
Theoretical Computer Science 475 (2013) 47–58

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Factorization of products of hypergraphs: Structure and
algorithms✩

Alain Bretto a,∗, Yannick Silvestre a, Thierry Vallée b

a Normandie Univ. GREYC CNRS UMR 6072, Campus II, Bd Maréchal Juin BP 5186, 4032 Caen cedex, France
b Université Paris Diderot - Paris 7, Laboratoire PPS, Case 7014, 75205 Paris Cedex 13, France

a r t i c l e i n f o

Article history:
Received 23 May 2011
Received in revised form 23 December 2012
Accepted 26 December 2012
Communicated by G. Ausiello

Keywords:
Hypergraph
Cartesian product
Factorization algorithm

a b s t r a c t

On the one hand Cartesian products of graphs have been extensively studied since the
1960s. On the other hand hypergraphs are a well-known and useful generalization of
graphs.

In this article, we present an algorithm able to factorize into its prime factors any
bounded-rank and bounded-degree hypergraph in O(nm), where n is the number of
vertices andm is the number of hyperedges of the hypergraph.

First the algorithm applies a graph factorization algorithm to the 2-section of the
hypergraph. Then the 2-section factorization is used to build the factorization of the
hypergraph via the factorization of its L2-section. The L2-section is a recently introduced
way to interpret a hypergraph as a labeled-graph.

The graph factorization algorithm used in this article is due to Imrich and Peterin and
is linear in time and space. Nevertheless any other such algorithm could be extended to a
hypergraph factorization algorithm similar to the one presented here.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the 1960s Vizing and Sabidussi independently showed [17,19] that, for every finite connected graph, there is a unique
(up to isomorphism) decomposition of the graph into prime factors. This theorem was the starting point for research on
Cartesian products of graphs. Some of the questions raised during these years are still open, as for Vizing’s conjecture.1

An important motivation for the study of Cartesian products is that factorization allows us to reduce algorithmic
complexity by transferring the search for solutions from the product to the factors. Several classical problems in graph
theory were made easier following this approach. For instance, it is well-known that the chromatic number of a Cartesian
product is themaximumof the chromatic numbers of its factors [16] and that lower and upper bounds for the independence
number of a product can be given using the independence numbers of its factors [19,13]. Several other useful parameters or
properties of graphswere also investigated, especially in coloring theory. For instance, several interesting results concerning
the antimagicness [21,9,20] aswell as the game chromatic number [15] of various classes of Cartesian productswere recently
published. Thus, all these parameters and properties are easily computable thanks to Cartesian product operations.

Moreover, most of the networks used in the context of parallel and distributed computation are Cartesian products: the
hypercube, grid graphs, etc. In this context, the problem of finding a ‘‘Cartesian’’ embedding of an interconnection network

✩ A short version of this paper has been presented to COCOON 2010.
∗ Corresponding author. Tel.: +33 2315467485.

E-mail addresses: alain.bretto@unicaen.fr (A. Bretto), yannick.silvestre@unicaen.fr (Y. Silvestre), vallee@pps.jussieu.fr (T. Vallée).
1 This conjecture expressed by Vizing in 1968 states that the domination number of the Cartesian product of graphs is greater than the product of the

domination numbers of its factors.

0304-3975/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.12.050

http://dx.doi.org/10.1016/j.tcs.2012.12.050
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tcs.2012.12.050&domain=pdf
mailto:alain.bretto@unicaen.fr
mailto:yannick.silvestre@unicaen.fr
mailto:vallee@pps.jussieu.fr
http://dx.doi.org/10.1016/j.tcs.2012.12.050

48 A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58

Fig. 1. A graph H and its 2-section [H]2 . The 2-section is the Cartesian product K3�K2�K2 while H is the Cartesian product T�K2�K2 , where T is the
hypergraph T = ({0, 1, 2}, {{0, 1, 2}}).

into another one is also a topic of interest and thus has gained considerable attention (see for instance [1,10]). Note that
Cartesian products are also used in telecommunications [18].

Finally, in 2006, Imrich and Peterin [12] gave an algorithm able to compute the prime factorization of connected graphs
in linear time and space, making the use of Cartesian products even more attractive.

Hypergraphs are a well-known generalization of graphs introduced in the 1960s [3]. Since then, they had many
applications in several fields of computer science: machine learning, game theory, indexing of databases, SAT problem,
data mining and optimization (for a survey see [4]).

Cartesian products of hypergraphs can be defined in the same way as for graphs. The unicity of the prime factorization
was first proved for finite hypergraphs in [11] and then generalized to infinite hypergraphs in [14]. As for graphs, it is often
possible to facilitate the search for solutions by studying the factors rather than the product. In particular, several hypergraph
properties and parameters (see [5,7]), like linearity, conformality, Helly property, transversal andmatching numbers, can be
easily deduced from the same properties and parameters on the factors. For instance, a hypergraph has the Helly property
if its factors have it.

Summary of the results

In this article, we present an algorithm (Algorithm 1) able to factorize any hypergraph into its prime factors. It is, up to
our knowledge, the first such algorithm. It is based on the algorithm of Imrich and Peterin introduced in [12], but it is easily
adaptable to any algorithm which factorizes Cartesian products of graphs.

One way to interpret the greater generality of hypergraphs over graphs is to say, for fixed parameters, that a hypergraph
can store more information than a graph. In [8], this interpretation is made explicit by the introduction of some sort of
labeled-graphs where the labels are used to store the additional information.

In the sequel, we use an alternative and equivalent way, introduced first in [7,6], to represent hypergraphs by labeled-
graphs. These labeled-graphs are named labeled 2-sections (L2-sections) as they interpret a hypergraph H by its 2-section
G endowed with an additional labeling function L, which associates with each edge of G the set of all hyperedges of
H containing the vertices of this edge. It is then easy to retrieve the hypergraph H from its L2-section (G, L). It is also
straightforward to show that the prime factorization of H can be easily built from the prime factorization of (G, L). Note
that this is not true for the 2-section. Indeed, except in the quite narrow case of conformal hypergraphs, the 2-section does
not even contain enough information to decide the number of factors in the hypergraph prime factorization. For instance,
Figs. 1 and 2 give an example of two hypergraphs which have the same 2-section and have respectively three and two prime
factors. It is also not so difficult to see that there exists another hypergraph which has again the same 2-section and which
is prime.

The basic idea behind the design of Algorithm 1 is to use the L2-section (G, L) of H . In particular, the algorithm runs the
algorithmof Imrich and Peterin on the 2-sectionG to obtain its prime factorsG1, . . . ,Gk. Then, it is not so difficult to see that
the prime factors of (G, L) must be of the form (Gc1 , L1), . . . , (Gcm , Lm), where c1, . . . , cm is a partition of k̄ = {1, . . . , k}
and where each Gcj is the Cartesian product of the Gi’s, for i ∈ cj, and Lj is some labeling-function on Gcj . So it remains to
find the partition c1, . . . , cm as well as the L1, . . . , Lm functions. Since by definition a factor contains at least two vertices,
G has at most log2 n factors, where n is the number of vertices of G, and so the set k̄ has at most 2log2 n

= n subsets. Hence, it
is feasible to find the partition by trying every possible subset c ⊆ k̄. Nevertheless, this way does not give any information
about how to define the Lj’s. Indeed, except in the case where H is conformal, there are many possibilities to define Lj in
such a way that (Gcj , Lj) is an L2-section, that is, there are many possibilities to define a hypergraph corresponding to Gcj .

Hence, in the sequel we define explicitly the right partition c1, . . . , cm (cf. Definition 9) in such a way that the Lj’s can
be defined, up to isomorphism, as the restrictions of L to some subgraphs of G, called the cj-layers of G.

In the second section of this article, we show how to build the L2-section of a hypergraph and conversely how to retrieve
a hypergraph from its L2-section. Then we introduce Cartesian products of hypergraphs as well as Cartesian products of

A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58 49

Fig. 2. A hypergraph H with two factors corresponding to two equivalence classes c1 = {1, 2} and c2 = {3} according to Definition 9.

L2-sections. In the fourth section, we introduce the graph factorization algorithm of Imrich and Peterin and give some
properties of Cartesian products. This algorithm is based on a coloring of the Cartesian productwhich exhibits the underlying
factorization of the graph. In the fifth section, we introduce an equivalence relation on the set of colors induced by the
factorization of the 2-section of the hypergraph. This relation induced a new coloring of the 2-section and is shown to induce
the prime factorization of the hypergraph. Finally, in the sixth section, based on these results, we introduce an algorithm
able to perform the prime factorization of any bounded-rank and bounded-degree hypergraph in O(nm), where n is the
number of vertices andm is the number of hyperedges of the hypergraph.

Preliminaries

In the sequel, the cardinality of a set A is denoted by |A|. The set P2(A) is the set of pairs {x, y} such that x, y ∈ A and
x ≠ y, P (A) is the powerset of A and P ∗(A) = {a ∈ P (A) : a ≠ ∅}. The union of A is the set


A = {x ∈ a : a ∈ A}. For f a

function, we define Im(f) = {y : ∃x, f (x) = y} and for every subset A of its domain f [A] = {f (a) : a ∈ A}.
The general terminology concerning graphs and hypergraphs in this article is similar to the one used in [2,3].
A hypergraph H on a non-empty set of vertices V is a pair (V , E), where E is a set of non-empty subsets of V , called

hyperedges. A hypergraph is simple if no hyperedge is contained in another. In the sequel, unless explicitly stated, we suppose
hypergraphs to be simple and that no hyperedge is a loop, that is, the cardinality of a hyperedge is at least 2. Hypergraphs
are considered non-trivial here, that is, to contain at least two vertices and one hyperedge.

A graph G = (V , E) is a particular case of (simple) hypergraph where every e ∈ E is of size 2. Hyperedges of graphs are
simply called edges. The set of vertices (resp. hyperedges) of the hypergraph H is often written V (H) (resp. E(H)).

A path p in H is either a single vertex x, or a sequence of vertices (x0, . . . , xn), where n ≥ 1, containing no repetition of
vertex and such that xi, xi+1, belong to an hyperedge of H , for every i ∈ {0, . . . , n − 1}. The integer n = length(p) is the
length of p and the vertices x0 and xn are said to be connected by p in H . In particular, if p = x then length(p) = 0 and it is
convenient to consider that p connects x to itself.

The hypergraph H is connected if every pair {x, y} ⊆ V (H) is connected by a path. From now on, unless explicitly stated,
we assume that hypergraphs are connected. Note that this implies that every vertex is incident to at least one edge, that is,
there is no isolated vertex and V =


E.

Two subgraphs of a graph G are vertex-disjoint if they have no common vertex. Two vertex-disjoint subgraphs G1,G2 are
adjacent if there exists an edge of G having one vertex in G1 and the other in G2. They are connected by a path p if the first
vertex of p is in G1 and its last vertex is in G2. The distance between G1 and G2 in G is theminimal length of a path connecting
G1 and G2. Moreover, it is convenient to consider that every subgraph G′ of G is connected to itself by single-vertex paths of
the form p = x, where x is a vertex of G′, and so that the distance of G′ to itself is 0.

The subgraph ofG = (V , E) induced by a set of vertices V ′
⊆ V is the graph (V ′, E ′), where E ′

= {{u, v} ∈ E : {u, v} ⊆ V ′
}.

The number of hyperedges of a hypergraph H is denoted bym(H). The rank of H is r(H) = max{|e| : e ∈ E(H)}.
Given two simple hypergraphs H1 = (V1, E1), H2 = (V2, E2), a hypergraph isomorphism is a bijection f : V1 → V2 such

that, for all e ⊆ V1, we have e ∈ E1 if and only if f [e] ∈ E2.

2. Hypergraphs and labeled 2-sections

We introduce below the notion of labeled 2-section (L2-section) of a hypergraphwhich is a particular case of labeled-graph.

2.1. Definitions and basic facts

The 2-section of the hypergraph H = (V , E) is the graph [H]2 = (V , E) where E =


e∈E P2(e), that is, two distinct
vertices are adjacent in [H]2 if and only if they belong to a same hyperedge of H (see Fig. 1). Note that every hyperedge of H

50 A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58

is a clique of [H]2 and that


E = V implies


E = V . Note also that a hypergraph is connected if and only if its 2-section
is. Note finally that if f is an isomorphism between [H]2 and a graph G then H ′

= (f [V], {f [e] : e ∈ E}) is also a hypergraph
isomorphic to H . This remark will allow us to work up to isomorphism when dealing with isomorphisms between [H]2 and
Cartesian products of graphs.

In order to define the labeled 2-section, we introduce first a slightly more general concept of labeled-graph, called
hyperedge-set labeled-graph. Note that the hypergraph H = (V , E) associated with a hyperedge-set labeled-graph may not
be simple, nor connected (so we may have


E (V).

Definition 1. A (hyperedge-set) labeled-graph is a pair Γ = (G, L), where G = (V , E ′) is a graph and L is a function from E ′

to P ∗(P ∗(V)).
The inverse [Γ]

−1
L2 of the labeled-graph Γ = (G, L) is the hypergraph H = (V ,


Im(L)), where V is the set of vertices

of G.

Definition 2 (L2-Section). For every hypergraph H = (V , E), the L2-section of H is the labeled-graph [H]L2 = ([H]2, L),
where the function L is defined, for every edge {x, y} of [H]2, by L({x, y}) = {e ∈ E : x, y ∈ e}.

A labeled-graph Γ is a labeled 2-section (L2-section) if there exists a hypergraph H such that [H]L2 = Γ .

The following result is straightforward.

Proposition 1. For all hypergraph H and L2-section Γ we have [[H]L2]
−1
L2 = H and [[Γ]

−1
L2]L2 = Γ .

Definition 3. An isomorphism between two labeled-graphs Γ1 = (G1, L1) and Γ2 = (G2, L2), where G1 = (V1, E1) and
G2 = (V2, E2), is a bijection f : V1 → V2 such that

1. f is a graph isomorphism from G1 to G2.
2. L2({f (x), f (y)}) = {f [e] : e ∈ L1({x, y})}, for all {x, y} ∈ E1.

We write Γ1 ∼= Γ2 and we say that Γ1 and Γ2 are L2-isomorphic if there exists an isomorphism from Γ1 and Γ2.

Note that by the first condition of the definition, f is a graph isomorphism from G1 to G2 and so {x, y} ∈ E1 if and only if
{f (x), f (y)} ∈ E2, for every pair of vertices of V1. This ensures that L1({x, y}) is defined if and only if L2({f (x), f (y)}) is, and
so that the second condition of the definition makes sense.

It is also easy to check that if f : Γ1 → Γ2 and g : Γ2 → Γ3 are labeled-graph isomorphisms then g ◦ f : Γ1 → Γ3 is also
an isomorphism. It is also clear that if Γ1 and Γ2 are isomorphic then Γ1 is an L2-section if and only if Γ2 is. The following
result is straightforward.

Lemma 1. Two hypergraphs are isomorphic if and only if their L2-sections are.

We remind the reader that a hypergraph H ′
= (V ′, E ′) is a partial hypergraph of H = (V , E) if E ′

⊆ E and V ′
=


E ′.

We give below a sufficient condition for a labeled-graph Γ0 to be a sub-section of Γ , that is, to be a labeled-graph such that
[Γ0]

−1
L2 is a partial hypergraph of H .

Definition 4 (Subsection). Let Γ = (G, L) be the L2-section of H , where G = (V , E ′). A pair Γ0 = (G0, L0) is a subsection
of Γ if the following conditions are satisfied:

1. G0 = (V0, E ′

0) is a connected subgraph of G (that is, V0 ⊆ V and E ′

0 ⊆ E ′).
2. L0 is the restriction of L to E ′

0.
3. If e ∈


Im(L0) then P2(e) ⊆ E ′

0.

Lemma 2. Let Γ be the L2-section of the simple connected hypergraph H and Γ0 = (G0, L0) be a subsection of Γ . Then
H0 = [Γ0]

−1
L2 is a simple connected partial hypergraph of H with L2-section Γ0.

Proof. Let H = (V , E), Γ = ([H]2, L), where [H]2 = (V , E), Γ0 = (G0, L0), where G0 = (V0, E ′

0).
We show first that, under the hypotheses of the lemma, Γ0 is a labeled-graph. Note that G0 is a connected graph by the

first condition of Definition 4, and so V0 =


E ′

0. It remains to show that L0 is a function from E ′

0 to P ∗(P ∗(V0)). Since, L0
is the restriction of L to E ′

0, we know already that L0 is defined from E ′

0 to P ∗(P ∗(V)). So it is sufficient to show that, for
every e ∈


Im(L0), e is a non-empty subset of V0. The non-emptiness is immediate since e ∈ P ∗(V). Note now that, since

|e| ≥ 2, e =


P2(e). Hence, since P2(e) ⊆ E ′

0 by the third condition of Definition 4, it comes e =


P2(e) ⊆


E ′

0 = V0.
We show now that the inverse of Γ0 is a simple connected partial hypergraph of H . So let H0 = (V0, E0), where

E0 =


Im(L0). Note first that, since Γ0 is a labeled-graph, H0 is a hypergraph and


E0 ⊆ V0. Since L0 is the restriction
of L to E ′

0, every hyperedge of H0 comes from H , and so clearly H0 is simple by simplicity of H . We show now that H0
is connected. Let u, v be two vertices of V0. They are connected by a path in G0. Now, for each edge {z, w} of this path,
L({z, w}) contains at least one hyperedge which contains z, w by construction of Γ from H . Since L0 is the restriction of L
to E ′

0 and E0 =


Im(L0), this hyperedge is in H0. It is then easy to build a path in H0 from u to v using these hyperedges.
Hence H0 is connected and so ∪E0 = V0, and since clearly E0 ⊆ E, H0 is a partial hypergraph of H . �

A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58 51

3. Cartesian products of hypergraphs and L2-sections

We remind the reader that k̄ = {1, . . . , k}, for every positive integer k.

Definition 5. Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs. The Cartesian product of H1 and H2 is the hypergraph
H1�H2 with set of vertices V1 × V2 and set of edges:

E1�E2 = {{x} × e : x ∈ V1 and e ∈ E2}  
A1

∪ {e × {u} : e ∈ E1 and u ∈ V2}  
A2

.

Note that up to the isomorphism the Cartesian product is commutative and associative. That will allow us to denote
simply by u = x1, . . . , xk the vertices of V1 × · · · × Vk. In particular, every permutation π : k̄ → k̄ induces an isomorphism
fπ between H1� · · · �Hk and Hπ(1)� · · · �Hπ(k) defined by fπ (x1, . . . , xk) = xπ(1), . . . , xπ(k).

For every i ∈ k̄, the ith projection pi : V1 × · · · × Vk → Vi is the function which associates with every k-uple u
its ith-coordinate. To simplify notations pi(u) will be denoted by ui as soon as there will be no ambiguity. We denote by
u[i := y] the vertex of V1 × · · · × Vk having the same coordinates than u except that ui is replaced by y ∈ Vi, that is, if
u = x1, . . . , xi−1, x, xi+1, . . . , xk then u[i := y] = x1, . . . , xi−1, y, xi+1, . . . , xk.

It is easy to check that ε ⊆ V1 × · · · × Vk is a hyperedge of H1� · · · �Hk if and only if there exist a unique i ∈ k̄,
x1, . . . , xi−1, xi+1, . . . , xk ∈ V1×· · ·×Vi−1×Vi+1×· · ·×Vk and e ∈ Ei such that ε = {x1}×· · ·×{xi−1}×e×{xi+1}×· · ·×{xk}.
Such a hyperedge ε is then called an i-hyperedge and clearly ε = {u[i := y] : y ∈ e}, for every u ∈ ε.

Note that a Cartesian product of hypergraphs is a graph (resp. connected) if and only if all its factors are. Moreover, if Hi
is isomorphic to H ′

i , for every i ∈ k̄, then H1� · · · �Hk is also isomorphic to H ′

1� · · · �H ′

k.
Fig. 1 illustrates the notion of Cartesian product of graphs and hypergraphs. We give now two results from [5].

Lemma 3. We have A1 ∩ A2 = ∅. Moreover, |e ∩ e′
| ≤ 1 for any e ∈ A1 and any e′

∈ A2.

Proposition 2. If H1 and H2 are hypergraphs then the 2-section of their Cartesian product is the Cartesian product of their 2-
sections.

The Cartesian product is now extended to (hyperedge-set) labeled-graphs.

Definition 6. Let Γ1 = (G1, L1) and Γ2 = (G2, L2) be two labeled-graphs, where G1 = (V1, E1) and G2 = (V2, E2). Their
Cartesian product Γ1�Γ2 is the labeled-graph (G1�G2, L1�L2), where L1�L2 is defined respectively on every hyperedge
of A1 and every hyperedge of A2 (cf. Definition 5) by

• L1�L2({x} × {u, v}) = {{x} × e : e ∈ L2({u, v}}.
• L1�L2({x, y} × {u}) = {e × {u} : e ∈ L1({x, y}}.

It is easy to check that L1�L2 is a function from E1�E2 to P ∗(P ∗(V1 × V2)) and so that Γ1�Γ2 is indeed a labeled-graph
(using in particular the fact that Li : Ei → P ∗(P ∗(Vi)), i ∈ {1, 2}).

It is also straightforward to check that, up to isomorphism, the Cartesian product on labeled-graphs is commutative and
associative. Thatwill allow us to overlook parentheses in the sequel. It is also straightforward to show that ifΓi is isomorphic
to Γ ′

i , for every i ∈ k̄, then Γ1� · · · �Γk and Γ ′

1� · · · �Γ ′

k are.

Lemma 4. For all hypergraphs H1,H2 and L2-sections Γ1, Γ2, we have

1. [H1]L2�[H2]L2 = [H1�H2]L2.
2. [Γ1�Γ2]

−1
L2 = [Γ1]

−1
L2 �[Γ2]

−1
L2 .

Proof. Note that second point of the lemma is an easy application of the first one and of Proposition 1. In order to show the
first point, let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs and [H1]L2 = ([H1]2, L1) and [H2]L2 = ([H2]2, L2)
be their L2-sections, where [H1]2 = (V1, E1) and [H2]2 = (V2, E2). Note that by Proposition 2, we have already
[H1�H2]2 = [H1]2�[H2]2. It remains to show that the labeling function of [H1�H2]L2 and the function L1�L2 given in
Definition 6 are equal. Let us denote by L the first one. Let {(x, u), (y, v)} ∈ E1�E2, we have to show L({(x, u), (y, v)} =

L1�L2({(x, u), (y, v)}). By definition of the L2-section, there exists a hyperedge ε0 of E1�E2 such that (x, u), (y, v) ∈ ε0
and, clearly, either ε0 = {x} × e0, where x ∈ V1 and e0 ∈E2, or ε0 = e0 × {u}, where u ∈ V2 and e0 ∈ E1. We show the result
for the first case, the second case is similar. Since x = y and u ≠ v, clearly every hyperedge ε of E1�E2 containing both (x, u)
and (y, v) is of the form {x} × e where e ∈ E2. It comes by Definitions 2 and 6:

L({(x, u), (x, v)}) = {ε : (x, u), (x, v) ∈ ε ∈ E1�E2}
= {{x} × e : (x, u), (x, v) ∈ {x} × e ∈ E1�E2}
= {{x} × e : u, v ∈ e ∈ E2}
= {{x} × e : e ∈ L2({u, v})}

= L1�L2({(x, u), (x, v)}). �

52 A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58

4. Colorings and factorization of graphs

In [12], Imrich and Peterin designed an algorithm able to factorize any finite connected graph into its prime factors.
We remind the reader that hypergraphs and graphs are supposed to be non-trivial (that is, non-reduced to a single vertex

and having at least one edge).In particular, if G = G1� · · · �Gk is a Cartesian product of graphs, its factors G1, · · · ,Gk are all
supposed non-trivial.

4.1. The algorithm of Imrich and Peterin

A prime graph is a graph which cannot be factorized as a Cartesian product of non-trivial graphs. A factorization is prime
if each factor is prime.

The algorithm of Imrich and Peterin is based on the fact that if G = G1� · · · �Gk then this factorization induces a coloring
of the edges of G. Indeed, if G = G1� · · · �Gk then, for all u ∈ V1 ×· · ·×Vk and i ∈ k̄, there is a subgraph Gu

i of G such that the
ith projection pi induces an isomorphism between Gu

i and Gi. Indeed, as already noticed, {u, v} ⊆ V (G) is a edge of G if and
only if there exists a unique i ∈ k̄ such that {ui, vi} is an edge of Gi, and uj = vj, for every j ∈ k̄, j ≠ i. An edge of that form is
said to be an i-edge or to have the color i. Since, every edge of G is an i-edge for a unique i, clearly k̄ induces a coloring of the
edges of G. The graph Gu

i is then defined as the connected subgraph of G induced by the set of vertices V u
i , where a vertex

belongs to V u
i if and only if it is connected to u by an i-path, that is, a path containing only i-edges. The set of edges of Gu

i is
denoted below by Eu

i .
Subgraphs of the form Gu

i are said to be the i-layers of G and it is clear that every edge of G is contained in exactly one
layer. Note that if v is a vertex of Gu

i then clearly Gv
i = Gu

i . This implies that the vertex used to denote Gu
i can be freely chosen

among the vertices of V u
i . It is also clear that two distinct i-layers are vertex-disjoint. Finally, since each Gi is connected, it is

easy to check that every vertex u is adjacent to at least one i-edge, for each i ∈ k̄, and so Gu
i is a non-trivial graph.

Note that {u, v} is an i-edge of G if and only if u = v[i := ui] (or equivalently v = u[i := vi]) and {ui, vi} is an edge
of Gi. More generally, u and v are connected by an i-path of length n in Gu

i if and only if u = v[i := ui] (or equivalently
v = u[i := vi]) and ui and vi are connected by a path of length n is Gi. It is also easy to check that u and v are connected by
a path in G if and only if, for every i ∈ k̄, ui and vi are connected by a path in Gi.

Let now {u, v} and {u, w} be respectively an i-edge and a j-edge ofG, where i ≠ j. We show that these edges are contained
into an induced square of G. Indeed, by hypothesis we have v = u[i := vi] and {vi, ui} ∈ Ei, as well as, w = u[j := wj]

and {wj, uj} ∈ Ej. Moreover, since i ≠ j, we have wi = ui and vj = uj, and so {vi, wi} ∈ Ei and {wj, vj} ∈ Ej. Hence, since
u′

= u[i := vi][j := wj] is a vertex of G such that u′

i = vi and u′

j = wj, it comes {u′

i, wi} ∈ Ei and {u′

j, vj} ∈ Ej. Since
moreover w and u′ differ only of their ith-coordinate, and v and u′ differ only on their jth-coordinate, {w, u′

} and {v, u′
} are

respectively an i-edge and a j-edge of G. It is also easy to see that there is no edge between u and u′ and no edge between v
and w. Hence, the subgraph of G induced by V ′

= {u, v, w, u′
} is a square. Note that opposite edges in this square have the

same color. Moreover, it is easy to show that this induced square is the unique one containing both {u, v} and {u, w}. This
fact is expressed in the following result from [12].

Lemma 5 (Square Lemma). Let G = G1� · · · �Gk be a cartesian product. If two edges of G are adjacent edges with different colors
then they lay in a unique induced square (with opposite edges in the square having the same color).

A straightforward consequence of the Square Lemma is that every clique of G is necessarily contained in the same layer.
From the Square Lemma we easily get the following result, also given in [12].

Lemma 6. Let G = G1� · · · �Gk. Then every clique of G is contained in a single layer. Moreover, if two cliques share an edge then
they both are contained in the same layer.

Since a hyperedge of a hypergraph H induces a clique in its 2-section, the definition of the labeling function in the L2-
section gives easily.

Corollary 1. If Γ = (G, L) is the L2-section of H and G = G1� · · · �Gk then e is a clique of Gu
i for all i ∈ k̄ and i-edge {u, v} such

that e ∈ L({u, v}).

4.2. I-paths, I-layers, I-projection and edge-induced isomorphisms

We fix now a graph G = G1� · · · �Gk.
We generalize first the notion of i-layer to the notion of I-layer, where I ⊆ k̄. Indeed, we let {u, v} be an I-edge of G if

and only if {u, v} is an i-edge for some i ∈ I . Then, for every u ∈ V , the I-layer Gu
I = (V u

I , Eu
I) is the connected subgraph of G

induced by the set of vertices V u
I , where a vertex of G belongs to V u

I if and only if it is connected to u by an I-path, that is, a
path containing only I-edges.

For I = {i1, . . . , in} ⊆ k̄, pI is the I-projection on G, that is, the mapping which associates with every sequence u ∈ V the
sequence ui1 , . . . , uin ∈ Vi1 × · · · × Vin . To simplify notations, pI(u) is often simply written uI and v[I := uI] is the k-tuple
obtained from v by replacing vi by ui, for every i ∈ I .

A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58 53

Note that pI extends naturally to a function on P (V) by letting pI(e) = {pI(x) : x ∈ e}, for every e ⊆ V . Similarly, it
extends to a function on P (P (V)) by letting pI(L) = {pI(e) : e ∈ L}, for every L ⊆ P (V). We use this remark freely in the
sequel.

Note finally that we denote by GI the graph Gi1� · · · �Gin , where I = {i1, . . . , in} is ordered according to the natural order
on k̄.

Lemma 7. Two vertices u, v of G are connected by an I-path, I ⊆ k̄, if and only if these vertices have the same coordinates except
for some coordinates of I.

Proof. Indeed, since {u, v} is an i-edge of G if and only if u[i := vi] and {ui, vi} is an edge of Gi, it is easy to check that if u, v
are connected by an I-path then their coordinates are the same except for some coordinates of I .

Now suppose that u, v are equal on their coordinates except for some coordinates of I . We show the result by induction
on the number n of such coordinates. If n = 0 then u = v and the trivial path u connects u to v. Now suppose that u, v are
equal on their coordinates except for n + 1 coordinates of I and let i ∈ I be such that a coordinate. Let now u′

= u[i := vi].
Clearly u′ have the same coordinates as v except for n coordinates of I . Hence, by induction hypothesis, there exists an I-path
q between u′ and v in G. Now, since Gi is connected, there exists a path between ui and vi in Gi. As noticed previously, this
path induces an i-path p in G between u and u′. Since i ∈ I , clearly pq is an I-path connecting u and v. �

By definition of v[I := uI], we have v[I := uI]j = vj, for every j /∈ I . Moreover, if ui = vi for some i ∈ I then clearly
v[I := uI] = v[I \ {i} := uI\{i}]. It comes easily.

Corollary 2. Two vertices u, v are connected by an I-path if and only if u = v[I := uI] if and only if v = u[I := vI].

Corollary 3. If v, w are vertices of Gu
I , then vj = wj, for every j /∈ I .

Proof. Indeed, since v, w are in Gu
I which is clearly connected by definition, there exists an I-path between w and v. Hence,

by the lemma, their coordinates out of I are the same. �

Corollary 4. Every edge of Gu
I is an I-edge.

Proof. Let {v, w}be an edge ofGu
I . By definition ofGu

I as the subgraphofG inducedbyV u
I , {v, w} is an edge ofG and v, w ∈ V u

I .
So, in particular, {v, w} must be a j-edge for some j ∈ k̄. Hence, {vj, wj} is an edge of Gj and so vj ≠ wj. If we suppose now
that j /∈ I , since v, w ∈ V u

I , we get vj = wj by the previous corollary. Contradiction. �

Lemma 8. For all u ∈ V and non-empty set I ⊆ k̄, the restriction puI of pI to Gu
I is a graph isomorphism between Gu

I and GI .

Proof. Let I = {i1, . . . , in} ⊆ k̄ and let u be a vertex of V1 × · · · × Vk. In order to simplify notations, puI is simply written pI .
By definition pI(v) is the sequence vi1 , . . . , vin and so clearly pI is a function from V u

I to Vi1 × · · · × Vin .
Now if pI(v) = pI(w), where v, w ∈ V u

I , this means that vi = wi, for every i ∈ I . Since v, w are both in Gu
I , we have also

vj = wj for every j /∈ I by Corollary 3. So v = w and pI (restricted to Gu
I) is an injection.

Now to see that pI is a surjection, let x1, . . . , xn be a vertex of Vi1 × · · · × Vin . Since GI is a connected graph, there is a
path p from the vertex ui1 , . . . , uin to x1, . . . , xn. We show now by induction on the length of p that there exists v ∈ V u

I such
that pI(v) = x1, . . . , xn and such that v is connected to u by a path of same length as p in Gu

I . If the length is 0, that is, if
ui1 , . . . , uin = x1, . . . , xn then u is such a vertex and path (of length 0).Now suppose p of lengthm + 1 between ui1 , . . . , uin
and x1, . . . , xn. The path can be decomposed into a path q of length m and a last edge incident to x1, . . . , xn. By induction
hypothesis, the last vertex of q is of the formwi1 , . . . , win , for somew ∈ V u

I connected to u by a path q′ of the same length as
q. The last edge links wi1 , . . . , win and x1, . . . , xn and, since GI is a Cartesian product, this edge must be an ij-edge for some
j ∈ n̄. Hence, we have {wij , xj} ∈ Eij and wil = xl, for every l ∈ n̄ \ {j}. It is then easy to check that w[ij := xj] and q′ extended
with the ij-edge {w, w[ij := xj]} are respectively the vertex and the path we are looking for.

Finally, by Corollary 4, every edge of Gu
i is an i-edge for some i ∈ I . It is then easy to check that pI associates an i-edge of

GI with this edge, proving that pI is a graph morphism. �

Lemma 9. Let Gu
I and Gv

I be disjoint I-layers of G, where I ⊆ k̄ is non-empty, and {u, v} be a j-edge, for j /∈ I . The function f uvI
defined by f uvI (w) = w[j := vj], for every vertex w of Gu

I , is a graph isomorphism between Gu
I and Gv

I such that f uvc (u) = v. It is
moreover edge-color preserving and {w, w[j := vj]} is a j-edge.

Proof. First, let us show the injectivity of f uvI . Indeed, let w, z be vertices of Gu
I . If w[j := vj] = z[j := vj] then, for every

i ∈ k̄ \ {j}, wi = zi. Moreover, since j /∈ I , we have wj = zj by Corollary 3, and so w = z.
Second, by Lemma 8, both Gu

I and Gv
I are isomorphic to GI , and so have the same cardinality. That shows that f uvI is

bijective, since the graphs are supposed finite in this article.
Finally, since there is a j-edge between u and v, we have v = u[j := uj] = f uvi (u). Moreover, since an edge {x, y} of the

Cartesian product G is an i-edge if and only if x and y are equal for every coordinate different from i and {xi, yi} is an edge of
Gi, and since j /∈ I , it is straightforward to check that {w, z} is an i-edge of Gu

I if and only if {w[j := vj], z[j := vj]} is an i-edge
of Gv

I . Hence, f
uv
I is an edge-color preserving graph isomorphism. It is also straightforward to check that {w, w[j := vj]} is a

j-edge using the Square Lemma. �

54 A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58

Corollary 5. Under the hypotheses of the lemma, f uvI = f u
′v′

I for all vertex u′ in Gu
I and v′ in Gv

I such that {u′, v′
} is a j-edge.

Proof. Indeed, since v′ is in Gv
I and j /∈ I , we have v′

j = vj (Corollary 3). Since moreover u′
∈ Gu

I , we have Gu
I = Gu′

I , and so
the result. �

5. Prime factorization of hypergraphs via their L2-sections

In this section we fix an hypergraph H = (V , E), its 2-section G = (V , E) and its L2-section Γ = (G, L). We suppose
moreover that G = G1� · · · �Gk is colored with the set k̄ as shown previously.

We show how the prime factorization of H can be deduced from the prime factorization of G using Γ . This is done by
introducing an equivalence relation on k̄ (cf. Definition 9) from which are defined the prime factors of Γ .

Letm be an integer and let, for every i ∈ m̄, fi be a graph isomorphism from a graph Gi to a graph G′

i . It is straightforward
to show that the function f1 × · · · × fm defined, for every vertex x1, . . . , xm ∈ V1 × · · · × Vm, by f1 × · · · × fm(x1, . . . , xm) =

(f1(x1), . . . , fm(xm)), is a graph isomorphism from G1� · · · �Gm to G′

1� · · · �G′
m.

Definition 7. Let c1, . . . , cm be a partition of k̄ and u be a vertex of G. We defined the function hu : V u
c1 × · · · × V u

cm →

V1 × · · · × Vk on every v̄ ∈ V u
c1 × · · · × V u

cm by hu(v̄) is the sequence which ith coordinate is equal to pi(v̄j), where i ∈ cj, for
every i ∈ k̄ and j ∈ m̄.

Lemma 10. For all partition c1, . . . , cm of k̄ and vertex u of G, hu is a graph isomorphism from Gu
c1� · · · �Gu

cm to G1� · · · �Gk.

Proof. It is easy to check that hu in Definition 7 is well defined as a function from V u
c1 × · · · × V u

cm to V1 × · · · × Vk. Note that
by the remark above and Lemma 8, the function pc1 ×· · ·×pcm is a graph isomorphism from Gu

c1� · · · �Gu
cm to Gc1� · · · �Gcm .

Now let j1, j2, . . . , jk be the elements of k̄ ordered in such a way that the indices of c1 appear first in the natural order, then
the indices of c2 appear second in the natural order, and so on until cm. Since c1, . . . , cm is a partition of k̄, the function
π : k̄ → k̄ defined by π(i) = ji is a permutation. It is then straightforward to check that the function hu is equal to the
function f −1

π ◦(pc1 ×· · ·×pcm), where fπ is the isomorphism induced byπ . Hence hu is a graph isomorphism as a composition
of two graph isomorphisms. �

Definition 8. For every c ⊆ k̄ and u ∈ V , we let Γ u
c be the graph Gu

c endowed with the restriction of L to Eu
c . The labeled-

graph Γ u
c is called the c-Cartesian join of u and we let Hu

c = [Γ u
c]

−1
L2 . If c = {i} then Γ u

c (resp. Hu
c) is simply written Γ u

i
(resp. Hu

i).

In order to simplify notations we use L to denote the restriction of L to Eu
c , that is, we write Γ u

c = (Gu
c , L).

Lemma 11. For all u ∈ V and non-empty c ⊆ k̄, Hu
c is a partial hypergraph of H with L2-section Γ u

c .

Proof. By Lemma 2, it is sufficient to show that Γ u
c is a subsection of Γ . We prove first that Gu

c is the subgraph of G
induced by Eu

c , that is, we have to prove V u
c =


Eu
c . Since Gu

c is by definition the subgraph induced by V u
c , we have

Eu
c = {{v, w} ∈ E : v, w ∈ V u

c } and so


Eu
c ⊆ V u

c . Now, if v ∈ V u
c , since clearly Gu

c is connected, there exists w such
that {v, w} ∈ Eu

c . Hence, we have also V u
c ⊆


Eu
c .

The fact that Gu
c is endowedwith the restriction ofL to Eu

c is given by definition, so it remains to show the third condition
of Definition 4. Let e ∈ L({v0, w0}), where {v0, w0} ∈ Eu

c , and let {v, w} in P2(e). By hypothesis {v0, w0} is a c-edge and so
an i-edge for some i ∈ c. Moreover, by definition of L, we have e ∈ L({v0, w0}) if and only if v0, w0 ∈ e ∈ E. Note now that,
by Corollary 1, e is a clique of Gv0

i . Hence, since v, w ∈ e, {v, w} and {v0, w0} are edges of the same i-layer Gv0
i . Finally, since

v0 ∈ V u
c , we get {v, w} ∈ Eu

c , proving the result. �

Wedefine now an equivalence relationR∗ on the set of colors k̄which uses the graph isomorphisms of the type f uvc given
by Lemma 9. These graphs isomorphisms are called edge-induced isomorphisms and they are denoted by f uvi when c = {i}.

Definition 9. We let R be the binary relation on k̄ defined for every ordered pair of distinct i, j by: iRj if and only if there
exist distinct i-layers Gu

i and Gv
i adjacent by a j-edge {u, v} such that the edge-induced graph isomorphism f uvi is not an

L2-isomorphism between Γ u
i and Γ v

i .
We define now R∗ as the reflexive, symmetric and transitive closure of R, and we let k̄/R∗ be the quotient of k̄ by R∗.

Proposition 3. For all u, v ∈ V and c ∈ k̄/R∗, the function guv
c which associates w[k̄ \ c := vk̄\c] with every vertex w of Gu

c is
an L2-isomorphism between Γ u

c and Γ v
c .

Proof. As a preliminary remark, note that vk̄\c = v′

k̄\c
for all pair of vertices v, v′ belonging to the same c-layer (Corollary 3).

Hence, in particular, w[k̄ \ c := vk̄\c] = w[k̄ \ c := v′

k̄\c
], for all v′

∈ V v
c and w ∈ V . Hence, since Gu

c = Gu′

c for every vertex

u′ of Gu
c , the definition of guv

c does not depend on u and v, that is, gu′v′

c = guv
c , for all u′ in Gu

c and v′ in Gv
c .

The proof is now by induction on the distance d between Gu
c and Gv

c . If d = 0 then Gu
c = Gv

c (by definition of the distance
between two subgraphs). Hence, since vk̄\c = wk̄\c for every w ∈ V u

c = V v
c (Corollary 3), the function guv

c is the identity
function on V u

c , and so trivially an L2-isomorphism.

A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58 55

Suppose now that the distance between Gu
c and Gv

c is n + 1 and let p be a path of minimal length n + 1 between a vertex
of Gu

c and a vertex of Gv
c . By the preliminary remark, we can suppose that p connects u and v and so that p = u, . . . , z, v,

where u, . . . , z is a path of length n and {z, v} is a j-edge, for some j ∈ k̄. Note that, by minimality of p, we have j /∈ c and so
Gz
c ≠ Gv

c , otherwise we would have z, v ∈ V v
c and so {z, v} would be an edge of Gv

c , contradicting Corollary 4. By induction
hypothesis the function guz

c is an L2-isomorphism.
Now let w be a vertex of Gz

c . Since {z, v} is a j-edge, we have zi = vi, for every i ≠ j. Hence, by the preliminary remark,
for every i ∈ (k̄ \ c) \ {j}, we have wi = zi = vi, and so w[k̄ \ c := vk̄\c] = w[j := vj]. This shows that the function gzv

c is
equal to the function f zvc introduced in Lemma 9. Hence, gzv

c is a graph isomorphism between Gz
c and Gv

c by the same lemma.
Note that the lemma also gives that {w, w[j := vj]} is a j-edge, for every w ∈ V z

c . Now, since j /∈ c and c is a class modulo
R∗, we cannot have iRj for any i ∈ c. Hence, in particular, f

ww[j:=vj]

i is a L2-isomorphism, for all w ∈ V z
c and i ∈ c. Each such

f
ww[j:=vj]

i is clearly the restriction of f zvc to Gw
i , and so Corollaries 1 and 4 imply easily that f zvc = gzv

c is an L2-isomorphism.
Hence, for every vertex w of Gu

c , it comes: gzv
c ◦ guz

c (w) = w[k̄ \ c := zk̄\c][k̄ \ c := vk̄\c] = w[k̄ \ c := vk̄\c] = guv
c (w).

Hence, as a composition of L2-isomorphisms, guv
c is a L2-isomorphism. �

Theorem 1. Let Γ = (G, L) be the L2-section of a hypergraph H. If G = G1� · · · �Gk then H ∼=


c∈k̄/R∗ Hu
c , for every vertex

u ∈ V .
Proof. Let u ∈ V1 × · · · × Vk. Note that by Lemma 11, Γ u

c is an L2-section and Hu
c = [Γ u

c]
−1
L2 is a partial hypergraph of

H , for each c ∈ k̄/R∗. We must show H ∼=


c∈k̄/R∗ Hu
c . Since hypergraphs are isomorphic if and only if their L2-sections

are (Lemma 1), and since the Cartesian product commutes with the L2-section operation (Lemma 4), we must equivalently
show that Γ ∼=


c∈k̄/R∗ Γ u

c .
Let now c1, . . . , cm be an enumeration of k̄/R∗. By Lemma 10, the function hu introduced by Definition 7 is a graph

isomorphism from Gu
c1� · · · �Gu

cm to G1� · · · �Gk.
We show that hu is also an L2-isomorphism. Indeed, let {v̄, w̄} be an edge of Gu

c1� · · · �Gu
cm . We must show

L({hu(v̄), hu(w̄)}) = {hu(ϵ) : ϵ ∈ L� · · · �L({v̄, w̄})}. Now, {v̄, w̄} is a cj-edge for some j ∈ m̄. So we have v̄ = w̄[j := v̄j]

and {v̄j, w̄j} is an edge of Gu
cj . Let v = hu(v̄) and guv

cj be the function given in Proposition 3. In order to simplify notations,

we let g = guv
cj . Hence, by definition we have g(w) = w[k̄ \ cj := vk̄\cj], for every w ∈ V u

cj . We show that, for every such

w, we have hu(v̄[j := w]) = g(w). Indeed, let i ∈ k̄. If i ∈ cj then w[k̄ \ cj := vk̄\cj]i = wi and clearly hu(v̄[j := w])i = wi

by definition of hu. Now if i /∈ cj, we have w[k̄ \ cj := vk̄\cj]i = vi which is also equal to hu(v̄[j := w])i since clearly
hu(v̄[j := w])i = hu(v̄)i = vi. Hence, hu(v̄[j := w]) and g(w) are equal on all their coordinates, and so equal.

Now, note that g is an L2-isomorphism from Γ u
cj to Γ v

cj and that every hyperedge ofH containing an edge of Gu
cj is a subset

of V u
cj (Corollary 1). Moreover, by the definition of the Cartesian product of L2-sections, ϵ ∈ L� · · · �L({v̄, w̄}) if and only

if there exists e ∈ L({v̄j, w̄j}) such that ϵ = {v̄[j := w] : w ∈ e}. Hence, it comes:

L({hu(v̄), hu(w̄)}) = L({g(v̄j), g(w̄j)})

= {g(e) : e ∈ L({v̄j, w̄j})}

= {{g(w) : w ∈ e} : e ∈ L({v̄j, w̄j})}

= {{hu(v̄[j := w]) : w ∈ e} : e ∈ L({v̄j, w̄j})}

= {hu({v̄[j := w]) : w ∈ e}) : e ∈ L({v̄j, w̄j})}

= {hu(ϵ) : ϵ ∈ L� · · · �L({v̄, w̄})}. �

We introduce now a lemma used to show that factors of L2-sections are necessarily Cartesian joins. In the lemma, the
L2-sections denoted by Γ(i) are arbitrary L2-sections, the index (i) is only used to enumerate the factors.
Lemma 12. Let Γ = (G, L) be an L2-section. If Γ = Γ(1)�Γ(2)� · · · �Γ(l) is a prime decomposition of Γ , (Γ(i) non-trivial, for
i ∈ {1, . . . , l}) then Γ(i) is an R∗-induced Cartesian join for all i ∈ {1, . . . , l}, and so we can write Γ = Γc1�Γc2� · · · �Γcl , with
Γ(i) = Γci , for {c1, c2, . . . , cl} = k̄/R∗ a partition of k̄, the set of colors obtained from the prime factorization of G.
Proof. Note first that ifΓ = Γ(1)�Γ(2)� · · · �Γ(l), whereΓ(i) is an L2-section for every i ∈ {1, . . . , l}, thenwe have obviously
G = G(1)�G(2)� · · · �G(l), where Γ(i) = (G(i), L(i)), for every i ∈ {1, . . . , l}. As G admits a prime factorization we can write
G =

k
i=1 Gi, for some k ≥ l. As this prime factorization is unique, each graph G(i) is a Cartesian product of the form

j∈ci
Gj, where ci ⊆ k̄. Obviously, we have ci ≠ ∅ (otherwise G(i) would be the trivial graph), ci ∩ ci′ = ∅, for all distinct

i, i′ ∈ {1, . . . , l}, and
l

i=1 ci = k̄. Hence, {ci}i∈{1,...,l} is a partition of k̄.
The equality Γ =

l
i=1 Γ(i) implies L(i) needs to be defined as pci


L {e∈E:e is a ci−edge}


. The last mapping is an L2-

isomorphism as soon as each Cartesian join induced by ci-edges Γ u
ci , u ∈ V , are pairwise L2-isomorphic, what is true as

soon as ci are unions of equivalence classes in k̄/R∗, by definition (otherwise, there exists i ∈ ci, j /∈ ci such that iRj or jRi,
so j-adjacent ci-layers are not necessarily L2-isomorphic or cj layers ci-adjacent are not). Minimal such unions are elements
of k̄/R∗. �

56 A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58

Theorem 2. Let (G, L) be the L2-section of a hypergraph H. If G = G1� · · · �Gk then, for all vertex u ∈ V and c ∈ k̄/R∗, the
partial hypergraph Hu

c is prime.

Proof. Let u ∈ V and c ∈ k̄/R∗. By Lemma 4, it is sufficient to show that Γ u
c is prime. Suppose it is not the case. By

Lemma 12, if Γ u
c has at least two prime factors then there exists a partition {c1, c2} of c such that and Γ u

c = Γ u
c1�Γ u

c2 . As we
have c1, c2 (c ∈ k̄/R∗, it comes that c1 /∈ k̄/R∗, c2 /∈ k̄/R∗, contradicting Lemma 12. �

Fig. 2 gives the prime decomposition of a hypergraph H which has the same 2-section as the hypergraph in Fig. 1. This
2-section can be factorized as K3�K2�K2 and so the number k of its prime factors is 3. Nevertheless, and contrary to the
hypergraph in Fig. 1, H cannot be factorized as a product of three prime factors. Indeed, the quotient of k̄ = {1, 2, 3} by
R∗ contains two equivalent classes c1 = {1, 2} and c2 = {3} and so, according to the results above, H has only two factors
corresponding to these classes.

6. Hypergraph prime factorization algorithm

6.1. A general prime factorization algorithm

We present now Algorithms 1 and 2. The first one computes the prime factorization of every hypergraph H using the
second one. Algorithm 2 decides the relation R. We suppose implemented the operations [_]L2 and [_]−1

L2 .

Algorithm 1 Hypergraph prime decomposition
Require: A hypergraph H = (V , E).
Return: The set of all prime factors of H .
1: Compute Γ = (G; L), the L2-section of H .
2: Run the prime factorization algorithm of Imrich and Peterin on G and let G1, . . . ,Gk be its prime factors.
3: T is an array of length k connecting each color i ∈ k̄ to its class index.
4: For i = 1 to k do
5: ci = {i}; T [i] = i
6: EndFor
7: For i = 1 to k − 1 and j = i + 1 to k do
8: if iRj Or jRi then
9: i0 = T [i]

10: j0 = T [j]
11: if i0 < j0 then
12: ci0 = ci0 ∪ cj0
13: For all l ∈ cj0 do
14: T [l] = i0
15: EndFor
16: end if
17: if j0 < i0 then
18: cj0 = ci0 ∪ cj0
19: For all l ∈ ci0 do
20: T [l] = j0
21: EndFor
22: end if
23: end if
24: EndFor
25: k̄/R∗

= {cj : ∃i ∈ k̄, T [i] = j}
26: return {Hu

c : c ∈ k̄/R∗
}, where u can be any vertex of V

Theorem 3. Algorithms 1 and 2 are sound and complete.

Proof. Concerning Algorithm 2, it is clearly sufficient to show that, for given i, j ∈ k̄, iRj if and only if {e[j := vj] : e ∈

L({u, w})} ≠ L({v, w[j := vj]}), for some i-edge {u, w} and j-edge {u, v}. This can be proved straightforwardly using
Lemma 9, its corollary and the definition of R.

Concerning Algorithm 1. The algorithm is designed in such away that at each execution of the For loop in Line 7, the class
indices T [i] and T [j] are set at the minimums i0 and j0 of the current classes of i and j. This is ensured by the initialization
For loop in Line 4, by the fact that only the class indexed by the minimum of {i0, j0} is updated in Line 12 or 18, and by the
fact that either T [l], for all l ∈ cj0 , or T [l], for all l ∈ ci0 , are set to this minimum depending on the test of the if in Line 11 and
17. Since these changes are done only when iRj or jRi, it is clear that if T [i] = T [j] at the end of the execution then iR∗j.

A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58 57

Algorithm 2 R-test

Require: A Cartesianly colored L2-section Γ = (G; L). For all u ∈ V and i ∈ k̄, Ni(u) = {w : {u, w} is an i-edge}. Two
distinct colors i, j ∈ k̄.

Return: true if iRj, false otherwise.
1: NonChecked contains the vertices which are not already checked.
2: Let NonChecked = V
3: while NonChecked ≠ ∅ do
4: Let u ∈ NonChecked
5: For all w ∈ Ni(u) and v ∈ Nj(u) do
6: if {e[j := vj] : e ∈ L({u, w})} ≠ L({v, w[j := vj])}) then
7: return true
8: end if
9: EndFor

10: NonChecked = NonChecked \ {u}
11: end while
12: return false

Now, it is easy to check that, for each i ∈ k̄, the function which associates the number of iterations of the For loop in Line 7
with the current value of cT [i] after these iterations is increasing (for inclusion). This implies in particular that i ∈ cT [i] at any
time during the computation after the execution of the initialization For loop in Line 4. It is also easy to check that, for all
i, j ∈ k̄, if T [i] = T [j] at some point during the computation, then T [i] stays equal to T [j] during the rest of the computation.
Now, if iR∗j then there exists a sequence i1, . . . , im such that i1 = i, im = j and inRin+1, or in+1Rin, for every n ∈ m̄. Using
the previous facts, it is then straightforward to show by induction onm that if iR∗j then T [i] = T [j] and i, j ∈ cT [i] at the end
of the execution. �

6.2. Data structures and complexity

We present briefly the data structures and complexity of Algorithms 1 and 2. Let H be a hypergraph and Γ = (G, L)
be its L2-section, where G = (V , E). We let m be the number of hyperedges of H , n the number of vertices, ∆ the maximal
degree of a vertex and r the rank of H .

We suppose both the vertices and the hyperedges ofH implemented as integers and E implemented as an array of length
m, where E[e] contains the list of the vertices in the hyperedge e. Now, each hyperedge e ∈ E generates less than r2 edges in
G, and so the numberm′ of edges in G is less thanmr2. Moreover, the maximal degree ∆′ of a vertex in G is clearly bounded
by ∆r . Note also that, since G is connected, we have O(n2) ⊆ O(nm′) and so O(n2) ⊆ O(nmr2).

Clearly, the adjacency matrix M of G can be produced from E in O(n2) + O(mr2) ⊆ O(nmr2) and we can suppose that
it is implemented as required in [12]. Moreover, we can suppose that each time an edge {u, v} of the 2-section is extracted
from the hyperedge e, this hyperedge is appended to the list L({u, v}) of the labels of {u, v}. Note that this extrawork can
be performed in constant time (for instance by using linked lists) and so it does not add to the overall time complexity of
the construction ofM . The adjacency list of G can then be obtained fromM in O(n2) ⊆ O(nmr2). Note finally that, since the
number of hyperedges containing u is at most ∆, each edge of G is labeled by at most ∆ hyperedges.

Thus, the prime decomposition G1� · · · �Gk of G and the corresponding coloring can be obtained in O(m′) ⊆ O(mr2) by
applying the algorithm of Imrich and Peterin in [12]. We also suppose that the coordinatization algorithm described in [12]
is implemented. This algorithm runs in O(m′) ⊆ O(mr2) space and time and allows us to interpret each vertex of G as a
sequence of vertices of V1 ×· · ·×Vk. For every vertex u, we let u[] be the array implementing u as a vector. Note finally that,
using the coloring of G, it is possible to generate a ‘‘colored’’ adjacency list A of G, that is, an array which associates, with
each vertex u, the list of the neighborhoods Ni(u), i ∈ k̄. This adjacency list can clearly be built in O(nm′) ⊆ O(nmr2) and is
denoted by A in the sequel.

Hence, the overall construction of Γ , factorization of G and construction of the auxiliary data structures described above,
can be computed in at most 2O(nmr2) + 2O(mr2) + O(nmr2) = O(nmr2).

We begin now the analysis of the algorithms above with few remarks on the complexity of Algorithm 2. We suppose the
requisites of the algorithm fulfilled andwe let di(u) = |Ni(u)|, for all vertex u and i ∈ k̄. Suppose now i, j to be distinct colors.
The set NonChecked can be built in O(n). The while loop in Line 3 compares, for each vertex u, the i-edges and the j-edges
containing u using Line 6. The number of such i-edge is at most di(u) and the number of j-edges at most dj(u). Now the
number of substitutions performed in Line 6 for each pair of edges is clearly bounded by ∆r +1. Indeed, L({u, w}) contains
at most ∆ hyperedges and each hyperedge is at most of size r . Moreover, for all vertices w, v and i ⊆ k̄, the substitution
w[i := vi] can be performed in constant time by the instructionw[i] = v[i], and so the overall complexity of each execution
of Line 6 is O(∆r). Finally, clearly Line 4 and 10 can be performed in constant time using an adequate data structure to
implement NonChecked.

We discuss now the complexity of Algorithm 1. Note first that, as seen above, the execution of Line 1 and 2, as well as the
construction of the ‘‘colored’’ adjacency list A can be done O(nmr2). Note now that k ≤ d0, where d0 is the minimal degree

58 A. Bretto et al. / Theoretical Computer Science 475 (2013) 47–58

of a vertex u in G (since by connectivity, for each i ∈ k̄, there is at least one i-edge starting from u). Hence, since the maximal
degree of a vertex in G is bounded by ∆r , we have k ≤ ∆r . Hence, the initialization For loop in Line 4 can be performed
in O(∆r).

Now, the heart of the algorithm is the For loop in Line 7. Let N be the number of times this loop is iterated during the
computation. Clearly,N < k2 ≤ ∆2r2. It is also easy to check that the instructions from Line 9 to Line 20 can all be performed
in O(k2) ⊆ O(∆2r2), since any sequence of classes ci1 , . . . , cin contains at most k colors. Hence, the For loop in Line 7, if we
except the R-checking in Line 8, can be performed in O(N∆2r2) ⊆ O(∆4r4). Finally, Algorithm 2 is called 2N times in
Line 8. These calls induce 2N initializations of NonChecked in Line 2 of Algorithm 2 and so, according to the remarks above
concerning this algorithm, the total cost of these calls for Line 2 is O(n2N) = O(nN). The calls induce also 2N executions
of the while loop in Line 3. Since NonChecked is initialized at V , these executions induce 2Nn iterations of Line 4 and 10 of
Algorithm 2, for a total cost of O(2Nn) + O(2Nn) = O(nN). Finally, for each vertex u,


i∈k̄ di(u) ≤ ∆′

≤ ∆r and so the 2N
executions of the while loop induce, for each vertex, at most 2∆r iterations of the test in Line 6 of Algorithm 2. Hence the
total cost for all vertices of the 2N executions of thewhile concerning Line 6 is at most O(2Nn2∆r∆r) = O(Nn∆2r2). So the
total cost of the 2N calls for Algorithm 2 is at most O(nN) + O(nN) + O(Nn∆2r2) ⊆ O(Nn∆2r2). Hence, the total cost of the
For loop in Line 7 is O(∆4r4) + O(Nn∆2r2) ⊆ O(Nn∆4r4) ⊆ O(∆2r2n∆4r4) = O(∆6r6n).

The instruction in Line 25 can easily be computed in O(k2) ⊆ O(∆2r2) by building first J = {j : ∃i ∈ k̄, T [i] = j} and by
letting k̄/R∗

= {cj : j ∈ J}.
Finally, in order to execute Line 26, we pick a vertex root u and, for every j ∈ J , we build a (possibly non-connected)

graph Fj by removing from G all the i-edges where i /∈ cj. Then, clearly Gu
cj is the connected component of Fj containing u.

Now, to find a partial hypergraph of the form Hu
c , where c ⊆ k̄, we do not need to use explicitly its L2-section. A simple way

to get Hu
c is to note that it has the same vertices as Gu

c and that a hyperedge e ∈ E is in Hu
c if and only if at least two vertices

v, w ∈ e belong to V u
c . Indeed, if v, w ∈ e then {v, w} ∈ E and e ∈ L({v, w}). Hence, in particular, {v, w} ∈ Eu

c if and
only if v, w ∈ V u

c by definition of Gu
c . Moreover, since all edges extracted from e appear in the same layer of G (Corollary 1),

{v, w} ∈ Eu
c if and only if there exists an edge extracted from e in Eu

c .
Now, for each j ∈ J , clearly Fj can be computed in O(m′

|cj|). Moreover, it is well known that the connected components
of a graph can be computed in linear time using either breadth-first search or depth-first search. Hence, the construction of
Gu
cj can be made in O(m′

|cj|), for every j ∈ J . Note now that


j∈J |cj| = k and so the overall complexity to build the Gu
cj ’s is

O(m′k) ⊆ O(mr2∆r) = O(mr3∆). Now, since


j∈J |V
u
cj | ≤ n, the construction of the Hu

cj ’s can clearly be done in O(nm) by
checking if the two first vertices of each hyperedge e ∈ E belong to some V u

cj . So the overall cost of the execution of Line 26
is O(mr3∆) + O(nm) ⊆ O(nmr3∆). Hence, the total cost of Algorithm 1 is

O(nmr2) + O(∆r) + O(∆6r6n) + O(∆2r2) + O(nmr3∆) ⊆ O(nm∆6r6).

Hence, if we suppose H with a bounded-rank and a bounded-degree, Algorithm 1 runs in O(nm).

References

[1] Thomas Andreae, Michael Nölle, Gerald Schreiber, Embedding cartesian products of graphs into de bruijn graphs, J. Parallel Distrib. Comput. 46 (2)
(1997) 194–200.

[2] C. Berge, Graphs, North Holland, 1987.
[3] C. Berge, Hypergraphs, North Holland, 1989.
[4] A. Bretto, Introduction to hypergraph theory and its use in engineering and image processing, Adv. in Imaging and Electron Phys. 131 (2004).
[5] A. Bretto, Hypergraphs and the helly property, Ars Combin. 78 (2006) 23–32.
[6] Alain Bretto, Yannick Silvestre, Factorization of cartesian products of hypergraphs, in: COCOON, 2010, pp. 173–181.
[7] Alain Bretto, Yannick Silvestre, Thierry Vallee, Cartesian product of hypergraphs: properties and algorithms, EPTCS 4 (2009) 22–28.
[8] Alain Bretto, Stéphane Ubéda, Janez Zerovnik, A polynomial algorithm for the strong helly property, Inf. Process. Lett. 81 (1) (2002) 55–57.
[9] Yongxi Cheng, A new class of antimagic cartesian product graphs, Discrete Math. 308 (24) (2008) 6441–6448.

[10] Mounir Hamdi, Siang W. Song, Embedding hierarchical hypercube networks into the hypercube, IEEE Trans. Parallel Distrib. Syst. Arch. 8 (9) (1997)
897–902.

[11] W. Imrich, Kartesisches produkt von mengensystemen und graphen, Studia Sci. Math. Hungar 2 (1967) 285–290.
[12] W. Imrich, I. Peterin, Recognizing cartesian products in linear time, Discrete Math. 307 (2007) 472–483.
[13] Wilfried Imrich, Sandi Klavžar, Douglas F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product, A K Peters, Wellesley, MA, 2008.
[14] L. Ostermeier, M. Hellmuth, P. F. Stadler, The cartesian product of hypergraphs, J. Graph Theory (2011). http://dx.doi.org/10.1002/jgt.20609.
[15] Iztok Peterin, Game chromatic number of cartesian product graphs, Electron. Notes Discrete Math. 29 (2007) 353–357.
[16] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957).
[17] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960).
[18] A. Vesel, Channel assignment with separation in the cartesian product of two cycles, in: Proceedings of the 24th International Conference on

Information Technology Interfaces, 2002.
[19] V. G. Vizing, The cartesian product of graphs, Vychisl. Sistemy 9 (1963) 30–43.
[20] Tao-Ming Wang, Toroidal grids are anti-magic, in: LNCS, vol. 3595, 2005, pp. 671–679.
[21] Yuchen Zhang, Xiaoming Sun, The antimagicness of the cartesian product of graphs, Theoret. Comput. Sci. 410 (8–10) (2009) 727–735.

http://dx.doi.org/doi:10.1002/jgt.20609

	Factorization of products of hypergraphs: Structure and algorithms
	Introduction
	Hypergraphs and labeled 2-sections
	Definitions and basic facts

	Cartesian products of hypergraphs and L2-sections
	Colorings and factorization of graphs
	The algorithm of Imrich and Peterin
	I-paths, I-layers, I-projection and edge-induced isomorphisms

	Prime factorization of hypergraphs via their L2-sections
	Hypergraph prime factorization algorithm
	A general prime factorization algorithm
	Data structures and complexity

	References

