa € N* isan LL(k) word, and a => i B, then P is also an LL (k)
word.

Lemma 5.3. An LL(k) word is unambiguous. In other words, if n =%, x and n is
an LL(k) word, the derivation is unique.

Similarly to LL(k) grammars, the notion of unambiguity extends to uniqueness in
derivation of two words with equal prefixes.

Lemma 5.4. For an LL (k) word n which has two derivations

% *
N => wAa = wiy:a=>>wy,
Im Im

* %*
n =l> wiAB ? W1Y23 ==> w1y,
such that x/k = y/k, it follows that y,= v, and a = B.

Lemma 5.5. In a single LL(k) grammar, all the sentential forms (including the
initial variable S} are LL(k) werds.

Lemma 5.6. If n{ is an LL(k) word, so is 7.

Proof. Let z be any terminal word derivable from {. The truth of the lemma
follows from the observation that for every two derivations for n:

* *
n = WAB==wx,
Im
* * '
n = wAa=>wy,
Im
such that x/k = y/k, we can consider the two derivations

= WABL==>wxz,

* *
n{ = wAa{==>wyz for any z derivable from ¢,
Im

where (xz)/k = (yz)/k. The uniqueness of the latter implies the uniqueness of the
initial derivation. [J

M2 T. Olshansky, A. Pnuelli

Lemma 5.7. Ifa isan LL(k) word so is [w, a]. Since the derivations of [w, a] are
part of the derivations of a, the result follows.

Lemma 5.8. If wy is an LL(k) word (w €T*, n € N*), so is .

Sometimes it is easier to verify that a word is an LL(k) word by using the
auxiliary concept of an LL(k) context:

Definition 5.9. A word ¢ € N* is an LL(k) context of the variable A € N if for
every two derivations

AL = w=>w,
AL => Br==>w,,

such that w,/k = w,/k, it follows that a = B.
We have the following obvious lemma:

Lemma 5.10. A word n is an LL(k) word if and only if for every derivation

*
n = wAa
im

a is an LL (k) context of A.

Lemma 5.11. If a is an LL(k) context of A, and if L(a)/(k —1)= L(B)/(k —1)
then B is also an LL(k) context of A.

Proof. Let AB have two derivations:

Ap => yB=>wws (B=>>w))
AB ? Yzﬁé WiW, (ﬁ:*:;’W:s)s

and (w,wy)/k = (wsw,)/k.

Since L(a)/(k —1)= L(B)/(k — 1), there exist two words w3, w} both generated
by a such that w/(k —1)=w3/(k — 1), wi/(k — 1) = wi/(k = 1). As we deal with
GNF grammars, [w,[,[ws|=1 so that the above implies (w,w3)/k = (wsw})/k.
Consequently, we have the two derivations:

#
Aa == yia==>ww;
im

A direct algorithm for checking equivalence of LL (k) grammars 343
Aa ? yzaéwswi

which by a being ar LL(k) context of A lead to y, = v, as required. [

CoroBary, If L(x)= L(B), then if o is an LL(k) context of A, so is B.

The following sequence of assertions is intended to justify the operations done in
the branching and splitting steps of the algorithm and to show that all words
gene ated at tree nodes are LL(k) words.

Assertion 1. Right and left concatenation.
Let yEN*, a,BE T*N*, we T*.

a. Right concatenation
It la].]B]=|w]| thea

a = BDav=_Ry

b. Left concatenciion
G ven any two words a, 8 € N* and a word x € T*, the following holds:

a ¥ B Dxa=xp

Assertion 2. Right and left cancellation.
Leta,RE T*N*, yEN*, w € T*, ay and By are LL(k) words, jla|,||B]|=]|w].
a. Right cancellation

ay By 2a ;B
(and from Lemma 5.6 it follows that both @ and B are LL(k) words).

Proof. Assume a# B, then there exist, for examp]é, words that are in L(w, @) but
not in L(w, 8).

Let x be one of the shortest words separating L (w, a) from L(w, B8). It is obvious
that x/|w|= w.

Assume o =1, 3 and B =2 * x. Let z be one of the shortest words derivable
from y. Obviously, @y ==>}, xz, and since ay =, By, it follows that By = n xz.

However, since B =Z>* x, there are only two possibilities:

(1) B==>% xu, |u|>0. But then y must derive y =>> T v such that uv = ¢z,
and since |u | >0, it follows that |v | < |z | which is impossible, for z was chosen as
one of the shortest words derivable from .

) B=>%y and y=>%. x'z where yx'=x, and |x'|>0. Notice that
y/lw|=w since |B[|=]w].

34 T Otshansky, A. Pruelli

(a) I we assume a =>>{ y, it follows that ay can derive xz in two different
ways, contrary to ay being an LL(k) word.

(b) Assume therefore, that a =>>*y. Then y separates a from B. But
|yl<lx|, and x was chosen as one of the shortest words separatmg L(w, @)
from L(w, B), again a contradiction.

The only possxblhty left is that B ==, x and ¥ =$|m z, thus By =% xz
Hence it is impossible to find a word x such as x [lw]=w, separatmg a from B, and
it follows that a ~, 8. O

b. Left cancellation
We cancel only terminal words.

xa =xBDazxp

w

where
a,BEN* xwET*.

Proof. Immediate from the definitions. [

Assertion 3. Right substitution.

Let o,B,7,8 EN*, weE T*, a,B,7,8 are LL(k) words. Then
(@ ap=.yNB=8D ad=,,
(b) ad is an LL(k) word.

Proof. (a) w\(L(y)$*)=w\(L(aB)$*)=w\(L(a)L(B)$*)=w\(L(x)L(8)$*)=
w \(L (a8)$*). From the definition this implies af=.v.

(b) In order to prove that a8 is an LL(k) word, we prefer to invoke Lemma 5.1¢
and prove that in any word wAn derivable from a8, n is an LL(k) context of A.

Let ad =, wA7. We distinguish two subcases:

1. w = w,w, where & =>1%, w;, § =¥ w:An.

In this case we use the LL(k) property of & to conclude that n is an LL(k)
context of A.

2. n = b and a =i wAY. Consequently we alsc have af =i WAYP.

Since af is known to be an LL(k) word, B is an LL{k) context of A. Since
B = 8, we get from Lemma 5.11 that ¢8 is an LL(k) context of A. []

Assertion 4. In the splitting step applied on the equality (S) Ay =.apB (see
Section 3 for deiails), a grouped variable M is defined as

M = E [W,-, «3,-p]

wi €8 -1(y)
and we get the equalities

A direct algorithm for checking equivalence of LL (k) grammars 345

and -
(S2) AM = ap.

It is also known that [w;, 8p] is an LL(k) word for each i.
Claim. AM is an LL(k) word.

We'll show first that M is an LL(k) word.

@ M %‘» wEn,.

All the derivation rules of M are of the form M — [w;, 8p], so the derivation
M == 1. wEn can be written as follows:

M = [w, dp] ? wEn

and as [w;, §p] is an LL(k) word, 7 is an LL(k) context for E.
(b) If there exist two derivations
*
M = [w,ép]=x
*®
M => [w,8p]=>y

and
x/k =y/k, then w;,=w,

hence i = j, and the first step of the derivation is unique.
Let us show now that AM is an LL(k) word.
Assume AM =1, wEL.

We distinguish two subcases:
(1) wE{ = wyw,E{,

where

*® *
A=>w, and M = w;E{l
Im
In this case { is an LL(k) context of E because M is an LL(k) word.

) wE{ = wEnM,
<shere

*
A => wEn.

Im

We have to show that nM is an LL(k) context of E. From the above it follow- that:

AMB => wEnMB.

tm

346 T. Olshansky, A. Pnuelli

On the other hand we also have
Ay => wEny.
Im

Since y = MB and Ay is an LL(k) word, we get that ny is an LL(k) context of E,
and, by Lemma 5.11, that nMp is also an LL(%) context of E. Since [M||=k —

is also true that L(nMB)/(k — 1)= L(mM)/(k — 1), which implies, again through

Lemma 5.11, that uM is also an LL(k) context of E.

Conclusions. We use now the previously established results to prove that all words
participating in the constructed trees are LL(k) words.

Consider first the branching process. Asseriion 2 implies that if the father
contains LL(k) words, so Go the sops.

Review next the splitting step. The descendant nodes of type (S); contain
relations of the form

(S Y 5 6pB
each derived from a father node of the form
Ay = app.

Therefore, by assertion 2, both sides of each (S); are again LL(k) words.
By summing the equalities (8); we get

y= 2 [w3éplB

wiEO1(7)

We next define a grouped variable M = 2, ce, v [W. 8p].
By Assertion 4+ AM is an LL(k) word, so that tke other descendant node

(S1) AM =~ ap

is also a relation between two LL(k) words.

Anoiher occurrence in the tree construction is the repiacement step, in which we
replace M =, by 6p ~..& 8p has been derived from a previous LL(k) word
apfB (the B canceiled on the right) and is therefore an LL(k) word too.

§. Pounds for termination

In this section we will complete the missing details of the termination proof. Its
essential part is deriving several bounds on the lengths of generated words and

A direct algorithm for checking equivalence of LL (k) grammars 347

devising a criterion ‘for application of the splitting step in a way ensuring
boundedness of all generated words.

We first analyze the different types of equalities that can arise in the nodes. These
types differ by the presence of different alphabets on each side of the equality
relztion.

The first type is that of N7 = N;. Equalities of this type have variables out of N,
o their left hand side, and variables out of N, on their right hand side. The initial
equalities S,:=., S, are of this type.

Application of branching on type 1 nodes produces again type 1 nodes.

Application of splitting to type 1 nodes generates some nodes (the (S); y =~., 6,08
nodes) which are also of type 1, but generates also a type 2 node, described
symbolically by NYN5 = N;. Here N stands for grouped variables over N,. These
are equalities of the form AM =,ap or 6M =, .

Application of branching to type 2 equalities can result in other type 2 equalities,
but can also lead to disappearance of all Ny variables from the left hand side. This
is type 3 equality of the form N5 = N3. (Note that from this node on we are
exploring interrelations within G,).

Application of splitting to a type 2 equality will yield equalities y =, §;p which
can be of types 2 or 3, and to an equality AM =, ap which is of type 2.

Equalities of iype 3 will have only replacements applied to them, each generating
a type 4 equality of the form N; = N;.

By following these various types and their possible transitions under branching,
splitting and replacements, we can arrive at the following transition diagram.

Type Form Under branching Under splitting Under replacement
1 Ni=N; 1 1,2 _—
2 NiNf=N3; 23 2,3
3 NFZ=N; 4
4 Ni=N; 4 4,5
5 N:Nf=N; 35 35 _—

Every grouped variable defines a finite sum of words. We have to show that the
length of any element in this sum is bounded.

Denote by r, the maximal length of the shortest terminal word derivabie from
any variable of N, U N,, with a given k — 1 prefix. Denote by ¢ the maximal number
of variables in the right hand side of any cf the production rules of the variables of
N,.

Recollect now how a grouped variable is create 1: It always happens in a splitting
step, when the equality ‘s Ay =, apB. We derive ‘rom A a word x, where | x| =< r,.
Any w; € @,_,(y) contributes an element to the ;um defining the grouped variable.

Now, « is the maximal part of the word in the right hand side of the equality,
which participates in the derivation of x for at least one w; € @,_,(y), hence
|a|<r.

348 T. Olshansky, A. Pnuelli

Consider the case of a w, in which only a part of @ participates in the derivation
of x. In order to derive x from a, we must apply | x | derivations, i.e. not more that
r;. Every such application can cause 3; to increase by not wnore than ¢ — 1 variables,
since we use a production rule for a variable out of N,, whose right hand side might
be of length & _

Consequently, application of r, rules may increase 8 by not more than (¢ — 1)r,
variables, and together with the initial length of @ (which is contained in &) we get
a bound of (¢t-1)r,+ r,—1. We know that |p|<k —1, so the length of dp is
bounded by

ko=(t"1),";+ r,~1+k—1=t-r;+k-—-2.
This result ensures two important things:

(a) Every summand in a definition of a grouped variable cannot be longer than
ko. This and the fact that such a sum contains a finite number of summands ensures
together that the number of distinct grouped variables will be finite. In fact, we can
bound N¥ by |

INZ[<|T* - (| Ne| + 1),

We assume here that every grouped variable is a sum of exactly |T|*™*
summands, each of the form [w, a] where w € T*™!, @ € (N, U A)*, and the case in
which the grouped variable does not contain a summand [w;, ;] for a particular w;
is counted by letting a; be A.

(b) In a replacement step, we get an eguality of type 4 {N> = N3) where the left
hand side term is not Jonger than k.

In summary we have shown that the number of artificial variables introduced
during the process is bounded. Consequently the number of possible distinct nodes
in the tree is finite.

Acknowledgements
We would like to thank Dr. Rina Cohen of the Technion, Israel for helpful
suggestions and improvements. We would also like to thank the referee for this

paper for a very careful reading of the manuscript and numerous helpful correc-
tions.

References

{1} AJ. Korenjak and J.E. Hopcroft, Simple deterministic languages, IEEE Conf. Record of 7th
Annual Symposium on Switching and Automata Theory, pp. 36-46.

A direct algorithm for checking equivalence of LL (k) gram nars 349

{2] D.J. Rosenkrantz and R.E. Ste. ns, Properties of deterministic top down grammars Information
and Contro! 17 (3) (1979) 226-256.

[3] E.P. Friedman, Deterministic languages and monadic recursion schemes, Center for Research in
Computing Technology, Harvard University (1974).

[4] L.G. Valiant, Decision procedures for families of deterministic pushdown automata, Ph.D. Thesis,
Department of Computer Science, University of Warwick, Coventry, England (1973).

[} E. Ashcroft, Z. Manna and A. Pnueli, Decidable properties of monadic functional schemes, J.
ACH 20 (3) (1973) 489-499.

'8} Z.Ga!il, Functional schemas with nested predicates, Information and Control 27 (4) (1975) 349-368.

{7} J. Eagelfriet, Some program schemes and formal languages, Lecture Notes in Computer Science,
No 20 (Springer-Verlag, Berlin, 1974).

8] § 1. Garland and D.C. Luckham, Program schemes, recursion schemes and formal languages, J.
“omp. System Sci. 7 (1973) 119-160.

{9] M. Nivat, Sur linterpretation des schemas de programme monadiques, Symposium IRIA —
Automata, Languages and Programming (North-Holland, Amsterdam, 1973).

[10] !.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata (Addison-
Wesley, Reading, MA, 1969).

(11} A.V. Aho and 1.D. Ullman, The Theory of Parsing, Translation and Compiling (Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1972).

[12] T. Clshansky and A. Pnueli, A direct algorithm for chacking equivalence of free N(k) schemes, to
be published.

i3] B. Courcelle and J. Vuillemin, Completeness results for the equivalence of recursive schemes, J.
Comput. System Sci. 12 (1976) 179-197.

{14] B. Courcelle, Recursive schemes, algebraic trees and deterministic languages, 15th Annual
Symposium SWAT (1974) 52-62.

