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We present an algorithm to generate bracelets with fixed content. An analysis shows that
the algorithm runs in constant amortized time. The algorithm can be applied to efficiently
list all non-isomorphic unicyclic graphs with n vertices.
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1. Introduction

The exhaustive generation of combinatorial objects has become a popular area of algorithmic research and is a major
theme in Knuth’s latest volume of The Art of Computer Programming [5]. Such algorithms are often analyzed with an
amortized analysiswhere the ultimate goal is to develop an algorithm that runs in Constant Amortized Time: each successive
object is generated in constant time on average. An algorithm that attains this goal is said to be CAT.

One of the most fundamental of combinatorial objects is the necklace. A necklace is defined to be the lexicographically
minimal string in an equivalence class of k-ary strings under rotation. An aperiodic necklace is a Lyndon word and any prefix
of a necklace is said to be a prenecklace. CAT algorithms to generate necklaces, Lyndon words, and prenecklaces of length
n are well known [3,2,1]. If the number of occurrences of each character i is given by ni where n0 + n1 + · · · + nk−1 = n,
then such strings are said to have fixed content. CAT algorithms are also known for necklaces and Lyndon words with fixed
content [7].

If we consider equivalence under reversal in addition to rotation, we obtain a bracelet. Specifically, a bracelet is defined
to be the lexicographically minimal string in an equivalence class of k-ary strings under rotation and reversal. While a
CAT algorithm is known for generating bracelets [6], no such algorithm is known for bracelets with fixed content. A major
contribution of this paper is to fill this void.While doing so, we also provide amuch simpler analysis that proves the bracelet
algorithm in [6] is CAT.

The study of bracelets with fixed content is motivated by an application related to undirected graphs with exactly one
cycle. Exhaustively listing all non-isomorphic graphs on n vertices is well known to be a very difficult problem. However, if
we restrict such graphs to have exactly 1 cycle, then the crux of an efficient algorithm is to be able to efficiently list bracelets
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Fig. 1. A unicyclic graph with n = 15 vertices. The specification for the sizes of the 6 subtrees is ⟨1, 1, 3, 3, 3, 4⟩. The content assigned to the trees is
[0, 0, 1, 2, 2, 3], and the bracelet corresponding to this graph is 020213.

with fixed content. A unicyclic graphG on n vertices can be represented by a sequence ofm rooted trees T1, T2, . . . , Tm where
the root of each tree is a vertex of the unique cycle and the total number of vertices in them trees is n. Fig. 1 shows a unicyclic
graph on n = 15 vertices from a sequence of m = 6 rooted trees. Equivalence classes are formed by considering rotations
and the reversal of the sequences, i.e., bracelets with fixed content. If we partition the unicyclic graphs with n vertices by
the size of the cyclem, then the following approach outlines how to exhaustively generate them:

A numerical partition ⟨p1, p2, . . . , pm⟩ of the integer n into m parts corresponds to a specification for the sizes of
the m rooted trees on the cycle. For each specification we consider all combinations of rooted trees whose sizes
match the specification. Then for each combination of trees, we map each tree to a unique alphabet symbol in
{0, 1, 2, . . . ,m − 1}: if two rooted trees are the same, they will map to the same alphabet symbol. The resulting
multi-set ofm symbols yields the content. To handle equivalence under rotation and reversal, the remaining problem
is to generate all bracelets with the given content. Fig. 1 illustrates some of these steps.

A more detailed description of this algorithm is given in [4].
The remainder of the paper is outlined as follows. In Section 2, we describe a recursive algorithm to generate necklaces

and then describe some simple modifications to obtain a naïve algorithm to generate bracelets with fixed content. We then
apply 5 optimizations to obtain a more efficient algorithm. In Section 3, we analyze the optimized algorithm proving that it
is CAT. In Section 4, we give a short summary. In the Appendix we provide a complete C implementation of our algorithm.

2. Algorithms to generate bracelets with fixed content

In this section we present two algorithms to generate bracelets with fixed content. The first algorithm applies
straightforward modifications to a recursive necklace algorithm, but is unoptimized. The second algorithm is also based
on the recursive necklace algorithm, but applies the optimizations from CAT algorithms to generate (i) necklaces with fixed
content [7] and (ii) bracelets [6]. When merging the optimizations, one special case must be handled in order to preserve
the optimizations used in each approach. Additionally, in order to make the merged algorithm slightly more optimized and
easier to analyze, we maintain an additional representation for the k-ary string being generated: its run-length encoding
(detailed in Section 2.2.1).

2.1. A simple algorithm

In [1], the Fundamental Theorem of Necklaces specifies the exact conditions for a character to be appended to a prenecklace
and still remain a prenecklace. All that is required is the length of the current prenecklace α and the length of its longest
prefix that is a Lyndon word, given by lyn(α).

Theorem 1 (Fundamental Theorem of Necklaces). Let α = a1a2 · · · at−1 be a k-ary prenecklace with p = lyn(α). The string αb
is a k-ary prenecklace if and only if at−p ≤ b ≤ k − 1. Furthermore,

lyn(αb) =


p if b = at−p
t if at−p < b ≤ k − 1.

Using this theorem, it is straightforward to produce a recursive algorithm to exhaustively list all prenecklaces of length n
in lexicographic order. A pseudocode is provided in Fig. 2(a), where the parameter p represents the longest Lyndon prefix
of the current prenecklace. The function Print(p) is used to output each prenecklace and it can easily be modified to output
necklaces or Lyndon words. A prenecklace is a necklace if n mod p = 0; it is a Lyndon word if n = p. Each object can be
generated in constant amortized time [1]. The initial call is Necklace(1,1) with a0 initialized to 0.

Using this algorithm we now consider our two restrictions. First, we only want to generate bracelets. Second, we want
the strings to satisfy a pre-specified content: n0 + n1 + · · · + nk−1 = nwhere each ni denotes the number of occurrences of
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procedure Necklace(t, p: int)
j, p′: int

if t > n then Print(p)
else

for j := at−p to k − 1 do

at := j
p′

:= p
if j ≠ at−p then p′

:= t

Necklace(t + 1, p′)

end.

(a)

procedure SimpleBFC(t, p, r: int)
c, j, p′: int

if t > n then if ar+1 · · · an ≤ an · · · ar+1 then Print(p)
else

for j := at−p to k − 1 do
nj := nj − 1
at := j
p′

:= p
if j ≠ at−p then p′

:= t
c := CheckRev(t)
if c = 0 and nj ≥ 0 then SimpleBFC(t + 1, p′, t)
if c = 1 and nj ≥ 0 then SimpleBFC(t + 1, p′, r)
nj := nj + 1

end.

(b)

Fig. 2. (a) A simple recursive algorithmNecklace(t, p) to list all necklaces, Lyndonwords or prenecklaces depending on the restrictions given by the function
Print(p). (b) A simple algorithm SimpleBFC(t, p, r) to list all bracelets with fixed content.

the character i. To apply the first restriction, it is possible to apply a O(n) time test to determine whether or not the necklace
is a bracelet. This can be done by computing the necklace of the reversed string and comparing it to the original necklace.
However, this will not lead to a CAT algorithm. Instead, we apply the following result which follows directly from Theorem
3.1 of [6]:

Lemma 1. If α = a1a2 · · · an is a necklace where r denotes the length of its longest prefix such that a1 · · · ar = ar · · · a1, then α
is a bracelet iff ar+1 · · · an ≤ an · · · ar+1 and there is no index t such that a1 · · · at > at · · · a1.

To apply this lemma, at each recursive call in the necklace algorithm we must compare a1 · · · at with its reversal. If it is
greater than its reversal, we terminate the branch since no extension of the prenecklace will result in a bracelet; if they are
equal, then we update the value for a new parameter r . When the prenecklace has length nwe compare ar+1 · · · an with its
reversal to test if it is a bracelet.

To naïvely restrict the content of each bracelet, we only extend the prenecklaces with characters that do not violate the
restriction. This is easily handled by updating the number of occurrences ni for each character i as it gets appended to a
prenecklace. Applying these modifications, a pseudocode for a simple algorithm SimpleBFC(t, p, r) to generate bracelets
with fixed content is given in Fig. 2(b). The initial call is SimpleBFC(1, 1, 0) with a0 initialized to 0. The function CheckRev(t)
compares the prefix a1 · · · at with its reversal. Its return value is given by:

CheckRev(t) =


−1 if a1 · · · at > at · · · a1
0 if a1 · · · at = at · · · a1
1 if a1 · · · at < at · · · a1.

Observe that each call to CheckRev(t) requires O(t) time in the worst case; however when a1 ≠ at only one comparison
is required. In the next subsection, the run-length encoding of the string is maintained to make this test more efficient.

2.2. An efficient algorithm

In this section we address three optimizations for fixed content necklaces from [7] and one optimization for bracelets
from [6]. Since there is a dependence between two of the optimizations, maintaining the run-length encoding for the string
being generated is critical to maintaining the efficiency. In total, the 5 optimizations can be summarized as follows:

1. Maintain the run-length encoding, which optimizes the function CheckRev.
2. Use a linked list to maintain the characters remaining to be added
3. Truncate the current branch of computationwhen only 0’s remain to be added, since the stringwill not result in a bracelet

of length n.
4. Initialize the last nk−1 characters of α to k−1, which allows a branch of computation to be trimmed when only k − 1’s

remain to be added.
5. Incrementally compare ar+1 · · · an with its reversal an · · · ar+1 by making one character comparison per recursive call

and maintaining a parameter storing the current result.

For completeness, these 5 optimizations are discussed in more detail in the following subsections. To illustrate the
optimizations, a fragment of a computation tree is given in Fig. 3. A pseudocode that applies all the optimizations is provided
in Fig. 4. The initial call is BraceletFC(2, 1, 1, 2, 1, FALSE) where a1 is initialized to 0 since all bracelets must start with 0. To
apply the fourth optimization, the last nk−1 characters of α = a1 · · · an are initialized to k−1.
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Fig. 3. A fragment of the computation tree for BraceletFC starting with the prenecklace 001210 and remaining content n0 = 1, n1 = 1, n2 = 2. This
fragment generates 9 prenecklaces: the 3 ending with 1 and the 6 that ended early by the fourth optimization. Only the prenecklaces that end early
(padded with 2’s) correspond to bracelets in this case. The ones that end with 1 are necklaces but do not pass the bracelet test.

procedure BraceletFC(t, p, r, z, b: int; RS: boolean)
c, j, z ′, p′: int

// Update RS so it is TRUE iff at−1at−2 · · · an−t+2+r < an−t+2+r · · · at−2at−1
if t − 1 > ⌊(n − r)/2⌋ + r then

if at−1 > an−t+2+r then RS := FALSE
else if at−1 < an−t+2+r then RS := TRUE

// Termination condition - only characters k−1 remain to be appended
if nk−1 = n − t + 1 then

if nk−1 > runt−p then p := n
if nk−1 > 0 and r + 1 ≠ t and sb+1 = k − 1 and vb+1 > nk−1 then RS := TRUE
if nk−1 > 0 and r + 1 ≠ t and (sb+1 ≠ k − 1 or vb+1 < nk−1) then RS := FALSE
if RS = FALSE then Print(p)

// Recursively extend the prenecklace - unless only 0’s remain to be appended
else if n0 ≠ n − t + 1 then

j := head
while j ≥ at−p do

runz := t − z
UpdateRunLength(j);
nj := nj − 1
if nj = 0 then ListRemove(j)

at := j
z ′

:= z
if j ≠ k − 1 then z ′

:= t + 1
p′

:= p
if j ≠ at−p then p′

:= t
c := CheckRev(nb)
if c = 0 then BraceletFC( t+1, p′, t, z ′, nb, FALSE )
if c = 1 then BraceletFC( t+1, p′, r, z ′, b, RS )

if nj = 0 then ListAdd(j)
nj := nj + 1
RestoreRunLength();

j := ListNext(j)

at := k − 1
end.

Fig. 4. An optimized algorithm BraceletFC(t, p, r, z, b, RS) to list all bracelets with fixed content.
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2.2.1. Maintaining the run-length encoding
The run-length encoding of a k-ary string is a compact representation where the string is represented by a sequence

of pairs (si, vi) where si is a character element in the string and vi is the number of occurrences of si in a run. Moreover,
consecutive pairs (si, vi) and (si+1, vi+1) must represent different characters: si ≠ si+1. For example, the run-length encoding
of α = 0000022211112 is (0, 5), (2, 3), (1, 4), (2, 1). For simplicity, we call each pair (si, vi) a block and use nb to denote
the number of blocks in the run-length encoding of a string. From our example, nb = 4.

As a character at is appended to a string a1 · · · at−1, its run-length encoding is updated as follows: if at = at−1 then
increment vnb; otherwise add a new block (at , 1) and increment nb. To restore the encoding after a recursive call, we
consider the value vnb: if it is greater than 1 then its value is decremented by 1; otherwise the last block is removed and
the value of nb is decremented by 1. In the pseudocode in Fig. 4, the run-length encoding and the variable nb are stored
globally and these constant time operations are performed by the procedures UpdateRunLength(j) and RestoreRunLength()
respectively.

Using this encoding, it becomes more efficient to implement CheckRev(t), which compares a1 · · · at to its reversal
at · · · a1. Instead of comparing single characters at each step, we can compare entire blocks. Specifically, the following
function CheckRev(m) can be used to compare the run-length encoding (s1, v1), (s2, v2), . . . , (sm, vm) with its reversal.
Instead of t (the length of the string), this function now receives the number of blocksm as the parameter.

function CheckRev(m: int) returns int
j: int

j := 1
while (sj, vj) = (sm−j+1, vm−j+1) and j ≤

m
2 do j := j + 1

if j > m
2 then return 0

if sj < sm−j+1 then return 1
if sj > sm−j+1 then return -1
if (vj < vm−j+1 and sj+1 < sm−j+1) or (vj > vm−j+1 and sj < sm−j) then return 1
return -1

end.

2.2.2. Fixed-content optimizations
Now we consider optimizations specific to the content restriction. Looking back at our simple algorithm in Fig. 2(b)

observe that the for loop could iterate multiple times without producing a recursive call. This will happen when many of
the ni are already reduced to 0. An obvious optimization is to maintain a linked list containing only the characters that can
be successfully appended to the current prenecklace. By maintaining the list in descending order, a loop can be constructed
that produces a recursive call for each iteration. The subroutines ListAdd(j) and ListRemove(j) can easily be implemented
to respectively add and remove the element j from the list. The global variable head provides the first element in the list,
and ListNext(j) returns the value after j in the list. Each function can easily be implemented in constant time using an array
representation for a doubly linked list (see C code in Appendix).

The third optimization is to terminate any branch of computation when only the character 0 remains to be appended,
since for any k > 0 it will not lead to a necklace. This is easily done with a constant time comparison of n0 to n − t + 1.

The fourth optimization is to end a branch of computation early when only the character k−1 remains to be appended.
This trims the computation by nk−1 recursive calls, where nk−1 refers to the remaining number of k−1’s to be added. By
initializing the string α to consist entirely of this character and restoring its value appropriately as we backtrack, the string
α will be as desired. With respect to the run-length encoding, it amounts to adding the block (k − 1, nk−1). A side effect
of truncating such branches early is that the value for p will not be updated to handle these last nk−1 characters. This is
important since p is used to test if the prenecklace is a necklace or Lyndon word by the Print(p) procedure. The key to
updating p in constant time is to determine the number of consecutive k − 1’s that begin from position at−p, if any. As
explained in [7], this number can be determined in constant time per recursive call by maintaining an extra parameter z,
and an array run. In particular, if the prenecklace a1a2 · · · at has at = k − 1, the parameter z indicates the leftmost position
of the run of k−1’s in the suffix; otherwise if at ≠ k−1 then z is set to t+1. The value runj stores the number of consecutive
k − 1’s starting at position j. Using this value, if nk−1 is greater than runt−p, then p gets updated to n; otherwise it remains
unchanged.

2.2.3. Bracelet optimizations
Wenow focus on the optimization specific to bracelets. Observe that the final test before printing compares ar+1 · · · an to

its reversal. If this test is done as the last character is appended, itmay take linear time. However, if we already knowwhether
or not an−1an−2 · · · ar+2 < ar+2 · · · an−2an−1 then it is a trivial matter to perform this test in constant time by additionally
comparing ar+1 with an. So the key is to repeat this strategy with a boolean parameter RS that maintains whether or not the
Reversal is Smaller as we incrementally add characters after the midpoint of ar+1 · · · an. The initial value for this parameter
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is FALSE and the incremental updating of this parameter is given in the first block of the pseudocode in Fig. 4. Since themost
recent character added is t − 1, the resulting value for RS indicates whether or not (the reversal) at−1at−2 · · · an−t+2+r is
smaller than an−t+2+r · · · at−2at−1. Observe that t − 1 = n when the final character of the string has been added. In this
case, after the fragment has been executed, the value RS will be TRUE if and only if the reversal an · · · ar+1 is smaller than
ar+1 · · · an.

2.2.4. Merging the optimizations
There is one complication to merging the fixed content and bracelet optimizations. Since the fourth optimization may

truncate the computation early, the final incremental comparisons to accurately update RS will not be performed. Ideally,
this would be done in constant time otherwise it renders the fixed-content optimization to be ineffective. Fortunately, this
is attainable using the run-length encoding together with maintaining the block index b for the number of blocks used to
represent a1 · · · ar . Thus, b is updated with r is updated. Observe that a new block always starts at position r + 1 by the
definition of r: ar = 0 and ar+1 must be greater than 0. Using this information, we can update the variable RS in constant
time when the computation is truncated by nk−1 > 0 steps by comparing the b + 1-st block (sb+1, vb+1) with the last block
(k−1, nk−1). If t = r+1, thenwe are comparing the same block to itself, so no update is required. Otherwise if t ≠ r+1, then
RS gets updated to TRUE if sb+1 = k − 1 and vb+1 > nk−1 (the reversal is smaller); RS gets updated to FALSE if sb+1 ≠ k − 1
or vb+1 < nk−1.

3. Analysis

In this section,weprove that the algorithmBraceletFC to generate braceletswith fixed content runs in constant amortized
time. The algorithmcan be loosely thought of as taking the fixed-content necklace algorithm from [7] and adding the reversal
tests for bracelets from [6]. However, applying the same analysis that was done for bracelets is not applicable since complex
bounding arguments were applied that did not respect the content of the strings, i.e., the merging of two CAT algorithms
does not guarantee that the result is a CAT algorithm. The approach used in our new analysis is tomap the block comparisons
performed by the function CheckRev to prenecklaces in the computation tree. This idea also yields a much simpler analysis
of the original bracelet algorithm in [6] when the run-length encoding of the string is maintained.

The recursive computation tree for our algorithm is a subtree of the computation tree for the fixed-content algorithm
of [7]. The latter algorithm to generate necklaces with fixed content is CAT when each ni ≤ nk−1 for 0 ≤ i < k − 1.
Thus, since there are at most 2 necklaces in each bracelet equivalence class, the size of the computation tree of BraceletFC
will be proportional to the number of bracelets generated. If each recursive call was a result of a constant amount of work,
this would be sufficient to prove that our algorithm is CAT. Unfortunately, the function CheckRev may require more than a
constant amount of computation. However, by showing that the total work done by all calls to CheckRev is also proportional
to the size of the computation tree we will prove that the algorithm BraceletFC is CAT.

The function CheckRev(m), as outlined in Section 2.2.1, is called once for each prenecklace in the computation tree. The
parameterm denotes the number of blocks in the run-length encoding of the prenecklace. The work done by a single call is
dominated by the while loop which iterates until two unequal blocks are compared, or until m/2 comparisons have been
made. Since there is at most one unequal comparison made per prenecklace, we focus only on the equal block comparisons.
To further simplify the analysis, we consider only every second comparison starting from the 4th block comparison. This
number of comparisons will be proportional to the total number of comparisons when 4 or more comparisons are required;
otherwise the work done by the function is constant. Our strategy is to map each such block comparison to a unique
prenecklace in the computation tree.

Let β = B1B2 · · · Bm be the run-length encoding of prenecklace tested by a call to CheckRev(m), where Bi = (si, vi). Since
the first character in any prenecklace generated by the algorithm is 0, s1 = 0. Moreover, since β is a prenecklace, B1 must
be a block with a maximal run of 0s: there is no block Bi = (0, vi) such that vi > v1. Consider the following mapping, where
j is even with 4 ≤ j < m/2 and B1B2 · · · Bj = BmBm−1 · · · Bm−j+1:

f (β, j) =


BmB1BjB2B3 · · · Bj−1Bj+1 · · · Bm−2 if sj = 0
BmB1Bj−1B2B3 · · · Bj−2Bj · · · Bm−2 if sj ≠ 0.

In the following two lemmas we will show that f (β, j) maps uniquely (1-1) to a prenecklace in the computation tree for
BraceletFC.

Lemma 2. If β = B1B2 · · · Bm is the run-length encoding of a prenecklace from the computation tree of BraceletFC such that
B1B2 · · · Bj = BmBm−1 · · · Bm−j+1 and 4 ≤ j ≤ m/2 is even, then f (β, j) is also a prenecklace of the same computation tree of
BraceletFC.

Proof. Observe that the sequence of blocks in f (β, j) does not correspond to a valid run-length encoding since sm = s1 = 0:
the listing of blocks is not minimal. Also, depending on the case, either Bj−1 and Bj+1 or Bj−2 and Bj may also be blocks of
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the same character; however that character will not be 0 by the nature of the mapping. Thus, the string given by f (β, j)
will have a maximum substring of 0s uniquely at the start of the string and hence it is a prenecklace. To see that f (β, j) is a
prenecklace in a the computation tree for BraceletFC, we must consider 3 items:

1. The content f (β, j) is precisely the content of β with the content from Bm−1 removed. Therefore, f (β, j) respects the
restriction on content (i.e., the number of occurrences of each symbol i is less than or equal to ni).

2. The two optimizations that trim or truncate computation detailed in Section 2.2 are not applied to any proper prefix
of f (β, j). The third optimization is applied when only 0s remain to be added. Since consecutive blocks do not contain
the same content and because sm = 0, it must be that sm−1 ≠ 0. Thus, because this non-zero content of Bm−1 remains
to be added, this optimization will not be applied. The fourth optimization is applied when only k−1’s remain to be
added. Again, since consecutive blocks do not contain the same content, either sm−2 or sm−1 will not be k − 1. Thus, this
optimization will not be applied to any proper prefix of f (β, j).

3. A prefix of f (β, j) will not be rejected by a bracelet reversal test since the maximum number of 0s appears uniquely at
the beginning of the prenecklace. �

Lemma 3. If β = B1B2 · · · Bm is the run-length encoding of a prenecklace such that B1B2 · · · Bj = BmBm−1 · · · Bm−j+1 and
4 ≤ j ≤ m/2 is even, then the mapping f is 1-1.

Proof. The proof is by contradiction. Suppose that the mapping f is not 1-1. Then there exist prenecklaces β = B1B2 · · · Bm
and γ = B′

1B
′

2 · · · B′

m′ such that f (β, j) = f (γ , j′) for some j and j′ satisfying the conditions of the lemma. If β = γ then
j ≠ j′. WLOG assume that j ≤ j′. Observe that Bm−j+1 · · · Bm−1 = B′

m′−j+1 · · · B′

m′−1 because the last half of each prenecklace
in the mapping remains unchanged except for moving the last block of 0s to the beginning and dropping the second to last
block. Thus, since B1 · · · Bj = Bm · · · Bm−j+1 and B′

1 · · · B′

j′ = B′

m′ · · · B′

m′−j′+1 we have B3 · · · Bj = B′

3 · · · B′

j . If j = j′ then this
implies that β = γ , a contradiction. Thus j′ ≥ j + 2 and the first j+2 blocks from each mapping are illustrated as follows:

f (β, j) = BmB1BxB2 B3 · · · Bj−2 ByBj+1 · · ·

f (γ , j′) = B′

m′B′

1B
′

zB
′

2 B3 · · · Bj−2 Bj−1Bj · · · ,

where x and y are either j − 1 or j, and z > j. Since adjacent blocks in the original run-length encodings of β and γ must
represent different characters, it is not difficult to see that the strings represented by the first 4 blocks specified in these
mappings must be the same. The next j − 4 blocks are also the same in each mapping. However, the following 2 blocks in
each mapping will correspond to different strings since Bj ≠ Bj+1, a contradiction. Thus f is 1-1. �

Together, Lemmas 2 and 3 imply that every second comparison (after a small constant amount) required by the routine
CheckRev can be mapped uniquely to a prenecklace in the computation tree. As discussed earlier, the number of such
prenecklaces is proportional to the number of bracelets generated. This gives the following lemma.

Lemma 4. From an initial call to BraceletFC, the total amount of computation for all calls to CheckRev is proportional to the
number of bracelets generated given that n0, n1, . . . , nk−1 where ni ≤ nk−1 for all 0 ≤ i < k − 1.

This result immediately gives us our main theorem.

Theorem 2. Given content n0, n1, . . . , nk−1 where ni ≤ nk−1 for all 0 ≤ i < k − 1, the algorithm BraceletFC runs in constant
amortized time.

Lemmas 2 and 3 also provide a simple proof that the algorithm to generate k-ary bracelets given in [6] is CAT, provided
the algorithm also maintains the run-length encoding of the prenecklaces.

4. Summary

We develop an algorithm to list all bracelets with fixed content. Using a fairly simple technique of mapping comparisons
to nodes in the recursive computation tree, we are able to prove that the algorithm runs in constant amortized time. The
analysis also yields a simpler proof that the bracelet algorithm in [6] is CAT, as long as the run-length encoding ismaintained.
As an application, the algorithm is critical to the efficient generation of all non-isomorphic uni-cyclic graphs [4].

A complete C implementation of our algorithm is given in the Appendix.
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Appendix. Complete C program to generate bracelets with fixed content

#include <stdio.h>
#define TRUE 1
#define FALSE 0

typedef struct cell {
int next,prev;

} cell;

typedef struct element {
int s, v;

} element;

cell avail[50];
element B[50]; // run length encoding data structure
int nb = 0; // number of blocks
int num[50], a[50],run[50],n,k,total,head, NECK=1, LYN=0;

/*-----------------------------------------------------------*/
void ListRemove(int i) {

int p,n;

if (i == head) head = avail[i].next;
p = avail[i].prev;
n = avail[i].next;
avail[p].next = n;
avail[n].prev = p;

}

void ListAdd(int i) {
int p,n;

p = avail[i].prev;
n = avail[i].next;
avail[n].prev = i;
avail[p].next = i;
if (avail[i].prev == k+1) head = i;

}

int ListNext(int i) {

return avail[i].next;
}

/*-----------------------------------------------------------*/
void Print(int p) {

int j;

if (NECK && n %p != 0) return;
if (LYN && n != p) return;

for(j=1; j<=n; j++) printf("%d ",a[j]-1);
printf("\n");
total++;

}
/*-----------------------------------------------------------*/
void UpdateRunLength(int v) {

if (B[nb].s == v) B[nb].v = B[nb].v + 1;
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else {
nb++;
B[nb].v = 1;
B[nb].s = v;

}
}

void RestoreRunLength() {

if (B[nb].v == 1) nb--;
else B[nb].v = B[nb].v - 1;

}
/*---------------------------------------------------------------------*/
// return -1 if reverse smaller, 0 if equal, and 1 if reverse is larger
/*---------------------------------------------------------------------*/
int CheckRev() {

int j;

j = 1;
while (B[j].v == B[nb-j+1].v && B[j].s == B[nb-j+1].s && j<= nb/2) j++;

if (j > nb/2) return 0;
if (B[j].s < B[nb-j+1].s) return 1;
if (B[j].s > B[nb-j+1].s) return -1;

if (B[j].v < B[nb-j+1].v && B[j+1].s < B[nb-j+1].s) return 1;
if (B[j].v > B[nb-j+1].v && B[j].s < B[nb-j].s) return 1;
return -1;

}
/*-----------------------------------------------------------*/
void Gen(int t, int p, int r, int z, int b, int RS) {

int j,z2,p2,c;

// Incremental comparison of a[r+1...n] with its reversal
if (t-1 > (n-r)/2 + r) {

if (a[t-1] > a[n-t+2+r]) RS = FALSE;
else if (a[t-1] < a[n-t+2+r]) RS = TRUE;

}
// Termination condition - only characters k remain to be appended
if (num[k] == n-t+1) {

if (num[k] > run[t-p]) p = n;
if (num[k] > 0 && t != r+1 && B[b+1].s == k && B[b+1].v > num[k]) RS = TRUE;
if (num[k] > 0 && t != r+1 && (B[b+1].s != k || B[b+1].v < num[k])) RS = FALSE;
if (RS == FALSE) Print(p);

}
// Recursively extend the prenecklace - unless only 0s remain to be appended
else if (num[1] != n-t+1) {

j = head;
while( j >= a[t-p]) {

run[z] = t-z;
UpdateRunLength(j);
num[j]--;
if (num[j] == 0) ListRemove(j);

a[t] = j;
z2 = z;
if (j != k) z2 = t+1;
p2 = p;
if (j != a[t-p]) p2 = t;
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c = CheckRev();
if (c == 0) Gen(t+1,p2,t,z2,nb,FALSE);
if (c == 1) Gen(t+1,p2,r,z2,b,RS);

if (num[j] == 0) ListAdd(j);
num[j]++;
RestoreRunLength();

j = ListNext(j);
}
a[t] = k;

} }

/*-----------------------------------------------------------*/
int main() {

int j;

printf("enter n k: "); scanf("%d %d", &n, &k);
for (j=1; j<=k; j++) {

printf(" enter # of %d’s: ", j);
scanf("%d", &num[j]);

}

for (j=k+1; j>=0; j--) {
avail[j].next = j-1;
avail[j].prev = j+1;

}
head = k;

for (j=1; j<=n; j++) {
a[j] = k;
run[j] = 0;

}

total = 0;
a[1] = 1;
num[1]--;
if (num[1] == 0) ListRemove(1);

B[0].s = 0;
UpdateRunLength(1);

Gen(2,1,1,2,1,FALSE);

printf("Total = %d\n", total);
}
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