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1. Introduction and definitions 

1.1. History 

The one-dimensional firing squad synchronization problem (FSSP) is to construct 

a generic automaton of a one dimensional cellular network made of a segment of n 

identical machines so that, whatever the length n of the segment is, 

1. if, at the starting time (t = 1 in the following), all finite automata of the cellular 

network (called cells) are in a quiescent state L and no meaningful piece of information 

is exchanged, except the leftmost one, called the “general”, which is in a special initial 

state M, 

2. then the evolution of the segment is such that, at some time (the firing time t(n)), 

all automata enter simultaneously and for the very first time the firing state F. 
One generally considers that the evolution of each automaton is as follows: 

State definition. The state at time t + 1 of one automaton depends on its own state 

and the state of its two neighbours at time t. 

In this framework, the problem was stated by Moore [9]. First solutions (using 

about 3n - 2 and, more generally, (2 + 5)n time units) were described by Minsky 

and Mac&-thy [8]. Goto first discovered a minimal time solution, using 2n - 2 time 

units. Minimal time solutions with a little number of states are due to Waksman [ 151 

(in 1966 with 16 states), Balzer [l] (in 1967 with 8 states) and Mazoyer [5] (in 1986 

with 6 states). Observe that Yunes [ 161 has pointed out a non minimal state solution 

with 7 states in 1994. 

* E-mail: mazoyer@lip.ens-lyonfr 

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved 

PII SO304-3975(96)00084-9 



368 J. Mazoyerl Theoretical Computer Science 168 (1996) 367-404 

In his paper, Balzer set the following optimality problem: 

State optimality. What is the minimal number of states needed to solve the FSSP in 

minimal time? 

First, we observe that the statement of the problem already involves three states 

(L,M and F). It is easy to convince ourself that there does not exist a 3 states optimal 

time solution (try to design it!). Balzer and, recently, Yunes have shown that there 

does not exist a 4 state optimal state solution. It is possible that a computer tries all 

possible 4 states automata on lines of little length and concludes that none of them is 

a solution. Unfortunately, the study of all possible 5 states automata is not possible: 

with a today computer this would take thousands of years. Thus the Balzer’s question 

is now: Does then exist a 5 states minimal time solution? We observe that, if this 

question clearly has no practical interest, its answer will use new knowledge on how 

evolves a cellular automaton. 

In this paper, we do not study Balzer’s question. We only aim to put in light some 

facts: 

1. The set of all solutions (or of all minimal time solutions) of the FSSP is not 

simple. We prove in 2 that it is not recursively enumerable. 

2. It is easy to synchronize with few information. For that we shall distinguish the 

state of an automaton from the message that it receives from its two neighbours. 

In the remaining of this introduction, we set up the basic definitions that we need. 

In particular, we define various constraints on the information flow. 

1.2. Standard dejinitions 

In this section, we give a formal definition of a cellular automaton in case each 

automaton knows the state of its two neighbours. 

Definition 1. (1) A cellular automaton ~2 is a couple (Q, 6) where Q is a finite set, 

called the states set of -c9, and 6 is a function from Q3 into Q. The function 6 is the 

local transition function. 

(2) A configuration C of the automaton LZ? is an application from 2 in Q. A con- 

figuration C evolves to another configuration C* so that 

c*(z) = 6(C(z - l), C(z), C(z + 1)). 

The application A defined by C’ = A(C) is called the global transition function. 

Thus, starting from an initial configuration Ca (at time 0), the net evolves through 

configurations C, = A’(Co). 

Now we define the usual (linear) FSSP. 

Definition 2. The state FSSP is to design a cellular automaton L$ = (Q, S) with the 

particular additional syntactical properties: 
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(i) Four distinguished states (L,M,F, !) belongs to Q. 

(ii) State L is the quiescent state. It satisfies G(L,L,L) = L, 6(&L, !) = L and 

6(!,L,L) = L. 

(iii) State ! is the outside state. It satisfies: Vql,q2 E Q, 6(ql, !,q2) = !. 
(iv) State M is the general state and state F is the Fire. 

such that, starting from the initial configuration C[n] (the notation [n] indicates that 

the significant part of the line has length n) defined by: 

(a) Vz d 0, C[n](z) = !, 

(b) Vz>n + 1, C[n](z) =!, 

(c) C[nl(l) = M 
(d) Vz E (2,. . ,n}, C[n](z) = L. 

the evolution of the configuration C[n] is such that, for some time t(n), 

(a) Vz E 3’, Vt E { 1,. ., t(n) - l}, C[n],(z) # F, 

(b) vz E {L...,n}, C[nl,,,,(z) =F. 

We remark that in Definition 2, we have replace a segment of cells by a line and 

have introduced a new state (namely !) in order to delimit the meaningful segment. 

We observe also that this new state (!) does not enter in the account of the states, but 

it enters in the domain of the function 6. 

Usually, we represent the evolution of a segment of cells as depicted in Fig. 1: 

the cells are in abcisses and the time runs up, we do not indicate the state !. Such a 

representation is called a space-time diagram (by states). 

1.3. Information flow 

Reading the Minsky’s paper [8], we see that he wishes to distinguish the number of 

states from the messages got by cells. Thus, following his point of view, we modify 

the condition [State definition] in order to allow various information flows between 

automata, either bigger or lesser than to convey full information about the sole states: 

Two way information flow definition. The state at time t+ 1 of one automaton depends 

on its own state and on information sent by its two neighbours at time t. 

We do not distinguish the sets of information going from left to right or from right 

to left. This leads us to the following definitions. 

Definition 3. (1) A cellular automaton with information flow ~2 is a triplet (Q,J, S), 

where Q is a finite set, called the states set of &, J is a finite set, called the set of 

information, and 6 is a function from J x Q x J into J x Q x J. The function 6 is the 

local transition function. 

(2) A configuration C of the automaton LZZ is an application from 3 in J x Q x J. 
A configuration C evolves to another configuration C* such that 

c*(z) = Wr,1,q,j1,2) 
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Fig. 1. Space-time diagram of the synchronization of a segment of 16 automata using Baker’s solution. 

if C(z - 1) = (jt,l,ql,jr,l), C(z) = (jt,q,j,) and W + 1) = (jt,2,q2,jr,2). The value 
j, (j,) is the information sent to the right (left) neighbour. The application A defined 

by C* = A(C) is called the global transition function. Thus, starting from an initial 

configuration Co (at time 0), the net evolves through configurations C, = A’(Co). 

Definition 4. The information flow FSSP is to design a cellular automaton d = 

(Q, J, S) with the particular additional syntactical properties: 

(i) Four distinguished states (O,T: F, !) belong to Q. 

(ii) Three distinguished information (0, 1, !) belong to J. 

(iii) State 0 is the quiescent state. It satisfies 6(0,0,0) = (O,O, 0), 6(0,0, !) = (O,O, 0) 

and 6(!,0,0) = (O,O,O). 

(iv) State ! is the outside state. It satisfies: Vji, jz E Q, 6( ji, !, j2) = (!, !, !). 

(v) State i is the general state and state F is the Fire. 

(vi) Information ! is the outside information, 0 is the null information and 1 is the 

first signijkant information. 

such that, starting from the initial configuration C[n] (of length n) defined by: 

(a) Vz<O, C[n](z) = (!,!,!), 

(b) ‘dz>n + 1, C[n](z) = (!, !, !), 
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(cl C[nl(l) = (Li: 11, 
(d) ‘Vz E (2,. . . ,n}, C[n](z) = (O,O,O). 

the evolution of the configuration C[n] is such that, for some time t(n), 

(a) Vz E .ZZ, V’t E {l,..., 0) - 11, ml,(z) # (O,~,Oh 
@I Vz E { 1,. . . ,n), C[nl,,,,G) = (O,F,O). 

We remark that, as in Section 1.2, we have replaced a segment by a line in 

Definition 4, using a special state (!) and a special information (!). In the follow- 

ing, we may relax the condition (a) (the synchronization is set up only both by the 

state and the information of the general) on the initial line, supposing that the value of 

C[n]( 1) is either (0,i; 0) (the synchronization is set up only by the state of the general) 

or (1, 0,l) (the synchronization is set up only by the information of the general). 

Now, the question of optimal&y becomes: 

State and information flow optimality. What is the minimal number of states “and’ 

information flow needed to solve the FSSP in minimal time? 

In this paper, we present a minimal time solution where J is minimal (J = { 0, 1, ! }) 

and Q has 58 states. 

Coming back to Minsky’s ideas, we observe that he introduced the notion of chan- 

nels: a channel is the number of digits needed to describe an element of J. More 

formally, the number of channel is [log, IJ - 111. We observe that both Balzer’s [l] 

and Mazoyer’s [5] solutions have 3 channels. The solution presented here has only one 

channel. 

Usually, we represent the evolution of a segment of automata when J = (0, 1, !} as 

depicted in Fig. 2: the cells are in abcisses and the time runs up, we do not indicate 

the state and information flow !. Such representation is called a space-time diagram 

(by states and information). 
In Section 5, we study the opposite: few states and a large amount of information 

flow. The result is that synchronization cannot be achieved with two states (the qui- 

escent one and the fire), but it is possible with three states (the quiescent one, the 

general and the fire). 

1.4. Constraints 

As there exists a minimal time solution with only one channel, we strengthen the 

condition in order to get limits of the synchronization process. 

Our reinforcement is to allow only one-way channel. Fig. 3 illustrates this notion. 

The (previous) two-ways channel may be viewed as two electrical wires: one of them 

carrying electrons from right to left the other one from left to right. We define one-way 

channel as only one wire carrying electricity in both directions. Thus, if automaton k or 

k + 1 has emitted a digit 1, both receive the digit 1. Definition 3 becomes Definition 5 

and Definition 4 remains unchanged. 
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Fig. 2. Space-time diagram of the synchronization of a segment of 14 automata using the solution presented 

in Section 3. 
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Fig. 3. One-way and two-ways channels 

Definition 5. The same as Definition 3 except the definition of C* which is now: 

C*(z) = G(Max(j,,l,j),q,Max(jl,z,j)) 

if C(z - 1) = (j1,l,ql&1), C(z) = (j~,q,j,) and C(z + 1) = (j~,2,q2&,2). 

In Section 4, we shall see that: 

the minimal time is not always t(n) = 2n - 2, but it remains 2n - 2 except for a 

little finite number of values of n. 

Such a minimal time solution exists with 230 states. Its synchronization time 

is: t(2) = 3, t(3) = 6, t(4) = 8, t(5) = 8, t(6) = 12 and, for n37, 

t(n) = 2n - 2. 

A. Structure of the set of solutions 

First, we prove that the set of the solutions (in minimal time or not) to the FSSP 

is not recursively enumerable. Thus, the questions of optimality are not - a priori - 

obvious. 

Theorem 1. The sets of the solutions and of minimal time solutions to the FSSP are 

not recursively enumerable. 

Proof. The idea of the proof is very simple: we suppose that the set of solutions (in 

minimal time or not) is recursively enumerable; we observe that the set of nonsolutions 

is obviously recursively enumerable; and we deduce that the set of the nonsolutions is 

recursive. Under this assumption, we solve the halting problem. Let d be one cellular 

automaton solution (in minimal time or not) to the FSSP, we define a family {&}I 

of cellular automata such that {zZ}~ is a solution for the FSSP if and only if the ith 
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Turing machine halts on the ith input string. In this case, we get an algorithm which 

solves the halting problem, thus the contradiction. 

To construct the family {&}i uses Smith’s simulation [12] of a Turing machine by 

a one-dimensional cellular automaton. On input a segment of length n (initial config- 

uration W!M L . . .L !“), automata {&}i have two concurrent behaviours: they syn- 

n- 1 times 

chronize the segment of length n and simulate the ith Turing machine on the ith 

input. 

1. If the simulation takes more than n cells of the tape, the simulation stops. 

2. If the Turing machine halts, then the first behaviour (synchronization of the seg- 

ment) stops. 

3. When the synchronization is obtained, it stops the simulation of the Turing ma- 

chine. By this way, if the ith Turing machine halts on the ith input, it halts at some 

time 0(i) and a line of length greater than e(i) is not synchronized (2); but if the 

Turing machine does not halt, then synchronization is obtained whatever is the length 

of the segment. 

4. And the contradiction is got. 

It only remains to describe {&}i in details. 

(i) Smith’s simulation 
Fig. 4 illustrates this simulation. The automaton &A which simulates the Turing ma- 

chine &!’ of alphabet A and states Q has A x (QU (0)) as set of states. Its state function 

6* is defined by (6 is the transition function of M): 

P((aa, B), (aa, 0), (a,, 0)) = (as, 0) (the read write head is not in the neighhour of 
the cell and no simulation is performed), 
6*((a,, 0), (ag, qc), (a,, 0)) = (a;, qj) if 6(qr, ag) = (q:, ai, St) (the read write head 
is on the cell and it does not move; thus the cellular automaton changes the value 
of the letter and updates the value of the state of M), 

6*((a,,0),(as,qe),(a,,0))=(a;f,0) if &qp,ap)=(q~,a~,Le) or &qc,ag)=(q$,$,Ri) 
(the read write head is on the cell and it moves; thus the cellular automaton only 
changes the value of the letter), 

Time 

6 (q&l = (s3.csp K) 

6 (q1,a5) = (q2.b. SO 

Fig. 4. Smith’s simulation of a Turing machine by a cellular automaton. 
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l 6*((a,,0),(q, 0),(a,,qe)) = (ag,qi) if 6(qt,a,) = (qi,a;,Le) (the read write head 
is on the right neighbour cell and it moves to the left; thus the cellular automaton 

takes it with the new state of M), 

l ~?*((a~, qe), (aa, 0), (a,, 0)) = (up, 4:) if 6(qe, a,) = (q;, a$ Ri) (the read write head 
is on the left neighbour cell and it moves to the right; thus the cellular automaton 

takes it with the new state of M). 

(ii) Setting the input of the Turing machine 

Let A be the alphabet on which work our Turing machine and ai( 1) . . . ai( be the ith 

input string, we define a cellular automaton &input(i) of set of states A U {L,M, !} (!, M 

and L have the same meaning as in the FSSP) defined by: 

l &l,KL) = &(I)> 

l Vj E { 1,. . . , i(t(i)) - I>, &Qi(j),L,L) = ai(j+l), 

0 y E {l,..., i(e(i)) - 11, &&(j),k !I = Q(j+l), 

0 vj E {l,..., i(4i)) - 1 }, d(L, ai( j),L> = Qi(j)t 

l &&(f(i)),LL) = MY 

l for all other cases, &cl, j3, y) = j3. 

The automaton &input(i) has on any initial configuration of the form O!M u !“, the 

n- I times 

following behaviour: it sets up the state of the jth automaton to ai at time j. Thus: 

l if e(i)<(n + l), the configuration obtained at time e(i) is 

“!Qj(l). . . Ui(e(i)M u !O 

n-C(i)-1 times 

l if e(i) > (n + l), the configuration obtained at time n is W!a,(l). .ai(n)!w 

(iii) Simulation of the ith Turing machine on the ith input string 

Let M(i) be the ith Turing machine. We define a cellular automaton Yi by: 

l The set of states of Yi is Qi x Qz x Qs where: 

Qi is the set of states of &A(i) (point i) 

Q2 is the set of states of dininput (point ii) 

Qs is the set of states of a minimal time solution for the FSSP. 

l The behaviour of the transition function of $ is the following: 

- If the component in Qs is not F (the Fire), the behaviour is the one of dinrut on 

the second component, in order to build the entry for M(i). 

- If the component in Qs is the Fire, the behaviour is the one of &A(,, on the first 

component (simulation of M(i)). 

- On the third component, the synchronization is obtained by this way: the state M 

of the second component is understood as the outside. If the state A4 is never seen, 

then the synchronization never occurs (all the segments enter a new state N when 

reaching ! ). 

- In addition when on the third component the triplet of states (!,F, F) appears, 

the second component of the first component becomes the initial state of 

M(i). 
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By this way, on the initial configuration of length n 

“K !, !)((0,0),L,M)((0,0),L,L)...((0,0),L,L)(!, 1, !I” 

n - 1 times 

at time 2n - 2: 

o if L’(i) 3(n + l), at time 2n - 2, the following configuration is obtained 

“(!Y !Y !)((ai(l),gO),~i(l),F)((~i(2), 0),@(2),F). . . ((4(!(i)), 0),Q(t(i)),F) 

((0,0),M,L),((0,0),L,L)...((0,0),L,L)(!, !, !I” 

n-e(i)-1 times 

and then &A(i) simulates the ith Turing machine on the ith input string. 

l if not, at time 2n - 2, the following configuration is obtained: 

“(19 !Y !>(Ui(l),0),(Ui(l),N). . .((Ui(6(i)),O),Ui(e(i)),N)(!, !3 !I” 

and no simulation of M(i) is performed. 

(iv) Finally, the construction of {&}i is easy to complete. Its states have two com- 

ponents: one is state of a solution for the FSSP, the second one is a state of 9, (point 

iii)). Its transition function works as previously mentioned. 0 

Thus, it is impossible to describe all the minimal time solutions to the FSSP with 

a finite number of words. In fact, in [7], we have described a lot of solutions. Three 

main features arise: 

1. All solutions use a “divide and conquer” strategy. Only the ratio in which the 

segment is cut changes (it may be any ratio in [i, l[). 

2. It is possible to obtain minimal time solution using all the transitions of a non- 

minimal time solution. 

3. Non minimal synchronization times have some closure properties. 

3. A minimal time solution with a minimal number of two-way channels 

The following described automaton has been tested on a computer for segments from 

length 2 up to 1000. It is possible to prove that it is sufficient to test it for segments 

from 2 up to 300. We do not give this (formal and tedious) proof. 

3.1. General strategy 

The general strategy to obtain a solution of the FSSP is to break the line at its 

:,($)2,($)3,... (with f E [i, l] n 9) and then to synchronize each new created 

subline by a recursive call to one solution (the expected solution itself or another 

one). In [5], the value of f is $ and each subline is synchronized by a recursive call 

to the constructed solution. In [l], the value of f is t and each subline is synchronized 
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by a recursive call to the “image” solution (the solution itself interchanging roles played 

by the left and the right in order to get the synchronization from the right end cell). 

Here, we aim to minimize the information flow and observing that in the Mazoyer’s 

strategy [5] each cell must know the remainder of its location by 3 and that we need 2 

information to give it this knowledge, we choose the Balzer’s strategy [l]. If Balzer’s 

strategy increases the number of states (by the “image” solution), we do not mind here 

because we are only interested in the information Aow. Thus, we begin to describe the 

Balzer’s strategy in some details. Fig. 1 shows the synchronization of a short segment 

and Fig. 5 illustrates his solution when the number of cells is so large that we may 

identify ZY2 to W2. 

1. Breaking the segment at its i, ($)‘, . . . . At time 0, the general sends a signal 

at maximal speed (one cell per unit of time), called the “initial wave”, this signal is 

reflected by the right end and comes back at maximal speed; it reaches the general 

at 2n - 2 (the minimal synchronization time). A family of signals (“break signals” in 

Fig. 5), appearing as connected waves of white squares on the Fig. 1, is set up. The 

slopes of these break signals are 2,2*, . . . and they are generated on the second cell. To 

set up such a family of signals is not possible by a finite automaton; they are set up 

by the whole segment. Every time the break signal of level j (at slope 2j) moves to 

the right, it sends a signal (at maximal speed) to the left, called an “auxiliary signal”. 

Generals 

Part of the 
synchronization 
process set up by the 
left-end automaton 

Partofthe 
synchronization 
process set up by the 
right-end automaton 

Break signals 

Signals at 
maximalspeed 

Automaton 1 Automaton n 

Fig. 5. The Balzer’s strategy 
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The signal of level j + 1 moves to the right one time out of two when it receives 

such an auxiliary signal. By this way, when break signals meet the reflection of the 

initial wave, the line is cut. But, due to the discrete nature of the problem, a segment 

of length n is cut on the automaton [LtJ + 1. If 12 is odd, this value corresponds to 

the middle of the segment. If n is even, observing that selecting cell [SJ + 1 is to 

select cell [IJ one time later, we have selected the two cells near of the middle of the 

segment. 

2. Synchronization of the sublines. Selecting cells on the path of the reflection of 

the initial wave in the space time diagram creates new sublines. More precisely, if 

the initial segment has length IZ, the first subline is made of cells L:] to n (if n is 

even) or 151 + 1 to IZ (if n is odd). The (j + 1)th subline is similarly obtained from 

the jth subline. Then the synchronization of a subline is initiated from its right end: 

on the path of the reflection of the initial wave if the length of this subline is odd 

or with a delay of one unit of time if its length is even. We observe that when the 

synchronization of a new subline is initiated, the left end cell of the subline is not set 

up, but its right end can know the parity of the (future) subline. This synchronization 

from the right end is achieved by an image solution. 

3. Completing the synchronization. The previous process is iterated until all sublines 

have length 2. 

3.2. Breaking the segment 

In this section, we set up the exchange of information needed to give to cells the 

ability to recognize and answer to the reflection of the initial wave. This exchange is 

described in Fig. 6 in which we present the beginning of segment so much long that 

we do not see the reflection of the initial wave. 

(a) Recognition of the reflection of the initial wave 
As the initial wave is reflected as soon as possible (minimal time solution), we observe 

that the cell IZ -j (of a segment of length n) receives the initial wave at time j - 1 and 

its reflection at time n - 1 + 12 - j. Thus, the number of time units between the arrival 

of the initial wave and of its reflection is always even (2(n - j)). Thus, we choose 

that any digit 1 reaching a cell before the reflection of the initial wave, reaches it an 

odd number of times after the initial wave itself. By this way, counting times since the 

initial wave modulo 2, any cell can recognize the reflection of this initial wave. In the 

following, we shall mark the states on which the reflection of the initial wave cannot 

occur by a +: a *-state receiving 1 from its right neighbour does not understand it as 

the reflection of the initial wave. We call site a point of the space-time diagram. 

(b) Eventual break sites 
We list possible knowledges that cells must have in mind if they receive the reflection 

of the initial wave. According to the previous Section 3, the three following knowledges 

are needed: 

eventual (*) left-end sites. If I have a not + state and I receive digit 1 from my 

right neighbour, I know that the broken segment is even and I become the right end 
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0 

Fig. 6. The information flow setting up breaks of the segment. 

of the left new subline. In this case, the cell becomes the general (at the right end) of 

the new created subline. 

eventual (*) right and left-end sites. If I have not a * state and I receive digit 1 

from my right neighbour, I know that the broken segment is odd and I become the 

right end of the left new subline and the left end of the right subline. In this case, 

the cell becomes the general (at the right end) of the new created subline and it also 

becomes the left end of the previous created subline. 

eventual (*) right-end sites. If I have not a * state and I receive digit 1 from my 

right neighbour, I know that the broken segment is even and I become the left end 

of the right subline. In this case, the cell becomes the left end of the previous created 

subline. 
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All these knowledges are set up in the states of the automata. We observe easily that 

any cell enters eventual (*) right-end sites (eventual (*) right and left-end sites) when 

it leaves (*) right and left-end sites (eventual (*) left-end sites). A cell changes its 

knowledge when it receives digit 1 from its right neighbour on a * site (an odd number 

of time after the initial wave). These digits 1 correspond to the auxiliary signals of 

Section 3. But they cannot be sent by a cell when it receives the initial wave in order 

to keep the parity of point a). We choose that a cell emits such a signal one unit of 

time after it receives the initial wave. 

It remains the problem to know when receiving such a digit 1 on a * site, a cell 

enters eventual (*) left-end sites. This is not quite obvious since sometimes receiving 

such a digit it must enter these sites and sometimes not. Observing that the same digit 1 

coming from the right must put cell j in eventual (*) right-end sites and cell j + 1 

in eventual (*) left-end sites, we choose that, when cell j enters eventual (*) right 

and left-end sites, it sends a digit 1 to its right neighbour. Conversely, when some cell 

receives a digit 1 from its left neighbour, it knows that, if it receives digit 1 from 

its right neighbour on a not * state, it enters an eventual (*) left-end site. This new 

knowledge is: 

(*) Potential-eventual-end sites. Receiving digit 1 from my right neighbour on a * 
site, I enter eventual (*) left-end sites. 

(c) Now we list the knowledges that some cell must have in mind to set up the 

delay of 1 unit of time if the segment to be broken is even. We observe that the 

only knowledge needed for the right-end cell is its parity. We also observe that it may 

know its parity if all cells know their own parity. Thus, we introduce a new needed 

knowledge: 

Parity. I know the parity of my location in the segment. If the cell is the right-end 

of the segment, it sets up a delay of 1 unit of time if and only if its parity is even. 

For other automata, we observe that reflections of initial waves corresponding to 

even (odd) lines may reach them every 4 units of time. Thus, the delay to be set up 

depends only of the parity of the cell and of the remainder by 4 of the number of 

times elapsed since the initial wave has reached it. This remainder is known if each cell 

counts the elapsed time modulo 4. We observe that leaving an eventual (*) right-end 

site, any cell resets this counter because it concerns a new created subline. Thus we 

introduce this new knowledge: 

Remainder modulo 4. I know the remainder module 4 of the time elapsed since 
I received the initial wave. This remainder is used both to choose between 1 digits 

coming from the right and the one understood as the reflection of the initial wave and 

to select the delay used in the synchronization of the new created subline. 

(d) As indicated in Section 3, we must distinguish the second cell on which the break 

signals are created. We observe that in order to achieve synchronization of segment 

of length 3, the second cell must know its number before time 3. Thus, we choose to 

introduce the following knowledge: 

Number 2. I am the second cell in the segment and to set up it in the following 

way: The left-end cell (which knows its location receiving ! of its left neighbour in the 
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outside) sends digit 1 to its right neighbour one unit of time after it sends the initial 

wave. 

Now we must indicate to any cell its parity. To give this knowledge, the second cell 

sends to its right neighbour digit 1 as soon as possible: at time 3 because if it sends 

this digit at time 2, automaton 2 would believe that it is the second. We iterate the 

process. Any cell, receiving digit 1 from its left neighbour 2 times after the initial 

wave knows that its parity is odd and sends digit 0 to its right neighbour. Similarly, 

any cell, receiving digit 0 from its left neighbour 2 times after the initial wave knows 

that its parity is even and sends digit 1 to its right neighbour. 

(e) We observe that the second cell does not follow the process described in (b). 

Receiving the reflection of the initial wave, it always becomes the general (at the right 

end) of a new created subline of length 2. Thus we choose to initiate the process of 

(b) on the third cell. 

Now, we study the behaviour of the third cell. 

l If the segment has length 4, the third cell becomes the left-end of a new subline of 

length 2 and it does not become the right-end general of a new subline. 

l If the segment has length 5 the third cell becomes the right-end general of a new 

subline of length 3 and the left-end of a new subline. 

l If the segment has length 6, the third cell becomes the right-end general of a new 

subline of length 2 and it does not become the left-end of a new subline. 

l If the segment has length 7, is created a new subline of length 4. 

l If the segment has a length greater than 7, a new subline of length 4 or 5 or 6 is 

created. 

Thus, the third cell is always in a eventual (*) end site. It must enter eventual (*) 

right and left-end sites at time 4 and, then, receiving digit 1 from its right neighbour 

it enters the following eventual (*) sites in the order of point (b). Thus, we need the 

following information: 

Number 3. Z am the third cell. At time 4, the third cell enters eventual (*) right 

and left-end sites and, then, leaving eventual (*) right-end sites, it enters eventual (*) 

left-end sites. 

We observe that the third cell knows its parity at time 3. We choose to give it its 

location by: the second cell (which knows its location at time 2 and sends (at time 3) 

to its right neighbour a “parity” digit 1) sends digit 1 to its right neighbour at time 4 

(as soon as possible). Thus, the third cell is the only one which receives digits 1 two 

and three times after the initial wave. Finally, we observe that distinguishing what 

happens 2 times after the initial wave, receiving a digit 1 from its left neighbour may 

be understood as knowledges of points (e) or (b). 

3.3. States of the break process 

In this section, we describe the states used to set up the general and the break 

process described in Section 3.2. We use two conventions: to mark by a * states on 
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which the reflection of the initial wave cannot occur (see Section 3.2) and to mark all 

states by an arrow -, indicating that the initial wave runs from left to right. 

States of the general are shown in Fig. 7. The general always receives ! from its left 

neighbour (in the outside). Starting from state i, emitting 1 to the right (initial wave), 

it enters state k, emiting 1 to the right (marking the second automaton), and, then, 

it enters and remains in state p@ until it receives the reflection of the initial wave in 

order to be put in F. We observe that the general does not need to count modulo 4. 

The states involved in Section 3.2 are shown in Fig. 8. In this figure, we also have 

indicated when the reflection of the initial wave can occur; and we have distinguished 

when, in this case, the cell becomes a right general (set of states R), a left-end (set of 

states L) or the both (set of states M). 

The two time units after the initial wave (states i and 2) are used to set up the 

second cell and the parity of the cell (points c) and d) of Section 3.2). Thus, three 

times after the initial wave, we introduce the states 22, ddd and l&en having these 

knowledges. 

The states of the second cell begin by the letter “2”. As mentioned in point (c) of 

3.2, it sets up the third cell and then waits the reflection of the initial wave. We do 

not have to know where this reflection occurs because the second cell always becomes 

a general (point (e) of 3.2). Only 3 states are necessary: 2Z,2b and 2c’. 

The third cell in state add, receives digit 1 from the second; at this time it enters 

one state among states marked by the letter “3”. This third cell follows the process of 
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Fig. 7. States of the general 
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point (b) modified by point (e). 6 states are used: 

3m and 3tii* (eventual (*) right and left-end states), 

3r’ and 3rP (eventual (*) right-end states), 

3i and 31; (eventual (*) left-end states). 

States of an even (odd) cell are marked by “E”. (“0”). The process of point b) 

of 3.2 (eventual and potential-eventual end sites) is set up using the following 2 x 8 

states: 

Ep’ and El?; 06 and Oa* ((*) potential-eventual-end states), 

ET and E?; Or and Op (eventual (*) left-end states), 

Em and Em*; Om and Orii* (eventual (*) right and left-end states), 

Er’ and Er’*; Or’ and Or’* (eventual (*) right-end states). 

These states mark the auxiliary signals of point 1) of Section 3.1. Between two such 

signals and only in this case, one cell needs to know is remainder modulo 4. This is 

due to the fact that receiving in an potential-eventual-end state the reflection of the 

initial wave, one cell knows that the delay it has to bring up is null because its left 

neighbour becomes both a general and a left-end indicating that the segment is odd. 

This remainder is set up using 2 x 4 states: 

Eo’ and Eo’*; 00’ and Oo’* when the time since the initial wave is even, 

Ee’ and Ee’*; 05 and OP when the time since the initial wave is odd. 

Thus all the process of Section 3.2 is set up with 37 states. 

3.4. Completing the synchronization 

Now, we study what happens when the reflection of the initial wave reaches a 

cell. 

Fig. 9 is Fig. 8 on which we have added the states corresponding to the end cell. 

l When the segment to cut is even and when some cell in an eventual right-end state 

receives the reflected initial wave, it becomes the general (at the right) of a new 

created subline. Thus it enters a new state (g), sending the reflected initial wave (by 

digit 1) to its left neighbour and nothing (digit 0) to its right neighbour. In state l?, 

it sends to its left neighbour digit 1, indicating to it that it is the second cell of the 

new created subline, and enters state pl?. In state pF, it waits until it receives the 

reflection of the initial wave of the new subline (at its left) and, then, it enters the 

Fire. 

l When the segment to cut is odd and when some cell in an eventual right- and left- 

end state receives the reflected initial wave, it becomes the general (at the right) 

of a new created subline and the left-end automaton of the new subline created at 

its right. But this new subline (at its right) is synchronized with a null delay (the 

segment is odd); thus, our cell will also become the general (at the left) of the first 

subline created during the synchronization of its right subline. And, our cell must 

act as if it was a general for its both sublines (at its right and at its left). It acts as 

previously sending digits 1 both at its right and at its left. This is achieved by the 

new state I? (state p@ is identified with the previous case). 



J. Matoyeri Theoretical Computer Science 168 (1996) 367-404 385 

l When the segment to cut is even and when some cell in an eventual left-end state 

receives the reflected initial wave, it becomes the left-end cell of the subline at its 

right. It enters state pz transmitting the reflected initial wave to its left neighbour 

and digit 0 to its right one. As described previously, at the next time, it acts as a 

general for its right subline. This is done with a new state E. 

l The behaviour of the third cell follows the previous rules. But the second one has a 

special behaviour. As said in point (d) of 3.2, the second cell, receiving the reflected 

initial wave, will be in Fire after one unit of time. Thus, it waits one time in state 

2$ and also acts as the middle automaton of an odd segment, sending digit 1 to its 

both neighbours. 

Fig. 10 depicts the states of the right-end cell. It only reflects the initial wave and 

then waits the reflection of the reflected initial wave to enter the Fire. 

In Fig. 9, we have also indicated the knowledge of the parity of the length of the 

segment, the cell becomes an end of which when it receives the reflected initial wave. 

In states 05, 06, EL5 and Ej5, it knows that the segment is odd and that no delay must 

be set up. In states Oe’ and Et?, it knows that the segment is even and that a delay of 

1 unit of time must be set up. In state 2, it knows that the segment is even and has 

possibly length 2. 

Fig. 11 shows states involved to set up the delay. In the general case (the segment 

is even but has not length 2) this delay is set up using the states E%! (by the cell 

number 2, corresponding to an cell reached by the reflection of the initial wave in state 

c) and Ejl by the others. 

Before to set up new created sublines of length 2, we observe that to obtain our final 

automaton, we must duplicate all states according to the fact that the synchronization 

is initiated from the left to the right (see point (2) of 3.1). 

When a cell is in state Ek!, if the new subline has a length greater than 2, it 

receives digits 0 from its two neighbours and enters state 25. If the new subline has 

length 2, in state Eg, it receives digit 1 from its left neighbour and the following time 

it will receive digits 1 from its both neighbours, entering the fire the next time. Thus, 

receiving 1 from its left neighbour, it enters 2s and then 23. We observe that we may 

identify states EZ and 2s. 

Finally, we obtain the automaton of Fig. 12. This automaton has 92 states. Its evo- 

lution on a segment of 14 automata is shown in Fig. 2. 

3.5. Comments 

The automaton, previously described and depicted in Fig. 12, uses a minimal amount 

of information flow but a large amount of states. Can we reduce its number of states? 

First of all, we observe that it is incompletely specified and when no transition is indi- 

cated this means that any transition may occur. Thus to minimize it is MY-complete. 

In the following, we present a possible minimization obtaining a final automaton with 

(only) 58 states (shown in Fig. 13). 
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Fig. 9. States of the break process and of the end automata 

1. The two possible second cells (when the synchronization is initiated from the left 

or the right) do not need to know from which end the synchronization started; they 

see from which side arises the reflected initial wave. This leads us to identify states 

2% and 2% 2c’ and 2;, 2F and 2E. 
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Fig. 10. States of the right end automaton. 

Fig. 11. Setting up the delay 

2. The same argument holds for the two third cells. This leads us to identify 

states: 3r’ and 3F, 3rP and 3F*, 3i and 3i, 3p and 3?, 36 and 3i%, 315~ and 

3iG*. 
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Fig. 12. States of the generic automaton 

3. When a cell is an “even” state (X2 or Xx where X is 0 or E) the side from 

which digit 1 may arise depends on the direction of the initial wave. Thus, we identify 

Ee’ and Ee, ES* and E6*, Oe’ and 05, OS* and OZ*. 

4. The same remark holds for states XF, leading us to identify Ep’ and Eb, Ep’* and 

Eb*, 06 and OF, Oj?i+ and OF*. 
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Fig. 13. States of the generic automaton with 58 states. 

5. The same remark also holds for states x15, leading us to identify Erii and E&, 

ECi* and E&i*, 015 and Or&, OS* and Om‘*. 

6. But the previous remark does not hold for states Ei and El. Nevertheless, we 

may identify ET and EF and, similarly, Et and ET, Or and OF, Or’ and Oi, Er’* and 

Ef*, E?* and Ep, Op and OF*, Or’* and Oi*. 
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7. Finally, we observe that we may identify ti and 6, pF and pF, l&en and l?, 

Even and l?x. 

Clearly, it is easy to reduce this number of states of one or two units modifying some 

chooses. We do not know the minimal number of states needed for a synchronizing 

automaton with a two-ways channel. Our solution achieves synchronization in time 

2n - 2 which is the minimal time. Thus, we may state the theorem: 

Theorem 2. There exists a minimal time solution to the FSSP with only one digit 
of information exchanged in both directions and with 58 states. 

4. A minimal time solution with a minimal number of one-way channels 

In this section, we study one-way channel solutions. First, in Section 4.1, we observe 

that we do not need to construct directly one-way channel solutions but we can adapt 

the two-ways solution of Section 3 excluding all crosses. Then, we give in Section 4.2 

some indications on what are optimal time solutions in the context of the one-way 

channel constraint. Finally, we adapt the solution of Section 3, obtaining a solution 

without crosses with 230 states and only one one-way channel. This solution has been 

tested by computer for segment from 2 to 1000. It induces a one-way solution with, 

at most, 920 states. 

4.1. Excluding crosses 

We do not construct a one-way solution in the sense of Definition 5. We de- 

note in the space-diagram of a two-ways channel automaton (such as the one de- 

picted in Fig. 2, by >> k, t >> (GK k, t <) the digit sent by the cell k to its right 

(left) neighbour at time t. Now we define a two-way solution to the FSSP excluding 
crosses. 

Definition 6. A two-way solution in time t(n) to the FSSP excludes crosses if in any 

space-time diagram of the behaviour of the solution on any initial configuration C[n] 
of Definition 3 the situation 

>>k,t>>=l and <<k+l,t<=l 

never occurs for all k in { 1,. . .,n} and t in (0,. . . , t(n)}. 

In other words, no picture (cross) of the form 

appears in any significant space-time diagram of the two-way solution. 
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Proposition 1. Let d ((Q,{!,O,l},S)) b e a two-way solution in time t(n) to the 

FSSP excluding crosses with IQ1 states, then there exists a one-way solution d* (Q*, 
{!,O, 1},6*) in time t(n) to the FSSP where IQ*1 = 4 x [Ql. 

Proof, The formal proof is tedious but the idea is very simple. The set of states of 

d* is given by: Q = Q x (0, 1)‘. If in the space-time diagram of d*, a cell k is, at 

time t, in state (q,c,n), it understands this fact as: In the space-time diagram of d, 
the cell k is, at time t, in state q and has emitted E to its left neighbour and n to its 
right neighbour. Thus, the next time, receiving from its right the digit 1, it understands 

it as sent by its left neighbour (case n = 0) or not (case q = 1). 

Now we give 6*. 

Case E = 1 and n = 1 

~*(jr,l,(q, l,l),j1,2) = w-tq,0). 

Case E = 0 and n = 1 

~*&l,(%o, l),h,2) = (ir,1,4,0). 

Case E = 1 and n = 0 

wjr,l,(q, LO),j1,2) = W,q,_h,2). 

Case E = 0 and v] = 0 

s*(jr,l, (s,O,W,2) = Wr,l,%h,2). 

The proof of the simulation of d by d* is long and tedious. It is easy to show by 

induction on the time that the evolutions are what we have in mind. 0 

Thus, in the following, we shall only consider two-way solutions to the FSSP ex- 

cluding crosses. 

4.2. One-way optimal time solutions 

If in the case of two-way solutions to the FSSP, the minimal time remains t(n) = 
2n - 2 as in the standard case, this point is no more true in the one-way channel case. 

This results from the following proposition: 

Proposition 2. For any segment of length n (na2), the evolution of a one-way min- 
imal solution to the FSSP is such that: 

1. > l,o >= 1. 

2. Zf the minimal time is asymptotically 2n, then, for k in { 1,. . .,n - l}, > k, 
k-l>>=l. 

3. If the minimal time is ultimately 2n-2, then, for some integer no, t(no)>2no - 1. 

Proof. (1) There exists some time z (r 2 0) for which >> 1, z >>= 1: else, all cells 

(except the general) will stay in the quiescent state L and no synchronization will occur. 
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Let JZZ be a one-way minimal solution to the FSSP in time t(n). If the value of z& 

corresponding to d is greater than 0, then we define one automaton 98 with the same 

states and transition function than JG! except that it synchronizes initial configuration in 

which the general is in the state of d at time rd. Automaton 99 is a one-way minimal 

solution to the FSSP in time t(n) - rd. Contradiction. 

2. Let JZZ be a one-way minimal solution to the FSSP in asymptotical time 2n. We 

consider a segment of length 3. There exists some integer z such that > 2,1 SY >>= 1 

(else the third automaton will stay in the quiescent state). If we suppose that z > 0, 

then for a segment of length IZ, we have, for k in (2,. . . , n - 1): 

0 Va E {O,..., (k - l)z}, >> k,k - 1 + M >>= 0, 

l and >> k,k + (k - 1)~ >>= 1. 

Thus, the time of synchronization is, at best, 2n + (n - 1)~ which is asymptotically 

greater than 2n. Thus, by contradiction, z = 0. 

3. Let JZZ be a one-way minimal solution of the FSSP in time 2n - 2. Let us recall 

that there does not exist solution to the FSSP which synchronizes some segment of 

length 121 in a time less than 2ni -2. For contradiction, we suppose that t(2) = 2. For a 

segment of length 2, 4 cases are possible (see Fig. 14). In the four cases, by the point 1) 

and the definition of the initial configuration, we have >> 1,0 >= 1, < 1,0 <<= 0. 

We study these cases: 

Case 1: > 1,l >>= 1, < 2,1 <= 0. 

If the segment has length 3, the first cell receives digit 1 from its right and, as for a 

segment of length 2, it enters the Fire at time 2; and the synchronization of a segment 

of length 3 would be achieved before time 4 which is impossible. 

Case 2: >> 1,1 >>= 1, < 2,1 <= 1. 

Similar to case 1. 

Case 3: >> 1,1 >>= 0, < 2,1 <= 1. 

If the segment has length 3, then > 2,1 >>= 1 (by point 2), < 3,2 <= 1 (since 

< 2,1 <<= 1 in our hypothesis). Whatever the value of > 2,2 >> is, at time 3, the 

third cell receives digit 1 from its left. But synchronization of a segment of length 2 

in case 3, implies that it enters the Fire at time 3; thus before time 4 which is impos- 

sible. 

Case 4: > 1,1 >>= 0, << 2,1 <<= 0. 

First we consider the synchronization of a segment of length 3. We have: 

0 > 2,1 >>= 1 (point 2); 

l < 2,1 <= 1 (else, as we are in case 4, the first cell would enter Fire at time 3 

which is impossible); 

l << 3,2 <<= 0 (in case 4, we have < 2,1 <= 0); 

l < 2,2 <= 1 (else, as we are in case 4, the third cell would enter Fire at time 3 

which is impossible); 

l Between the first and the second cell is digit 1 at time 2 (it is to say >> 1,2 >= 1 

or < 2,2 <= 1) because, else, as we are in case 4, the first cell would enter Fire 

at time 3 which is impossible. 
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A 3-segment has 
this evolution : 

A 3-segnent has 
thii evolution : 

A J-segment has 
thii evolution : 

A 3-segment has 
this evolution : 
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Right digit 1 

Left digit 1 

Right digit 0 

Left digit 0 

Excitation 1 

Unknown excitation 

State Fiie 

Unknown state 

A Qsegnmt has 
this evolution : 

Fig. 14. Cases appearing in the proof of Proposition 2 

l We observe that if the synchronization is achieved at time 4 then >> 1,3 >>= 0 or 

<< 2,3 <<= 0. 

Now, we consider a segment of length 4, digits emitted for the first and the second 

cell are the same than in case of length 3 from time 0 up to 2. In addition, the third 

cell acting as the second one emits digit 1 to its left at time 1, and to its right at time 

2. The second cell is, at time 2 in both cases (lengths 3 and 4) in the same state and 

emits the same digit to the first cell. Thus, in both cases, the first cell enters the Fire 

at time 3 which is impossible. 0 

From Proposition 2, we deduce that the minimal time possible is, at best, 2n - 2 

almost everywhere and we know that an exception is n = 2 or n = 4. We do not 
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search for defining with more accuracy what is the minimal time with the one-way 

constraint. We only set the following definition. 

Definition 7. A one-way solution to the FSSP in time t(n) is in (no)-minimal time if 

t(n) = 2n - 2 for all values of n greater than no. 

In the remainder of this Section 4, we prove the following theorem which shows 

that (no)-minimal time one-way solutions exist. 

Theorem 3. There exists a (6)-minimal time one-way solution to the FSSP. Its values 

of t(n) are given by: t(2) = 3, t(3) = 6, t(4) = 8, t(5) = 8, t(6) = 12 and for 

na7, t(n)=2n-2. 

4.3. Modijkations to the previous strategy 

Fig. 15 shows the crosses appearing in the evolution of the solution described in 

Section 3. All these crosses appear during the evolution setting up the breaks of the 

segment (see Fig. 2 for the delay which does not use digit 1). We list the different 

locations of the crosses: 

(i) Crosses between digits 1 setting up (*) potential eventual-end sites and the 

reflected initial wave (for example between cells 4 and 5 at time 20 if the segment 

has length 13 in Fig. 15). 

(ii) Crosses between digits 1 setting up (*) eventual left-end sites and the reflected 

initial wave (for example between cells 4 and 5 at time 8 if the segment has length 7 

in Fig. 15). This point concerns only the first break signal. 

(iii) Crosses between digits 1 indicating the parity and the ones corresponding to the 

auxiliary signals setting up the first break signal (for example between cells 4 and 5 

at time 5 in Fig. 15). 

(iv) Crosses related at the initiation of the whole process: between cells 1 and 2 at 

time 1 (for a length of 2), between cells 2 and 3 at time 4 (for a length of 4). 

Fig. 16 depicts the new information flow obtained when we achieve the following 

modifications. 

Point (i) is easy to solve. We observe that - in the exchange of digits described in 

Fig. 15 - the first (*) potential eventual-end site (corresponding to the jth break) can 

be set up one unit of time later avoiding the litigious cross. This does not introduce 

any new problem: any cell knows that the synchronization was initiated at its left and 

that the 1st break signal has been set up; thus, in this case, it will always understand 

a digit 1 coming from its left as a signal putting it in the (*) potential eventual-end 

sites. For example, in Fig. 16, a digit 1 is set by cell 4 to its right neighbour not at 

time 20 but at time 2 1. This is done introducing new states: to send the digit and to 

receive it. 

Point (ii) is more difficult to solve. First, the previous modification is also introduced 

for the 1st break signal. By this way, the crosses of point (ii) disappear but new crosses 

appear one unit of time later between digits 1 setting up (*) eventual left-end sites and, 
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Fig. 15. Crosses appearing in the information flow setting up breaks of the segment in the two-ways solutions 

of Section 3. 

no more the reflected initial wave, but the auxiliary signals setting up the 1st break 

signal (for example between cells 4 and 5 at time 9). Now the solution is obvious: 

we suppress one out of two of the auxiliary signals setting up the 1st break signal. 

This is possible observing that the 1st break signal remains only one time in any break 

state at level 1. This 1 st break signal has now the following behaviour (illustrated in 

Fig. 16): 

l Receiving digit 1 from its left neighbour, one cell enters the state ET or Or (eventual- 

left state). If simultaneously it receives digit 1 from its right neighbor-u (the reflected 

initial wave) it enters state L. 
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Fig. 16. The information flow setting up breaks of the segment in the one-way solution. 

One unit of time later, it receives digit 1 from its right neighbour and enters state 

Em* or OrIi*. The next time it enters the state Etii or O&L 

The next time, it enters (without receiving digit 1 from its right neighbour) the state 

Er’* or Or’*. 

Then, its evoluation is as in Section 3 with the previous modification. 

Point (iii) is easy to solve: it is suflicient to send auxiliary signals some units of time 

later. Observing Fig. 15, we see that only one unit is suflkient. In fact, the number of 

units added depends on how we solve the point (iv). As indicated in Fig. 16, we have 

chosen to add 6 units of time. This is achieved by introducing 6 new states (for odd 

and even automata) before to enter the states Oo’* or Eo’*. 
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Point (iv) is solved following Fig. 17. This figure depicts the synchronization of short 

segments from length 2 to 6. Many other solutions exist but these ones are simpler. 

In the general case (segments of length greater than 6), we must initiate the whole 

process by the exchange of digits depicted on the Fig. 16. The six first automata now 

know their number (see Fig. 16) and the initiation is completed at time 11. Then, after 

time 11, only the three first ones remember their number according to the process of 

Section 3. 

AOlcmn(l I 2 3 Automata I 2 3 4 

T&U 

Aulanata I 2 3 4 5 6 

S 
OR 

chrouizati~n qf a se 
automata m time 1 ? 

ment 

Fig. 17. Synchronization of short segments in the one-way solution. 
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Such an automaton may be constructed with 230 states without any minimization, 

giving us a one-way solution to the FSSP with 920 states. 

5. Solution with few states 

5.1. Results 

The definition of the FSSP (see Definition 4) involves three states, 0,i and F (the 

“outside” ! is not considered as a state in this count). In fact, one can think about 

a definition involving only two states 0 and F. State i is used to initiate the synchro- 

nization, but the synchronization may be initiated when the general sends some special 

information p to its right neighbour. Thus, the minimal number of states needed to get 

the synchronization may be 2. In this section, we show that there does not exist any 

solution to the FSSP with 2 states but that there exists one with 3 states. 

Theorem 4. There does not exist any solution to the FSSP with 2 states. 

Proof. For contradiction, we suppose that such a solution (in time t(n)) exists. The 

initial configuration C[n] is now: 

“(!,!,!)(~,0,~),~0,0,0),.1.,(0,0,0!(!,!,~~~. 
n- I times 

All active cells (from times 0 to t(n)) are in state 0. A simple induction shows that, 

due to the quiescent character of state 0 and information 0, the evolution is such that: 

At even times, cells with an even number receive and emit in both directions in- 

formation 0; and at odd times, cells with an odd number receive and emit in both 

directions information 0. 

Without loss of generality, suppose that t(n) is even, at time t(n) - 1 an odd cell 

receives in state 0 information 0 from its two neighbours and thus enters, at time t(n), 

state 0 (point (iii) of the definition 4) and not the Firing state. Contradiction. 0 

In the next section, we prove Theorem 5. 

Theorem 5. There exists a minimal time (2n - 2 units) solution to the FSSP with 
3 states. 

5.2. An automaton with 3 states and large information jlow 

The synchronization is initiated by information and not by state. Thus, the initial 

configuration is 

~(!,!,!)(~,0,~),~0,0,0),.~.,~0,0,0~~~,~,~~~. 
n- 1 times 
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We shall only give some indications on such a solution. We consider the Balzer’s 

solution, depicted in Fig. 1 and, briefly, described in Section 3.1. 

Looking to the proof of Theorem 4, we observe that, without using new states, the 

initiation of the synchronization can modify the information flow emitted by all the 

points of the space-time diagram of the form (x,t) with x + t odd. We call “first 

grid’, denoted Ft , the set of sites {(x, t) 1 x + t odd and x + t 3 3). The first grid 

corresponds to the area influenced by the digit p. The “second grid” is F2, defined 

by {(x, t) ( x + t even and x + t 24). We observe that all sites in the area of the 

synchronization ({(x, t) 1 t 2x - 1)) are: 

F1 uF2U(l,O)U(l,l). 

We shall use a new state ev to mark sites of F1 and 0 to mark F2; the two other sites 

will have a special treatment. 

The information is viewed as a product of elementary informations: 

J = J~ay X JDir X J~ta X JStaRef X J~rans X JRef, 

where: 

(i) JL~~ = {O,~~~,&,o,f), 

(ii> JDir = {f.r>, 

(iii) Jsta = {O,g,a,b, I}, 

(iv) JstaRef = {O,g,a,b, l), 
(v) J~rans = {O,g,a,b, l)> 

(vi> JRef = {O,P,P,P*). 

The quiescent information is (0, e,O,O,O,O) and at time 0, the left-end automaton 

sends (11, c!‘, 0, 0, 0,O). 

Now, we describe the behaviour of the automaton. 

1. The first component, JL%,,, is used to set up the two grids F, and F2. Its behaviour 

is shown in Fig. 18. 

At time 0, the first cell sends information p. 

At time 1, the first cell, receiving in state 0 the quiescent information, enters state 0 

sending the quiescent information. But, the second, receiving in state 0 information p 

from its left neighbour, can enter state ev sending 01 to its left neighbour and E to its 

right one. 

At time 2, the first cell, in state 0, receives cx from its right neighbour, and enters ev 

sending E. The second, the state ev receives 0 from its two neighbours and enters 0 

sending o in both directions. The third, in state 0, receives E from its left and enters 

ev sending E in both directions. 

For times greater than 2, every cell in state 0 (ev) receives E (0) and enters ev (0) 

sending E (0) in both directions. 

By this way, since time 2, state ev (0) marks FI (Fz). 

We observe that a cell receiving, in state 0, E (CL) from its left and ! from its right 

knows that it is the right-end cell and that its number is greater than 2 (is equals to 2). 
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4 

Automata 1 2 3 4 5 6 

Fig. 18. Sorting the hvo grids with 2 states. 

Segment of length 2 has a special synchronization process. When the second cell, in 

state 0, receives p and !, it sends to its left neighbour f and enters the Fire. The first 

cell, receiving f, enters the Fire. 

2. The second component, JDir, is used to indicate the direction of the synchroniza- 

tion. If the general is the left-end cell, it is set to 8, else to Y. We shall see later how 

to invert it. 

3. The third, fourth and fifth components, Jsta, JStaRef and JT~“~, are used to simulate 

the Balzer’s solution below the path drawn by the reflected initial wave. 

Looking at Fig. 1, we observe that, below the reflected initial wave, if some site 

(x, t) of FI is in some state, then the site (x, t + 1) of F2 is in the same state. This 

fact is proved in [l] or [5]. Thus to know the state of (x,t) of F1 in the Balzer’s 

solution, cell x only needs to know the state of x - 1 at time t - 1 (which can be 

transmitted through F1 ), its own state at time t - 2, and the state of x + 1 at time t - 1 

(which can be transmitted through FI). At time 1, the second automaton knows its 

number and, at time 3, the first and the third ones also know their number (see point 

1). At these times they set their third component to g (first automaton), a (second) and 

b (third), corresponding to the states of the Balzer’s solution. Then, when a cell in 

state ev receives g or a or b in its third component, its reflects this value to the sender 

in its fourth component. It also sends, in its fifth component, the current state of the 

Balzer’s solution. This trick allows us to carry on with the simulation on the grid Fl: 

at time t, cell x receives state of x - 1 at time t - 1 from the left in the fifth component, 

its own state at time t - 2 from the both directions in the fourth component, state of 

x + 1 at time t - 1 from its right in the fifth component. 
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The simulation on the grid F2 is similar. It is sufficient to observe that: 

l First, the second and third cells know their number at time 3, 2 and 3; and, thus, 

they can set their component in g,a and b. 

l A cell, in state 0 receiving o from its left and ! from its right knows that it is the 

right-end cell and that the initial wave has reached it one unit of time before. 

4. The sixth component, &f, is used to set up the reflected initial wave and the delay. 

As previously observed, a cell knows that it is the right-end cell and that the reflected 

initial wave reaches it or has reached it for one unit of time. At this time, it sends 

in its sixth component a value different from 0, value .LL* or value p, according to the 

value of the received second component (indicating the direction of the synchronizing 

process), and it changes the value sent in its second component. 

The delay is set up by a flip-flop process. If the length is even (indicated in Balzer’s 

solution by state a), then the right-end cell sets up its sixth component to ,D and the 

next time to p. Else, the order is p* and, then, p. When an automaton receives p (or 

cl*) in its sixth component, it considers than its current state is eu and that its current 

layer is FI. In this way, if the length is even, F2 becomes F1 and one unit of time is 

spent. Fig. 19 illustrates the flip-flop process setting the delay. 

This process is simple when the length is odd. Automata, in state ev receiving as 

their previous state a and ~1 in their sixth component act as if their state were 0 and 

they receive the quiescent state. The only difficulty is to set up the break. The break 

signal is indicated by the fact that an automaton receives 1 as its previous case. In 

this case, in state ev receiving p, it simulates the state of the general (g) and emits 

p or p* to its two neighbours according to the values of its fifth component. But, in 

state 0 receiving p*, it also simulates g and emits p or p*. 

When the length is even, in state ev receiving in its fourth component b (its previous 

state), it transmits /.L*. But, in state ev receiving I in its fourth component, it simulates g 

and emits p or p* to its left (and not right) neighbour, according to the value received 

in its fifth component from the left. In state 0 receiving b in its fourth component 

and p in its sixth, it acts as if it was in ev, emitting E in its first component and 

simulating Balzer’s solution. But, if it receives fi (sixth component) and 1 (fourth one), 

it simulates g (setting up the right-end automaton of the left subline). If it receives ~1 

(sixth component) and 1 (fifth one from the left), it simulates g (setting up the second 

time of the right-end automaton of the right subline). 

The obtained automaton has three states (0,ev and F) - in fact, state F is useless and 

may be replaced by an information - and about 4500 elementary pieces of information 

corresponding to 12 channels. We have not searched to minimize the number of pieces 

of information. 

6. Conclusion 

We observe that if the notion of optimality in time is well defined for a solution to 

the FSSP (in the one-dimensional case here studied but also in case of graphs [3,4]), 
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Fig. 19. Setting up the delay with two states. 
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2 3 6 8 16 58 
States 

Fig. 20. Known results. 

the notion of optimality in size is more complex. This is due to the following two 
remarks: 

{a) It is very difficult to study the set of solutions since it is not recursively enu- 
merable (Section 2). 

(b) What is a good optimal@? How to mix states and information flow? 
The known results are summarized in Fig. 20. The solution with 16 states and 

2 channels is easy to construct. 
We also observe that all solutions here described can be extended to the case where 

the general is anywhere in the segment. 
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