‘Theoretical Computer Science 4 (1977) 245-276.
© North-Holland Publishing Company

ON LR(%X) GRAMMARS AND LANGUAGES*

Matthew M. GELLER' and Michael A. HARRISON
Computer Science Division, University of California at Berkelev, CA 94720, U.S.A.

Communicated by Ronald Book
Received August 1975
Revised August 1976

Abstract. Many different definitions for LR(k) grammars exist in the literature. One of these
definitions is chosen and many important implications are drawn from it. In particular, the LR(k)
characterization theorem provides valuable information about chains of derivations. The LR(0)
languages are then characterized by acceptance by deterministic pushdown automata with a
special termination condition, by a condition on the strings in the language, and set theoretically.
Important closuyre properties of the LR(0) languages and a related class of languages are then
examined. Tlhiese are used to examine some decidability questions relating to the class of LR
languages. One of these questions is shown to be equivalent to the equality problem for
determinisiic pushdown automata.

A survey of other LR(k) definitions is given and the exact differences are characterized. On the
basis of this analysis, justification for the choice of definition used here is provided.

1. Introduction

LR(k) grammars and languages were introduced about a decade ago [15]. They
were claimed to be an exact counterpart to deterministic context free languages [9]
and so it was immediately ciear that they were a theoretically important family.
Moreover, it was claimed that this was the largest class of grammars for which left-
to-right bottom up deterministic parsing was possible. Because of this, there has
been a great deal of work in this area. These grammars and languages play an
important role in Computer Science textbooks in the area. Cf. [1] and its many
references and citations to this subject.

The present paper is the first of a series of related papers. In the present paper,
we shall compare most of the commonly used definitions of LR(k) grammars and
the exact differcnces will be characterized. The major differences occur when k =0

* Research supported by the National Science Foundation under grant NSF GJ-43332. A preliminary
version of some of this researct. was presented at the 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, 1973. Cf. '6). 7

' Present Address: Department of Computer and Communication Sciences, The University of
Michigan, Ann Arbor, MI 48104, U.S.A.

245

246 . M.M. Gellzr, M.A. Harrison

and so the family of LR(0) languages will be characterized in three very different
and very striking ways. On the basis of all of the results given here, it will be argued
that our definition is the most natural one for L R(k) grammars. The evidence given
here for that thesis is convincing and a sequel [7] to this paper which considers the
parsers strengthens the argument even more.

‘The characterizations of LR(0) languages, along with closure results that are
proven for LR(0) ianguages, are used to prove that deciding whether a determinis-
tic language is LR(0) is equivalent to deciding the equivalence of deterministic
pushdown automata, It is quite surprising to find this open question occurring in the
context of LR(0) testing.

The paper is organized in the following manner. You are now reading Section 1
which will conclude with some of the notation the reader must endure. Section 2
gives our definition of LR(k) grammars and some important consequences of the
definition such as vnambiguity and the “extended LR(k) theorem”. Relations with
other definitions of LR(k) are summarized. Section 3 gives three quite different
characterizations of the LR(0) languages. In Section 4, closure pisperties of several
families are proved and are used to deal with some decision problems. It is shown
that one can decide if a deterministic language is strict deterministic (equivalently
prefix free). One can decide whether or not a deterministic language is LR(0) if and
only if one can decide if two deterministic context free languages are equal.

Mathematical formalism is needed to deal with strings, sets, and context free
grammars aand languages. We use the conventional notations and shall not
reproduce them here. Cf. [11] for a summary asummary of our conventions. We
shall reproduce below a few definitions which are less familiar.

Let G=(V,X,P,5) be a coutext free grammar. We define a relation

= C V*X V* as follows. For any o, BE€E V*, a =" if and only if a =
aAaz, B=aBa;and A —> B, =p€EP forsome A €EN and a,,a;, € V*. In
particular, if a, € 2* or a; € 3* we write a ==>%{ B or @ =>4 8 respectively. We
may omit the p if it is not relevant. Any a € V* is called a (canonical) sentential
form if and only v £ =% a (f =>ia).

We need the formal concept of a canonical derivation. Let G = (V] 3. P, 5)be a
context free grammar and suppose that

Pr—1

20 4}
S=ay == o, => -+ = a,=I*
R, R R

If for each i, 0=i<n, a; = alAX;, a1 =aifx; where a}, 3 € V*, x,€3*,
A,EN, and p,=A; =B is in P then p =p,---p._, is said to be a canonical
- derivation. For n =0, we may write S =} a, to indicate the number of steps in
the derivation sequence. A context free grammar G is said to be unambiguous if
each x € L(G) has exactly one canonical derivation.

We will also need the idea of a “*handle”.

Cn LR (k) grammars and languages 247

Definition 1.1. Let G = (V, X, P, S) be a context free grammar and let y EV*. A
handie of y is an ordered pair (p, i) where p € P and i =0 such that there exist
AEN, a, BEV* and w € 3 * such that
(i) S=>kaiw =>raBw =1,

(ii) pis A—>pB,

(i) i = Ig(aB).

Some special terminolog® is needed for dealing with strings. Let a, 8 € V* be
two strings. Then a is a prefix (suffix) of B if and only if @ = By (B = ya) for some
Y € V*; when y# A, a is a proper prefix (proper suffix) of B. For any n =0, define

™a(a™) is the prefix (suffix) of
with length min(lg(a), n).
We say that a language L C3* is prefix free if «a € L and af € L implies’
B=A.
We wish to perform certain operations on languages. For L C 3 *, we say that

min(L)={x €L lthere does not exist a y € 3" such that xy € L}
and
max(L)={z €L lthere does not exist an x€E3X* ye 3"

such that xy = z}.

Let X, Y C X* Then XY, the quotient of X with Y, is defined as follows:
XY ' ={x € 3*|there exists a y € Y such that xy € X}.
It will also be necessary to nave the terminology to deal with deterministic
pushdown automata, cf. {1, 8, 9, 11].
Definition 1.2. A deterministic pushdown automaton (abbreviated DPDA) is a
7-tuple
M=<Q,E,F,8,q0,207F>

where Q is a finite nonempty set, ¥ and I' are two alphabets, g€ Q, Z,€ I,
F C Q and § is a partial function

$:0> (X U{APYXT—>,QxTI*

with the proper.y that foranyq € Q and Z €T, 8(q, A, Z) # @ implies 6(q,a, Z) =
@ for all a € 3.

Next we must describe how a DPDA moves.

' A denotes the null string.

243 M.M. Geller, M.A. Harrison

Definition 1.3. Let M =(Q,3,i,8,90,Z,,F) be a DPDA and let 2=
Q X 3*x I'*. The yield relation of M, FC 2 X 2 is defined as follows: For any
2$9'€EQ a€EIU{A),wEZ* a,BET* and Z €, (g, aw,aZ)}(¢', w, aB) if
and only if 8(q, a, Z) = (¢, B). As in the case of derivaiions we have I-* for yields in
0 or more steps, +* for yields in 1 or more steps, and, for n =0, " for yields in n
steps.

We now endow a DPDA with an ability to define, or accept, certain languages
over its input alphabet.

Definition 1.4. Let M =(Q,3,T, 5,90, Zo, F). For a given KCTI'* define the
language T(M, K)C 3* as follows:

T(M,K)={w € 3*|(qo, w, Zo)+* (¢, A, @) for some q € F and « € K}.
In particular let

ToM)= T(M, *),

T(M)= T(M,T),

TA(M)= T(M, A).

For i =0,1,2, let A, ={T:{(M) ' M is a DPDA}. By [11] 4, is the family of strict
deterministic languages, while 4, is the collection of deterministic Janguages, cf. [9,
11]. A, has only been briefly studied in [11). A, is a particuiarly important family;
among other reasons, each L € 4, can be mapped into 4, by “endmarking”, i.e.
L— L3 {11, 12, 13].

The reader wili soon discover that our definitions and results are quite technical.
In order to keep the size of the present paper under control, it has been necessary
to delete proofs or merely sketch the arguments. Full proofs may be obtained by
writing to the authors or by consulting [4].

2. Definition of LR(k) grammars and some basic consequences

Masy different definitions of LR(k) grammars have been given in the literature
{1, 15. 17, 18]. We will start this section with our definition. A number of basic
implications of the definition are developed. First, it is observed that LR(k)
grammars are znambiguous. The definition of LR(k) is extended to certain cross
sections of derivation trees and a useful result, called the extended LR(k) theorem,
is proven. Our definition is then compared to other definitions which have been
given before.

We now presert our definition of an LR(k) grammar. Our definition is the same
as the one used in [4-7, 11-13] and is quite similar to the one provided in [15].

On LR (k) grammars and languages 249

There are however several differences between the present definition and [15]. In
our definition, we have excluded S =>%S, and we also have not included
endmarkers.

Definition 2.1. Let k =0 and G = (V, 3, P, S) be a reduced context free grammar
such that $ ==>: S is impossible in G. G is LR(k) if for each w,w’,x € 3*;
wa,a',B,B'EV* A A'EN, if

(i) S =>%aAw =>gafw = yw, [that is, yw has handle (A — B, Ig(aB))],

(ii) S=>ka'A'x =>ra'B'x = yw', [that is, yw' has handle (A'— B’,
ls(a’B)),

@) Pw =®©w’,
then

(iv) (A B, Ig(aB)) = (A" B', Ig(a'B")).

The conclusion in the definition, that is (iv), has several implications.

(1) By the definition of equality of ordered pairs, we have A = A’, B == B, and
Ig(aB) = lg(a’B’).

(2) y= (is(v))ard@a = (lg(aB))afBr = (Ig(a'ﬂ'))alﬁr = a'BI_ Thus vy = aﬁ = a’B'.

(3) Since B = B’, from (2) we have a = a’'.

(4) a'B'x = yw' implies a'B'x = a'B’'w' implies x = w’. Note that f G is
LR(k), G is LR(k') for all k' = k.

We shall be comparing a number of definitions which are similar to Delinition
2.1. To simplify the presentation of these definitions, let us agree to call th.:: main
part of the definitions, parts (i) through (iv) including the quantification, the bcdy of
Definition 2.1.

One of the properties that we wish a grammatical class to possess, in order that it
constitute a useful class of parsing, is unambiguity. We show that the LR(k)
grammars are unambiguous. Although this result is claimed in [15, 18], their proofs
are incorrect as will be seen later. We begin with two lemmas, and then present the
proof.

The first lemma shows that given a senteatial form for a reduced context frze
grammar, if we specify a handle by which to reduce, we uniquely determine the
sentential form to which it will be reduced, and conversely, if we specify a sentential
form to which it can be reduced, this determines a unique handle. This lemma do¢s
not require that the grammar be LR(k).

Lemma 2.2. Let G =(V, 3, P,S) be a reduced context free grammar. Assume th:it
fora,a',B,B'EV*; w,wES"; AJA'EN

*
S => aAw = afw
R R

and

20 S M.M. Geller, M.A. Harrison
S => a'A'w => a'B'w'=apw.
R R
Then aAw = «'A’'w’ if and only if
(A— B, lg(aB))=(A"—B',1g(a’B")).

Proof. The argument is elementary and is omitted. [J

- The second lemma characterizes unambiguous grammars in terms of handles.

Lemma 2.3. Let G =(V,3,P,S) be a reduced context free grammar. Then G is
unambiguous if and only if every canonical sententiai form has exactly. one nandle
except S, which has none.

Proof. The argument is omitted. [J

Now ‘we shcll apply these results to verify that every LR(k) grammar is
unambiguous.

Theorem 2.4. Let G =(V,3,P,S) be an LR(k) grammar, * =0. Then G is
unambiguous.

Proof. The argument is a straighiforward application of Lemma 2.3 and is
omitted. [J

The following lemma tells us when a grammar is 1iot LR(k). Cunsequently the
lemma is often useful in proofs by contradiction.

Lemma 2.5. Letk =0 and G = (V, 3, P, S) be a reduced context free grammar such
that S ==> S is impossible in G. G is not LR(k) if and only if there exist
w,w ,xE3Z* AJA'EN; v, v, a,a',B,8' € V* such that

(i) S ==>LfaAw ==>gafw = yw,

(i) S=ka'A'x ==a'B'x =vy'x = yw/,

(iii)) ¥w =®w’, and

(iv) (A — B 1z(aB)) # (A'— B',1g(a’B")) with

(v) lg(a’'B’) =1g(ap).

Proof. Simply negate the definition. If (v) is not satisficd then the (i) and (ii) can be
reversed so that it is satisfied. [J

The following theorem will be extremely useful in studying the clas.;s. of LR(0)
languages. It is an inductive version of the definition of an LR(k) grammar.

On LR (k) grammars and languages 251

Theorem 2.6. (Extended LR(k) theorem). Suppose G =(V, 3, P,S) is an LR(k)
grammar and there exist @ € V*; x,,x,,w € X* such that
(i) S=kax,=>rwx,

(ii)) S =>rwx,,

(iii) (l:)xl = (',‘)xz,

(iv) x,# A, k >0, or k = 0 and there exists no x € X* such that Sx is a sentential
form of G with a handle whose second component is 1.
then

(V:“ S = Rax,=>>r wx..

Proof. We assume for the sake of contradiction that (i), (ii), (iii), and (iv) hold, but
not (v). Suppose ax,=2>>zwx, is a derivation of n steps, where n =1, by the
(unique) derivation

= QnXy : Upn-1Xy : :> a1 X1 = WX,

with o, € V*, for 1<i=<n. Let m be the number of steps in the derivation
S =>r Wx;, and let r = min(m, n).
Now, suppose that the last r steps of the derivation § =k wx, are

a, = al., = - :$ ay= wx; -
R R
for some a, €E V*, forl<sis<r.
Claim. There exists some | < r such that a}# ax..

Proof. By contradiction. Suppose a;= ax, for all <.

Case 1. r<n.Then a.= ax,=S. Thus a, = § and x, = A. Since ®x, = “x, we
must have k =0 or x, = A. If x, = A then § ==& S which contradicts the fact that
G is LR(k). Therefore, k = 0. However, we know that a,.,x; => g a.x; = Sx,. The
handle of Sx, has second component 1, contradicting (iv).

Case 2. r=n. Again a,=ax,, We have S=>Ra,=ax:=ax;=
ax, => gz wx,. But this-is (v), whicl: is assumed to be false. Thus, we have a
contradiction and the Claim is established.

Now let m be the smallest positive integer satisfying our claim. Clearly m > 1,
since o) = wx; = a)X.

Now, we know that there exist @, &', 8,8 € V*; A,A’€ N, and y,z € I* such
that

i) S==>la.x,= aAyx.:égaByx. = Q-1 X1,

(ii) S=>%ar=a'A'z=ra'B'z = A1 = Am-1X2 = APYX;,
using the fact that am-1 = a@n-1X. from our minimality assumption about m.

2 In most cases, we will use the fact that x, # A. The other possibilities are useful in studying other
definitions of LR(k) grammars.

252 ' M.M. Geller, M.A. Harrison

Now let y = aB. We get
(i) S =>%aAyx,=>raByx, = yyxi,
(i) S=>ia'A'z =>ca'B's = yyxs.
Now “x, = ©x, implies ©yx, = “yx,. Since G is LR(k), we have

(A - B 1g(aB)) = (A'— B',1g(a'B").

From (ii) a,, = @'A’z, and using the equality of handles, we have 8 = 8/, A = A’,
and thus @' = & and z = yx,. Thus a,, = @Ayx; = a.x.. But this contradicts our
assumption that &, # amx;. U

Now we examine other definitions for LR(k) grammars which have been used in
the literature. There are two definitions which entail extending the original
grammar by adding an “initial production”. The first is the definition used in [1].
The second involves adding an endmarker [15]. Finally, we examine a definition
given in [17] that has been used in work on topdown parsing. For each of these
three definitions, we shall examine the classes of grammars and languages
generated by these definitions. It turns out that these investigations usually require
that we discuss the cases k >0 and k = (separately. We shall conclude ti.is section
with a chart of the relationships between the various classes of grammars and
languages.

The original definition of LR(k) grammars [15] differed from Definition 2.1 in
not excluding derivations of the form § ==> S. That definition allowed ambiguous
grammars like

§—S|a

to be called LR(0). Salomaa [18] noted this and excluded S — S as a rule from his
definition of LR(k) grammars. But as Graham pointed out, that did not solve the
problem as grammars like

S—>A, A-S|a

satisfied the new definition and were still ambiguous. Clearly the ambiguity
problem can be disposed of forever by excluding all derivations of the form

s = S
R
LR(k) grammars are defined in [1] by adding a production S'— S to the original
grammar. The purpose of adding a production §'— 5 to the grammar was to
simplify the termination condition of the parsers for grammass in this class, and to
insure unambiguity. By using this definition, the parser wiil halt in an accept state if
and only if this reduction to S’ is performed. The same effect might have been

achieved by not allowing an S on the right hand side of any production rule in an
LR(k) grammar. In this way, a reduction to S would signify an accept state or an

On LR(k) grammars and languages 253

error condition. We shall show in the sequel [7] that by slightly altering the
termination condition, these restrictions are not necessary.
We now present the definition from [1].

Definition 2.7. Let k =0 and G = (V, 3, P, S) be a reduced context free grammar.
Define the augmented grammar G'=(V',3,P',S') where V'=V U{S'} and
P'=PFU{S'— S}, where 8, a symbol not in V, is our new starting symbol. G is said
to be ALR(k) (augmented LR(k)) if and only if G’ satisfies the body of Definition
2.1

We will show that the class of LR(k) grammars is at least as large as the class of
£ LR(k) grammars. Later, we shall show that the inclusion of classes is proper.

Lemma 2.8. Let G =(V,3,P,S) be a reduced context free grammar. For each
k=0, if Gis ALR(k) then G is LR (k).

Proof. The argument is straightforward and is omitted. []
In the next resuit, we show the converse of Lemma 2.8 for all k =1.

Lemma 2.9. Let G =(V, 3, P, 5) be a reduced context free grammar. If G is LR (k)
for some k =1 then G is ALR(k).

Proof. The proof is a tedious but simple case analysis in which the canonical
sentential forms are erxamined. Details are omitted. [J

Combining the resuits for grammars leads to

Lemma 2.10. The classes of LR(k) and ALR (k) grammars are co-extensive for all
k=1.

Our results show that the class of ALR(k) grammars is contained in the class of
1 R(k) grammars for k =0 and we have equality for k =1. But there remains the
possibility that the definition of ALR(0) grammars is more restrictive than the
1.R(0) definition. This turns out to be the case. We now characterize the ALR(0)
grammars in terms of LR(0) grammars.

Lemma 2.11. IfG =(V, 3, P,S) is LR(0) and S => & Sw is impossible in G for any
wE 3" then G is ALR(0).

Proof. Again, the argument is a case study on canonical sentential forms and is
omitted. []

254 ' M.M. Geller, M.A. Harrison
The foilowing lemma shows that ALR(0) grammars cannot be left recursive on S.

Lemma 2.12. Let G =(V,X,P,S) be an ALR(0) grammar. For any w € 3*,
S ==& Sw is impossible in G.

Preoof. The argument is straightforward. [l

The following theorem characterizes the class of ALR(k) grammars and is a
summary of the previous lemmas.

Theorem 2.13. Let G =(V, 3, P,S) be a reduced context free grammar.
(i) Fork >0, Gisan LR(k) grammar if and only if G isan ALR (k) grammar.
(i) G is an ALR(0) grammar if and only if G is an LR(0) grammar and
S ==>« Sw is impossible in G for any w € X~

Proof. The result follows directly from Lemma 2.10, Lemma 2.11 and Lemma
212. O

A concrete example of an LR(0) grammar which is not ALR(0) is
S—Sala.
We now study the class of ALR(0) languages.

Theorem 2.14. L C 3* isan ALR(0) language if and only if L is strict deterministic.

Proof. Assume that L is an ALR(0) language. Thus there exists an ALR(0)
grammar G =(V, 3, P,S) with L = L(G). Assume for the sake of contradiction
that L is not strict deterministic. Since L is deterministic, it must fail to be prefix
free. Thus there exist x € 3*, y € 3* such that

(@) S=%kS =k,

(i) S =>kxy,
and

(iii) °(4)="(y) = A. -
Since G is ALR(0), G is LR(0) by Lemma 2.8. by the extended LR(k) theorem
(Theorem 2.6), we have

S =+>Sy.
R

But this contradicts Theorem 2.13. Thus L is strict deterministic.

Conversely, assume that L is a strict deterministic language. Then L = L(G),
where G =(V, 2, P, §) is a strict deterministic grammar. By [12] G is LR(0). By
{11] G cannot be left recursive. By Theorem 2.13, G is ALR(0} so that L is an
ALR(0) language. I

On LR (k) grammars and languages 255

Corollary. The class of ALR(0) languages is properly contained in the class of
LR(0) languages.

Proof. This is a direct result of the theorem and the fact that there are LR(0)
languages (like a*) which are not prefix free. [J

Instead of extending our grammar with the production $’'— S, we mighi extend
our grammar with the production S’'--» S§$, where $ is an endmarker, a symbol not
in our original grammar. For k >0, this corresponds to the definition of an LR(k)
grammar in [15]. The only difference is that [15] allows for » endmarkers, whereas
we only allow one. We have eliminated the necessity for k endmarkers by also
defining “x for Ig(x) < k.

The addition of an endmarker makes the termination configuration for the parser
even simpler than using the condition from [1]. By adding an endmarker, the
termination condition becomes the reading of the endmarker.

We now define $SLR(k) grammars.

Definition 2.15. Let k =0and G = (V, 3, P, §) be areduced context free grammar.
Define the $-augmented gramamar G'=(V',3',P',S’) where V'=V U{S',$},

'=3 U{&}, P'= PU{S'— S§}, where S’ and §$ are new symbols not in V. G is
said to be $LR (k) if and only if G’ satisfies the body of Definition 2.1.

For k =1, the relationship between $LR(k) and LR(k) grammars is simple.

Theorem 2.16. Let G =(V, 3, P, S) be a context free grammar. Foreach k =1, G is
$LR (k) if and only if G is LR (k).

Corollary. For any k =1, L is a $SLR(k) language if and only if L is an LR (k)
language.

We now show, as in the ALR(0) case, that the class of $LR(0) grammars is
properly contained in the class of LR(0) grammars.

To characterize the class of $LR(0) grammars, we must first define the notion of a
pathological production.

Definition 2.17. Let G =(V,3,P,S) be a reduced context free grammar. A
production p € P is pathological if
(i) there exists a TE N, w € 2* such that

p=(T—S)
and

s = Tw = Sw
R R

256 ' M.M. Geller. M.A. Harrison

or (ii) there exists an A € N,;@ € X* such that

p=(A—A)
and

S = SAw => Sw.
R R
Pathological productions can be characterized in the following manner.
Lemma 2.18. Let G =(V, 3, P, S) be a reduced context free grammar. Then G has
no pathological productions if and only if there exists no w € X* such that Sw is a
sentential form of G with a handle whose second component is 1.
Proof. The argument is quite easy and is omitted. [J

Now pathological productions can be related to $LR(0) grammars.

Lemma 2.19. Let G =(V, 3, P,S) be a reduced context free grammar. Then G is
$LR(0) if and only if it is LR(0) and has no pathological productions.

Proof. The argument is a more-or-less straightforward application of earlier
lemmas and techniques. [

The following theorem characterizes the class of LR grammars.

Thacrem 2.20. Let G =(V, 2, P, S) be a reduced context free grammar.

(i) Fork >0, Gisa SLR(k) grammar if and only if G is an LR(k) grammar.

(ii) G is a SLR(0) grammar if and only if G is an LR(0) grammar and has no
pathological production.

Proof. Follows directly from Theorem 2.16 and Lemma 2.19. [

A concrete example of an LR(0) grammar which is not a $LR(0) grammar is
S — Ab,
A—S l b.

The following theorem characterizes the class of $LR(0) languages.
Theorem 2.21. L C3* isa $LR(J) language if and orly if L is an LR (0) language.

Proof. If L is 2 $LR(0) language it follows easily that L is LR(0) as well.
In the reverse direction, some of the results of Section 3 as well as those in [11]

On LR (k) grammars and languages - 257

are used together with a lemma from the present section. The details are
omitted. [J

It is possible to prove the following result which is stated without proof here. Full
details are ziven in [4]. The result indicates why th=se special productions are called
pathological.

Theorem 2.22. An LR(0) grammar can have at most one pathological production.

Finally, we discuss a definition for LR(k) grammars which originated in [17]. The
definition is reminiscent of the extended LR(0) theorem, in that it considers
derivations of arbitrary length, whereas other definitions of LR(k) are basically
concerned with single steps in a derivation sequence. The definition is also unusual
in that it considers sentential forms which are not canonical.

An incorrect proof is presented in [16] that the new definition is equivalent to the
LR(k) definition of [15]. That is immediately false because of ambiguity considera-
tions but other problems exist as well. We shall further show that even if we
eliminate ambiguous grammars from the definition of [15], namely, if we use our
LR(k) definition, that the LR(k) and L_R(k) classes of grammars still do not
correspond.

We beyin by giving the definition from [17].

Definition 2.23. Let G =(V, X, P, S) be a reduced context free grammar. Then G
is LLR (k) if and only if
(a) G is unamibiguous and,
(b) for all wy, wo, w3, w3E 3* A €N, if
() S =*w,Aw; =" w,w,w;,
@ii) S =" w,w w3,
and
(iii) “'wy=®w,
then
(iv) S =*w,Awi.

We first show that if a grammar is $LR(k), it is also LLR{k).

Theoreir 2.24. Let G =(V, 3, P,S) e a $SLR(k) grammar for some k =0. Then G
is LLR{k)

Prcof. We assume that G is an LR(k) grammar where k =0. Thus G is
unambiguous. We assume that for all w,, wz, w;, w:€ 3% A € N:

(i) §=>*wiAw, =" w wow;,

(i) S =>" w,w,w3j,

(iii) ©ws=®wi.

258 M.M. Geller, M.A. Harrison

By Lemma 2.18 and Lemma 2.19 we have
@iv) (a) k=1 or
{(b) k =0 and there exists no x € X* such that § is a sentential form in G
whose second component is 1.
By (i) there exists an a € V* such that
(i") S = raAw; ==k W W2Ws,
where a =>>%w; and A =>iw,, (i), (i), (iii), (iv) and the extended LR(k)
theorem give us
(V) S=>rkaAw:.
(i') gives us aAwi=>Ek wiAw3, so (i) and (v) give us S =*w,Awi. Thus G is
LLR(k). O

We -annot show that every LR(0) grammar is LLR(0), in fact, we can later give a
counterexample to this statement. However, it follows immediately from Theorem
2.23 that every LR(0) grammar is LLR(1).

Coroliary 2.24.1. Let G =(V, 3, P,S) be an LR(0) granimar. Then G is LLR(1).

Procf. The proof is immediate. [J

For k =1, we can show that any LR(k) grammar is an LLR(k) grammar.

Corollary 2.24.2, Let G =(V,3, P,S) be an I.R (k) grammar where k = 1. Then G
is an LLR(k) grammar.

Proof. Since G is an LR(k) grammar, where k =1, by Theorem 2.20 G is a

$LR(k) grammar. It now follows from Theorem 2.24 that G is an LLR(k)
grammar. [J

It is also false that all LLR(0) grammars are LR(0) grammars. We can, in fact,
show that for any k = 0, there exists a grammar which is LLR(0) but not LR(k).

Theorem 2.25. For any k =0, wnere exists a grammar which is I LR(Q) but not
LR(k).
Proof. Consider the grammar

S -+ aAb*c

S - aAAb*d

A=A

where k =0. This grammar is clearly not LR(k) but is LLR(0). O

On LR (k) grammars and languages 259

If we limit ourselves to A -free grammars, the class of $LR(k) grammars is the
same as the class of LLR(k) grammars for any k =0.

Theorem 2.26. Lot G = (V, 3, P, S) be a reduced ce:ii<xt free A -free grammar. Then
G is $LR(k) if and only if G is LLR(k).

Proof. Assume that G 1s $LR(k). Then by Theorem 2.24, G is LLR(k). O

Conversely, assume that G is LLR{k). We frst ~how that G is LR(k). Since G is
wiambiguous, § =>% S is impossible in G. Assume for the sake of contradiction
that G is not LR(k). By Lemma 2.5, we have

There exist wy, wi,x €EX*, y,a,a',B,B € V", A,A’E€ N such that:

(i) § = kaAw;=gafw;= yw;,

(ii) S=ka'A'x =ra'f'x = yw;,

(iii) ©w,=©wl,

(iv) (A — B,lg(eB)) # (A"~ B',1g(a’B"),

() Ig(a'B") = ig(eB). |
Since G is reduced and A -free, for scme w, & 3* w,€3",
(vi) @a =>§ », and B = g w..
Thus y =* w,w,. From (i) it follows that
(i) S = "wiAw; =" w,w,w;.
From (ii) it follows that
@ii") S ==>>*wiw,w}
Since G is LLR(k), (i), (i'), (ii') and (iii) give us

%* %
S =>wAw; = w,WW3.
It follows that for some a”"€ V*, "€ V"

* * *
S = a"Awi = a"B"'wi = a"w,wi; => w,w,w;. (1)
R R R R
We now consider this derivation and derivation (ii), namely

% * %
S = a'A'x = a'B'x = afwi == aw,w; ==> W, W,W;. 2)
R R R R

Since G is unambiguous, each step in derivations (1) and (2) must correspond.

We now consider three cases, corresponding to when afw;=a”"B"w: when
apw; precedes a”B"w; in the unique derivation of w,w,w; and when a"8"ws
precedes af3w: in this derivation.

Case . aBw;= a"B"w;. It follows immediately that a3 = a«”"B". We shall show
that « = «” and B = B". Assume for the sake of contradiction that a # «". Without
loss of generality, assume that « is a proper prefix of a”. Thus, for some @ € V7,
a" = aa. Now, we have rightmost sentential forms a"8"w;= adf"w:.

260 M.M. Gelles, M.A. Harrison

Now, consider the unique tree in which a@B"wi==>* w,w,w; (see Fig. 1).

S

/ 7 a BY\
\ \
w, w 4 wz w'3

Fig. 1. A derivation tree for case 1.

3By eq. 2, we have «a =>*w,, and by eq. 1 B"==>*w,. Since @a# A, and G is
A-free, for some w,E€ 3", we have @ =>*w, in this unique tree. Therefore
wiwsWw,w3 = w,wow; which is clearly false. Therefore @« = a¢” and B = B”. Since
aBBwi= a"B"w;, the predecessors of these canonical sentential forms must be
equal, therefore a”"Awi=a’A’x. Since A and A’ are the rightmost variables in
these equal canonical sentential forms, respectively, we have a”"=a’, A = A’, and
x =w; Thus a =a”"=a’'. Since af = a'B’, we have a’'B =a'B’, thus g =8". -
Therefore (A — B,1g(aB)) = (A'— B’,Ig(a’B’)), contradicting (iv).
Case 2. apw; precedes a”"B"wi. That is

% % % %
s ‘:;> afw; :i> a"Aw; ? a’'B"w; ? a’"w.w; ? wiw.ws. (3)

Since we have no A -ruies, B# A. Since A is the rightmost variable in the sentential
form a"Awj}, we must have B’ € N. Since B’ € N, a cannot be changed in the
production sequence afw; = % a"B"wj}, since A is the rightmost non-terminal
in the canonical sentential form a”Aw ;, and thus must derive from 8. Therefore,
for some B” € V*, we can write

a” II= aﬁﬂl.

By an argument identical to Case 1, we can snow that @ = a”. Therefore from eq. 3
* i " %
S ? aAw; = af"w; = w,w,wi.
R R
Using (i) and (vi) and the above derivation in G we can have
q *A § 7 ,* 14 g 4
S ? aAw, ? offwi ==> aw,wi ==> w,w.,w).
R R

Since G is unambiguous, B = B". It follows from (3) that

On LR (k) grammars and languages 261
£ + *
S == affwi => affwi; = w,w,wi.
R R

This contradicts the fact that G is unambiguous.

Case 3. a"B"w; precedes af3w;. Here, techniques similar to those u<ed in the
first two case are u<zd to reach a contradiction. The details are omitted.

Since Cases 1, 2 and 3 were contradicted, our assumption that G is not LR(k) is
contradicted. Thus, G must be LR(k).

W: now show that G is $LR(k). If k >0 then G is $LR(k) by Theorem 2.20.
Suppose k = 0. Suppose G is not $LR(C). Since G is LR(0), G is unambiguous. By
Lem na 2.19, G has a pathological production. We have two cases.

Cuse 1. There exists a TEN, S#T, we X" such that p=(T—S) and
& =>x Tw =>r Sw. Choose any w'€ L(G). Then

(i) S=>rTw =>rSw =i w'w.
Also

(i) S=%kw/,
and

(iii) Qv =94 = A,

Therefore, since G is LLR(0), we have

iv) S=*T=>*w'".

It follows from (iv) that S —=>" T and from (i) that T =>" S. Therefore $ =>"S
in G.

This, however, gives us that G is ambiguous, which is a contradiction.

Case 2. There exists an AEN, w€&€J3” such that p=(A—>A) and
S =>r SAw ==>, Sw. Again, choose any w' € L(G). Then

(i) S==rSAW =>:Sw =i w'w.
Also

(i) S =xw/,
and

(iii) (w)="w’= A.

Therefore, since G is LLR(0), we have

(iv) S=*SA ==*w'.

Clearly from (iv), S =" SA = §. Therefore $ =" S in G, which contradicts
the unambiguity of G. [J

We can now sirow that there exist grammars which are LR(0) but not LLR(0,
Corollary. There exists a grammar which is LR(0) but not LLR(0).

Proof. Consider the grammar with productions
S— Aa ! a,
A=E

262 M.M. Geller, M.A. Harrison

This grammar is LR(0) and A -free, but not $LR(0) by Theorem 2.20 since it has
pathologicai production A — S. Therefore, by Theorem 2.26, G isnot LLR(0).]

‘We now study the class of LLR(k) languages. We have shown that without
A -rules, if a gramamar is LLR(k) then it is LR(k). We shall show the equality of
language classes by providing a transformation for eliminating A-rules from
LLR(k) grammars.

Lemma 2.27. LetG =(V,X,P,S} be an LLR(k) grammar, k =0. Then there exists
an LLR(k), A-free gramniar G’ such that L(G')= L(G)—{A}.

Preof. Let G =(V, X, P,S)be an LLR(k) grammar, k =0. We use Theorem 1.8.1
of [8] for eliminating A-rules from a grammar. Let the resultant grammar be
3'=(V', 3,P',S'). The following claim follows from the construction.

Claim. « € V'* is a sentential form in G' if and only if a is a sentential form in G
and each of the non-terminals in a produces something other than A in G.

By [8], L{G)= L(G)—{A}. We now show that G’ is LLR(k).

(a) By [8], G’ is unambiguous since G is unambiguous.

(b) Assurae that in G' for w,. w;,w;EZ* w,ES", AEN'

G) S==>*w i Aw;==>* wiwow,,

@ii) S =" wiwow;,

(iii) Pw,=®wi.
By our claim, in G we also have (i), (ii) and (iii). Since G is LLR(k), we have

@iv) $ =*w,Aw; in G.
Sincein G, A -:, * ws, by our claim w,.Awj is a sentential form in G'. Therefore in
G', S =*w;Aws. Thus, G' is LLR(k). O

The lemma now helps us show that by eliminating A-rules, we can get an
equivalent LR(1) grammar for any LLR(k) grammar.

Lemma 2.28. Let G =(V, 2, P, S) be an LLR(k) grammar, k =0. Then there exists
an LR(1) grammar G’ such that L(G)= L(G").

Proof. Let G be an LLR(k) grammar, k =0. By Lemma 2.27, there exists an
LLR(k), A-free grammar G" such that L(G")= L(G)-{A}. By Theorem 2.26,
G" is LR(k). By [11], there exists some LR(1) grammar G" = (V, 3, P, §) such that
L(GM=L(G"). f AZL(G"), we let G'=G". Otherwise, we let G'=
(VU{S'},%,PU{S'—S§,S'—> A}, S’) where §' is a new symbol not in V. Clearly
L(G')= L(G), and we can easily show that G’ is an LR(1) grammar. [J

It follows directly from this lemma that all LLR languages are deterministic.

On LR (k) grammars and languages 263

Theorem 2.29. L C3* is a deterministic language if and only if L is an LLR
language.

Proof. The .esult follows directly from Theorem 2.24, Lemma 2.28 and the fact that
the class of LR(1) grammars generates the deterministic languages. Cf. [12]. O

Finally we study the class of LLR(0) languages.
Lemma 2.30. If L C3* is an LLR(0) language, then L is an LR(0) language.

Proof. Assume that L = L(G), where G = (V, 2, P, S) is an LLR(0) grammar. By
Theorem 2.29, L is a deterministic language. We next assume for some x € 3,
w,yEX* wEL, wxEL, y€EL that we have

) S=*S=*w,

(i) § =" wx,
and

(iii)) 9(A)=Px = A.
Since G is LLR(0), (i)-(iii) give us

(iv) $ ==*S«x.
Thus S =>>* Sx = * yx. Therefore yx € L. Thus L satisfies condition (b) for
LR(0) languages of the LR(0) characterization theorem. Thus L is LR(0). [

Theorem 2.31. L C3* is an LR(0) language if and only if L is an LLR(0)
language.

LR(O) Grammars LR(k) Grammars
(k21)
LR({k)
ALR(O) ALRsk)
b
LR(O)
Li.R(O)
L.R(0) Languages LR (k) Languages
(k21)
AG
[aLR(O) AL'-RR‘ijf
| 22 | $LR(k)
LR{O) LLE(k)
$LRI(O)
LLR{O}

Fig. 2. Comparison of classes of languages and grammars.

264 M.M. Geller, M.A. Harriso»

Procf. Let L C 3 * be an LR(0) language. By Theorem 2.21, L is a $LR(0) languge.
It follows from Theorem 2.24 that L is an LLR(0) language.
The converse is Lemma 2.30. O

One may summarize the results about comparison of these classes of grammars
graphically. This is done in Fig. 2.

3. Properties of LR(0) languages

In this section, we shall study the class of LR(0) languages. We begin with the
main theorem of the section, the LR(0) language characterization theorem. T1is
theorem gives a siring characterization, a machine characterization, and a set-
theoretic characterization of the class of LR(0) languages. This theorem has proved
to be a very valuable result. Not only is it used extensively in later proofs, but
condition (b) allows us to assert that certain sets are LR(0) languages by inspection.
We conclude the section by showing that a well-known language is LR(0) using the
characterization theorem.

Theorem 3.1. (LR(0) language characterization theorem). Let L C 3*. The fol-
lowing four statements are equivalent.

{a) L is an LR(0) language.

(b) L C 2* is a deterministic context free language and for allx € 3%, w,y € 3*
ifwEL, wxEL, and y €L ther yx € L.

(¢) There existsa DPDA A =(Q, 3,1, 8, qo, Zo, F) where F = {q;} and there exists
Z; €T such that

L=T(A, Z)=T(AT)={wE3*|(q.w, Z)F (a1, A, Z)}.
(d) There exist strict deterministic languages ., and L, such that L = L,L*.

Proef. We first prove that (a) implies (b). We assume that G =(V, 3, P, S) is an
LR(0) grammar, and i = L(G). We assume that for w € 3* x € 3*, we have
w &€ L and wx € L. Thus, we have in G the derivations

(i) S=iS=-iw,

(i) S =k wx,

(iii) PA =9x = A,

(iv) x# A.
By the Extended LR(0) Theorem (2.6), we get

(v) $=%Sx = rwx
Now we assume that for some y € 2 *, we have y € L. Thus, we have § =>4 y. (v)
gives us

On LR (k) grammars and languages 265

* +
S = Sx => yx.
R R
Thus yx € L which completes the proof that (a) implies (b).

We now prove that (b) implies (c). This the most involved part of the proof of this
theorem, since several machine constructions are involved. We begin by consider-
ing the degenerate® languages that obey (b), ramely @ and {A}. We then consider
the orefix free languages that satisfy (b). We then consider the languages that
satsfy (b) that are not prefix free.

'f either L =0 or L ={A}, it is easy to construct a DPDA A such that
. = T(A. Z) for some stack symbol Z;.

Now, we shall operate under the assumption that L is not degenerate. We know
«hat there exists a DPDA A =(Q, 3, T, 8, qo, Zo, F) such that L = T(A), since L is
deterministic. We wish to modify A so that we obtain a new DPDA such that L is
accepted by a new machine with only Z; on the pushdown. Our first step is t0 add a
new “‘bottom of stack” marker to our machine. We let

A'=(Q", 2T, 8,90, 2 F')

have a new start state which adds a new bottom of stack marker to the pushdown
and then simulzes A.

We now choose any x € 3* such that x € min(L). Since L#Wv, clearly
min(L) # @. We shall now consider two cases. The first case will correspond to the
strict deterministic languages. Observe carefully, however, that this does not follow
directly from the statement of this case. Our construction will be much simpler in
this case, than in casc two, where our language is not prefix free.

Case 1. Choose any x € 3* such that x Emin(L). For all y € 3, xy € L.

Claim. L is strict deterministic.

Proof. Assume for the sake of contradiction that L is not strict deterministic. Then
there exist w € 3*, y € 3" such that w € L and wy € L since L is not prefix free.
Since x € L, xy € L by (b). But this contradicts the supposition for Case 1, giving us
a contradiction. Thus L is strict deterministic.

We shall construct a machine A” that emulates the machine A’ until a final state
of A’ is reached It then erases the stack until a new boitona of stack marker is
reached, and ther. goes to a special final state and puts the special accept symbol on
the pushdown. It is not difficult to construct A" such that

TA"IM=TA" Z)=T(A)=T(A)= L.
This completes the proof of Case 1.

Case 2. Let x € 2* be any string such that x € min(L) and for some y € 37,

* A language L C X" is degenerate if L =@ or L ={A}.

266 M.M. Geller, M.A. Harrison

xy € L. In this case, our machine A’ cannot go tc a dead configuration after
reaching an accepting configuration. We shall construct a new machine A", which,
after accepting any string by T(A", Z;), will pretend that it is in fact x that it has
just acczpted. Our first claim shows us how our machine will pretend ihat it has just
accepted x. Cur claim concerns the behavior of A’ under the assumption of Case 2.

Claim. There exists a § € Q', @ € (I'")*, Z € I'" such that for our chosen x
@5, %, Zo) (G, A, ZoaZ)
where for some a € 3, 8'(G, a, Z) is defined.

Proof. This follows directly from the hypothesis of Case 2. [J

We shall omit the formal construction of A” from A but will describe it. One
adds to A’ 2 new final state and a new stack symbol Z; to be used for acceptance.
When an A'-accept configuration is reached, the stack is erased until the bottom
marker is reached and then we go into an A "-accepting configuration. The machine
pretends that x has just been accepicd and so adjusts its stack. The computation
proceeds under the assumption that is is in fact x that has just been accepted.
Otherwise A” proceeds as A'.

It is not hard to see that A” is a DPDA and that

L=T(A)=T(A")Y=T(A",I'=T(A", Z;).

This completes the argument that (b) implies (c).

To help prove (c) implies (d), we first show that (c) implies (b). Assume there
exists a DPDA A =(0, 3,1, 8,90, Z, F) where F = {q;} and there exists Z, € I'
such that L = T(A, Z;) = T(A,TI'). Clearly L € A,. By [11], L € A,. Suppose that
for x €3%; w,y€3* we have wE L, wx EL, and y € L. Then we have

(90, wx, Z,) ¢ (95, x, Z;) f a5, A, Z)
and

* >
(9o, ¥, Zo) F (g5, A, Z;).
Therefore

* %
(9o, yx, Zo)F (g1, %, Z;) + (gy, A, Z;).

Thus yx € L. This completes the proof that (c) implies (b).

We now prove that (c) implies (d). We assume that there exists a DPDA
A ={Q,2,T,8,go, Z, F) where F={q;} and L = T(A, I')=T(A, Z;) for some
Z; €T Let Lo=min(L). By [9] L, is deterministic. By the definition of min, L is
prefix-free. Thus by Theorem 4.2 of [11], L, is strict deterministic. We now consider
two cases, when L = L, and when L# L,.

Case 1. L = L,. Since L, is strict deterministic, L = Lo(@)*.

Case 2. L# L. Since L # Lo, there exist x €3* z € 3* such that x € L and

On LR (k) grammars and languages 267

xz € L. Let L'={y € 3*| xy € L}. We shall show that L' is deterministic, and that
L =L,L".

We now constvuct a DPDA to accept L'. Let A’'=(Q, %, T, §, g5, Z;,{q;}), where
A =(Q,3,T,38, o, Zo, F) as just defined. Clearly A’ is deterministic.

Claim. L = L,L’.

Proof. We first show that L C LoL’. Suppose that for some w € 3*, that w € L.
Then for some w,,w, € 3%, w = wow,, where wo € L, = min(L).

If w,=A, clearly w,€ L', thus w € L,L’.

Suppose w,# A. Since woE L, wow, EL, and x EL, we know xw,EL by
characterization (b) of LR(0) languages. Recall that we are assuming (c) and (c)
implies (b). Thus w, € L".

Conversely, we show that L,L'C L.

Suppose that for some w € 3*, w € LoL’. Then for some wo, w; € 3'*, we have
w = wow, where wo€ L, and w,EL’. Since w, € L’, we know xw, € L. Since
xXEL, xw,€L, and woE L, we know w = wow, € L by characterization (b) of
LR(0) languages. Thus LoL, C L anc :lerefore we see that L = L,L’.

Now, let L,=min(L’'—{A}). Clearly L, is strict deterministic, since L’ is
deterministic

Claim. L'=L1.

Proof. We first show L' C Lt. For some w € 3* assume w € L'. Suppnse w = A.
Then clearly w € L¥. Assume w € £*. Then there exist n=1, w, €237, for
1<i=<n, where w = w,"--w, such that in machine A’,

* + + +
@G w: W, Z) (g, W2 W Zp) E (G, W Wa Z) b (g1 A, Zy)

where these are the only instances in which the machine A’ goes through state g;.
Thusfor1<i=<n

(gr Wi Zy) + (g5 A, Zp).

Thus w, € L,. Thus wE€ L}.

We now show that L¥C L'. Forsome w € 3%, assume w € L. If w = A, clearly
w € L', by definition of L'. Assume w# A. Since w ¢ L7, there exist n =1,
w, € S*suchthatw, €L forl <i <n,wherew = w, - - w,. Wenowhavein A’

(qf’ Wyt Wy, Zf) t (Qb Wa** " W, Zf): ttt ﬁ(%’ A’L Z’f)
This gives us that

w=w,w,EL".

268 M.M. Geller, M.A. Harrison

Therefore
L' =L*%.

Thus, we have L = L,L} with L, L, € 4,. This completes our proof that (c)
implies (d).
Finally, we show that (d) implies (a). We assume that

L= L()LT where Lo, L1 € Az.

We first consider the degenerate cases. Suppose Lo =@. Then L =0 and clearly is
an LR(0) language. Suppose L,=0 or {A}. Then L = L,. Since L, is a strict
deterministic language, L must be an LR(0) language, cf. [11].

Now, we handle the non-degenerate cases. We assume that

L,L,#8, L.#{A}

Since L, is a strict deterministic language, there exist strict deterministic, thus LR(0)
grammars G; = (V,, %, P, S;) such that L, = L(G), for i =0,1, with NoN N, = 8.

Let G=(V,3,P,S) where V=V,UV,U{S}, SN{V,UV}=08, P=
P,UP,U{S—>SS,,8S— Sy}, 2 =3,U3,. Ciearly L(G)= L, since G lays down
one word of L, followed by a series of strings of any length of words of L,. We need
only show that G is LR(0). Since L,#{A}, and L, € A,, we know A & L, by
f11].

We assume now for the sake of contradiction that G is not an LR(0) grammar.
Then by using Lemma 2.5 and a tedious case analysis we arrive at a contradiction.
More details can be found in [4]. O

Condition (b) of the LR(0) characterization will prove most useful in checking
whether or not a language is LR(0). The following corollary to characterization (b)
will be particularly useful.

Corollary. Suppose L C2* is an LR(0) language. Forw €3*, x €X*, if w EL
and wx € L then wxx € L.

The following theorem shows us that the fzciorization of an LR(U) language of
the form given in the LR(0) language charar terization theorem is unique.
Recall that we defined a language L C 3 * 1o be degenerate if L =@ or L = {A}.

Theorem 3.2 (Unique Factorization of LR(0) Languages). Let L = L,L%} be o

ronempty LR (0) language where Lo, L, are strict deterministic languages. If there are
two strict deterministic languages L, L' such that L = L{(L})* then Lo= L} and
either

(') Ll =L 1' s
or

(ii) L,, L; are degenerate.

Orn LR (k) grammars and languages 269

Proof. For the sake of contradiction, we assume there exist strict deterministic
langaages Lo, Lo, Ly, L | such that LoL T = LoL}* where Lo# Loor L, # Liand L,
and L are not degenerate.

Case 1 (Lo# L¢). We assume without loss of generaiity that there exists some
x € 2* such that x € L, but x € L,. This is possible since L# @ implies L, # @.
Since x € L¢, we have x € Lo(L1)*. Thus, x € L and hence x € L,L*. Then for
some X, € 3*, x, € 3*, we have x = x,x; where xo € Loand x, € L%. Since x, € L,,
we know xo € LoL 1, thevefore x, € L. Now, we know that xo, € Lo(L1)*. Clearly
xo € Lq, since x, is a proper prefix of x, x € Lo, and L, is prefix free. Thus there
ex:st some x, € 3*, x;€ 37, such that x, € L{, xs € L{*, where x, = x.x;. We also
Kkrow x = xox; = x»(x3x,) € L. Since x;# A, Lo is not prefix free. But this is a
contradiction.

Case 2 (Lo=Lg). We have L = LoLt= L,L*. We assume for the sake of
contradiction that L, # L; and we do not have L, and L{ degeneraie. Without loss
of generality, there existsa y € 3" such that y € L{ but y & L,. Since L, = @ there
exists some x € 3 * such that x € L,. Clearly xy € Lo,L{*, giving us xy € LoL*%.
Therefore xy = x'y’ where x' € Lo and y’' € L. Clearly x must be a prefix of x’ or
x' a prefix of x. Since L, is prefix free, we must have x = x’, and thus y = y'.
Therefore, we see that y € L. Now, since y € L,, we know there exist y,€ T *,
y:€ X" such that y = yoy,, where y,€ L,. It follows that xy,E L and hence
xy0€ LoL1*. Thus xy,=x'y, where x'€ L, and yo€ Li*. Again, since L, is
prefix free, we have x = x” and y, = Yy, giving us y, € Li*. But, we know y, & L1,
since if it were we would have y, € L; and y,y, € L1, where y, # A, contradicting
the fact that L] is prefix frec. Now, since y, € L{*, there exist y,€ 2 *, y; & 3" such
that yo = y,y;, where y, € L. Now we have y = yoy, = y(ysy:) € Li. But vy, # Ao,
and y, € Li. But this contradicts the fact that L is prefix free. [J

We conclude this section with an example of the use of the LR(0) characteriza-
tion theorem to show us immediately that a given language which is not strict
deterministic is LR(0). We shall show that the Dyck language is contained in the
class of LR(0) languages. We begin by defining a Dyck language.

Definition 3.3. Let n=1. D, is a Dyck language if there exists a context free
grammar G, = (V, 2, P, S). where

2={alsab'--’ama{"'-7ar’!},

V={S}J3,
and

P={S—SaSaS|1<i<n}U{S— A},
such that

D, = L(G,).

270 M.M. Geller, M.A. Harrison

Theorem 3.4. Let D, C 3* be a Dyck language for some n=1. Then D, is an
LR(0) language, but not a strict deterministic language.

Proof. It is well known that D, =D is deterministic. For instance, see [1J].
Suppose that for x €3*, w,y € 3* we have w E D, wx € D, and y € D. By [8] we
kave x € D. Since y € D and x € D, by [8] we have yx € D. By (b) of the LR(0)
language characterization theorem, D is an LR(0) language. Since a,a1 € D and
a,aia,a1€ D, D is not strict determu.i..stic since it is not prefix free. [J

4. Closure and decidability results for subfamilies of the deterministic languages

In Section 3 we showed the relationship between the classes of LR(0) and strict
deterministic languages. In this section, we study 4, (the strict deterministic class of
languages), 4, (the deterministic languages), LR(U) (the LR(0) ianguages), and 4,
of {11].*

We begin by showing that 4, LR(0)% 4:% 4,. We then study the closure
properties of these classes of languages. Our resuits shall be of the form ‘“‘class X is
(not) preserved under operation Y.” This signifies that given a language or
languages in class X, after performing operation Y to these languages, the resulting
language is or is not a member of class X. These results will then be used in solving
certain decidability problems relating to these classes of languages. Finally, we give
a chart summarizing the closure properties of the given classes of languages.

We begin by proving, with the aid of two lemmas, that 4, LR(0)% 4, 4,.

Lemma 4.1. 4,% LR(0).

Proof. We first show that 4, C LR(0). Suppose L € 4,. Then L = L{A}* €LR(0)
by (d) of the LR(0) characterization theorem. We now show proper inclusion. We

know a* € 4,, but a* € LR(0) by (d) of the LR(0) characterization theorem, since
a*=Aa*. [J

Lemma 4.2. LR(0}& 4,.

Proof. By (c) of the LR(0) characterization theorem:, we know LR(0)C 4,. We next
show proper inclusion. Let L = {ab*} U{cd*}. Since L is regular, L € A, by [11].
Suppose L were LR(0). Since a, ab, ¢ € L, we have cb € L by the LR(0) character-
ization theorem. But this is a contraciction and L is not LR(0). [J

We now prove our inclusion theorem.

* Recall that 4, is the family of languages accepted by DPDA’s by final state and with one symbol on
the stack.

On LR (k) grammars and languages 271

Theorem 4.3. 4,5 LR(0)S 4,5 4.
Pioof. 4,% LR(0) by Lemma 4.1. LR(0)S 4, by Lemma 4.2. 4, % 4, by [11}. T

We now consider the closure properties of the classes of languages 4., LR(0), 4,
and 4, under operations with regular sets, boolean operations, Kleene operations,
marked operations, etc. We begin with a theorem which will help us to check if a
ianguage is in 4,, but a new definition is required first.

Definition 4.4. Let L C 3* be a deterministic context free language. We define the
velative right congruence relation induced by L, R, as follows:
For x,yE€ L,

(x,y)ER, ifandonlyifforallz€3* x2€ L ifandonlyifyz€L.

This is clearly an equivalence relation. It is quite similar to the induced right
congruence relations defined on regular sets, cf. [14]. However, this relation is
defined only among clements in L, whereas the right congruence relation is defined
on all elements of 3 *.

Our first thecrem shows that R, is of finite rank when L € 4,. This compares
with the result that the right congruence relation induced on regular sets is finite
when L is regular.

Theorem 4.5. Let L C 3* be a deterministic language. Then R, is of finite rank if
and only if L is in A,.

Proof. Assume that L is a 4, language. Assume for the sake of contradiction that
R, is not of finite rank on L. Since L is a 4; language, there exists a DPDA
M ={Q 3,I,8,q0,Zo, F) such that T(M,I')=L where for m,n=1, I'=
{Zo,..., Z.-1} and F={q1,...,qm}.

Thus, there exist mn final configurations of the form (g, A,Z;) 1<i=<m,
0<j<n-1. Since R, is not of finite rank on L, for some x,y € L such that
(x,y) £ R. we must have for some i,j such that 0<i<n-1,1<j<m,

(qos %, Zo)F (9, A, Z)
%
(q03 Y1 Zﬂ) F (ql" As ZJ)

Thus for all z € 3*, xz € L if and only if yz € L. Thus (x,y) € R, and this is a
contradiction.

In Theorem 7.1 of [20], it is shown that a sufficiently large reachable configura-
tion is equivalent to a smaller reachable configuration or there exist infinitely many
pairwise inequivalent configurations. This can be shown to hold with accepting
configurations. If R, has finite rank, it is easy to see that the second possibility

27 M.M. Geller, M.A. Harrison

cannot occur. Moreover, one can carry out the transformation to the smaller
accepting configuration in a finite state control. Hence it is possible to convert from
aDPDA A for L to another DPDA A’ which accepts L as T\(A'). The details are
omitted. This sketch of the proof was suggested by the referee. [

We now wish to study the various closure properties of these classes of languages.
Since we wish to study the four classes 4; and LR(0) and some fifteen operations,
we would have to deal with some sixty cases. To avoid this tedious detail, we
summarize the results in Table 1 and shall present the proof of two typical negative
results. The rest of the proofs are omitted but the reader can find full details in [4].

Table 1. Closure properties of deterministic subfamilies.

a, LR(0) 4, 4,
Operations with regular sets
Product LP No No No Yes
Intersection L,NL, Yes No Yes Yes
Quotient LR™ No No No Yes
Boolean operations
Union L,UL, No b No No
Intersection L_.. NnL, No No No No
Complement L No No No Yes
Kleene operations
* L* No No No No
Product L,L, Yes Yes No No
Marked operations
Union cL,Uc,L, Yes No Yes Yes
Product L$L, Yes No Yes Yes
Other operations
Min Yes Yes Yes Yes
Max Yes Yes Yes Yes
Reversal No No No No
Homomorphism No No No No
Inverse G.s.M. No No Yes Yes

4, is not closed under complement

Consider the language L ={a"b" |n=1}. Since L € A,, we know L € A,.
Assume for the sake of contradiction that L € 4,. Now, for all i=1, a' € L.
Therefore, by Theorem 4.5, for some k;, k, such that 0<k,<k, we have
(", a*?)€ R,. Thus for all z € 3*,

a“z €L if and only if a*z € L.

Let z = b*. We know a“b“& L. Thus a*b* € L. But this is a contradiction.

On LR (k) grammars and languages 273

LR (0) is not closed under complement

Let L = (abb)(b*)C{a, b}*. We know a,ab € L but abb& L. Then by the
corollary to the LR(0) characterization thicorem. L & LR(0).

There are some natural decision questions which are closely associated with the
present study. We know that cne can decide if a deterministic language is regular or
not by |19]. If the given language is not known to be deterministic then the
corresponding question is undecidable froim [21. is it recursively decidable whether
o1 not a deterministic language is strict deterministic? In view of [11] it is equivalent
to ask if ¢ deterministic ianguage is prefix free. First, we consider the general case
ard quote the relevant result from [3].

Tueorem 4.6. It is recursively undecidable whether or not a context free language is
prefix free.

The problem becomes decidable in the deterministic case. Also cf. [20].

Theorem 4.7. There is an algorithm to decide whether or not a given deterministic
context free language is prefix free.

Proof. Our original proof of this result was based on the properties of strict
deterministic gr.mmars. We sketch a much simpler proof, suggested by Ullman,
based on DPDA’s. Let L C 3* be a deterministic context free language. By
construction of a DPDA for L —min(L}, it is not hard to see that the set
L —min(L) is a deterministic language. Moreover, L is prefix free if and only if
L —min(L) = 0. Since . is decidable if a context free language is empty, the result
follows. [J

From the previous result, we get an important consequence.

Corollary. It is decidable whether or not a deterministic language is strict
deterministic.

Proof. From [11] a deterministic language is strict deterministic if and only if it is
prefix free. [J

There is a natural extension of the previous question. Can one decide if a
deterministic language is LR(0)? We will show that this seemingly mild question is
equivalent to the equality problem for deterministic context free languages.

Next, we state the equivalence problem for DPDA’s.

Po: Equivalence problem for A,. Is it recursively solvable to determine of two
DPDA’s, A, and A,, whether or not T(A,)= T(A.)?

The present prob'cm can be stated as follows.

274 M.M. Geller, M.A. Harrison

®.: Decidability of LR(0). Is it recursively decidable wkether or not a given
deterministic language is LR(0)?

Thecrem 4.8. P, is equivalent to P, ie., there is an algorithm to decide if a
deterministic language is LR (0) if and only if there is an algorithm to decide if two
deterministic context free languages are equal.

Proof. We first assume that there is an aigorithm to decide if a deterministic
language is LR(0). Let L,, L, C 3* be two deterministic context free languages and
let ¢, €2, €3, $ be four new symbols not in &. Consider the following set:

L= C](LS)*C;;(Lzs)* U Cz(Lzs)*Cg.(Lzs)*.

L is a variant of a set proposed by Ullman.
Ciaim 1. L is deterministic.

Proof. Since L, and L, are deterministic, L,$ and L.$ are strict deterministic.
Therefore (L,$)* and (L.$)* are LR(0) languages by (b) of the LR(0) language
characterization theorem, thus deterministic. It follows that (L,$)*c; and {L.$)*c,
are strict deterministic. Therefore (L:$)*ci(L.%)* and (L.$)*cs(L.$)* are LR(0)
languages again by (b) of the LR(0) characterization theorem and thus determinis-
tic. Thus the marked union of these two languages, namely

L = ci(Li$)*cs(L2$)* U ca(L2$)*cs(L,$)*

is deterministic from the ciosure results of the previous section.
Claim 2. L,= L, implies L is an LR(0) language.

Proof. If L, = L,, we have
L= Cx(L1$)*Cs(L1$)* U Cz(L1$)*Cs(L1$)*
= ((cl(Lls)* U Cz(L1$)*)C3)(L1$)*

whwh is an LR(0) language from the proof of Claim 1 and (d) of the LR(0)
characterizatio.” theorem.

Claim 3. If L is an LR(0) language then L,= L,.

Proof. Assume for the sake of contradiction that L, # L,. We assume without loss
of generality that there exists some x € L,$ such that x & L,$, where x # A. Choose
any y € L,§. We kncw ¢,y € L, coycsx € L, ¢xc; € L. 1t follows from (b) of the
LR(0) characterization theorem that c,x2;x € L. Therefore x € L,$, but this is a
contradiction ard therefore L, = L,.

On LR (k) grammars and languages 275

We have therefore shown that L, = L, if and only if L is an LR(0) language. In
order to decide if L, = L, we simply construct the DPDA for L, and then use our
algorithm to decide if L is LR(0). Thus, we have an algorithm to decide if two
deterministic context free languages are equal.

Conversely, we assume that there is an algorithm to decide if two deterministic
context free languages are equal. Let L CX* be a deterministic context free
language. We now provide an algorithm for deciding if L is an LR(0) language.
Now let Lo =min(L). If L # L,, we choose some x € 2*, z € 3" such that x € L,
and xz € L. We let L, = min{y € E*Ixy € L}, as in Case 2 of the proof that (c)
implies (d) in the LR(0) characterization theorem. L, and L, will be strict
deterministic. We then let L' = L,L?.

Claim 4. L is an LR(0) language if and only if L = L'.

Proof. If L is an LR(0) language, by our LR(0) characterization theorem, L = L'.
If L =L’ then L = L,LT, where L, and L, are strict deterministic. Thus, by our
characterization theorem, L is LR(0).

We have assumed that there is an algorithm to decide if two deterministic context
free languages are equal; we need only to test if L = L’ in order to determine if L is
an LR(0) la..guage. [

The preceding theorem can in fact bc strengthened.

Corollary 4.8.1. There is an algorithm to decide if a A, language with two final
configurations is LR(0) if and only if there is an algorithm to decide if two
deterministic context free languages are equal.

Proof. L = ¢, {L:$)*cs(L:$)U cz(L:$)*cs(L,$)* is a A, language with two final
configurations. []

Corollary 4.8.2. There is an algorithm to decide if a A, language is LR (0) if and
only if there is an algorithm to decide if two deterministic context free languages are
equal.

Proof. Follows directly from Corollary 4.8.1. [J

5. Conclusion:

A new definition of LR(k) grammars has been given which is closely related to
the original definition. It has been shown how this definition relates to other
definitions in the literature. In particular, our definition gives unambiguous
grammars, as well as a large class of both grammars and languages.

276 M.M. Geller, M.A. Harrison

It remains for us to show that grammars that we have defined to be LR(k) can in
fact be parsed left-to-right with k lookahead, with our parser outputting the
rightmost derivation of a string in the language, and outputting “error” for a string
not in the language defined by the grammar. We shall produce such parsers in a
sequel [7] by paying careful attention to the halting condition on the parser. We do
not use the LLR(k) definition on the grounds that it does not naturally correspond
with a parser with k lookahead, since it does not deal with canonical derivations.

References

{1} A.V. Aho and J.D. Ullman, The Theory of Parsing, Translating, and Compiling, Vols. 1 and 11
(Prentice Hall, Englewood Cliffs, NJ, 1972 and 1973).

{21 Y. Bar-Hillel, M. Perles and E. Shamir, On formal properties of simple phrase structure grammars,
Zeiischrift fiir Phonetik, Sprachwissenschaft, und Kommunikationsforschung 14 (1961) 143-172.

[3j J. Engelfriet, Translation of simple program schemes, in: M. Nivat, ed., Automata, Languages,
and Programming (North-Holland Publishing Co., Amsterdam, 1973) 215-224. .

{4] MM. Geller, Compact parsers fer deterministic languages, Ph.D. Thesis, Department of Computer
Science, University of California, Berkeley, California (1975).

{5] M.M. Geller and M.A. Harrison, Strict deterministic versus LR(0) parsing, Conference Rzcord of
the ACM Symposium on Principles of Programming Languages, Boston, MA (1973) 22-32.

{6] M.M. Geller and M.A. Harrison, Characterizations of LR(0) languages, Conference Record of the
14th Annual Symposium on Switching and Automata Theory, 73 CHO 786-4-C (1973) 103-108.

[7} M.M. Geller and M.A. Harrison, Characteristic parsing: A framework for producing compact
deterministic parsers, J. Comput. Systems Sci. (to appear).

(8] 5. Ginsburg, The Mathematical Theor; of Context-Free Languages (McGraw-Hill, NY, 1966).

[9) S. Ginsburg and S.A. Greibach, Deterministic context-free languages, Information and Control 9
(1966) 602-648. ,

[i01 M.A. Harrison, Fall Quaster 1971 Class Notes for Computer Science 234, University of California,
Berkeley (1971).
[11] M.A. Harrisonr and I.M. Havel, Strict deterministic languages, J. Comput. Systems Sci. 7 (1973)

237-277.

[12] M.A. Harrison and L.M. Havel, On the parsing of deterministic languages, J. ACM 21 (1974)
525-548.

[13]"M.A. Harrison and 1.M. Havel, Real-time sirict deterministic languages, SIAM J. Comput. 1 (1972)
333-349.

{14] J.E. Hopcroft and J.D. Ullman, Formc! L.anguages and Their Relation to Automata (Addison-
Wesley. Reading, MA, 1969).

[15] D.E. Knuth, On the translation of languages from left to right, Information and Control 8 (1955)
607-639.

{16] D. Lehmann, LR(k) grammars and deterministic languages, israel J. Math. 10 (1971) 526-530.

{17} P.M. Lewis and R.E. Stearns, Syntax-dirzcted transductions, J. ACM 15 (1968) 465-485.

[18] A. Salomaa, Formal Languages (Academic Press, NY, 1973).

{19} R.E. Stearns, A regularity test for pushdown machines, Information and Control 11 {1967) 323-340.

[20] L.G. Valiant, Decision procedure for RPPDAs, Ph.D. Thesis, University of Warwick, Warwick,
England (1973).

