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Abstract. We consider the complexity of several steindard problems for various classes of Pletri 
nets.. In particular, the reachability problem, the liveness problem and the k-‘boundedness 
problems are analyzed. Some polynomial time and polynomial space complete probkms for Petri 
nets are given. We then show that the problem of deciding whether a Petri net Is persistent is 
reducible to reaphability, partially answering a question of Keller. Reachability and boundedness 
are proved tG be undecidable for the Time Petri net introduced by Merlin. Also presented is the 
concept of controllability, i.e., the capability of a set of transitions to disable a given transition. 
We show that the controllability problem requires exponential space, even for l-bounded nets. 

1. Introduct-ion 

Petri nets have been used to model parallel computation, computer systems and 

other complex systems [S, 24, 25, 281. As a moldeling tool, etri nets offer a simiple 

and powerful formalism for the representation of concurrency and the interaction 

of events in a system. The mathematical properties of Petri nets reflect the 

properties and patterns of behavior of the systems being odeled. For exa.mpk a 

study of lir reness in Petri nets will help us to understand system deadlocks. 
Boundedne:;c ip: related to the “storage iapacity” required to hold tlhe commodities 

in a system. 

* A prelikinary version of parts of this paper was presented at the Conference on Petri Nets and 
elated odels, ..I.T., l-3 July 19”15 and in [303. 
’ The work of this author was supported in part by XSF Contract G 
* The work of this author was supported ia part by a Kansas General Research Grant. 
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278 ND. Jones, L.H. Landweber, Y.E. Lien 

Xn this paper, we analyze the computational complexity of some problems in 
ach problem is formulated in the following way: A property statement 

etri nets are given. ‘kxity of algorithms 

ine whether or not an arbitrar 
is can involve showing that al:ll al ve a gaven problem 

ertain complexity and/or a!malyzing a given algorithm which solves a 
tain an upper bound on the probfem’s complexity. 
sent the basic terminology and definitions for Petri nets and 

utational complexity. Many of our results are surnmarized in Table I at the 
end of the paper. 

1.1 Pefri nefs 
e (P, T9 _I!&) where P = {A,, . . . , A,} is the finite set of 
is the finite set of transitions. ~4 token distribution, 
g from P into IV, the set of non-negative integers. MO is 

the initial slate of 9. A slate M is represented by Z’& aiAi (‘I: aiAi if m is 
here ai is the value M(Ai), the number of tokens in place Ai. A state 

:ns in any place is represented by 4. Each transition tj is denoted by 
i, where ai and bi are in f9,1}. For the transition ti, the sets of places 

1 in ti) and Oj = {Ai 1 b2 = 1 in ?j} are referred to HS thie input places 
ces respectively of tja Conceptually one may think of a Petri net as a 
ted g.r?ph (see Fig. 1) whose nodes are the places and transitions of 

the net Arcs are directed from places to transitions and from transitions to places. 
en 4 denotes the set of places having an outgoing arc to tj and Qj denotes the set 

ave an incoming arc from tj. The set of in&put transitions and output 
lace can be defined similarly. 

t1 ’ 9 = (I’, T, MO) 

I’ = Oh, At, As} 
T = {h, f2, t3) 

MO = 2Ai + 1 A2 + 4PL.3 
t,: A,--,A,+ A2 
t,: AI f A,-+ A, + A, 
t,: 4 + A2 

3 

etri net and its re~~e~~ntarion as a bipartite 
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w say that ti is enabled at ’ if the firing of tj yields s&zte 
f a transition tj is not enabled ~3t Ad, then it is disabled 

A firing sequence is a sequ sequence is firea 
at state A4 if there are states ) and &f~-l+“k 

for 1 s k 6 I-. When a state M’ is derived from RI via a firing sequence CT E ‘T*, we 
write A4 +W’M’. -41~0, M + * Mp if there is a (possibly empty) firing sequence gr 

‘. The reach&City set of a Petri net with initial state 
e reachability pmlem for a class of Petri nets is the problem 
arbitrary net rn the class and an arbitrary s&ate, whether the 

stc!~;: is in the reachability set of the net, 
.4 Petri net is k-bounded for an integer k 2 1 if for every state in the 

re chability set, M(Ai) G k for 1 s i s m, i,e, no place in the Petri net will ever 
receive more than k tokens. A Petri net is safe if it is l-bounded. A Petri net is 
5ounded if it is k-bounded for some k. Qbviolusly, a Petri net is bounded if and only 
if it has a finite reachability set. 

A transition tj is Iiue at state M if for any fiireable firing sequence u a.t 
a r E T* such that mtj is fireable at M. A Petri net is kive if every transi 

et is live at the inirial state. The liveness problem for a class of Petri nets is the 
problem of deciding whether an arbitrary net in the class is live. 

A Petri net is conservative if there is a positive integer valued function f : P * IV” 
such that every yransition tj satisfies 

AzI f(Ai) = c f(Ak)y 
I i AkEOj 

(where 2 means integer summation). A net is I-conservative if and only if it is 
conservative with f(Fd) = 1 for all Ai E P. A conservative Petri net has a 
reachability set b t the converse is not true. Conservative Petri nets are studied in 

[181 
A Petri net is a flee crtaoire Petri net (FCPN) if for every transition tj E T and place 

._cii E 4 either tj is zhe only output transition of i or Ai is the only input plac 
A Petri net is persistent if for every state in the reachability set an 
transitions ti and tj (i # j), if t, and tj are enabled at 

is’ cmflict -free if each pl 
of Ai OT (2) for all j, Ai E 

e persistent but the conv 

not necessar is 1 here 23 reac 
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1.2 Chputarionai compbxity 
h this paper we present results on the compIexity of some Petri net problems. 
ith a stan$ard en&ing scheme such as the one in [Id], we view each prob!em as 

a language recognition problem. 
&t Lt, L2 C_ 2 * be languages where bc is a finite alphabet with at Least two 

members. Eet % be a class of languages over 2. Then 
(I) I,, is recur&@ reducible to Lz if the existence of an algorithm for deciding 

rnembc:rship in L implies the existence of an algorithm for deciding membership in 

L*. 
(2) I,1 is bg space reducible to L2 if there is a function f : 2 * -+ C* such that 

(a) f is computable by a deterministic Turing machine in log-space, i.e., the 
machine uses at most (3 log (1 x I) squares of scratch tape to compute f(x) where 
x is initially on a read-only input tape, f x 1 is the length of x and 

(!3) for all fc E P, x E L, if and only if f(x) E Lt. 
L, is %-hard if Lzr is log space reducible to L1 for all L2 E 9% 

(4) a, is V -mmplete Ior complete for %’ if Lt is S-hard and L1 E %. 

he reader is familiar with Turing machines. A good expository 

The following useful result can be easily obtained. 

Lea i: de?wfe the complement of L C 2 *, i.e., i = E * - L. . 

(I) lf L1 isiog space reducible to L2 and L2 is log space reducMe to LB, then L 1 is 
dog space reducible to I&. 

(2) If Lt is Log space reducible to I.+ then A!, is log space wducible tc, 11,. . 

. See 1123. 

shali consider se ral we11 known classes of ianguages, The reader is :referr*ed 

. presentation in ] for further details. 

y) and BSPACE (exp) are used to denote the set of languages 
inistic Turing machines in polynomial space and exponen- 
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known to have at least exponential space complexity. Section 5 shows that 
persistence is recursively riducible to reachability. 0th the decidability of 
persistence and the decidability of the reachability problem are open. The best 

_ known result is an exponential space lower bound for the reachability problem [20]. 
Section 6 shows that reachability and boundedness are undecidable for the Time 
Petri net introduce&l in [21]. Boundedness is known to be decidable for ordinary 
Petri nets [IS]. 

Commoner introduced the concept of free choice Petri nets (FCPN) and 
established a necessary and sufficient condition for a FCPN to be live. The result 
was first reported by Hack [5]. 

Consider a set D of places of a Petri net. Let 

D’= {t 1 t is an output transition of a place A E D} 

D = {t 1 t is an input transition of a place A E D}. 

tif a set D satisfies ‘D c D, it is called a deadlock Clearly, if a deadlock is blank, 
i.e., contains no ‘okens, it will remain blank under transition firings. If a set D 
satisfies D* c ‘D, it is called a trap. Thus a trap which contains at least one token 
cannot become blank. Note that the union of two traps is also a trap. Let 7” be the 
union of all traps contained in the set of places D. 

Commoner has shown that a FCPN is live if and only if for each deadlock D with 
D”# 4, TD # t$ and T’ is not blank. To determine if a FC N is not he, one can 
look for a deadlock that does not satisfy the above condition. This can be done 
easily by a nondeter istic Turing machine in polynomi erefore to 
determine whether a PN is not live is a problem in NT 

The next theorem asserts that the problem is complete for N (POlY )* 

e liueness problem for 

9 

as defined below is comg!e 

To decide : if 9 is not live. 

t remains to s 
reducible to the Gwen 
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disjunction of propositional variables Xi and negations of propositional variables, gi. 
We construct a Petri net P = (P, T, ) with 

i, Xi, 3i 1 Xi is a propositional variable 0 

U {(%, Ci> 1 if Xi is in Cj} 

U{(& Cj)l if Zi is in Cj} U(F) 

and AI, = 1 for all Ai, (p) = 0 for p E i}. The transitions in 
defined as follows (each line defines one transiti 
p%ces to the left and right of the arrows respectively): 

(1) FOG each variable Xi, 
AidXi 

9 (1 1 a 

-Xi + C (Xi9 cj) 
fiECj 

Zi + C (f*, Cj) 
%iECi 

(lb) 

(2) for every clause Cj, 

(Xi, Cj) + (% c)+ F, 
ZiEC‘ XiECj 

(3) F-, c:=1 Al. 
kf C, A C2 A l l l A Ck is satisfiable, then there exists an assignment 

f { : Xl, x2, . . . , x,,)-, {true, f&e} such that Cj .= tme for I s J’ G k. The following 
firing sequence wil lead to a state in whieh no transition can be Bred. 

Step I. ff f (Xi) = true, fire Ai -+ Xi. Otherwise, fire Ai + IFi. 

is no? satisfiable. 



= (Xl v f2 v x3) 
The reduction in th 
transitions. 

Qt ) 6 3=-+x3 

(b) X2 -+ (x2, Cd 

(tl 1) $3 -+ (x’3, Cd 

(trz) ( 1) + (x*, 1) + (L 
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The reductisn in the a 
conservative FCPN we have 

Jones, L.H. Landweber, Y.E. Lien 

proof does not produce a conservative net. 
only 

. The liveness problem for conservative is in x (POlY )* 

The reachability problem and the liveness problem are closely related. In fact, 
ack [‘J’f has shown that for arbitrary Petri nets, tlhe reachability problem and the 

liveness problem are recursively reducible to each other. ence the decidability of 

one problem implies the decidability of the other. Moreover, it is easy to see that 
the reachability problem for arbitrary nets is ‘log space reducible to the reachability 
problem for FCPN. Unfortuna,tely, Iiack’s proof, recursively reducing reachability 
to liveness, does not preserve the free choice property. I-Ience the dccidability of 
liveness for FCPN does not yield the dzcidability of reachability or liveness for 
arbitrary Petri nets or the decidabi1it.y of reachability for FCPN. 

e next consider the conservation property of Petri nets. Recall that a Petri net 
is conservative if thtae is a positive integer valued function f : P ---) IV’+ such that for 
every transition Zj : 

Alternatively, if we construct a matrix r such that ;he 4’” row vector rj corresponds 
to ti as follows: 

- 1 if Ai E 4 - Oj, 

S;;i = 1 if Ai E Oi - lj, 

0 otherwise, 

n positive integer solutions to r. x = 0 correspond to conservation functions 
= f(Ai). With th observation in mind, we shall consider the conservation 

property of Petri nets wi in the general framework of linear systems. 
Let r be a matrix of integer entries and let b be an integer vector. 

hollowing problems: 

‘ x = 0 has a positive integer solution. 
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enote the comple ent of problems 

ecide: if I+ l x = b has no nonnegative rational solution. 
We observe that the conservation problem for Petri nets is a special case of 

Namely, all nonzeto entries in the matrix r for a Petri net are in {I, - 1). 
n [14] as a problem in NT1 

n the next result w 
are log space reduci 

to each other and hence both fact we show that any two 
D} are log space reducible to each other. 

Troblem=P is complete for NTIME (poly), then the class NT1 
under complement, which seems unlikely. Another problem 

roperty is the primahty test problem which is conjectured not to be NT1 
- complete [26]. 

Problem A is easily shown log space reducible to Therefore the complexity of 
B serves as an upper bound of the complexitv of e 

emma 2.3. A is log space reducible to B. 

roof. Let e be A vector with 1 in each component. F l x = 0 has a positive integer 
solution if and only if r l y = b has a nonnegative rational solu 
b = -Fe. 0 

. Each of t4e problems B, C, is tog space reducible to 
every other. 

By Lemma 1.2.1, it is sufficient to show that 
(I) ‘IS is log space reducible to C, 
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E (poly) and A is log space reducible vo 

For conflict free nets, reachability is known to be dectdable [I,). Our next theorem 
gives a31 NT! E (poly)-hard lower boti& for this problem. 

.6, TIze reachability problem fGr conflict free Pe,?ri nets is MTME 
(ply )-haRI. 

. We reduce the satisfiability problem for conjunctive normal form proposi- 
ti jnat cakx%s formulas to the reachability problem for conflict free nets. Let 
k: = C* fi m * l A C’,, be a CNF formula where each Cj is a disjunction of (some of) the 
variables x t,. . . 9 x, and their negations Z1,. l . ,%. We construct a Petri net 9) = 
{P, T, A&j with I’ = {x,, . . . , x,, Cl,. . . , Cn}, i.e., one place for each conjunct and one 

lace for eack variable of The transitions in T are defined as follows: 
(I) For each variable Xi, 16 i s t 

or each negation of a variable ji, 1 s i s r 

r each conjun t Cj, 1 G j S n, Cj + 4. 
Let each place ~~it~a~~y have zero tokens. We claim that ai state for which each 
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The membership problem for context sensitive langua es is complete for 

SPACE (poly) [?2]. The problem is usually formulated 
Given: a nondeterministic linear bounded automaton . 

TO decide: if J! accepts X. 
order to prove that a problem is complete for ACE (poly), we will show 

(poly) and that the membership problem for context sensitive 
Ian;;uages is reducible to L. 

b- -l 

4% 1 The following problem is comple ru)* 
Given: a l-conservative Petri net 9 = (P, T, 
To decide: if M +S * 

roof. A nondeterministic Turing machine which maintains one counter for each 
place, generates a ran om firing sequence and maintains the current marking on its 
ape can solve the reachability problem for 9. Since the total number of tokens in 

‘the places of a I-conservative Petri net does not change as a result of firing a 
$transition, the req dired ‘Turing machine can operate in linear space. Consequently, 
lhe problem is in DSPACE (poly). 

To show it is DSPACE ard, s1 rpplt3lse WC: are en a nondeterministic 
near bounded automaton , Z1, r, 8, ql, JF, $) \vhere is the set of states, 

zhe set of input symf;ols, r 2 z U{$} i’s the SC: of tape symbol,, 6 G 
x r x {C, R, L} x K x r is the state transition reMion, q1 E is the initial state, 
c K is the set I states and $ E r - C is the boundary 
t r = {al, a2,. = {ql, Q, . . ., (lm}. 

‘sentence in $2 *$. all construct a l=conserW ive 
~0110ws: 

a) P={A,,(Osisn+l, lsj~p) (Q,jIOGig 
,j will have one token iff the symbol in location i of 

i, s -I- i, ? + i. I 
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(3) If (8, Qrr l-9 qr, a) E 4 
then 7’ includes 

[move left] 

.s + Ai.t * -1.r + forall lGiSn+1. 

(4) If qs is a final state, then 7’ includes 

Qi,S-,C forallC’EiSre+l. 

(5) T also includes 

C-+A,,+C+D forall isian, lsjsp. 

et M” = C + nD + Aal+ An+,.l (recall that n is a constant). If A can reach a 
final state + and hen e accepts the input string x, the Petri net p can simulate the 
behavior of .M by firing transitions in (l), (2), and (3). Finally g fires QkS + C for 
some i and transitions in (51 to reach the state AK On the other hand if 9 can reach 
state I) the transition t in (4) must have been fired to produce a token in C. &fore 
that, transitions in (5) cannot be fired. Therefore, 9 must have fired a sequence of 
transitions in (l), (2), asd (3) to make t tireable. The firing sequence corresponds to 
a sequence of moves of JG to accept x. We conclude that A accepts x iff 9 can 
reach M’. 

It is easy to see that 9 is l-conservative and the reduction can be performed in 
logarithmic space’. 0 

The same proof can be used to show: 

Tp,e coverability problem for f-conservative tri nets is DSPACE 

roblem for bounded tri nets is CE (POlY I- 
roblem for k-bounded Petri nets as defined below is DSPACE 

and a c0nstan.t k such that P is k-bounded (assume 

ed below is r(POlY )- 
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, The next theorem gives a CE (poly)-hard lower bound for dec 
persistence of arbitrary Yetri nets. It is not known whether this probl 
decidable. 

The problem of deciding whether an aribtrary tri net is persistent is 

. The membership proble for det inistic linear bounded automata is also 
n to be DSPACE (poly)-complete. elete the transitions of (5) in the proof of 

‘I?eorem 3.1 and add transitions 

;or all 0 6 i s n + 1 and each final state qs, where E is a new place. Also assume 
that the original linear bounded automaton J&Z is deterministic. Then the net 
obtained is persistent if and only if .42 does not reach a final state. If a final state qs 
is reached while scanning the ith tape symbol, then both 

and 

are enabled but only one can fire so in the case the net is not persistent. Because JZ%’ 
is deterministic, all other transitions preserve persistence. C 

Another interesting observation is that for a Petri net 9 and a state M, we can 
construct a FCPN p’ by modifying transitions such that 9 can reach 9’ cap. 

9’ is called the: “released form” of 9 in [6]. 

core A. The reachability problem for a I-covzservative 
(poly >-complete. 

. For a Petri net 9 = (I’, T, 
(a) 9’ has places (( i, lj ) 1 for all tj E 

(b) !Y’ has the following transitions: 
(1) For each tj E T 

AiElj 
in 9 

AkEOj 
in 9 

C3 i iS i SO ’ inc 

state 



t can be seer, that, given a state M of 9, P CAn reach M i 
’ whose projection onto the places of 9 is M and WJ 

rthermorc, 9’ is l+xinservative iff P is. Tlerefore 
an arbitrary l-conservative FCFW is SPA( IE (goly 

’ cam reach a state 

e co2erabiZity probZen2 fm bcmsemati2)e FCPN is 

The k-boundedness problem for (firee choice) conseruatioe Petri nets is 
ly )-compkte. 

‘irst note that k-boundedness can be decided in polynomial space for 
arbitrary nets and hence this is also true of (free choice) conservative nets. The r.et 

btained in the proof of Theore .l can be modified so that it is not k-bounded, 
ut is still conservative, in case accepts its input x. To do this, elimnnate the 

tra92itions of if51 \ , in the proof of Theorem 3.1. Add transitions 

Dj4E (1~ i s k + I), 

where 1,. . . ,Dk+l are new places. 
e functiorj which shows that the net thus obtained is conservative is f(A) = 
fOE* all places A a{Di}U{E} and f(E)= f(Di)= 1 for 1 s i s k + 1. 

The construction of Theorem 3.6 can then be used to obtain a FCBN having 
uired properties. Notice that the modified net will still be bounded since it is 
azive (though not l-conservative). q 

y the construction of Theorem 3.6, the reachability problem of a general 
tri nes can be recursivety reduced to the reachability problem for a FCBN. 

ecursively equivalent to the liveness problem for general 
ction in Theorem 2 of [7] can be djusted to produce a 

reachability problem for a FC N is also recursively s 
three problems mentioned above. The solvability of these 

?tri ets is i 
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“systematically” for any state eTchable from 1 whether t is enabled in 
The machine 3 stops and answers that Y is not live if in eve 2, reachable 
from I, t is not enabled. he standard technique in [27j can be used to check a11 
states reach’able from 1. In order to use this technique, F uses pt registers cf size jr 
where n is the spa&be uired to record any state in the reacha ity set. Since 9 is 
l-conservative, n is a polynomial function of the size of 9. ence the liveness 

lem for l-conservative Petri nets can be decided in nondeterministic space 
‘), or deterministic space (n”). El 

ace 

Petri nets are typically used to model constructs, such as operating systems, in 
ivhich events occur asynchronously in sequences which are unpredictable b 
lnay affect the state of the entire system. An essential concept for understanding 
:$vch systems in practice is that of control, i.e., the ability of actions by one part of 
the system to deteamine events in another regardless of othe oncurrenlt systenl 
activities. In this section we formalize this concept in terms of tri nets and show 
:;hat determining whether one part controls another is inordinately difficult, 
requiring at least exponential space. Furthermore, this bound applies even when 
the problem is restricted to l-conservative Petri nets, in which tokens are never 
created or clestroyed but merely move from one place to another. 

Let g = (P, T, M) be :j. Petri net. Let TO be a subset of T and i a transition in 
T - TO. An erasing homomorphism h can be defined for sequences in T* such that 
h(t)=tiftEToandh(c)=Eift~TO.Wes at TO controls 7 by a firing scque= 

x in TX if for every firing sequence c at stat h(c+) = x implies 7 is not fireablc 
at M. Namely, TO cm co trol i in the sense that once the sequence x has been fired, 
even when the transitions of x are interleaved with transitions in T - TO, 7 cannot 
be made tireable uratil transitions in TO fire again. Further, we say TO can control T if 
TO can control i by at least one sequence X. 

The controllability problem is de ned as follows. 
Given: a l-conservative Petri net (P, T, 
To decide: if TO can control F 

A 

exponf: ntid space. !” 

iws /east 
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to determine whether the csmplement of a set denoted by a regular expression with 
squaring is empty (CorolIary 2-1 of [22]). 

be a regular expression *it to represent the 

denoted by the regu 9% correspond- 

cial places ZER.0, so 
for each subexpression 

special places 
of R including itself. The transitions of 

!3% are TR L! (0, 1,2} w ere transitions 0, I and 2 are defined as follows: 
(0) TAPE-, ZER0 

0) 
(2) 
The transitions in TR are described recursjvely 
1) If = 0, then TR includes 

R 4 0UTR + TAPE. 

= 1, then TR includes 

ONE+ INR + OUTR + TAPE. 

f R = RI l RZ, then TR includes 

IRS - INR, 

OUT,R, + OUTR 

and all transitions in TR1 and TRI. 
= 
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4 + 

OUT& + R+OWTR+ 

places respectively. To complete the 
be the set ok” all places occurring in the transitions above, 

en distribution assign one token to TAPE, &?. and all type 

nd 1. We define k (0 = 0, h(1) = 1 and h(t) = E 

for all transitions not in T,. It is easily verified that rings of pR simulate the 
generation of strings in R in the following sense. A string x E (0, 1}* is in if and 
only if x = h(u) for some firing sequence cr such that 
with M’(OUTR) # 0 (i.e., which moves a token from 

Now let 7 be tra.qsition 2 and suppose the transitions in TO produce a sentence 
x E (0, l}*. If x iq in R, then there exists a firing sequence of transitions which 
moves the token from INR to OUTR and makes the transition i fireable 
in R, then no m:*eter how the transitions in (1) through (6) are fired, no to 
added to OUTR and hence t is controlled by To. 

Further, it can be seen that if To can control 7 by the sentence X, then x must not 
be in R. We conclude that To can control t iff some sentence in (0, l}* is not in R, 
i.e., the complemer:t sf R is not empty. 

Then by [22], the fzontrollability problems requires at least exponentia 
By exhaustive enumeration of firing se:quences, controllability for l-consrzrvative 

Petri nets can be termined within exponential space, so the complexity bound is 
tight. Furt hermo by using the technique of Theorem 3.6 we can construct a 
FCPN 9’ to simslate 9 so the controllability problem for FCPN also .requires 
exponential space. El 
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ence 

e results of Landweber and obertsbn [17] show that persistence is an 

important property of Petri nets. For example, reachabiiity sets of persistent nets 
are semi-linear. oreover, every vtet is equivalent to one in which non-persistence 
occurs at no more than two transitions. Because of these facts and the importance 
of semi-linearity in earlier Petri net work, we believe that a thorough understanding 
of the role of persistence will be helpful in solving the difficult open Petri net 
problems. 

Iin this section we show that persistence is recursively reducibile to reachability, 
i.e,, if there is a decision procedure for the reachability problem, then there is a 
decision procedure which determines whether an arbitrary net is persistent. The 
decidabiltity of both problems is op,,zn. Lipton [20] ha*s given an exponential space 
ower bound for reachability and in Sectio;l 3 we sho:ved that persistence is 

PACE (poly)-hard. 

Persistence is recursively reducible to reachability. 

A Petri net Sp is not persistent if and only if there is a reachable state M and 
nsitions tj and ri which satisfy 

(D) 2 1 for all places D E (& U IJ 
(1) 

M(A)= 1 for some A E(rj Mj)-(Oi n Oi). 

or each pair of transitions tj, ti and each A E (4 n 4) - (Oi n Oj) construct a Petri 
et 9ij(A) xs follows: 
1. flj(A) includes all places, arcs and transitions of 9. 

d a place B which initially has one token. 
d a transition t having no output places and input places & u 4 u {B}. 
r each place A ‘, other than PI and B, add a transition t(A’) with 

Z(A’) = 8, L(N) = 

at most once. he transition> of 
P than A. Th net gij(A) reaches t 

. Hence g is not persistent 
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In [21], Merlin introduced a variant of t e Petri net model having a we& timing 
mechanism. In this section, we show zhat some of the problems considered in 
previous sec%ns are undecidable for this msdel. This is unfortunate because the 
Time Petri net possesses some interesting properties, notably with respect to 
recoverability as studied by Merlin. Our result is perhaps indicative of why 
significant results regarding the mathematical properties of Petri nets have been so 
difficult to obtain. In particular, the computational power of Petri nets seems to lie 
in an unexplored region between that of finite automata and Turing machines. 
lUoveover, any significant strengthening of the model seems to lead to equivalence 
with Turing machines. Similar observations and related results appear in [1,4J. 

A Time Petri net (TPN) is a Petri net plus a timing mechanism. Associated with 
each transition t E T is a pair of numbers (al, az) (a,, a2 E {real numbers} U (00)). 
Assume a system clock which counts off time beginning with zero. Further assume 
that t becomes enabled at time a. Then d may not be fired until time a + aI. 
Moreover, t must be fired by a + cl2 (unless it is disabled before then). Assume that 
the firing of a tr;Zn sition takes 0 time and further assume .thar the TPN blocks or is 
undefined on all computation paths which disobey the libove requirements. 

We show that the TPN can simulate deterministic input -free 2-counter machines. 
Since haltmg is undecidable for such machines, this yields the undecidability of 
various TPN properties. A related result and construction appears in [4]. 

An input-free, ‘L-counter machine is a 6-tuple 

, 40, qF, 4, c1~ c2) 

where Q is a finite set of states; qs E Q is the initial state; qF E Q is the final or 
halting state; 9 is a finite set of instructions and C1 and Cz: are counters, each of 
which is capable of storing a nonnegative integer. The counters are intially set to 0. 
Instructions are of the form: 

) i = 1,2; q.ij 
i = 1,2; q,q 

(c) (qJ,r,s) i = 1,2; q, 

The instructions are interpreted as follows 
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sfate or by zrttempting to decrement any empty counter are undefined. The 
following is w#ell known. 

The halting problem for deterministic 2-counter machines (with coun- 
0) is undecidable. 

Z-counter machines can simulate Turing machines [23]. q 

Our next theorem is 
deterministic :&counter 

proved by 
machines. 

showing that the TPN can simulate arbitrary 

I.Vze following properties of the TPN are undecidable. 
1. reacFabil’ity 
2. bou&e&aizess. 

iet % = (Q, qo, qF, 9, C1, CZ} be a deterministic 2-counter machine. To 
simplify the notation assume instructions of type a and b satisfy q# 4 and those of 
type d: satisfy q $Z {r, s}. Any 2-counter machine can be n,iodified to satisfy this 
property without affecting whether or not it halts when started with its counters 
empty. 

The TPN which simulates %? has one place A, for each state q E Q. The place for 
q will have one token when V is in state q and zero tokens otherwise. Initially Aqo 
has one token and the other state places have zero tokens. There is one place for 
each counter, A * r C1 and A 2 for C2. Initially A ’ and 2 have zero tokens. There 
is also one place i for each instruction of the form (q, ?& r, s). Initially this place 

as no tokens. 
Instructions of % are simulated by transitions in T and associated times. 

9 

(4, a, q) 

9 

Aq +A’-+A, 

A;-++~, t A' an = Q, a2 = 00 
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there are. three transiti 
counter not empty case an 
empty. the first transiti 
the times associated wit 
counter Ci to the correct value. If the first transition is not ena 
the third transition will be fired. It should be clear that the 
above, simulates the 2-counter machine %. Moreover, 9 reac 

oken in place AqF iff % halts. ecause of our ass 
wit1 qF, it follows that no transition is fired a 
eachability: A marking with one token in A 

tr a-&ions which empty all places if a state with a token in 
rx,3itions: 

AqF + A'+ A~F, 

Acid + A ’ + A,F, 

all with associated ti 0 and 00. Then the zero marking is reached in the modified 
TPN if! qF is reach % iff % halts. 

2. Boundednesrj. an additional place d which initially has no tokens. 
each transition of 9 to add a token to d. Then the number of ens d recc’ l 

bounded iff the length of fireable firing secluences in the modifi 9 is boun 
“4Z halts. 0 

In Table 1, we summarize 
in Petri nets. Fo 
considered: reac 

earlier work on NS 



Table 1. Summary oi some complexity results for Petri nets. The DSPACE (exp)-hard results are due 
to Lipton 1201. 

Petri net 
&sses 

P&terns 

Reachability Liveness Coverability k -Boundedness Conservation 

Skate 
machine 

graph 

NSPACE (log) NSPACE (log) NSPACE (log) (not k-bounded) 
complete compIete complete NSPACE (log) trivial 

complete 

Marked 
graph 

(ret wehabfe) (not live) (not coverable) (not k-bounded) 
NSPACE (log) NSPACE (tog) NSPACE (log) NSPACE (log) NSPACE (log) 
harc3 complete hard hard complete 

l-Con- DSPACB (poly) (not live) 
I+ee wvative wmplete 

DSPACE (@y) WRAtrE (poly) 

chG%!e 
NTIME (poly) complete cdmpiete trivial 

Petri riny 
(not live) 

net DSPACE (exp) NTIME (poly) DSPACE (exp) DSPACIE (poly) NTLME (poly) 
hard complete hard complete 

Konser- DSPACE (jowly) DSPACE (poly) DSPACE (poiy) DSI?ACE (poly) trivial 
Petri vative complete complete complete 
net Any DSPACE (t=xp) DSPACE (exp) DSPACE (exp) DSPACE (poly) NTI[ME (poiy) 

hard h;rrd hard complete 

results indicate that many problems concerning Petri net behavior are intrinsically 
very hard to s&e. Consequently any algorithms which analyze the types of Petri 
net behavior ditiussed here will in the worst cases require unxceptable amounts of 
computation time or space. 
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