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1. Introduction

We are concerned in this paper with an inference problem which is not an
inductive inference or grammatical inference problem, but which does seem related
to the scientific investigation of phenomena. In order to see this relationship we
consider the following scenario.

A scientist wishing to investigate a certain phenomenon performs an experiment
and obtains some data. Now, in a sense this data is itself a description of the
phenomenon, but the scientist is more interested in discovering some scientific law
or principle which explains the phenomenon (or at least agrees with the experimen-
tal data). Let us presume that she is successful in formulating such a law. Eventually

“the law will be verified and become accepted by the scientific community. Later,
perhaps, this law will be incorporated into a broader, simpler principle. 4

Of interest to us in the foregoing scenario is the apparent concern on the part of
the scientific community in finding ever more succinct descriptions (i.e., laws) for
phenomer.a. Now by no means is the shortest such rlescription the mosi convenient
to use. Indeed, the application of very general principles to a concrete problem may
require a rather large computational effort. However, these short descriptions or
general principles are valuable in that they enable us to absorb and understand the
phenomena more easily. This is admittedly a rather empiricist point of view but it
does provide a setting and some motivation for what follows. We should also point
out that we are not concernred with experimental error (all data are 100%
accurate!).

The central theme of this paper is the modelling and investigation of the
inference problem implicit in the above discussion (viz., given some data to find its
shortest description) in the case where the inference procedure is effective. A
phenomenon is represented by an infinite binary sequence. If x is an infinite binary

* The research reported here was supported by NSF Grants GJ-31223 and GJ-43223. Some of thes:
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sequence then we denote the n' digit of x by x(n) and the initial segment of x of
length n by x" ie., x" =x(1):--x(n). The data from an experiment on the
phenomenon x is represented by x" where the domain of the experiment is the
intial segment {0,1,..., n} of the natural numbers. While this may seem to be a
servere restriction on the type of experiments permitted, we will see later that for
certain phenomena we can relax this restriction and permit experiments which are
designed by an effective procedure. Descriptions for the data x" are programs  in
some ‘‘universal programming system’ which compute x", i.e., YVm < ngw(m)=
x(m). The minimal description of x" then is a program of minimal length which
computes x ", which we denote here by M(x"). The inference problem for x is then
solvable if and only if there exists a recursive function ¢ such that for each
ng(x")=M(x").

In general, the problem of finding M(x") from x" is certainly not recursively
solvable (see Pager [18, 19] and and Schubert [26]). In contrast to Pager [18] our
success in constructing sequences with recursively solvable inference problems is
due apparently to our not requiring that a program for x" contain an encoding of
the number n. We point out that the idea of associating programs with descriptions
of data from a scientific experiment, or the conc:rn in finding minimal programs
within such a framework is not new. These notions are explicit in the very early
papers on this subject by Chaitin [5] and Solomcnoff [29]. It should also be clear
that this is not an inductive inference problem. There is no inference in the limit.
For a discussion of inductive inference and grammatical inference problems the
reader is referred to Bierman and Feldman [2], Blum and Bluin [4], and Gold [13].
For other discussions of this inference problem the reader is referred to Simon
[27. 28].

In Section 2 of this paper we give a precise formulation of the inference problem
and consider those sequences for which the inference problem is solvable by a
special type of recursive function called an “inference device.” We give a
characterization of such sequences and investigate their minimal-program complex-
ity. In the ‘process we will construct a number of sequences witk additionally
interesting properties. Some alternative formulations of the inference problem are
investigated in Section 3.

We conclude with a number of open questions. The remainder of this section is
devoted to definitions and notation as well as some basic results ‘rom the
minimal-program complexity theory which will be used in the remainier of the
paper.

Every infinite binary sequence can be regarded as the characteristic sequence of
some set. The characteristic sequence x of the set X is defined by x(n)=1 <>
n € X. We will use the letters x, y, and z (with or without subscripts) for infinite
binary sequences and the letters X, Y, and Z {with the same subscripts) to denote
the corresponding sets. We use the letters u, v, and w to denote finite binary
sequences (i.e., strings), and | w | to denote the length of w, and for m <|w|, w(m)
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to denote the m™ digit of w. We identify a natural number i with its binary
representation and use |i| to denote the length of that representation, ie.,
li|=1+1og.i. We will regard as a universal programming system (u.p.s.) any
acceptable rodel numbering {¢:} (see Rogers [18]) of the partial recursive functions
for which the S —m —n function o(i,j) which satisfies ¢, (n)= ¢:(j,n) also
satisfies | o(i, j)| = |j| + 8(i), where & is a total recursive function. The minimal-
program complexity of w is defined by,

K(w;|w|)=min{|i||Vm <|w |ag(m)= w(m)}.
We define the set of functions
F={f ] [ is total recursive, unbounded and non-decreasing}.

Let {®,} be a computational complexity measure for {¢;} (see Blum [3]). The value
@, (n) will be referred to generically as the computation time for program i on input
n. If t € ¥ then we define the t-bounded minimal-program complexity of x " by

K‘(w;|w])=min{]i||Vm <|w]|ae:(m)= w(m) and &:(m)<t(|w]|)}.

Clearly, K(w;|w])< K*‘(w;|w|) for any t € % The complexity classes are defined
by,

©[f] = ix | Vna K (x"; n) < f(n)},

€lf! 1] ={x | VnaK'(x"; n) < f(n)},

€ [f1= U €lf|a,
tEF
where “V*n”’ and “3"n’’ are used to denote the expressions ‘“for all but finitely
many n’’ and “there exist infinitely many n’’, respectively. It is clear that the
definition of K(w;|w|) and K‘(w;|w|) depends on the choice of {¢:} and {®;}. If
{#:} is some other u.p.s. and {®,} a complexity measure for {¢:} we use K(w;|w!)
and K'(w;{w|) to denote the minimal-program complexities based on {@} and
{®}. If {¢.} and {@} ore u.ps.’s then there is a constant ¢ such that
Vwa|K(w;|w|)— K(w;|w|)| < c. Similarly,

IcaVt € FaIi € FaVwa| K (w;|w|)-Ki(w;|w]|)|<c

If a set X has a particular property then we wili consider x as having ti. same
named property. For example, a sequence x is recursive if and only if X is
recursive. Of particular interest ir this paper are recursively enumerable sequences
and retraceable sequences (see Rogers [21] for definitions of the corresponding
sets). If x is retraceable and ¢ is a partial recursive retracing function for x (i.e., ¢
retraces the 1’s of x) then we call {p,,...,pc} a @-retraced sequence from n if and
only if p,=m and Vj < kgp,.. = ¢(p;). Without loss of generality we can restrict
retracing functions to be decreasing, i.e., ¢ (n)<n, and we will do so.
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Let ¢. be defined by,

w(m), it m<|wl|,

undefined, otherwise.

Since @ac.w(m)=g¢.(w,m), o(e,w) is always a program for w and we set
ro(w)=o(e,w) and co=8(e). Let i(n)=max{®@. (m)|m=<n, |w|=n}
Clearly, t, < %, and we have,

Theorem i.1. (a) VwaK(w;|w|)<|w |+ c,,
(b) VW.K(W;’W ')S‘W '+Co.

The following theorems which can be found in Barzdin [1], Daley [6], Kolmogorov
[14] and Loveland [16], will be useful in subsequent sections of this paper.

Theorem 1.2. (3) x is recursive <> Jc It €E FaVnagK'(x";n)=<c.
(b) x is recursive <> Ic¥nzK(x";n)<c.
Theorem 1.3. (a) If x is recursively enumerable then
dcVngK(x";n)<log.n+c.

(b) There exists a recursively enumerable sequence z, such that
Vt € FaIng K'(z7n) > 2.

Theorem 1.4. (a) If x is retraceable then 3c Vng K(x";n)<log.n +c.
(b) There exists a retraceable sequence z, such that

Vi € FgInegK'(z3: 1) = 7.

We conclude this section with some additional notation. We denote the
complement of the set X (sequence x) by X (¥). We use ¢;(n) | to denote the fact
that ¢;(n) is defined, and ¢;(n) 1 that ¢;(n) is undefined. We use o, to denote a

program for the sequence of all 1’s, i.e., Vag¢.(n) = 1.

2. Inferrable sequences and their minimal-program complexity

In this section we give a precise formulation of the inference problem discussed
in the preceding section and investigate the properties of scquences whose
inference problem is solvabie by “inference devices”. We call an inference device
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any total recursive function ¢ such that for every string w, ¢(w) is a program for w,
i.e., Vm <|w|g@uw)(m) = w(m). Thus, given some data x" an inference device
always formulates some law for x”", though not necessarily the most succinct one.
For example. recalling that 7o(w) is a program for w which computes w essentially
by table look-up', if we let Yo(w) = 7o(w), then s is an inference device albeit a
rather trivial one in the sense that given w as input ¢, gives as output w in tabular
form. Compare this to the situation where a scientist might pub’ish his experimental
results without comn:ent in some journal. The set of all inference devices is denoted
by ¥. An inference device ¢ is called frugal if and only if

Vwa|¢(w)|< K4(w;|w]), 2.1)

where t,(n) = max{®,.,(m)|m <n, |w|=n}. The value #,(n) represents the
maximum time required to verify that ¢ (w) is always a program for w for any string
w of length n. Clearly, ¢, € % for each ¢ € V. A frugal inference device is one for
which the degree to which it approaches minimal-programs for its inputs is related
to how much effort it devotes to the task. Thus ¢, above would be regarded as
frugal only if ¢, spent little effort in determining its outputs.

We say that a partial recursive function ¢ infers the optiinal description of a
sequence x if and only if for each n, ¢(x") is a program for x" and

AcVnale(x")|<K(x";n)+c 2.2)

We let 0, denote the set of all sequences x whose optimal descriptions are
inferrable by ¢, and let @ = Uucv O,. We remark that @ is clearly closed under
complements. The constant ¢ in (2.2) is necessary to insure that whether or not a
sequence belongs to @ does not depend on the choice of the u.p.s {¢:}. It is clear
that whether or not a particular tota! recursive function beiongs to ¥ does depénd
on the choice of {¢:}. So if {¢:} is some other -1.p.s. we denote by ¥ the
corresponding set of inference devices. We have the following lemma.

Lemma 2.1. (a) For every u.p.s. {¢;} and every ¢ € ¥ and every constant c there
exists a u.p.s. {¢:} and a ¥ € ¥ such that for every sequence x, if Vng|¢¥(x")|<
K(x";n)+c then Vna|d(x")| = K(x";n).

(b) For every u.p.s. {¢:} and every ¢ € ¥ and every constant c there exists a u.p.s.
{@:} such that for every sequence x for which VYng|y(x")| = K(x"; n) the following
hold

(i) Vo € ‘ﬁnin.]tf:(x")l > K(x";n)+c, and
(i) 3¢ € ¥uIéVnag|d(x")|<K(x";n)+¢é

Proof. (a) Let {¢:}, ¢ and ¢ be given. Define

' This is doubtless an overstatemeiit in as much as 7, may convolute the c:ring w in a very complicated
way (e.g. by hash coding). What is important here is that every string w cau be retrieved from =(:7).
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' @i(n), if Y(@i)::@i(n))=i
wa(n) =
undefined, otherwise,

where 0i denotes the concatenation of 0 and i, and

¢ ) o) = i(n).
c+1

and ¢ is undefined in all other cases. Define (w) = 0y(w). The desired conclusion
is obvious.

(b) Given {¢}, ¥, and c, let r be a total recursive function such that
Vn3"mgr(m)=n, and define

(undefined, if @,my(@i(1)- - - @i(n)) =00i

Pooi{n) =

Lpi(n), otherwise,

(undefined, if @,m(@:i(1): - @i(n))=10i
G10i(n) = 1

Loi(n), otherwise,

(ﬁ;...;m(n) = (P,‘(n).
e
c+2

In all other cases ¢; is undefined. For all i and n either @opi(n)= ¢@i(n) or
$10:(n) = @:{n) so that for all w, K(w;|w|)<K(w;|w|)+1. Let y € ¥ and let
@: = ¢. Then for any x and any n such that r(n) =i, |§(x")! > K(x"; n)+ c. Then
(i) is satisfied. To see that (ii) holds choose ¢ so that

J(w)=1---10g(w). O

c+2

Our first task is to characterize the set 0. We say that a sequence x is practic if
and only if there exists a total recursive function ¢ such that

dcVnaK'(x";n)<K(x";n)+c (2.3)

In case (2.3) holds we also say that x is ¢ -practic. In view of Theorem 1.2 clearly all
recursive sequences are practic. If x is a non-recursive sequence then the set of
lengths of minimal programs for its initial segments is unboundec. In other words,
in order to compute the initial segments of x we must change programs infinitely
many times, thereby obtaining an infinitc sequence of minimal programs for the
successively larger initial segments. A non-recursive practic sequence then is one
for which there exists a sequence of (to within ¢) minimal programs for x which
represents a reasonable way of computing the initial segments in the sense that
there is zn a priori total recursive upper bound ¢ on the computation times of these



On the inference of optimal descriptions 307

programs. Let 2, denote the set of ¢-practic sequences and let ? = U5 ?.. Asin
the case of the definition of @,, the constant ¢ in eq. 2.3 is used to insure that
whether or not x belongs to 2 is independent of the choice of u.p.s., and we have

the following lemma which is proved in a manner analogous to the proof of Lemma
2.1

Lemma 2.2. (a) Forevery u.p.s. {¢:} and every t € ¥ and every constant ¢ the:e exists
@ u.p.s. {¢:;} and a t € F such that for every sequence x, if

VngK'(x";n)< K(x";n)+c then Vna Ki(x";n)=K(x"; n).

(b) For every u.p.s. {¢:} and every t € F and every constant c there exists ¢ u.p.s.
$i} such that for every sequence x for which Vng K'(x"; n) = K(x"; n) the following
hold

() Vi€ FaInaK(x";n)>K(x";n)+c, and

(i) I € FaIéVYna K (x";n)<K(x";n)+¢é

We note that K'(x"; n) depends on both {¢;} and {®,}, but given any {¢;} and
{®.}, a complexity measure {®;} for {¢:} is induced by {@®} and the recursive
isomorphism between {¢;} and {$:}. The following theorem gives a characterization
of the class O.

Theorem 2.1. (a) 0 = 2.
(b) Vi e g;.t 21 :> 3frugal !ll (S q’.@,l, = @,.
(c) Virugaly € Y3t € 0, = P..
Proof. (a) Case 1: 2 C 0. Suppose x € 2. Then 3t € F such that x € #,. Define
min{i [|i[<|w|+¢ and Vm <|wl|ag:(m)=w(m) and
v(w) = &d,(m)<t(n)}, if such an i exists,
Yo(w), otherwise. (2.4)

Clearly ¢ is total recursive and ¢/(w) is always a program for w so that ¢ € W. Aiso
for each w

[g(w)| < K*(w;|w]), 2.5)

and since x € %,, combining (2.3) and (2.5) we have x € 0,.
Case 2: O C P Suppose x € 0. Then there is a ¢y € ¥ and a constant ¢ such that

Vng|u(x")|<K(x";n)+c. (2.6)
Also, YVnVm < ng @ ,,(m)<t,(n), so that

VauKe(x";n)<|¢(x")]. (2.7)
Combining (2.6j and (2.7) we bave x € 2,
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(b) Let t € F be such that ¢ = t,. Considering the function ¢ defined by (2.4) we
see that , <max{t, to} = t. Thus K“(w;|w|)=K'(w;|w|). Therefore in view of
(2.5) we have that ¢ is frugal. Clearly &, C 0, by Case 1 above. Also by Case 2
above we have 0, C #,. But #,C &, since ¢t =1,. Hence 0, = 2.
~ (c) By Case 2 above we have O, C %, If x€%, and ¢ is frugal then

3c Vng|y(x™)| < K*(x";n)<K(x";n)+ c. Therefore x € 0, and hence O, =

2. O

Theorem 2.1 seems to imply that there is a threshold factor involved in the
manner in which a device does its inferring, viz., it runs all programs of an
appropriate size for a predetermined amount of time (the threshold) and selects the
shortest program which halts within that time and agrees with the input string. In
view of Theorem 2.1 and the fact that ali recursive sequences are practic we
immediately have.

Theorem 2.2. If x is recursive then x € O.

It is perkaps instructive to establish this result directly in terms of inference
devices. Let x be recursive and let ¢, (n) = x(n). We define a ¢, such that x € 0,
as follows:

i, if w=g.(1) e, (Iw]),
b (w) =

Yo(w), otherwise.

We now turn our attention toward the construction of non-recursive sequences
belonging to @ and an investigation of their minimal-program complexity. We
begin with a particular example of such a sequence which has severa! interesting
properties. First define

M, = max {®,(1}||i|<n and ¢;(1) | }
k. = cardinality of {®:(1)|]i|<n and (1) | }

and choose ., to satisfy
@) lm.|<n,
(i) @..(1)= M.

Then define the set X, by

X.={M,|neN}.

The set X, 1s clearly related to the set of “busy beaver’” numbers first studied by
Rado [20] (more precisely it is related to the set of shift numbers). The proof of the

following theorem may be found in (7] and is similar to several proofs below and so
will not be reproduced here.
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Theorem 2.3. (a) X, is non-recursive.
(b) X, is retraceable.
(c) X, is recursively enumerable.
d) x,.€0.
(e) If X C X, then 3t € FgVfE Fax € €[f|1].

Referriag to (e) of Theorem 2.3 we see that the initial segments of x, can be
cc mputed by arbitrarily (in an effective sense) short programs which run very
Jquickly. Indeed, depending on the complexity measure {@;} (e.g., Turing machine
space or time) the function ¢ can be chosen to be linear or near linear. Additional
properties of x, are described in [7] and {12]. Let %... denote the complexity class
described in (e) of Theorem 2.3 so that @ipw = U,es MN;es8[f [t]. We now show
that membership in €. is not a sufficient condition for membership in 0.

Theorem 2.4. There exist a recursively enumerable sequence x and a retraceable
sequence y such that x,y € € — O.

Proof. We first construct o non-recursive sequence z, which is a variant of the
sequence x,. In fact, z, will be retraceable with recursively enumerable comple-
ment and if Z C Z, then z € €\.... We define the partial recursive function o, such
that ¢.(i,n) = ¢:(n) and

D ,.i(n) =322 . 52, (2.8)
Let d = 8(e), so that

lo(e i) =|i|+d. (2.9)
Define,

Dm = M, .

Gm.n = 35" for 1= n=<2m,
Z* = {q":.n

Clearly Z , is non-recursive. By virtue of (2.8) and (2.9) we have that g, ,» <X pm+: <
Gm+1,1- NOW G n-1 1S cofnputable from g . and gm. .~ is computable from g,
(since gm o~ is computable from p,.., which in turn is computable from p,,,.,, which is
computable from ¢ ,..1.1). In this way we see that Z  is retraceable. Given 7,,.4 we
can compute pi,...,p and hence all q,; for i <m, j <2'. Furthermocre, we can
effectively bound ia terms of M .., how long these computations take. Therefore,
letting m, = max{m ,p,,. < n}, we have

m=21,1sn<2"}.

dcdt€ FagVneK'(z ;n)<m, -d +c. ‘ (2.10)

From this and the fact that

Vf € FaVmap, > f(m), (2.11)
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we conclude that z , € €. We obtain the same conclusion for any subset Z of Z,
since we can specify all those members of Z', which are < n and which belong to Z
by a string of lengih <2™"', and by virtue cf (2.11) the addiiion of such a string to
the program for z ; would not result in a prograr of appreciably larger size relative
ton

We first construct the sequence x. Let z, be the recursively enumerable sequence
of Theorem 1.3 b, so that Vt € Fa3"neK'(z7; n) > n/2. Define the set X by
n€ X <> Amgn s the m™ member of Z, and m & Z;. Clearly x is non-
recursive and, since X CZ, and %. is obviously closed under complements,

E (glow-
Consider x". Recall that m, = max{m | p, < n}. There are at most 2™** mem-

n
hare nf 7 whish ara < » anch of which ca
W Wil VR VVAIEAWEE W

bers of Z, which are < n, ea an beco rnp ed from pn,,. Thus given Z§
and Z?™"" we can compute x". Therefore, it follows from (2.10) and Theorem 1.3(a)
that

3¢ vu.K(x";n)Sc * i, (212)

Now suppose Jc At € FaVnegK ' (x";n)<c-m, Let n =2'+j—2, where i =
1, l'sj =2'. Then by the definition of z,, 27 =x(q1,1)' - *x(q:;), so that z} is
computable from xP+ and z%+1. But then from (2.10) and our supposition
concerning x it follows that Jdc At € FgVngK'(z7;n)=<c -log,n, which con-
tradicts Theorem 1.3(b). Hence VcVt € FgI"ngK'(x";n)>c -m,, which to-
gether with (2.12) proves that x& O.

To shew that x is recursively enumerable we describe a procedure which
enumerates the members of X in stages. At successive stages progressively larger
portions of X will be enumerated. The procedure uses a list of natural numbers and
infinitely many markers which are moved down the list of integers. There are two
types of markers' p-markers [m] and g-markers n}, for 1< n < 2™ Marker
En] is associated with the set of computations {¢;(1)||i|<m -d} and its final
resting place will be p,.. The final resting place of marker |m iS qm - At any
particular stage, if @ is adjacent to integer k then marker %Em will be adjacent
to integer 3* - 5", In addition, for each marker there are two colors possible: white
and black. Initially, all g-markers are white and all p-markers are black, and once a
marker is colored black it remains black. The final resting place of a black marker
will be put into X while that of a white marker will not. The markers are ordered
according to the ordering of their corresponding members of Z,, i.e.,

fm] < [m]1 <[m]2] << [m]2] < [m+1

Le: i be a total recursive function which enumerates the members of Z, in a one-
to-one fashion. We now give the description of stage n of the procedure.

Stage n. (a) Place marker [n] next tinteger n and markers , 1<i<2" next
to integer 3" - 5.
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(b) Find the program j of least size < n such that @;(1) = n. If no such j exists go

to (c). Otherwise, let m =|j|. Move all markers [m],[m +1] m -down to

integer n on the list and markers |kli m<k<n-1,1<is< 2" down to integer
3" -5

(c) Color the h(n)™" q-marker black.

(d) Enumerate all integers < n which are not adjacent o a white marker, i.e.,
put themn into X. Go to stage n + 1. (Note that some integers < n may be adjacent
"0 both a white marker and a black marker. Such integers are not put into X at this
stage.)

An examination of the above procedure reveals that in fact the final resting
places of all the g-markers are the membe.s of Z, and that of the white markers
are the members of X.

We now construct the sequence y. Let 2, be the retraceabie sequence of Theorem
1.4(b), so that Vt € g3 ng K'(z7;n) > n/2. We define the set Y by,

nEY <> Amgn is the m™ member of Z, and m € Z,.

Clearly Y is non-recursive and since Y C Z,, y € €iow. The proof that y & O is the
same as that for x € 0. The retraceability of Y follows from the retraceability of Z
and Z,. [

The next theorem shows that membership in 6. is not necessary for member-
ship in 0. Let 6, = {x ch Vng K(x";n)<log.n —c}.

Theorem 2.5. There exists a recursively enumerable sequence x and a retruceable
sequence y such that x,y € 0 — G,.

Proof. Let p, be so large that for each number p > p,, Mo,y =>4 p. This will
insure that s, >r, below. Let s, = p, and define

Pa = 451

Sn = Miog,(om)

Kn = K iogypn)

gn =D+ X,

Ihn =3 D

Since k, <?2'¢:#»*' = 2. p, then g, < r,. Observe that p, is computable from s,.. We
define the sequence x by

I if an F‘,.‘n < m <qn9
t(m) =

0 ifIngg.<m<r,
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The basic idea in the construction of x is fairly simple although the necessary
details may tend to obscure it. We therefore first give a sketch of the proof tha:
x € 0. Referring to the diagram below we see that x is defined in segments:

1 3 1 . 1
+ i t } i ¥ t t }

P q1 T Pn-1 Gn- Fa-1 Pn Gn In
Let us consider the n™ segment (i.e., the interval (7.-1, 1.]). Notice that p, and g.
are computable from k,, and that k.-, is computable from s,-, and hence from k.
Thus x’= and hence x%+ ' can be computed from k. Since p, > s..; we can
effectively bound how lony such a computation will take. Thus for some ¢t € ¥ and
some constant ¢,

K'(x™;r)<log:(k.)+ ci<log.(p.) + ;.
To show that x € € it suffices to show that for some constant c;,
K(x%;¢q,)>log:{p.)—c:.

Suppose to the contrary that there is a program : for x % such that |i|<log.(p.)— ¢
for a sufficiently large value of c. Then it is possible to transform i into a program j
(see ¢ (e, i, m) below) such that |j| < log. {p.) ard that j refutes k, = g, — p. in the
sense that ¢;(iy | <= j is not among the first g, — p. programs of size <log.(p.)
wkich halt on input 1. It is essential here that p, be computable from g,

The function ¢ is defined by,

¢(e,i,1): Compute ¢:(1), ¢:(2),... until tne least q is found satisfying

(@) Yn<qaei(n){,

(1) @(q)=0and pi(¢—-1)=1,

(iif) |o(e, i)|<log, p, where p is the unique number of the form 4° such that
4' < q <4°*". This completes the definition of ¢.

Let k = g — p. Compute the finite set J = {first k programs of length <log.(p)
which halt on input 1}. If o (e, i) € J then enter an infinite loop. Otherwise output
the value 0 and halt.

Choose an ¢, such that ¢.(i,m)=¢(eo,i,m). Ii K(x*;q,)<log:(p.)— 8(eo)
then there exists a program i such that [i | <log,(p.)— 8(e;) and Vm < q,@¢,(m) =
x(m). From the definition of ¢ (e,, i, m) we see that q = q;, p = p; and k = k; where
] is the least number < n with |o(eo, i)| <|i|+ 8(eo) <log (p;). From this it is also
clear that ¢ ,¢,i(1) | <> o(eo, i) £ J, which implies that g, — p; # k;, which is an
immediate contradiction. Thus we have Vng K (x*; q,) = log. (p.) — 8(e.), and thus

VnVm =q.eK(x"; m)=log,(p.) — 8(er) = log, (r.) — 8(es) — 2. (2.13)

Consequenily, x & %... Given k. and using the respeciive defining equations we
can compute p, q, r; and k; for all j < n. Moreover, we can recrrsively bound the
amount of time required to compute these numbers in terms of k,, since &;(1) =< p,
for all i such that |i|=<log(p.-.). Thus we conclude



On the inference of optimal descriptions 313

deAtE€ FaVnVm < quraK'(x™;m)<|k.|+ ¢ <log,(r.)+c. (2.14)

Combining (2.13) and (2.14) we have that x € 0.

To see that x is recursively enumerable we give the foilowing procedure using
markers which cnumerates the members of X. There is an infinite number of pairs
of markers {m |1}, |m|2}, and the final resting-places of {m|1|and |m|2] are p,,
and ¢, respectively. We now describe stage n of the procedure. We use (m, 1) and
(m,2) ro denote the current positions of and respectively.

Stage n. Find the program j of least size m <n such thai @;(1)= n. Place
integer (m,2) into X and move marker to integer (m,2)+ 1. Move all
markers | m + 11],[m +1]2],...,[n]1],[n]2] next to integer 4", and place into
X all integers k such that 3-(m,1)< k <4".

That this procedure enumerates the members of X is easily seen. We define the
sequence y by the condition Y = {q, | n = 1}. Clearly, y is retraceable and using the
same proofs used for x we obtain yE 0 and y & €. [

The results in Theorem 2.5 are the best possible for recursively enumerable and
retraceable scquences in view of Theorem 1.3a and Theorem 1.4a. Thus we see that
although there is a characterization of sequences in @ in terms of minimal-program
complexity notions, there does not seem to be any relationship between sequences
in @ and their actual minimal-program complexity.

We now take up the question of whether the order of the experimentation (and
by this we understand an effective and complete enumeration of experimental data
points) can affect our ability to infer the optimal description of a phenomenon. In
other words is the set @ closed under recursive permutations. Certainly every
recursive permutation of a recursive sequence (being itself recursive) belongs to @.
Moreover, as we shall see below there are many non-recursive sequences with this
property as well. However, it does seem plausible that there is some phenomenon,
although none has been constructed here, whose inferrability is sensitive to order of
presentation.

Theorem 2.6. Every recursive permutation of x , belongs to O.

Proof. This proof is similar to the proof given in [7] that x , belongs to 0. Let f be a
recursive permutation and let y be such that y(f(n))= x(n). We show that

(l) 3C1'-§t (S gVn.K' (yn ) n) =m, + ¢,

(i1) 3c,Vna K(y";n)>m, -
where m, = max {k If(Mk)< n}

Given ,, (recall that |m |<k and &, (1)= M,), we can compute M, by
running 7, until it halts, and this takes time relative to n of the order of
max{f"(k)i k < n}. From M, we can compute all M, for k <m, in similar
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amounts of time relative to n and hence we can determine all k = n for which
y(k)=1. In other words we can compute y" from m,, in time i(n), for an
appropriately chosen recursive £ Thus (i) is satisfied.

We can transform any (such) program = into a program =’ such that |#'|<
|7 |+ c* (where c* is independent of 7 ) which first uses 7 to find the least p such
that ¢, (p)=1 and min{|k || ®.(1) = f'(p)} =|='|, and then loops until &,.(1)> |
f7'(p). Such a program transformation clearly involves a use of the Recursion
Theorem. Suppose now there exists an n and a program = for y" such that
| w | <m, —c*. Then using the above transformation we construct a program 7’
with | 7’| < m, such that @,.(1)> M., which contradicts the fact that = computes
y". Thus (ii) must hold and therefore y € ? andso y€ 0. ]

In [12] an infinite retraceable subset X, of X, is constructed such that.if Y C X,
and Y is recursively enumerable, then Y is retraceable (in fact, Y is retraced by a
total recursive retracing function). By means analagous to those used in Theorem
2.6 we have,

Theorem 2.7. There exists an infinite subset X, of X, such thatif Y C X, and Y is
recursively enumerable then every recursive permutation of y belongs to O.

Moreover, it is shown in [12] that X, is an atomless recursively enumerable set so
that every infinite non-recursive corecursively-enumerable subset Y of X, has an
infinite non-recursive corecursively-enumerable subset Z, such that Y- Z is
infinite.

3. Alternative definitions

In this section we consider some notions which are related to the inference
problem described in Section 1 but which represent an alternative approach to that
of Section 2. We first consider the situation where arbitrary partial recursive
functions instead of inference devices are used to infer optimal descriptions of
sequences. To this end we define 0* = U ., 0,. Clearly, 0 C 0*. We begin by
giving sufficient conditions for membership in 0*.

Theorem 3.1. If f€ F and x is a sequence satisfying
JcVngf(n)<K(x";n)<f(n)+c, thenx € O*.

Proof. Define ¢ by,
ew)=minfi[[i|<f(lw|)+c and VYm <|wm@.(m)=w(m)}.
Clearly, x € 0,. Note that o(w) | <=> K(w;|w])<f(|w])+c O
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In [6] it was shown that for every f€ ¥ such that Vngf(n)s<log,(n) and
Vngf(n+1)—f(n)<1 there exists a sequence x such that 3c Vngf(n)<
K(x";n)=<f(n)+ c. We remark that the condition ¥Yngf(n+1)—f(n)<1isnot a
severe restriction in view of the fact that any f € & which serves as a non-trivial
upper bound for program complexity will satisfy Vng f(n)<n. We now give an
improvement of the above mentioned result. Let %, be the set of all f€ F
satisfying

(i) Vna cardinality {in ,f(m) =n}=n+l.

For example, An( [\/Ej)e %,. Condition (i) can be viewed as a smoothness
condition. Note that since %, C %, every f € %, is non decreasing.

Thesrem 3.2. For every f € %, there exists a sequence x such that

Vngf(n)y<sK(x";n)<f(n)+c.

Proof. Let f be a function satisfying the conditions of the hypothesis of the theorem
and let gEF be defined by g(n)=min{m |f(m)=n}. Since fE€ %,
g(n)—g(n—1)>n+1. Let w, be the binary representation of length g(n)—
g(n — 1) (using the necessary number of high order 0’s) of the number «,. Such a w,
always exists since there are less than 2"*' programs of length < n and there are
exactly 285"V gtrings of length g(n)— g(n —1). Define the sequence x by
x(g(n—-1)+1)-:-x(g(n)) = w,.. By an argument analogous to that used to estab-
lish (2.13) we can show that

dcVnVVm =g(n)aK(x";m)>n—-c. ' 3.1

The number «, can be represented by a string of length at most n + 1 (without the
high order 0’s), and since k.- can be computed from i, we have,

AcVnVm<gnlmK(x";m)<sn+c. (3.2)

Combining (3.1) and (3.2) we have 3cVnVmmg(n—1)=sm <g(n) => n-c =<
K(x™;m)<n+c, and since Vn Vmgg(n)=m <g(n+1) = f(m)=n, we ar-
rive at the desired conclusion Ic Vng f(n)< K(x";n)<f(n)+c. [

We are now prepared to show that 0# 0*. We modify the preceding construc-
tion as follows. Let g(1)=1 and g(n)=g(n —1)+3n +2, and define f by the
condition f(n):= max {m [g(m)s n}. Let 8. be the least string in lexicographical
order of length 2n+1 such that 8, Z{e(g(n—1)+n+2)--- @ (g(n))||i|<2n
and @;(g(n))< M.,}. Such a §, exists since there are less than 2*"*' programs of
length <2n. Define x by x(g(n-1)+1)---x(g(n-1)+n+1)=w, and
x(g(n—1)+n+2)---x(g(n))= 8. Since 8, is computable from «, we conclude in
the same manner as above that

AeVngf(n)—c<sK(x";n)sf(n)+c (3.3)



316 R. Daley

and so x € 0*. Given any ¢, n,i and t € % such that ¢ < f(n) and t(n) < M;,, and
li|<f(n)+c and @,(m)<t(n) for all m < n, from the definition of . we see that
ei(gn—-1+n+2)--- @i(g(n)) # 8.. Therefore, VcVt€ FaI naK'(x";n)>
f{n)+ ¢, so that in view of (3.3) we have x £ 0. Hence we have the following

Theorem 3.3. (a) 0 0*.
(b) There exists a recursively enumerable sequence x such that x € 0* and x & 0.
(c) There exists a retraceable sequence y such that'y € 0* and y & O.

The sequences x and y in parts (b) and (c) acove can be constructed in a
straightforward manner by using a combination of several of the preceding
constructions. :

We now consider two formulations of the inference problem which involve a
slightly different notion of program complexity. Let a non-recursive sequence x be
fixed for the remainder of this paragraph, and let m and n be integers with n much
greater than m, and let p,, p. be minimal programs for x", x™, respectively. With
respect to the complexity measure K‘ which we have thus far been considering for
P~ We require that @, (m)< t(m), but for p, we require only that &, (m) =< t(n).
But ¢, (m)= ¢, (m)= x(m). Suppose now that we want ¢(m) to be an upper
bound for the computation of x(m) by a program p regardless of how large an
initial segment of x p may compute, i.e. replace the condition @;(m) < t(]w|)in the
definitior of K‘(w;|w|) by the condition @&,(m )< t(m). As things stand this would
constitute an impossible situation for many computational complexity measures.
Indeed, any program for any arbitrarily large initial segment of x (or what amounts
to the same thing, any arbitrarily large program) would be required to compute x (1)
within time #(1). This would be untenable, for example, in the real life situation
where the amount of memory used for a computation includes the memory used to
store the program. The way out of this dilemma is to observe that the program p,
contains more information than p,, since it can compute the initial segments of x of
length between m and n in addition to x ™. If we take the view that p, 1s cbtained
from p.. by “adding” irformation to p., then it should also be possible to obtain p,
from p. by “deleting” information from p,. Combining these notions we arrive at
what is in essence the monotonic operator complexity of Levin [15] (see also
Zvonkin and Levin [30]) and the process complexity of Schnorr [22].

A u.ps. {¢:} is called monotonic if and only if

ViVj digVnale:(n) | and ¢;(n)|] => @(n)= ¢;(n),
where v C w or w J v is used to denote that the string v is an initial segment of the
string w. By a computational complexity measure for a monotonic u.p.s. {¢:} we will
understand any complexity measure {®;} which in addition {0 satisfying the Blum
axioms also satisfies (1) @,(n) is strictly increasing with respect to i and n and (ii)
ViV¥Yng ©i(n)=|i|. For a given monotonic u.p.s. {®} and a computational com-
plexity measure {®,} for {¢;} we define
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Km(w;|lw|)= min{leVm <|wl@JiCjme(m)=w(m)},
Km'(w3|w|)=min{|j||¥m <|wa3i C jag:(m)= w(m) and &,(m)< :(m)}.

Let ¥™ denote the set of inference devices relative to the monotonic compiexity,
i.z. the set of all total recursive functions ¢ such that

VxVnVm<ngJiC Y (x")aei(m)=x(m).
We next define
O = {x |3 € WZ3c Vna| ¥(x")| < Km(x"; n) + c},
P™ ={m |31 € Fg3c Vng Km'(x";n)< Km(x";n)+ c}.

In a manner analogous to the proof of Theorem 2.1 we can show

Theorem 3.4. ™ C O™,

However, the reverse inclusion does not appear to hold, because it seems
unlikely that the appropriate time bound #, can be constructed. This could be
remedied perhaps by placing more restrictions on ¥™. For example we could
require that for ¢ € ¥™  be monotonic, i.e. u Cv = ¢(u)C ¢(v), which
would be sufficient to show 0™ C 2™, but which unfortunately also inva'idates the
current proof of Theorem 3.4.

A Martin-Lof random sequence (see [17]) is a sequence which in a certain sense
satisfies all constructive tests for randomness. In [12] Schnorr showed that a
sequence x is Martin—-Lof random if and only if Zc Vngn —c < Km(x";n)<n +c.
Since for sufficiently larg~ ¢t € ¥ and every sequence x 2c Vng Km'(x";n)<n+ ¢
and Km(x";n)<Km'(x";n), it immediately follows that every Martin-Lof
random sequence belongs to ?™. In more recent work of Levin [16] (see also
Schnorr [24]) the notion of generalized Martin-L6f random sequences (i.e.,
sequences random in the sense of Martin-Lof relative to some computable
probability measure) has been developed and it has.been shown that a sequence x
is generalized Martin-L6f random if and only if x € ?™. This is a very elegant
result. In this sctting recursive sequences are random with respect to the trivial
probability measure which assigns a 0 probabilitv to a 0. In other words all recursive
sequences are recursive transformations of the sequence of all ones.

Our last version of the inference problem represents a weakening or our
preceding conditions for the inferenze of optimal descripiions.

Let

6™ ={x |3 € VEVf E FaVna|P(x")|< Km(c"; n)+ f(n)}

P ={x |3 € FaVf € FaV¥ngKm'(x" ;n) < Km(x";n)+ f(n)}.



318 R. Daley

One has no difficulty in showing that 6™ D #™. The interesting feature of the
definition of 6™ is that for any x such that x € 6™ and x & O™ there is an inference
device which, while not producing the minimal descriptions of x", produces
descriptions which one cannot prove to be not minimal. This notion is similar to one
considered by Schnorr and Fuchs in [25]. A sequence x is called learnable by them
if and only if ‘

3t € FaVf € Fa¥t' € FaVnaKm'(x";n) < Km"(x";n) + f(n).

In their paper it was shown that learnable sequences coincide with sequences which
are random in a sense due to Schnorr (see [23]) and which: is weaker than the above
notion of generalized Martin-L6f randomness. It is interesting to note that it was
shown in [7] that the sequence x , is learnable and so is random in Schnorr’s sense.
Some open questions in this area are (i) what is the relation between 6™ and
Schnorr randomness, or alternately what properties of randomness do sequences in

-~

O™ possess, and (ii) can a characterization of 0* be found which is analagous to the
one given in Theorem 2.1 for 0?
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