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a b s t r a c t

Given a set D of d patterns, the dictionary matching problem is to index D such that for
any query text T , we can locate the occurrences of any patternwithin T efficiently.WhenD
contains a total of n characters drawn from an alphabet of size σ , Hon et al. (2008) [12] gave
annHk(D)+o(n log σ)-bit indexwhich supports a query inO(|T |(logϵ n+log d)+occ) time,
where ϵ > 0 and Hk(D) denotes the kth-order entropy of D . Very recently, Belazzougui
(2010) [3] has proposed an elegant scheme, which takes n log σ + O(n) bits of index space
and supports a query in optimal O(|T | + occ) time. In this paper, we provide connections
between Belazzougui’s index and the XBW compression of Ferragina and Manzini (2005)
[8], and show that Belazzougui’s index can be slightly modified to be stored in nHk(D) +

O(n) bits, while query time remains optimal; this improves the compressed index by Hon
et al. (2008) [12] in both space and time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a set D of d patterns, the dictionary matching problem is to index D such that for any query text T , we can locate
the occurrences of any pattern within T efficiently. Such a query is called the dictionary matching query. This problem is
well-studied [1–3,5,12,16], and finds applications in computer virus detection and bio-informatics.

WhenD contains a total of n characters drawn from an alphabet of size σ , Aho and Corasick [1] proposed a data structure,
now popularly known as the Aho–Corasick automaton, which supports the dictionary matching query in O(|T | + occ) time.
The automaton consists of a trie structure with t ≤ n + 1 nodes, and can be stored in O(t log t) bits of space. Alternatively,
wemay also store the generalized suffix tree [14,17] for the patterns inD , so that the query time remainsO(|T |+occ), while
the space becomes O(n log n) bits. Recent research focussed on reducing the index space for this problem. Hon et al. [12]
gave an nHk(D)+ o(n log σ)-bit index which supports a query in O(|T |(logϵ n+ log d)+ occ) time, where ϵ > 0 and Hk(D)
denotes the kth-order entropy of the text formed by concatenating all the patterns in D . Very recently, Belazzougui [3] has
proposed an elegant scheme, which takes tH0(D) + O(t) bits of index space and supports a query in O(|T | + occ) time
without slowdown. Note that Hk(D) ≤ H0(D) ≤ log σ .

In this paper, we provide connections between Belazzougui’s index and the XBW compression of Ferragina et al. [7],
and show that Belazzougui’s index can be slightly modified to be stored in tHk(D) + O(t) bits, while query time remains
O(|T | + occ); this improves the compressed index by Hon et al. [12] in both space and time. Note that the achieved space
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Fig. 1. An example of the Burrows–Wheeler transform.

Fig. 2. An example of searching with the BWT.

bound is the same as that required by performing front coding [18] of the patterns with a subsequent kth-order entropy
compression, which is likely to be smaller than the usual nHk(D) + O(n) bits obtained by compressing each pattern
independently.1

The organization of the paper is as follows. In Section 2, we give a review of the Burrows–Wheeler transformation
(BWT) [4] and the XBW compression of Ferragina et al. [7]. Then in Section 3, we solve a related problem called prefix
matching based on the XBW compression. Section 4 describes how to directly apply the result in Section 3 to obtain our
index for the dictionary matching problem. We conclude the paper in Section 5.

2. Preliminaries

2.1. A review of the BWT

Let T [1..n] be a text. The Burrows–Wheeler transform (BWT) of T is a permutation of the characters in T , such that the
location of T [i] is determined by the rank of the suffix T [i + 1..n] among all suffixes of T . (Here, we assume the rank of the
empty suffix, T [n + 1..n], is 0.) For example, consider Fig. 1 which shows a text T = cababaac. The rank of each suffix is
marked by the node to the left of the suffix. By storing the character preceding the ith smallest suffix in increasing order of
i, we obtain the BWT of T .

Ferragina and Manzini [8] showed that we can store the BWT of T with some auxiliary data structures in nHk(T ) + O(n)
bits of space, such that we can locate the occurrences of any pattern P[1..p] within T efficiently. Basically, the searching
algorithm first identifies all locations in T that match with P[p..p], and then iteratively identifies the locations matching
P[i..p] based on the locations that match with P[i+ 1..p]. For example, consider Fig. 2 which shows how to search P = aba
in the text T of Fig. 1. The searching algorithm starts by finding the locations that match with a, then the locations that
match with ba, and finally the locations that match with aba. Note that in each step, the ranks of the matching locations
(highlighted nodes) form a contiguous range. The searching algorithm makes use of this fact to implicitly represent the
matches, and then to compute the desired range of the matches in the next step.

Ferragina et al. [9] showed that if the alphabet size σ is polylog(n), each step can be done in O(1) time. In general, they
showed that each step can be performed in O(log σ/ log log n) time.

2.2. A review of the XBW

Ferragina et al. [7] proposed a generalization of the BWT that is capable for encoding rooted tries. Given a trie T , we
encode the tree structure and the edge labels separately, where the latter are stored as a text string XBW analogous to the

1 Consider an extreme example, where we have a complete set of n binary strings, each with length log n bits. Each string shares a common prefix of
log n − 1 bits with its predecessor or successor (in the lexicographical order), which intuitively favors the front encoding. Indeed, these n strings can be
encoded in O(n) bits with front encoding [6], whereas the traditional nHk-type encoding needs at least 1 bit per character, taking Ω(n log n) bits.
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Fig. 3. An example of the XBW transform.

BWT. Precisely, for each node u in the trie, we define a string ru, called the reverse prefix string of u, formed by concatenating
the characters along the path from u to the root. Then each node u is associated with the rank of ru among all the reverse
prefix strings in the trie. Finally, the label on the edge (u, v) is stored in the XBW text in (monotonic) increasing order of the
rank of ru. For example, consider Fig. 3 which shows a trie. The rank of the reverse prefix of each node is marked inside the
node. By storing the character(s) succeeding the node with the ith smallest reverse prefix in increasing order of i, we obtain
the XBW of the trie. Note that when the trie contains exactly one path, the XBW is equivalent to the BWT. Also, with the
XBW encoding, the ordering of concatenating the labels following a node does not matter.

Ferragina et al. [7] also extended the notion of entropy compression on a text T to a trie T . For each string ρ, we define
cover[ρ] to be the string formed by concatenating the labels on the edges (u, v) such that ru is prefixed by ρ. For instance,
in the example of Fig. 3, cover[b] = aba − − and cover[ba] = a (Note that the order of characters among the cover is
irrelevant). The kth-order entropy of the trie T , denoted by Hk(T ), is defined as:

Hk(T ) ≡
1
t


length-k string ρ

|cover[ρ]|H0(cover[ρ]),

where t is the number of nodes in T , and H0(s) for a string s is the standard zeroth-order entropy of s.2
Then, Ferragina et al. showed that we can store the XBW of T with some auxiliary data structures in tHk(T ) + O(t) bits

of space, such that for any pattern P[1..p], we can locate all the subpaths (ancestor–descendent paths) within T efficiently.
The searching algorithm is analogous to that of searching the BWT, where it first identifies all locations of the subpaths that
match with P[1], and then iteratively identifies the locations of the subpaths matching P[1..i + 1] based on the locations
corresponding to P[1..i].3

In each step, the ranks of thematching locations form a contiguous range. Again, we canmake use of this fact to implicitly
represent the matches, and then to compute the desired range of the matches in the next step. It is shown that if the
alphabet size σ is polylog(n), each step can be done in O(1) time. For larger alphabet size, each step can be performed
in o((log log σ)1+ϵ) time, for any fixed ϵ > 0, and with an extra term of o(t log σ) bits in the index space [7].

3. Compressed prefix matching with the XBW

Suppose that we want to index a trie T , but instead of supporting subpath query, we want to check if a pattern P[1..p]
can be searched starting from the root. We call this a prefix matching query. Obviously, we can create a dummy root node
z and connect z to the original root with a special character λ, and then reduce the prefix matching query to finding the
subpath λP in the modified trie. In this way, the prefix matching query can be performed in o(|P|(log log σ)1+ϵ) time, while
the index takes nHk(T ) + O(t) bits of space.

A natural question is whether we can reduce the query time to O(|P|), for any alphabet size σ . Very recently,
Belazzougui [3] has (implicitly) showed that it is possible. The idea is to find an encoding such that given a node u with
rank x and a character c , we can determine if we can extend the node u by the character c in O(1) time, and if so, the rank of
the resulting node. His scheme is as follows:

1. For each character c in the alphabet, compute a list with the ranks of all reverse prefixes whose corresponding nodes are
succeeded by c.4 For instance, in the example of Fig. 3, we compute

2 H0(s) ≡ (1/|s|)


character c |nc | log(|s|/|nc |), where nc is the number of character c appearing in s.
3 Unlike searching with the BWT, the pattern P is processed in the forward direction during the trie search. It is because we are essentially searching for

those nodes whose reverse prefix strings begin with P[p]P[p − 1]...P[1], so that we start by matching P[1] first, and then P[2]P[1], and so on.
4 When the trie contains only one path, these lists are exactly the Ψ function of the compressed suffix arrays [10].
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• the list for a: 0, 4, 5;
• the list for b: 0, 1, 4, 8;
• the list for c: 0, 8;

2. Construct an indexable dictionary on each of the list, so that for each list L, we can support the following operation in O(1)
time:
• rank(x, L): If x is in L, report its rank among the other elements of L. Otherwise, report -1 indicating ‘‘x is not found

in L’’.
3. Construct an auxiliary data structure such that for each character c , we can report in O(1) time the value C[c], which is

the number of reverse prefixes lexicographically smaller than c .

Based on the above data structures, we can perform our desired query as follows. First, to check whether we can extend a
node with rank x by the character c , we simply call rank(x, Lc) to check if the list Lc for c contains x, which requires O(1)
time. Next, suppose we can perform the extension. Then the rank of the desired node must be equal to C[c] + rank(x, Lc),
which also requires O(1) time. Consequently, prefix matching can be performed in O(|P|) time.

For the indexable dictionary, we use the result of [15], which takes log
 t
nc


+o(nc) = nc log(t/nc)+O(nc) bits for the list

for c , where nc denotes the number of entries in the list. Note that nc is exactly equal to the number of c in the XBW string
X of T . In total, the indexable dictionaries for all lists are stored in

character c

nc log(t/nc) + O(nc) = tH0(X) + O(t) bits.

For the auxiliary data structure that supports computation of C[c], it can be stored in O(t + σ) = O(t) bits using Jacobson’s
constant-time rank and select index [13]. Thus, the overall space is bounded by tH0(X) + O(t) bits.

3.1. Compressing Belazzougui’s scheme

We now show how to modify the above scheme so that the space becomes tHk(T ) + O(t), for any k = o(logσ+1 t).5
Note that in any case, Hk(T ) ≤ H0(X) ≤ log σ . The key idea for the compression is to further divide the list into sublists,
where each sublist contains the ranks of the reverse prefixes that begin with the same length-k string ρ; then, each sublist
is encoded with a separate indexable dictionary. To see why compression can be achieved, we observe that the ranks in
the sublist corresponding to ρ must be at least the rank of ρ (say x′) among all the reverse prefixes, and can be at most
x′

+ |cover[ρ]| − 1. Thus, we can store the rank x′ of ρ, and replace each rank in the sublist with the difference with x′. As
the number becomes smaller (between 0 and |cover[ρ]| − 1), we achieve compression. For instance, consider the example
of Fig. 3 and the case where k = 1. Then the ranks 4, 5, 6, and 7 will be referred to as 0, 1, 2, 3, respectively, when we encode
the sublist for ρ = b.

More precisely, suppose that the sublist in the list c that corresponds to ρ contains nc,ρ ranks. Then the corresponding
indexable dictionary of [15], which supports O(1) time query, can be stored in at most

nc,ρ log(|cover[ρ]|/nc,ρ) + O(nc,ρ) bits,

so that the sublist in all lists that correspond to ρ can be stored in at most
character c

nc,ρ log(|cover[ρ]|/nc,ρ) + O(nc,ρ) = |cover[ρ]|H0(cover[ρ]) + O(|cover[ρ]|) bits.

Consequently, the total space of all sublists for all ρ’s can be stored in at most
length-k ρ

|cover[ρ]|H0(cover[ρ]) + O(|cover[ρ]|) = tHk(T ) + O(t) bits.

The indexable dictionaries for the sublists are concatenated according to where it appears in the list. To facilitate the
location of a particular dictionary, we use a conceptual bit-vector to mark the boundaries of the dictionaries. Such a bit-
vector consists of (σ + 1)k+1 1’s and tHk(T )+O(t) 0’s, which is stored with the fully indexable dictionary of [15] in o(t) bits,
and supports finding the desired dictionary for any sublist in O(1) time. We can similarly store the rank of each ρ among
the reverse prefixes by using a conceptual bit-vector with (σ +1)k 1’s and t 0’s. The idea is to treat ρ as a k log σ -bit integer,
such that the number of 0’s preceding the ρth 1 is exactly equal to the desired rank of ρ. The required space is o(t) bits, and
the desired rank can be reported in O(1) time. Also, when given a rank x, we can compute in O(1) time the number of 1’s
preceding the xth 0’s; this corresponds to the rank of the string ρ whose sublist may contain x. Finally, we construct a table
such that for each character c and each length-k string ρ, we can report in O(1) time the value C[c, ρ], which is the number
of reverse prefixes lexicographically smaller than cρ. The table contains (σ + 1)k+1 entries, each taking O(log t) bits, so that
the total space is bounded by o(t) bits.

5 With some minor adaptation, we can extend the range of k slightly to become o(logσ n) instead.
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Fig. 4. An example of the failure function.

Given the above data structures, let us now examine how to perform the extension operation. Suppose we are given a
node with rank x and a character c . First, we check which sublist of ρ that x may appear. Next, we check whether list c has
a sublist corresponding to ρ. If not, we can conclude such an extension fails. Else, we retrieve the rank x′ of ρ among the
reverse prefixes, retrieve the indexable dictionary for the sublist Lc,ρ of ρ within the list c , and check if x − x′ is stored in
the sublist. If not, we can again conclude that the extension has failed. Else, we compute the desired rank r of the extended
node as:

r = rank(x − x′, Lc,ρ) + C[c, ρ].

So, we conclude in the following theorem.

Theorem 1. We can construct an index to solve the prefix matching problem by using tHk(T ) + O(t) bits, and it supports prefix
matching of a pattern P in O(|P|) time.

Proof. Our index contains the indexable dictionaries for the whole sublists, a bit-vector marking the boundaries of the
dictionaries, a bit-vector storing the rank of each ρ among all the reverse prefixes, and a table for each character c and each
length-k string ρ. So the total space of our index is tHk(T ) + O(t) + 3 × o(t)= tHk(T ) + O(t) bits.

For each step of extension operation, we first check which sublist of ρ that xmay appear. We compute rank1(select0(x))
of the bit-vector which stores the rank of each ρ among all the reverse prefixes to get the rank of ρ. Then, we find the sublist
by computing the bit-vector which marks the boundaries of the dictionaries. Furthermore, we compute the dictionary of
the sublist. If there exists an extension for c , we compute r = rank(x − x′, Lc,ρ) + C[c, ρ] which is the next destination.
Otherwise, there is no extension. Each step described on the above costs constant time, and the number of steps is also
constant times. So each extension operation costs constant time to achieve. Then, we can conclude that our index supports
prefix matching of a pattern P in the trie T in O(|P|) time. �

4. Our index for compressed dictionary matching

The Aho–Corasick automaton [1] is an index for a setD of patterns that support dictionarymatching query inO(|T |+occ)
time, where occ denotes the total number of occurrences of the patterns in T . The automaton consists of a trie T storing all
the patterns in D , together with two functions called failure and report that respectively facilitate the matching algorithm
and the occurrence reporting. In particular, the failure function maps a node u to a node v such that its reverse prefix rv is a
proper prefix of ru, and among all nodes v has the longest rv . See Fig. 4 for an example, where the mapping from each node
to its desired node is shown by the dotted arrows. For instance, the failure function for Node 3, with label aba, will be the
node with label ba (i.e., Node 2). Note that if the latter node does not exist in the automaton, the failure function will be the
node with label a instead (i.e., Node 1).

For the report function, it maps a node u to a node v such that (i) its reverse prefix rv is a proper prefix of ru, (ii) v itself
corresponds to a pattern in D (that is, the reverse of rv is a pattern in D), and (iii) among all nodes v has the longest rv . Note
that the report function of a node u may not exist due to condition (ii). The space of the index is O(t log t) bits, where t is
the number of nodes in T .

In [3], Belazzougui showed that if each node u is represented with the rank of the reverse prefix ru, then both the failure
function and the report function can be encoded in O(t) bits, and be computed in the same complexity as those in the
uncompressedAho–Corasick automaton. Indeed, Belazzougui’s idea of encoding the failure function is very elegant: consider
storing all the reverse prefixes of T in a compact trie C, and marking each node in C that corresponds to a reverse prefix. Let
uC denote the marked node in C that corresponds to ru. It is easy to check that the rank of ru is exactly the pre-order rank of
uC among all the marked nodes in C. For instance, the node corresponding to the pattern ba has label 2 in the Aho–Corasick
automaton; consequently, the node corresponding to the reverse pattern ab will have pre-order rank equal to 2 among all
the marked nodes in C. See Fig. 5 for an example.

Now, to compute the node v mapped by the failure function of u in T , we simply locate uC , find its lowest marked
ancestor vC (which corresponds to the desired node v in T ), and return the pre-order rank of vC among all the marked
nodes. To support the above computation, we need only to store the tree structure of C (which contains O(t) nodes), a
lowest marked ancestor data structure, and a data structure for returning the pre-order rank of a marked node. All these
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Fig. 5. An example of the compact trie of reverse prefixes. All nodes in this example are marked, and the label of a node shows its pre-order rank among
all marked nodes. Note that in general some nodes in the compact trie may not be marked.

can be stored easily in O(t) bits using the standard technique (see [3] for details) so that the above computation is done in
O(1) time.

As for the report function, Belazzougui showed that it can be represented by a tree with d = |D| internal nodes and O(t)
leaves so that it can be encoded in O(d log(t/d) + d) = O(t) bits, and the function can be computed in O(1) time. Thus, by
combining the above with the prefix matching index in Section 3, where each node can be extended by any character c in
O(1) time, dictionary matching can be performed as if we are using the uncompressed Aho–Corasick automaton. This gives
the following theorem.

Theorem 2. The Aho–Corasick automaton with a trie T can be stored in tHk(T ) + O(t) bits, such that for any query text T , the
dictionary matching query can be performed in O(|T | + occ) time.

5. Conclusion

We have slightly modified Belazzougui’s scheme for encoding an Aho–Corasick automaton so that the index space
becomes entropy compressed, while it supports dictionary matching query in O(|T | + occ) time. Note that our scheme and
Belazzougui’s scheme both contain an O(t)-bit space term; however, the hidden constant in our scheme is slightly larger.
More precisely, if we ignore the index space for the failure and report functions, which are common in both schemes, then
the hidden constant is 3 in our scheme (which comes from the XBW encoding) while the hidden constant is log2 e ≈ 1.443
in Belazzougui’s scheme (which comes from the zeroth-order compression of its auxiliary bit-vectors).

Although Belazzougui’s scheme can successfully (and elegantly) solved the dictionary matching problem, it seems that
the scheme cannot readily support dynamic operations, where a pattern P[1..p] may be inserted to or deleted from the set
D from time to time. If randomized amortized update is allowed, then we remark that we can apply the technique of [11]
so that each update requires O(p + tϵ) randomized amortized time, while query time remains O(|T | + occ); here, ϵ > 0
and t denotes the number of states in the Aho–Corasick automaton. A challenging open question is to support worst-case
update operation, while keeping the search time as close to O(|T | + occ) as possible.
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