
Theoretical
Computer Science

Theoretical Computer Science 168 (1996) 367404

On optimal solutions to the firing squad synchronization
problem

Jacques Mazoyer *

Laboratoire de l’lnformatique du ParatYisme, Ecole Normale Supkrieure de Lyon, 46 All&e d’ltalie,
69364 Lyon Cedex 07, France

1. Introduction and definitions

1.1. History

The one-dimensional firing squad synchronization problem (FSSP) is to construct

a generic automaton of a one dimensional cellular network made of a segment of n

identical machines so that, whatever the length n of the segment is,

1. if, at the starting time (t = 1 in the following), all finite automata of the cellular

network (called cells) are in a quiescent state L and no meaningful piece of information

is exchanged, except the leftmost one, called the “general”, which is in a special initial

state M,

2. then the evolution of the segment is such that, at some time (the firing time t(n)),

all automata enter simultaneously and for the very first time the firing state F.
One generally considers that the evolution of each automaton is as follows:

State definition. The state at time t + 1 of one automaton depends on its own state

and the state of its two neighbours at time t.

In this framework, the problem was stated by Moore [9]. First solutions (using

about 3n - 2 and, more generally, (2 + 5)n time units) were described by Minsky

and Mac&-thy [8]. Goto first discovered a minimal time solution, using 2n - 2 time

units. Minimal time solutions with a little number of states are due to Waksman [151

(in 1966 with 16 states), Balzer [l] (in 1967 with 8 states) and Mazoyer [5] (in 1986

with 6 states). Observe that Yunes [161 has pointed out a non minimal state solution

with 7 states in 1994.

* E-mail: mazoyer@lip.ens-lyonfr

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00084-9

368 J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404

In his paper, Balzer set the following optimality problem:

State optimality. What is the minimal number of states needed to solve the FSSP in

minimal time?

First, we observe that the statement of the problem already involves three states

(L,M and F). It is easy to convince ourself that there does not exist a 3 states optimal

time solution (try to design it!). Balzer and, recently, Yunes have shown that there

does not exist a 4 state optimal state solution. It is possible that a computer tries all

possible 4 states automata on lines of little length and concludes that none of them is

a solution. Unfortunately, the study of all possible 5 states automata is not possible:

with a today computer this would take thousands of years. Thus the Balzer’s question

is now: Does then exist a 5 states minimal time solution? We observe that, if this

question clearly has no practical interest, its answer will use new knowledge on how

evolves a cellular automaton.

In this paper, we do not study Balzer’s question. We only aim to put in light some

facts:

1. The set of all solutions (or of all minimal time solutions) of the FSSP is not

simple. We prove in 2 that it is not recursively enumerable.

2. It is easy to synchronize with few information. For that we shall distinguish the

state of an automaton from the message that it receives from its two neighbours.

In the remaining of this introduction, we set up the basic definitions that we need.

In particular, we define various constraints on the information flow.

1.2. Standard dejinitions

In this section, we give a formal definition of a cellular automaton in case each

automaton knows the state of its two neighbours.

Definition 1. (1) A cellular automaton ~2 is a couple (Q, 6) where Q is a finite set,

called the states set of -c9, and 6 is a function from Q3 into Q. The function 6 is the

local transition function.

(2) A configuration C of the automaton LZ? is an application from 2 in Q. A con-

figuration C evolves to another configuration C* so that

c*(z) = 6(C(z - l), C(z), C(z + 1)).

The application A defined by C’ = A(C) is called the global transition function.

Thus, starting from an initial configuration Ca (at time 0), the net evolves through

configurations C, = A’(Co).

Now we define the usual (linear) FSSP.

Definition 2. The state FSSP is to design a cellular automaton L$ = (Q, S) with the

particular additional syntactical properties:

J. Mazoyer I Theoretical Computer Science 168 (1996) 367404 369

(i) Four distinguished states (L,M,F, !) belongs to Q.

(ii) State L is the quiescent state. It satisfies G(L,L,L) = L, 6(&L, !) = L and

6(!,L,L) = L.

(iii) State ! is the outside state. It satisfies: Vql,q2 E Q, 6(ql, !,q2) = !.
(iv) State M is the general state and state F is the Fire.

such that, starting from the initial configuration C[n] (the notation [n] indicates that

the significant part of the line has length n) defined by:

(a) Vz d 0, C[n](z) = !,

(b) Vz>n + 1, C[n](z) =!,

(c) C[nl(l) = M
(d) Vz E (2,. . ,n}, C[n](z) = L.

the evolution of the configuration C[n] is such that, for some time t(n),

(a) Vz E 3’, Vt E { 1,. ., t(n) - l}, C[n],(z) # F,

(b) vz E {L...,n}, C[nl,,,,(z) =F.

We remark that in Definition 2, we have replace a segment of cells by a line and

have introduced a new state (namely !) in order to delimit the meaningful segment.

We observe also that this new state (!) does not enter in the account of the states, but

it enters in the domain of the function 6.

Usually, we represent the evolution of a segment of cells as depicted in Fig. 1:

the cells are in abcisses and the time runs up, we do not indicate the state !. Such a

representation is called a space-time diagram (by states).

1.3. Information flow

Reading the Minsky’s paper [8], we see that he wishes to distinguish the number of

states from the messages got by cells. Thus, following his point of view, we modify

the condition [State definition] in order to allow various information flows between

automata, either bigger or lesser than to convey full information about the sole states:

Two way information flow definition. The state at time t+ 1 of one automaton depends

on its own state and on information sent by its two neighbours at time t.

We do not distinguish the sets of information going from left to right or from right

to left. This leads us to the following definitions.

Definition 3. (1) A cellular automaton with information flow ~2 is a triplet (Q,J, S),

where Q is a finite set, called the states set of &, J is a finite set, called the set of

information, and 6 is a function from J x Q x J into J x Q x J. The function 6 is the

local transition function.

(2) A configuration C of the automaton LZZ is an application from 3 in J x Q x J.
A configuration C evolves to another configuration C* such that

c*(z) = Wr,1,q,j1,2)

370 J. Mazoyer I Theoretical Computer Science 168 (1996) 367-404

Time

t(n)

1 n

+

Automata

Fig. 1. Space-time diagram of the synchronization of a segment of 16 automata using Baker’s solution.

if C(z - 1) = (jt,l,ql,jr,l), C(z) = (jt,q,j,) and W + 1) = (jt,2,q2,jr,2). The value
j, (j,) is the information sent to the right (left) neighbour. The application A defined

by C* = A(C) is called the global transition function. Thus, starting from an initial

configuration Co (at time 0), the net evolves through configurations C, = A’(Co).

Definition 4. The information flow FSSP is to design a cellular automaton d =

(Q, J, S) with the particular additional syntactical properties:

(i) Four distinguished states (O,T: F, !) belong to Q.

(ii) Three distinguished information (0, 1, !) belong to J.

(iii) State 0 is the quiescent state. It satisfies 6(0,0,0) = (O,O, 0), 6(0,0, !) = (O,O, 0)

and 6(!,0,0) = (O,O,O).

(iv) State ! is the outside state. It satisfies: Vji, jz E Q, 6(ji, !, j2) = (!, !, !).

(v) State i is the general state and state F is the Fire.

(vi) Information ! is the outside information, 0 is the null information and 1 is the

first signijkant information.

such that, starting from the initial configuration C[n] (of length n) defined by:

(a) Vz<O, C[n](z) = (!,!,!),

(b) ‘dz>n + 1, C[n](z) = (!, !, !),

J. Mazoyerl Theoretical Computer Science 168 (1996) 367404 371

(cl C[nl(l) = (Li: 11,
(d) ‘Vz E (2,. . . ,n}, C[n](z) = (O,O,O).

the evolution of the configuration C[n] is such that, for some time t(n),

(a) Vz E .ZZ, V’t E {l,..., 0) - 11, ml,(z) # (O,~,Oh
@I Vz E { 1,. . . ,n), C[nl,,,,G) = (O,F,O).

We remark that, as in Section 1.2, we have replaced a segment by a line in

Definition 4, using a special state (!) and a special information (!). In the follow-

ing, we may relax the condition (a) (the synchronization is set up only both by the

state and the information of the general) on the initial line, supposing that the value of

C[n](1) is either (0,i; 0) (the synchronization is set up only by the state of the general)

or (1, 0,l) (the synchronization is set up only by the information of the general).

Now, the question of optimal&y becomes:

State and information flow optimality. What is the minimal number of states “and’

information flow needed to solve the FSSP in minimal time?

In this paper, we present a minimal time solution where J is minimal (J = { 0, 1, ! })

and Q has 58 states.

Coming back to Minsky’s ideas, we observe that he introduced the notion of chan-

nels: a channel is the number of digits needed to describe an element of J. More

formally, the number of channel is [log, IJ - 111. We observe that both Balzer’s [l]

and Mazoyer’s [5] solutions have 3 channels. The solution presented here has only one

channel.

Usually, we represent the evolution of a segment of automata when J = (0, 1, !} as

depicted in Fig. 2: the cells are in abcisses and the time runs up, we do not indicate

the state and information flow !. Such representation is called a space-time diagram

(by states and information).
In Section 5, we study the opposite: few states and a large amount of information

flow. The result is that synchronization cannot be achieved with two states (the qui-

escent one and the fire), but it is possible with three states (the quiescent one, the

general and the fire).

1.4. Constraints

As there exists a minimal time solution with only one channel, we strengthen the

condition in order to get limits of the synchronization process.

Our reinforcement is to allow only one-way channel. Fig. 3 illustrates this notion.

The (previous) two-ways channel may be viewed as two electrical wires: one of them

carrying electrons from right to left the other one from left to right. We define one-way

channel as only one wire carrying electricity in both directions. Thus, if automaton k or

k + 1 has emitted a digit 1, both receive the digit 1. Definition 3 becomes Definition 5

and Definition 4 remains unchanged.

372 J. Muzoyerl Theoretical Computer Science 168 (1996) 367404

26

25

24

23

22

21

20

19

14

13

9

8

7

6

4

3

2

1

0

12345618 9 10 11 12 13 14

Fig. 2. Space-time diagram of the synchronization of a segment of 14 automata using the solution presented

in Section 3.

J. Mazoyeri Theoretical Cornpurer Science 168 (1996) 367404 373

Fig. 3. One-way and two-ways channels

Definition 5. The same as Definition 3 except the definition of C* which is now:

C*(z) = G(Max(j,,l,j),q,Max(jl,z,j))

if C(z - 1) = (j1,l,ql&1), C(z) = (j~,q,j,) and C(z + 1) = (j~,2,q2&,2).

In Section 4, we shall see that:

the minimal time is not always t(n) = 2n - 2, but it remains 2n - 2 except for a

little finite number of values of n.

Such a minimal time solution exists with 230 states. Its synchronization time

is: t(2) = 3, t(3) = 6, t(4) = 8, t(5) = 8, t(6) = 12 and, for n37,

t(n) = 2n - 2.

A. Structure of the set of solutions

First, we prove that the set of the solutions (in minimal time or not) to the FSSP

is not recursively enumerable. Thus, the questions of optimality are not - a priori -

obvious.

Theorem 1. The sets of the solutions and of minimal time solutions to the FSSP are

not recursively enumerable.

Proof. The idea of the proof is very simple: we suppose that the set of solutions (in

minimal time or not) is recursively enumerable; we observe that the set of nonsolutions

is obviously recursively enumerable; and we deduce that the set of the nonsolutions is

recursive. Under this assumption, we solve the halting problem. Let d be one cellular

automaton solution (in minimal time or not) to the FSSP, we define a family {&}I

of cellular automata such that {zZ}~ is a solution for the FSSP if and only if the ith

374 J. Mazoyeri Theoretical Computer Science 168 (1996) 367-404

Turing machine halts on the ith input string. In this case, we get an algorithm which

solves the halting problem, thus the contradiction.

To construct the family {&}i uses Smith’s simulation [12] of a Turing machine by

a one-dimensional cellular automaton. On input a segment of length n (initial config-

uration W!M L . . .L !“), automata {&}i have two concurrent behaviours: they syn-

n- 1 times

chronize the segment of length n and simulate the ith Turing machine on the ith

input.

1. If the simulation takes more than n cells of the tape, the simulation stops.

2. If the Turing machine halts, then the first behaviour (synchronization of the seg-

ment) stops.

3. When the synchronization is obtained, it stops the simulation of the Turing ma-

chine. By this way, if the ith Turing machine halts on the ith input, it halts at some

time 0(i) and a line of length greater than e(i) is not synchronized (2); but if the

Turing machine does not halt, then synchronization is obtained whatever is the length

of the segment.

4. And the contradiction is got.

It only remains to describe {&}i in details.

(i) Smith’s simulation
Fig. 4 illustrates this simulation. The automaton &A which simulates the Turing ma-

chine &!’ of alphabet A and states Q has A x (QU (0)) as set of states. Its state function

6* is defined by (6 is the transition function of M):

P((aa, B), (aa, 0), (a,, 0)) = (as, 0) (the read write head is not in the neighhour of
the cell and no simulation is performed),
6*((a,, 0), (ag, qc), (a,, 0)) = (a;, qj) if 6(qr, ag) = (q:, ai, St) (the read write head
is on the cell and it does not move; thus the cellular automaton changes the value
of the letter and updates the value of the state of M),

6*((a,,0),(as,qe),(a,,0))=(a;f,0) if &qp,ap)=(q~,a~,Le) or &qc,ag)=(q$,$,Ri)
(the read write head is on the cell and it moves; thus the cellular automaton only
changes the value of the letter),

Time

6 (q&l = (s3.csp K)

6 (q1,a5) = (q2.b. SO

Fig. 4. Smith’s simulation of a Turing machine by a cellular automaton.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367404 375

l 6*((a,,0),(q, 0),(a,,qe)) = (ag,qi) if 6(qt,a,) = (qi,a;,Le) (the read write head
is on the right neighbour cell and it moves to the left; thus the cellular automaton

takes it with the new state of M),

l ~?*((a~, qe), (aa, 0), (a,, 0)) = (up, 4:) if 6(qe, a,) = (q;, a$ Ri) (the read write head
is on the left neighbour cell and it moves to the right; thus the cellular automaton

takes it with the new state of M).

(ii) Setting the input of the Turing machine

Let A be the alphabet on which work our Turing machine and ai(1) . . . ai(be the ith

input string, we define a cellular automaton &input(i) of set of states A U {L,M, !} (!, M

and L have the same meaning as in the FSSP) defined by:

l &l,KL) = &(I)>

l Vj E { 1,. . . , i(t(i)) - I>, &Qi(j),L,L) = ai(j+l),

0 y E {l,..., i(e(i)) - 11, &&(j),k !I = Q(j+l),

0 vj E {l,..., i(4i)) - 1 }, d(L, ai(j),L> = Qi(j)t

l &&(f(i)),LL) = MY

l for all other cases, &cl, j3, y) = j3.

The automaton &input(i) has on any initial configuration of the form O!M u !“, the

n- I times

following behaviour: it sets up the state of the jth automaton to ai at time j. Thus:

l if e(i)<(n + l), the configuration obtained at time e(i) is

“!Qj(l). . . Ui(e(i)M u !O

n-C(i)-1 times

l if e(i) > (n + l), the configuration obtained at time n is W!a,(l). .ai(n)!w

(iii) Simulation of the ith Turing machine on the ith input string

Let M(i) be the ith Turing machine. We define a cellular automaton Yi by:

l The set of states of Yi is Qi x Qz x Qs where:

Qi is the set of states of &A(i) (point i)

Q2 is the set of states of dininput (point ii)

Qs is the set of states of a minimal time solution for the FSSP.

l The behaviour of the transition function of $ is the following:

- If the component in Qs is not F (the Fire), the behaviour is the one of dinrut on

the second component, in order to build the entry for M(i).

- If the component in Qs is the Fire, the behaviour is the one of &A(,, on the first

component (simulation of M(i)).

- On the third component, the synchronization is obtained by this way: the state M

of the second component is understood as the outside. If the state A4 is never seen,

then the synchronization never occurs (all the segments enter a new state N when

reaching !).

- In addition when on the third component the triplet of states (!,F, F) appears,

the second component of the first component becomes the initial state of

M(i).

376 J. Mazoyerl Theoretical Computer Science 168 (1996) 367404

By this way, on the initial configuration of length n

“K !, !)((0,0),L,M)((0,0),L,L)...((0,0),L,L)(!, 1, !I”

n - 1 times

at time 2n - 2:

o if L’(i) 3(n + l), at time 2n - 2, the following configuration is obtained

“(!Y !Y !)((ai(l),gO),~i(l),F)((~i(2), 0),@(2),F). . . ((4(!(i)), 0),Q(t(i)),F)

((0,0),M,L),((0,0),L,L)...((0,0),L,L)(!, !, !I”

n-e(i)-1 times

and then &A(i) simulates the ith Turing machine on the ith input string.

l if not, at time 2n - 2, the following configuration is obtained:

“(19 !Y !>(Ui(l),0),(Ui(l),N). . .((Ui(6(i)),O),Ui(e(i)),N)(!, !3 !I”

and no simulation of M(i) is performed.

(iv) Finally, the construction of {&}i is easy to complete. Its states have two com-

ponents: one is state of a solution for the FSSP, the second one is a state of 9, (point

iii)). Its transition function works as previously mentioned. 0

Thus, it is impossible to describe all the minimal time solutions to the FSSP with

a finite number of words. In fact, in [7], we have described a lot of solutions. Three

main features arise:

1. All solutions use a “divide and conquer” strategy. Only the ratio in which the

segment is cut changes (it may be any ratio in [i, l[).

2. It is possible to obtain minimal time solution using all the transitions of a non-

minimal time solution.

3. Non minimal synchronization times have some closure properties.

3. A minimal time solution with a minimal number of two-way channels

The following described automaton has been tested on a computer for segments from

length 2 up to 1000. It is possible to prove that it is sufficient to test it for segments

from 2 up to 300. We do not give this (formal and tedious) proof.

3.1. General strategy

The general strategy to obtain a solution of the FSSP is to break the line at its

:,($)2,($)3,... (with f E [i, l] n 9) and then to synchronize each new created

subline by a recursive call to one solution (the expected solution itself or another

one). In [5], the value of f is $ and each subline is synchronized by a recursive call

to the constructed solution. In [l], the value of f is t and each subline is synchronized

J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 371

by a recursive call to the “image” solution (the solution itself interchanging roles played

by the left and the right in order to get the synchronization from the right end cell).

Here, we aim to minimize the information flow and observing that in the Mazoyer’s

strategy [5] each cell must know the remainder of its location by 3 and that we need 2

information to give it this knowledge, we choose the Balzer’s strategy [l]. If Balzer’s

strategy increases the number of states (by the “image” solution), we do not mind here

because we are only interested in the information Aow. Thus, we begin to describe the

Balzer’s strategy in some details. Fig. 1 shows the synchronization of a short segment

and Fig. 5 illustrates his solution when the number of cells is so large that we may

identify ZY2 to W2.

1. Breaking the segment at its i, ($)‘, At time 0, the general sends a signal

at maximal speed (one cell per unit of time), called the “initial wave”, this signal is

reflected by the right end and comes back at maximal speed; it reaches the general

at 2n - 2 (the minimal synchronization time). A family of signals (“break signals” in

Fig. 5), appearing as connected waves of white squares on the Fig. 1, is set up. The

slopes of these break signals are 2,2*, . . . and they are generated on the second cell. To

set up such a family of signals is not possible by a finite automaton; they are set up

by the whole segment. Every time the break signal of level j (at slope 2j) moves to

the right, it sends a signal (at maximal speed) to the left, called an “auxiliary signal”.

Generals

Part of the
synchronization
process set up by the
left-end automaton

Partofthe
synchronization
process set up by the
right-end automaton

Break signals

Signals at
maximalspeed

Automaton 1 Automaton n

Fig. 5. The Balzer’s strategy

378 J. Mazoyerl Theoretical Computer Science 168 (1996) 367404

The signal of level j + 1 moves to the right one time out of two when it receives

such an auxiliary signal. By this way, when break signals meet the reflection of the

initial wave, the line is cut. But, due to the discrete nature of the problem, a segment

of length n is cut on the automaton [LtJ + 1. If 12 is odd, this value corresponds to

the middle of the segment. If n is even, observing that selecting cell [SJ + 1 is to

select cell [IJ one time later, we have selected the two cells near of the middle of the

segment.

2. Synchronization of the sublines. Selecting cells on the path of the reflection of

the initial wave in the space time diagram creates new sublines. More precisely, if

the initial segment has length IZ, the first subline is made of cells L:] to n (if n is

even) or 151 + 1 to IZ (if n is odd). The (j + 1)th subline is similarly obtained from

the jth subline. Then the synchronization of a subline is initiated from its right end:

on the path of the reflection of the initial wave if the length of this subline is odd

or with a delay of one unit of time if its length is even. We observe that when the

synchronization of a new subline is initiated, the left end cell of the subline is not set

up, but its right end can know the parity of the (future) subline. This synchronization

from the right end is achieved by an image solution.

3. Completing the synchronization. The previous process is iterated until all sublines

have length 2.

3.2. Breaking the segment

In this section, we set up the exchange of information needed to give to cells the

ability to recognize and answer to the reflection of the initial wave. This exchange is

described in Fig. 6 in which we present the beginning of segment so much long that

we do not see the reflection of the initial wave.

(a) Recognition of the reflection of the initial wave
As the initial wave is reflected as soon as possible (minimal time solution), we observe

that the cell IZ -j (of a segment of length n) receives the initial wave at time j - 1 and

its reflection at time n - 1 + 12 - j. Thus, the number of time units between the arrival

of the initial wave and of its reflection is always even (2(n - j)). Thus, we choose

that any digit 1 reaching a cell before the reflection of the initial wave, reaches it an

odd number of times after the initial wave itself. By this way, counting times since the

initial wave modulo 2, any cell can recognize the reflection of this initial wave. In the

following, we shall mark the states on which the reflection of the initial wave cannot

occur by a +: a *-state receiving 1 from its right neighbour does not understand it as

the reflection of the initial wave. We call site a point of the space-time diagram.

(b) Eventual break sites
We list possible knowledges that cells must have in mind if they receive the reflection

of the initial wave. According to the previous Section 3, the three following knowledges

are needed:

eventual (*) left-end sites. If I have a not + state and I receive digit 1 from my

right neighbour, I know that the broken segment is even and I become the right end

J. Mazoyeri Theoretical Computer Science 168 (1996) 367404 379

0

Fig. 6. The information flow setting up breaks of the segment.

of the left new subline. In this case, the cell becomes the general (at the right end) of

the new created subline.

eventual (*) right and left-end sites. If I have not a * state and I receive digit 1

from my right neighbour, I know that the broken segment is odd and I become the

right end of the left new subline and the left end of the right subline. In this case,

the cell becomes the general (at the right end) of the new created subline and it also

becomes the left end of the previous created subline.

eventual (*) right-end sites. If I have not a * state and I receive digit 1 from my

right neighbour, I know that the broken segment is even and I become the left end

of the right subline. In this case, the cell becomes the left end of the previous created

subline.

380 J. Mazoyer I Theoretical Computer Science 168 (1996) 367-404

All these knowledges are set up in the states of the automata. We observe easily that

any cell enters eventual (*) right-end sites (eventual (*) right and left-end sites) when

it leaves (*) right and left-end sites (eventual (*) left-end sites). A cell changes its

knowledge when it receives digit 1 from its right neighbour on a * site (an odd number

of time after the initial wave). These digits 1 correspond to the auxiliary signals of

Section 3. But they cannot be sent by a cell when it receives the initial wave in order

to keep the parity of point a). We choose that a cell emits such a signal one unit of

time after it receives the initial wave.

It remains the problem to know when receiving such a digit 1 on a * site, a cell

enters eventual (*) left-end sites. This is not quite obvious since sometimes receiving

such a digit it must enter these sites and sometimes not. Observing that the same digit 1

coming from the right must put cell j in eventual (*) right-end sites and cell j + 1

in eventual (*) left-end sites, we choose that, when cell j enters eventual (*) right

and left-end sites, it sends a digit 1 to its right neighbour. Conversely, when some cell

receives a digit 1 from its left neighbour, it knows that, if it receives digit 1 from

its right neighbour on a not * state, it enters an eventual (*) left-end site. This new

knowledge is:

(*) Potential-eventual-end sites. Receiving digit 1 from my right neighbour on a *
site, I enter eventual (*) left-end sites.

(c) Now we list the knowledges that some cell must have in mind to set up the

delay of 1 unit of time if the segment to be broken is even. We observe that the

only knowledge needed for the right-end cell is its parity. We also observe that it may

know its parity if all cells know their own parity. Thus, we introduce a new needed

knowledge:

Parity. I know the parity of my location in the segment. If the cell is the right-end

of the segment, it sets up a delay of 1 unit of time if and only if its parity is even.

For other automata, we observe that reflections of initial waves corresponding to

even (odd) lines may reach them every 4 units of time. Thus, the delay to be set up

depends only of the parity of the cell and of the remainder by 4 of the number of

times elapsed since the initial wave has reached it. This remainder is known if each cell

counts the elapsed time modulo 4. We observe that leaving an eventual (*) right-end

site, any cell resets this counter because it concerns a new created subline. Thus we

introduce this new knowledge:

Remainder modulo 4. I know the remainder module 4 of the time elapsed since
I received the initial wave. This remainder is used both to choose between 1 digits

coming from the right and the one understood as the reflection of the initial wave and

to select the delay used in the synchronization of the new created subline.

(d) As indicated in Section 3, we must distinguish the second cell on which the break

signals are created. We observe that in order to achieve synchronization of segment

of length 3, the second cell must know its number before time 3. Thus, we choose to

introduce the following knowledge:

Number 2. I am the second cell in the segment and to set up it in the following

way: The left-end cell (which knows its location receiving ! of its left neighbour in the

.I. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 381

outside) sends digit 1 to its right neighbour one unit of time after it sends the initial

wave.

Now we must indicate to any cell its parity. To give this knowledge, the second cell

sends to its right neighbour digit 1 as soon as possible: at time 3 because if it sends

this digit at time 2, automaton 2 would believe that it is the second. We iterate the

process. Any cell, receiving digit 1 from its left neighbour 2 times after the initial

wave knows that its parity is odd and sends digit 0 to its right neighbour. Similarly,

any cell, receiving digit 0 from its left neighbour 2 times after the initial wave knows

that its parity is even and sends digit 1 to its right neighbour.

(e) We observe that the second cell does not follow the process described in (b).

Receiving the reflection of the initial wave, it always becomes the general (at the right

end) of a new created subline of length 2. Thus we choose to initiate the process of

(b) on the third cell.

Now, we study the behaviour of the third cell.

l If the segment has length 4, the third cell becomes the left-end of a new subline of

length 2 and it does not become the right-end general of a new subline.

l If the segment has length 5 the third cell becomes the right-end general of a new

subline of length 3 and the left-end of a new subline.

l If the segment has length 6, the third cell becomes the right-end general of a new

subline of length 2 and it does not become the left-end of a new subline.

l If the segment has length 7, is created a new subline of length 4.

l If the segment has a length greater than 7, a new subline of length 4 or 5 or 6 is

created.

Thus, the third cell is always in a eventual (*) end site. It must enter eventual (*)

right and left-end sites at time 4 and, then, receiving digit 1 from its right neighbour

it enters the following eventual (*) sites in the order of point (b). Thus, we need the

following information:

Number 3. Z am the third cell. At time 4, the third cell enters eventual (*) right

and left-end sites and, then, leaving eventual (*) right-end sites, it enters eventual (*)

left-end sites.

We observe that the third cell knows its parity at time 3. We choose to give it its

location by: the second cell (which knows its location at time 2 and sends (at time 3)

to its right neighbour a “parity” digit 1) sends digit 1 to its right neighbour at time 4

(as soon as possible). Thus, the third cell is the only one which receives digits 1 two

and three times after the initial wave. Finally, we observe that distinguishing what

happens 2 times after the initial wave, receiving a digit 1 from its left neighbour may

be understood as knowledges of points (e) or (b).

3.3. States of the break process

In this section, we describe the states used to set up the general and the break

process described in Section 3.2. We use two conventions: to mark by a * states on

382 J. Mazoyer I Theoretical Computer Science 168 (1996) 367404

which the reflection of the initial wave cannot occur (see Section 3.2) and to mark all

states by an arrow -, indicating that the initial wave runs from left to right.

States of the general are shown in Fig. 7. The general always receives ! from its left

neighbour (in the outside). Starting from state i, emitting 1 to the right (initial wave),

it enters state k, emiting 1 to the right (marking the second automaton), and, then,

it enters and remains in state p@ until it receives the reflection of the initial wave in

order to be put in F. We observe that the general does not need to count modulo 4.

The states involved in Section 3.2 are shown in Fig. 8. In this figure, we also have

indicated when the reflection of the initial wave can occur; and we have distinguished

when, in this case, the cell becomes a right general (set of states R), a left-end (set of

states L) or the both (set of states M).

The two time units after the initial wave (states i and 2) are used to set up the

second cell and the parity of the cell (points c) and d) of Section 3.2). Thus, three

times after the initial wave, we introduce the states 22, ddd and l&en having these

knowledges.

The states of the second cell begin by the letter “2”. As mentioned in point (c) of

3.2, it sets up the third cell and then waits the reflection of the initial wave. We do

not have to know where this reflection occurs because the second cell always becomes

a general (point (e) of 3.2). Only 3 states are necessary: 2Z,2b and 2c’.

The third cell in state add, receives digit 1 from the second; at this time it enters

one state among states marked by the letter “3”. This third cell follows the process of

I !.I)

CL (LO 1

i

Fig. 7. States of the general

L

II
.,,

,,.

.,,
,

384 J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404

point (b) modified by point (e). 6 states are used:

3m and 3tii* (eventual (*) right and left-end states),

3r’ and 3rP (eventual (*) right-end states),

3i and 31; (eventual (*) left-end states).

States of an even (odd) cell are marked by “E”. (“0”). The process of point b)

of 3.2 (eventual and potential-eventual end sites) is set up using the following 2 x 8

states:

Ep’ and El?; 06 and Oa* ((*) potential-eventual-end states),

ET and E?; Or and Op (eventual (*) left-end states),

Em and Em*; Om and Orii* (eventual (*) right and left-end states),

Er’ and Er’*; Or’ and Or’* (eventual (*) right-end states).

These states mark the auxiliary signals of point 1) of Section 3.1. Between two such

signals and only in this case, one cell needs to know is remainder modulo 4. This is

due to the fact that receiving in an potential-eventual-end state the reflection of the

initial wave, one cell knows that the delay it has to bring up is null because its left

neighbour becomes both a general and a left-end indicating that the segment is odd.

This remainder is set up using 2 x 4 states:

Eo’ and Eo’*; 00’ and Oo’* when the time since the initial wave is even,

Ee’ and Ee’*; 05 and OP when the time since the initial wave is odd.

Thus all the process of Section 3.2 is set up with 37 states.

3.4. Completing the synchronization

Now, we study what happens when the reflection of the initial wave reaches a

cell.

Fig. 9 is Fig. 8 on which we have added the states corresponding to the end cell.

l When the segment to cut is even and when some cell in an eventual right-end state

receives the reflected initial wave, it becomes the general (at the right) of a new

created subline. Thus it enters a new state (g), sending the reflected initial wave (by

digit 1) to its left neighbour and nothing (digit 0) to its right neighbour. In state l?,

it sends to its left neighbour digit 1, indicating to it that it is the second cell of the

new created subline, and enters state pl?. In state pF, it waits until it receives the

reflection of the initial wave of the new subline (at its left) and, then, it enters the

Fire.

l When the segment to cut is odd and when some cell in an eventual right- and left-

end state receives the reflected initial wave, it becomes the general (at the right)

of a new created subline and the left-end automaton of the new subline created at

its right. But this new subline (at its right) is synchronized with a null delay (the

segment is odd); thus, our cell will also become the general (at the left) of the first

subline created during the synchronization of its right subline. And, our cell must

act as if it was a general for its both sublines (at its right and at its left). It acts as

previously sending digits 1 both at its right and at its left. This is achieved by the

new state I? (state p@ is identified with the previous case).

J. Matoyeri Theoretical Computer Science 168 (1996) 367-404 385

l When the segment to cut is even and when some cell in an eventual left-end state

receives the reflected initial wave, it becomes the left-end cell of the subline at its

right. It enters state pz transmitting the reflected initial wave to its left neighbour

and digit 0 to its right one. As described previously, at the next time, it acts as a

general for its right subline. This is done with a new state E.

l The behaviour of the third cell follows the previous rules. But the second one has a

special behaviour. As said in point (d) of 3.2, the second cell, receiving the reflected

initial wave, will be in Fire after one unit of time. Thus, it waits one time in state

2$ and also acts as the middle automaton of an odd segment, sending digit 1 to its

both neighbours.

Fig. 10 depicts the states of the right-end cell. It only reflects the initial wave and

then waits the reflection of the reflected initial wave to enter the Fire.

In Fig. 9, we have also indicated the knowledge of the parity of the length of the

segment, the cell becomes an end of which when it receives the reflected initial wave.

In states 05, 06, EL5 and Ej5, it knows that the segment is odd and that no delay must

be set up. In states Oe’ and Et?, it knows that the segment is even and that a delay of

1 unit of time must be set up. In state 2, it knows that the segment is even and has

possibly length 2.

Fig. 11 shows states involved to set up the delay. In the general case (the segment

is even but has not length 2) this delay is set up using the states E%! (by the cell

number 2, corresponding to an cell reached by the reflection of the initial wave in state

c) and Ejl by the others.

Before to set up new created sublines of length 2, we observe that to obtain our final

automaton, we must duplicate all states according to the fact that the synchronization

is initiated from the left to the right (see point (2) of 3.1).

When a cell is in state Ek!, if the new subline has a length greater than 2, it

receives digits 0 from its two neighbours and enters state 25. If the new subline has

length 2, in state Eg, it receives digit 1 from its left neighbour and the following time

it will receive digits 1 from its both neighbours, entering the fire the next time. Thus,

receiving 1 from its left neighbour, it enters 2s and then 23. We observe that we may

identify states EZ and 2s.

Finally, we obtain the automaton of Fig. 12. This automaton has 92 states. Its evo-

lution on a segment of 14 automata is shown in Fig. 2.

3.5. Comments

The automaton, previously described and depicted in Fig. 12, uses a minimal amount

of information flow but a large amount of states. Can we reduce its number of states?

First of all, we observe that it is incompletely specified and when no transition is indi-

cated this means that any transition may occur. Thus to minimize it is MY-complete.

In the following, we present a possible minimization obtaining a final automaton with

(only) 58 states (shown in Fig. 13).

J. Mazoyeri Theoretical Computer Science 168 (1996) 367-404

Fig. 9. States of the break process and of the end automata

1. The two possible second cells (when the synchronization is initiated from the left

or the right) do not need to know from which end the synchronization started; they

see from which side arises the reflected initial wave. This leads us to identify states

2% and 2% 2c’ and 2;, 2F and 2E.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 387

F I?
(O.!) (0.1)

(0. I) ‘b (1.1)

PF
(0,~)

(1.1)

(I.-) (0. I) &3 0
0. I)

Fig. 10. States of the right end automaton.

Fig. 11. Setting up the delay

2. The same argument holds for the two third cells. This leads us to identify

states: 3r’ and 3F, 3rP and 3F*, 3i and 3i, 3p and 3?, 36 and 3i%, 315~ and

3iG*.

388 J. Mazoyer i Theoretical Computer Science I68 (1996) 367404

Fig. 12. States of the generic automaton

3. When a cell is an “even” state (X2 or Xx where X is 0 or E) the side from

which digit 1 may arise depends on the direction of the initial wave. Thus, we identify

Ee’ and Ee, ES* and E6*, Oe’ and 05, OS* and OZ*.

4. The same remark holds for states XF, leading us to identify Ep’ and Eb, Ep’* and

Eb*, 06 and OF, Oj?i+ and OF*.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404

Fig. 13. States of the generic automaton with 58 states.

5. The same remark also holds for states x15, leading us to identify Erii and E&,

ECi* and E&i*, 015 and Or&, OS* and Om‘*.

6. But the previous remark does not hold for states Ei and El. Nevertheless, we

may identify ET and EF and, similarly, Et and ET, Or and OF, Or’ and Oi, Er’* and

Ef*, E?* and Ep, Op and OF*, Or’* and Oi*.

390 J. Mazoyer I Theoretical Computer Science 168 (1996) 367-404

7. Finally, we observe that we may identify ti and 6, pF and pF, l&en and l?,

Even and l?x.

Clearly, it is easy to reduce this number of states of one or two units modifying some

chooses. We do not know the minimal number of states needed for a synchronizing

automaton with a two-ways channel. Our solution achieves synchronization in time

2n - 2 which is the minimal time. Thus, we may state the theorem:

Theorem 2. There exists a minimal time solution to the FSSP with only one digit
of information exchanged in both directions and with 58 states.

4. A minimal time solution with a minimal number of one-way channels

In this section, we study one-way channel solutions. First, in Section 4.1, we observe

that we do not need to construct directly one-way channel solutions but we can adapt

the two-ways solution of Section 3 excluding all crosses. Then, we give in Section 4.2

some indications on what are optimal time solutions in the context of the one-way

channel constraint. Finally, we adapt the solution of Section 3, obtaining a solution

without crosses with 230 states and only one one-way channel. This solution has been

tested by computer for segment from 2 to 1000. It induces a one-way solution with,

at most, 920 states.

4.1. Excluding crosses

We do not construct a one-way solution in the sense of Definition 5. We de-

note in the space-diagram of a two-ways channel automaton (such as the one de-

picted in Fig. 2, by >> k, t >> (GK k, t <) the digit sent by the cell k to its right

(left) neighbour at time t. Now we define a two-way solution to the FSSP excluding
crosses.

Definition 6. A two-way solution in time t(n) to the FSSP excludes crosses if in any

space-time diagram of the behaviour of the solution on any initial configuration C[n]
of Definition 3 the situation

>>k,t>>=l and <<k+l,t<=l

never occurs for all k in { 1,. . .,n} and t in (0,. . . , t(n)}.

In other words, no picture (cross) of the form

appears in any significant space-time diagram of the two-way solution.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367404 391

Proposition 1. Let d ((Q,{!,O,l},S)) b e a two-way solution in time t(n) to the

FSSP excluding crosses with IQ1 states, then there exists a one-way solution d* (Q*,
{!,O, 1},6*) in time t(n) to the FSSP where IQ*1 = 4 x [Ql.

Proof, The formal proof is tedious but the idea is very simple. The set of states of

d* is given by: Q = Q x (0, 1)‘. If in the space-time diagram of d*, a cell k is, at

time t, in state (q,c,n), it understands this fact as: In the space-time diagram of d,
the cell k is, at time t, in state q and has emitted E to its left neighbour and n to its
right neighbour. Thus, the next time, receiving from its right the digit 1, it understands

it as sent by its left neighbour (case n = 0) or not (case q = 1).

Now we give 6*.

Case E = 1 and n = 1

~*(jr,l,(q, l,l),j1,2) = w-tq,0).

Case E = 0 and n = 1

~*&l,(%o, l),h,2) = (ir,1,4,0).

Case E = 1 and n = 0

wjr,l,(q, LO),j1,2) = W,q,_h,2).

Case E = 0 and v] = 0

s*(jr,l, (s,O,W,2) = Wr,l,%h,2).

The proof of the simulation of d by d* is long and tedious. It is easy to show by

induction on the time that the evolutions are what we have in mind. 0

Thus, in the following, we shall only consider two-way solutions to the FSSP ex-

cluding crosses.

4.2. One-way optimal time solutions

If in the case of two-way solutions to the FSSP, the minimal time remains t(n) =
2n - 2 as in the standard case, this point is no more true in the one-way channel case.

This results from the following proposition:

Proposition 2. For any segment of length n (na2), the evolution of a one-way min-
imal solution to the FSSP is such that:

1. > l,o >= 1.

2. Zf the minimal time is asymptotically 2n, then, for k in { 1,. . .,n - l}, > k,
k-l>>=l.

3. If the minimal time is ultimately 2n-2, then, for some integer no, t(no)>2no - 1.

Proof. (1) There exists some time z (r 2 0) for which >> 1, z >>= 1: else, all cells

(except the general) will stay in the quiescent state L and no synchronization will occur.

392 J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404

Let JZZ be a one-way minimal solution to the FSSP in time t(n). If the value of z&

corresponding to d is greater than 0, then we define one automaton 98 with the same

states and transition function than JG! except that it synchronizes initial configuration in

which the general is in the state of d at time rd. Automaton 99 is a one-way minimal

solution to the FSSP in time t(n) - rd. Contradiction.

2. Let JZZ be a one-way minimal solution to the FSSP in asymptotical time 2n. We

consider a segment of length 3. There exists some integer z such that > 2,1 SY >>= 1

(else the third automaton will stay in the quiescent state). If we suppose that z > 0,

then for a segment of length IZ, we have, for k in (2,. . . , n - 1):

0 Va E {O,..., (k - l)z}, >> k,k - 1 + M >>= 0,

l and >> k,k + (k - 1)~ >>= 1.

Thus, the time of synchronization is, at best, 2n + (n - 1)~ which is asymptotically

greater than 2n. Thus, by contradiction, z = 0.

3. Let JZZ be a one-way minimal solution of the FSSP in time 2n - 2. Let us recall

that there does not exist solution to the FSSP which synchronizes some segment of

length 121 in a time less than 2ni -2. For contradiction, we suppose that t(2) = 2. For a

segment of length 2, 4 cases are possible (see Fig. 14). In the four cases, by the point 1)

and the definition of the initial configuration, we have >> 1,0 >= 1, < 1,0 <<= 0.

We study these cases:

Case 1: > 1,l >>= 1, < 2,1 <= 0.

If the segment has length 3, the first cell receives digit 1 from its right and, as for a

segment of length 2, it enters the Fire at time 2; and the synchronization of a segment

of length 3 would be achieved before time 4 which is impossible.

Case 2: >> 1,1 >>= 1, < 2,1 <= 1.

Similar to case 1.

Case 3: >> 1,1 >>= 0, < 2,1 <= 1.

If the segment has length 3, then > 2,1 >>= 1 (by point 2), < 3,2 <= 1 (since

< 2,1 <<= 1 in our hypothesis). Whatever the value of > 2,2 >> is, at time 3, the

third cell receives digit 1 from its left. But synchronization of a segment of length 2

in case 3, implies that it enters the Fire at time 3; thus before time 4 which is impos-

sible.

Case 4: > 1,1 >>= 0, << 2,1 <<= 0.

First we consider the synchronization of a segment of length 3. We have:

0 > 2,1 >>= 1 (point 2);

l < 2,1 <= 1 (else, as we are in case 4, the first cell would enter Fire at time 3

which is impossible);

l << 3,2 <<= 0 (in case 4, we have < 2,1 <= 0);

l < 2,2 <= 1 (else, as we are in case 4, the third cell would enter Fire at time 3

which is impossible);

l Between the first and the second cell is digit 1 at time 2 (it is to say >> 1,2 >= 1

or < 2,2 <= 1) because, else, as we are in case 4, the first cell would enter Fire

at time 3 which is impossible.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 393

A 3-segment has
this evolution :

A 3-segnent has
thii evolution :

A J-segment has
thii evolution :

A 3-segment has
this evolution :

F

S

Right digit 1

Left digit 1

Right digit 0

Left digit 0

Excitation 1

Unknown excitation

State Fiie

Unknown state

A Qsegnmt has
this evolution :

Fig. 14. Cases appearing in the proof of Proposition 2

l We observe that if the synchronization is achieved at time 4 then >> 1,3 >>= 0 or

<< 2,3 <<= 0.

Now, we consider a segment of length 4, digits emitted for the first and the second

cell are the same than in case of length 3 from time 0 up to 2. In addition, the third

cell acting as the second one emits digit 1 to its left at time 1, and to its right at time

2. The second cell is, at time 2 in both cases (lengths 3 and 4) in the same state and

emits the same digit to the first cell. Thus, in both cases, the first cell enters the Fire

at time 3 which is impossible. 0

From Proposition 2, we deduce that the minimal time possible is, at best, 2n - 2

almost everywhere and we know that an exception is n = 2 or n = 4. We do not

394 J. Mazoyerl Theoretical Computer Science 168 (1996) 367404

search for defining with more accuracy what is the minimal time with the one-way

constraint. We only set the following definition.

Definition 7. A one-way solution to the FSSP in time t(n) is in (no)-minimal time if

t(n) = 2n - 2 for all values of n greater than no.

In the remainder of this Section 4, we prove the following theorem which shows

that (no)-minimal time one-way solutions exist.

Theorem 3. There exists a (6)-minimal time one-way solution to the FSSP. Its values

of t(n) are given by: t(2) = 3, t(3) = 6, t(4) = 8, t(5) = 8, t(6) = 12 and for

na7, t(n)=2n-2.

4.3. Modijkations to the previous strategy

Fig. 15 shows the crosses appearing in the evolution of the solution described in

Section 3. All these crosses appear during the evolution setting up the breaks of the

segment (see Fig. 2 for the delay which does not use digit 1). We list the different

locations of the crosses:

(i) Crosses between digits 1 setting up (*) potential eventual-end sites and the

reflected initial wave (for example between cells 4 and 5 at time 20 if the segment

has length 13 in Fig. 15).

(ii) Crosses between digits 1 setting up (*) eventual left-end sites and the reflected

initial wave (for example between cells 4 and 5 at time 8 if the segment has length 7

in Fig. 15). This point concerns only the first break signal.

(iii) Crosses between digits 1 indicating the parity and the ones corresponding to the

auxiliary signals setting up the first break signal (for example between cells 4 and 5

at time 5 in Fig. 15).

(iv) Crosses related at the initiation of the whole process: between cells 1 and 2 at

time 1 (for a length of 2), between cells 2 and 3 at time 4 (for a length of 4).

Fig. 16 depicts the new information flow obtained when we achieve the following

modifications.

Point (i) is easy to solve. We observe that - in the exchange of digits described in

Fig. 15 - the first (*) potential eventual-end site (corresponding to the jth break) can

be set up one unit of time later avoiding the litigious cross. This does not introduce

any new problem: any cell knows that the synchronization was initiated at its left and

that the 1st break signal has been set up; thus, in this case, it will always understand

a digit 1 coming from its left as a signal putting it in the (*) potential eventual-end

sites. For example, in Fig. 16, a digit 1 is set by cell 4 to its right neighbour not at

time 20 but at time 2 1. This is done introducing new states: to send the digit and to

receive it.

Point (ii) is more difficult to solve. First, the previous modification is also introduced

for the 1st break signal. By this way, the crosses of point (ii) disappear but new crosses

appear one unit of time later between digits 1 setting up (*) eventual left-end sites and,

J. Mazoyer I Theoretical Computer Science 168 (1996) 367-404 395

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I I

I

1’) lwenhral

+htand kftend

E3.M

I (*I Potentkl

eventualend

SfeS

1 23 4 567 8 9 10 111213 14 1516 17 1819 20 2122

Fig. 15. Crosses appearing in the information flow setting up breaks of the segment in the two-ways solutions

of Section 3.

no more the reflected initial wave, but the auxiliary signals setting up the 1st break

signal (for example between cells 4 and 5 at time 9). Now the solution is obvious:

we suppress one out of two of the auxiliary signals setting up the 1st break signal.

This is possible observing that the 1st break signal remains only one time in any break

state at level 1. This 1 st break signal has now the following behaviour (illustrated in

Fig. 16):

l Receiving digit 1 from its left neighbour, one cell enters the state ET or Or (eventual-

left state). If simultaneously it receives digit 1 from its right neighbor-u (the reflected

initial wave) it enters state L.

396 J. Mazoyer I Theoretical Computer Science 168 (1996) 367404

31

36

35

34

33

32

31

30

29

26

27

26

25

24

23

22

21

20

19

18

17

16

1s

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22

14

13

I2

I1

10

9

8

7

6

5

4

3

2

1

0 I II I Ill I I I II I I I I Il I I

(0) Ewmml
kft-md
sits

Fig. 16. The information flow setting up breaks of the segment in the one-way solution.

One unit of time later, it receives digit 1 from its right neighbour and enters state

Em* or OrIi*. The next time it enters the state Etii or O&L

The next time, it enters (without receiving digit 1 from its right neighbour) the state

Er’* or Or’*.

Then, its evoluation is as in Section 3 with the previous modification.

Point (iii) is easy to solve: it is suflicient to send auxiliary signals some units of time

later. Observing Fig. 15, we see that only one unit is suflkient. In fact, the number of

units added depends on how we solve the point (iv). As indicated in Fig. 16, we have

chosen to add 6 units of time. This is achieved by introducing 6 new states (for odd

and even automata) before to enter the states Oo’* or Eo’*.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367404 397

Point (iv) is solved following Fig. 17. This figure depicts the synchronization of short

segments from length 2 to 6. Many other solutions exist but these ones are simpler.

In the general case (segments of length greater than 6), we must initiate the whole

process by the exchange of digits depicted on the Fig. 16. The six first automata now

know their number (see Fig. 16) and the initiation is completed at time 11. Then, after

time 11, only the three first ones remember their number according to the process of

Section 3.

AOlcmn(l I 2 3 Automata I 2 3 4

T&U

Aulanata I 2 3 4 5 6

S
OR

chrouizati~n qf a se
automata m time 1 ?

ment

Fig. 17. Synchronization of short segments in the one-way solution.

398 J. Mazoyeri Theoretical Computer Science 168 (1996) 367404

Such an automaton may be constructed with 230 states without any minimization,

giving us a one-way solution to the FSSP with 920 states.

5. Solution with few states

5.1. Results

The definition of the FSSP (see Definition 4) involves three states, 0,i and F (the

“outside” ! is not considered as a state in this count). In fact, one can think about

a definition involving only two states 0 and F. State i is used to initiate the synchro-

nization, but the synchronization may be initiated when the general sends some special

information p to its right neighbour. Thus, the minimal number of states needed to get

the synchronization may be 2. In this section, we show that there does not exist any

solution to the FSSP with 2 states but that there exists one with 3 states.

Theorem 4. There does not exist any solution to the FSSP with 2 states.

Proof. For contradiction, we suppose that such a solution (in time t(n)) exists. The

initial configuration C[n] is now:

“(!,!,!)(~,0,~),~0,0,0),.1.,(0,0,0!(!,!,~~~.
n- I times

All active cells (from times 0 to t(n)) are in state 0. A simple induction shows that,

due to the quiescent character of state 0 and information 0, the evolution is such that:

At even times, cells with an even number receive and emit in both directions in-

formation 0; and at odd times, cells with an odd number receive and emit in both

directions information 0.

Without loss of generality, suppose that t(n) is even, at time t(n) - 1 an odd cell

receives in state 0 information 0 from its two neighbours and thus enters, at time t(n),

state 0 (point (iii) of the definition 4) and not the Firing state. Contradiction. 0

In the next section, we prove Theorem 5.

Theorem 5. There exists a minimal time (2n - 2 units) solution to the FSSP with
3 states.

5.2. An automaton with 3 states and large information jlow

The synchronization is initiated by information and not by state. Thus, the initial

configuration is

~(!,!,!)(~,0,~),~0,0,0),.~.,~0,0,0~~~,~,~~~.
n- 1 times

J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 399

We shall only give some indications on such a solution. We consider the Balzer’s

solution, depicted in Fig. 1 and, briefly, described in Section 3.1.

Looking to the proof of Theorem 4, we observe that, without using new states, the

initiation of the synchronization can modify the information flow emitted by all the

points of the space-time diagram of the form (x,t) with x + t odd. We call “first

grid’, denoted Ft , the set of sites {(x, t) 1 x + t odd and x + t 3 3). The first grid

corresponds to the area influenced by the digit p. The “second grid” is F2, defined

by {(x, t) (x + t even and x + t 24). We observe that all sites in the area of the

synchronization ({(x, t) 1 t 2x - 1)) are:

F1 uF2U(l,O)U(l,l).

We shall use a new state ev to mark sites of F1 and 0 to mark F2; the two other sites

will have a special treatment.

The information is viewed as a product of elementary informations:

J = J~ay X JDir X J~ta X JStaRef X J~rans X JRef,

where:

(i) JL~~ = {O,~~~,&,o,f),

(ii> JDir = {f.r>,

(iii) Jsta = {O,g,a,b, I},

(iv) JstaRef = {O,g,a,b, l),
(v) J~rans = {O,g,a,b, l)>

(vi> JRef = {O,P,P,P*).

The quiescent information is (0, e,O,O,O,O) and at time 0, the left-end automaton

sends (11, c!‘, 0, 0, 0,O).

Now, we describe the behaviour of the automaton.

1. The first component, JL%,,, is used to set up the two grids F, and F2. Its behaviour

is shown in Fig. 18.

At time 0, the first cell sends information p.

At time 1, the first cell, receiving in state 0 the quiescent information, enters state 0

sending the quiescent information. But, the second, receiving in state 0 information p

from its left neighbour, can enter state ev sending 01 to its left neighbour and E to its

right one.

At time 2, the first cell, in state 0, receives cx from its right neighbour, and enters ev

sending E. The second, the state ev receives 0 from its two neighbours and enters 0

sending o in both directions. The third, in state 0, receives E from its left and enters

ev sending E in both directions.

For times greater than 2, every cell in state 0 (ev) receives E (0) and enters ev (0)

sending E (0) in both directions.

By this way, since time 2, state ev (0) marks FI (Fz).

We observe that a cell receiving, in state 0, E (CL) from its left and ! from its right

knows that it is the right-end cell and that its number is greater than 2 (is equals to 2).

400 J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404

4

Automata 1 2 3 4 5 6

Fig. 18. Sorting the hvo grids with 2 states.

Segment of length 2 has a special synchronization process. When the second cell, in

state 0, receives p and !, it sends to its left neighbour f and enters the Fire. The first

cell, receiving f, enters the Fire.

2. The second component, JDir, is used to indicate the direction of the synchroniza-

tion. If the general is the left-end cell, it is set to 8, else to Y. We shall see later how

to invert it.

3. The third, fourth and fifth components, Jsta, JStaRef and JT~“~, are used to simulate

the Balzer’s solution below the path drawn by the reflected initial wave.

Looking at Fig. 1, we observe that, below the reflected initial wave, if some site

(x, t) of FI is in some state, then the site (x, t + 1) of F2 is in the same state. This

fact is proved in [l] or [5]. Thus to know the state of (x,t) of F1 in the Balzer’s

solution, cell x only needs to know the state of x - 1 at time t - 1 (which can be

transmitted through F1), its own state at time t - 2, and the state of x + 1 at time t - 1

(which can be transmitted through FI). At time 1, the second automaton knows its

number and, at time 3, the first and the third ones also know their number (see point

1). At these times they set their third component to g (first automaton), a (second) and

b (third), corresponding to the states of the Balzer’s solution. Then, when a cell in

state ev receives g or a or b in its third component, its reflects this value to the sender

in its fourth component. It also sends, in its fifth component, the current state of the

Balzer’s solution. This trick allows us to carry on with the simulation on the grid Fl:

at time t, cell x receives state of x - 1 at time t - 1 from the left in the fifth component,

its own state at time t - 2 from the both directions in the fourth component, state of

x + 1 at time t - 1 from its right in the fifth component.

J. Mazoyerl Theoretical Computer Science 168 (1996) 367404 401

The simulation on the grid F2 is similar. It is sufficient to observe that:

l First, the second and third cells know their number at time 3, 2 and 3; and, thus,

they can set their component in g,a and b.

l A cell, in state 0 receiving o from its left and ! from its right knows that it is the

right-end cell and that the initial wave has reached it one unit of time before.

4. The sixth component, &f, is used to set up the reflected initial wave and the delay.

As previously observed, a cell knows that it is the right-end cell and that the reflected

initial wave reaches it or has reached it for one unit of time. At this time, it sends

in its sixth component a value different from 0, value .LL* or value p, according to the

value of the received second component (indicating the direction of the synchronizing

process), and it changes the value sent in its second component.

The delay is set up by a flip-flop process. If the length is even (indicated in Balzer’s

solution by state a), then the right-end cell sets up its sixth component to ,D and the

next time to p. Else, the order is p* and, then, p. When an automaton receives p (or

cl*) in its sixth component, it considers than its current state is eu and that its current

layer is FI. In this way, if the length is even, F2 becomes F1 and one unit of time is

spent. Fig. 19 illustrates the flip-flop process setting the delay.

This process is simple when the length is odd. Automata, in state ev receiving as

their previous state a and ~1 in their sixth component act as if their state were 0 and

they receive the quiescent state. The only difficulty is to set up the break. The break

signal is indicated by the fact that an automaton receives 1 as its previous case. In

this case, in state ev receiving p, it simulates the state of the general (g) and emits

p or p* to its two neighbours according to the values of its fifth component. But, in

state 0 receiving p*, it also simulates g and emits p or p*.

When the length is even, in state ev receiving in its fourth component b (its previous

state), it transmits /.L*. But, in state ev receiving I in its fourth component, it simulates g

and emits p or p* to its left (and not right) neighbour, according to the value received

in its fifth component from the left. In state 0 receiving b in its fourth component

and p in its sixth, it acts as if it was in ev, emitting E in its first component and

simulating Balzer’s solution. But, if it receives fi (sixth component) and 1 (fourth one),

it simulates g (setting up the right-end automaton of the left subline). If it receives ~1

(sixth component) and 1 (fifth one from the left), it simulates g (setting up the second

time of the right-end automaton of the right subline).

The obtained automaton has three states (0,ev and F) - in fact, state F is useless and

may be replaced by an information - and about 4500 elementary pieces of information

corresponding to 12 channels. We have not searched to minimize the number of pieces

of information.

6. Conclusion

We observe that if the notion of optimality in time is well defined for a solution to

the FSSP (in the one-dimensional case here studied but also in case of graphs [3,4]),

402 J. Mazoyerl Theoretical Computer Science 168 (1996) 367404

act!. O.g.7) 0,r. 7. 0. 7,0)

Odd length

\

a I. b, b. b. 0)

Even length

f. 1. b. 4 b, 0)

Fig. 19. Setting up the delay with two states.

.I. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 403

ChallaeIa

t

No solution
/

12

2 3 6 8 16 58
States

Fig. 20. Known results.

the notion of optimality in size is more complex. This is due to the following two
remarks:

{a) It is very difficult to study the set of solutions since it is not recursively enu-
merable (Section 2).

(b) What is a good optimal@? How to mix states and information flow?
The known results are summarized in Fig. 20. The solution with 16 states and

2 channels is easy to construct.
We also observe that all solutions here described can be extended to the case where

the general is anywhere in the segment.

References

[I] R. Balzer, An I-state minimal time solution to the firing squad synchronization problem, InJorm. and
Control 10 (1967) 22-42.

[Z] G.T. Herman, Synchronization of growing automata, Inform. and Control 25 (1974) 103-122.
[3] K. Kobayashi, The firing squad synchronization problem for two dimensional arrays, Inform. and

Cow0134 (1977) 177-l 94.
[4] K. Kobayashi, The firing squad synchronization problem for a class of polyautomata networks,

J. Comput. System Sci. 17 (1978) 300-318.
[SJ J. Mazoyer, A &state minimal time solution to the firing squad synchronization problem, Theoret.

Comput. Sci. 50 (1987) 183-238.
[6] I. Mazoyer, A minimal time solution to the Firing Squad Synchronization Problem with only one bit

of information exchanged, Research Report LIP-IMAG, Report 89-03, 1989.
[7] J. Mazoyer, Solutions au probEme de la synchronisation d’une ligne de fusiliers: &de de leur structure,

Rapport d’habilitation, 200 pp, &ole Normale Supirieure de Lyon, 1989.

404 J. Mazoyerl Theoretical Computer Science 168 (1996) 367404

[8] M. Minsky, Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967) 28-29 and

282-283.

[9] E.F. Moore, Sequential Machines, selected papers (Addison-Wesley Reading, MA, 1964) 213-214.

[IO] G.G. Landon and F.R. Moore, A generalized firing squad problem, Znform. and Control 12 (1968)

212-220.

[1 I] P. Rosenstiehm, J.R. Fiksel and A. Holliger, Intellugent graphs: networks of finite automata capable of

solving graph problems, in: R.C. Read ed., Graph Theory and computing (Academic Press, New York,

1972) 219-265.

[121 A.R. Smith, Real time language recognition by one-dimensional cellular automata, J. A. C. M 6 (1972)

233-235.

[13] H. Szwerinski, Time optimal solution of the Firing Squad Synchronization Problem for n-dimensional

rectangles with the general at an arbitrary position, Theoret. Comput. Sci. 19 (1982) 305-320.
[14] V.I. Varshavsky, V.B. Marakhovsky and V.A. Peschansky, Synchronization of interacting automata,

Math. Systems Theory 14 (1969) 212-230.
[15] A. Waksman, An optimum solution to the Firing Squad Synchronization Problem, Inform. and Control

9 (1966) 66-78.
[16] J.B. Yunes, Seven state solutions to the Firing Squad Synchronization Problem, 127 (1994) 313-332.

