
Theoretical Computer Science 475 (2013) 34–46

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Deciding representability of sets of words of equal length✩

F. Blanchet-Sadri a,∗, Sean Simmons b

a Department of Computer Science, University of North Carolina, P.O. Box 26170, Greensboro, NC 27402–6170, USA
b Department of Mathematics, Massachusetts Institute of Technology, Building 2, Room 236, 77 Massachusetts Avenue, Cambridge, MA 02139–4307, USA

a r t i c l e i n f o

Article history:
Received 14 May 2012
Received in revised form 24 November
2012
Accepted 30 December 2012
Communicated by M. Crochemore

Keywords:
Computational problems
Algorithms
Complexity classes P and N P
Combinatorics on words
Partial words
Subwords
Representable sets

a b s t r a c t

Partial words are sequences over a finite alphabet that may have holes that match, or are
compatible with, all letters in the alphabet; partial words without holes are simply words.
Given a partial word w, we denote by subw(n) the set of subwords of w of length n, i.e.,
words over the alphabet that are compatible with factors ofw of length n. We call a set S of
words h-representable if S = subw(n) for some integer n and partial word w with h holes.
Using a graph theoretical approach, we show that the problem of whether a given set is h-
representable can be decided in polynomial time. We also investigate other computational
problems related to this concept of representability.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past several years, algorithms and combinatorics on words, or sequences of letters over a finite alphabet, have
been developing and many important applications in several areas including emergent areas, such as Bioinformatics and
DNA computing, have been found (see, for instance, [10,15]). The concept of subword in particular has been extensively
investigated [13–15]. The Rauzy graphs, useful tools for studying subwords and closely related to the de Bruijn graphs, have
been applied to the study of infinite words with small sets of subwords, i.e., low subword complexity, including Sturmian
words and DOL words [1,9,11]. A de Bruijn graph is a Rauzy graph for the set of all words of a fixed length over an alphabet
of a fixed size, while a Rauzy graph is a subgraph of a de Bruijn graph over some alphabet [14].

In 1999, being motivated by molecular biology of nucleic acids, Berstel and Boasson [2] introduced the terminology of
partial words for sequences thatmay have undefined positions, called holes, thatmatch any letter in the alphabet. Algorithms
and combinatorics on partial words have been the subject of much investigation (see, for instance, [3]). In this context, de
Bruijn graphs have been modified for the construction of compressed sequences containing all words of a given length over
a given alphabet [4,7] and Rauzy graphs have been applied to the efficient generation of the so-called minimal Sturmian
partial words [6].

In this paper, we introduce a few computational problems on partial words related to subwords and apply Rauzy graphs
to their solution. We denote by subw(n) the set of subwords of a partial word w of length n, i.e., words over the alphabet

✩ This material is based upon work supported by the National Science Foundation under Grant No. DMS–1060775. Part of this paper was presented at
DCFS 2012 [8]. We thank the referees of preliminary versions of this paper for their very valuable comments and suggestions. We also thank B. J. Wyatt for
technical assistance.
∗ Corresponding author. Tel.: +1 13362561125; fax: +1 13363345949.

E-mail addresses: blanchet@uncg.edu (F. Blanchet-Sadri), seanken@mit.edu (S. Simmons).

0304-3975/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.12.042

http://dx.doi.org/10.1016/j.tcs.2012.12.042
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tcs.2012.12.042&domain=pdf
mailto:blanchet@uncg.edu
mailto:seanken@mit.edu
http://dx.doi.org/10.1016/j.tcs.2012.12.042

F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46 35

that are compatible with factors of w of length n. In particular, we define Rep, or the problem of deciding whether a set S
of words of length n can be represented by a partial word w, i.e., whether S = subw(n). If h is a non-negative integer, we
also define h-Rep, or the problem of deciding whether S can be represented by a partial word with exactly h holes. Recently,
Blanchet-Sadri et al. [5] have started the study of representing languages by infinite partial words. Here, we deal mostly
with finite representing partial words rather than infinite ones.

As an example, consider the set S equal to

{aaaa, aaab, aaba, abaa, abab, abba, baaa, baab, baba, bbaa, bbab, bbba}.

We can check that the set S is 3-representable by the partial word ���ab, 2-representable by �bba�aabab but not
2-representable by any partial word with two consecutive �’s. We can also check that S is neither 0-representable nor
1-representable. To see the former, a representing word would have to start with abba and contain bbba, and thus would
have an occurrence of abbb, a contradiction. To see the latter, in order to avoid the previous contradiction, the partial word
with one hole would need to start with �bba. Because of the fact that it would need to contain bbaa and bbab, it would have
the form �bba · · · bba · · · . This would result in an occurrence of abbb or a second occurrence of abba, which both lead to
contradictions.

The contents of our paper are as follows: In Section 2,we give some definitions that are needed in the sequel, among them
is the definition of the Rauzy graph. In Section 3, we prove the membership of Rep and h-Rep in N P . In Section 4, this result
on h-Rep is strengthened. For any fixed non-negative integer h, we describe an algorithm that runs in polynomial timewhich,
given a set S of words of length n, decides if there is a partial word w with h holes such that S = subw(n) (our algorithm
actually constructs w), showing the membership of h-Rep in P . In Section 5, we prove that some natural subproblem of Rep
is in P . In Section 6, we prove other results related to Rep and h-Rep. First we discuss h1-Rep versus h2-Rep, where h1, h2
are distinct non-negative integers. Next we approximate the problem of finding a partial word w such that subw(n) = S
with instead finding the largest subset T of S such that subw(n) = T for some partial word w, i.e., finding a partial word w
that is as close as possible to representing S. It turns out that if S is almost equal to An, where A is the alphabet over which
S is defined, then there exists a subset T of S that contains almost all elements in S and that satisfies T = subw(n) for some
partial word w. We also discuss representability by infinite words. Finally in Section 7, we conclude with some remarks.

2. Definitions

We need some background material on partial words (for more information, we refer the reader to [3]). An alphabet A is
a non-empty finite set of letters. A (full) word w = a0 · · · an−1 over A is a finite concatenation of letters ai ∈ A. The length of
w, denoted by |w|, is the number of letters in w. The empty word ε is the unique word of length zero. A partial word w over
A is a sequence of symbols over the extended alphabet A ∪ {�}, where � /∈ A plays the role of a hole symbol. The symbol at
position i is denoted by w[i]. The set of defined positions of w, denoted by D(w), consists of the i’s with w[i] ∈ A and the set
of holes of w, denoted by H(w), consists of the i’s with w[i] = �. If H(w) = ∅, then w is a (full) word.

For two partial words w and w′ of equal length, we denote by w ⊂ w′ the containment of w in w′, i.e., w[i] = w′
[i] for

all i ∈ D(w); we denote by w ↑ w′ the compatibility of w with w′, i.e., w[i] = w′
[i] for all i ∈ D(w) ∩ D(w′). A completion

ŵ is a full word compatible with a given partial word w. For example, ab��b ⊂ ab�ab, ab��b ↑ a�a��, and ababb is one of
the four completions of ab��b over the binary alphabet {a, b}.

If w is a partial word over A, then a factor of w is a block of consecutive symbols of w and a subword of w is a full word
over A compatible with a factor of w. For instance, ab��b is a factor of aaab��ba�, while abaab, ababb, abbab, abbbb are
the subwords compatible with that factor. The factor w[i]w[i + 1] · · · w[j − 1] will be abbreviated by w[i..j), the discrete
interval [i..j) being the set {i, i+ 1, . . . j− 1}. Then sub(w) is the set of all subwords of w; similarly, subw(n) is the set of all
subwords of w of length n. Letting h be a non-negative integer, we call a set S of words h-representable if S = subw(n) for
some integer n and partial word w with h holes; we call S representable if it is h-representable for some h.

Let S be a finite set of words of length n over A. For any non-negative integer m, let subS(m) = {x | |x| = m and x is a
subword of some s ∈ S}. The Rauzy graph of order n− 1 associated with S is the digraph GS = (V , E), where V = subS(n− 1)
and E = S. Each s ∈ S corresponds to an edge as follows: writing s = s[0..n − 1)a = ua = bv = bs[1..n) for some letters
a, b ∈ A, there is an edge (u, v) = (s[0..n − 1), s[1..n)) from u to v labelled by the word s. In other words, each s ∈ S
corresponds to an edge having s’s prefix of length n − 1 as starting vertex and s’s suffix of same length as ending vertex. If
u = u0, u1, . . . , ul = v is a path from u to v in GS , then we associate with it the wordw = u0u1[n−2]u2[n−2] · · · ul[n−2].
Using this correspondence between paths and words in GS , we refer also to w as a path in GS .

3. Membership of Rep and h-Rep in N P

In this section, we show that Rep and h-Rep are both in N P . To do this we need the following lemmas.

Lemma 1. Let S be a set of words of length n. If S is representable, then there exists a partial word w with |w| ≤ n(2|S| − 1) +
|S|(|S|−1)

2 such that S = subw(n).

36 F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46

Proof. Assume that w is the shortest partial word such that S = subw(n). Set S = {s0, . . . , s|S|−1}. Let ij be the smallest
integer such that sj ↑ w[ij..ij + n). Without loss of generality, we can assume that 0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ i|S|−1. Clearly,
the partial word w[0..i|S|−1 + n) contains every word in S as a subword, so since w is minimal it must be the case that
w = w[0..i|S|−1 + n), which implies

|w| = i|S|−1 + n = n +

|S|−1
j=1

(ij − ij−1).

Now, assume towards a contradiction that ij − ij−1 > j + 2n for some j, where 1 ≤ j ≤ |S| − 1. By definition of ij, this
implies that if ij−1 ≤ l < ij then w[l..l + n) is compatible with one of s0, . . . , sj−1. However, since ij − ij−1 > j + 2n there
must be at least j+ 1 integers in the discrete interval [ij−1 + n..ij − n). By the pigeonhole principle, this implies that we can
find j′, l1, and l2 such that 0 ≤ j′ ≤ j − 1, ij−1 + n ≤ l1 < l2 < ij − n, w[l1..l1 + n) ↑ sj′ , and w[l2..l2 + n) ↑ sj′ . Since sj′ is a
full word, we have both containments w[l1..l1 + n) ⊂ sj′ and w[l2..l2 + n) ⊂ sj′ .

Thus consider the partial wordw′
= w[0..l1)sj′w[l2 +n..|w|). We want to prove that subw′(n) = S. First, consider sl ∈ S.

If l ≤ j − 1 we get il + n ≤ l1, thus w[il..il + n) is a factor of w[0..l1), which by definition of il means sl is a subword of
w[0..l1), and thus is a subword of w′. A similar argument works when l ≥ j, so S ⊆ subw′(n). Next, consider s ∈ subw′(n).
Then s is a subword of either w[0..l1)sj′ or sj′w[l2 + n..|w|). Without loss of generality, assume it is a subword of w[0..l1)sj′ .
Since w[l1..l1 + n) ⊂ sj′ , we have w[0..l1 + n) ⊂ w[0..l1)sj′ . This implies that s is a subword of w, and thus must be in S.
Therefore, S = subw′(n).

Note, however, that w′ is strictly shorter than w, which contradicts the minimality of w. Therefore, ij − ij−1 ≤ j + 2n for
all j ∈ [1..|S|). So we get

|w| = n +

|S|−1
j=1

(ij − ij−1) ≤ n +

|S|−1
j=1

(j + 2n) = n(2|S| − 1) +
|S|(|S| − 1)

2
. �

Lemma 2. Let S be a set of words of length n. If S is h-representable, then there exists a partial word w with h holes such that
|w| ≤ n + (|S| + n + 1)(|S| + h − 1) and such that S = subw(n).

Proof. The proof is similar to the one of Lemma 1. Assume that w is the shortest partial word with h holes such that
S = subw(n). Here, we can construct a sequence 0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ im−1 such that

• m ≤ |S| + h;
• if w[i] = � then i = ij for some j;
• if s ∈ S, there exists some ij such that ij is the smallest integer with w[ij..ij + n) ↑ s.

Note that w = w[0..im−1 + n) has h holes.
Now, assume towards a contradiction that ij − ij−1 > |S| + n + 1 for some j ∈ [1..m). Since ij − ij−1 > |S| + n + 1 there

must be at least |S| + 1 integers l such that ij−1 < l < ij − n. Since every subword of w of length n is in S, by the pigeonhole
principle this implies we can find l1 and l2 such that ij−1 < l1 < l2 < ij − n and such that w[l1..l1 + n) ↑ w[l2..l2 + n).
However by construction, both w[l1..l1 + n) and w[l2..l2 + n) must be full words, so in fact must be equal. Thus consider
the word w′

= w[0..l1 + n)w[l2 + n..|w|). Then by a similar argument to the one in Lemma 1 we get that subw′(n) = S.
Moreover w′ has exactly h holes but is strictly shorter than w. This is a contradiction. Therefore ij − ij−1 ≤ |S| + n + 1, so
we get that

|w| = n +

m−1
j=1

(ij − ij−1) ≤ n +

m−1
j=1

(|S| + n + 1) ≤ n + (|S| + n + 1)(|S| + h − 1). �

Note that the bound in Lemma 2 is not optimal, but it serves our purpose.

Proposition 1. Rep and h-Rep are in N P .

Proof. This is an immediate consequence of Lemmas 1 and 2. �

The question arises as to whether the problems Rep and h-Rep are in P .

4. Membership of h-Rep in P

We also need some background material on graph theory. For instance, recall that a digraph G is strongly connected if, for
every pair of vertices u and v, there exists a path from u to v. For other concepts not defined here, we refer the reader to
[12].

It is known that 0-Rep is in P . Indeed, finding a wordw such that subw(n) = S is the same as finding a path in GS that in-
cludes every edge at least once. For example, if S = {aaa, aab, aba, baa, bab} thenw = aaababaa is a path in GS that includes
every edge at least once, showing that S is 0-representable; note that S is also 1-representable by �aabab, 2-representable
by aa�a�, etc. However, showing the membership of h-Rep in P is not that simple.

F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46 37

In this section, we show that h-Rep is inP for any fixed non-negative integer h. We describe a polynomial time algorithm,
Algorithm 3, that given a set S of words of length n, decides if there is a partial word w with h holes such that S = subw(n).
If so, this algorithm constructs one such w.

The following definition partitions the set of vertices V of a digraph G into disjoint sets V0, . . . , Vr with respect to the
relation⇀ defined by: if u, v ∈ V , then wewrite u ⇀ v if there exists a path in G from u to v. This partition has some useful
properties, proved in Lemma 3, that will be exploited later on to construct representing partial words.

Definition 1. Let G = (V , E) be a digraph. The decomposition of V with respect to ⇀ is the partition V0, . . . , Vr of V , where
r is some non-negative integer, defined by

V0 = {v ∈ V | if u ∈ V and u ⇀ v, then v ⇀ u}

and for i > 0,

Vi =


v ∈ V −

i−1
j=0

Vj | if u /∈

i−1
j=0

Vj and u ⇀ v, then v ⇀ u


.

In some sense, we can consider V0 to consist of all minimal elements in V with respect to ⇀, V1 to consist of all minimal
elements in V − V0, and so on. This comes naturally from thinking of ⇀ as a preorder.

Example 1. Consider the set S consisting of the following 30 words of length six, numbered from 1 to 30:

1 aaaaaa 6 aabbaa 11 abbbaa 16 baabbb 21 bbabab 26 bbbabb
2 aaaaab 7 aabbba 12 abbbab 17 bababb 22 bbabbb 27 bbbbaa
3 aaaabb 8 aabbbb 13 abbbba 18 babbba 23 bbbaaa 28 bbbbab
4 aaabba 9 ababbb 14 abbbbb 19 babbbb 24 bbbaab 29 bbbbba
5 aaabbb 10 abbaab 15 baabba 20 bbaabb 25 bbbaba 30 bbbbbb.

Now consider the digraph GS = (V , E) where E = S and V = subS(5) is the set consisting of the following 20 words of
length five, numbered from 1 to 20:

1 aaaaa 5 aabbb 9 abbbb 13 bbaaa 17 bbbaa
2 aaaab 6 ababb 10 baabb 14 bbaab 18 bbbab
3 aaabb 7 abbaa 11 babab 15 bbaba 19 bbbba
4 aabba 8 abbba 12 babbb 16 bbabb 20 bbbbb.

Then the decomposition of V with respect to ⇀ consists of the sets:

V0 = {aaaaa}
V1 = {aaaab}
V2 = {aaabb}
V4 = {bbaaa}
V3 = V − (V0 ∪ V1 ∪ V2 ∪ V4).

Fig. 1 illustrates this example.

The following lemma gives useful properties of the decomposition of Definition 1.

Lemma 3. Let G = (V , E) be a digraph and let V0, . . . , Vr be the decomposition of V with respect to ⇀. If i < j, u ∈ Vj and
v ∈ Vi, then u ⇀̸ v. Moreover, if v ∈ Vi+1 then there exists u ∈ Vi such that u ⇀ v. Finally for i < r, there exist vertices u ∈ Vi
and v ∈ Vi+1 such that (u, v) ∈ E.

Proof. First, consider i < j. Assume u ∈ Vj and v ∈ Vi are such that u ⇀ v. Since u /∈
i−1

l=0 Vl, it follows by the definition of
Vi that v ⇀ u. Thus if, for any vertex w, w /∈

i−1
l=0 Vl and w ⇀ u, the assumption that u ⇀ v implies w ⇀ v. Since v ∈ Vi

this implies v ⇀ w, so since u ⇀ v it follows that u ⇀ w. We get u ∈ Vi, which is impossible.
Next, consider v ∈ Vi+1. Assume there is no u ∈ Vi such that u ⇀ v. Since v ∈ Vi+1, if, for any vertex w, w /∈

i
j=0 Vj

and w ⇀ v, then v ⇀ w. Furthermore, if w /∈
i−1

j=0 Vj and w ⇀ v, then v ⇀ w. This, however, implies by definition that
v ∈ Vi, a contradiction.

Finally, consider i ∈ [0..r) and let v ∈ Vi+1. By the above, there exists u ∈ Vi such that u ⇀ v. Let u = u0, u1, . . . , ul = v
be a path from u to v. Note that since there is no path from any vertex in Vr ′ to any vertex in Vi+1 for r ′ > i + 1, it follows,
since ul ∈ Vi+1, that if uj ∈ Vr ′ , then r ′

≤ i + 1. By a similar argument, r ′
≥ i. Then let l′ be the smallest integer such that

ul′ ∈ Vi+1. The above tells us that ul′−1 ∈ Vi, so (ul′−1, ul′) is the desired edge. �

The following definition introduces our set Sh, given a set S of words of length n. This set is crucial in the description of
our algorithm. We then show, in a lemma, that if w is a partial word with h holes whose set of subwords of length n is a
non-empty subset of S, then w can be built from a h-holed sequence in Sh.

38 F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46

Fig. 1. The decomposition V0, V1, V2, V3, V4 of the vertex set V in the graph GS = (V , E) associated with the set S of Example 1; we let G0, . . . ,G4 be the
subgraphs of GS spanned by V0, . . . , V4 , respectively.

Definition 2. Given a set S of words of length n, we define the set Sh such that (s0, . . . , sl−1) ∈ Sh if l > 0 and the following
conditions hold:

1. Each si is a partial word with |si| ≥ n − 1;
2. The partial word s0 · · · sl−1 has exactly h holes;
3. Each si, except possibly s0 and sl−1, has at least one hole;
4. If x is a full word and a factor of some si, then |x| < 2n;
5. If si[j] = �, then for i > 0 we have that j ≥ n − 1, and for i < l − 1 we have that j < |si| − n + 1;
6. For each i and for everym ≤ n, subsi(m) ⊆ subS(m).

Lemma 4. Let S be a set of words of length n and w be a partial word with h holes. If subw(n) ⊆ S and subw(n) ≠ ∅, then there
exist a positive integer l and a tuple (s0, . . . , sl−1) in Sh such that w = s0w0s1w1 · · · wl−2sl−1, where each wi is a full word.

Proof. We proceed by induction on |w|. This holds trivially if |w| = n by letting s0 = w and l = 1. Therefore assume that
the claim holds for all w′ with |w′

| < |w|. If w does not contain any full word of length greater than or equal to 2n as a
factor, letting l = 1 and s0 = w, gives us what we want. Therefore, assume that w contains a factor y that is a full word of
length at least 2n. Furthermore, assume that |y| is maximal. There exists an i such that w[i..i + |y|) = y. Furthermore, the
maximality of y implies that either i + |y| = |w|, i = 0, or w[i − 1] = w[i + |y|] = �.

First, consider the case w[i − 1] = w[i + |y|] = �. Then w = x�y�z = x�w[i..i + n − 1)y′w[i + |y| − n + 1..i + |y|)�z
for some y′. Assume x0 = x�w[i..i + n − 1) has h0 holes and z0 = w[i + |y| − n + 1..i + |y|)�z has h1 holes. Then by
the inductive hypothesis, there exist (t0, . . . , tl0−1) ∈ Sh0 and full words w0, . . . , wl0−2 such that x0 = t0w0 · · · wl0−2tl0−1.
Similarly, there exist (t ′0, . . . , t

′

l1−1) ∈ Sh1 and full words w′

0, . . . , w
′

l1−2 such that z0 = t ′0w
′

0 · · · w′

l1−2t
′

l1−1. We can let
(s0, . . . , sl−1) = (t0, . . . , tl0−1, t ′0, . . . , t

′

l1−1) ∈ Sh when both tl0−1 and t ′0 have holes; otherwise, in the case of tl0−1 having a
hole and t ′0 having no hole for instance, we can let (s0, . . . , sl−1) = (t0, . . . , tl0−1, t ′1, . . . , t

′

l1−1).
To see the latter, we check that Conditions 1–6 of Definition 2 hold. For Condition 1, each ti, 0 ≤ i ≤ l0 − 1, and each t ′i ,

1 ≤ i ≤ l1 − 1, are partial words with |ti|, |t ′i | ≥ n − 1. For Condition 2, the partial word s0 · · · sl−1 = t0 · · · tl0−1t ′1 · · · t ′l1−1
has exactly h0 + h1 = h holes since t ′0 has no hole. For Condition 3, t1, . . . , tl0−1, t ′1, . . . , t

′

l1−2 have at least one hole each.
For Condition 4, if x′ is a full word and a factor of some ti, 0 ≤ i ≤ l0 − 1, then |x′

| < 2n (similarly if x′ is a full word and a
factor of some t ′i , 1 ≤ i ≤ l1 − 1). For Condition 5, if ti[j] = �, then for i > 0 we have that j ≥ n − 1, and for i < l0 − 1 we
have that j < |ti| − n + 1 and similarly if t ′i [j] = �, then for i > 0 we have that j ≥ n − 1, and for i < l1 − 1 we have that
j < |t ′i | − n + 1; since �w[i..i + n − 1) and tl0−1 are both suffixes of x0, and w[i..i + n − 1) is a full word and tl0−1 has a
hole, �w[i..i + n − 1) is a suffix of tl0−1, so if tl0−1[j] = �, then j < |tl0−1| − n + 1. Finally for Condition 6, for every m ≤ n,
subti(m) ⊆ subS(m) for each i, 0 ≤ i ≤ l0 − 1, and subt ′i

(m) ⊆ subS(m) for each i, 1 ≤ i ≤ l1 − 1.
Next, consider the case i = 0 (the case i + |y| = |w| is almost identical). Let s0 = w[0..n − 1) and w′

= w[n +

1..|w|). Applying the inductive hypothesis to w′, there exist (t0, . . . , tl0−1) ∈ Sh and full words w0, . . . , wl0−2 such that
w′

= t0w0 · · · wl0−2tl0−1. Then if t0 contains a hole, we let (s0, . . . , sl−1) = (s0, t0, . . . , tl0−1). Otherwise, we let (s0, . . . ,
sl−1) = (s0, t1, . . . , tl0−1). Conditions 1–6 of Definition 2 can be checked similarly as above. �

Example 2. Returning to Example 1, let n = 6 and h = 5. Consider

w = aaaaaaaaaaaaaaabb�abbbbbababbbba�bbbb��bbbaa�.

F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46 39

Here, subw(6) = S − {baabba}. Using the proof of Lemma 4, we can factorize w as follows:

aaaaa aaaaa aaaaabb�abbbb baba bbbba�bbbb��bbbaa�.
s0 s1 s2

By Definition 2, (s0, s1, s2) ∈ S5.

Our next step is to prove that Algorithm 1, given below, generates Sh in polynomial time. The idea behind the algorithm
is simple. Basically if (s0, . . . , sl−1) ∈ Sh, then l ≤ h + 2. Furthermore, there exists a constant c such that |si| < cn, and each
si can be created by concatenating subwords of elements of S. Using this, it is easy to produce Sh by enumerating all such
(s0, . . . , sl−1)’s. Algorithm 1 works as follows:

• Creates T0, the set of all t0t1 · · · t2h+1, where each tj ∈ sub(S) (sub(S) denotes the set of subwords of elements of S);
• For h′

= 1, . . . , h, creates Th′ by inserting h′ holes into the elements of T0 (i.e., by replacing h′ positions by �’s);
• Creates T = T0 ∪ T1 ∪ · · · ∪ Th;
• Creates S ′

= T ∪ T 2
∪ · · · ∪ T h+2;

• Removes from S ′ any sequence (s0, . . . , sl−1) that does not satisfy one of the conditions 1–6 of Definition 2;
• Returns Sh = S ′.

The size of the set sub(S)2h+2 is bounded by a polynomial in the size of the input.

Algorithm 1 Generating Sh, where S is a set of words of length n
1: Let T ′

0 = ∅

2: for (t0, . . . , t2h+1) ∈ sub(S)2h+2 do
3: T ′

0 = T ′

0 ∪ {t0 · · · t2h+1}

4: Let T0 = T ′

0
5: for h′

= 1 to h do
6: Let Th′ = ∅

7: for t ∈ Th′−1 do
8: for j = 0 to |t| − 1 do
9: if t[j] ≠ � then

10: Letting t ′ = t , replace t ′[j] by � and add t ′ to Th′

11: Let T =

h
h′=0

Th′

12: Let S ′
=

h+2
l=1

T l

13: for s = (s0, . . . , sl−1) ∈ S ′ do
14: for i = 0 to l − 1 do
15: if si is a full word and i /∈ {0, l − 1}, or si contains a � in its prefix of length n − 1 and i ≠ 0, or si contains a � in its

suffix of length n − 1 and i ≠ l − 1, or |si| < n − 1, or si contains a full word t of length at least 2n as a factor then
16: remove s from S ′

17: for m = 1 to n do
18: if subsi(m) ⊈ subS(m) then
19: remove s from S ′

20: if s0 · · · sl−1 does not contain exactly h holes then
21: remove s from S ′

22: return Sh = S ′

Lemma 5. For any fixed non-negative integer h, Algorithm 1 generates Sh given a set S of words of length n. Furthermore, there
exists a polynomial fh(x, y) such that |Sh| ≤ fh(|S|, n). Algorithm 1 is exponential in h, which – since h is fixed – means that it
runs in polynomial time.

Proof. Let T ′

0, Th, T , etc. be as in the algorithm. First we want to show that if (s0, . . . , sl−1) ∈ Sh, then si ∈ T . To see this, let ŝi
be any completion of si. Then the facts that si contains at most h holes and no full word of length greater than or equal to 2n
as a factor imply that |ŝi| = |si| ≤ 2n− 1+ h(2n) = 2(h+ 1)n− 1. This means that |ŝi| = qn+ q′ for some integers q and q′,
where 0 ≤ q′ < n and q < 2h+ 2. Thus we can write ŝi = t0t1 · · · t2h+1 where tj is of length n for j < q, tq is of length q′, and
tj = ε for all other j. Note for each j, since |tj| ≤ n, we have by definition of Sh that tj ∈ subŝi(|tj|) ⊆ subsi(|tj|) ⊆ subS(|tj|).
Therefore (t0, . . . , t2h+1) ∈ sub(S)2h+2, where sub(S) is the set of all subwords of S, so ŝi = t0t1 · · · t2h+1 ∈ T ′

0 = T0 by
Lines 3–4.

Then by a simple induction argument, if s′ is formed from ŝi by inserting h′
≤ h holes then s′ ∈ Th′ ⊆ T (see Lines 5–11).

In particular, si ∈ T . Since this is true for all i, it follows that (s0, . . . , sl−1) ∈ T l. Note that l ≤ h+ 2 since s0 · · · sl−1 contains

40 F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46

h holes, and for i ∈ [1..l − 1), we know that si must contain at least one of the holes. Thus, (s0, . . . , sl−1) ∈ T l
⊆ S ′ (see

Line 12).
We have now reached the for loop on Line 13 of the algorithm. Assume that s = (s0, . . . , sl−1) ∈ S ′. Then, by looking

at the interior of this for loop (Lines 14–21), s is not removed from S ′ if and only if the conditions 1–6 of Definition 2 hold.
Furthermore, by construction l > 0. Therefore s is removed from S ′ if and only if s /∈ Sh. Since Sh ⊆ S ′ at the beginning
of the loop, it follows that at the end of the loop Sh = S ′. The algorithm then returns Sh = S ′ on Line 22. We know that
|sub(S)| ≤ |S|n2

+ 1 (since each element of S contains at most n non-empty subwords beginning at each of its n positions).
Thus |sub(S)2h+2

| ≤ (|S|n2
+ 1)2h+2, a polynomial in the input, and so there exists a polynomial fh(x, y) such that the size

of S ′ is upper bounded by fh(|S|, n). From this point, seeing that the algorithm runs in polynomial time is just a standard
running time analysis. �

Algorithm 2 Checking words for (s0, . . . , sl−1) ∈ Sh
1: Let G = GS = (V , E)
2: if l = 1 then
3: if subs0(n) = S then
4: return s0
5: else
6: return null
7: Decompose V into V0, . . . , Vr with respect to ⇀
8: for j = 0 to l − 1 do
9: if j > 0 then

10: Let s0,j = sj[0..n − 1)
11: Let i0,j be the index with s0,j ∈ Vi0,j
12: if j < l − 1 then
13: Let s1,j = sj[|sj| − n + 1..|sj|)
14: Let i1,j be the index with s1,j ∈ Vi1,j
15: for j = 0 to l − 2 do
16: if i1,j > i0,j+1 then
17: return null
18: if j ≠ 0 and i0,j > i1,j then
19: return null
20: for i = 0 to r do
21: if i1,j ≤ i ≤ i0,j+1 for some j and Gi is not strongly connected then
22: return null
23: for i = 0 to r − 1 do
24: Choose ui ∈ Vi and vi+1 ∈ Vi+1 such that (ui, vi+1) ∈ E
25: for j = 0 to l − 2 do
26: Choose a path pi1,j from s1,j to ui1,j that includes every edge in Ei1,j
27: for i = i1,j + 1 to i0,j+1 − 1 do
28: Choose a path pi from vi to ui that includes every edge in Ei
29: if i1,j ≠ i0,j+1 (resp., i1,j = i0,j+1) then choose a path pi0,j+1 from vi0,j+1 (resp., ui0,j+1) to s0,j+1 that includes every edge

in Ei0,j+1
30: Let Pj be pi1,j , followed by the edge from ui1,j to vi1,j+1, then pi1,j+1, then the edge from ui1,j+1 to vi1,j+2, and continuing

until s0,j+1
31: Let wj be the word associated with G’s path Pj
32: Let w = s0[0..|s0| − n + 1)w0s1[n − 1..|s1| − n + 1)w1s2[n − 1..|s2| − n + 1) · · · wl−2sl−1[n − 1..|sl−1|)
33: if subw(n) = S then
34: return w
35: else
36: return null

Our next step is to prove that Algorithm 2 constructs, in polynomial time, a partial word w with h holes such that
subw(n) = S from a given h-holed sequence (s0, . . . , sl−1) in Sh if such a partial word exists. Algorithm 2 uses the
decomposition of the vertex set V of G = GS = (V , E) with respect to ⇀, i.e., V0, . . . , Vr . The partial word w has the form

s0[0..|s0| − n + 1)w0s1[n − 1..|s1| − n + 1)w1s2[n − 1..|s2| − n + 1) · · · wl−2sl−1[n − 1..|sl−1|)

where each wj is a path from sj[|sj| − n + 1..|sj|) to sj+1[0..n − 1) satisfying some conditions related to the spanned sub-
graphs G0 = (V0, E0), . . . ,Gr = (Vr , Er). The outputw is constructed as follows: it starts with s0[0..|s0|−n+1), followed by
w0 = s1,0w′

0s0,1 where s1,0 = s0[|s0| − n+ 1..|s0|) ∈ Vi1,0 and s0,1 = s1[0..n− 1) ∈ Vi0,1 , followed by s1[n− 1..|s1| − n+ 1),

F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46 41

followed by w1 = s1,1w′

1s0,2 where s1,1 = s1[|s1| − n + 1..|s1|) ∈ Vi1,1 and s0,2 = s2[0..n − 1) ∈ Vi0,2 , . . . , followed by
wl−2 = s1,l−2w

′

l−2s0,l−1 where s1,l−2 = sl−2[|sl−2|−n+1..|sl−2|) ∈ Vi1,l−2 and s0,l−1 = sl−1[0..n−1) ∈ Vi0,l−1 , and ends with
sl−1[n − 1..|sl−1|). Note that in the description of Algorithm 2: at Line 24, this can be done by Lemma 3; at Line 26, this can
be done since Gi1,j is strongly connected; at Line 28, this can be done since Gi is strongly connected; and at Line 29, this can
be done since Gi0,j+1 is strongly connected.

Lemma 6. Let S be a set of words of length n and (s0, . . . , sl−1) ∈ Sh. If there exists a partial word w′ with h holes such that
subw′(n) = S and w′

= s0x0s1x1 · · · xl−2sl−1 for some full words xj, then Algorithm 2 returns a partial word w with h holes such
that subw(n) = S and w = s0y0s1y1 · · · yl−2sl−1 for some full words yj. Otherwise, it returns null. Furthermore, the algorithm
runs in polynomial time.

Proof. The algorithm can return w ≠ null only on Line 4 when l = 1, or on Line 34 when subw(n) = S. The case l = 1 is
trivial, thus assume it does so on Line 34. From Line 32, w = s0[0..|s0| − n + 1)w0s1[n − 1..|s1| − n + 1)w1s2[n − 1..|s2| −
n + 1) · · · wl−2sl−1[n − 1..|sl−1|), where wj = sj[|sj| − n + 1..|sj|)w′

jsj+1[0..n − 1) for some full word w′

j . Consequently,
w = s0w′

0s1w
′

1 · · · w′

l−2sl−1 for some full words w′

j .
On the other hand, assume the algorithm returns null. Suppose towards a contradiction that there exists w′ with h holes

such that subw′(n) = S and w′
= s0x0s1x1 · · · xl−2sl−1 for some full words xj. We will check each return statement one by

one to see which returned null. Let w′

i = si[|si| − n + 1..|si|)xisi+1[0..n − 1), then note that each w′

i is a full word with

w′
= s0[0..|s0| − n + 1)w′

0s1[n − 1..|s1| − n + 1)w′

1s2[n − 1..|s2| − n + 1) · · ·

w′

l−2sl−1[n − 1..|sl−1|).

First, consider the return statement on Line 6. In this case l = 1. Clearly s0 = w′, so Line 4 returns s0. This is a contradiction,
thus l ≠ 1. Therefore, assume null was returned on Line 19 (the case of Line 17 is similar). For j ∈ [1..l − 1), we have that
i1,j < i0,j. However since s0,j occurs in sj before s1,j, and subsj(n) ⊆ S, there is a path in G = GS from s0,j ∈ Vi0,j to s1,j ∈ Vi1,j ,
which contradicts Lemma 3.

Next, consider the return statement on Line 22. There exist i and j such that i1,j ≤ i ≤ i0,j+1 and Gi is not strongly
connected. We consider the case i1,j < i < i0,j+1 (the cases i = i0,j+1 and i = i1,j are similar). Let u ∈ Vi. Note that u is
not a subword of si′ for any i′. Otherwise, there is a path from s0,i′ to u and from u to s1,i′ , in which case i0,i′ ≤ i ≤ i1,i′ .
Assuming j > i′ (the other cases being similar), we get the contradiction i1,i′ ≤ i1,j < i ≤ i1,i′ . It follows that u is in some w′

j′ .
Therefore, consider v ∈ Vi. Then there is a completion of w′, say ŵ′, such that v is a subword of ŵ′. It is easy to see that w′

j′

is a subword of ŵ′ as well. Since u is in w′

j′ , we have that u is a subword of ŵ′. Since u and v are both subwords of ŵ′, there
is a path in G from u to v or a path from v to u (using the correspondence between words and paths in G). Without loss of
generality, u ⇀ v. By definition of Vi, however, this implies v ⇀ u, so by definition of ⇀, Gi must be strongly connected, a
contradiction.

Next, consider the return statement on Line 36. This implies, if w is as in the algorithm, that subw(n) ≠ S. Note that if
x ∈ subw(n), then either x ∈ subsi(n) ⊆ S for some i or x ∈ subwi(n) ⊆ S for some i. Thus, subw(n) ⊆ S and there exists
e ∈ S such that e /∈ subw(n). Since E = S, e is an edge in the edge set E of G.

Suppose towards a contradiction that e is in Ei for some i. Consider the case i1,j ≤ i ≤ i0,j+1 for some j. Thenby construction
e occurs in pi, and thus in Pj. This implies that e is a subword of wj, and thus a subword of w, a contradiction. Next, consider
the case i0,j < i < i1,j for some j. Since sj is a subword of w, it follows that e is not a subword of sj. Thus, assume that e
is a factor of s0[0..|s0| − n + 1)w′

0 · · · w′

j−1 (the case of e being a factor of w′

j · · · w
′

l−2sl−1[n − 1..|sl−1|) is similar). Since
sj[0..n− 1) is a suffix of s0[0..|s0|− n+ 1)w′

0 · · · w′

j−1, it is easy to see that u ⇀ sj[0..n− 1) where u ∈ Vi, sj[0..n− 1) ∈ Vi0,j
and i0,j < i, contradicting Lemma 3. Therefore, either i < i1,0 or i > i0,l−1. However by similar arguments, these cases also
lead to contradictions.

Thus, there exist i ≠ i′ such that e is an edge from u ∈ Vi to v ∈ Vi′ . By Lemma 3, i < i′. Note that e is not a subword of sj for
any j, since otherwise it would be a subword ofw. Thus, e is a subword of somew′

j . Lemma 3 implies that i1,j ≤ i < i′ ≤ i0,j+1.
Assume that i′ > i + 1. Set w′

j = yez for some y, z. Every subword of w′

j of length n − 1 is a subword of either
ye[0..n − 1) = yu or e[1..n)z = vz. Since Vi+1 ≠ ∅, consider any x ∈ Vi+1. Then x cannot be a subword of yu since
otherwise x ⇀ u, contradicting Lemma 3. Similarly, it cannot be a subword of vz. By construction, however, x is a subword
of w′

j , a contradiction.
Now, assume that i′ = i + 1. By construction of Pj, there must exist some u′

∈ Vi and v′
∈ Vi+1 such that f = (u′, v′) is

an edge in Pj. Thus f is a subword of w. Since e is not a subword of w, we have f ≠ e. However, both e and f must occur as
subwords of w′. This implies that there exists a completion ŵ′ of w′ with f as a subword. Note, however, that since w′

j is full
and w′

j is a factor of w′, it must be a factor of ŵ′, so e is also a subword of ŵ′. Without loss of generality, we can assume that
e occurs before f in ŵ′. This implies that v occurs before u′ in ŵ′, so v ⇀ u′ (since ŵ′ corresponds to a path in G). The latter
along with v ∈ Vi+1 and u′

∈ Vi contradict Lemma 3.
Finally using standard run time analysis techniques, it is easy to see that the algorithm can be made to run in polynomial

time. �

42 F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46

Example 3. Returning to Examples 1 and 2, given as input (s0, s1, s2) ∈ S5, Algorithm 2 computes the following values:

j s1,j i1,j s0,j i0,j

0 aaaaa 0
1 abbbb 3 aaaaa 0
2 bbbba 3.

Then Algorithm 2 may output the following word w to represent the set S:

aaaaa w′

0 aaaaabb�abbbb w′

1 bbbba�bbbb��bbbaa�
s0 s1 s2

where w′

0 = ε and w′

1 = bbababbbbabbbabbbbaabbaabbbaa. Note that

w0 = s0[|s0| − n + 1..|s0|)w′

0s1[0..n − 1) = aaaaaw′

0aaaaa

is a path from aaaaa to aaaaa visiting every edge in G0 and

w1 = s1[|s1| − n + 1..|s1|)w′

1s2[0..n − 1) = abbbbw′

1bbbba

is a path from abbbb to bbbba visiting every edge in G3.

Our next step is to prove that Algorithm 3 determines whether or not a given set of words of equal length is
h-representable.

Algorithm 3 Deciding the h-representability of a set S of words of equal length
1: if S = ∅ then
2: return ε
3: Generate Sh using Algorithm 1
4: for s ∈ Sh do
5: Let w be the partial word produced by Algorithm 2
6: if w ≠ null then
7: return w
8: return null

Theorem 1. If a given input set S of words of length n is not h-representable, then Algorithm 3 returns null. Otherwise, it returns
a partial word w with h holes such that subw(n) = S. Furthermore, it runs in polynomial time.

Proof. First, assume that there exists a partial word w′ with h holes such that subw′(n) = S. If S is empty, then the al-
gorithm returns ε as it should. Therefore, assume S is non-empty. We can write w′

= s0w0 · · · wl−2sl−1 for some s =

(s0, . . . , sl−1) ∈ Sh, where each wi is full by Lemma 4. Algorithm 3 then goes on to generate Sh at Line 3, and begins the
for loop at Line 4. Either the for loop reaches s or exits beforehand. The only way it exits before reaching s is if Algorithm 3
returnsw ≠ null (Lines 6–7), wherew is output by Algorithm 2. This implies, however, thatw has h holes and subw(n) = S.
Therefore, assume Algorithm 3 does not exit before reaching s. Letting w be produced by Algorithm 2, by Lemma 6, the fact
that w′

= s0w0 · · · wl−2sl−1 implies that w ≠ null. Thus Algorithm 3 returns w. However, Lemma 6 also says that w has h
holes and subw(n) = S.

Now, assume that there exists no such w′. Then S is not empty, and Lemma 6 implies that Algorithm 2 must return null
for every s ∈ Sh. Thus Algorithm 3 returns null, proving the algorithm works.

Finally, Algorithm 3 runs in polynomial time. This follows easily from the fact that Lemma 5 implies that given any fixed
non-negative integer h, there exists a polynomial fh(x, y) such that |Sh| ≤ fh(|S|, n) (thus the for loop only iterates a poly-
nomial number of times in the input size n|S|), the fact that generating Sh using Algorithm 1 takes polynomial time, and the
fact that Algorithm 2 runs in polynomial time. �

Corollary 1. h-Rep is in P for any fixed non-negative integer h.

5. Membership of a subproblem of Rep in P

In this section, we give a subproblem of Rep that is in P , i.e., we prove membership in P of the problem of deciding
whether a set S of words of length n can be represented by a partial word w such that every subword of w of length n − 1
occurs exactly once in w. To prove this membership, we give characterizing properties, that can be checked in polynomial
time, of the corresponding graphs GS . We first need some terminology.

Definition 3. Let S be a set of words of length n over some alphabet A, |A| = k > 1, and let G = GS = (V , E). A partial word
path is a sequence A0, . . . , Am of non-empty subsets of V = subS(n − 1) such that the following conditions 1–3 hold:

F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46 43

1. There exists a partial word u0 satisfying |u0| = n − 1 and subu0(n − 1) = A0;
2. For each i > 0, either

Ai = {va | a ∈ A and bv ∈ Ai−1 for some b ∈ A} (1)

or there exists an a ∈ A such that

Ai = {va | bv ∈ Ai−1 for some b ∈ A} (2)

(note that Eq. (1) is the equivalent of adding a hole);
3. If bv ∈ Ai−1 and va ∈ Ai for some a, b ∈ A and full word v, then bva ∈ E.

Let h′ be the number of i’s such that Eq. (1) holds. We say that the partial word path A0, . . . , Am has h holes if h =

logk |A0| + h′ (note that logk |A0| is the number of holes in u0, defined in Statement 1, because each hole in u0 can be filled
by one of k letters).

We say that a partial word path contains an edge e = (x, y) if there exists an i such that x ∈ Ai and y ∈ Ai+1.
Finally, defining ui recursively by ui = ui−1� if Ai satisfies Eq. (1) and ui = ui−1a if Ai satisfies Eq. (2) for some a ∈ A, we

say that um is a partial word associated with the partial word path A0, . . . , Am.

The following example illustrates Definition 3.

Example 4. We refer to the partial word w with 5 holes of length 65 of Example 3. For 0 ≤ i ≤ 60, let Ai = subw[i..i+5)(5).
Here, A0 = A1 = A2 = A3 = A4 = A5 = {aaaaa}, A6 = {aaaab}, A7 = {aaabb}, A8 = {aabba, aabbb}, We can check that
A8 satisfies Eq. (1) and A7 satisfies Eq. (2). The number of i’s such that Eq. (1) holds is 5, so A0, . . . , A60 is a partial word path
with 5 holes which contains in particular the edge (aaabb, aabba), labelled by aaabba.

In the zero-hole case, the following remark tells us that S = subw(n) for a full word w if and only if there is a path in GS
including every edge at least once. This is decidable in polynomial time, as we knew already. Note, however, that the remark
also gives a polynomial time algorithm that works in the one-hole case.

Remark 1. Let S be a set of words of length n. Then there exists a partial word w with h holes such that S = subw(n) if and
only if there exists a partial word path with h holes that includes every edge of GS at least once.

To see this, assuming that such aw exists, let Ai = subw[i..i+n−1)(n−1). Then A0, . . . , A|w|−n+1 is the partial word pathwe
want. We will refer to it as the partial word path associated with w. On the other hand, assuming that such a path A0, . . . , Am
exists, the partial wordw = um associated with the partial word path A0, . . . , Am, as constructed in Definition 3, has h holes
and satisfies subw(n) = S.

We now have the terminology needed to prove the following lemma.

Lemma 7. Let S be a set of words of length n and let G = GS = (V , E), where V0, . . . , Vr is the decomposition of V with respect
to ⇀. Then there exists a partial word w such that S = subw(n) and such that every subword of w of length n − 1 is compatible
with exactly one factor of w if and only if V0, . . . , Vr is a partial word path including every edge.

Proof. To show the backward implication, if w is the partial word associated with our partial word path, every subword of
w of length n − 1 occurs exactly once in w and subw(n) = S. To show the forward direction, assume there is a partial word
w such that each subword of w of length n − 1 occurs exactly once, and subw(n) = S. Let A0, . . . , Ar be the partial word
path associated with w, i.e., Ai = subw[i..i+n−1)(n − 1). We want to prove that Ai = Vi.

Suppose towards a contradiction that this is not the case, and let j be the smallest index such that Aj ≠ Vj. Then let
w′

= w[j..|w|) and let S ′
= subw′(n). Let G′

= GS′ = (V ′, E ′). Then each word in subw′(n − 1) occurs in w′ exactly once.
Since each word in subw(n − 1) occurs in w exactly once, it follows that

subw′(n − 1) = subw(n − 1) −

j−1
i=0

Ai = subw(n − 1) −

j−1
i=0

Vi.

Let V ′

0, . . . , V
′
s be the decomposition of V ′

= V −
j−1

i=0 Vi with respect to ⇀. By definition of decomposition, however, it is
easy to see that V ′

i = Vi+j. Furthermore, Aj, . . . , Ar is a partial word path in G′.
If v ∈ Aj then v has no incoming edges in G′, since if it has an incoming edge e then Aj, . . . , Ar must contain e. This implies

v must occur in Ai for some i > j, contradicting the fact that each length n − 1 subword of w′ occurs exactly once in w′.
Since no v ∈ Aj has incoming edges, Aj ⊆ V ′

0 = Vj. On the other hand, assume v ∈ V ′

0, v ∈ Ai for some i > j. This implies
there is a path from some u ∈ Aj to v. By definition of V ′

0, this implies there is a path from v to u, contradicting the fact that
u has no incoming edges. Therefore it must be that Vj = V ′

0 = Aj. This is a contradiction, so our claim follows. �

Lemma 7 gives the following problem a membership in P .

Proposition 2. The problem of deciding whether a set S of words of length n can be represented by a partial word w, such that
every subword of w of length n − 1 occurs exactly once in w (in other words, every element in subS(n − 1) is compatible with
exactly one factor of w), is in P .

44 F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46

Proof. The proof reduces to checking that the graph GS has the properties listed in Lemma 7. This check can clearly be done
in polynomial time. �

Proposition 2’s proof amounts to checking, in polynomial time, properties that characterize the graph GS corresponding
to any S such that every element in subS(n − 1) is compatible with exactly one factor of a representing word. Lemma 7,
which the proof of Proposition 2 depends on, uses that uniqueness property in a very strong way. So the cases not covered
by Proposition 2 lead to entirely new challenges.

6. Other results on representability

In this section, we give other results on representing sets of words of equal length by (partial) words. In Section 6.1, we
prove that for every non-negative integer h, there exists a set of words of equal length such that (1) it is h-representable
and (2) the partial word representing it is unique. As a consequence, for any non-negative integers h1 and h2, we get that
h1-Rep is not a subset of h2-Rep, so there cannot be a hierarchy of representability. In Section 6.2, for any set S that might
not be representable, we give a lower bound on the size of a subset T of S that is representable. Finally in Section 6.3, we
formulate a necessary and sufficient condition for the existence of a right-sided infinite word representing a given set of
words of equal length.

6.1. h1-Rep versus h2-Rep

How does h1-Rep relate to h2-Rep when h1 ≠ h2? Can we have h1-Rep ⊆ h2-Rep? As the next proposition shows, the
answer is no.

Proposition 3. Let A be a fixed alphabet with |A| > 2, and let h be a non-negative integer. Then if n > h + 2, there exists a set
S such that S = subw(n) for some partial word w with exactly h holes, but such that there is no other partial word w′ satisfying
subw′(n) = subw(n).

Proof. Let A = {a0, a1, . . . , ak−1} with |A| = k > 2, and let wn = �
han−h−1

0 a1. Furthermore, let S ′
= subwn(n). We claim S ′

is the set S we want. We know wn has exactly h holes. Write Gn = GS′ = (V , E). We can decompose V = V0 ∪ · · · ∪ Vr as
usual. Then it is easy to see that r = 1, where

V0 = {uan−h−1
0 | |u| = h}

and

V1 = {uan−h−1
0 a1 | |u| = h − 1}.

Assume that w′ is a partial word satisfying subw′(n) = S ′, and that A0, A1, . . . , Am is the associated partial word path in
Gn. Write A0 = subv(n − 1) for some partial word v with |v| = n − 1. Note we need that subv(n − 1) = A0 ⊆ V . We know
that |A0| = kh − kh−1 > kh−1, so v must have at least h holes. On the other hand, |V | = kh ≥ |A0| = |subv(n− 1)|, so v must
contain at most h holes. Thus v contains exactly h holes. It is easy to see that this implies v = wn[0..n − 1).

Furthermore, since every word in S ′ must end in the letter a1, every element in A1 must end with a1. This implies A1
satisfies Eq. (2), and sow′

[0..n) = wn[0..n−1)a1 = wn. Finally, note thatm = 1. To see this, assume towards a contradiction
that A2 ≠ ∅. Then if v′

∈ A2, we must have that v′
[|v′

| − 2] = a1. However there is no vertex u′ in V with u′
[|u′

| − 2] = a1,
since we always have u′

[|u′
| − 2] = a0. Thus, w′

= wn. �

The construction in the proof of Proposition 3 implies that the 9-element set {uaab | u ∈ {a, b, c}∗ and |u| = 2} is
uniquely represented by the partial word ��aab.

In particular, Proposition 3 implies the following corollary.

Corollary 2. If h1 ≠ h2, there exists a word w1 with h1 holes such that if w2 has h2 holes then subw1(n) ≠ subw2(n).

6.2. Approximating Rep

The above was concerned with finding a partial word w such that subw(n) = S, for a given set S of words of length n. We
might instead try to find the largest subset T of S such that subw(n) = T for some w, i.e., to find a partial word w that is as
close as possible to representing S.

Fixing an alphabet A of size k, if u, v ∈ An, d(u, v) denotes the distance from u to v in GAn if we treat it as an undirected
graph. We need some technical lemmas.

Lemma 8. Let G = (V , E) be a digraph where every vertex has k incoming edges and k outgoing edges. If T ⊆ V , then

|{v ∈ V | d(v, T) ≤ m}| ≤ |T |(2k)m

where d(v, T) is the maximum of the d(v, t)’s with t ∈ T .

F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46 45

Proof. We proceed by induction onm. Ifm = 0, the claim clearly holds. If the claim holds form, let U = {v ∈ V | d(v, T) ≤

m}. Then

|{v ∈ V | d(v, T) ≤ m + 1}| = |{v ∈ V | d(v,U) ≤ 1}| ≤ 2k|U| ≤ |T |(2k)m+1

where the inequality follows from the fact that every vertex in G has at most 2k neighbours. �

Lemma 9. Let S be a set of words of length n over an alphabet A of size k, and set r = kn − |S|. Let T = An
− S. If w1 and w2 are

vertices in GS such that mi = d(wi, T) = maxt∈subT (n−1) d(t, wi) > logk(nr), then w1 and w2 are in the same weakly connected
component of GS . In fact, there is a path from w1 to w2 in GS .

Proof. Note that GS can be viewed as a subgraph of Gn = GAn . Also note that |T | = r by definition. Ifm1,m2 ≥ m > logk(nr),
then there are km > nr words of lengthm over the alphabet A. Furthermore, everyword in T has atmost n−m < n subwords
of length m. This implies |subT (m)| ≤ nr < |Am

|. Thus there exists a word w ∈ Am such that w is not a subword of any
t ∈ T . In particular, w is not a subword of any element in subT (n − 1). Thus to see that w1 and w2 are in the same weakly
connected component of GS , consider the sequence

w1, w1[1..n)w[0..1), . . . , w1[m..n)w[0..m) = w1[m..n)ww2[0..0),
w1[m + 1..n)ww2[0..1), . . . , w1[n..n)ww2[0..n − m) = w[0..m)w2[0..n − m),

w[0..m − 1)w2[0..n − m + 1), . . . , w[0..0)w2[0..n) = w2.

Note that no element in the above sequence is an element in subT (n − 1). This follows since the distance between
w1 and w1[j..n)w[0..j) for j < m ≤ m1 is at most j, so w1[j..n)w[0..j) /∈ subT (n − 1). A similar argument works for
w[0..m− j)w2[0..n−m+ j). All other elements in the sequence havew as a subword, so cannot be elements in subT (n−1).
It fact, it is easy to see the sequence is actually a path in GS from w1 to w2. �

Lemma 10. Let S be a set of words of length n over an alphabet A of size k, and set r = kn −|S|. Then there is a strongly connected
component in GS containing at least kn−1

− r3n2 vertices.

Proof. Let T = An
− S and let G′ be the strongly connected component of GS that includes all v such that

maxt∈subT (n−1) d(t, v) > logk(nr). Then note by Lemma 8 that

{v ∈ An−1
| max
t∈subT (n−1)

d(t, v) ≤ logk(nr)}

contains at most r(2k)logk(rn) = r2n(rn)logk 2 ≤ r3n2 elements, thus the result follows. �

Proposition 4. Let S be a set of words of length n over an alphabet of size k, and set r = kn − |S|. Then there exists T ⊆ S such
that T = subw(n) for some w, and such that |T | ≥ kn−1

− r3n2.

Proof. Let G′
= (V ′, E ′) be as in the proof of Lemma 10. Then kn−1

− r3n2
≤ |V ′

| ≤ |E ′
|, so let T = E ′. Since G′ is

strongly connected it follows there is a path that includes every edge in E ′. This path corresponds to a wordw such that T =

E ′
= subw(n). �

Proposition 4 implies that if S is almost equal to An, then S has a subset T that contains almost all elements in S and such
that T = subw(n) for some full word w. As an example, the set S = {aaa, aab, aba, baa, bab, bbb} is not representable;
however, the subset T = {aaa, aab, aba, baa, bab} of S is representable by the word aaababaa.

The set An being representable for any positive integer n, if S ⊆ An then there exists a minimal representable set T such
that S ⊆ T ⊆ An. Some of the ideas presented in this section could be used to give a bound on the size of a representable
superset T of a set S that might not be representable.

6.3. Representability by infinite words

We also state the following proposition concerning representing a set of words of equal length by an infinite word.

Proposition 5. Let S be a set of words of length n. Then there exists a right-sided infinite word w such that subw(n) = S if and
only if there exist finite words w1 and w2, w1 ≠ w2 and subw1(n) = subw2(n) = S, such that either w1[|w1| − n..|w1|) ≠

w2[|w2| − n..|w2|) or w1[|w1| − n..|w1|) = w2[|w2| − n..|w2|) = an for some a ∈ A.

Proof. First assume there exists a right-sided infinite word w such that subw(n) = S. Then there exists i > 0 such that
if w1 = w[0..i), we get that subw1(n) = S. Furthermore, if w2 = w[0..i + 1) then subw2(n) = S. Assume w1[|w1| −

n..|w1|) = w2[|w2| − n..|w2|). This implies w[i − n..i) = w[i − n + 1..i + 1). This implies w1 and w2 both have period
one, so w1[|w1| − n..|w1|) = an and w2[|w2| − n..|w2|) = bn for some a, b ∈ A. By assumption w1[|w1| − n..|w1|) =

w2[|w2| − n..|w2|) so we get that a = b.
For the other direction, assume that there exist finite words w1, w2 such that w1 ≠ w2 and subw1(n) = subw2(n) = S. If

w1[|w1| − n..|w1|) = w2[|w2| − n..|w2|) = an for some a ∈ A, then let w = w1aω . By construction

S = subw1(n) = subw1(n) ∪ {an} = subw1(n) ∪ subaω (n) = subw(n).

46 F. Blanchet-Sadri, S. Simmons / Theoretical Computer Science 475 (2013) 34–46

Next assume that w1[|w1| − n..|w1|) ≠ w2[|w2| − n..|w2|). Then there exists j1 such that w2[j1..j1 + n) = w1[|w1| −

n..|w1|) since w1[|w1| − n..|w1|) ∈ S = subw2(n). Similarly, there exists j2 such that w1[j2..j2 + n) = w2[|w2| − n..|w2|).
Then let

w = w1(w2[j1 + n..|w2|)w1[j2 + n..|w1|))
ω.

It is then easy to verify that subw(n) = S as above, proving the claim. �

To illustrate the last part of the proof, let S = {aaa, aab, aba, baa, bab}. Consider w1 = aaababaa and w2 = baaabab, two
representing words for S. Here j1 = 0 and j2 = 3, and we can check that

w1(w2[j1 + 3..|w2|)w1[j2 + 3..|w1|))
ω

= aaababaa(ababaa)ω

is a right-sided infinite word representing S.

7. Conclusion

Weprovided a polynomial time algorithm to solve h-Rep, that is, given a set S of words of length n, our algorithm decides,
in polynomial time with respect to the input size n|S|, whether there exists a partial word with h holes that represents S.
Our algorithm also computes such a representing partial word. To find a more tractable algorithm is an open problem.

Whether or not Rep is in P is also an open problem. We have some hope that the following proposition might be useful
in understanding Rep. Letting S be a set of words of length n, set

Comp(S) = {u | u is a partial word and every completion of u is in S}.

The set Comp(S) is important because if subw(n) = S, then every factor of length n of w is an element of Comp(S).

Proposition 6. Assume |A| > 1. If S is a set of words of length n, then |Comp(S)| ≤ |S|2. Furthermore, Comp(S) can be computed
in O(n|S|4) time.

Proof. Assume that u ∈ Comp(S). Choose a, b ∈ A, a ≠ b. Let ûa (resp., ûb) be the word we get by replacing all the �’s in
u with a (resp., b). Then ûa, ûb ∈ S, by definition of Comp(S). Furthermore, u is the partial word with the least number of
holes such that u ⊂ ûa and u ⊂ ûb, in other words, u is the greatest lower bound of ûa and ûb. Therefore,

Comp(S) ⊆ {u | u is the greatest lower bound of (u1, u2) ∈ S2}.

However, the latter set has cardinality at most |S2| = |S|2, so |Comp(S)| ≤ |S|2. Therefore, all we need to do in order to
compute Comp(S) is to iterate through (u1, u2) ∈ S2 (which takes |S|2 iterations). In each iteration we calculate u, the great-
est lower bound of u1 and u2. We then iterate through all completions of u until either we have checked them all (in which
case, we add u to Comp(S)), or until we find one that is not in S (in which case, u is not in Comp(S)). This produces Comp(S).
Furthermore, each iteration takes O(n|S|2) time, so the algorithm takes O(n|S|4) time. �

Proposition 6’s proof is a step towards characterizing the sets S of words of length n that are representable since, as
mentioned above, every factor u of length n of any representing partial word belongs to Comp(S), i.e., every completion of
u is in S.

References

[1] J. Berstel, Recent results on extensions of Sturmian words, International Journal of Algebra and Computation 12 (2002) 371–385.
[2] J. Berstel, L. Boasson, Partial words and a theorem of Fine and Wilf, Theoretical Computer Science 218 (1999) 135–141.
[3] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words, Chapman & Hall/CRC Press, Boca Raton, FL, 2008.
[4] F. Blanchet-Sadri, D. Allums, J. Lensmire, B.J. Wyatt, Constructing minimal partial words of maximum subword complexity, in: JM 2012, 14th Mons

Days of Theoretical Computer Science, Université catholique de Louvain, Belgium, 2012.
[5] F. Blanchet-Sadri, B. Chen, L. Manuelli, S. Munteanu, J. Schwartz, S. Stich, Representing languages by infinite partial words. Preprint, 2011.
[6] F. Blanchet-Sadri, J. Lensmire, On minimal Sturmian partial words, Discrete Applied Mathematics 159 (2011) 733–745.
[7] F. Blanchet-Sadri, J. Schwartz, S. Stich, B. J. Wyatt, Binary de Bruijn partial words with one hole, in: J. Kratochvil, et al. (Eds.), TAMC 2010, 7th Annual

Conference on Theory and Applications ofModels of Computation, Prague, Czech Republic, in: Lecture Notes in Computer Science, vol. 6108, Springer-
Verlag, Heidelberg, 2010, pp. 128–138.

[8] F. Blanchet-Sadri, S. Simmons, Deciding representability of sets of words of equal length, in: M. Kutrib, N. Moreira, R. Reis (Eds.), DCFS 2012, 14th
International Workshop on Descriptional Complexity of Formal Systems, Braga, Portugal, in: Lecture Notes in Computer Science, vol. 7386, Springer-
Verlag, Berlin, Heidelberg, 2012, pp. 103–116.

[9] J. Cassaigne, Special factors of sequences with linear subword complexity, in: Developments in Language Theory II, Magdeburg, Germany, World
Scientific, NJ, 1996, pp. 25–34.

[10] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge University Press, 2007.
[11] A. E. Frid, On factor graphs of DOL words, Discrete Applied Mathematics 114 (2001) 121–130.
[12] J. L. Gross, J. Yellen, Handbook of Graph Theory, CRC Press, 2004.
[13] M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
[14] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.
[15] M. Lothaire, Applied Combinatorics on Words, Cambridge University Press, Cambridge, 2005.

	Deciding representability of sets of words of equal length
	Introduction
	Definitions
	Membership of Rep and h-Rep in NP
	Membership of h-Rep in ¶
	Membership of a subproblem of Rep in ¶
	Other results on representability
	h1-Rep versus h2-Rep
	Approximating Rep
	Representability by infinite words

	Conclusion
	References

