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a b s t r a c t

Wemodel and study arbitrage across sponsored searchmarkets, created by search engines.
We identify and focus on traffic arbitrage and click arbitrage by auctioneers. We derive and
characterize equilibria of such arbitrage behaviors across multiple markets.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The search market has become a principal source of revenue for search engine companies. The business model relies on
advertisement sales that provide advertisers with opportunities to introduce their products directly to potential customers.
The primary model, the sponsored keyword auction, identifies each user of a search engine, who submits a keyword or
several keywords to the search engine, as a potential customer to related consumer products. Web links displaying those
products are listed along with the search results of the queried keywords. To win the slots for displaying positions of web
links, advertisers compete through an auction process.
Some advertising positions draw more attention from users and generate more clicks than others. Therefore, different

advertising positions have different click-through-rates, the ratio of the number of clicks on the advertising to the number
of appearances of the advertising web links. For this reason, it is named the position auction by Varian [13]. The generalized
second price auction (GSP for short), named by Edelman, Ostrovsky and Schwarz [8], is used as the primary prototype for
sponsored link auctions to sell the advertising positions.

1.1. Arbitrage across markets

Though Google has emerged as a major player in the search engine business, several search engines are used worldwide
and provide sponsored search opportunities to advertisers. As each search engine establishes a single market, prices are
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Fig. 1. The sponsor results when the keyword ‘‘rose mask’’ is typed into the search engine of Google. Yahoo.com and bitraze.com are sponsored links
displayed along the search results in Google.

often different and arbitrage has become a possibility. We identify and model two existing arbitrage behaviors, and study
the equilibrium properties.
1. Traffic Arbitrage: The concept is motivated by the behavior of some participating websites of the AdSense market

model of Google. They are assigned advertisements by Google on their websites. They are paid by Google on the number of
times those advertisements are displayed or clicked on their websites. Increasing the traffic that goes into their websites is
an obvious way to increase their income. One way to do it is to purchase, at a lower rate, advertisement slots of (the same
or closely related) keywords sold at search engines. In the same spirit, some online comparison shopping search engines,
such as shopping.yahoo.com, nextag.com, bitraze.com, may themselves take part at sponsored keyword auctions of search
engines such as Google and Yahoo. These advertisers may bring traffic back to their own markets, which at the same time
display some other sponsored keyword advertisement slots. Fig. 1 illustrates such strategic behavior of traffic arbitrage.
When the keyword ‘‘rose mask’’ is typed into the search engine of Google, Yahoo.com and bitraze.com will be displayed
along the search results as sponsored links. Actually, all the other sponsored links could also be considered as search engines
in some senses.
2. Click Arbitrage: On Internet, there are many affiliates undertaking advertising business for the small companies who

may not have the expertise dealing with the search engine advertisement task. These affiliates specialize in advertising
their clients’ websites. The commission depends on the traffic the affiliates bring to the clients’ websites. Therefore, the
emergence of the sponsored search auctions creates a chance for the affiliates to act on their clients’ behaviors to take part
in the auctions. The affiliate (maybe a search engine itself) can charge a fee for a click to its clients, at the same time to
participate at the sponsored search auctions, paying less, to bring in potential consumers to the clients. For example, the
affiliate could use the client’s website as the advertisement’s display URL which will be shown on the text description of
the advertisement, but use the affiliate’s webpage which has the redirection function as the advertisement’s destination
URL. If a potential user clicks on the advertisement on the search engines, he/she will be directed to the destination URL,
then redirected to the client’s webpage, which creates the impression that the traffic comes directly from the affiliate’s
webpage. Even in case search engines disallow, as a policy, a display URL to be different from the destination URL, there are
technological tools to handle it, e.g., as in http://www.apexpacific.com/knowledgebase/bidmaximizer/faqdetail.asp?id=78.
As an example, if one auctioneer of some GSP auction bids for some advertising slot on other GSP auctions to increase

the traffic to the auctioneer’s search engine to increase the number of clicks of each advertising slot on the search engine,
this strategic behavior belongs to traffic arbitrage. On the other hand, if one auctioneer of some GSP auction bids for some
advertising slot on other GSP auctions to transfer the clicks won to another slot on his own GSP auction to increase the
number of clicks of that slot, this strategic behavior is called click arbitrage.

1.2. Our contributions

We propose the first models for such arbitrage behaviors. Based on those models, we model several such sponsored
auction markets, held independently by different auctioneers, participated by agents in one, or all of them as an overall
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revenue consideration.We study theNash equilibriawith respect to the above types of arbitrage behaviors. Our results show
that properly regulated ones can improve social efficiency, and as a byproduct, improve the revenues of all the auctioneers.

1.3. Related work

In general, the study of auction protocols has traditionally relied on a concept called incentive compatibility [14], which
requires that protocols should be designed such that each participant will realize its optimal utility by speaking the truth.
Such a requirement is justified by a fundamental theorem in themechanism design, the revelation principle [12]. Informally,
it states that, for any protocol that guarantees the dominant strategy, there is a corresponding incentive compatible protocol.
The reigning protocol for sponsored search markets, the GSP auction, however, is not incentive compatible. The

auctioneer could have simply used the standard VCG mechanism [14,6,9] to make sure that each agent will reveal the true
private value. Aggarwal, Goel and Motwani proposed an implementation [1] that would force the auctioneer to obtain the
minimum VCG, but it would have to rely on the auctioneer’s goodwill to make the choice. Unfortunately, this is not the case
in reality. With the effect of justification of the GSP to the auctioneer, it was proven that the auctioneer gets a payoff at least
as that of VCG in a subclass of Nash equilibria, called symmetric Nash equilibrium (SNE for short) [13] and locally envy-free
Nash equilibrium (LEFN for short) [8], but potentially more.
In [4], Bu, Deng and Qi derived a property called forward-looking attribute for a bid, out of the many optimal bidding

strategies of each participant, to justify its use as a forward-looking response for every bidder. In the relative value to the
immediate higher/lower bidders, it is the same as that in the final solution of Aggarwal, Goel andMotwani [1] but different in
the intermediate bids. The same bidding value is called balanced greedy bidding strategy (BB for short) by Cary, Das, Edelman,
Giotis, Heimerl, Karlin,Mathieu and Schwarz in [5]. Both groups [2,5] proved that the strategy converges to a unique solution
that gives the auctioneer exactly the same payoff as the VCG protocol. The bidders can, therefore, rationally bid their own
optimal response in the forward-looking sense to limit the auctioneer’s gain to that of the truthful VCG protocol. In some
sense, this result restores the Revenue Equivalence Theorem of Vickrey andMyerson [14,12] under a new condition, despite
the possibility for the auctioneer to avoid it for gaining potentially higher revenue in SNE or LEFN.
Our work builds upon those results for a singlemarketmodel and is the first to handle arbitrage across several sponsored

search markets.

1.4. Layout of presentation

In Section 2 we present the single sponsored search market model and formally introduce the GSP protocol. We also
discuss the concept of forward-looking Nash equilibrium to prepare our study into themultiplemarketsmodel. In Section 3,
we consider the auctioneer’s strategic behavior of traffic arbitrage and the corresponding equilibrium across markets.
In Section 4, we consider the auctioneer’s strategic behavior of click arbitrage and the corresponding equilibrium across
markets. In Section 5, we discuss the limitations of our models and future improvements.

2. The single market model

The GSP auction model was first presented in [8,13] for the sponsored search market.
For a keyword, let there beN advertiserswho compete forK advertisement slots (K < N).N denotes the set of advertisers

and K denotes the set of advertisement slots. In the online advertising market, impression is related to web traffic and
usually used in the phrase Cost Per Impression (CPI), which is one of the popular pricing methods in the online advertising
market. For Online Advertising, an impression can be defined as one access to the advertisement link. Therefore, once one
user visits a webpage with some online advertisements such as banner and text link, the number of the impressions on the
advertisement is added by one. A tracker (Web counter) can be placed in thewebpage to verify howmany accesses that page
had andwho (in terms of Internet addresses) originated those accesses. For each slot k, θk denotes the expected click-through-
rate (the number of clicks/the number of impressions) of slot k. In other words, within a period of time if the keyword’s
searching result page is displayed I times, then slot k would be clicked θkI times. Further, we assume that if the indexes of
slots satisfy k1 < k2, then slot k1’s click-through-rate (CTR for short) θk1 is larger than θk2 . Namely, θ1 > θ2 > · · · > θK > 0.
For convenience of presentation, let θK+1 = 0. In addition, each bidder i ∈ N has a privately known information, vi, which
represents the maximum price he is willing to pay for each click on his advertisement link.
According to each bidder i’s submitted bid bi ≥ 0, the auctioneer decides how to distribute the advertisement slots

among the bidders and howmuch they should pay for per-click. For the GSP protocol, the auctioneer firstly sorts the bidders
in decreasing order according to their submitted bids. The last N–K bidders would lose and get nothing. Each winner would
be charged the next bid in the descending bid queue. Losers would pay nothing. In the case of ties, we assume that the
auctioneer would break ties according to a pre-assigned order (e.g., the time the agents register with the system).
Let bk denote kth highest bid in the descending bid queue and vk the true value of the kth bidder in the descending queue.

So if bidder i got slot k, i’s payment per click would be bk+1, and i’s payment per impressionwould be bk+1 ·θk. Otherwise, his
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payment would be zero. Hence, for any bidder i ∈ N , if iwere on slot k ∈ K , his utility per impression could be represented
as

uik = (v
i
− bk+1) · θk.

If there is more than one position to sell, the GSP protocol will not be incentive compatible [8,1]. That is, bidders may
benefit by not bidding their true private values. However, there exists a set of pure Nash equilibria where an advertiser will
choose a strategy that maximizes his own utility with respect to a given set of strategies of other players. It is assumed that
the advertiser will be left well alone if no other choices will gain him a better utility. In arguing for a more robust solution in
the practical dynamic system, the advertisers are assumed to bewise enough to explore potential improvement without the
possibility ofmaking their own payoff reduced. Every bidderwould take into account both his current behavior and its effect
on the other bidder’s future behavior. It was shown [2] that a particular response function, the forward-looking response,
would implement the rationality ofmaximizing the bidders’ utilities in such a circumstance. If all bidders apply the forward-
looking best response, they will arrive at a singleton Nash equilibrium, called the forward-looking Nash equilibrium, that
results in the same payment for every participant as in the celebrated VCG auction protocol [14,6,9], even though none
bids his true private value for the clicks. The VCG mechanism is incentive compatible but is not applied to the sponsored
search auction as it is regarded as being too complicated to the users. Therefore, their work justifies the usage of GSP as the
mechanism to sell online advertisements.
The same terminal equilibrium is also reached by the Generalized English auction protocol, (not the Generalized Second

Price auction protocol,) also proposed by Edelman et al. in [8], and the laddered auction of Aggarwal et al. in [1], as well as
the balanced greedy bidding strategy named by Cary et al. in [5].
We next introduce the concept of the forward-looking Nash equilibrium for the study of the more general setting of the

search engine arbitrage models of GSP auctions.

Definition 2.1 (Forward-Looking Response Function [2]). Given the other bidders’ bidding set b−i, suppose bidder i prefers
slot k, then bidder i’s forward-looking response function F i(b−i) is defined as

F i(b−i) =

{
vi −

θk
θk−1

(vi − bk+1) 2 ≤ k ≤ K ;
vi k = 1 or k > K .

(2.1)

Definition 2.2 (Forward-Looking Nash Equilibrium [2]). A forward-looking response function-based equilibrium is a strat-
egy profile b̂ such that

∀i ∈ N , b̂i = F i(̂b−i).

Theorem 2.3 ([2]). The GSP auction has a unique forward-looking Nash equilibrium b satisfying
bi = vi for i = 1 and i > K ;

bi = 1
θi−1

[
K∑
j=i

(θj−1 − θj)v
j
+ θKv

K+1

]
for 2 ≤ i ≤ K .

(2.2)

Theorem 2.4 ([8,1,2,5]). In the GSP auction, any bidder’s expected payment per impression under the forward-looking Nash
equilibrium is equal to his expected payment per impression under VCG mechanism.

Corollary 2.5 ([8,1,2,5]). The auctioneer’s expected revenue per impression in the forward-looking Nash equilibrium is equal
to that in the VCG mechanism.

Theorem 2.6 ([2,5]). The GSP auction converges to the forward-lookingNash equilibriumwith probability one under randomized
readjustment scheme.

3. Traffic arbitrage across markets

In this section, we consider the auctioneer’s strategic behavior of traffic arbitrage. For traffic arbitrage, the auctioneer of
some GSP auction will bid for some advertising slot on other GSP auctions to increase the traffic to the auctioneer’s own
search engine. This allows the auctioneer to increase the number of clicks of each advertising slot on his own search engine.
The most probable case is when he bids for a slot on a keyword from the other search auction to bring back to his webpage
displaying advertisement for the same keyword.
Wewould study the impact of the strategy of traffic arbitrage on the number of impressions of the slots on the auctioneer’s

search engine. Further, we would estimate the auctioneer/arbitrageur’s cost and benefit of traffic arbitrage. Regarding all the
auctions as awhole, we then study theNash equilibria in terms of all bidders’ forward-looking best response strategieswhen
the strategy of traffic arbitrage is allowed in cross markets. Although we allow the auctioneer to attend the other auctions,
we prohibit the auctioneer from attending his own auction in the whole paper.
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3.1. Model and assumptions

ConsiderM GSP auctions.M denotes the set of GSP auctions. We use Gi to denote the ith auction itself, i ∈M. Ai denotes
the auctioneer of Gi andA denotes the set of all the auctioneers.Aj is the set of the auctioneers attending auction Gj, where
j ∈ M,Aj ⊆ A\Aj. Without loss of generality, we assume all the auctions have the same numbers of advertising slots, say,
K slots. Clearly, if one of the auctions has less than K slots, we could add some dummy slot(s) with CTR= 0 to that auction.
There are N advertisers who could attend all the auctions. For each advertiser i, his true value per click in the different

auctions may be different. So we use vi,Gj to denote advertiser i’s true value per click in auction Gj. For auctioneer Ai, we use
vAi,Gj , i 6= j to denote auctioneer Ai’s true value per click in auction Gj. As we mentioned before, we forbid the auctioneer
from attending his own auction. We use θ

Gj
k to denote the CTR of slot k in auction Gj. Although each bidder is allowed to

attend all the auctions, it is supposed that each bidder is prohibited from submitting more than one bid, i.e., multi-bidding,
to the same auction.
As for the CTR of each slot in M auctions, we assume that each slot’s CTR remains unchanged no matter whether any

of the auctioneers uses the strategy of traffic arbitrage or not. However, this strategy could bring more impressions for the
auctioneer’s ownGSP auction and therefore bringmore clicks per period to all of the advertising slots in his ownGSP auction.
In more detail, in this model of traffic arbitrage, there is an important assumption.

Assumption 3.1. For all the search engines, the CTR of any slot is not affected by any auctioneer’s strategy of traffic arbitrage.

Remark 3.2. We assume the CTRs will not change in this model. Though for different reasons, the CTRs could increase
or decrease because of traffic arbitrage. For example, consider two GSP auctions G1 and G2. Suppose auctioneer A1 adopts
traffic arbitrage strategy andwins a slot of auction G2. If some user enters search engine G1 by clicking the search engine G1’s
advertisement on search engine G2 where the user types the keyword, the user may be more interested in the sponsored
results than the users who enter search engine G1 directly. So the user may click advertisements with a higher possibility
than other users. In addition, since this user is absorbed into search engine G1, he may be satisfied with the search results
or sponsored results on search engine G1 and never return to search engine G2 again to click the other advertisements on
search engine G2. For simplicity, however, we first consider that the CTRswill not be affected by traffic arbitrage. The general
principle can also extend to more sophisticated cases.

After modeling the strategic behavior of traffic arbitrage, in the next part we will begin to estimate the arbitrageur’s true
value and payment, then study the Nash equilibria in terms of all bidders’ forward-looking best response strategies when
the strategy of traffic arbitrage is allowed.

3.2. Properties of the model

First, we give a rigorous definition of the forward-looking Nash equilibrium in cross markets when the auctioneer’s
strategic behavior of traffic arbitrage is allowed.

Definition 3.3 (Forward-looking Response Function in the Traffic Arbitrage Model). ∀i ∈ N ∪ Aj, given the other bidders’
bidding set b−i,Gj , if bidder i prefers slot k, then bidder i’s forward-looking response function F i,Gj(b−i,Gj) is defined as

F i,Gj(b−i,Gj) =

vi,Gj −
θ
Gj
k

θ
Gj
k−1

(vi,Gj − b
Gj
k+1) 2 ≤ k ≤ K ;

vi,Gj k = 1 or k > K .
(3.1)

Definition 3.4 (Forward-looking Nash Equilibrium in the Traffic Arbitrage Model). Let b̂Gj =
{
b̂i,Gj

∣∣ i ∈ N ∪Aj
}
. If traffic

arbitrage is allowed, a forward-looking response function-based equilibrium is a strategy profile b̂ =
{
b̂Gj
∣∣ j ∈M

}
such

that ∀i ∈ N ∪Aj, b̂i,Gj = F i,Gj (̂b−i,Gj).

The following lemma is directly derived from the above definition.

Lemma 3.5. In the traffic arbitrage model, a strategy profile b̂ is a forward-looking Nash equilibrium if and only if ∀j ∈ M, b̂Gj
is a forward-looking Nash equilibrium.

The following lemma estimates the arbitrageur’s true value per click in the other auction in terms of the forward-looking
Nash equilibrium.

Lemma 3.6. In the traffic arbitrage model, arbitrageur Ai’s true value per click in auction Gj, where i 6= j, is equal to his VCG
revenue per impression in his own auction Gi in terms of the forward-looking Nash equilibrium.
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Proof. If auctioneer Ai attends auction Gj, he could be regarded as a bidder in auction Gj. Hence, auctioneer Ai’s traffic
arbitrage behavior will increase one more bidder in auction Gj. The only difference between arbitrageur Ai and the other
bidders is that arbitrageur Ai’s true value per click is not a constant while the others’ true values per click are constants,
since arbitrageur Ai’s value per click depends on all the bids in his own auction, i.e, the revenue in auction Gi.
Let IGi , IGj represent the number of impressions per period of search engine Gi, Gj respectively. If traffic arbitrageur Ai

wins slot l in auction Gj, the number of impressions he gets per period is increased by 1IGi = IGjθ
Gj
l and his total revenue

from auction Gi per period is increased by1RGi = 1IGiR
Gi
per impression. This augmenting of revenue is due to his participating

in auction Gj. And every click the traffic arbitrageur Ai earned in auction Gj could bring him one more impression.
Therefore, his value per click in auction Gj is

vAi,Gj = 1RGi
1IGi

= RGiper impression.
(3.2)

By Lemma 3.5, in the forward-looking Nash equilibrium of the traffic arbitrage model, the sub-market auction Gi is also
in the forward-looking Nash equilibrium. Thus, according to Corollary 2.5, the arbitrageur Ai’s revenue in GSP auction per
impression is equal to his VCG revenue per impression, i.e., RGiper impression = R

Gi
VCG, where R

Gi
VCG is auctioneer Ai’s VCG revenue

per impression.
Therefore, vAi,Gj =

∑K
i=1
∑K+1
j=i+1(θ

Gi
j−1 − θ

Gi
j )v

Gi
j . �

Theorem 3.7. Consider the traffic arbitrage model where all advertisers and arbitrageurs are following the forward-looking
response function. We have:

1. There always exists a forward-looking Nash equilibrium.
2. The model always converges to its forward-looking Nash equilibrium.
3. In the forward-looking Nash equilibrium, all the auctioneers’ revenuewill not beworse off in the presence of the traffic arbitrage
behavior.

Proof. We first prove the basic case:M = 2, i.e., there are two GSP auctions in the market.

• Proof of Part 1:
First consider the case: only one of the auctioneers is a traffic arbitrageur.We prove it by construction.Without loss of

generality, assume auctioneer A2 uses the traffic arbitrage strategy. By Theorem 2.3, there always exists a unique forward-
looking Nash equilibrium b̂G2 in auction G2. Given b̂G2 , by Lemma 3.6, arbitrageur A2 could be regarded as a bidder with a
constant true value vA2,G1 =

∑K
i=1
∑K+1
j=i+1(θ

G2
j−1−θ

G2
j )v

G2
j in auction G1. Now consider auction G1. In auction G1, there are

N + 1 bidders (N advertisers and 1 arbitrageur). Each of these bidders has a constant true value. Therefore, there exists
a unique forward-looking Nash equilibrium b̂G1 in auction G1. By Lemma 3.5, we obtain there always exists a forward-
looking Nash equilibrium in this case.
Now consider the case: both auctioneers are traffic arbitrageurs. We prove it by construction. Suppose initially both

auction G1 and G2 are in the forward-looking Nash equilibrium. Then arbitrageur A1 attends auction G2 and bids a high
enough price to get the first slot of auction G2. Arbitrageur A2 can calculate his true value based on arbitrageur A1’s bid
and attend auction G1. After his attending, auction G1 reaches a new forward-looking Nash equilibrium. Then arbitrageur
A1 could estimate his true value according to the new equilibrium and decreases his own bidding price according to
the forward-looking response function. If the whole procedure terminates in finite steps, the forward-looking Nash
equilibrium exists. If the procedurewould not terminate in finite steps, since either arbitrageur A1 or A2 always decreases
his bidding price in the whole procedure, the bidding prices of both arbitrageur A1 and A2 would decrease but tend
to some values respectively. Actually, such ‘two values’ are the equilibrium value. Since during the whole process, the
arbitrageurs and all bidders follow the forward-looking response function, the equilibrium they reached is the desired
forward-looking Nash equilibrium.
• Proof of Part 2:

We will utilize the construction in the above proof again. Obviously, initially both auction G1 and G2 can reach the
forward-looking Nash equilibrium under the Lowest-First adjustment scheme respectively with the same argument in
[2]. After arbitrageur A1 attends auction G2 and wins the first slot of auction G2, arbitrageur A2 can calculate his true
value based on arbitrageur A1 and attend auction G1. Then locking auction G2, auction G1 can converge to the forward-
looking Nash equilibrium under the Lowest-First adjustment scheme with the same argument. Next, locking auction G1,
auction G2 can also converge to the equilibrium under the Lowest-First adjustment scheme. Combined with the proof
of part 1, the whole process must converge to the forward-looking Nash equilibrium under the Lowest-First adjustment
scheme. Though Lowest-First is a deterministic adjustment scheme, there is a nonzero probability that the deterministic
schemewill occur in a randomized adjustment scheme. Thatmeans, the gamewill converge to the forward-looking Nash
equilibrium with probability one under the randomized adjustment scheme.
• Proof of Part 3:

In the first part, we have already proved that the forward-looking Nash equilibrium always exists even if traffic
arbitrage is allowed.
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By Lemma 3.5, the cross market is in the forward-looking Nash equilibrium if and only if both sub-markets are in the
forward-looking Nash equilibrium. By Corollary 2.5, the revenue per impression of auctioneer A2 in auction G2 before
auctioneer A1’s participation is

RG2per impression = R
G2
VCG =

K∑
i=1

K+1∑
j=i+1

(θ
G2
j−1 − θ

G2
j )v

G2
j

where vj is the true value of the bidder on the jth slot.
Now consider auctioneer A1 attends auction G2 and gets slot l. Assume the new revenue per impression of auctioneer

A2 in auction G2 is R
′G2
per impression. Since all the other N bidders’ true values in auction G2 remain unchanged, we have:

For l > K + 1,

R′G2per impression = R
G2
per impression.

For l ≤ K + 1,

R′G2per impression =
K∑
i=1

K+1∑
j=i+1

(θ
G2
j−1 − θ

G2
j )v

′G2
j

where

v
′G2
j =


v
G2
j if j < l;
vA1,G2 if j = l;
v
G2
j−1 if j > l.

(3.3)

Since vA1,G2 ≥ vG2l and v
G2
j−1 ≥ v

G2
j , R

′G2
per impression ≥ R

G2
per impression.

Therefore, auctioneer A1’s arbitrage behavior will increase auctioneer A2’s revenue of his own auction.
Similarly, we can get R′G1per impression ≥ R

G1
per impression.

On the other hand, consider the case that auctioneer A2 attends auction G1. In the forward-looking Nash equilibrium,
auctioneer A2’s bidding price is always less than his true value, thus he can always get a nonnegative revenue in auction
G1.
We can obtain the same result for auctioneer A1, since auctioneer A1 and A2 are symmetric.
Therefore, both auctioneers’ revenue will not be worse off in the presence of the traffic arbitrage behavior in terms of

the forward-looking Nash equilibrium.

Next, we generalize the proof toM GSP auction case by induction.
We have already proved that there always exists a forward-looking Nash equilibrium for the basic case: M = 2. Now

suppose it also stands forM = k. To finalize the proof by induction, we only need to check the case:M = k+ 1.
Since there always exists a forward-lookingNash equilibrium forM = k (with traffic arbitrage) and the auctionGk+1 itself

(without traffic arbitrage) always has a forward-looking Nash equilibrium, suppose initially {G1, . . . ,Gk} and Gk+1 are in the
forward-looking Nash equilibrium respectively. Then auctioneer Ak+1 attends the set of auctions Gk+1 and bids an infinite
high price to get the first slot of all the auctions in Gk+1, where Gk+1 is the set of the auctions that auctioneer Ak+1 attends.
Based on arbitrageur Ak+1’s bids, the auction set {G1, . . . ,Gk}wouldmove to a new forward-looking Nash equilibrium. Then
arbitrageursAk+1 can calculate their true values and attend auction Gk+1. After their attending, auction Gk+1 reaches a new
forward-looking Nash equilibrium. Then auctioneer Ak+1 could estimate his true value according to the new equilibrium
and decreases his own bidding price according to the forward-looking response function in Gk+1. If the whole procedure
terminates in finite steps, the forward-looking Nash equilibrium exists. If the procedure would not terminate in finite steps,
since either arbitrageur Ak+1 or auctioneers {A1, . . . , Ak} always decrease their bidding prices in the whole procedure, the
bidding prices of all the arbitrageurswould decrease but tend to some values respectively. Clearly, such a set of valueswould
be arbitrageurs’ bidding prices in the forward-looking Nash equilibrium. Hence, we finished the proof of part 1. Similarly,
part 2 and part 3 of the theorem could be easily derived by induction from the basic case:M = 2. �

4. Click arbitrage across markets

Consider an affiliate as a search engine company which itself could hold the GSP auction and sell advertising slots.
Suppose the client of the affiliate is the owner of one advertising slot. If the affiliate bids a slot from another search engine’s
GSP auction for its client and wins the slot eventually, this event could be considered as the search engine company wins
the slot of some other search engine and apportions the clicks won to his own adverting slot to increase this slot’s number
of clicks. If the affiliate pays less to the other search engine than it collects from its own client, this strategic behavior would
gain new revenue for the affiliate.
In general, if one auctioneer/affiliate of some GSP auction bids for some advertising slot on other GSP auctions to transfer

the clicks won to the slot on his own GSP auction to increase the number of clicks of that slot, this strategic behavior is called
click arbitrage. We shall consider such a strategic behavior of the affiliate’s click arbitrage.
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4.1. Model and assumptions

Similarly to the model of traffic arbitrage, we assume there areM GSP auctions with the same number K of advertising
slots. There are N advertisers who could attend all these auctions. We use c

Gj
k to denote the number of clicks per period of

slot k in auction Gj. Furthermore, we also assume that

Assumption 4.1. For all the search engines, the CTR of any slot is not affected by any auctioneer’s strategy of click arbitrage.

4.2. Properties of the model

At first, in the forward-looking Nash equilibrium there is an interesting proposition of the click arbitragemodel .

Proposition 4.2. In the click arbitrage model, for any slot k 6= 1, if the number of clicks on slot k is decreased by 1 and the
number of clicks on slot 1 is increased by 1, the auctioneer’s revenue will be augmented in the forward-looking Nash equilibrium.

Intuitively, the proposition looks obvious. However, it is not quite so but requires a worked-out proof. Although the first
slot has the highest price, decreasing 1 click on slot kwill decrease the price of slot k. Furthermore, such adjustment would
also affect the bids on the slots between 1 and k. Thus, in order to complete the proof, we need to compare the auctioneer’s
revenue before the adjustment and the revenue after the adjustment as a whole.

Proof. According to the equation (2.1), under the forward-looking Nash equilibrium, the payment of the bidder on slot ci
could be recursively represented as follows.

pi = bi+1 · ci

=

(
vi+1 −

ci+1
ci
(vi+1 − bi+2)

)
· ci

= vi+1 · ci − vi+1 · ci+1 + bi+2 · ci+1
= vi+1 · (ci − ci+1)+ pi+1.

(4.1)

Now suppose for some slot k 6= 1, the number of clicks on slot k is decreased by 1, i.e., c̃k = ck − 1. And the number of
clicks on slot 1 is increased by 1, i.e., c̃1 = c1 + 1. In the new position auction, obviously p̃i = pi for i > k.
For slot k,

p̃k − pk = vk+1(c̃k − ck+1)+ p̃k+1 − vk+1(ck − ck+1)− pk+1
= vk+1(ck − 1− ck+1)+ pk+1 − vk+1(ck − ck+1)− pk+1
= −vk+1.

For slot k− 1,

p̃k−1 − pk−1 = vk(ck−1 − c̃k)+ p̃k − vk(ck−1 − ck)− pk
= vk(ck−1 − (ck − 1))+ p̃k − vk(ck−1 − ck)− pk
= vk − vk+1.

Obviously, p̃2 − p2 = · · · = p̃k−2 − pk−2 = p̃k−1 − pk−1 = vk − vk+1

p̃1 − p1 = v2(̃c1 − c2)+ p̃2 − v2(c1 − c2)− p2
= v2(c1 + 1− c2)+ p̃2 − v2(c1 − c2)− p2
= v2 + vk − vk+1.

So,
∑K
i=1(̃pi − pi) = (k − 1)(v

k
− vk+1) + v2 − vk+1 > 0. Therefore, for any slot k 6= 1, if the number of clicks on slot

k is decreased by 1 and the number of clicks on slot 1 is increased by 1, the auctioneer’s revenue will be augmented in the
forward-looking Nash equilibrium. �

Consequently, the proposition implies the following lemma.

Lemma 4.3. In the click arbitragemodel, if the auctioneerwould apportion extra clicks among these K slots tomaximally increase
his revenue, he will apportion all the extra clicks to slot 1.

Therefore, if the auctioneer Ai attends auction Gj (i 6= j) and wins some slot at low enough price, he may make an extra
profit by apportioning the clicks he earns to slot 1 of his own auction. If such strategic behavior of the auctioneer is permitted,
does the forward-looking Nash equilibrium still exist in the whole market? Before we reply to the question positively, we
have to define the forward-looking Nash equilibrium in the context of the click arbitrage model. Actually the definition
is similar to the Definition 3.4 for the traffic arbitrage model, so we omit the definition here. Furthermore, we have the
following lemma corresponding to Lemma 3.5.
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Lemma 4.4. In the click arbitragemodel, a strategy profile b̂ is a forward-looking Nash equilibrium if and only if ∀j ∈M, b̂Gj is
a forward-looking Nash equilibrium.

Lemma 4.5. In the click arbitragemodel, the click arbitrageur Ai’s true value per click in auction Gj, where i 6= j, is equal to, v
Gi
2 ,

the second highest value in his own auction in the forward-looking Nash equilibrium.

Proof. Now suppose the auctioneer Ai wins some position k at auction Gj and apportions all c
Gj
k clicks to slot 1 in auction Gi.

Clearly, for any slot h 6= 1 of auction Gi, under the forward-looking Nash equilibrium, p̃
Gi
h − p

Gi
h = 0 according to equation

(2.2), where pGih denotes the payment on slot h in auction Gi and p̃
Gi
h denotes the payment on slot hwhen c

Gj
k clicks are added

into slot 1 in auction Gi.
For slot 1 in auction Gi,

p̃Gi1 − p
Gi
1 = v

Gi
2

((
cGi1 + c

Gj
k

)
− cGi2

)
+ p̃Gi2 − v

Gi
2

(
cGi1 − c

Gi
2

)
− pGi2 = v

Gi
2 c
Gj
k .

Therefore, if the auctioneer Ai wins some position k at auction Gj and apportions all c
Gj
k clicks to slot 1 in auction Gi, he

could earn an extra profit of vGi2 c
Gj
k . In other words, every click in auction Gj could bring a profit of v

Gi
2 to the auctioneer Ai.

So acting as a bidder in auction Gj, the true value of the auctioneer Ai is v
Gi
2 . �

Since we could estimate the arbitrageur’s true value, we can further discuss the equilibrium in this click arbitragemodel.

Theorem 4.6. Consider the click arbitrage model where all advertisers and arbitrageurs are following the forward-looking
response function. We have:

1. There always exists a forward-looking Nash equilibrium.
2. The model always converges to its forward-looking Nash equilibrium.
3. In the forward-looking Nash equilibrium, all the auctioneers’ revenue will not be worse off in the presence of the click arbitrage
behavior.

For simplicity, we only prove the case of two GSP auctions; generalizing toM auction case is straightforward and similar
to the proof of Theorem 3.7. We use G1 and G2 to denote the two GSP auctions respectively.

• Proof of Part 1:
We first consider the case: only one of the auctioneers is a click arbitrageur. Without loss of generality, suppose

only auctioneer A2 is a click arbitrageur. By Theorem 2.3, there exists a forward-looking Nash equilibrium in auction G2
no matter whether the arbitrageur A2 wins some position at auction G1 or not. By Lemma 4.5, arbitrageur A2 could be
regarded as a bidderwith true value vG22 in auction G1 actually. In anN+1 bidders GSP auction, the forward-looking Nash
equilibrium always exists. Therefore, by Lemma 4.4, the forward-looking Nash equilibrium exists even if the auctioneer
A2 could attend auction G1 as a click arbitrageur.
Now consider the case: both auctioneers are click arbitrageurs. First, we sort and relabel the bidders according to their

true values in both auction G1 and G2, such that, v
G1
1 ≥ v

G1
2 ≥ · · · ≥ v

G1
N , v

G2
1 ≥ v

G2
2 ≥ · · · ≥ v

G2
N . Without loss of

generality, we assume vG22 ≥ v
G1
2 . Then we only need to prove the following two cases: v

G2
2 ≥ v

G1
1 and v

G2
2 < v

G1
1 .

Case I: vG22 ≥ v
G1
1 .

Auctioneer A2 could be regarded as a bidder with true value v
G2
2 in auction G1. After auctioneer A2’s participating, by

Theorem 2.3 and Lemma 4.4, auction G1 will converge to a new forward-looking Nash equilibrium where auctioneer A2
gets slot 1 or 2 of auction G1. No matter whether A2 gets slot 1 or 2, now in auction G1, the second highest bidder’s true
value equals vG11 . So auctioneer A1 will use the true value v

G1
1 to participant auction G2. Similarly, auction G2 will reach a

new forward-looking Nash equilibriumwhere auctioneer A1 gets slot 2 or 3. Since the second highest bidder’s true value
still equals vG22 , we proved the existence of the forward-looking Nash equilibrium.
Case II: vG22 < v

G1
1 .

Since vG22 ≥ v
G1
2 , it is easy to verify that there exists a forward-looking Nash equilibrium in which auctioneer A1 gets

slot 2 or 3 in auction G2 with true value v
G2
2 and auctioneer A2 gets slot 2 or 3 in auction G1 also with true value v

G2
2 .

Therefore, the forward-looking Nash equilibrium exists even if both the auctioneers are click arbitrageurs.
• Proof of Part 2:

This theorem can be derived directly from Theorem 3 in [2].
• Proof of Part 3:

The proof is similar to that of Theorem 3.7.
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Remark 4.7. If there exists the click arbitrage across markets, the advertisement displayed in the top slot of some auction
may be displayed in some other slot in the same auction in the forward-looking Nash equilibrium. For example, A merchant
wins the first slot of auction G1 andmeanwhile hewins some slot of auction G2. Suppose auctioneer A1 adopts click arbitrage
for his first slot and wins some slot of auction G2. Hence, there are two slots having the advertisement of the merchant in
auction G2 now. Actually, because the affiliate usually will keep this strategy of click arbitrage secret from his client, he
would not attend the auction where the client’s advertisement has been displayed. Furthermore, two display URLs which
are the same, appearing on the same result page is forbidden in search engines, which prevents the phenomenon in the
above example.

5. Conclusion

Our results derive interesting properties of cross-market auction models under GSP, utilizing the nice properties of the
forward-looking Nash equilibrium. There are of course practical limitations of the models and the assumptions as well as
the methodologies. First of all, the click-through-rates may not be invariable to the advertisements displayed on the slots,
nor fixed even for the same advertisement [11]. Second, the forward-looking strategy may not be always followed by every
player (see [10,15] for detailed discussions on this topic). Third, though the arbitrage behavior is in use in reality even for
large Internet companies, there is a potential deterioration of the qualities of the advertisement slots.
Those limitations may have a potential restriction on the applicabilities of particular findings presented in this work. As

a first approximation of the reality, our study makes the first viable effort to understand the cross-market phenomenon in
the sponsored search market. We will further explore possibilities of further refinement to resolve the limitations pointed
above. At this micro-economic level, it has not always been easy to derive a strong unification of theoretical work and
practical reality. For example, the well celebrated revenue equivalence theorem [14,12] has not been found to universally
hold in reality [7]. Our work as an extension in the new settingmay not be possible to escape from such fallacy when human
decisionmakers are involved. However, the fast speed atwhich Internet developsmay rule out direct involvement of human
subjects at tick level decisions and open up the room for software agents’ full participation. Rationality may finally play a
much more important role to prevail at Internet-based market places.
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