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Abstract 

Hava Siegelmann and Eduardo Sontag have shown that recurrent neural networks using the 
linear-bounded sigmoid are computationally universal. We show that this remains true if the 
linear-bounded sigmoid is replaced by any function in a fairly large class. 

1. Introduction 

Siegelmann and Sontag have shown that recurrent neural networks are computation- 

ally universal, i.e., can simulate an arbitrary Turing machine [6]. Their result holds 

only for networks of “neurons” using the so-called linear-bounded sigmoid as output 

function. In this paper, we generalize it to a large class of output functions. 

Our class % is made of those functions 4 that are equal to 0 for inputs of sufficiently 

large magnitude, and are non-constant (and sufficiently smooth) on some arbitrary 

interval 1. (Recall that a(x) = 0 if x < 0, g(x) = x if 0 <x 6 1, and a(x) = 1 for x > 1.) 

The idea of the proof is to approximate the linear part of CJ by 411, which makes it 

possible to simulate finite automata with two unary stacks. It is well-known that these 

machines are universal [l]. The main drawback of this unary encoding (which was 

used by Siegelmann and Sontag in an older paper [4]) is its exponential slowdown 

with respect to the Turing machine model. In the final paper [6] these authors used 

binary stacks, which made it possible to simulate Turing machines in linear time. 

Unfortunately, binary stacks seem to be ill-suited to our simulation technique. 

The linear-bounded sigmoid 0 is very convenient for simulations of pushdown auto- 

mata since the three operations push - pop - no-op can be implemented exactly, without 

any “rounding error”. With an arbitrary 4, these operations can be implemented only 

approximately, and the approximation error is fixed for any given network. The main 
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technical difficulty is that errors accumulate as the computation progresses. This may 

endanger the correctness of the simulation. In order to solve this problem, we duplicate 

each stack, and the memory is constantly moved from one stack to its sibling. This 

helps because one can suppress noise from an empty stack. 

It is perhaps interesting to note that a somewhat similar technique is used in everyday 

computers: certain types of RAM chips have to be read and written constantly because 

of electric “leaks” that would otherwise corrupt their content. 

In contrast, implementing the control part of stack automata is not difficult: state 

transitions can be realized exactly since 4 = 0 at infinity. The details can be found in 

Section 4.2. 

The simulation result is stated precisely in Section 2 and proved in the 

sections. 

2. Universal networks 

We consider discrete-time recurrent networks with external inputs. All 

neurons) use the same output function 4. The dynamics of a &network is 

by the following equation: 

Xi(t + 1) = $ 5 WijXj(t)+ L2iE(t)- 0; . 
j=l 

following 

units (or 

described 

Here xi(t) is the state of unit i at time t. The parameters wij and ai are called weights, 

8i is a threshold. The input line E carries binary inputs: Vt E N, E(t) E (0, 1 }. We 

shall see that computationally universal $-networks exist when 4 belongs to a class 

“2d defined as follows. 

Definition 1. A real function 4 is in % if the two following conditions are satisfied: 

l 4(x) = 0 when x 60, and d(x) = 1 when x 3 1; 

a there exists an open interval I such that 4 is C2 on I, and Yx E I, d’(x) # 0. 

With these networks one can compute partial functions from N into (0, 1) as follows. 

The initial state of all units is 0, except for one designated unit whose initial state is 1. 

The input 12 E N is written on the input line E as follows: E(t) = 1 if 0 d t <4n - 1, 

E(t) = 0 if t34n. The output can be read on two designated units, say, xc (the 

validation unit) and xi (the output unit). It is required that x0(4?) = 1 for at most 

one t. Then the output is by definition xi (4t), and it is required to be in (0, l}. If 

there is no such t, the output is undefined. 

The occurrence of the term 4t is due to the fact that we construct networks with 

4 layers, so that 4 units of time are needed to simulate one transition of a pushdown 

automaton. For this reason, the only data carried by the input line that actually matter 

are those that occur at times of the form 4t. 
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Theorem 1. For every partial recursive function f : N --+ (0, 1) and every 4 E %?! 

there exists a +-network JVJJ,J which computes f with the input-output conventions 

defined above. 

It is not hard to see that the first requirement on 4 can be somewhat relaxed: it is 

sufficient to assume that for some A > 0, 4(x) = 0 when xd - A and 4(x) = I when 

x >A. Similarly, the values 0 and 1 can be replaced by any two distinct numbers, if 

the input-output conventions are changed accordingly. 

Theorem 1 is not merely an existence result: the proof is based on a constructive, 

step by step simulation of a Turing machine computing f. In particular, we do not 

encode function values in the digits of a single real number as in [5] (anyway, it is 

not clear whether the same trick is possible with an arbitrary C$ E %). The weights 

and thresholds of N~,J can be taken to be rational numbers, or algebraic expressions 

involving rational numbers, 4 and its derivatives. This property rules out a similar trick 

in Theorem 1. 

3. The stacks 

In this section we show how stack operations can be implemented. Sufficient condi- 

tions for implementing these operations by function iteration are established in 

Section 3.1. We show in Section 3.2 that these constraints can be satisfied by sig- 

moidal functions. As a matter of fact, we are not going to simulate arbitrary sequences 

of stack operations, but only sequences of II pushes followed by n pops. It is shown 

in Section 4 that this is enough to simulate arbitrary Turing machines. 

3. I. Pushing and popping 

In the following, f should be viewed as an approximate pushing or popping opera- 

tion, and 1 as the exact operation. 

Lemma 1. Let 1 and f be two real functions such that the following condition holds 

on an interval [x M,xm] where x, >x,: 

1. Z(x) = a(x - x,) + x, with a > 0, a # 1. 

2. Z(x)>f(x)>Z(x)-M(x-x,)~, with M30. 

Let s, = f”(sg), y,, = l”(yo), where SO d yo. Assume also thut sp,yp E [x,,x,] for 

O< p<n - 1. The following relation holds: 

(s,-y,l~(I~o-~~l-E)a”+Ea~” 

where E = M( yo - x, )2/(a2 - a). 

(1) 

Proof. By induction. The base case n = 0 is clear. By the triangle inequality, 

lGl+t - Y?l+1 I = If(sn) - I( GIf(Sn) - 4%>l + I&z) - 4Yn)I. 
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Hence by condition 2 in the lemma, 

The latter inequality holds because x, <s, d y, by condition 2. Assume the result true 

at step IZ. Since Iyn -x,/ = \yO -x,Ia”, 

J&+1 - y,+1l <a[(lso - ycl - E)a” + Ea2n] + M(y0 - X,)2u2n. 

The result at step 12 + 1 follows from the relation Eu + M(yo - x,)~ = Eu2. L3 

This result will now be applied twice in a row, first to push R elements with (f, 2) = 

(fl, Zi), then pop them with (f,Z) = (f2,Zz). Let Zi(y) = (Y + x,)/2, Z&Y) = 
Z;‘(y) = 2y-x,, and x0 E]X m,x,]. The states corresponding to n approximate or exact 

push operations are ~1,~ = fy(xo) or yl,, = Z~(XO), respectively. The corresponding 

sequences of states when these n elements are popped are SQ = f[(si,,) and Y2,P = 

Z2p(y1,~), respectively (0 d p <n). 

According to (1 ), 

1 IS2,P - Y2,pl G hn - 
A4 

Yl,$P + $Yl,n - &J)222p, 

IQI - Yl,nl G F(xo - x,J2. 

Since ~1,~ - x, = (x0 - x,)/2”, 

]Qp - yQ <4A4(xo - X,)22P_-n + $4(x0 - x,)222(p-? 

Since pdn, it follows that 

Is2,p - Y2,pl d gwxo - xcc 12. 

Note that y~,~_l = yi,i = (x0 +x,)/2 and ~2,~ = yi,o = x0. Hence, if M is fixed and 

x0 is sufficiently close to xoo, the following separation property holds: 

QP < bi = (2X0 + X,)/3 for p < n, 
(2) 

s2,n a b, = (3x0 + xoo )/4. 

It is therefore easy to find out whether all elements pushed by applying f 1 have been 

popped by applying f 2 (case p = n), or if only some of them have (case p < n). 

3.2. ImpZementution with sigmoidal functions 

We make the following choices. 
- The pushing and popping functions are of the form 

h(X) = +(Q4(Pi$(x) + Yi> + hi) (i = 122) 
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where 

- x, = 4(b), where b E I; 
- x0 = 4(c), where c E I. 

It will become clear in Section 4 why the term $(x) is useful: the f;:‘s will be com- 

puted by depth-4 circuits. Without this synchronization constraint one could just take 

I&) = x. 

Given b and the J’s, one can take c so that x0 = 4(c) > X, and x0 is close enough 

to x, for (2) to hold (here we use the property @(b) # 0). We now explain how b, 

x, and the fi's can be chosen. 

Let us assume first that 4” is not identically 0 on I, and let b E I be such that 

4”(b) # 0. For the conditions of Lemma 1 to be satisfied with the exact pushing and 

popping functions 1, and 12 defined in Section 3.1, it suffices that: 

- fi(x,) =x,. 
- f;!(xoo) = di, where dl = 4 and d2 = 2. 

- f;“(Xm) < 0. 

The latter condition implies that if X, > x, is sufficiently close to x,, condition 2 in 

Lemma 1 will hold for some A4 > 0. 

Let us show first how the conditions $(x, ) = x,, I//(X,) = 1 and $“(x~) = 0 

can be enforced. For the first condition to be satisfied, we just have to choose cc, p, y, 

and 6 so that fixoo + y = b and ax, + 6 = b. Hence, 

$‘(x,) = @‘(Q2 

and 

$“(x,) = ap*~‘(b)~“(b)[a~‘(b) + 11. 

We thus take a = -l/#(b) so that $“(x,) = 0, then p = l/[ac$‘(b)2] so that 

I+V(X, ) = I and finally y = b - /3xw, 6 = b - a.~,. 

We also choose ai, pi, yip and 6i SO that PiX, + yi = b and CliX, + 6i = b. Then 

A(&o) =x00, and it follows from the properties of $ established above that 

$(xm > = aiPi$‘(bj2 
and 

fi”(x,) = aiPi~‘(b)~“(b)[aiPi~‘(b) + PiI. 

We need Clipi = di/4’(b)* in order to have f/(x,) = di. One can obtain an arbitrary 

value for J!‘(xoo), e.g., -1, by varying pi and keeping the relation Cli/?i = di/$‘(b)*. 

Finally, we take yi = b - /?iX, and 6i = b - six,. 

If 4” = 0 on I, q5 is linear and non-constant on this interval. We leave it to the 

reader to check that the same setting of parameters works, with A4 = 0. In fact, binary 

stacks can be used in this case, resulting in a linear-time simulation of Turing machines 

as in [6]. 
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4. Control and network structure 

It is well known that finite automata with two unary stacks are universal [l] (simpler 

and more efficient simulations are possible if more stacks are available). We shall 

see that any automaton M with two (unary) stacks can be simulated by a 4-stack 

automaton M’ of a special type, and that M’ can be simulated by a recurrent network. 

This network begins its computation by pushing on a stack the data read on the input 

line E. The simulation of M’ proper starts when the input has been completely read. 

Switching from the input reading phase to the simulation phase, and then to the output 

production phase (following the rules stated in Section 2) is rather straightforward, 

since we know how to simulate finite automata (if you are not convinced of this, wait 

until Section 4.2). Hence, we will only describe the simulation phase. 

Our pushdown automata are slightly unusual because they are not equipped with a 

no-op instruction, Instead, there is a reset operation which empties the stack to which 

it is applied. 

4.1. Control 

The transition functions of M’ are denoted 8,, i = 0,. . . ,4 where 

- 80 : s x (0, l}” + S is the state transition function. The state set of M’ is S and in 

the last four components 0 stands for an empty stack, 1 for a non-empty stack. In 

the following these four components are denoted e = (er,. . . , e4). 
_ Stack operations are specified by Bi : S x { 0, 1}4 + {u, d, r}, i = 1,. . ,4 where u 

stands for push, d for pop, and Y for reset. The implementation of these operations 

on a recurrent network is described in Section 4.2. 

Each stack P of A4 is represented by a pair (PI, P2) of stacks of M’. This automaton 

constantly move the content of P back and forth between PI and P2: P is transferred 

from PI to P2, then from P2 to PI when PI is empty, then again from PI to P2, etc. 

The point of this manipulation is that M’ has to be simulated by a recurrent network, 

and by the separation property (2) a sequence of pushes followed by the same number 

of pops can be realized without errors piling up too much. Errors that have accumulated 

on a stack must be erased when it is empty. This is done with the reset operation r. 

From the point of view of M’ this operation is useless, but it is essential for the 

correctness of the simulation of M’ by a recurrent network. 

We now go into the inner workings of M’, without formalizing too much. In order 

to apply an operation to, e.g., PI, we wait until this stack has been emptied (i.e., the 

content of P has been transferred completely on P2). For a reset operation, we leave 

the stack empty for one more time step, and meanwhile an additional element is pushed 

on P2. One can get rid of this element by popping it at the next time step. In order to 

simulate a push operation of M we can just push this element on PI instead of throwing 

it away. For a pop operation, we erase the first two elements of P2 (meanwhile reset 

operations are applied to PI). Finally, M’ must maintain a set of stack operations 

of M (at most one per stack of M) to be carried out. The current transition of M is 
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completed only when this set is empty. The strategy described above can be applied 

in parallel to both stacks of M. 

4.2. Network structure 

We simulate M’ by a 4-layer network. The output of the last layer is fed back to 

the first one. This first layer is the “visible” part of the network, i.e., it encodes the 

state and stacks of M’. It is essential that the network structure be strictly layered, i.e., 

without connections between distant layers (i.e., between layers 1 and 3). Otherwise, 

there would be a synchronization problem when the output of the last layer is fed back 

to the first one. The first layer can be broken up into two groups of units: 
- a set {si,s2,s3, ~4) of four units encoding the four stacks of M’; 
- a set UC indexed by C of “state units” encoding the state of M’: if M’ is in state 

i at time t, xi(4t) = 1 and xi(4t) = 0 for j E C, j # i. 

The transition function of a stack unit is defined as follows: 

si(t + 4, = d)(@-l#(Pl$(si(t>> + Bl,i) + a24(fi2$(si(t)) + B2,i) + B;). 

The stack operation is determined by the inputs Bl,i, Bz,~ and B,. By construction 

si(t) belongs to a bounded interval, so there exists a constant C > 0 such that 

Vi, t, I$(si(t))l 6 C. Recall also that #J(X) = 0 when x<O. In order to select the cor- 

rect operation when M’ is in state j (and thus Xj = 1 in the network), it is therefore 

sufficient for the inputs to satisfy the following conditions: 

- if @i(j, e) = u then Bl,i = 71, B2,i = -Cl/32l, Bi = 6,; 
- if Q;(j, e) = d then Bl,i = -Cl/31 1, B2,i = ~2, Bi = 62; 
- if &(j, e) = r then BI,, = -Cl,!31 1, Bz,~ = -C[/lzl, B, = c. 

The input Bl,i can be implemented as follows: 

Bl,i = c Ci,j,e AND(Xi(t), &SI (t), el ), . , %dt), e4)), 
jEC, eE{O,l}’ 

where c,,j,, = ~1 if Qi(j, e) = U, Ci,j,e = -Cl/Ii] otherwise. The empty-stack test 6 is 

defined by 

i 

6(X,0) = 1 if xbb,, 0 if X<bi, 

6(X, 1) = 1 if Xbbi, 0 ifx36,. 

These tests can be implemented as follows: 

6(x,0) = c#l s ( ) s I 

and 

6(x,1)=$ g . 
( 1 s I 

A term AND(x,Ji,..., 84) can be implemented by 

$(4(x) + 61 + . . + 64 - 5). 
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We use the same construction for B2,i; For Bi, it is necessary to add redundant $ 

functions in order to have a depth-3 network. 

The transition function of a state unit i E UC is defined as follows: 

Xi(t + 4) = 6 

( 

C AND(xj(t), ~(SI (t), cl ), . . . , &~4(t>, e4>> . 

wEq’(I) 
) 

This term can be transformed into a depth-4 network using the same techniques as for 

the stack units. 

5. Final remarks 

We leave the following question as an open problem: are the networks considered 

in this paper capable of simulating Turing machines with a polynomial (rather than 

exponential) slowdown? 

One can also ask whether Turing machines can be simulated by iterations of analytic 

functions on [0, l]“, even if we drop the requirement that this function be the transition 

function of a neural network’ (this can be done on R, see [3, Ch. 61). 
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