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Abstract. We consider the complexity of several standard problems for various classes of Petri
nets. . In particular, the reachability problem, the liveness problem and the k-boundedness
problems are analyzed. Some polynomial time and polynomial space complete: problems for Petri
nets are given. We then show that the problem of deciding whether a Petri net is persistent is
reducible to reachability, partially answering a question of Keller. Reachability anc boundedness
are proved tc be undecidable for the Time Petri net introduced by Merlin. Aiso presented is the
concept of controllability, i.e., the capability of a set of transitions to disable a given transition.
We show that the controllability problem requires exponential space, even for 1-bounded nets.

1. Introduction

Petri nets have been used to model parailel computation, computer systems and
cther complex systems [5, 24, 25, 28]. As a modeling tool, Petri nets offer a simple
and powerful formalism for the representation of concurrency and the interaction
of events in a system. The mathematical properties of Petri nets reflect the
properties and patterns of behavior of the systems being modeled. For example, a
study of liveness in Petri nets wili help us to understand system deadlocks.
Boundedness is related to the “‘storage capacity” required to hold the commodities
in a system.

* A preliminary version of parts of this paper was presented at the Conference on Petri Nets and
Related Models, M.L.T., 1-3 July 1975 and in [30].

! The work of this author was supported in part by NSF Contract GJ32087.
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In this paper, we analyze the computational complexity of some problems in
Petri nets. Each problem is formulated in the following way: A property statement
and a class of Petri nets are given. Our results study the compiexity of algorithms
which determine whether or not an arbitrary Petri net in the class has the given
property. This can involve showing that all algorithms which solve a given problem
must have a certain complexity and/or analyzing a given algorithm which solves a
problem to obtain an upper bound on the problem’s complexity.

We first present the basic terminology and definitions for Petri nets and
computational complexity. Many of our results are suramarized in Table 1 at the
end of the paper.

1.1 Petri nets

A Petri net ? is a 3-tuple (P, T, M) where P ={A,,..., A,} is the finite set of
places and T={t,,...,t.} is the finite set of transitions. A token distribution,
marking or state is a mapping from P into N, the set of non-negative integers. M, is
the initial state of ?. A state M is represented by 2™, aA; R aA if m is
understood) where a; is the value M (A,), the number of tokens in place A,. A state
with no tokens in any place is represented by ¢. Each transition ¢ is denoted by
2 aA;, — ZbA, where a; and b; are in 9, 1}. For the transition ¢, the sets of places
I ={A:|a =1in ¢} and O, ={A; | b, = 1 in 4} are referred to as the input places
and output places respectively of . Conceptually one may think of a Petri net as a
bipartite directed gr2ph {see Fig. 1) whose nodes are the places and transitions of
the net. Arcs are directed from places to transitions and from transitions to places.
Then I; denotes the set of places having an outgoing arc to ¢ and O; denotes the set
of places which have an incoming arc from 1. The set of input transitions and output
transitions of a place can be defined similarly.

/\ A, 2}

1-» |

P =(P, T, Mo) '
P={A, A, A3}

T ={t), t,, t}
My=2A,+1A,+4A,
by Al""Al'*' AZ

1 A+ As— A+ A,
L:d— A,

L/

Fig. 1. A simple Petri net and its represcntation as a bipartite directed graph.

The firing of transition ¢ recults in>ne token being removed from each place in J,
and ore token being added to each nlace in O, Transition ¢ can fire at state M if
and only if each of its input places cor-tains at least one token at state M. In this case
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we say that 4 is enabled at M and write M ==>% M’ if the firing of ¢, yields stzte M.
If a transition ¢ is not enabled 3t M, then it is disabled

A firing sequence is a sequence o = t,t,-- - 1, € T*. A firing sequence is fireahle
at state M if there are states My, M,, ..., M, such that M = M, and M,_,=> "« M,
for 1 < k <r. When a state M’ is derived from M via a firing sequence o € T*, we
write M ==>"M'. Also, M =>* M’ if there is a (possibly empty) firing sequence o
such that M =>°M'. The reachability set of a Petri net with initial state M, is
{M I My=>* M}. The reachability prcdlem for a class of Petri nets is the problem
of deciding, given an arbitrary net in the class and an arbitrary state, whether the
stete is in the reachability set of the net.

A Petri net is k-bounded for an integer k =1 if for every state M in the
re chability set, M(A;)<k for 1 <i<m, i.e, no place in the Petri net will ever
receive more than k tokens. A Petri net is safe if it is 1-bounded. A Petri net is
Sounded if it is k-bounded for some k. Obviously, a Petri net is bounded if and only
if it has a finite reachability set.

A transition ¢ is live at state M if for any fireable firing sequence o at M there-is
a v € T* such that o7, is fireable at M. A Petri net is live if every transition of the
net is live at the initial state. The liveness problem for a class of Petri nets is the
problem of deciding whether an arbitrary net in the class is live.

A Petri net is conservative if there is a positive integer valued function f: P— N~
such that every rransition ¢ satisfies

AiZH f(A) = A;e:o‘ f(Ax),

(where 2 means integer summation). A net is I-conservative if and only if it is
conservative with f(4,)=1 for all A, € P. A conservative Petri net has a finite
reachability set but the converse is not true. Conservative Petri nets are studied in
{18].

A Petri net is a free choice Petri net (FCPN) if for every transition ¢ € T and place
A; € [ either ¢ is the only output transition of A; or A, is the only input place of ¢,
A Petri net is persistent if for every state M in the reachability set and any
transitions £ and ¢ (i#j), if ¢ and ; are enabled at M, then the sequence &t is
fireable at M. A Petri net is' conflict-free if each place A, € P satisfies either (1)
there is at most one arc out of A; or (2) for all j, A; € I, if and only if A; € O,. Note
that all conflict free nets are persistent but the converse is not true. Persistent and
conflict free Petri nets are studied in [17].

The coverability problem for a Petri net & is defined as follows: Given a state M
(not necessarily reachable), is there a reachable state M’ of 2 such that M'= M
(componentwise) |

' Note that our conflict free nets are often called forward conflict free nets.
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1.2 Computational complexity
In this paper we present results on the complexity of some Peiri net problems.
With a standard encoding scheme such as the one in [14], we view each problem as
a language recognition problem.
Let L;,L,C 3* be languages where ¥ is a finite alphabet with at ieast two
members. Let € be a class of languages over 3. Then
(1) L. is recursively reducible to L, if the existence of an algorithm for deciding
membership in L, implies the existence of an algorithm for deciding membership in
L,.
(2) L, is log space reducible to L, if there is a function f:3*— Z* such that
(a) f is computable by a deterministic Turing machine in log-space, i.e., the
machine uses at most C log (| x |) squares of scratch tape to compute f(x) where
x is initially on a read-only input tape, |x| is the length of x and
(5) for all x £ 3*, x €L, if and only if f(x)€E L..
(3) L: is 6-hard if L, is log space reducible to L, for all L,& €.
(4) L, is €-complete or complete for € if L, is €-hard and L, € 4.
Here we assume the reader is familiar with Turing machines. A good expository
reference can be found in [9).
The following useful result can be easily obtained.

Lemma 1.2.1. Let L denote the complement of L C3*, ie., L =3*-L.

(1) If L, is log space reducible to L, and L, is log space reducible to L., then L, is
log space reducible to L.

(2) If L, is log space reducible to L,, ther. L, is log space reducible te I.,.

Proof. See [12].

We shall consider several well known classes of ianguages. The reader is referred
to the presentation in [2] for further details.

1.3 Notation

(1) DSPACE (poly) and DSPACE (exp) are used to denote the set of languages
recognizable by deterministic Turing machines in polynomial space and exponen-
tial space respectively.

(2) NSPACE (log), NTIME (poly), NSt ACE (poly) and NSPACE (exp) are used
to denote the set of languages recognizable by nondeterministic Turing machines in
log space, polynoraial time, polynomial space and exponential space respectively.

It is known that DSPACE (poly) = NSPACE (poly), DSPACE (exp) =
NSPACE {exp) and NEPACE (log) C DTIME (poly) € NTIME (poly) C DSPACE
(poly). It is not known whether any of the above containments is proper.

In Section 2, we corsider problems in NTIME (poly). Section 3 deals with
probiems in DSPACE (poly). In Section 4, we present the first problem in Petri nets
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known to have at least exponential space complexity. Section 5 shows that
persistence is recursively reducible to reachability. Both the decidability of
persistence and the decidability of the reachability problem are open. The best
_known result is an exponential space lower bound for the reachability problem {20].
Section 6 shows that reachability and boundedness are undecidable for the Time
Petri net introduced in [21]. Boundedness is known to be decidable for ordinary
Petri nets [15].

2. ¥'roblems in NTIME (poly)

Commoner introduced the concept of free choice Petri nets (FCPN) and
established a necessary and sufficient condition for a FCPN to be live. The result
was first reported by Hack [5].

Consider a set D of places of a Petri net. Let

D ={t]|t is an output transition of a place A € D}
D ={t|t is an input transition of a place A € D}.

if a set D satisfies 'D C D, it is called a deadlock Clearly, if a deadlock is blank,
i.e., contains no ‘okens, it will remain blank under transition firings. If a set D
satisfies D' C ‘D, it is called a trap. Thus a trap which contains at least one token
cannot become blank. Note that the union of two traps is also a trap. Let T, be the
union of all traps contained in the set of places D.

Commoner has shown that a FCPN is live if and only if for each deadlock D with
D' # ¢, Tp# ¢ and Tp is not blank. To determine if a FCPN is not live, one can
look for a deadlock that does not satisfy the above condition. This can be done
easily by a nondeterministic Turing machine in polynomial time. Therefore to
determine whether a FCPN is not live is a problem in NTIME (poly).

The next theorem asserts that the problem is complete for NTIME (poly).

Theorem 2.1. The liveness problem for FCPN as defined below is complete for
NTIME (poly).

Given: a FCPN &

To decide: if P is not live.

Proof. It remains to show that an NTIME (poly)-complete probicm is log space
reducible to the liveness problem for FCPN. We reduce the satisfiability problem
for conjunctive uwormal form propositional calculus formulas to the liveness
problem for FCPN.

Let xi,...,x, be th: propositional variables and let C,,..., (i be the clauses
whose conjunction K is to be decided for satisfiability where each C is a
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disjunction of propositicnal variables x; and negations of propositional variables, ¥..
We construct a Petri net # = (P, T, M) with

P={A,x,% {x; is a propositional variable of K}
U, G)if x: is in G}
U{(x, G)|if % is in G} U{F}

and My(A:)=1 for all A, My(p)=0 for p € P—{A;}. The transitions in T are
defined as follows (each line defines one transition ¢, with f; and O; denoted by
places to the left and right of the arrows respectively):

(1) For each variable x,

A —x
)

A —X

Xi —> 2 (xi) C)|

Z5EG

X — 2 (X C;)

!jECI

(1b)

(2) for every clause G

E {x;, C;>+ 2 (fia C‘J)'—)F’

HEC 5 EC

(3) F» 2, A.

i CinGCna---aAC is satisfiable, then there exists an assignment
fi{xi, x2,...,x.}— {true, false} such that C; = true for 1=<j=<k. The following
firing sequence will lead to a state in which no transition can be fired.

Step 1. If f(x:) = true, fire A, — x.. Otherwise, fire A, — X.

Step 2. Fire the appropriate transitions in {1b) which are enabled.

After Step 2, no transitions are fireable, because if there is a fireabie t1ansition, it
must be the one of type (2). However, the assignment f guarantees that at least one
of its input places has no token and hence a contradiction is established.
Consequently, 2 is not live.

Assume C, A -+ A G is not satisfiable. If each A; contains at least one token,
then obviously every transition in (1) is eventually fireable. Furthermore, by
choosing an assignment which makes C; false and firing the corresponding (1)
transitions, the (2) transition for C; can be enabled. Hence every (2) transition is
eventually fireable at M if M(A;)=1 for all A.. As a consequence (3) is eventually
fireable at any such marking. The firing of (3) would then result in a token being
placed in each A.

Because Cin---a G is not satisfiable, for any combination of (1) firings
beginning at a marking where each A; contains a token th=re is a (2) transiiion that
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can be enabled (by firing zero or more additional (1) transitions). Then a (2)
transition followed by (3) can be fired again leading to a marking for which each A,
contains at least one token. Hence, regardless of earlier firings, a marking M with
M(A.)=1 for all A, can be reached and from this marking every transition is
eventually fireable. Because My(A;)=1 for each A, P is live.

Note that the Petri net 2 is a FCPN. Thus we have shown that the satisfiability
problem is log space reducible to the liveness problem for FCPN. Since the liveness
problem for FCPN is in NTIME (poly), it is thereforc complete for NTIME

(poly). O

Example. Let K = (x, v %2V x3) A (X, v £3) A (x2 v X3) be a propositional formula.
The reduction in the previous theorem leads to a Petri net ? with the following
transitions.

() A= x

() A= X,

(t;) A,—>x;

(t.) Ax— %

(s) As—x;

(ts) As— X5

(t;) %\ —= (%), C\)+ (%3, C2)
() x2->(x;, C\)

(ts) X2-> (X2, C3)

(f10) X3 {x3, C2) + (x5, Cy;
() %30 (X5, C)

(t:2) (%1, C)+(x2, C) + (%5, C)—> F
(1) (%1, C))+ (%3, C)— F
() (X2, C3)+ (x5, C3)— F
(t:) F> A, + A+ A,

By the theorem, K is satisfiable if and only if the corresponding FCPN & is not live.
In this exaiaple, K can be satisfied by ass gning x, = true, x, = true and x; = false.
The firing sequence tfstststy leads to ctate x,+(x;, Ci)+ (%, Ci) in which no
transition is live. Note also that any assignment which makes K false corresponds to
a firing sequence that places ai least one token into F. For example,
Latatstatoliofatis Will place two tokens into F.



284 N.D. Jones, L.H. Landweber, Y.E. Lien

The reduction in the above proof does not produce a conservative net. Hence for
conservative FCFN we have only

Corollary 2.2. The liveness problem for conservative FCPN is in NTIME (poly).

The reachability problem and the liveness problem are closely related. In fact,
Hack [7] has shown that for arbitrary Petri nets, the reachability problem and the
liveness problem are recursively reducible to each other. Hence the decidability of
one problem implies the decidability of the other. Moreover, it is easy to see that
the reachability problem for arbitrary nets is log space reducible to the reachability
problem for FCPN. Unfortunately, Hack’s proof, recursively reducing reachability
to liveness, does not preserve the free choice property. Hence the decidability of
liveness for FCPN does not yield the decidability of reachability or liveness for
arbitrary Petri nets or the decidability of reachability for FC®N.

We next consider the conservation property of Petri nets. Recall that a Petri net
is conservative if there is a positive inieger valued function f : P— N such that for
every transition ¢;:

> fl(Ay= 3 f(AL).

A;e" AuEOj

Alternatively, if we construct a matrix I such that the j™ row vector I; corresponds
to t; as follows:

-1 if A €L -0,
Iy = 1 fA €0 -1,

0 otherwise,

then positive integer solutions to I' - x = 0 correspond to conservation functions
where x; = f(A;). With this observation in mind, we shall consider the conservation
property of Petri nets within the general framework of linear systems.
Let I' be a matrix of integer entries and let b be an integer vector. We are
interested in the following problems:
(A) Given: I
To decide: if I' - x =0 has a positive integer solution.
(B) Given: I', b
To decide: if I' - x = b has a non-negative rational solution.
(C) Given: T, F
To decide: if I' - x = b has a non-negative rational solution.
(D) Given: I, b
To decide: if I" - x = b has a rational solution.
We also consider the complements of problems B, C, and D. The complement of
a problem is to decide if the linear system in question does not h:ve a solution of
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the specified type. Denote the complement of problems B, C and D by B, € and
D. For instance B is

(B) Given: I', b

To decide: if I" - x = b has no nonnegative rational solution.

We observe that the conservation problem for Petri nets is a special case of A.
Namely, all nonzeio entries in the matrix I" for a Petri net are in {1, — 1}. Problem
D was mentioned in [14] as a problem in NTIME (poly) but not known to be
ccmplete for NTIME (poly). In the next result we provide evidence that D is not
complete for NTIME (poly) by showing that both D and D are log space reducible
to cach other and hence both are in NTIME (poly). In fact we show that any two
problems in {B, B, C, C, D, D} are log space reducible to each other. If any of these
moblems is complete for NTIME (poly), then the class NTIME (poly) is closed
under complement, which seems unlikely. Another problem known to have this
property is the primality test problem which is conjectured not to be NTIME (poly)
— complete [26].

Problem A is easily shown log space reducible to B. Therefore the complexity of
B serves as an upper bound of the complexity of A.

Lemma 2.3. A is log space reducible to B.

Proof. Let e be . vector with 1 in each component. I' - x = 0 has a positive integer
solution if and only if I'-y=>5 has a nonnegative rational solution for
=-I-e. O

Lemma 2.4. Each of tiie problems B, C, D, B,C, and D is log space reducible to
every other.

Proof. By Lemma 1.2.1, it is sufficient to show that

(1) B is log space reducible to C,

(2) C is log spzce reducible to D,

(3) D is log space reducible to B.

(1) T'-x = b has a nonnegative rational solution if and only if I'-x =b and
— T -x = — b, treated as one linear system, has a nonnegative rational solution.

(2) I'- x = b has a nonnegative rational solution if and only if I'-x =5 and
x =0, treated as one linear system, has a rational solution.

(3) Append the vector — b to the matrix T, let the result be I'". I' - x =b has 2
rational solution if and only if -y =0 has a rational solution with the last
component ¥, of v being positive. By Theorem 1.2 in [10], I - y =0 and y, >0 has
a raticnal solution if and only if z - I = d (d# 0) has no nonnegative rational
sclution where d, = —land di=0forl<is<k-1. [J

The previocus results yield
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Theorem 2.5. The following problem is in NTIME (poly).
Given: an arbitrary Petri net or a FCPN &
To decide: if P is conservative.

Proof. B is in NTIME (poly) and A is log space reducible to B. [1

For conflict free nets, reachability is known to be decidable [3}. Our next theorem
gives an NT'™ME (poly)-hard lower bound for this problem.

Theoremn 2.6. The reachability problem for conflict free Petri nets is NTIME
(poly)-hard.

Proof. We reduce the satisfiability problem for conjunctive normal form proposi-
tiwnal calcv’as formulas to the reachability problem for conflict free nets. Let
K = C; .-+ a C, be a CNF formula where each C, is a disjunction of (some of) the
variables x,,...,x, and their negations %,,...,%. We construct a Petri net # =
{P, T, M) with P = {x,,...,x,, C,,..., C.}, i.c., one place for each conjunct and one
place for each variable of K. The transitions in T are defined as follows:

(1) For each variable x;, 1<i<r

¢ 2, C+x.

LA of
(2) For each negation of a variable ¥, 1<i=<r

é— 2 G +x.

HEeG

(3) For each conjunct C,1<j<n, C,— ¢.

Let each piace initially have zero tokens. We claim that a state for which each
place has 1 token is reachable iff K is satisfiable.

Each transition in (1) or (2) puts a token in a piace corresponding to a variable

x. Mo transition removes these tokens so for a state with 1 token in x; to be
reached, there must be exactly one firing of the transition in (1) or the transition in
{2) for x, but not both. If (1}, then x; is true and if (2), then x; is false for this truth
valuation. If ¢ — 2Z,.c,C;+ x; is fired, then places corresponding to conjuncts
made frue by x; = true receive a token. Similarly for x; = false and transitions in
{2). Hence all places can be made greater than 0 iff there is a firing sequence
corresponding to a truth valuation for which the formula is true. Transitions in (3)
merely reduce the number of tokens in places corresponding to cenjuncts to 1 (in
case a valuation makes more than one disjunct of a conjunct true). O
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3. Polynomial space problems

The membership problem for context sensitive languages is complete for
DSPACE (poly) [22]. The problem is usually formulated as follows:

Given: a nondeterministic linear bounded automaton . and a sentence x

To decide: if 4 accepts x.

In order to prove that a problem L is complete for DSPACE {poly), we will show

that L is in DSPACE (poly) and that the membership problem for context sensitive
lan;uages is reducible to L.

sheorem 3.1. The following problem is complete for DSPACE (poly).
Given: a 1-conservative Petri net ? = (P, T, M), and a state M’
To decide: if M =>*M".

Proof. A nondeterministic Turing machine which maintains one counter for each
place, generates a random firing sequence and maintains the current marking on its
tape can solve the rcachability problem for 2. Since the total number of tokens in
the places of a 1-conservative Petri net does not change as a result of firing a
transition, the req iired Turing machine can operate in linear space. Consequently,
the problem is in DSPACE (poly).

To show it is DSPACE (poly)-hard, suppase w: are given a nondeterministic
linear bounded automaton M = (K, 3, I, §, qi, F, $) where K is the set of states, I is
the set of input symbols, I'D X U{$} is the sc: of tape symbol;, 6§ C
K xTI'x{C,R,L}x K xT is the state transition relation, g, € K is the initial state,
F C K is the set of final states and $ € I' — 3 is the boundary symbol of the tape.
Let I' ={ay, as...,a,}, $=a, and K ={g1,¢2,...,(m}. Let x =3x,x,---x.$ be a
sentence in $2 *$. We shall construct a 1-conservative Petri net @ = (P, T, M) as
tollows:

(@) P={A,;|0<i<sn+1, 1sj<p} {Q,;|0sisn+1, 1<jsm}U{C D}
{A.; will have one token iff the symbol in location i of s tape is a;. Similarly G, ;
will have one token iff # is in state g; scanning location i.)

b) M=2s-0 Aij+ A1+ Aniin+ Oy, corresponding to the starting configu-
ration of /L. teisn

(c) Transitions in T are defined according to é.

M) If@g,a,Cg.aa)E S, [no motion]
then T includes

Oi.s+Ai.r")Qi.r+Ai,x forall0=<isn+1.

(2) If (¢, a, R, q, a) E S, [move right]
then T includes

Qj,s+Ai_:-'l'Qi¢l,r+Aj.[ fOl' allO-EiSn.
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3) If (gna, L, g, a)E S,  [move left]
then T includes

Q. +A,— Q.. +tA, foralll<sisn+l.
{4) If g, is a final state, then T includes

Q..—»C foralll<isn+l.
(5) T also includes

C+A,»C+D foralllsi=sn lsjsp.

Let M'=C+ nD + Ay + A, (recall that n is a constant). If # can reach a
final state g, and hence accepts the input string x, the Petri net # can simulate the
behavior of J# by firing transitions in (1), (2), and (3). Finally 2 fires Q,, — C for
some i and transitions in (5) to reach the state M'. On the other hand if # can reach
state M’, the transition ¢ in (4) must have been fired to produce a token in C. Before
that, transitions in (5) cannot be fired. Therefore, ? must have fired a sequence of
transitions in (1), (2), and (3) to make ¢ fireable. The firing sequence corresponds to
a sequence of moves of £ to accept x. We conclude that # accepts x iff ? can
reach M'.

It is easy to see that ? is 1-conservative and the reduction can be performed in
logarithmic space®’. [

The same proof can be used to show:

Corollary 3.2. Th:e coverability problem for 1-conservative Petri nets is DSPACE
(poly )-complete.

Corollary 3.3. The reachability problem for bounded Petri nets is DSPACE (poly)-
hard. The reachability problem for k -bounded Petri nets as defined below is DSPACE
(poly )-complete.

Given: a Petri net P, a state M and a constant k such that P is k -bounded (assume

k is given in binary notaticn)

To decide: if P can reach M.

Coroliary 3.4. The k-boundedness problem as defined below is DSPACE (poly)-
complete.

Given: a Petri net ¢? and a constant k
To decide: if P is k-bounded.

Proof. The construction in the theorem can be modified 10 produce a Petri net
which becomes unbounded if and only if # accepts x. []

? Ncte that Petri’s thesis [25] uses a similar Turing machine simulation for different purposes.
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. The next theorem gives a DSPACE (poly)-hard lower bound for deciding

persistence of arbitrary Petri nets. It is not known whether this problem is
decidable. '

Theorem 3.5. The problem of deciding whether an aribtrary Petri net is persistent is
DSPACE (poly)-hard.

Proof. The membership proble for deterministic linear bounded automata is also
known to be DSPACE (poly)-complete. Delete the transitions of (5) in the proof of
Theorem 3.1 and add transitions

Q;—E

Jor all0<i=<n+1 and each final state g,, where E is a new place. Also assume
that the original linear bounded automaton  is deterministic. Then the net
obtained is persistent if and only if # does not reach a final state. If a final state g,
is reached while scanning the i™ tape symbol, then both

Qis - E
and
Ois - ('

are enabled but only one can fire so in the case the net is not persistent. Because .# |
is deterministic, all other transitions preserve persistence. [

Another interesting observation is that for a Petri net ? and a state M, we can
construct a FCPN 2’ by modifying transitions such that ? can reach M iff 2’ car.
P’ is called the “‘released form” of 2 in [6].

Theorem 3.6. The reachability problem for a 1-conservative FCPN is DSPACE
(poly )-complete.

Proof. For a Petri net ? = (P, T, M), construct a FCPN 2’ as follows:
(a) P’ has places {(A, ;)] for all , € T, A, € [}U{A, | A, €P}
(b) P’ has the following transitions:
(1) Foreach €T

2 (A= > A
A€l ALEQ;
in®? in®

(2) If A; is in I, then transitions of 2’ include
A — (A, L)

(c) ? and ' have the same initial state M.
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M’ whose projection onto the p of P is M and where M'({(A; t))=0forall i, j.
Furthermore, @' is 1-conservative iff ? is. Taerefore the reachability problem for
an arhitrary 1_sancarvativa FOPN ic DSPACE (molv)-romblete M

Al QLUILIRL ITGUIOWE VALITVOL & f i Y I0 ASWIR S AN vl (pFPiy y Mazdpl i | -

LS oM. B Ty ansinsmahilite, smuahlase Ffar 1_rsnmospavatinne LD e NMODAMNR
Lur mu'y Jofe ENE CLULCTUILLL Progierie JUF  i=CUNNGTURIIVE DU LINY 0 Ll
{poly }-complete.

Theorem 3.8. The k-boundedness probiem for (free choice ) conservaiive Peiri nets is
DSPACE (poly)-complete.

Proof. First note that k-boundedness can be decided in polynomial space for
arbitrary nets and hence this is also true of (free choice) conservative nets. The ret
obtained in the proof of Theorem 3.1 can be modified so that it is not k-bounded,
buti is still conservative, in case 4 accepts its input x. To do this, eliminate the
transitions of (5) in the proof of Theorem 3.1. Add transitions

C""D;'*"""’"D;‘.q,

a7 o =~ 7 LR 1

where E, D, ..., Dy, are new places
bd 27 b4 L. - r

The functior: which shows that the net thus obtained is conservative is f(A) =
L 4—1 or all nlacee A EIDVIIIEY and fIEY\=fiD\Y=1for1<i<LkL + 1

7 L Qi pPial s M R (i) v iy allG R ag ) J\*~i) L300 L=y =”N T 1.

Tho ranctrnstinn nf Thonrarm LA ran than ha iead ¢t Altain a TOODAN having

X BAW VWURMOLAMWVIIULE Uik R IIVULIWIEL J.U V&1l Lilvil UV OV LU vvialll a4 L' Vvl iN llavllls
thio wamirimad qenmastinn Natina that tha en~ndiGad ant woritll qeill i A smdad civnn 3¢ 1
LS cquu W PRUPUI IO, INURILVG LAl WL IHUULNICU IR LRkL SLLIL UC UUUILIUCU DILILE 1L 1>
o om v anuy ariera fole meemle cnmd 1 mmemnmacrmdicra) m
CUIIdCIVALLIVE \llluuﬂ;ll 10Ut I‘LUH3C[V¢“,]VU}- -

Remark. By the construction of Theorem 3.6, the reachability probiem of a general
Petri net can be recursively reduced to the reachability problem for a FCPN. The
former was proved to be recursively equivalent to the liveness problem for general
Petri nets [7]. The construction in Theorem 2 of [7] can be adjusted to produce a
FCPN. Therefore, the zero reachability problem for a FCPN is also recursively
equivalent to any of the three problems mentioned above. The solvability of these

problems remains open.

Theorem 3.9. The liveness problem for 1-conservative Petri nets is in DSPACE

(poly).

Proof. Note that the total number of tokens in a 1-conservative Petri net is not
changed by the firing of a transition. In order to determine if a 1-conservative Petri

net P =(P, T, M,) is not live, a nondeterministic Turi
transition ¢, a state M, and a sequence o such t

£5 4@ ILEELL £] Q%2
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“systematically” for any state M, rechable from M, whether ¢ is enabled in M..
The machine & stops and answers that J is not live if in every state M,, reachable
from M,, t is not enabled. The standard technique in [27] can be used to check all
states reachable from M,. In order to use this technique, I uses n registers of size n
where n is the space required to record any state in the reachability set. Since 2 is
I-conservative, n is a polynomial function of the size of . Hence the liveness
problem for 1-conservative Petri nets can be decided in nondeterministic space
0Oix?%), or deterministic space O(n*). O

4. Controliability requires exponential space

Petri nets are typically used to model constructs, such as operating systems, in
which events occur asynchronously in sequences which are unpredictable but which
may affect the state of the entire system. An essential concept for understanding
such systems in practice is that of control, i.e., the ability of actions by one part of
the system to determine events in another regardless of other concurrent system
activities. In this section we formalize this concept in terms of Petri nets and show
:hat determining whether one part controls another is inordinately difficult,
requiring at least exponential space. Furthermore, this bound applies even when
the problem is restricted to 1-conservative Petri nets, in which tokens are never
created or destroyed but merely move from one place to another.

Let ? =(P, T, M) be 5 Pctri net. Let T, be a subset of T and t a transition in
T — T,. An erasing homomorphism h can be defined for sequences in T* such that
h(t)=tift € Toand h(r) = ¢ if t & To. We say that T, controls t by a firing sequence
x in T% if for every firing sequence o at state M, h(a) = x implies ¢ is not fireable
at M. Namely, T, can control ¢ in the sense that once the sequence x has been fired,
aven when the transitions of x are interleaved with transitions in T — Ty, ¢ cannot
be made fireable until transitions in T, fire again. Further, we say T, can control t if
To can control ¢ by at least one sequence x.

The controllability problem is defined as follows.

Given: a 1-conservative Petri net (P,T,M), T.CT, t€T-To

To decide: if T, can control ¢.

Theor>m 4.1. The controllability problem for 1-conservative FCPIN requires at least
expon:ntial space. Moreover, it can be solved within exponential space.

Proof. We shall first display a method of constructing a 1-conservative Petri net
whose behavior simulates the generation of sentences in a regular subset of {0, 1}*
which is g-ven by a regular expression with the squaring operation [22]. The square
of aset § {0, 1}*isdefinedby S’={x -y f x, y € S}. Exponential space is required
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to determine whether the complement of a set denoted by a regular expression with
squaring is empty (Corollary 2-1 of [22]).

Let R be a regular expression with squaring. We also use R to represent the
subset of {0, 1}* denoted by the regular expression R. The Petri net P, correspond-
ing to R, has special places ZERO, ONE and TAPE. There are also special places
INg, and OUTg, for each subexpression of R including R itself. The transitions of
Pr are Tr U{0, 1,2} where transitions 0,1 and 2 are defined as follows:

(0) TAPE— ZERO

(1) TAPE—~ONE

(2) OUTgr — INg.

The transitions in T are described recursively

(1) If R =0, then Tk includes

ZERO + INg - OUTR + TAFE.
(2) If R =1, then Tz includes

ONE + INg — OUTx + TAPE.
(3) If R = R, - R,, then Tk includes

INR -> INR,
OUT“R' — IN Rz
()LYI‘R2 -3 OUTR

and all iransitions in Tk, and Tk,
(4) If R = R, UR;, then Tk includes

INR b d INRl

INR a4 INR2

OUTg,— OUTg
OUTg,—> OUTx

and all transitions in Tk, and Tkg,.
(5) If R = R, then Ty includes

INR - [N R;

INg,— OUTr

Ol’ rgl - IP\;R;

and all transitions in Tkg,.
(6) If R = R}, then Tx includes
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INR -> INR,
OUTx, + A — INg, + Br
OUTR, + BR - OUTR + AR

and all transitions in Tg,.

We call Ar and Bg of (6), type A and type B places respectively. To complete the
def nition of Py, let Pr be the set ol all places occurring in the transitions above,
and let the initial token distribution Mg assign one token to TAPE, Ir and all type
4 places.

Let T, be the two transitions 0 and 1. We define 2{0)=0, h(1)=1and h(t)=¢
for all transitions not in T,. It is easily verified that firings of Pr simulate the
seneration of strings in R in the following sense. A string x €{0,1}* is in R if and
cnly if x = h(o) for some firing sequence o such that Mg =>°M' for a state M’
with M'(OUTR) # 0 (i.e., which moves a token from INg to GUTk).

Now let ¢ be traasition 2 and suppose the transitions in 7, produce a sentence
x €{0,1}*. If x is in R, then there exists a firing sequence of transitions which
moves the token from INg to OUTx and makes the transition ¢ fireable. If x is not
in R, then no m=tter how the transitions in (1) through (6) are fired, no token can be
added to OUTx and hence ¢ is controlled by To.

Further, it can be seen that if T, can control i by the sentence x, then x riust not
be in R. We conclude that T, can control ¢ iff some sentence in {0, 1}* is not in R,
i.e., the complement of R is not empty.

Then by [22], the -ontrollability problems requires at least exponential space.

By exhaustive enumeration of firing sequences, controllability for 1-consarvative
Petri nets can be determined within exponential space, so the complexity bound is
tight. Furthermore, by using the technique of Theorem 3.6 we can construct a
FCPN 2’ to simulate 2 so the controllability problem for FCPN also requires
exponential space. [J

The controllabilitv problem was the first Pe‘ri net problem known to require
exponential space. Lipton [20] independently showed that the reachability problem
for general Petri rets requires exponential space. Since it may be easily shown that
reachability is loz-space reducible to controllability, Lipton’s result implies that
deciding controllability requires exponential space for general Petri nets. However,
our result establishes the exponential space lower bound for a much more limited
class, namely the 1-conservative free choice nets, in which the total number of
tokens never changes from the number present in the initial state. Also, controlla-
bility for 1-conservaiive free choice nets can be deci:led within exponential space. It
is reasonable to expect that the controllability and reachability problems for
general nets if decidable, will be more difficult to solve, i.e., they probably will not
be solvable within exponeniial space.
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5. Persistence

The results of Landweber and Robertson [17] show that persistence is an
important property of Petri nets. For example, reachabiiity sets of persistent nets
are semi-linear. Moreover, every net is equivalent to one in which non-persistence
occurs at no more than two transitions. Because of these facts and the importance
of semi-linearity in earlier Petri net work, we believe that a therough understanding
of the role of persistence will be helpful in solving the difficult open Petri net
problems.

In this section we show that persistence is recursively reducibile to reachatility,
i.e, if there is a decision procedure for the reachabiiity problem, then there is a
decision procedure which determines whether an arbitrary net is persisient. The
decidability of both problems is open. Lipton [20] has given an exponential space
lower bound for reachability and in Section 3 we showed that persistence is
DSPACE (poly)-hard.

Theorem 5.1. Persistence is recursively reducible to reachability.

Proof. A Petri net 2 is not persistent if and only if there is a reachable state M and
two transitions ¢, and ¢ which satisfy

{M(DPI for all places D € (I, U )
)
M(A)=1 forsome A € (L NI)- (0 N O;).

For each pair of transitions #, # and each A € (I, N ;) - (O, N O;) construct a Petri
net P;(A) uas follows:

P;(A) includes all places, arcs and transitions of 2.

. Add a place B which initially has one token.

. Add a transition ¢ having no output places and input places I, U I, U{B}.

. For each place A’, other than A and B, add a transition t(A’) with

Ozm')= ﬁ, It(A')= A

Notice that the transition ¢ can fire at most once. The transitions of 4 can be used
to remove tokens from places other than A. The net %;(A) r=aches the zero
marking iff condition (1) is true for ¢, , and A. Hence @ is not persistent iff some

P;(A) reaches the zero marking; so if reachability were decidzble, persistence
would also be decidable.

[
.

W

Theorem 5.1 partially answers a question raised by Keller [16]. A similar proof
appears in {6} where reachability is also shown to be reducible to the persistence of

a giv.n transition or pair of transitions. We conjecture that reachability is also
reducible to persistence.
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6. The Time Petri net

In [21], Merlin introduced a variant of the Petri net model having a weak timing
mechanism. In this section, we show that some of the problems considered in
previous sections are undecidable for this model. This is unfortunate because the
Time Petri net possesses some interesting properties, notably with respect to
recoverability as studied by Merlin. Our result is perhaps indicative of why
significant results regarding the mathematical propeities of Petri nets have been so
difficult to obtain. In particular, the computational power of Petri nets seems to lie
in an unexplored region between that of finite automata and Turing machines.
Moveover, any significant strengthening of the model seems to lead to equivalence
with Turing machines. Similar observations and related results appear in [1,4].

A Time Petri net (TPN) is a Petri net plus a timing mechanism. Associated with
each transition ¢ € T is a pair of numbers (a,, a;) (a;, a: € {real numbers} U {co}).
Assume a system clock which counts off time beginning with zero. Further assume
that ¢ becomes enabled ai time a. Then ¢ may not be fired until time a + a,.
Moreover, t must be fired by a + a, (unless it is disabled before then). Assume that
the firing of a trunsition takes 0 time and further assume that the TPN blocks or is
undefined on all computation paths which disobey the :bove requirements.

We show that the TPN can simulate deterministic input-free 2-counter machines.
Since halting is undecidable for such machines, this yields the undecidability of
various TPN properties. A related result and construction appears in [4].

An input-free, 2-counter machine is a 6-tuple

Cg = (Q\ q09 qF, ‘¢’ Cl’ Cz)

where Q is a finiie set of states; qo € Q is the initial state; g- € Q is the final or
halting state; $ is a finite set of instructions and C,; and C, are counters, each of
which is capable of storing a nonnegative integer. The counters are intially set to 0.
Instructions are of the form:

(a) (anivq-) i= 1v2; Q-ﬁe Q,
®) (¢.1,4)i=1,2;94€Q,
) (g T,rs)i=12;qrs€EQ.

The instructions are interpreted as follows

(@) (g, D;, 3): in state q, decrement C; by 1 and go to g,
(b) (q, I, é): in state g, increment C; by 1 and go to g,
(©) (g, T, r, s): in state g, test C;; goto r if C; is empty and go to s otherwise.

Assume the machines are deterministic so that there is at most one instruction for
each ¢ € Q. A 2-counter machine halts if it reaches state g (We assume no
instruction begins with gr.) Computations which end by branching to a non-existent
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state or by attempting to decrement any empty counter are undefined. The
following is well known.

Lemma 6.1. The halting problem for deterministic 2-counter machines (with coun-
ters initially 0) is undecidable.

Proof. 2-counter machines can simulate Turing machines [23]. O

Our next theorem is proved by showing that the TPN can simulate arbitrary
deterministic 2-counter machines.

Theorem 6.2. The following properties of the TPN are undecidable.
1. reackability
2. boundedness.

Proof. Let € =(Q, q0,gr ¥, Ci, C;) be a deterministic 2-counter machine. To
simplify the notation assume instructions of type a and b satisfy g # § and those of
type c¢ satisfy q & {r,s}. Any 2-counter machine can be niodified to satisfy this
property without affecting whether or not it haits when started with its counters
empty.

The TPN which simulates € has one place A, for each state g € Q. The place for
q will have one token when % is in state g and zero tokens otherwise. Initially Aq,
has one token and the other state places have zero tokens. There is one place for
each counter, A’ for C, and A’ for C,. Initially A’ and A ? have zero tokens. There
- is also one place A for each instruction of the form (g, T, r, s). Initially this place
has no wokens.

Instructions of € are simulated by transitions in T and associated times.

57 T

B

(4. D-q) A+ A > A,

a; =0, g,=o

(@1, 4) A=A+ A
a;1=0, a,=©

(q.T,rs) A +A'— A, a=0,a,=1
A=A +A°  a.=0,a,=0
A,— A, =2, a,=3.

The transiiions corresponding to instructions which increment or decrement
counters can be fired whenever they are enabled. If an instruction tests a counter,
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there are three transitions associated with it. The first two correspond to the
counter not empty case and the third to the counter empty case. If the counter is not
empty. the first transition will be fired, disabling the third. This occurs because of
the times associated with the two transitions. The second transition resets the
counter C; to the correct value. If the first transition is not enabled, then eventually
the third transition will be fired. It should be clear that the TPN 2, as defined
above, simulates the 2-counter machine €. Moreover, ? reaches a marking with a

singie token in place Agr iff € halts. Because of our assumption that no instruction
bggms with gr, it follows that no transition is fired after Agr receives a token.

1 Reachability: A marking with one token in Agr is reached iff € halts. Add
tra~sitions which empty all places if a state with a token in Agr is reached. Add

el
tra. nfinAnge
LE LRASDIAIVILID.

qu +A'— qu,
A,,F + Az—':’ AqF)
A('F —9ﬂ9

all with associated times 0 and . Then the zero marking is reached in the modified
TPN iff gr is reached in € iff € halts.

2. Boundednes:. Add an additional place d which initially has no tokens. Modify
each transition of 2 io add a token to d. Then the number of tokens d receives is
bounded iff the length of fireable firing sequences in the modified % is bounded iff
€ halts. [

7. Conclusion

In Table 1, we summarize some known results about the complexity of problems
in Petri nets. For ezch class of Petri nets listed in the first column, five problems are
considered: reachability, liveness, coverability, k-boundedness, and conservation.
Further explanation of a problem is given in pafentheses in the entry. For instance,
(not live) means that the property to decide is that the given Petri net is not live.

The results on state machine graphs and marked graphs follows directly from
earlier work on NSPACE (log)-complete and NSPACE (log)-hard problems {12,
13].

The most impor:ant open problems on Petri nets involve the finding of decision
procedures (if such exist) for reachability, liveness and persistence. Before these
problems can be solved, we must develop a greater understanding of the charac-
teristics of Petri nets. We believe that one way to achieve this is to study the
complexity of deciding various Petri net properties. In this paper we have
investigated such questions for a variety of problems and types of Petri nets. Our
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Table 1. Summary of some complexity results for Petri nets. The DSPACE (exp)-hard results are due

to Lipton [20].
Petri net Problems
classes
Reachability Liveness Coverability k-Boundedness Conservation
State NSPACE (log) NSPACE (log) NSPACE (log) (not k-bounded)
machine complete complete complete NSPACE (log) trivial
graph complete
(rat rzachable) (not live) (not coverable) (not k-bounded)
Marked NSPACE (log) NSPACE (log) NSPACE (log) NSPACE (log) NSPACE (log)
graph hard complete hard hard complete
1-Con- DSPACE (poly) (not live) DSPACE (ps'y) DSPACE (poly)
F;e? servative complete NTIME (poly) complete complete trivial
;"?wg Any (not live)
n:t" DSPACE (exp) NTIME (poly) DSPACE (exp) DSPACE (poly) NTIME (poly)
hard complete hard complete

1-Conser- DSPACE (poly) DSPACE (poly) DSPACE (poly) DSPACE (poly) trivial

Petri  vative complete complete complete
net  Any DSPACE (cxp) DSPACE (exp) DSPACE (exp) DSPACE (poly) NTIME (poiy)
hard hard hard complete

results indicate that many problems concerning Petri net behavior are intrinsically
very hard to solve. Consequently any algorithms which analyze the types of Petri
net behavior discussed here will in the worst cases require unacceptable amounts of
computation time or space.
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