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a b s t r a c t

Random context grammars belong to the class of context-free grammars with regulated
rewriting. Their productions depend on context that may be randomly distributed in a
sentential form. Context is classified as either permitting or forbidding, where permitting
context enables the application of a production and forbidding context inhibits it. We have
proven a pumping lemma for randompermitting context languages and a shrinking lemma
for random forbidding context languages. We now present new necessary conditions for
both these classes of languages and illustrate them with examples. We also present and
illustrate a new necessary condition for context-free languages.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Random context grammars (rcgs)2 [7] belong to the class of context-free grammars with regulated rewriting [2], i.e., the
productions of a grammar are context-free, but are applied in a non-context-free manner.

In the case of random context grammars, the application of a production at any step in a derivation may depend on the
set of symbols that appear in the sentential form of the derivation at that step. As opposed to context-sensitive grammars,
the context may be distributed in a random manner in the sentential form. Context is classified as either permitting
or forbidding: permitting context enables the application of a production, while forbidding context inhibits it. When a
grammar uses permitting context only or forbidding context only, it is called a random permitting context grammar (rPcg)
or random forbidding context grammar (rFcg), respectively. The corresponding languages are called random permitting
context languages (rPcls) and random forbidding context languages (rFcls).

Dassow and Păun [2] showed that random context grammars without erasing productions lie strictly between the
context-free and context-sensitive grammars. When erasing productions are allowed, random context grammars are as
powerful as the recursively enumerable grammars. In the remainder of this paper, we will use the term random context
grammarswhen referring to random context grammars without erasing productions.
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To our knowledge, an example of a context-sensitive language that cannot be generated by a random context grammar
has not been found yet. In [2], Dassow and Păun conjectured that the following language is such an example: L =

{xcx | x ∈ D}, where D is the language of balanced brackets over {[, ]}. However, in [1], we proved the conjecture to be
false.

Weproved a pumping lemma for randompermitting context languages in [3], andused it to show that randompermitting
context grammars are strictly weaker than random context grammars. A language that cannot be generated by any rPcg is
L =


a2

n
| n ≥ 1


.

In [6] we proved a shrinking lemma for random forbidding context languages and showed that random forbidding
context grammars are strictly weaker than random context grammars. A language that cannot be generated by any rFcg
is L = {z1, z2, . . .} , where z1 = [a], zi = (


ai


)4|zi−1|, i > 1, and a, [ and ] are terminal symbols.

Furthermore, Rabkin [5] developed analogues of Ogden’s lemma [4] for random permitting and forbidding context
languages.

We now present new necessary conditions for both rPcls and rFcls and illustrate themwith examples. We also present a
new necessary condition for context-free languages.

We formally introduce random context grammars in Section 2. In Section 3 we state two lemmas that are required for
the work following. In Section 4 we concentrate on random permitting context languages and prove a necessary condition
for a language to be generated by an rPcg. We then use this condition to show that a specific language is not an rPcl. In
Section 5 we concentrate on random forbidding context languages and prove a necessary condition for these languages.
We then illustrate this condition with some examples. In Section 6 we concentrate on context-free languages, which are
strictly contained in both the random permitting context languages and random forbidding context languages. We prove a
necessary condition for a language to be generated by a context-free grammar, and use it to show that a specific language
is not context-free. In Section 7 we recommend future work.

2. Definitions

In this section we present the necessary notation and terminology.
Let N+ = {1, 2, . . .}. Moreover, form ∈ N+, let [m] = {1, 2, . . . ,m}.
Let ϵ denote the empty string.
A random context grammar G = (VN, VT, P, S) has a finite alphabet V of symbols, consisting of the disjoint subsets VN

of variables and VT of terminals. P is a finite set of productions of the form A → α (P ; F ), where A ∈ VN, α ∈ V+ and
P , F ⊆ VN. Finally, there is a start symbol S, S ∈ VN.

If there is a production A → α (P ; F ) in G and if γ1, γ2 are in V ∗, then we may write γ1Aγ2 H⇒ γ1αγ2 if every B ∈ P
is in the string γ1γ2 and no B ∈ F is in the string γ1γ2. As usual, H⇒

∗ denotes the reflexive transitive closure of H⇒. The
random context language (rcl) L(G) generated by an rcg G is the set


z ∈ V ∗

T | S H⇒
∗ z


.

For the sake of simplicity, we write a production of the form A → α (∅; ∅) as A → α.
If every production in an rcg G has P = F = ∅, G is a context-free grammar (cfg); if F = ∅ for every production, we

call G a random permitting context grammar, and if P = ∅ for every production, we call G a random forbidding context
grammar. We call the corresponding languages context-free languages (cfls), random permitting context languages and
random forbidding context languages, respectively.

Let G = (VN, VT, P, S) be an rcg. For α ∈ VN
∗, let l(α) = min {B ⊆ VN | α ∈ B∗}. We refer to l(α) as the labels in α.

For α ∈ V∗, we denote the length of α by |α|. For z, w ∈ VT
∗, we write w ⊑ z if z can be written z = z1wz2; we write

w @ z if |z1z2| ≠ 0. We call w a factor and a proper factor of z, respectively.
Suppose S H⇒

∗ α H⇒
∗ β is a derivation in G, where α = A1A2 . . . As and β = γ1γ2 . . . γs, with s ∈ N+, Aj ∈ VN and

γj ∈ V∗ for j ∈ [s]. We define the derivation tree corresponding to a derivation in the usual way [4]. Consider α and β as two
cuts in the derivation tree. If the nodes in γj are all the descendants of Aj in cut β , then we write Aj H⇒

∗
c γj.

Suppose |V| = n and that V is ordered. Then we can represent a sentential form α as an n-vector of nonnegative integers,
written as α⃗, such that, if α⃗ = (m1,m2, . . . ,mn), then α contains exactlymi occurrences of the ith symbol in V.

Let n ∈ N+. Let α⃗ = (m1,m2, . . . ,mn) and β⃗ = (p1, p2, . . . , pn) be n-vectors of integers. Then let |α⃗| =
n

i=1 mi and
ζ (α⃗) = |


j ∈ [n] | mj = 0


|. Moreover, we write α⃗ ≤ β⃗ if and only if for all i ∈ [n], mi ≤ pi. Similarly, we write α⃗ < β⃗ if

and only if for all i ∈ [n], mi < pi.

3. Useful results

In this section we present two results that are required for the work following.

Lemma 1. Let m1,m2, . . . be an infinite sequence of nonnegative integers. Let n be any positive integer. Then, for any h ≥ 2,
there exists an integer b, which depends on h, such that if α⃗1, α⃗2, . . . is an infinite sequence of n-vectors of nonnegative integers
with |α⃗i| ≤ mi, i ≥ 1, then there are h indices i1, i2, . . . , ih, with 1 ≤ i1 < i2 < . . . < ih ≤ b, such that α⃗i1 ≤ α⃗i2 ≤ . . . ≤ α⃗ih .

Proof. Given on Page 153 of [6]. �
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Lemma 2. Let n be any positive integer. Let α⃗1 < α⃗2 < . . . < ⃗αn+1 be a sequence of non-null n-vectors of nonnegative integers.
Then there exist r and s, 1 ≤ r < s ≤ n + 1, such that ζ (α⃗r) = ζ (α⃗s).

Proof. Assume the lemma is false. Then n > ζ (α⃗1) > ζ (α⃗2) > · · · > ζ (α⃗n) > ζ ( ⃗αn+1) ≥ 0. This is impossible. Therefore
the assumption is false. �

4. A necessary condition for rPcls

In this section we concentrate on random permitting context languages and prove a necessary condition for a language
to be generated by a grammar that uses permitting context only.

Necessary conditions for rPcls already exist. For example, in [3], we proved a pumping lemma for rPcls and in [5], Rabkin
developed an analogue of Ogden’s lemma [4] for these languages. An immediate consequence of the pumping property is
that the length set of each infinite language generated by an rPcg contains an infinite arithmetic progression. This implies
that the languageL =


a2

n
| n ≥ 1


cannot be generated by any rPcg. Since this language is an rcl [2], it follows that random

permitting context grammars are strictly weaker than random context grammars.
For the necessary condition that we will prove in this section, Theorem 5, we need the following technical lemma. It

states that in the permitting case, additional context cannot inhibit the application of productions.

Lemma 3. Let G = (VN, VT, P, S) be an rPcg. Let s ∈ N+. Suppose S H⇒
∗ α = A1A2 . . . As, where Aj ∈ VN ∪ {ϵ} for j ∈ [s].

Suppose S H⇒
∗ β = A′

1A
′

2 . . . A′
s, where A′

j ∈ VN and A′

j = Aj if Aj ≠ ϵ for j ∈ [s].
Suppose α H⇒

∗ γ1γ2 . . . γs, with Aj H⇒
∗
c γj for j ∈ [s]. Then a derivation for β is β H⇒

∗ γ ′

1γ
′

2 . . . γ ′
s , with A′

j H⇒
∗
c γ ′

j for
j ∈ [s], where γ ′

j = γj if A′

j = Aj.

Proof. By induction on k, the length of the derivation.

1. Suppose k = 1. Then

α = A1A2 . . . As

= A1A2 . . . Ai−1AiAi+1 . . . As

H⇒ A1A2 . . . Ai−1γiAi+1 . . . As

using a production Ai → γi(P ; ∅).
Consider β = A′

1A
′

2 . . . A′

i−1A
′

iA
′

i+1 . . . A′
s. If A

′

i = Ai, then

β = A′

1A
′

2 . . . A′

i−1AiA′

i+1 . . . A′

s

H⇒ A′

1A
′

2 . . . A′

i−1γiA′

i+1 . . . A′

s,

using the production Ai → γi(P ; ∅), since {A1, A2, . . . , Ai−1, Ai+1, . . . , As} ⊆

A′

1, A
′

2, . . . , A
′

i−1, A
′

i+1, . . . , A
′
s


.

2. Suppose the statement is true for k, i.e., if α H⇒
k γ1γ2 . . . γs, with Aj H⇒

∗
c γj for j ∈ [s], then β H⇒

∗ γ ′

1γ
′

2 . . . γ ′
s , with

A′

j H⇒
∗
c γ ′

j for j ∈ [s], where γ ′

j = γj if A′

j = Aj.
3. Consider k + 1:

Suppose α = A1A2 . . . As H⇒
k+1 γ1γ2 . . . γs, with Aj H⇒

∗
c γj for j ∈ [s].

Then, for some B ∈ VN,

α H⇒
k γ1γ2 . . . γi−1δlBδrγi+1 . . . γs

H⇒ γ1γ2 . . . γi−1δlκδrγi+1 . . . γs

= γ1γ2 . . . γi−1γiγi+1 . . . γs,

using production B → κ(P ; ∅).
According to the hypothesis,

β = A′

1A
′

2 . . . A′

s

H⇒
∗ γ ′

1γ
′

2 . . . γ ′

i−1δ
′

lB
′δ′

rγ
′

i+1 . . . γ ′

s ,

with A′

j H⇒
∗
c γ ′

j for j ∈ [s], where
• for j ≠ i, γ ′

j = γj if A′

j = Aj,
• for j = i, δ′

lB
′δ′

r = δlBδr = γi if A′

i = Ai.
Since l(γ1γ2 . . . γi−1δlδrγi+1 . . . γs) ⊆ l(γ ′

1γ
′

2 . . . γ ′

i−1δ
′

lδ
′
rγ

′

i+1 . . . γ ′
s ), the production B → κ(P ; ∅) is enabled. Therefore

β H⇒
∗ γ ′

1γ
′

2 . . . γ ′
s . �

In the case of random context, only the presence or absence of the context variables is important, and not the order in
which the variables appear. Therefore we have the following:
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Corollary 4. Let G = (VN, VT, P, S) be an rPcg. Suppose S H⇒
∗ α = A1A2 . . . As, where Aj ∈ VN ∪ {ϵ} for j ∈ [s]. Suppose

S H⇒
∗ β = B1B2 . . . Bs, where Bj ∈ VN for j ∈ [s]. Let {A1, A2, . . . , As} \ {ϵ} ⊆ {B1, B2, . . . , Bs}.

Let α H⇒
∗ γ1γ2 . . . γs, with Aj H⇒

∗
c γj, j ∈ [s]. Then a derivation for β is β H⇒

∗ γi1γi2 . . . γis , with Bj H⇒
∗
c γij , j ∈ [s],

where γij = γj if Bj = Aj.

We now present the main result of this section, a necessary condition for random permitting context languages. In
essence we prove that if a word is sufficiently long, then any derivation contains two sentential forms α and β such that α
derives β , but they have the same labels. Starting from β , we can copy the derivation sequence that led from α to β , since
in the case of an rPcg, any additional context in β cannot inhibit the application of productions.

Theorem 5. Let L be an rPcl. Then there exists an n such that any word z ∈ L with |z| ≥ n has a factor v with |v| ≥ |z|/n that
is a proper factor of a word y ∈ L with |y| > |z|.

Proof. Let L be generated by an rPcg G = (VN, VT, P, S). Let t be the length of the longest right-hand side of all productions
in P . Let mj = 1 + (j − 1) (t − 1) , j ∈ N+. Let p = |VN ∪ VT|. Let b be the integer of Lemma 1 that depends on p + 1.

Let n = 1 + (b − 1) (t − 1). Let z ∈ L with |z| ≥ n. Consider a derivation of z, i.e., S H⇒
∗ z. This derivation can be

written as

S = α1 H⇒
∗ α2 H⇒

∗
· · · H⇒

∗ αq H⇒
∗ z ,

where |αj| < |αj+1| for j ∈ [q − 1], and q is as large as possible.
We note that, for all j, j ∈ [q], |αj| ≤ mj. Then, according to Lemma 1, there are p + 1 indices i1, i2, . . . , ip+1, with

1 ≤ i1 < i2 < · · · < ip+1 ≤ b, such that αi1 ≤ αi2 ≤ · · · ≤ αip+1 , where ≤ for strings means that their Parikh vectors have
this relation. By construction, αi1 < αi2 < · · · < αip+1 .

For every j, j ∈ [p + 1], |αij | ≤ n. Therefore αij has maximally n variables and consequently at least one variable in αij
generates a string of length at least |z|/n.

Considerαi1 < αi2 < · · · < αip+1 . According to Lemma 2, there exist r and s, 1 ≤ r < s ≤ p+1, such that ζ (α⃗r) = ζ (α⃗s).
Let B be a variable in αr that derives a factor, say v, of length at least |z|/n. Starting from αs and using Corollary 4, we can
ensure that a copy of B in αs derives v. Let y be the word derived in this way. Then y contains the factor v. Since |αr | < |αs|,
v is a proper factor of y. �

With Theorem 5, it can easily be shown that the following language is not an rPcl.

Example 6. The language L =


gak

l
| 0 ≤ l ≤ k


cannot be generated by any rPcg.

Proof. Suppose L is generated by an rPcg. Let n be the integer of Theorem 5.
Now consider z =


ga2n

2n. Then z ∈ L. Moreover, |z| = 2n (2n + 1) ≥ n. According to Theorem 5, z has a factor v with
|v| ≥ |z|/n that is a proper factor of a word y ∈ L with |y| > |z|.

Consider a string v with |v| ≥ |z|/n = 2 (2n + 1). Then v contains the factor ga2ng . Then there is a word y ∈ L with
|y| > |z| such that y contains ga2ng . This contradicts the definition of L. Therefore L cannot be generated by any rPcg. �

5. A necessary condition for rFcls

In this section we concentrate on random forbidding context languages and prove a necessary condition for a language
to be generated by a grammar that uses forbidding context only.

Necessary conditions for rFcls already exist. For example, in [6], we proved a shrinking lemma for random forbidding
context languages and in [5], Rabkin developed an analogue of Ogden’s lemma [4] for these languages. As shown in [6], the
language L = {z1, z2, . . .} , where z1 = [a], zi = (


ai


)4|zi−1|, i > 1, and a, [ and ] are terminal symbols, cannot be generated

by any rFcg. Since this language is an rcl [6], it follows that random forbidding context grammars are strictly weaker than
random context grammars.

For the necessary condition that we will prove in this section, Theorem 11, we need the following normal form for rFcgs:

Lemma 7. Let G = (VN, VT, P, S) be an rFcg. Then there exists an rFcg G′
=


V ′

N, VT, P ′, S

such that L


G′


= L(G) and every

production in P ′ has one of the following types:

1. A → BC (∅; F ), A, B, C ∈ V ′

N;
2. A → B (∅; F ), A, B ∈ V ′

N;
3. A → a, A ∈ V ′

N, a ∈ VT.

Proof. Given on Page 68 of [7]. �

Due to the normal form, every word has a derivation such that no variable is introduced into the derivation once a
terminal appears in the derivation.
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Lemma 8. LetL be an rFcl. LetL be generated by an rFcg G = (VN, VT, P, S) in normal form. Let z ∈ L. Then there is a derivation
of z in G of the form

S = α1 H⇒
∗ α2 H⇒

∗
· · · H⇒

∗ α|z| H⇒
∗ z ,

where, for 1 ≤ i ≤ |z|, |αi| = i and αi consists of nonterminals only.

Proof. Let VX = {Xa | a ∈ VT}. Then let G′
=


V ′

N, VT, P ′, S

, where

1. V ′

N = VN ∪ VX, and
2. P ′ is constructed by

(a) adding the two productions A → Xa and Xa → a (∅; VN) to P ′ for any production in P of the form A → a, with A ∈ VN
and a ∈ VT,

(b) adding the production A → BC (∅; F ) to P ′ for any production in P of the form A → BC (∅; F ), with A, B, C ∈ VN,
and

(c) adding the production A → B (∅; F ) to P ′ for any production in P of the form A → B (∅; F ), with A, B ∈ VN.

Then it should be clear that

• L

G′


= L(G), and that

• no element of VN can be introduced into the derivation once an element of VT appears in the derivation. �

For Theorem 11 we also need the following technical lemma. It states that in the forbidding case, the lack of context
cannot inhibit the application of productions.

Lemma 9. Let G = (VN, VT, P, S) be an rFcg. Let s ∈ N+. Suppose S H⇒
∗ α = A1A2 . . . As, where Aj ∈ VN for j ∈ [s]. Suppose

S H⇒
∗ β = A′

1A
′

2 . . . A′
s, where A′

j = Aj or A′

j = ϵ for j ∈ [s].
Suppose α H⇒

∗ γ1γ2 . . . γs, with Aj H⇒
∗
c γj for j ∈ [s]. Then a derivation for β is β H⇒

∗ γ ′

1γ
′

2 . . . γ ′
s , with A′

j H⇒
∗
c γ ′

j for
j ∈ [s], where γ ′

j = γj if A′

j = Aj, and γ ′

j = ϵ if A′

j = ϵ.

Proof. By induction on k, the length of the derivation.

1. Suppose k = 1. Then

α = A1A2 . . . As

= A1A2 . . . Ai−1AiAi+1 . . . As

H⇒ A1A2 . . . Ai−1γiAi+1 . . . As

using a production Ai → γi(∅; F ).
Consider β = A′

1A
′

2 . . . A′

i−1A
′

iA
′

i+1 . . . A′
s. If A

′

i = Ai, then

β = A′

1A
′

2 . . . A′

i−1AiA′

i+1 . . . A′

s

H⇒ A′

1A
′

2 . . . A′

i−1γiA′

i+1 . . . A′

s,

using the production Ai → γi(∅; F ), since

A′

1, A
′

2, . . . , A
′

i−1, A
′

i+1, . . . , A
′
s


⊆ {A1, A2, . . . , Ai−1, Ai+1, . . . , As}.

2. Suppose the statement is true for k, i.e., if α H⇒
k γ1γ2 . . . γs, with Aj H⇒

∗
c γj for j ∈ [s], then β H⇒

∗ γ ′

1γ
′

2 . . . γ ′
s , with

A′

j H⇒
∗
c γ ′

j for j ∈ [s], where γ ′

j = γj if A′

j = Aj, and γ ′

j = ϵ if A′

j = ϵ.
3. Consider k + 1:

Suppose α = A1A2 . . . As H⇒
k+1 γ1γ2 . . . γs, with Aj H⇒

∗
c γj for j ∈ [s].

Then, for some B ∈ VN,

α H⇒
k γ1γ2 . . . γi−1δlBδrγi+1 . . . γs

H⇒ γ1γ2 . . . γi−1δlκδrγi+1 . . . γs

= γ1γ2 . . . γi−1γiγi+1 . . . γs,

using production B → κ(∅; F ).
According to the hypothesis,

β = A′

1A
′

2 . . . A′

s

H⇒
∗ γ ′

1γ
′

2 . . . γ ′

i−1δ
′

lB
′δ′

rγ
′

i+1 . . . γ ′

s ,

with A′

j H⇒
∗
c γ ′

j for j ∈ [s], where
• for j ≠ i, γ ′

j = γj if A′

j = Aj, and γ ′

j = ϵ if A′

j = ϵ, and
• for j = i, δ′

lB
′δ′

r = δlBδr if A′

i = Ai, and δ′

lB
′δ′

r = ϵ if A′

i = ϵ .
Since l(γ ′

1γ
′

2 . . . γ ′

i−1δ
′

lδ
′
rγ

′

i+1 . . . γ ′
s ) ⊆ l(γ1γ2 . . . γi−1δlδrγi+1 . . . γs), the productionB → κ(∅; F ) is enabled. Therefore

β H⇒
∗ γ ′

1γ
′

2 . . . γ ′
s . �
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As already noted earlier, in the case of random context, only the presence or absence of the context variables is important,
and not the order in which the variables appear. Therefore we have the following:

Corollary 10. Let G = (VN, VT, P, S) be an rFcg. Suppose S H⇒
∗ α = A1A2 . . . As, where Aj ∈ VN for j ∈ [s]. Suppose

S H⇒
∗ β = B1B2 . . . Bs, where Bj ∈ VN ∪ {ϵ} for j ∈ [s]. Let {B1, B2, . . . , Bs} ⊆ {A1, A2, . . . , As}.

Let α H⇒
∗ γ1γ2 . . . γs, with Aj H⇒

∗
c γj, j ∈ [s]. Then a derivation for β is β H⇒

∗ γi1γi2 . . . γis , with Bj H⇒
∗
c γij , j ∈ [s],

where γij = γj if Bj = Aj, and γij = ϵ if Bj = ϵ.

Wenowpresent themain result of this section, a necessary condition for random forbidding context languages. In essence
we prove that if a word is sufficiently long, then any derivation contains two sentential forms α and β such that α derives β ,
but they have the same labels. Starting from α, we can copy the derivation sequence that led from α to β , since in the case
of a rFcg, the lack of context in α cannot inhibit the application of productions.

Theorem 11. LetL be an rFcl. Then there exists an n such that anyword z ∈ Lwith |z| ≥ n has a proper factor v with |v| ≥ |z|/n
that is also a factor of a word y ∈ L with |y| < |z|.

Proof. Let L be generated by an rFcg G = (VN, VT, P, S) in normal form. Let p = |VN|. Let n be the integer of Lemma 1 that
depends on p + 1.

Let z ∈ L with |z| ≥ n. Due to Lemma 8, there exists a derivation of z in the form

S = α1 H⇒
∗ α2 H⇒

∗
· · · H⇒

∗ α|z| H⇒
∗ z ,

where |αi| = i for 1 ≤ i ≤ |z|, and αi ∈ VN
∗.

According to Lemma 1, there are p + 1 indices i1, i2, . . . , ip+1, with 1 ≤ i1 < i2 < · · · < ip+1 ≤ n, such that
αi1 ≤ αi2 ≤ · · · ≤ αip+1 . By construction, αi1 < αi2 < · · · < αip+1 .

For every j ∈ [p + 1], |αij | ≤ n. Therefore each αij has maximally n variables and consequently at least one variable in αij
generates a string of length at least |z|/n.

Consider αi1 < αi2 < · · · < αip+1 . According to Lemma 2 there exist r and s, i1 ≤ r < s ≤ ip+1, such that ζ (α⃗r) = ζ (α⃗s).
Let B be a variable in αs that derives a factor, say v, of length at least |z|/n. Starting from αr and using Corollary 10, we can
ensure that a copy of B in αr derives v. Let y be the word derived in this way. Then y contains the factor v. Moreover, since
|αr | < |αs|, v is a proper factor of z. �

With Theorem 11, it can easily be shown that many languages are not rFcls.

Example 12. The language L =


gak

l
| 0 ≤ k ≤ l


cannot be generated by any rFcg.

Proof. Suppose L is generated by an rFcg. Let n be the integer of Theorem 11.
Now consider z =


ga2n

2n. Then z ∈ L. Moreover, |z| = 2n (2n + 1) ≥ n. According to Theorem 11, z has a proper
factor v with |v| ≥ |z|/n that is also a factor of a word y ∈ L with |y| < |z|.

Consider a string v with |v| ≥ |z|/n = 2 (2n + 1). Then v contains the factor ga2ng . Then there is a word y ∈ L with
|y| < |z| such that y contains the factor ga2ng . This contradicts the definition of L. Therefore L cannot be generated by any
rFcg. �

The same proof can be used to show that the language L =

(gam)m | m > 0


cannot be generated by any rFcg.

It was shown in Lemma 4 on Page 153 of [6] that the language in Example 13 is not an rFcl. However, that proof is more
complicated than the following one, which uses Theorem 11.

Example 13. Consider the language L = {z1, z2, . . .}, where z1 = [a], z2 =

a2

4|z1|, in general zi =

ai

4|zi−1| for i > 2
and a, [ and ] are terminals. L cannot be generated by any rFcg.

Proof. Suppose L is generated by an rFcg. Let n be the integer of Theorem 11.
Now consider zn = ([an])4|zn−1|. Then zn ∈ L. Moreover, |zn| = 4|zn−1| (n + 2) ≥ n. According to Theorem 11, z has a

proper factor v with |v| ≥ |zn|/n that is a factor of a word y ∈ L with |y| < |zn|.
Consider a string v with

|v| ≥
|zn|
n

=
4|zn−1| (n + 2)

n

=
4n|zn−1|

n
+

4 × 2|zn−1|

n

= 4|zn−1| +
8|zn−1|

n
> 4|zn−1|.

Then 4|zn−1| < |y| < |zn|. This contradicts the definition of L. Therefore L cannot be generated by any rFcg. �
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6. A necessary condition for cfls

In this sectionwe concentrate on context-free languages, which are strictly contained in both the randompermitting and
the random forbidding context languages. We prove a necessary condition for a language to be generated by a context-free
grammar, and use it to show that a particular language is not context-free.

Theorem 14. Let L be a cfl. Then there exists an n such that any word z ∈ L with |z| ≥ n has a factor v with |z|/n ≤ |v| < |z|
such that

1. v is a factor of a word z2 ∈ L with |z2| > |z|, and
2. v is a factor of a word z0 ∈ L with |z0| < |z|.

Proof. LetL be generated by a cfg G = (VN, VT, P, S) in Chomsky normal form. Let p = |VN|. Let n be the integer of Lemma 1
that depends on p + 1.

Let z ∈ L with |z| ≥ n. Consider a derivation of z, i.e., S H⇒
∗ z. Due to the normal form, this derivation can be written

as

S = α1 H⇒
∗ α2 H⇒

∗
· · · H⇒

∗ α|z| H⇒
∗ z ,

where |αi| = i for 1 ≤ i ≤ |z|, and αi ∈ VN
∗.

According to Lemma 1, there are p + 1 indices i1, i2, . . . , ip+1, with 1 ≤ i1 < i2 < · · · < ip+1 ≤ n, such that
αi1 ≤ αi2 ≤ · · · ≤ αip+1 . By construction, αi1 < αi2 < · · · < αip+1 .

For every j ∈ [p + 1], |αij | ≤ n. Therefore each αij has maximally n variables and consequently at least one variable in αij
generates a string of length at least |z|/n.

Consider αi1 < αi2 < · · · < αip+1 . According to Lemma 2 there exist r and s, i1 ≤ r < s ≤ ip+1, such that ζ (α⃗r) = ζ (α⃗s).
Let B be a variable in αs that derives a factor, say v, of length at least |z|/n. Since |αs| ≥ 2, v is a factor of z.
Starting from αs and using Corollary 4, we can ensure that a copy of B in αs derives v. Let z2 be the word derived in this

way. Then z2 contains the factor v. Since |αr | < |αs|, |z2| > |z|.
Starting from αr and using Corollary 10, we can ensure that a copy of B in αr derives v. Let z0 be the word derived in this

way. Then z0 contains the factor v. Since |αr | < |αs|, |z0| < |z|. �

Consider the language L =

(gam)m | m > 0


∪


aig j

| i, j ≥ 1

. Due to the second term in its definition, it is not easy to

prove with the pumping lemma for cfls [4] that it is not context-free. However, by using Condition 1 of Theorem 14 in the
manner of the proof of Example 6, we can show that L is not context-free.

7. Future work

To the first author’s knowledge, it is not known whether there exists an rPcl that cannot be generated by any extended
table-driven context-free Lindenmayer (ET0L) system or any rFcg. Perhaps the necessary conditions for rPcls and rFcls
presented above can aid in finding answers to these questions.

Moreover, since ET0L systems are strictly weaker than rFcgs [2], it may be possible to prove a stronger result than the
above necessary condition for rFcls for the special case of ET0L languages.
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