
ELSEVIER Theoretical Computer Science 168 (1996) 321-336

Theoretical
Computer Science

Computing by splicing’

Gheorghe Phn a, 2, Grzegorz Rozenberg b*c, 3, Arto Salomaa d,*

a Institute of Mathematics of the Romanian Academy, P.O. Box I-764, 70700 Bucure$i, Romania
b Department of Computer Science, Leiden University, P. 0. Box 9512, 2300 RA Leiden,

The Netherlands
c Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

d Academy of Finland and University of Turku, Department of Mathematics, Yliopistonmiiki,
SF-20500 Turku, Finland

Abstract

Computing by splicing is a new powerful tool stemming originally from molecular genetics.
This new model of computing, splicing systems, is investigated here. Several variants, resulting
from the use of the rules in different ways, are considered. The power of such systems with
very weak structure imposed on rules turns out to be very large. Characterizations of recursively

enumerable languages are obtained for many variants. In this way our study is analogous to the
early studies concerning variations of Turing machines. Other classes of such splicing systems
generate only regular or context-free languages (giving, in fact, characterizations of these fam-
ilies). With a few exceptions, we are able to obtain precise characterizations for all resulting
families.

1. Introduction

Splicing systems were introduced in [6], as a formal language model of the
recombinant behavior of DNA sequences. Basically, one gives an alphabet V, an initial
language A over V, and a (finite) set of splicing mles, quadruples (u~,u~,zQ, ~4). Using
such a rule, from two strings of the forms x = ~1241242x2, y = y1243244y2, we produce,
by splicing, the string z = ~1~1~4~2. (Also the string z’ = ~1~3~2x2 is sometimes
considered, but this amounts to considering also the symmetric rule, (u3,~4,241,242), as
being present.) The language consisting of all strings in A and of all strings obtained
by iterated splicing, starting from strings in A, is said to be generated by our splicing
system.

* Corresponding author. Tel.: +358 (21) 633 5; fax: +358 (21) 633 6; e-mail: asalomaa@kontu.utu.fi.

1 Research supported by the Academy of Finland, project 11281, and the ESPRIT Basic Research Working

Group ASMICS II.
* E-mail: gpaun@imar.ro.

3 E-mail: rozenber@wi.leidenuniv.nl.

0304-3975/96/% 15.00 @ 1996 - Elsevier Science B.V. All rights reserved

PIZ SO304-3975(96)00082-S

322 G. P&n et al. I Theoretical Computer Science 168 (1996) 321-336

Several papers are devoted to the study of splicing systems, where several variants/
generalizations of the basic operation and of the splicing systems were considered (see
the references). We follow here the style of [12], allowing the set of rules to be
infinite. Writing them in the form u~#uz$u~#u~, where #, $ are new symbols, we can
impose conditions on the language of rules (for instance, we can suppose that it is
regular).

We add here a further component to a splicing system, an alphabet of terminal
symbols, like in Chomsky grammars and in extended Lindenmayer systems. Moreover,
we consider modes of using the splicing rules, as usual in language theory: leftmost,
prefix, rightmost, etc. When splicing the strings x and y by a given rule, we can
consider a mode of applying this rule to x different from the mode of applying it
to y. The combination of all these possibilities - in choosing the type of the initial
language, the type of the language of rules, and the modes of applying the rules to
the two terms of a splicing - leads to several hundred of different classes of splicing
systems. Fortunately, the associated families of languages collapse to a much smaller
number of different families: in many cases we obtain exactly the family of regular
languages, for many other classes we get exactly the family of recursively enumerable
languages (hence the corresponding splicing systems have the computing power of
Turing machines); some other families are equal to the family of context-free languages.
Such results often exhibit amazing capabilities of one splicing mode to simulate other
modes. A few families remain to be placed in a more precise way in the Chomsky
hierarchy.

In [l] it is stated that the actual DNA language is not context-free. Our approach
answers the need “for a grammatical theory of gene regulation” able to handle non-
context-free languages, in the very framework of the splicing operation, which is known
from [2,14] to lead, by iteration, to regular languages only, when starting from reg-
ular languages and using a finite set of splicing rules in the free mode (in [151 it is
proved that also the context-freeness is preserved by the iterated use of finitely many
splicing rules). In view of the claim in [l], our result, that splicing systems with non-
context-free sets of rules can generate all recursively enumerable languages, leads to the
interesting conclusion that the actual DNA language can be of an arbitrary complexity
(in Chomsky hierarchy).

2. Definitions

We denote: V* = the free monoid generated by the alphabet V, 1 = the empty string,
V+ = V* - {A}, 1x1 = the length of x E V*, FIN,REG,CF,CS,RE = the families
of finite, regular, context-free, context-sensitive, and recursively enumerable languages,
respectively, a:(L) = {w E V* 1 mv E L} (the left derivative of L G V* with respect to

xEV*),a;(L)={wEV*] wx E L} (the right derivative), Ll/Lz = {w E V* 1 wx E L1

for some x E Lz} (the right quotient of L1 c V* with respect to Lz C V*). For further
elements of formal language theory we refer to [161.

G. P&n et al. I Theoretical Computer Science 168 (1996) 321-336 323

An extended splicing system is a quadruple

where V is an alphabet, T C V, A C V*, and R C V*#V*$V*#V*, where #, $ are special

symbols not in V.
We call V the alphabet of H, T is the terminal alphabet, A is the set of axioms,

and R is the set of splicing rules. As we have already said in the Introduction, a rule

ui#u~$us#u~ in R is used as depicted in Fig. 1. This suggests to represent the splicing

rules in the more readable form in Fig. 2. (The idea is that originally the quadruples

(u~,u~,zQ,u~) are arbitrary. Then one views the associations ui + us, 242 + ~4.)

The correspondence between ui and us, as well as that between u2 and ~4, is visible

in Fig. 2. Because A and R are languages, we may consider for them various restric-

tions: to be finite, regular, context-free, etc. Moreover, Fig. 2 suggests to consider a

mapping cp acting on the left column and a mapping $ acting on the right column, as

in Fig. 3.

However, even for very simple mappings cp,lc/, the corresponding language R can

be non-context free. For instance, if cp, $ are the identity, and ui, u2 can be arbitrary,

we obtain R = {u~#u~$uI#u~ 1 ul,uz E V*}, which is not context-free. This suggests to

consider only the “halfs” of R

Rl2 = {u1#u2 1 Ul#~2$~3#~4 E R},

R34 = {U3#U4 1 ul#u2$u3#u4 E R},

or the “quarters”

Ri = {Ui 1 u,#u2$t@#u4 E R}, i = 1,2,3,4.

I I I

‘li”
y ’ I Yl ’ u3 ; u4 ’ Y2

I I
I I I

z
Xl ’ Ul ’ u4 ’ YZ

Fig. 1.

Ul u2 -I- 213 u4

Fig. 2.

Ul u2 -r cpbl> 7fw

Fig. 3.

324 G. Pdun et al. I Theoretical Computer Science 168 (1996) 321-336

In the example above, these languages are regular. Therefore, we can say that R is

of type REG/2 if R12 and R~J are regular, and that it is of type REG/4 if R1,R2,R3,R4

are regular. Of course, if R is a regular language, then it is also of type REG/2, and

if it is of type REGI2, then it is of type REGf4, too.

Consider now the mode of using the splicing rules. For x, y,z E V* and r :

UI#UZ$U~#U~ in R, we write

(%Y) t--r z ifl x =xlulu2x2, y = ylu3u4y2, Z =xlulu4y2,

for some x1,x2, yl, y2 E V*.

The substring uiu2 is identified in x, the substring us244 is identified in y, without

any further restriction in any of these cases. This is the free mode of using the rule r.
However, we can consider many other natural modes. We specify them only for x, the

case of y being similar.

We say that ~1242 appears in x in the mode:

free iff x =xiutu2x2, for some x1,x2 E V*,

prejix iff x = 241242x2, for some x2 E V*,

su$ix iff x = ~1241~2, for some xi E V*,

total iff x = 241242,

leftmost iff x =xiuiu2x2, for some x1,x2 E V*

and there is no rule r’ : u~#u~$u~#u~ in R

such that x = xi ui uixi, for x:,x; E V* with [xi] < 1x11,

rightmost iff x =xtutu2x2, for some x1,x2 E V*

and there is no rule r’: u~#u~$u~#u~ in R

such that x = x~u~u~x~, for xi,xi E V* with 1x11 < 1x21,

maximal iff x =xiuiu2x2, for some x1,x2 E V*

and there is no rule r’ : u{#u~$u~#u~ in R

such that x = xi ui ukxi, for xi ,xi E V*

with Ix:I<lxil, Ix~I<Ixzl and Iu:u:I > h41u~I.

We denote these modes by f, p,s, t, 1, r, m, respectively, and their set by D. For

gi,@ E D and Y: U~#?.Q$U~#U~ E R, We Write

(x, y) I$‘,@ z iff ulu2 appears in x in the mode gi,

up4 appears in y in the mode 92,

and for these occurrences of uiu2, ~9.44

we obtain z by splicing.

With respect to a splicing system H = (V, T, A, R) as above, a language L C V*, and

gi,g2 E D, we define

crs,,s,(L) = L U {z E V* I (x, y) kf’,@ z, for some x, y E L, r E R}.

Then we define

G. P&m et al. ITheoretical Computer Science 168 (1996) 321-336 325

The language generated by the splicing system H in the mode (gt,g2) is defined by

Ls,,s~(H) = a;,,,&@ n T*.
We denote by E&,,g2(Ft,F2) the family of languages generated by extended H

systems H = (V, T,A,R), in the mode (gt, g2), with the axiom language A of the type
F,, and the language of rules, R, of the type F2. Here we consider F1 to be one of
FlN,REG,CF and F2 one of FIN,REG,CF,REG/2,REGJ4,RE. In total we obtain in
this way

3 x 6 x 72 = 882

families of languages. Fortunately, many of them are identical (namely with known
families, all of the latter in the Chomsky hierarchy).

The family of languages generated by H systems of the form H = (T, T,A, R), hence
without extended symbols, in the mode (gt , g2), with A, R of types F1, Fz, respectively,
is denoted by H,,,,,(Fl, F2), In this case we write the system in the form H = (T,A, R).

If we take H = (V, T, A, R) extended and H’ = (V, A, R) non-extended associated with

H, then L,,,g,(H) = &AH’) n T*.

3. Preliminary results

The following relations follow from definitions:

Lemma 1. (i) H,,,,,(Fd’d SHg,,gZ(F:,F:), EH,,,,,(Fl,Fz) WH,,,,,(F;,F;), for dz

FI CF;,Fz CF;,gl,gz E D.

(ii) H,,,,,(F~,F~)~EH,,,,,(F~,F~),~oY all F1,F2,g1,g2.

In what concerns the type of the language R, of splicing rules, it is easy to see that
we have

FINcREGc 2 -,
REGCREG

4

and that CF is incomparable with REGI2 and REG/4.
Moreover, languages in REG/2, REG/4 are not necessarily “simple”. Specifically,

there are languages in REG/2 which are not recursively enumerable. Indeed, take a
mapping f : 2 . N -+ 2 . N which is not computable. The set N - f(2 . N) is countable
(and infinite). Enumerate it: nl,nz,. . . and consider the mapping g : N * N defined by

i even,
i odd.

326 G. P&m et al. I Theoretical Computer Science 168 (1996) 321-336

Consider the language

Rf = {a’#$ ugci)# 1 i 2 1).

Because Ri2 = R34 = a*#, we have Rf E REG/2, but, clearly, Rf is not in RE.

For this reason, from now on when we say that R is of type REGI2 or REGf4 it is

assumed that R E RE, too.

Because L,,,,,(H) = A for any H = (T,A,Q)), we have

Lemma2.FCH 1 _ g,,g2(Fl,Fd, for all Fl,F2 and all gl,g2.

Moreover, from the TuringChurch thesis we obtain

h-a 3. EH,,,,,(Fl,Fd Cm, for all Fl,F~,gl,g~.

The splicing modes g E D are not very important from the generative point of

view, and this is quite surprising and different from the situation in other areas of

formal language theory (such as regulated rewriting area [3], or contextual grammars

V31).

Lanma 4. Hf,sz(Fl,Fz) GHg,,,,(Fl,Fz), H,,,/(Fl,Fz) CHg,,,,(F1,F2),EHf,,(F1,Fz)

GEH,,,,,(FI,F~), EH,,,f(Fl,Fz) CEHg,.g2 (Fl,F2), for all gl,g2 E D, for all Fl, and

for all F2 diflerent from FIN.

Proof. Take an extended H system H = (V, T,A, R) and construct

H’ = (V,T,A,{V*~~#U~V*$U~#U~ 1 u1#u2$u3#u4 E R}),

H” = (V,T,A,{~~#~~$V*Y#U~V*IU~#U~$U~#U~ E R}).

We obtain

Lf,gz(H) = &AH’), &f(H) = &,,gz(H”L

for all gi, 92 E D. Clearly, H’, H” are of the same type as H: if R’, R” are the languages

of rules of H’,H”, respectively, then we have

Ri2 = V*R12V*, R;4 = R34,

$5 = R12, R& = V*R3J*,

R; = V*R1, R; = R2V*, R; = R3, R: = R4,

R’, = R1, R; = R2, R; = V*R3, R; = R4V*.

In the case of non-extended systems we have V = T, hence the same construction can

be used.

Therefore, we have the inclusions in the lemma. 0

G. P&M et al. I Theoretical Computer Science 168 (1996) 321-336 321

Lemma 5. Zf L E EHg,,g2(F~,F2), L z V*, then for any F,,F2 and c # V, we have
1. (c)L E EHY,~~(FI,F~), for gl = p, g2 arbitrary,

2. (c)L E EH,,,J-(F~,F~), for g2 = p, g1 arbitrary,
3. L(c) E EHf,g2(F,,F2), for g1 = s, g2 arbitrary,
4. L(c) E EH,,,/(Fl,F2), for g2 = s, g1 arbitrary,
5. (c)L(c) E EHf,,,(Fl,Fz), for g1 = t, g2 arbitrary,
6. (c)L(c) E EH,,,/(Fl,F2), for g2 = t, g1 arbitrary.

All the corresponding assertions are true also for non-extended families.

Proof. For H = (V, T, A, R) and c 6 V, consider

H:, = (V u {c), T u {c}, (c)A, (c)R),

H~=(VU{C},TU{C},{C}A,{ # $ # 1 # $ # ER}. w u2 cu3 u4 Ul u2 u3 u4

Cleak Lf,dHL) = {c)L,,,(H), L,,&‘) = {c}L,,,~(H), for all gl,g2. Similar
constructions prove the other assertions. For instance, for (5) g1 = t, we use the rules

{cu,k&c$u3#u4 (u,#u2$uj#u‘, E R},

whereas for (6) g2 = t we use

{u1#u2$cu3#u4c 1 u1#u2$t@#u4 E R}. 0

Theorem 1. REG = EHg,,92(REG,FZN), CF = EH,,,,,(CF,FZN), for all g1,g2 E
If 9 Pl.6 t).

Proof. In [2,14] it is proved that Hf,#EG, FIN) G REG, whereas in [15] it is proved
that Hf,f(CF, FIN) c CF. From Lemma 5 (REG and CF have the closure properties in-
volved in the previous proof) we get EHg,,g2 (Z?EG,FZN)CREG, EH,,,,,(CF,FZN)SCF,

for gl,gz E {f, p, s, t}. With Lemmas 1 and 2 above, we have also the converse in-
clusions. 0

Corollary. EH,,,,,(FZN, FIN) c REG, for all gl, g2 E {f, p,s, t}.

For the modes 1, r, m we have only the following partial result:

Lemma 6. Zf L E EH9,,92(F1,F2), L C V*, f or any Fl, for F2 E {Z?EG,REG/2} and
c @ V, we have

1. (c)L E EHf,,,(Fl,Fz), for g1 = 1, g2 arbitrary,
2. (c)L E EH,,,f(Fl,Fz), for g2 = 1, g1 arbitrary,
3. L(c) E EHf,,,(Fl,Fz), for g1 = r, g2 arbitrary,
4. L(c) E EH,,,~(FI,F~), for g2 = r, g1 arbitrary,
5. (c)L(c) E EHf,,,(Fl,Fz), for g1 = m, g2 arbitrary,
6. (c)L(c) E EH,,,f(Fl,Fz), for g2 = m, g1 arbitrary.

All the corresponding assertions are true also for non-extended families.

328 G. P&n et al.ITheoretical Computer Science 168 (1996) 321-336

Proof. Take H = (V, T,A,R) working in the (I, 92) mode. Denote by yd(Ri2 V*) the

language obtained from R,zV* by inserting the symbol d at the right of a symbol in

V, non-deterministically chosen (hence y can be affected by a gsm). If Rlz E REG,

then yd(R~zV*) E REG. Construct the system

H’ = (v U {c}, T U {c}, (c)AR;),

where

R’, = h(({c}V*{d}V*{#}V* - {c}V*y~(R1~V*)){$}V*{#}V* n {c}V*{d}R),

h being the morphism defined by h(a) = a, a E V U {#, $,c}, h(d) = ;1. We obtain

{c}LI,,,(H) = 15f,~*(H’): the difference {c}V*{d}V*{#}V* -{c}V*yd(R12V*) selects

the strings which contain occurrences of strings ut#uz E Ri2 only in the right hand

of the occurrence of the symbol d. Hence to the left of d we add a prefix cw which

ensures that the use of ~1~2 in a splicing (x, y) t z is leftmost in X.

Because REG is closed under difference and intersection, we have R’, of the same

type as R. This proves point (1).

For point (2), take a system H = (V, T, A, R) and construct

H” = (V u {c}, T u {c}, {c}A,R’,‘),

with

R’,’ = h({ul#u2$cwu3#u4 1 u1#u2$u3#u4 E R,cwdu3#u4 E({c}V*{~}V*{#}V*

The way of constructing R’,’ ensures the leftmost use of ~3~4, because the string cw

added in front of us#u4 ensures that no rule in R can have the string u;u: to the left

of 2~3~4. Consequently, L,,,/(H”) = {c}L,,,I(H), which proves point (2).

The other points can be proved in a similar way. 0

4. Equalizing the power of Turing machines

For many variants of extended splicing systems, we shall obtain characterizations of

recursively enumerable languages, hence such systems (even with finite sets of axioms

and with rather simple sets of splicing rules) have the same generative power as Turing

machines (and all other equivalent class of algorithms).

Theorem 2. IL!? = EH,,,,,(F1,F2), f 0r all g1,g2 E D, F1 E {FIN,REG,CF}, F2 E

(REG/2,REG/4,RE).

Proof. In view of Lemmas 1, 3, 4, it is enough to prove the relation RE & EH~J

(FIN,REGf2). Consider a type-0 grammar G = (N, T, S, P) with the rules u + u E P

having juj d 2, Iv1 < 2 (for instance, take G in Kuroda normal form). Construct the

329 G. Pdun et al. I Theoretical Computer Science 168 (1996) 321-336

splicing system H = (V, T, A, R), where

v =N u T u {X1,&,X3, YI, r,,z},

A=AoUAl UA*UA3,

with

AO = (X3x2) U {&ax3 1 a E N U T},

Al = {Xl Yl Y2sx2},

A2 = {ZY*u& (u --+ v E P},

and R contains the following groups of rules (we write the rules as in Fig. 3, for an
easier readability):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

+-$p
3

*,
3

ZaYl Y2x) X3

x, I fix,’

ZaY, Y2x) X3

x3 I x2 ’

ZYl Y2x I x3

x3 I a&’

ZYl Y2n I x3

x3 I X2’

Xl w Yl y2xz

XlWYlY2 I x2 ’

--$+a!$,
I w
w I x2

wx2 (Iz ’

for a E N U T, x E (N U T)*,

for x E (N U T)*,

for a,/3 E N U T, x E (N U T)*,

for a E N U T, x E (N U T)*,

for a E N U T, x E (N U T)+,

for x E (N U T)+,

for u --) u E P, x,w E (N u T)*,

for a E N U T, x,w E (N U T)*,

for a E N U T, x,w E (N U T)*,

for w E T*,

for w E T*,

for w E T”,

Observe that A E FIN and that R E REGI2.

We have two main sets of rules, those in groups 14, and those in groups 7-12. The
first ones are initial, in the following sense. Each rule in this group involves two strings
containing each an occurrence of the symbol Xx, each rule in the second set involves

330 G. P&m et al. I Theoretical Computer Science 168 (1996) 321-336

two strings containing each an occurrence of the symbol X2. Only the axiom in Ai

contains the symbol X2, but no rule in groups 7-12 can use two copies of Xi Yi Y$$&

for a splicing. Therefore, the process starts from axioms in As, A2,A3, using rules of

types l-6.

It is easy to see that starting from a string in AZ, using a rule in group 1 to splice it

with strings of the form X31xX3 in A0 we can obtain all strings of the form ZY~uwXs,

for u + u E P, w E (N U T)*. To such a string, only rules in group 1 can be used,

splicing again with some XsaXs, or a rule in group 2, splicing with X3X,. We obtain

a string ZYzuw&, for u + UEP and WE(N U T)*. Let us denote by A; the set of all

strings of this form.

Similarly, one can see that starting from a string ZclYiY2X3 in A3 and using a rule

in group 3 for splicing it with some XsbX3, then using a rule in group 4 for splicing

the current string with X3X2, we can obtain all strings of the form ZxYi Y~x&, for

f%ENlJ T, XE(NU T)*.

If we start from a string ZYi Y2~tX3 in the same A3 and we use rules in group 5 for

splicing it with some &/X3, then we use a rule in group 6, for splicing the current

string with X3X2, we can produce all strings of the form ZYi Y2ax&, for M EN U T,

XE(N U T)*.

We denote by Ai the set of all such strings (ended by X2) obtained from the strings

in As.

Due to the presence of markers Z,X3,X2 in the rules of types 1-6, all these rules

are applied in a unique mode - the total one - which hence is at the same time free,

prefix, suffix, etc., that is, all the modes coincide for these rules.

The rules in groups l-6 cannot be used for splicings involving a string in Al UAiUAi.

From now on, only rules in groups 7-12 are applied and they are meant to sim-

ulate derivations in G. The string in A1 will be the starting point of each such

simulation.

Each splicing which uses rules of types 7-9 will use a string produced by splicing,

at an earlier step of the simulation, and a string in Ai or in A;. Rules in group

7 simulate the rewriting rules of P. This is done in the presence of the pair Yi Y2.

This subword Yi Y2 can be moved to the left using the rules in group 8 and to the

right using the rules in group 9. Rules in groups 10,ll cannot use strings in A U

Ai U A;, hence only strings produced during the simulation can be used by these

rules.

Using the rules in group 7 we get

which corresponds to the derivation step xuw + xuw in G by the rule u --+ v.

(Note that the assertion above holds for all modes of applying these splicing rules,

because all strings obtained by splicing, using rules in groups 7-9, contain the markers

Xi,_& at the ends, and all strings in A$,A$ start with the marker Z and end with X2.

Therefore all modes coincide, the rules in groups 7-9 (and 10) are forced to be used

in the total mode, which is at the same time prefix, suffix, maximal, etc.)

G. P&n et al. I Theoretical Computer Science 168 (1996) 321-336 331

Using the rules in groups 8,9 we get

(X~xY~Y2awX*,Z~Y,Y2wX2)~* f,f Xrxcl Yr Y2wX2,

(X,xccY~YZWX2,ZY~Y2CIWX2)~g fVf X,xY, Y2cI wX2,

hence we interchange the places of Yr Y2 and CL

Because of the matching substrings w in rules of types 7-9, by splicing we get

a string identical to the first string we start with, modulo the specified modification:

replacing u with v, for u --+ v E P, and interchanging Yr Y2 with tl, tl E N U T.

Obviously, in this way we can simulate any derivation in G. More exactly, we get

strings of the form XrxYr Y2X2 for S =s-* x in G. Now, using rules of type 10 we can

remove Yr Y2, then we can remove Xr by a rule of type 11, and X2 by a rule of type

12 - these operations being possible if x above is a terminal string.

Consequently, L(G) &I$,,~~(H).

Conversely, all strings in A contain either the symbol X3 or the symbol X2.

The symbol X3 can be removed only by rules in groups 2,4,6. What we obtain are

strings in the above-mentioned sets Ai and A:, all of them containing the symbol X2.

Now, the symbol X2 can be removed only by using a rule of type 12. All the other

rules in groups 7-l 1 need the presence of X2 in both strings participating to splicing.

No string in A U Ai U A$ is of the form Xx, with XE T*, such that applying a rule of

type 12 to it we obtain a terminal string. Consequently, we must use at least once one

of the rules in groups 7-l 1. This implies that Xr is also present, hence we must start

the elimination of X2 by using the string Xr Yr Y2SX2 in Al. As we have pointed out, all

splicings using rules in groups 7-9 must be performed for strings x, y with x obtained

by a previous splicing and y in Ai U Ai. Moreover, all Xl ,X2 and the pair Yr Y2 must

be present. This means that we can do nothing else than to simulate rules u + v E P

and to move the pairs Yr Y2 to the left and to the right. The rules in group 11 cannot

be used before the rules in group 10, and no one can be used after the rules in group

12. Consequently, the splicing process will end by using rules in groups 10-12, in this

order. The obtained string will be terminal, and it corresponds to a derivation in G. All

the rules must be used in the t mode, the only possible, except for the rules of type

12, which are forced to be used in the suffix mode. But, because w#&$wX2# appears

as a rule for all w E T*, we can use this rule in each mode we need. Consequently,

LSlrg2(H) CL(G), which completes the proof. 0

This theorem shows that’a huge number of the considered families, exactly speaking

441 of them, are equal among themselves and with RE. Remark that the set of splicing

rules considered in the previous proof is not context-face, but it is of a rather simple

type: it is a right-linear simple matrix language [3] (roughly speaking, it is obtained

from the language {ww 1 w E V*} by finitely many operations of concatenation with

regular languages, union, and insertion of symbols), hence it is semi-linear, too. Fur-

ther characterizations of recursively enumerable languages can be obtained from the

following result (using again finitely many axioms and a language of splicing rules

332 G. P&m et al. I Theoretical Computer Science I68 (1996) 321-336

somewhat simpler than the previous one: it is a linear language; please note, however,

that the family of linear languages is incomparable with that of right-linear simple

matrix languages, [3], hence the two results do not imply one another).

Theorem 3. RE = EH s,,92(fi, CF) for all gl,g2 ED andfor all Fi E (FIN, REG, CF}.

Proof. It is enough to prove the inclusions RE G EHs,,s2(FIN, CF).

According to [9], for every language L E RL? there are two context-free (in fact,

linear) languages Li, LZ such that L = Ll/Lp.. Therefore, it is enough to prove that for

every L1,Lz E CF, Ll,Lz C T*, we have LI/L~ E EHS1,n(FIN, CF).

To this aim, we construct the system

H = (T U {~1,&,~3,z}, TAR),

with

and the following groups of rules:

(1) XIX I x2

x, I ax2 ’
for xE(T U {Z})*, aET U {Z},

(2)
XMY I x2

x, Ix,’
for xyEL1,

(3)
x1x I -Q&

x,x, I A ’
for xE T*, y~L2,

(4) x; /p, for XE T*.

Every string in A is non-terminal. All rules of types l-4 must involve one string in

A; excepting the case of using the string Xi& and X&x&, CI E T U {Z}, in a rule of

type 1, all rules also involve one string which is not in A, hence it must be produced

by a previous splicing. No rule of type 3 can be used before a rule of type 2 (the

symbol X3 is not present), whereas a rule of type 2 can be used only after introducing

the symbol Z by a rule of type 1. If more occurrences of Z are introduced, then a rule

of type 2 is not applicable, such a string will never be used for a terminal splicing.

After using a rule of type 2 or rule 3, the rules of type 1 are no longer applicable.

No rule can be used after using a rule of type 4, because we need an occurrence of

Xi in all other rules. Consequently, we have to use, in this order, rules of type 1, an

arbitrary number of times (but we can continue only when only one occurrence of Z

is introduced), then a rule of type 2, a rule of type 3, and the one of type 4. The use

of rules of type 1 leads to strings of the form XixZy&, with xy E T*. Using a rule

of type 2 means to check whether or not xy in such strings belongs to Ll. We obtain

Xi xZyX3. Using a rule of type 3 means to eliminate ZyX3, providing that y E L2. We

obtain Xix, for x E Li/L2. Finally, a rule of type 4 removes the initial nonterminal. The

rules in groups l-3 can be used in exactly one way and this is the t mode, hence it

is of all other types. A rule of type 4 can be used in each mode (t, g2), g2 E {I, f, p},

G. Pciun et al. /Theoretical Computer Science 168 (1996) 321-336 333

but for every string x there is a rule #XsXs$Xr#x, hence we can find such a rule to

apply it in any mode we need, for every given string x.

In conclusion, LBIrq2(H) = Ll/L2, for all gt,g2. q

This theorem covers further 147 cases (X E {FIN, REG, CF}, Y = CF).

5. The other families

Let us now consider families of the form EH,,,,,(FZN,Fj, for gr,g2 E D, and

F2 E { FZN, REG}.

From the corollary of Theorem 1 we know that EH,,,,,(FZN, FIN) C REG for

gi, g2 E { f, p, s, t}. On the other hand, we have

Lemma 7. REG C EHQ,,S2 (FZN, FIN), for all gl ED - {t},g2 ED.

Proof. Take a language L E REG, L c T*. We can write

L = {XEL I IxJG2) u u {ab}(&(L> - {A}).
a,bET

Every language Lab = a:,(L) - {A} is regular. Take a regular grammar Gab = (Nab, T,

&b,P&), for Zub. Because the languages Lab do not contain the empty string, we may

assume that no I.-rule appears in sets Rob. Assume also that all sets Nab are mutually

disjoint.

We construct the H system

H = (V,T,A, uA2 uA3 uA4,R1 uR2),

with

t’=TU{Z}U (_j Nab,

A, =

A2 =

A3 =

A4 =

R, =

R2 =

a,be T

{XEL I IxIG2),

{a&i, I a,bE T),

{zcy Ix -+ cYEP,b, u,b,cET},

{ZZclx + cEP,/,, u,b,cET},

{ de#X$Z#c Y 1 X -+ cYEf&, u,b,c,d,eET},

{ de#X$ZZ#c I X + CEP&, u,b,c,d,eET}.

No splicing can use strings in Al, they are already terminal. The rules in RI must

use as the second term a string from As, the rules in R2 must use as the second

334 G. P&n et al. I Theoretical Computer Science 168 (1996) 321-336

term a string from AJ. Conversely, this is the only way to use strings in A3 and Ab,

because both the rules in RI and in R2 need two terminals in the first string used

in splicing. The only axioms of this type are those in AZ. They start a derivation in

the corresponding regular grammar Gab, also introducing the associated symbols a, b.

Rules in RI simulate the use of non-terminal rules in sets Pab, those in R2 simulate

the use of terminal rules. Because the non-terminals appear in only one position in all

strings in A2 or in strings obtained by splicing, whereas the strings in A3,Ad are of

exactly the form of the corresponding parts of rules in RI, Rz, the splicing can be done

in exactly one way, which is simultaneously of any type (gt, 92) different of (t, g2),

g2 ED. Clearly, the generated language is L. 0

Lemma 8. REG C EHt,S,(FIN, FIN), for all g2 ED - {t}.

Proof. We use a sort of mirror image of the idea in the previous proof.

Take L G T*, L E REG, and write

L = {XEL I I4 G’) u a g T (%,(L) - {J,I>{abl.

Take a L-free left-regular grammar Gab = (Nab, T, &,,P&), for the language Lab =

a:,(L) - {A}, a, b E T, hence with the rules in each P& of the forms X + Yc, X + c,

X, YE Nab, c E T. Assume all sets Nnb mutually disjoint and construct the H system

H=(V,T,A1uA2uA3uA4,R1uR2),

where

V=Tu{Z}u u Nab,
a,bET

AI = @EL I 1x162},

A2 = {&bab 1 a, b E T},

A3 = { YcZ IX + YCEP&, a,b,cET},

A4 = {cZZ Ix 4 cEPa,,, u,b,cET},

RI = { Yc#Z$X#de IX + YcEP&, u,b,c,d,eET},

R2 = {c#ZZ$X#de I X + CE&b, u,b,c,d,eET}.

As in the previous proof, it is easy to see that L,,,,,(H) = L for all gt, g2 ED with

92 # t. 0

Theorem 4. REG = EHs,,s,(FIN, FIN), gl,g2 E {f, p,s, t} - {(t, t)}.

There remains the case of the mode (t, t).

G. Pdun et al.ITheoretical Computer Science 168 (1996) 321-336 335

Theorem 5. EH,,(FIN, FIN) = FIN, REG C EHJFZN, REG).

Proof. The first relation is obvious.

For the second one we repeat the proof of Lemma 7, but in the construction of the

set R of rules we take

R; = T*{de#X$Z#cY /X + cYE&, a,b,c,d,eET},

Rb = T*{de#X$ZZ#c IX + CEP&, a,b,c,d,eE T}.

Now all rules can be used in the t mode. More exactly, for each currently produced

string xX we find a rule in RI or in R2 of the form x#X$Z#cY or x#X$ZZ#c,

respectively. 0

The characterization of families EH,,,,,(F,, REG), fi E {FIN, REG, CF}, remains

open.

The families Hf,f(fi, Fz), fi E {FIN, REG}, F2 E {FIN, REG}, are investigated also

in [12, 141. For instance, in [14] it is proved that Hf,/(FZN,REG) - LZN # 0, but

from [12] we find that REG - Hf,f(REG, RE) # 8. A language proving this relation

is

L = (ab)+ u (ba)+.

Because EH,,(FIN, FIN) = FIN, we have L $! EH,,(FZN, FIN), but from Lemmas 7,

8 and Theorem 5 we know that this language, being regular, can be generated in all

other modes, even starting from finite sets of axioms. Moreover, we can produce this

language in all modes different from the free one even without using extended symbols.

This is a clear indication of the usefulness of both extended symbols and of the modes

of using splicing rules different from f.

Consider, for instance, the non-extended splicing system

H = ({a, b}, {ab, ba}, {ab#$#ab, ba#$#ba}).

We obtain L = Lglry2(H) f or all gt,g2E{P,S,&r,m,t}, such that (gt,g2) # (t,t).
The case of gi, g2 E { p,s} is obvious: ab can appear as a prefix or as a suffix

only in strings of (ab)+ and ba can appear as a prefix or a suffix only in strings

of (ba)+, hence we cannot mix strings in (ab)+ with those in (ba)+. In the 1 or Y

modes, we observe that if, for instance, the first rule is used for a splicing of the form

(x,y) k:,” z, if x = (ba)“, then this is not a correct splicing, because we can use the

second rule one step to the left of the place where the first rule is used. The same

assertion holds for using the second rule. Again we cannot mix the strings in (ab)+

with those in (ba)+.

If one of the modes is t, for the corresponding term we have to use the associated

string ab or ba. Because all strings in rules of H are of length 2, each use is trivially

applied in the maximal mode.

336 G. P&n et al. I Theoretical Computer Science 168 (1996) 321-336

For the mode (t, t) we have LEH,,,(FZN,REG) (and LEH,,(REG,FZN), because

REG C Ht,JREG, FZN) - Lemma 2). The easy proof of this assertion is left to the

reader.

Acknowledgements

Thanks are due to an anonymous referee and to Lucian Ilie for the useful comments

on an earlier version of this paper.

Note added in proof. In Gh. P&m, Regular extended H systems are computationally

universal, J. Automata Languages Combin. 1 (1996) 27-36 it is proved that RE =

EHf,f (FZN, REG). In view of Lemmas 2 and 4, this implies that RE = EH,,,,,(FZN,

REG), for all gl, g2 ED, thus solving the above-mentioned open problem and providing

new proofs for Theorems 2 and 3.

References

[l] J. Collado-Vides, The search for a grammatical theory of gene regulation is formally justified by showing

the inadequacy of context-free grammars, CABZOS 7 (1991) 321-326.

[2] K. Culik II and T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl. Math. 31 (1991)

261-277.

[3] J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory (Springer, Berlin, 1989).

[4] K.L. Denninghoff and R.W. Gatterdam, On the undecidability of splicing systems, Znt. J. Comput.
Math. 27 (1989) 133-145.

[5] R.W. Gatterdam, Splicing systems and regularity, Znt. J. Comput. Math. 31 (1989) 63-67.
[6] T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific

recombinant behaviors, Bull. Math. Biology 49 (1987) 737-759.
[7] T. Head, Splicing schemes and DNA, in: G. Rozenberg and A. Salomaa, eds., Lindenmayer Systems;

Zmpacts on Theoretical Computer Science and Developmental Biology (Springer, Berlin, 1992)

371-383.

[S] L. Ilie and V. Mitrana, Crossing-over on languages. A forma1 representation of the recombination of

genes in a chromosome, submitted, 1995.

[9] M. Latteux, B. Leguy and B. Ratoandromanana, The family of one-counter languages is closed under

quotient, Acta Inform. 22 (1985) 579-588.

[lo] A. Mateescu, Gh. P&m, G. Rozenberg and A. Salomaa, Simple splicing systems, Discrete Appl. Math.,
to appear.

[ll] Gh. Phn, On the power of the splicing operation, Znt. J. Comput. Math. 59 (1995) 27-35.
[121 Gh. P&m, On the splicing operation, Discrete Appl. Math. 70 (1996) 57-79.
[13] Gh. PHun and G. Rozenberg, Contextual grammars, in: G. Rozenberg and A. Salomaa, eds., The

Handbook of Formal Languages (Springer, Berlin, 1996).

[14] D. Pixton, Linear and circular splicing systems, in: 1st IEEE Symp. Intelligence in Neural and
Biological Systems, Washington (1995) 18 1-l 88.

[15] D. Pixton, Context-free splicing systems, manuscript, 1995.

[16] A. Salomaa, Formal Languages (Academic Press, New York, 1973).

