
Theoretical Computer Science 407 (2008) 591–595

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Note

An assertion concerning functionally complete algebras and
NP-completeness
Gábor Horváth a, Chrystopher L. Nehaniv a,∗, Csaba Szabó b
a Centre for Computer Science & Informatics Research, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom
b Department of Algebra and Number Theory, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/c, 1117, Hungary

a r t i c l e i n f o

Article history:
Received 7 June 2007
Received in revised form 29 February 2008
Accepted 25 August 2008
Communicated by M. Ito

Keywords:
Functionally complete algebras
Identity checking
Solvability of equations
Solvability of systems of equations
NP-completeness
coNP-completeness

a b s t r a c t

In a paper published in J. ACM in 1990, Tobias Nipkow asserted that the problemof deciding
whether or not an equation over a nontrivial functionally complete algebra has a solution is
NP-complete. However, close examination of the reduction used shows that only a weaker
theorem follows from his proof, namely that deciding whether or not a system of equations
has a solution is NP-complete over such an algebra. Nevertheless, the statement of Nipkow
is true as shown here. As a corollary of the proof we obtain that it is coNP-complete to
decide whether or not an equation is an identity over a nontrivial functionally complete
algebra.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The two-element Boolean algebra, finite simple non-Abelian groups or finite matrix rings over finite fields are
fundamental in the theory of computation. A commonproperty of these algebras is functional completeness. By a functionally
complete algebra A we mean a finite algebra with underlying set A and with basic operations f1, . . . , fk such that for every
nonnegative integer n and for every function f : An → A there is a polynomial expression p (x1, . . . , xn) over A such that
for every n-tuple (a1, . . . , an) ∈ An we have p (a1, . . . , an) = f (a1, . . . , an). Characterizing computational complexity of
different problems concerning equations, system of equations, or identities over functionally complete algebras is therefore
of natural importance.
One of the oldest algebraic questions, equally important in computer science, is to decide whether or not an equation

has a solution over an algebra A. This is called the equation solvability problem. For every finite algebra this problem is in NP:
one substitution is enough to prove that the equation has a solution. The system of equation solvability problem asks whether
a system of equations has a solution.
The polynomial equivalence problem asks if two polynomials attain the same value for every substitution. If neither

polynomial contains constants from the algebra, then we call it the term equivalence problem or shortly the equivalence
problem. The equivalence and the polynomial equivalence problems are always in coNP: one substitution is enough to prove
that the two sides do not always coincide. If the two sides coincide for every substitution over A, then we say that the
equation is an identity over A. Sometimes these two types of equivalence problems are called identity checking problems.
These complexity questions have been investigated for several types of finite algebras. Some of the most well-known

results are that for the two-element Boolean algebra the equation solvability (or SAT) and system of equations solvability

∗ Corresponding author. Tel.: +44 1707 284470; fax: +44 1707 284303.
E-mail addresses: G.Horvath@herts.ac.uk (G. Horváth), C.L.Nehaniv@herts.ac.uk (C.L. Nehaniv), csaba@cs.elte.hu (Cs. Szabó).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.028

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:G.Horvath@herts.ac.uk
mailto:C.L.Nehaniv@herts.ac.uk
mailto:csaba@cs.elte.hu
http://dx.doi.org/10.1016/j.tcs.2008.08.028

592 G. Horváth et al. / Theoretical Computer Science 407 (2008) 591–595

problems are NP-complete. Moreover, the equivalence and polynomial equivalence problems are coNP-complete (see
e.g. [3]).
Early investigations into the equivalence problem for various finite algebraic structures were carried out by computer

scientists, in particular at Syracuse University where the terminology the term equivalence problemwas introduced. Mainly
they considered finite commutative rings and finite lattices. In the early 1990s it was shown by Hunt and Stearns (see [7])
that the equivalence problem for a finite commutative ring either has polynomial time complexity or is coNP-complete.
Later Burris and Lawrence proved in [1] that the same holds for finite rings in general.
The equivalence problem for finite groups has proved to be far more challenging than for finite rings. In 2004 Burris and

Lawrence [2] proved that the equivalence problem for a group G is in P if G is nilpotent or G ' Dn, the dihedral group, for
odd n. Horváth, Lawrence, Mérai and Szabó proved that the equivalence problem is coNP-complete for non-solvable groups
[5]. Goldmann and Russell [4] showed that the equation solvability problem for a group G is in P if G is nilpotent and NP-
complete if G is non-solvable. Later Horváth and Szabó [6] presented another method, and they proved that the equivalence
problem is in P for certain meta-Abelian groups. For the system of equations solvability problem a clear dichotomy holds [4,
10], with the problem being in P for Abelian groups and being NP-complete for non-Abelian groups.
Interest in the computational complexity of the equivalence problem and of the equation solvability problem for finite

algebraic structures has been steadily increasing in recent years. There are many complexity results for these problems
for finite monoids and semigroups [9,13,14], where the initial approach came from the complexity of recognizing formal
languages. The first hardness result for semigroups was proved by Popov and Volkov [15], and several results were proved
by Seif and Szabó in [12]. The case of commutative semigroups was characterized by Kisielewicz in [8].
In this paper we consider the above-mentioned complexity questions for functionally complete algebras. In Theorem 6

on page 752 of [11] Tobias Nipkow asserted the following:

Theorem 1. The problem of deciding whether an equation over a nontrivial functionally complete algebra A has a solution is
NP-complete.

In the proof he claims to give a polynomial reduction from deciding whether or not an equation over Z2 = ({ 0, 1 } ,+, ·)
has a solution (a problem which is well known to be NP-complete, see e.g. [3]) to the problem of whether an equation over
A has a solution. Following the original proof from [11] shows that Nipkow’s construction actually yields a reduction to the
problem of whether a system of equations over A has a solution, which proves a weaker Theorem:

Theorem 2. The problem of deciding whether a system of equations over a nontrivial functionally complete algebra A has a
solution is NP-complete.

Theorem 2 follows from a paper of Larose and Zádori [10], too.
In Section 3 we first showwhy the original proof from [11] yields to Theorem 2 rather than Theorem 1. Then in Section 4

we prove Theorem 1 and the following corollary of our proof:

Theorem 3. The polynomial equivalence problem over a nontrivial functionally complete algebra A is coNP-complete.

2. Preliminaries

LetA be an algebrawith underlying set A. Let p and q be two n-variable polynomial expressions overA, i.e. expressions built
up from variables, constants from A and the basic operations of A using composition. Whenever a polynomial expression
does not contain constants fromA, we call it a term expression.We call the equation p (x1, . . . , xn) = q (x1, . . . , xn) an identity
over the algebra A if for every n-tuple (a1, . . . , an) ∈ An the equation p (a1, . . . , an) = q (a1, . . . , an) holds over A.
Our leading reference on computational complexity will be [3]. Every algebra is given by its underlying set and with the

operation table of its basic operations. An instance of the equation solvability problem over the algebra A consists of two
polynomial expressions p and q over A. The question is whether or not there exists a substitution of the variables over A
such that the two polynomials attain the same value (i.e. the equation p = q has a solution over A). Similarly, the system of
equations solvability problem has as instance a natural number n and polynomials p1, . . . , pn, q1, . . . , qn over A. The question
is whether there exists a substitution of variables over A such that pi = qi for every 1 ≤ i ≤ n. Finally, an instance of the
polynomial equivalence problem over an algebra A consists of two polynomial expressions p and q over A. The question is
whether the two polynomials attain the same value for every substitution of the variables over A (i.e. the equation p = q is
an identity over A). Whenever the two polynomial expressions are term expressions (i.e. expressions built up from variables
using the basic operations of A) then we call it the term equivalence problem or shortly the equivalence problem.
We define the length of a polynomial expression over an algebra A = (A, f1, . . . , fk) (i.e. an expression which can be

composed from the basic operations and some constants from A) in a natural way. We give a definition which represents
the idea that the length is the number of characters we need to have, where every variable and constant takes one character
to write (this is the unit). Denote the length of a polynomial expression p (x1, . . . , xn)with ‖p (x1, . . . , xn)‖.
The length of a polynomial expression over A is defined recursively:

(1) The length of a variable x or a constant c is 1: ‖x‖ = ‖c‖ = 1.

G. Horváth et al. / Theoretical Computer Science 407 (2008) 591–595 593

(2) For an m-variable basic function f of A and for polynomial expressions p1, . . . , pm, the length of f (p1, . . . , pm) is the
sum of the lengths of pi’s with an additional constant depending only on f : ‖f (p1, . . . , pm)‖ = cf +

∑m
i=1 ‖pi‖. Then

the length of f (x1, . . . , xm) is ‖f ‖ = cf + m. (cf represents the length of all the brackets, commas and those characters
which we identify f with.)

We give some examples illustrating the general definition.

(1) For a finite group G let cf = 4 for the group-multiplication f and let cg = 3 for the group-inverse g . Now the expression
x · y−1 · z = f (f (x, g (y)) , z) has length 2cf + cg + 3 = 14.

(2) For a finite ring R let cf = cg = 4 for the ring-addition f and ring-multiplication g . Now the expression x + y · z =
f (x, g (y, z)) has length cf + cg + 3 = 11.

(3) If cf = 0 for every basic function, then the length of a polynomial p is exactly the number of variables and constants
(including multiplicities) occurring in p.

An immediate consequence of the definition is the following lemma:

Lemma 4. For polynomial expressions p, q1, . . . , qn we have that

‖p (q1, . . . , qn)‖ ≤ ‖p‖ ·max { ‖qi‖ : i = 1, . . . , n } .

Proof. Let q be a polynomial expression for which ‖q‖ is maximal among the qi’s. Then

‖p (q1, . . . , qn)‖ = cf +
n∑
i=1

‖qi‖ ≤ cf + n · ‖q‖ ≤
(
cf + n

)
· ‖q‖ = ‖p‖ · ‖q‖ . �

3. Proof of Theorem 2

Let A be a nontrivial functionally complete algebra (|A| ≥ 2). The problem is in NP, since we only need to substitute a
possible solution.
It is well known (see, e.g. [3] p. 251, problem AN9) that deciding whether an equation over Z2 = ({ 0, 1 } ,+, ·) has

a solution is NP-complete (it is almost the same as the SAT problem). Following the proof in [11] we give a polynomial
reduction from the problem of determining whether an equation over Z2 has a solution to the problem of deciding whether
a system of equations over A has a solution.
Let f

(
x
)
= g

(
x
)
be an equation over Z2, where f and g are polynomial expressions and x is an n-tuple of free variables.

We create a system of equations over A in polynomial time such that the system has a solution over A if and only if f = g
has a solution over Z2. The size of the system will be polynomial in ‖f ‖ + ‖g‖.
Let us denote two arbitrary distinct elements of A with 0A and 1A. Since A is functionally complete, there exist two 2-

variable polynomial expressions (let us denote them with+A and ·A) such that 0A and 1A behave under the operations+A
and ·A as 0 and 1 behave under the operations+ and ·, namely:
+A (0A, 0A) = +A (1A, 1A) = 0A,+A (0A, 1A) = +A (1A, 0A) = 1A,
·A (0A, 0A) = ·A (0A, 1A) = ·A (1A, 0A) = 0A, and ·A (1A, 1A) = 1A.
There might exist several different polynomials for +A. Similarly there might exist several different polynomials for ·A.

We choose+A and ·A arbitrarily (with respect to these properties) and fix them for the proof.
There exists a 1-variable polynomial expression χ1A such that χ1A (1A) = 1A and χ1A (a) = 0A for every a 6= 1A. Now

using+A and ·A instead of+ and · and using χ1A (xi) instead of the variable xi we can encode the equation f = g over Z2 as
an equation fA = gA over A such that f = g has a solution over Z2 if and only if fA = gA has a solution over A. We can observe
though that ifwewant to express this equationusing the basic operations ofA then the length of the resulting equationmight
be exponential in the size of the original equation (e.g. if any variable occurs more than once in the polynomial expression
for +A or for ·A).1 For this reason, the proof is not a polynomial reduction from deciding whether an equation over Z2 has
a solution to deciding whether an equation over A has a solution. However, using an easy trick we can encode the original
equation into a system of equationswith polynomial size in ‖f ‖ + ‖g‖:
At first we have the equation f

(
x
)
= g

(
x
)
over Z2. In every step we will shorten this equation and add other equations

to our system until the equation cannot be shortened any more. In each step we search reading from left to right in our
modified equation for any occurrence of x+ y or of x · y, where x and y are variables or constants (polynomial expressions
with length 1). If we find an occurrence of x+ ywith variables or constants x, y then for a new variable z we replace every
occurrence of x+ywith z in themodified equation and add the equation z = +A (x, y) to our system of equations. Similarly,
if we find an occurrence of x · y with variables or constants x, y then for a new variable z we replace every occurrence of
x · ywith z in the modified equation and add the equation z = ·A (x, y) to our system of equations. Each step takes at most
‖f ‖ + ‖g‖ time and each step shortens the equation f = g , hence the algorithm stops in at most (‖f ‖ + ‖g‖)2 time. After

1 An easy example for such an exponential blowup is if for a group one wants to express the commutator expression [[[[x1, x2] , x3] . . .] , xn] using only
the inverse operation and the multiplication of the group.

594 G. Horváth et al. / Theoretical Computer Science 407 (2008) 591–595

the final step, in every equation of the system for every original variable xi (i.e. which occurred in f = g) we replace xi with
χ1A (xi).
After this translation we have a system of equations over A such that the system has a solution over A if and only if the

original equation f = g had a solution over Z2. The size of the system is linear in the size of the equation f = g over Z2, since
there are at most (‖f ‖ + ‖g‖)-many equations, and by Lemma 4 each equation has length at most (‖+A‖ + ‖·A‖) ·

∥∥χ1A∥∥,
which does not depend on the equation but only on the algebra A. The time of the translation of f = g over Z2 to a system
of equations over A is polynomial as well, which finishes the proof.

4. Proof of Theorem 1 and a consequence

Let A be a nontrivial functionally complete algebra (|A| ≥ 2). The problem is in NP, since we only need to substitute a
possible solution.
It is well known (see, e.g. [3]) that deciding whether a formula written in conjunctive normal form can be satisfied over

the two-element Boolean algebra B = ({ 0, 1 } ,¬,∨,∧) is NP-complete (this is called the SAT problem). The formula is
usually given by the clauses, whichwe take the conjunctions of, where each clause is a disjunction of arbitrarymany literals,
i.e. variables or negations of variables ([3] p. 259 problem LO1). The problem remains NP-complete, if every clause in the
conjunctive normal form contains exactly 3 literals (this is called the 3SAT problem, [3] p. 259 problem LO2). We will give
a polynomial reduction from the problem of determining whether a 3SAT formula can be satisfied over B to the problem of
whether an equation over A has a solution.
Let ϕ

(
x
)
=
∧n
i=1 pi be a 3SAT formula over B. We create an equation over A such that the equation has a solution over A

if and only if ϕ can be satisfied over B. The length of the equation will be polynomial in the size of the formula.
Let us denote two arbitrary distinct elements of A with 0A and 1A. Since A is functionally complete, there exists a 2-

variable polynomial expression∧A such that 0A and 1A behave under the operation∧A as 0 and 1 behave under the operation
∧, namely ∧A (0A, 0A) = ∧A (0A, 1A) = ∧A (1A, 0A) = 0A, and ∧A (1A, 1A) = 1A. There might exist several different
polynomials for ∧A. We choose ∧A arbitrarily (with respect to these properties) and fix it for the proof. Similarly, for each
of the eight possible 3-variable forms of disjunctive clause qj = qj (x1, x2, x3), (j = 1, . . . , 8)we can choose an arbitrary but
fixed 3-variable polynomial expression qj,A such that 0A and 1A behave under the function qj,A as 0 and 1 behave under the
clause qj. Moreover there exists a 1-variable polynomial expression χ1A such that χ1A (1A) = 1A and χ1A (a) = 0A for every
a 6= 1A.
For every positive integer number kwe will use a polynomial ∧(k) = ∧(k)A (x1, . . . , xk) over A in a way that it behaves on

inputs from { 0A, 1A } the very same as
∧k
i=1 xi behaves on the inputs { 0, 1 } over B. Let us define ∧

(k) in the following way:
Let ∧(1)A (x1) = x1 and ∧

(2)
A (x1, x2) = ∧A (x1, x2). For every integer i ≥ 2 let

∧
(2i−1)
A (x1, . . . , x2i−1) = ∧

(2)
A

(
∧
(i)
A (x1, . . . , xi) ,∧

(i−1)
A (xi+1, . . . , x2i−1)

)
,

∧
(2i)
A (x1, . . . , x2i) = ∧

(2)
A

(
∧
(i)
A (x1, . . . , xi) ,∧

(i)
A (xi+1, . . . , x2i)

)
.

It is clear that ∧(k)A , for every integer k, has the required property.
Now using the expression qj,A instead of the clause qj, using∧

(n)
A instead of∧

n
i=1 and using χ1A (xi) instead of the variable

xi we can encode the formula ϕ over B as an expression ϕA over A such that ϕ can be satisfied over B if and only if ϕA = 1A
has a solution over A. The only remaining part is to prove that ‖ϕA‖ is polynomial in ‖ϕ‖.
Let c =

∥∥χ1A∥∥, let l = ‖∧A‖ and let d = max
{ ∥∥qj,A∥∥ : j = 1, . . . , 8 } the length of the longest clause

expression. For every k we have
∥∥∥∧(k)A

∥∥∥ ≤ ldlog ke ≤ l · klog l, which is quite straightforward from ∥∥∥∧(k)A

∥∥∥ ≤ ∥∥∥∧(2)A

∥∥∥ ·
max

{ ∥∥∥∧(dk/2e)A

∥∥∥ , ∥∥∥∧(bk/2c)A

∥∥∥ }. By log we mean the base 2 logarithm function.
Using Lemma 4 we can conclude that the length of the expressed 3SAT formula ϕA over A is not more than c · d · l · nlog l,

which is polynomial in the length of the original 3SAT formula ‖ϕ‖, since n ≤ ‖ϕ‖ and c , d, l depend only on A. Thus,
Theorem 1 is proved.
With a slight modification we can easily prove Theorem 3. Let A be a nontrivial functionally complete algebra (|A| ≥ 2).

The problem is in coNP, since we only need to substitute a possible counterexample.
In the proof of Theorem 1, for every 3SAT formula ϕ we created a polynomial expression ϕA over A such that ϕ can be

satisfied over B if and only if ϕA = 1A has a solution over A. Moreover the length of ϕA was polynomial in the length of ϕ.
Let us observe that the image of ϕA over A is a (not necessarily proper) subset of { 0A, 1A }, hence ϕA = 1A has a solution
over A if and only if ϕA = 0A is not an identity over A. This is a polynomial reduction from the problem of 3SAT over B to
the problem of determining whether an equation is an identity over A.

Acknowledgements

The research of the third author and, in part, of the first author was supported by the Hungarian National Foundation for
Scientific Research, Grants N67867 and K67870.

G. Horváth et al. / Theoretical Computer Science 407 (2008) 591–595 595

References

[1] S. Burris, J. Lawrence, The equivalence problem for finite rings, Journal of Symbolic Computation 15 (1993) 67–71.
[2] S. Burris, J. Lawrence, Results on the equivalence problem for finite groups, Algebra Universalis 52 (4) (2004) 495–500. 2005.
[3] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman & Co, San Francisco, 1979.
[4] M. Goldmann, A. Russell, The complexity of solving equations over finite groups, in: Proceedings of the Fourteenth Annual IEEE Conference on
Computational Complexity, Atlanta, Georgia, May, 1999, pp. 80–86.

[5] G. Horváth, J. Lawrence, L. Mérai, Cs. Szabó, The complexity of the equivalence problem for non-solvable groups, Bulletin of the LondonMathematical
Society 39 (3) (2007) 433–438.

[6] G. Horváth, Cs. Szabó, The complexity of checking identities over finite groups, International Journal of Algebra and Computation 16 (5) (2005)
931–940.

[7] H. Hunt, R. Stearns, The complexity for equivalence for commutative rings, Journal of Symbolic Computation 10 (1990) 411–436.
[8] A. Kisielewicz, Complexity of semigroup identity checking, International Journal of Algebra and Computation 14 (4) (2004) 455–464.
[9] O. Klíma, Unification modulo associativity and idempotency’, Ph.D. Thesis, Masarik University, Brno, 2004.
[10] B. Larose, L. Zádori, Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras, International Journal of

Algebra and Computation 16 (3) (2006) 563–581.
[11] T. Nipkow, Unification in primal algebras, their powers and their varieties, Journal of the Association for ComputingMachinery 37 (1) (1990) 742–776.
[12] S. Seif, Cs. Szabó, Computational complexity of checking identities in 0-simple semigroups andmatrix semigroups over finite fields, Semigroup Forum

72 (2) (2006) 207–222.
[13] P. Tesson, Computational complexity questions related to finite monoids and semigroups, Ph.D. Thesis, McGill University, Montreal, 2004.
[14] P. Tesson, D. Therien, Monoids and Computations, International Journal of Algebra and Computation 14 (5–6) (2004) 801–816.
[15] M.V. Volkov, Checking identities in semigroups, Lecture presented at the Conference on Universal Algebra, Nashville, 2002.

	An assertion concerning functionally complete algebras and NP-completeness
	Introduction
	Preliminaries
	Proof of thm:polsysthmTheorem Theorems
	Proof of thm:polsatthmTheorem Theorems and a consequence
	Acknowledgements
	References

