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a b s t r a c t

The folded hypercube FQn is a well-known variation of the hypercube structure. FQn is
superior to Qn in many measurements, such as diameter, fault diameter, connectivity, and
so on. Let Ṽ (FQn) (resp. Ẽ(FQn)) denote the set of faulty nodes (resp. faulty edges) in FQn. In
the case that all nodes in FQn are fault-free, it has been shown that FQn contains a fault-free
path of length 2n

− 1 (resp. 2n
− 2) between any two nodes of odd (resp. even) distance if

|Ẽ(FQn)| ≤ n − 1, where n ≥ 1 is odd; and FQn contains a fault-free path of length 2n
− 1

between any two nodes if |Ẽ(FQn)| ≤ n − 2, where n ≥ 2 is even. In this paper, we extend
the above result to obtain two further properties,which consider both node and edge faults,
as follows:

1. FQn contains a fault-free path of length at least 2n
−2|Ṽ (FQn)|−1 (resp. 2n

−2|Ṽ (FQn)|−

2) between any two fault-free nodes of odd (resp. even) distance if |Ṽ (FQn)|+|Ẽ(FQn)| ≤

n − 1, where n ≥ 1 is odd.
2. FQn contains a fault-free path of length at least 2n

− 2|Ṽ (FQn)| − 1 between any two
fault-free nodes if |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 2, where n ≥ 2 is even.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The hypercube is a well-known interconnection networkmodel. Hypercube networks have receivedmuch attention over
the past few years since they possess several attractive properties such as symmetry, recursive structure, regularity, and
logarithmic diameter [7]. In order to further improve the performance of the hypercube networks, some variations of the
hypercube structure have been proposed [1,2,9]. One of these variations proposed by El-Amawy and Latifi [1] is the folded
hypercubewhich can be constructed from a hypercube by adding a link to every pair of nodes that are the farthest apart, i.e.,
two nodes with complementary addresses. The folded hypercube is superior to the hypercube inmanymeasurements, such
as diameter, fault diameter, connectivity, and so on [1,13].

An important feature of an interconnection network is its ability to efficiently simulate algorithms designed for other
architectures. Such a simulation can be formulated as a network embedding. An embedding of a guest network G into a host
network H is defined as a one-to-one mapping f from nodes in G into nodes in H so that an edge of G corresponds to a
path of H under f [7]. Linear arrays and rings [7], whose underlying topologies are paths and cycles respectively, are two of
the most popular guest networks because they are suitable for designing simple algorithms with low communication cost.
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Since faults may occur on both nodes and edges in a network, it is practically meaningful and important to consider faulty
networks. The problems of embedding linear arrays or rings in faulty hypercubes and faulty folded hypercubes have been
extensively studied [3–5,8,10,13]. Throughout this paper, we denote the sets of faulty nodes and faulty edges of a network
G as Ṽ (G) and Ẽ(G), respectively.

Given an n-dimensional folded hypercube FQn without any faulty nodes, Hsieh [5] has shown that FQn contains a fault-
free path of length 2n

− 1 (resp. 2n
− 2) between any two nodes of odd (resp. even) distance if |Ẽ(FQn)| ≤ n − 1, where n is

odd; and FQn contains a fault-free path of length 2n
− 1 between any two nodes if |Ẽ(FQn)| ≤ n− 2, where n is even. In this

paper, we extend Hsieh’s result to obtain two further properties, which consider both node and edge faults, as follows:

1. FQn contains a fault-free path of length at least 2n
− 2|Ṽ (FQn)| − 1 (resp. 2n

− 2|Ṽ (FQn)| − 2) between any two fault-free
nodes of odd (resp. even) distance if |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 1, where n ≥ 1 is odd.

2. FQn contains a fault-free path of length at least 2n
− 2|Ṽ (FQn)| − 1 between any two fault-free nodes if |Ṽ (FQn)| +

|Ẽ(FQn)| ≤ n − 2, where n ≥ 2 is even.

The rest of this paper is organized as follows. In Section 2, definitions and notations used in this paper are introduced.
In Section 3, we introduce the previous results that will be employed later. In Section 4, we present our main results.
Conclusions are given in Section 5.

2. Preliminaries

In this paper, a network topology is represented by a simple undirected graph, which is loopless and without multiple
edges. We denote the node set and the edge set of a graph G by V (G) and E(G), respectively. Throughout this paper, the
terms network and graph, node and vertex, link and edge are used interchangeably. Two nodes u and v are adjacent, if
(u, v) ∈ E(G), and u and v are the end-nodes of (u, v). Two adjacent nodes are called neighbors each other. A path, denoted
by ⟨v0, v1, . . . , vk⟩, is a sequence of distinct nodes v0, v1, . . . , vk in which any two consecutive nodes are adjacent. We call
v0 and vk the end-nodes of the path. A path with end-nodes u and v, denoted by P[u, v], is referred as uv-path. The length of
a uv-path, denoted by |P[u, v]|, is the number of edges on the path. The distance between u and v is the smallest length of
any uv-path in G and is denoted by dG(u, v) or simply d(u, v) if there is no ambiguity. A path ⟨v0, v1, . . . , vk⟩ forms a cycle if
v0 = vk. A path (resp. cycle) in G is called a Hamiltonian path (resp. Hamiltonian cycle) if it contains every node of G exactly
once. G is said to be Hamiltonian if it contains a Hamiltonian cycle, and Hamiltonian-connected if there exists a Hamiltonian
path between any two distinct nodes of G. A graph G is bipartite if V (G) can be partitioned into two partite sets V0 and V1 such
that V0 ∩ V1 = ∅ and E(G) ⊆ {(x, y)|x ∈ V0 and y ∈ V1}. A Hamiltonian bipartite graph G is Hamiltonian-laceable if there
exists a Hamiltonian path between any two nodes from different partite sets [11]. An isomorphism from a graph G to a graph
H is a bijection f : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (f (u), f (v)) ∈ E(H). We say that G is isomorphic to H ,
written as G ∼= H , if there is an isomorphism from G to H . An automorphism of G is an isomorphism from G to G. A graph G is
node-transitive if for any two nodes u and v in V (G), there is an automorphism that maps u to v. A graph G is edge-transitive
if for any two edges e1 and e2 in E(G), there is an automorphism that maps e1 to e2.

An n-dimensional hypercube Qn is an n-regular graph with 2n nodes and n · 2n−1 edges. Every node u in Qn can be labelled
by an n-bit binary string u = unun−1 . . . u1 on the set {0, 1}. Two nodes are joined by an edge (also called hypercube edge)
if and only if their binary strings differ in exactly one bit. Let j ∈ {1, 2, . . . , n}. An edge in Qn is called j-dimensional if the
binary strings of its end-nodes differ in the j-th bit. We use Ej to denote the set of all j-dimensional edges in Qn. For any
j ∈ {1, 2, . . . , n}, Qn can be partitioned along dimension j into two (n − 1)-dimensional subcubes, Q 0

n−1 and Q 1
n−1, which

are induced by the nodes where the j-th bit is 0 and 1. For any two vertices x and y, we use dH(x, y) to denote the Hamming
distance between x and y, which is the number of different positions between the binary strings of x and y. Note that an
n-cube Qn is a bipartite graph with two equal-size partite sets.

An n-dimensional folded hypercube (folded n-cube for short) FQn can be constructed from an n-cube Qn by adding an edge
(also called complementary edge) to every pair of nodes whose addresses are complementary (i.e., node x = xnxn−1 . . . x1
and node x̄ = x̄nx̄n−1 . . . x̄1) in addition to its original n edges. We use Ec to denote the set of all complementary edges in
FQn. Fig. 1 shows a folded 2-cube and a folded 3-cube. Notice that a folded n-cube can be partitioned into two node-disjoint
(n − 1)-cubes by removing the hypercube edges in some dimension and all the complimentary edges. It has been shown
that FQn is (n+1)-regular, (n+1)-connected, node-transitive and edge-transitive [14]. For convenience, let Fj = Ẽ(FQn)∩Ej
for every j ∈ {1, 2, . . . , n, c} when referring to the faulty edges in FQn. An edge (u, v) is said to be free if (1) the edge (u, v)
is fault-free, and (2) the end-nodes u and v are both fault-free.

3. Basic properties

This section reviews some properties of both hypercubes Qn and folded hypercubes FQn which are used later on to
introduce our method. The basic structural properties of hypercubes and folded hypercubes are listed as follows.

On the problem of finding a fault-free cycle in a faulty Qn, Sengupta [10] considered the case in which both node and
edge faults were allowed and showed the following result.
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Fig. 1. Illustration of (a) FQ2 , and (b) FQ3 , where complementary edges are plotted with dotted lines.

Lemma 1 ([10]). Qn contains a fault-free cycle of length at least 2n
− 2|Ṽ (Qn)| if (1) |Ṽ (Qn)| ≥ 1 or |Ẽ(Qn)| ≤ n − 2 and (2)

|Ṽ (Qn)| + |Ẽ(Qn)| ≤ n − 1, where n ≥ 3.

On the problem of finding fault-free paths in a faulty Qn, Ma et al. [8] showed the following result.

Lemma 2 ([8]). Let u and v be any two fault-free nodes in Qn with |Ṽ (Qn)| + |Ẽ(Qn)| ≤ n − 2, where n ≥ 2. Then, Qn contains
a fault-free uv-path of length l for each l satisfying dQn(u, v) + 2 ≤ l ≤ 2n

− 2|Ṽ (Qn)| − 1 and 2| (l − dQn(u, v)). Moreover, Qn
contains a fault-free uv-path of length dQn(u, v) if dQn(u, v) ≥ n − 1.

The above lemma leads to the following corollary.

Corollary 1. Let u and v be any two fault-free nodes in Qn with |Ṽ (Qn)| + |Ẽ(Qn)| ≤ n − 2, where n ≥ 2. Then, Qn contains a
fault-free uv-path of length 2n

− 2|Ṽ (Qn)| − 1 (resp. 2n
− 2|Ṽ (Qn)| − 2) when dH(u, v) is odd (resp. even).

When |Ṽ (Qn)| = 0 and |Ẽ(Qn)| = 0 (i.e., Qn contains no node and edge faults), we have the following result.

Corollary 2. Let u and v be any two nodes in a fault-free Qn, where n ≥ 2. Then, Qn contains a fault-free uv-path of length 2n
−1

(resp. 2n
− 2) when dH(u, v) is odd (resp. even).

In the case where only node faults are considered, Kueng et al. [6] showed the following result.

Lemma 3 ([6]). Let u and v be any two fault-free nodes in Qn with (1) |Ṽ (Qn)| ≤ 2n − 5 and (2) every node of Qn has at
least two fault-free neighbors, where n ≥ 3. Then, there exists a fault-free uv-path of length at least 2n

− 2|Ṽ (Qn)| − 1 (resp.
2n

− 2|Ṽ (Qn)| − 2) when dQn(u, v) is odd (resp. even).

Tsai [12] showed the following results for finding two node-disjoint paths in a fault-free Qn.

Lemma 4 ([12]). Let X and Y be the partite sets of a fault-free Qn, where n ≥ 2. In addition, x and u are two distinct
nodes of X; and y and v are two distinct nodes of Y . Then, there exist two node-disjoint paths P1[x, y] and P2[u, v] such that
V (P1[x, y]) ∪ V (P2[u, v]) = V (Qn).

Lemma 5 ([12]). Let X and Y be the partite sets of a fault-free Qn, where n ≥ 3. In addition, let x, u and v be three distinct nodes
of X, and let y be a node of Y . Then, there exist two node-disjoint paths P1[x, y] and P2[u, v] such that V (P1[x, y])∪V (P2[u, v]) =

V (Qn) except one node.

Hsieh [5] showed the following result for finding fault-free paths in a faulty FQn.

Lemma 6 ([5]). The following two statements hold:

1. Let u and v be any two nodes in FQn with |Ẽ(FQn)| ≤ n − 1, where n ≥ 1 is odd. Then, FQn contains a fault-free uv-path of
length 2n

− 1 (resp. 2n
− 2) when dH(u, v) is odd (resp. even).

2. Let u and v be any two nodes in FQn with |Ẽ(FQn)| ≤ n − 2, where n ≥ 2 is even. Then, FQn contains a fault-free uv-path of
length 2n

− 1.

Zhu et al. [15] showed the following results for finding the minimum length of a cycle in FQn.

Lemma 7 ([15]). Any two nodes in FQn have two exactly common neighbors for n ≥ 4 if they have.

Lemma 8 ([15]). The girth of FQn equals 4 for n ≥ 3.

The following lemma shows the edge-transitive property of FQn.

Lemma 9 ([14]). There is an automorphism σ of FQn such that σ(Ei) = Ej for any i, j ∈ {1, 2, . . . , n, c}.

This lemma derives the following corollary.

Corollary 3. FQn − Ej is isomorphic to Qn, where j ∈ {1, 2, . . . , n, c}.
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4. Fault-free paths in faulty folded hypercubes

In this section, we extend Hsieh’s results described in Lemma 6.

Lemma 10. Let u and v be any two fault-free nodes in FQ3 with |Ṽ (FQ3)|+|Ẽ(FQ3)| ≤ 2. Then, FQ3 contains a fault-free uv-path
of length at least 7 − 2|Ṽ (FQ3)| (resp. 6 − 2|Ṽ (FQ3)|) when dH(u, v) is odd (resp. even).

Proof. The proof is presented in Appendix. �

Lemma 11. Let u and v be any two fault-free nodes in FQn with |Ṽ (FQn)| ≤ n − 1, where n ≥ 4. Then, FQn contains a fault-free
uv-path of length at least 2n

− 2|Ṽ (FQn)| − 1 (resp. 2n
− 2|Ṽ (FQn)| − 2) when dH(u, v) is odd (resp. even).

Proof. First, we consider the case that |Ṽ (FQn)| ≤ n − 2. Since FQn contains Qn as a subgraph with extra complementary
edge set, the result holds by applying Corollary 1 to FQn. Next, we consider the case that |Ṽ (FQn)| = n − 1. Since FQn is
(n + 1)-regular and |Ṽ (FQn)| = n − 1, every node in FQn has at least two fault-free neighbors in FQn. According to the
number of fault-free neighbors of a node, we consider two scenarios:

Case 1: Every node in FQn has at least three fault-free neighbors in FQn.
By Corollary 3, we have that FQn − Ec ∼= Qn with the same faulty nodes. Since every node in FQn has at least

three fault-free neighbors in FQn, it has at least two fault-free neighbors in FQn − Ec . Since n − 1 ≤ 2n − 5 for
all n ≥ 4, then by Lemma 3, FQn − Ec contains a fault-free uv-path of length at least 2n

− 2|Ṽ (FQn)| − 1 (resp.
2n

− 2|Ṽ (FQn)| − 2) when dH(u, v) is odd (resp. even). Since FQn − Ec is a subgraph of FQn, the lemma holds.
Case 2: At least one node in FQn has exactly two fault-free neighbors in FQn.

Let x be a node with exactly two fault-free neighbors in FQn. Since |Ṽ (FQn)| = n−1, we have that x is fault-free,
and all nodes in Ṽ (FQn) are the faulty neighbors of x. We first claim that x is unique. Suppose, on the contrary,
that there exists a node y, y ≠ x, such that y has exactly two fault-free neighbors in FQn. Similar to x, we have
that y is fault-free, and all nodes in Ṽ (FQn) are also the faulty neighbors of y. Then, by Lemma 8, x and y are not
adjacent. Moreover, by Lemma 7, x and y have exactly two common neighbors, which leads to a contradiction
because |Ṽ (FQn)| = n − 1 ≥ 3 for n ≥ 4. Therefore, such y does not exist (i.e., x is unique).

Let x′ be a faulty neighbor of x and (x, x′) ∈ Ej, where j ∈ {1, 2, . . . , n, c}. By Corollary 3, we have that
FQn − Ej ∼= Qn. Moreover, every node in FQn has at least two fault-free neighbors in FQn − Ej. Then, by Lemma 3,
FQn −Ej contains a fault-free uv-path of length at least 2n

−2|Ṽ (FQn)|−1 (resp. 2n
−2|Ṽ (FQn)|−2)when dH(u, v)

is odd (resp. even). Since FQn − Ej is a subgraph of FQn, the lemma holds. �

Lemma 12. Let u and v be any two fault-free nodes in FQn with |Ṽ (FQn)| ≥ 1, |Ẽ(FQn)| ≥ 1 and |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 1,
where n ≥ 4. Then, FQn contains a fault-free uv-path of length at least 2n

− 2|Ṽ (FQn)| − 1 (resp. 2n
− 2|Ṽ (FQn)| − 2) when

dH(u, v) is odd (resp. even).

Proof. Let e be a faulty edge in FQn. Since FQn is edge-transitive, without loss of generality, we can assume that e ∈ Ec . Next,
since the binary strings of u and v differ in the jth bit for some j ∈ {1, 2, . . . , n}, we can partition FQn into two (n − 1)-
subcubes, Q 0

n−1 and Q 1
n−1, along dimension j such that one subcube contains u and the other contains v. Without loss of

generality, assume that u ∈ V (Q 0
n−1) and v ∈ V (Q 1

n−1). Note that e remains in Ec . According to the distribution of faulty
nodes and faulty edges, we consider the following cases:

Case 1: |Ṽ (Q 0
n−1)| + |Ẽ(Q 0

n−1)| = n − 2.
We have that |Fj| = |Ṽ (Q 1

n−1)| = |Ẽ(Q 1
n−1)| = 0 and |Fc | = 1. Note that |Ṽ (Q 0

n−1)| = |Ṽ (FQn)| ≥ 1. Then,
by Lemma 1, Q 0

n−1 contains a fault-free cycle C of length at least 2n−1
− 2|Ṽ (Q 0

n−1)|. According to whether u is
contained in C , we consider two subcases:
Case 1.1: u is contained in C .

Let 0w be a neighbor of u in C such that 1w ≠ v, and P0[u, 0w] be the path by removing (u, 0w)
from C (see Fig. 2(a)(b)). Since dH(u, v) is odd (resp. even), dH(1w, v) is also odd (resp. even). Then, by
Corollary 2, Q 1

n−1 contains a fault-free path P1[1w, v] of length 2n−1
− 1 (resp. 2n−1

− 2) when dH(1w, v)
is odd (resp. even). Therefore, ⟨u, P0[u, 0w], 0w, 1w, P1[1w, v], v⟩ is a fault-free uv-path of length at least

|P0[u,0w]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+1 +

|P1[1w,v]|  
2n−1

− 1 = 2n
− 2|Ṽ (FQn)| − 1 (resp. 2n

− 2|Ṽ (FQn)| − 2) when dH(u, v) is
odd (resp. even).

Case 1.2: u is not contained in C .
Let u = 0u′. According to whether 1u′ is v, we consider two scenarios:
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Fig. 2. Illustration of Case 1.1 in the proof of Lemma 12. Here, (a) dH (u, v) is odd; and (b) dH (u, v) is even.

Fig. 3. Illustration of Case 1.2.1 in the proof of Lemma 12. Here, (a) dH (u, v) is odd; and (b) dH (u, v) is even.

Case 1.2.1: 1u′
≠ v.

Since


2n−1
−2|Ṽ (Q 0

n−1)|

2


≥

2n−1
−2(n−2)
2 = 2n−2

− n + 2 > 1 for n ≥ 4, there exists an edge (0x, 0y) in C

such that {1x, 1y}∩{v} = ∅ (see Fig. 3(a)(b)). Let P0[0x, 0y] be the path by removing (0x, 0y) from C .Without
loss of generality, assume that dH(u, 0x) is odd, which implies that (1) dH(1u′, 1x) is odd, and (2) dH(1y, v) is
even (resp. odd) when dH(u, v) is odd (resp. even). Then, by Lemma 5 (resp. Lemma 4), there exist two node-
disjoint paths P1[1u′, 1x] and P2[1y, v] such that the sum of their lengths equals 2n−1

− 3 (resp. 2n−1
− 2)

when dH(1y, v) is even (resp. odd). Therefore, ⟨u, 1u′, P1[1u′, 1x], 1x, 0x, P0[0x, 0y], 0y, 1y, P2[1y, v], v⟩ is

a fault-free uv-path of length at least

|P0[0x,0y]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+3 +

|P1[1u′,1x]|+|P2[1y,v]|  
2n−1

− 3 = 2n
− 2|Ṽ (FQn)| − 1

(resp. 2n
− 2|Ṽ (FQn)| − 2) when dH(u, v) is odd (resp. even).

Case 1.2.2: 1u′
= v.

Since Q 0
n−1 is (n − 1)-regular and |Ṽ (Q 0

n−1)| + |Ẽ(Q 0
n−1)| ≤ n − 2, u has neighbor 0t such that (u, 0t) is a

free edge. According to whether 0t is contained in C , we consider two scenarios:
Case 1.2.2.1: 0t is contained in C .

Let 0w be a neighbor of 0t in C , and let P0[0t, 0w] be the path by removing (0t, 0w) from C (see Fig. 4(a)).
Since dH(u, v) is odd, dH(1w, v) is even. Then, by Corollary 2, Q 1

n−1 contains a fault-free path P1[1w, v]

of length 2n−1
− 2. Therefore, ⟨u, 0t, P0[0t, 0w], 0w, 1w, P1[1w, v], v⟩ is a fault-free uv-path of length

at least

|P0[0t,0w]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+1 + 1 +

|P1[1w,v]|  
2n−1

− 2 = 2n
− 2|Ṽ (FQn)| − 1.

Case 1.2.2.2: 0t is not contained in C .
Let (0x, 0y) be an edge in C , and let P0[0x, 0y] be the path by removing (0x, 0y) from C (see Fig. 4(b)).
Without loss of generality, assume that dH(u, 0x) is even, which implies that dH(1t, 1x) and dH(1y, v) are
both odd. Then, by Lemma 4, there exist two node-disjoint paths P1[1t, 1x] and P2[1y, v] such that the
sum of their lengths equals 2n−1

−2. Therefore, ⟨u, 0t, 1t, P1[1t, 1x], 1x, 0x, P0[0x, 0y], 0y, 1y, P2[1y, v],
v⟩ is a fault-free uv-path of length at least

|P0[0x,0y]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+1 + 3 +

|P1[1t,1x]|+|P2[1y,v]|  
2n−1

− 2 ≥ 2n
− 2|Ṽ (FQn)| − 1.
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Fig. 4. Illustration of Case 1.2.2.1 and Case 1.2.2.2 in the proof of Lemma 12.

Fig. 5. Illustration of Case 3 in the proof of Lemma 12. Here, (a) dH (u, v) is odd; and (b) dH (u, v) is even.

Case 2: |Ṽ (Q 1
n−1)| + |Ẽ(Q 1

n−1)| = n − 2.
The proof is similar to that of Case 1 and hence omitted here.

Case 3: |Ṽ (Q 0
n−1)| + |Ẽ(Q 0

n−1)| ≤ n − 3 and |Ṽ (Q 1
n−1)| + |Ẽ(Q 1

n−1)| ≤ n − 3.

Let W = {(0w, 1w)| dH(u, 0w) is odd} be a matching. Since |W | =
2n−1

2 = 2n−2 > (n − 2) +

node v
1 = n − 1

for n ≥ 4, there exists a free edge (0w, 1w) ∈ W such that 1w ≠ v (see Fig. 5(a)(b)). Note that dH(u, 0w) is
odd and dH(1w, v) is odd (resp. even) when dH(u, v) is odd (resp. even). Then, by Corollary 1, Q 0

n−1 contains a
fault-free path P0[u, 0w] of length 2n−1

− 2|Ṽ (Q 0
n−1)| − 1, and Q 1

n−1 contains a fault-free path P1[1w, v] of length
2n−1

−2|Ṽ (Q 1
n−1)|−1 (resp. 2n−1

−2|Ṽ (Q 1
n−1)|−2)when dH(1w, v) is odd (resp. even). Therefore, ⟨u, P0[u, 0w],0w,

1w, P1[1w, v], v⟩ is a fault-free uv-path of length at least

|P0[u,0w]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+1 +

|P1[1w,v]|  
2n−1

− 2|Ṽ (Q 1
n−1)| − 1 =

2n
− 2|Ṽ (FQn)| − 1 (resp. 2n

− 2|Ṽ (FQn)| − 2) when dH(u, v) is odd (resp. even).

Combining the above cases complete the proof. �

Based on (a) Lemmas 11 and 12, and Lemma 6(1) when n ≥ 5 is odd, (b) Lemma 10 when n = 3, and (c) Lemma 6(1)
when n = 1, we have the following result.

Theorem 1. Let u and v be any two fault-free nodes in FQn with |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 1, where n ≥ 1 is odd. Then, FQn

contains a fault-free uv-path of length at least 2n
− 2|Ṽ (FQn)| − 1 (resp. 2n

− 2|Ṽ (FQn)| − 2) when dH(u, v) is odd (resp. even).

Lemma 13. Let u and v be any two fault-free nodes in FQn with |Ṽ (FQn)| ≥ 1 and |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 2, where n ≥ 4
is even. Then, FQn contains a fault-free uv-path of length at least 2n

− 2|Ṽ (FQn)| − 1.

Proof. Since the binary strings of u and v differ in the jth bit for some j ∈ {1, 2, . . . , n}, we can partition FQn into two
(n−1)-subcubes, Q 0

n−1 and Q 1
n−1, along dimension j such that one subcube contains u and the other contains v. Without loss

of generality, assume that u ∈ V (Q 0
n−1) and v ∈ V (Q 1

n−1). Note that since n ≥ 4 is even, it is known that for every node w in
FQn, dH(w, w) is even. According to the distribution of faulty nodes and edges, we consider the following four cases:

Case 1: |Ṽ (Q 0
n−1)| + |Ẽ(Q 0

n−1)| = n − 2.
We have that |Fj| = |Fc | = |Ṽ (Q 1

n−1)| = |Ẽ(Q 1
n−1)| = 0. Note that |Ṽ (Q 0

n−1)| = |Ṽ (FQn)| ≥ 1. By applying
Lemma1,Q 0

n−1 contains a fault-free cycle C of length at least 2n−1
−2|Ṽ (Q 0

n−1)|. According towhether u is contained
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Fig. 6. Illustration of Case 1.1 in the proof of Lemma 13. Here, (a) dH (u, v) is odd; and (b) dH (u, v) is even.

Fig. 7. Illustration of Case 1.2 in the proof of Lemma 13. Here, (a) dH (u, v) is odd; and (b) dH (u, v) is even.

in C , we consider the following two subcases:

Case 1.1: u is contained in C .
Let 0w be a neighbor of u in C , and let P0[u, 0w] be the path of removing the edge (u, 0w) from C . Since

|Fj| = |Fc | = |Ṽ (Q 1
n−1)| = |Ẽ(Q 1

n−1)| = 0, (0w, 1w) and (0w, 1w) are both free edges. If dH(0w, v) is even,
we connect 0w to 1w; otherwise, we connect 0w to 1w (see Fig. 6(a)(b)). We observe that dH(1w, v) (resp.
dH(1w, v)) is odd when dH(0w, v) is even (resp. odd). Then, by Corollary 2, Q 1

n−1 contains a fault-free path
P1[1w, v] (resp. P1[1w, v]) of length 2n

− 1 when dH(0w, v) is even (resp. odd). Therefore, P[u, v] = ⟨u,
P0[u, 0w], 0w, 1w, P1[1w, v], v⟩ (resp. P[u, v] = ⟨u, P0[u, 0w], 0w, 1w, P1[1w, v], v⟩) forms a fault-free uv-

path of length at least

|P0[u,0w]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+1 +

|P1[1w,v]| (resp.P1[1w,v]|)  
2n−1

− 1 = 2n
− 2|Ṽ (FQn)| − 1 when dH(u, v)

is odd (resp. even).
Case 1.2: u is not contained in C .

Let u = 0u′. Since |Fj| = |Fc | = |Ṽ (Q 1
n−1)| = |Ẽ(Q 1

n−1)| = 0, (u, 1u′) and (u, 1u′) are both free edges.
If dH(u, v) is odd, we connect u to 1u′; otherwise we connect u to 1u′ (see Fig. 7(a)(b)). We observe that
dH(1u′, v) (resp. dH(1u′, v)) is odd when dH(u, v) is odd (resp. even). Since (1)


2n−1

−2|Ṽ (Q 0
n )|

2


≥

2n−1
−2(n−2)
2 =

2n−2
−n+2 ≥ 2 for n ≥ 4 and (2) dH(1u′, v) is oddwhen dH(u, v) is odd, there exists an edge (0x, 0y) in C such

that {1x, 1y} ∩ {1u′, v} = ∅ (resp. {1x, 1y} ∩ {v} = ∅) when dH(u, v) is odd (resp. even). Let P0[0x, 0y] be the
path by removing (0x, 0y) from C . Without loss of generality, assume that dH(u, 0x) is even (resp. odd) when
dH(u, v) is odd (resp. even), which implies that dH(1x, 1u′) (resp. dH(1x, 1u′)) and dH(1y, v) are both odd. Then,
by Lemma 4, Q 1

n−1 contains two node-disjoint paths P1[1u′, 1x] (resp. P1[1u′, 1x]) and P2[1y, v] such that the
sumof their lengths equals 2n

−2when dH(u, v) is odd (resp. even). Therefore, P[u, v] = ⟨u, 1u′, P1[1u′, 1x], 1x,
0x, P0[0x, 0y], 0y, 1y, P2[1y, v], v⟩ (resp. P[u, v] = ⟨u, 1u′, P1[1u′, 1x], 1x, 0x, P0[0x, 0y], 0y, 1y, P2[1y, v], v⟩)

is a fault-free uv-path of length at least

|P0[0x,0y]|  
2n−1

− 2|Ṽ (Q 0
n−1)| − 1+3 +

|P1[1u′,1x]|+|P2[1y,v]|  
2n−1

− 2 ≥ 2n
− 2|Ṽ (FQn)| − 1

when dH(u, v) is odd (resp. even).

Case 2: |Ṽ (Q 1
n−1)| + |Ẽ(Q 1

n−1)| = n − 2.
The proof is similar to that of case 1 and hence omitted here.
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Fig. 8. Illustration of Case 3 in the proof of Lemma 13. Here, (a) dH (u, v) is odd; and (b) dH (u, v) is even.

Case 3: |Ṽ (Q 0
n−1)| + |Ẽ(Q 0

n−1)| ≤ n − 3 and |Ṽ (Q 1
n−1)| + |Ẽ(Q 1

n−1)| ≤ n − 3.
If dH(u, v) is odd, let W = {(0w, 1w)| dH(u, 0w) is odd}; otherwise, let W = {(0w, 1w)| dH(u, 0w) is odd}

(see Fig. 8(a)(b)). Obviously, W is a matching in Ej ∪ Ec . Since |W | =
2n−1

2 = 2n−2 > n − 2 for n ≥ 4, there
exists a free edge (0w, 1w) (resp. (0w, 1w)) in W when dH(u, v) is odd (resp. even). Note that dH(u, 0w) and
dH(1w, v) (resp. dH(1w, v)) are both odd when dH(u, v) is odd (resp. even). Then, by Corollary 1, Q 0

n−1 contains
a fault-free path P0[u, 0w] of length 2n−1

− 2|Ṽ (Q 0
n−1)| − 1, and Q 1

n−1 contains a fault-free path P1[1w, v] (resp.
P1[1w, v]) of length 2n−1

− 2|Ṽ (Q 1
n−1)| − 1 when dH(u, v) is odd (resp. even). Therefore, P[u, v] = ⟨u, P0[u, 0w],

0w, 1w, P1[1w, v], v⟩ (resp. P[u, v] = ⟨u, P0[u, 0w], 0w, 1w, P1[1w, v], v⟩) is a fault-free uv-path of length
|P0[u,0w]|  

2n−1
− 2|Ṽ (Q 0

n−1)| − 1+1 +

|P1[1w,v]| (resp.|P1[1w,v]|)  
2n−1

− 2|Ṽ (Q 1
n−1)| − 1 = 2n

− 2|Ṽ (FQn)| − 1 when dH(u, v) is odd (resp. even).

Combining the above three cases completes the proof. �

Based on Lemmas 6 and 13 (when n ≥ 4 is even), and Lemma 6(2) when n = 2, we obtain the following result.

Theorem 2. Let u and v be any two fault-free nodes in FQn with |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 2, where n ≥ 2 is even. Then, FQn

contains a fault-free uv-path of length at least 2n
− 2|Ṽ (FQn)| − 1.

5. Concluding remarks

Fault tolerance is an important research topic in the area of the multi-process computer systems, and many studies have
focused on the node-fault tolerant or edge-fault tolerant properties of some specific networks. In this paper, we extend
Hsieh’s result [5] to obtain two further fault-tolerant properties about fault-free paths in a faulty folded n-cube as follows:

1. FQn contains a fault-free path of length at least 2n
− 2|Ṽ (FQn)| − 1 (resp. 2n

− 2|Ṽ (FQn)| − 2) between any two fault-free
nodes of odd (resp. even) distance if |Ṽ (FQn)| + |Ẽ(FQn)| ≤ n − 1, where n ≥ 1 is odd.

2. FQn contains a fault-free path of length at least 2n
− 2|Ṽ (FQn)| − 1 between any two fault-free nodes if |Ṽ (FQn)| +

|Ẽ(FQn)| ≤ n − 2, where n ≥ 2 is even.

Our results imply that the algorithms designed for paths can also be executed efficiently on a faulty folded hypercube
with both faulty nodes and edges.

Appendix

According to the number of Ṽ (FQ3), we consider the following cases. First, if |Ṽ (FQ3)| = 0 (i.e., |Ẽ(FQ3)| ≤ 2), the lemma
holds from Lemma 6. Next, consider the case that |Ṽ (FQ3)| = 1, i.e., |Ẽ(FQ3)| ≤ 1. Since FQ3 is node-transitive, we assume
that the faulty node is 000. By the symmetry of FQ3, we only need to consider the faulty edge in {(001, 011), (110, 111),
(001, 110)}. All fault-free uv-paths of length 7 − 2 · 1 = 5 (resp. 6 − 2 · 1 = 4) when dH(u, v) is odd (resp. even) are
demonstrated in Table 1.

Lastly, consider the case that |Ṽ (FQ3)| = 2. Since FQ3 is also node-transitive, we assume one of the faulty nodes is 000.
By the symmetry of FQ3, we only need to consider the other faulty node in {001, 011, 111}. All fault-free uv-paths of length
7 − 2 · 2 = 3 (resp. 6 − 2 · 2 = 2) when dH(u, v) is odd (resp. even) are demonstrated in Table 2.
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Table 1
uv-paths in FQ3 with |Ṽ (FQ3)| = 1 and |Ẽ(FQ3)| = 1.

Faulty edge u v uv-path

(001, 011) 011 001 ⟨011, 010, 110, 100, 101, 001⟩
(001, 011) 011 010 ⟨011, 111, 101, 100, 110, 010⟩
(001, 011) 011 100 ⟨011, 010, 110, 111, 101, 100⟩
(001, 011) 011 111 ⟨011, 010, 110, 100, 101, 111⟩
(001, 011) 110 001 ⟨110, 010, 011, 111, 101, 001⟩
(001, 011) 110 010 ⟨110, 100, 101, 111, 011, 010⟩
(001, 011) 110 100 ⟨110, 010, 011, 111, 101, 100⟩
(001, 011) 110 111 ⟨110, 010, 011, 100, 101, 111⟩
(001, 011) 101 001 ⟨101, 111, 011, 010, 110, 001⟩
(001, 011) 101 010 ⟨101, 100, 110, 111, 011, 010⟩
(001, 011) 101 100 ⟨101, 111, 011, 010, 110, 100⟩
(001, 011) 101 111 ⟨101, 100, 110, 010, 011, 111⟩
(001, 011) 011 110 ⟨011, 111, 101, 100, 110⟩
(001, 011) 011 101 ⟨011, 111, 110, 100, 101⟩
(001, 011) 110 101 ⟨110, 010, 011, 111, 101⟩
(001, 011) 001 010 ⟨001, 101, 100, 110, 010⟩
(001, 011) 001 100 ⟨001, 101, 111, 110, 100⟩
(001, 011) 001 111 ⟨001, 101, 100, 110, 111⟩
(001, 011) 010 100 ⟨010, 110, 111, 101, 100⟩
(001, 011) 010 111 ⟨010, 110, 100, 101, 111⟩
(001, 011) 100 111 ⟨100, 110, 010, 011, 111⟩
(110, 111) 011 001 ⟨011, 010, 110, 100, 101, 001⟩
(110, 111) 011 010 ⟨011, 111, 101, 100, 110, 010⟩
(110, 111) 011 100 ⟨011, 010, 110, 001, 101, 100⟩
(110, 111) 011 111 ⟨011, 010, 110, 100, 101, 111⟩
(110, 111) 110 001 ⟨110, 010, 011, 111, 101, 001⟩
(110, 111) 110 010 ⟨110, 100, 101, 111, 011, 010⟩
(110, 111) 110 100 ⟨110, 010, 011, 111, 101, 100⟩
(110, 111) 110 111 ⟨110, 010, 011, 001, 101, 111⟩
(110, 111) 101 001 ⟨101, 100, 110, 010, 011, 001⟩
(110, 111) 101 010 ⟨101, 100, 110, 001, 011, 010⟩
(110, 111) 101 100 ⟨101, 111, 011, 010, 110, 100⟩
(110, 111) 101 111 ⟨101, 100, 110, 010, 011, 111⟩
(110, 111) 011 110 ⟨011, 111, 101, 100, 110⟩
(110, 111) 011 101 ⟨011, 010, 110, 100, 101⟩
(110, 111) 110 101 ⟨110, 010, 011, 111, 101⟩
(110, 111) 001 010 ⟨001, 101, 100, 110, 010⟩
(110, 111) 001 100 ⟨001, 011, 010, 110, 100⟩
(110, 111) 001 111 ⟨001, 110, 010, 011, 111⟩
(110, 111) 010 100 ⟨010, 011, 111, 101, 100⟩
(110, 111) 010 111 ⟨010, 110, 100, 101, 111⟩
(110, 111) 100 111 ⟨100, 110, 010, 011, 111⟩
(001, 110) 011 001 ⟨011, 010, 110, 100, 101, 001⟩
(001, 110) 011 010 ⟨011, 111, 101, 100, 110, 010⟩
(001, 110) 011 100 ⟨011, 010, 110, 111, 101, 100⟩
(001, 110) 011 111 ⟨011, 010, 110, 100, 101, 111⟩
(001, 110) 110 001 ⟨110, 010, 011, 111, 101, 001⟩
(001, 110) 110 010 ⟨110, 100, 101, 111, 011, 010⟩
(001, 110) 110 100 ⟨110, 010, 011, 111, 101, 100⟩
(001, 110) 110 111 ⟨110, 010, 011, 001, 101, 111⟩
(001, 110) 101 001 ⟨101, 111, 110, 010, 011, 001⟩
(001, 110) 101 010 ⟨101, 100, 110, 111, 011, 010⟩
(001, 110) 101 100 ⟨101, 111, 011, 010, 110, 100⟩
(001, 110) 101 111 ⟨101, 100, 110, 010, 011, 111⟩
(001, 110) 011 110 ⟨011, 111, 101, 100, 110⟩
(001, 110) 011 101 ⟨011, 111, 110, 100, 101⟩
(001, 110) 110 101 ⟨110, 010, 011, 111, 101⟩
(001, 110) 001 010 ⟨001, 101, 100, 110, 010⟩
(001, 110) 001 100 ⟨001, 101, 111, 110, 100⟩
(001, 110) 001 111 ⟨001, 101, 100, 110, 111⟩
(001, 110) 010 100 ⟨010, 110, 111, 101, 100⟩
(001, 110) 010 111 ⟨010, 110, 100, 101, 111⟩
(001, 110) 100 111 ⟨100, 110, 010, 011, 111⟩
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Table 2
uv-paths in FQ3 with |Ṽ (FQ3)| = 2.

Faulty nodes u v uv-path

{000, 001} 011 010 ⟨011, 111, 110, 010⟩
{000, 001} 011 100 ⟨011, 111, 110, 100⟩
{000, 001} 011 111 ⟨011, 010, 110, 111⟩
{000, 001} 101 010 ⟨101, 111, 110, 010⟩
{000, 001} 101 100 ⟨101, 111, 110, 100⟩
{000, 001} 101 111 ⟨101, 100, 110, 111⟩
{000, 001} 110 010 ⟨110, 111, 011, 010⟩
{000, 001} 110 100 ⟨110, 111, 101, 100⟩
{000, 001} 110 111 ⟨110, 100, 101, 111⟩
{000, 001} 011 101 ⟨011, 111, 101⟩
{000, 001} 011 110 ⟨011, 111, 110⟩
{000, 001} 101 110 ⟨101, 111, 110⟩
{000, 001} 010 100 ⟨010, 110, 100⟩
{000, 001} 010 111 ⟨010, 110, 111⟩
{000, 001} 100 111 ⟨100, 110, 111⟩
{000, 011} 101 001 ⟨101, 111, 110, 001⟩
{000, 011} 101 010 ⟨101, 111, 110, 010⟩
{000, 011} 101 100 ⟨101, 111, 110, 100⟩
{000, 011} 101 111 ⟨101, 100, 110, 111⟩
{000, 011} 110 001 ⟨110, 111, 101, 001⟩
{000, 011} 110 010 ⟨110, 111, 101, 010⟩
{000, 011} 110 100 ⟨110, 111, 101, 100⟩
{000, 011} 110 111 ⟨110, 100, 101, 111⟩
{000, 001} 101 110 ⟨101, 111, 110⟩
{000, 001} 001 010 ⟨001, 110, 010⟩
{000, 001} 001 100 ⟨001, 101, 100⟩
{000, 001} 001 111 ⟨001, 101, 111⟩
{000, 001} 010 100 ⟨010, 110, 100⟩
{000, 001} 010 111 ⟨010, 110, 111⟩
{000, 001} 100 111 ⟨100, 110, 111⟩
{000, 011} 011 001 ⟨011, 100, 101, 001⟩
{000, 011} 011 010 ⟨011, 100, 110, 010⟩
{000, 011} 011 100 ⟨011, 010, 110, 100⟩
{000, 011} 101 001 ⟨101, 100, 110, 001⟩
{000, 011} 101 010 ⟨101, 001, 011, 010⟩
{000, 011} 101 100 ⟨101, 010, 110, 100⟩
{000, 011} 110 001 ⟨110, 010, 011, 001⟩
{000, 011} 110 010 ⟨110, 100, 011, 010⟩
{000, 011} 110 100 ⟨110, 001, 101, 100⟩
{000, 011} 011 101 ⟨011, 001, 101⟩
{000, 011} 011 110 ⟨011, 010, 110⟩
{000, 011} 101 110 ⟨101, 100, 110⟩
{000, 011} 001 010 ⟨001, 011, 010⟩
{000, 011} 001 100 ⟨001, 101, 100⟩
{000, 011} 010 100 ⟨010, 110, 100⟩
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