
ELSEVIER

Theoretical
Computer Science

Theoretical Computer Science 168 (1996) 473-480

A family of universal recurrent networks

Pascal Koiran *

LIP, ENS Lyon - CNRS, 46, allee d’ltalie, 69364 Lyon Cedex 07, France

Abstract

Hava Siegelmann and Eduardo Sontag have shown that recurrent neural networks using the
linear-bounded sigmoid are computationally universal. We show that this remains true if the
linear-bounded sigmoid is replaced by any function in a fairly large class.

1. Introduction

Siegelmann and Sontag have shown that recurrent neural networks are computation-

ally universal, i.e., can simulate an arbitrary Turing machine [6]. Their result holds

only for networks of “neurons” using the so-called linear-bounded sigmoid as output

function. In this paper, we generalize it to a large class of output functions.

Our class % is made of those functions 4 that are equal to 0 for inputs of sufficiently

large magnitude, and are non-constant (and sufficiently smooth) on some arbitrary

interval 1. (Recall that a(x) = 0 if x < 0, g(x) = x if 0 <x 6 1, and a(x) = 1 for x > 1.)

The idea of the proof is to approximate the linear part of CJ by 411, which makes it

possible to simulate finite automata with two unary stacks. It is well-known that these

machines are universal [l]. The main drawback of this unary encoding (which was

used by Siegelmann and Sontag in an older paper [4]) is its exponential slowdown

with respect to the Turing machine model. In the final paper [6] these authors used

binary stacks, which made it possible to simulate Turing machines in linear time.

Unfortunately, binary stacks seem to be ill-suited to our simulation technique.

The linear-bounded sigmoid 0 is very convenient for simulations of pushdown auto-

mata since the three operations push - pop - no-op can be implemented exactly, without

any “rounding error”. With an arbitrary 4, these operations can be implemented only

approximately, and the approximation error is fixed for any given network. The main

* Tel.: f33 72 72 80 00; fax: +33 72 72 80 80; e-mail: koiran@lip.ens-lyon.fr.

0304-3975/96/$15.00 @ 1996 - Elsevier Science B.V. All rights reserved

PI1 SO304-3975(96)00088-6

474 P. Koirun I Theoretical Computer Science 168 (1996) 473-480

technical difficulty is that errors accumulate as the computation progresses. This may

endanger the correctness of the simulation. In order to solve this problem, we duplicate

each stack, and the memory is constantly moved from one stack to its sibling. This

helps because one can suppress noise from an empty stack.

It is perhaps interesting to note that a somewhat similar technique is used in everyday

computers: certain types of RAM chips have to be read and written constantly because

of electric “leaks” that would otherwise corrupt their content.

In contrast, implementing the control part of stack automata is not difficult: state

transitions can be realized exactly since 4 = 0 at infinity. The details can be found in

Section 4.2.

The simulation result is stated precisely in Section 2 and proved in the

sections.

2. Universal networks

We consider discrete-time recurrent networks with external inputs. All

neurons) use the same output function 4. The dynamics of a &network is

by the following equation:

Xi(t + 1) = $ 5 WijXj(t)+ L2iE(t)- 0; .
j=l

following

units (or

described

Here xi(t) is the state of unit i at time t. The parameters wij and ai are called weights,

8i is a threshold. The input line E carries binary inputs: Vt E N, E(t) E (0, 1 }. We

shall see that computationally universal $-networks exist when 4 belongs to a class

“2d defined as follows.

Definition 1. A real function 4 is in % if the two following conditions are satisfied:

l 4(x) = 0 when x 60, and d(x) = 1 when x 3 1;

a there exists an open interval I such that 4 is C2 on I, and Yx E I, d’(x) # 0.

With these networks one can compute partial functions from N into (0, 1) as follows.

The initial state of all units is 0, except for one designated unit whose initial state is 1.

The input 12 E N is written on the input line E as follows: E(t) = 1 if 0 d t <4n - 1,

E(t) = 0 if t34n. The output can be read on two designated units, say, xc (the

validation unit) and xi (the output unit). It is required that x0(4?) = 1 for at most

one t. Then the output is by definition xi (4t), and it is required to be in (0, l}. If

there is no such t, the output is undefined.

The occurrence of the term 4t is due to the fact that we construct networks with

4 layers, so that 4 units of time are needed to simulate one transition of a pushdown

automaton. For this reason, the only data carried by the input line that actually matter

are those that occur at times of the form 4t.

P. Koiran I Theoretical Computer Science 168 (1996) 473480 475

Theorem 1. For every partial recursive function f : N --+ (0, 1) and every 4 E %?!

there exists a +-network JVJJ,J which computes f with the input-output conventions

defined above.

It is not hard to see that the first requirement on 4 can be somewhat relaxed: it is

sufficient to assume that for some A > 0, 4(x) = 0 when xd - A and 4(x) = I when

x >A. Similarly, the values 0 and 1 can be replaced by any two distinct numbers, if

the input-output conventions are changed accordingly.

Theorem 1 is not merely an existence result: the proof is based on a constructive,

step by step simulation of a Turing machine computing f. In particular, we do not

encode function values in the digits of a single real number as in [5] (anyway, it is

not clear whether the same trick is possible with an arbitrary C$ E %). The weights

and thresholds of N~,J can be taken to be rational numbers, or algebraic expressions

involving rational numbers, 4 and its derivatives. This property rules out a similar trick

in Theorem 1.

3. The stacks

In this section we show how stack operations can be implemented. Sufficient condi-

tions for implementing these operations by function iteration are established in

Section 3.1. We show in Section 3.2 that these constraints can be satisfied by sig-

moidal functions. As a matter of fact, we are not going to simulate arbitrary sequences

of stack operations, but only sequences of II pushes followed by n pops. It is shown

in Section 4 that this is enough to simulate arbitrary Turing machines.

3. I. Pushing and popping

In the following, f should be viewed as an approximate pushing or popping opera-

tion, and 1 as the exact operation.

Lemma 1. Let 1 and f be two real functions such that the following condition holds

on an interval [x M,xm] where x, >x,:

1. Z(x) = a(x - x,) + x, with a > 0, a # 1.

2. Z(x)>f(x)>Z(x)-M(x-x,)~, with M30.

Let s, = f”(sg), y,, = l”(yo), where SO d yo. Assume also thut sp,yp E [x,,x,] for

O< p<n - 1. The following relation holds:

(s,-y,l~(I~o-~~l-E)a”+Ea~”

where E = M(yo - x,)2/(a2 - a).

(1)

Proof. By induction. The base case n = 0 is clear. By the triangle inequality,

lGl+t - Y?l+1 I = If(sn) - I(GIf(Sn) - 4%>l + I&z) - 4Yn)I.

416 P. Koiranl Theoretical Computer Science 168 (1996) 473-480

Hence by condition 2 in the lemma,

The latter inequality holds because x, <s, d y, by condition 2. Assume the result true

at step IZ. Since Iyn -x,/ = \yO -x,Ia”,

J&+1 - y,+1l <a[(lso - ycl - E)a” + Ea2n] + M(y0 - X,)2u2n.

The result at step 12 + 1 follows from the relation Eu + M(yo - x,)~ = Eu2. L3

This result will now be applied twice in a row, first to push R elements with (f, 2) =

(fl, Zi), then pop them with (f,Z) = (f2,Zz). Let Zi(y) = (Y + x,)/2, Z&Y) =
Z;‘(y) = 2y-x,, and x0 E]X m,x,]. The states corresponding to n approximate or exact

push operations are ~1,~ = fy(xo) or yl,, = Z~(XO), respectively. The corresponding

sequences of states when these n elements are popped are SQ = f[(si,,) and Y2,P =

Z2p(y1,~), respectively (0 d p <n).

According to (1),

1 IS2,P - Y2,pl G hn -
A4

Yl,$P + $Yl,n - &J)222p,

IQI - Yl,nl G F(xo - x,J2.

Since ~1,~ - x, = (x0 - x,)/2”,

]Qp - yQ <4A4(xo - X,)22P_-n + $4(x0 - x,)222(p-?

Since pdn, it follows that

Is2,p - Y2,pl d gwxo - xcc 12.

Note that y~,~_l = yi,i = (x0 +x,)/2 and ~2,~ = yi,o = x0. Hence, if M is fixed and

x0 is sufficiently close to xoo, the following separation property holds:

QP < bi = (2X0 + X,)/3 for p < n,
(2)

s2,n a b, = (3x0 + xoo)/4.

It is therefore easy to find out whether all elements pushed by applying f 1 have been

popped by applying f 2 (case p = n), or if only some of them have (case p < n).

3.2. ImpZementution with sigmoidal functions

We make the following choices.
- The pushing and popping functions are of the form

h(X) = +(Q4(Pi$(x) + Yi> + hi) (i = 122)

P. Koiran I Theoretical Computer Science 168 (1996) 473-480 477

where

- x, = 4(b), where b E I;
- x0 = 4(c), where c E I.

It will become clear in Section 4 why the term $(x) is useful: the f;:‘s will be com-

puted by depth-4 circuits. Without this synchronization constraint one could just take

I&) = x.

Given b and the J’s, one can take c so that x0 = 4(c) > X, and x0 is close enough

to x, for (2) to hold (here we use the property @(b) # 0). We now explain how b,

x, and the fi's can be chosen.

Let us assume first that 4” is not identically 0 on I, and let b E I be such that

4”(b) # 0. For the conditions of Lemma 1 to be satisfied with the exact pushing and

popping functions 1, and 12 defined in Section 3.1, it suffices that:

- fi(x,) =x,.
- f;!(xoo) = di, where dl = 4 and d2 = 2.

- f;“(Xm) < 0.

The latter condition implies that if X, > x, is sufficiently close to x,, condition 2 in

Lemma 1 will hold for some A4 > 0.

Let us show first how the conditions $(x,) = x,, I//(X,) = 1 and $“(x~) = 0

can be enforced. For the first condition to be satisfied, we just have to choose cc, p, y,

and 6 so that fixoo + y = b and ax, + 6 = b. Hence,

$‘(x,) = @‘(Q2

and

$“(x,) = ap*~‘(b)~“(b)[a~‘(b) + 11.

We thus take a = -l/#(b) so that $“(x,) = 0, then p = l/[ac$‘(b)2] so that

I+V(X,) = I and finally y = b - /3xw, 6 = b - a.~,.

We also choose ai, pi, yip and 6i SO that PiX, + yi = b and CliX, + 6i = b. Then

A(&o) =x00, and it follows from the properties of $ established above that

$(xm > = aiPi$‘(bj2
and

fi”(x,) = aiPi~‘(b)~“(b)[aiPi~‘(b) + PiI.

We need Clipi = di/4’(b)* in order to have f/(x,) = di. One can obtain an arbitrary

value for J!‘(xoo), e.g., -1, by varying pi and keeping the relation Cli/?i = di/$‘(b)*.

Finally, we take yi = b - /?iX, and 6i = b - six,.

If 4” = 0 on I, q5 is linear and non-constant on this interval. We leave it to the

reader to check that the same setting of parameters works, with A4 = 0. In fact, binary

stacks can be used in this case, resulting in a linear-time simulation of Turing machines

as in [6].

478 P. Koiran I Theoretical Computer Science 168 (1996) 473-480

4. Control and network structure

It is well known that finite automata with two unary stacks are universal [l] (simpler

and more efficient simulations are possible if more stacks are available). We shall

see that any automaton M with two (unary) stacks can be simulated by a 4-stack

automaton M’ of a special type, and that M’ can be simulated by a recurrent network.

This network begins its computation by pushing on a stack the data read on the input

line E. The simulation of M’ proper starts when the input has been completely read.

Switching from the input reading phase to the simulation phase, and then to the output

production phase (following the rules stated in Section 2) is rather straightforward,

since we know how to simulate finite automata (if you are not convinced of this, wait

until Section 4.2). Hence, we will only describe the simulation phase.

Our pushdown automata are slightly unusual because they are not equipped with a

no-op instruction, Instead, there is a reset operation which empties the stack to which

it is applied.

4.1. Control

The transition functions of M’ are denoted 8,, i = 0,. . . ,4 where

- 80 : s x (0, l}” + S is the state transition function. The state set of M’ is S and in

the last four components 0 stands for an empty stack, 1 for a non-empty stack. In

the following these four components are denoted e = (er,. . . , e4).
_ Stack operations are specified by Bi : S x { 0, 1}4 + {u, d, r}, i = 1,. . ,4 where u

stands for push, d for pop, and Y for reset. The implementation of these operations

on a recurrent network is described in Section 4.2.

Each stack P of A4 is represented by a pair (PI, P2) of stacks of M’. This automaton

constantly move the content of P back and forth between PI and P2: P is transferred

from PI to P2, then from P2 to PI when PI is empty, then again from PI to P2, etc.

The point of this manipulation is that M’ has to be simulated by a recurrent network,

and by the separation property (2) a sequence of pushes followed by the same number

of pops can be realized without errors piling up too much. Errors that have accumulated

on a stack must be erased when it is empty. This is done with the reset operation r.

From the point of view of M’ this operation is useless, but it is essential for the

correctness of the simulation of M’ by a recurrent network.

We now go into the inner workings of M’, without formalizing too much. In order

to apply an operation to, e.g., PI, we wait until this stack has been emptied (i.e., the

content of P has been transferred completely on P2). For a reset operation, we leave

the stack empty for one more time step, and meanwhile an additional element is pushed

on P2. One can get rid of this element by popping it at the next time step. In order to

simulate a push operation of M we can just push this element on PI instead of throwing

it away. For a pop operation, we erase the first two elements of P2 (meanwhile reset

operations are applied to PI). Finally, M’ must maintain a set of stack operations

of M (at most one per stack of M) to be carried out. The current transition of M is

P. Koiran I Theoretical Computer Science 168 (1996) 473-480 479

completed only when this set is empty. The strategy described above can be applied

in parallel to both stacks of M.

4.2. Network structure

We simulate M’ by a 4-layer network. The output of the last layer is fed back to

the first one. This first layer is the “visible” part of the network, i.e., it encodes the

state and stacks of M’. It is essential that the network structure be strictly layered, i.e.,

without connections between distant layers (i.e., between layers 1 and 3). Otherwise,

there would be a synchronization problem when the output of the last layer is fed back

to the first one. The first layer can be broken up into two groups of units:
- a set {si,s2,s3, ~4) of four units encoding the four stacks of M’;
- a set UC indexed by C of “state units” encoding the state of M’: if M’ is in state

i at time t, xi(4t) = 1 and xi(4t) = 0 for j E C, j # i.

The transition function of a stack unit is defined as follows:

si(t + 4, = d)(@-l#(Pl$(si(t>> + Bl,i) + a24(fi2$(si(t)) + B2,i) + B;).

The stack operation is determined by the inputs Bl,i, Bz,~ and B,. By construction

si(t) belongs to a bounded interval, so there exists a constant C > 0 such that

Vi, t, I$(si(t))l 6 C. Recall also that #J(X) = 0 when x<O. In order to select the cor-

rect operation when M’ is in state j (and thus Xj = 1 in the network), it is therefore

sufficient for the inputs to satisfy the following conditions:

- if @i(j, e) = u then Bl,i = 71, B2,i = -Cl/32l, Bi = 6,;
- if Q;(j, e) = d then Bl,i = -Cl/31 1, B2,i = ~2, Bi = 62;
- if &(j, e) = r then BI,, = -Cl,!31 1, Bz,~ = -C[/lzl, B, = c.

The input Bl,i can be implemented as follows:

Bl,i = c Ci,j,e AND(Xi(t), &SI (t), el), . , %dt), e4)),
jEC, eE{O,l}’

where c,,j,, = ~1 if Qi(j, e) = U, Ci,j,e = -Cl/Ii] otherwise. The empty-stack test 6 is

defined by

i

6(X,0) = 1 if xbb,, 0 if X<bi,

6(X, 1) = 1 if Xbbi, 0 ifx36,.

These tests can be implemented as follows:

6(x,0) = c#l s () s I

and

6(x,1)=$ g .
(1 s I

A term AND(x,Ji,..., 84) can be implemented by

$(4(x) + 61 + . . + 64 - 5).

480 P. Koiran I Theoretical Computer Science 168 (1996) 473480

We use the same construction for B2,i; For Bi, it is necessary to add redundant $

functions in order to have a depth-3 network.

The transition function of a state unit i E UC is defined as follows:

Xi(t + 4) = 6

(

C AND(xj(t), ~(SI (t), cl), . . . , &~4(t>, e4>> .

wEq’(I)
)

This term can be transformed into a depth-4 network using the same techniques as for

the stack units.

5. Final remarks

We leave the following question as an open problem: are the networks considered

in this paper capable of simulating Turing machines with a polynomial (rather than

exponential) slowdown?

One can also ask whether Turing machines can be simulated by iterations of analytic

functions on [0, l]“, even if we drop the requirement that this function be the transition

function of a neural network’ (this can be done on R, see [3, Ch. 61).

References

[1] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation
(Addison-Wesley, Reading, MA, 1979).

[2] J. Killian and H.T. Siegelmann, On the power of sigmoid neural networks, in: Proc. 6th ACM Workshop
on Computational Learning Theory, 1993.

[3] P. Koiran, Puissance de calcul des reseaux de neurones artificiels, Ph.D. Thesis, Ecole Normale Superieure

de Lyon, June 1993.

[4] H.T. Siegelmann and E.D. Sontag, Turing computation with neural nets, Appl. Math. Lett. 4 (1991)
77-80.

[5] H.T. Siegelmann and E.D. Sontag, Analog computation via neural networks, Theoret. Comput. Sci. 131
(1994) 331-360.

[6] H.T. Siegelmann and E.D. Sontag, On the computational power of neural nets, J. Comput. System Sci.
50 (1995) 132-150.

t In an extended abstract [2], Killian and Siegelmann claimed that networks using the hyperbolic tangent as

output function are universal. However, the complete proof is not available at the time of writing.

