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We are concerned in this paper with an inference problem whit 
inductive inference or grammatical inference problem, but which does 
to the scienai c investigation of phenomena. In order to see this relationship we 
consider the following scenario. 

A scielrltist wishing to investigate a certain phenomenon performs an experiment 
and obtains some data. Now, in a sense this data is itself a description of the 
phenomenon, but the scientist is more interested in discovering some scientific law 
or principle which explains the phenomenon (or at least agrees with the experimen- 
tal data). Let us presume that she is successful in formulating such a law. 
the law will be verified and become accepted by the scientific cornmum 
perhaps, this law will be incorporated into a broader, simpler principle. 

Of interest to us in the foregoing scenario is th? apparent concern on the part of 
the scientific community in finding ever more succinct descriptions (i.e., lawsj for 
phenomena. wow by no means is the shortest such clescriptiori the most convenient 
to use. Indeed, the application of very general principles to a concrete problem may 

ther large computational effort. 

does provide a setting an 
out that we are not c 
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sequence the11 we derrote the nth digit of x by x(n) and the initial segment of x of 
length n’ by x”, ie., X” = x(1) l l . x(n). The data from an experiment on the 
phenomenon x is represented by X” where the clomain of the experiment is the 

intial segment {O, 1,. v l , n} of the natural numbers. While this may seem to be a 
servore restriction on the type of experiments permitted, we will see later thiat for 
certain phenomena we can relax this restriction and permit experiments which are 
designed by an effective procedure. Descriptions for the data x ” are programs 7r in 
some “universal programming system” which compute x”, i.e., Wm G nlrr(m) = 
x(m). The minimal description of X” then is a program of minimal length which 
computes x n, which we denote here by M(x”). The inference problem for x is then 
solvable if and only if there exists a recursive function # such that for each 
~1, @(xn) = M(C). 

In general, the problem of finding ?A@“) from x” is certainly not recursively 
solvable (see Pager [18, 191 and and Schubert [26]). In contrast to Pager [18] our 
success in constructing sequences with recursively solvable inference problems is 
due apparently to our not requiring,that a program for X” contain an encoding of 
the number n. We point out that the idea of associating programs with descriptions 
of data from a scientific experiment,, or the conc;:rn in finding minimal programs 
within such a framework is not new. These notions are explicit in the very early 
papers on this subject by Chaitin [S] and Solomonoff [29]. It should also be clear 
that this is not an inductive inference problem. There is no inference in the limit. 
For a discussion of inductive inference and grammatical inference problems the 
reader is referred to Bierman and Feldman [2], Blum and Blum [4], and Gold [13]. 
For other discussions of this inference problem the reader is referred to Simon 
[27. 281. 

In Section 2 of this paper we give a precise formulation of the inference problem 
and consider those sequences for which the inference problem is solvable by a 
special type of recursive function called an “inference device.” We give a 
characterization of such sequences and investigate their minimal-program complex- 
ity. In the ‘process we will construct a number of sequences with additionally 
interesting properties. Some alternative formulations of the inference problem are 
investigated in Section 3. 

We conclude with a number of open questions. The remainder of this section is 
devoted to definitions and notation as well as some basic results from the 
minimal-program complexity theory which will be used in the remain&r of the 
paper. 

Every infinite binary sequence can be regarded as the characteristic sequence of 
some set. The characteristic sequence x of the set X is defined by x(n) = 1 a 
nE We will use the letters xp y, and z (with or without subscripts) for infinite 

Y, and 2 (with the same subscripts) to denote 

sequences (i.e., strings), and 1 w 1 to 
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to denote the mch digit of w. We identify a natural number i with its binary 
representation and use /iI to denote the length of that representation, i.e., 
1 i I= I+ log2 i. We will regard as a universal programming system (u.P.s.) any 
acceptable $del numbering {Qi) (see Rogers [ls)) of the partial recursive functions 
for which the S - m - n function a(i, i) I which satisfies Q,(hj,(P2) = Q&, n) also 
satisfies la(i, j)f = 1 j I + a(i), where 6 is a total recursive function. The mini 
program complexity of w is defined by, 

K(w;lwl)=min{(il)Vm clW(pQi(m)= W(m)). 

We define the set of functions 

9 = {f 1 f is totai recursive, unbounded and non-decreasing). 

Let {@i) be a computational complexity measure for {Q~) (see Blum [3]). The value 
Qii (n) will be referred to generically as the computation time for program i on input 
n. If t E 9 then we define the t-bounded minimal-program complexity of x ” by 

Clearly, 

by, 

K’(w;lwI)=min()iJJVm Qi(m)= w(m) and @i(m)< t(l w I)). 

K(W;jWI)SK’(W;lW])f or any t E 9. The complexity classes are defined 

%[f] = {x +2mK(xn; n)G f(n)), 

%[f I t] = {x +&C’(x”; n)S f(n)), 

@?fl = u %[f I a 
1ES 

where “Wn” and “3%” are used to denote the expressions “for all but finitely 
many n” and “there exist infinitely many n”, respectively. It is clear that the 
definition of K(w; I w I) and K’(w ; I w I) depends on the choice of {Qi) and {@i). If 
{ri;i) is some other U.P.S. and {&J a complexity measure for ($1) we use g(w ; 1 w I) 

and &‘(w ; 1 w 1) to denote the minimal-program complexities based on {$i} and 
{(iii)* If {Qi} and ($3) :are u,p.s.‘s then there is a constant c such that 

IK(w;IwI)-k(w;lwI)I~c. Similarly, 

If a set X has a particular property then we will consider x as having A.+ same 
named pr rty. For example, a sequence x is recursive if and only if X is 
recursive. particular interest in this paper are recursively enumerable s 
and retraceable sequences (see Rogers [21] for definitions of the corr 
sets). If x is retraceable and Q is a partial recursive retracing function for x (i.e., Q 
retraces thle l’s o if an 

we can restrict 
retracing !kctions to be decreasing, i.e., ~(a) s n, and we will do so. 
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Let (9~ be defined by, 

R. Daley. 

w(m 19 if m S]wi, 

Q&G m) = 
undefined, otherwise. 

Since QUrc,&z) = Qe (w, m), a(e, w) is always a program for w and we set 
T~( w ) = a(e, w ). and co = 8(e). Let :;(n) = max{@V~,&n)~ m S it, 1 w I= n}. 

Clearly, to E 9, and we have, 

Theorem ~1. (a) VwJO(w;~w I)+ I+co, 

(b) Vw.K(w;lw I)+ f+co. 

The following theorems which can be found in Barzdin [ 11, Daley [6], Kolmogorov 
[f4] and Loveland [16], will be useful in subseque.nt sections of this paper. 

Theorem 1.2. (a) n is recwsiue a 3c3dE9.vn*K’(xn;n)~c. 
(b) x is recursive e 3c Vn&x” ; n)d c. 

Theorem 1.3. (a) If x is recursively enumerable then 

(b) There exists a recursively enumerable sequence z1 such that 

Theorem 1.4. (a) If x is retraceable then 3c Vn. K(x “; n) s log2 n -I- C. 
(b) There exists a retraceable sequence z2 such that 

%zl K’(*;; n) :, f . 

We conclude this section with some additional notation. We denote the 
complement of the set X (sequence x) by X (2). We use cpi(n) 4 to denote the fact 
that vi(n) is defined, and Qi(n) T that Qi(PZ) is undefined. We use g1 to denote a 

program for the sequence of all l’s, i.e., $52 

Ie sequences an 

In this section we give a precise formulation of the inference prkqblem discussed 
section and investigate the pro 
is solvabPe by “inferencfe devices’ 
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is a program for w, 
inference device # 

On the inference of optimal descriptions 

any total recursive function # such that for every string w, e(w) 
i.e., Vrm S 1 w 1 (sgt,,,,(m) = w(m). Thus, given some data X” an 
always formulates some law for x”, though not necessarily the most succinct one. 

1 

For example. recalling that r,,(w) is a program for w which computes w essentially 

by table look-up*, if we let &,( w ) = rO(w ), then +QO is an inference device albeit a 
rather trivial one in the sense that given w as input JIO gives as output w in tabular 
form. Compare this to the situation where a scientist might pub”ish his experimental 
results without comnment in some journal. The set of all inference devices is denoted 
by ?P. An inference device + is called frugut if and only if 

Vw.I~(w)l~Kb(W;IWI), (2 I) . 

where t,,,(n) = max {@+,,,,,Cm)l m G n, I w I = n). The value t@(n) represents the 
maximum time required to verify that q(w) is always a program for w for any string 
w of length n. Clearly, t+ E 9 for each + E ?P. A frugal inference device is one for 
which the degree to which it approaches minimal-programs for its inputs is related 
to how much effort it devotes to the task. Thus & above would be regarded as 
frugal only if J/* spent little effort in determining its outputs. 

We say that a partial recursive function rp infers the optional descr@tion of a _ 
sequence x if and only if for each n, v(x~) is a program for x n and 

SC vn&J(Xn)j S K(x”; n)+ (r. (2 2) . 

We let Q, denote the set of ail sequences x whose optimal descriptions are 
inferrable by cp, and let 6 = U,,,O~. We remark that CT is clearly closed under 
complements. The constant c in (2.2) is necessary to insure that whether or not a 
sequence belongs to 0 does not depend on the choice of the u.p.s {vi). It is clear 
that whether or not a particular total recursive functioir belongs to P does depend 
on the choice of {vi}. So if {@i} is some other -I.P.s. we denote by @ the 

g set of inference devices. We have the following lemma. 

Lemma 2.1. (a) For every u.p.s. { Qi } and every JI E * and every constant c there 
exists a u.p.s. {@i} and a 4 E 1Zr such that for every sequence x, if V n 
K(x”; n)+c then Vn 4(x”)/ = 2(x”; n), 

(b) For every u.p.s. i} and every t.,b E P and every constant c there exists a U.P.S. 
($5:) such that for every sequence x for which Vn I+(xn)l = K(x”; n) the following 
hold 

(x”; n)+ c, and 

ISR(xn;n)-t-E. 

. (a) Let (Qi}, t) and c be given. efine 

* This is doubtless an overstatement in as much as 7. may convolute the r-ring w in a very complicated 
way (e.g. by hash coding). What is important here is that every string w cari ‘3e retrieved from -oB~ 

. 
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1 undefined, otherwise, 

enotes t~lhe concatenations o nd i, an 

C+l 
t 

4: is undefined in all other cases. efine q(w) = O+(w). The desired conclusion 

Qi}, #, and c, let r be a total reCUfSive fUnCtiOn Such that 
= n, and define 

if Qr(n,(Qi(I) l l . Qi(n)) = OOi 

otherwise, 

undefined, if 4P,(,>(qi (1) l . * vi(n)) = 1Oi 

&i(n) = 

otherwise, 

JL..;or(n) = Qi@). 
h’ 
C+Z 

In all other cases qj is undefined. For all i and t2 either sijmi(t2) = +D@) or 
(n) so that for all w, (w;~wpK(w;/w~)+l. 4 E @ and let 
n for any x: and any n ch that r(n) = i, fi(x”)/ > “; n)+ c. Then 

see that (ii) holds choose 4 SO that 

409. a 

aracterize the set 0. e say that a sequence x is p~~ctic if 
there exists a total recursive function B such that 
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programs. et 9, denote t e set of e-practic sequences and let 9 = u,,&?[. As in 
the case of the definition of &, t e constant c in eq. 2.3 is used to insure that 

whether or not x belongs to 9 is independent of the choice of u.p.s., and we have 
the following lemma which is proved in a manner analogous to t 

2s. 

r every u.p. s. (pi} and every t E @and every consiant c the.--e exists 
a f E 9 such that for every sequence x, if 

K’(x”; n)s K(x”; n)+ c then 

(b) For every u.p.s. {vi} and every t E 9 and every constant c there exists CJ u.p.s. 
ts;ii} such that for every sequence x for which Vn (x n ; n) the following 
hold 

(i) VtrE 
(ii) 3k 

We note that ‘(xn ; n) depends on both {+i} and {&i}, but given any {vi} and 

{@i}, a complexity, measure {&i} for {$i} is induced by {@i) and the recursive 

isomorphism bet een {vi} and {$i}. The following theorem gives a characterization 

of the class 6: 

2.1. (a) 0 = 9. 

t 2 to :) 3frugal* E 

. (a) Case 1: CP C 0. Suppose x E 9. Then 3 t E 9 such that x E Pt. 

min{i Ili(<(w(+co and vi(m)= w(m) and 

9+(w) = 
@i(m)s t(n)}, if such 

vMw)9 otherwise. (2 4) . 

Clearly 9 is tota recursive and e(w) is always a program for w so t 

for each w 

and since x E 9;, c 
Case 2: 0 C 9. Su - 
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et t E SF be such that t * hxll by (2.4) we 
see that td, s max {t, to} = t. Thus refore in view of 

1. tllearly 9? C O* by Case 1 above. Also by Case 2 
t Pzd, C 9? since t 2 i&. ence O+ = Pt. 

we have 8;4 !E gt+. If x E 9’,# and + is frugal then 
/$(x*)/S K’*(x”; n)S X(V; n) + c. Therefore x t c3;1: and hence CTJI = 

%** cl 

eorem 2.1 seems to imply that there is a threshold factor involved in the 
manner in which a device does its inferring, viz., it runs all programs of an 

determined amount of time (the threshold) and selects the 
halts within that time and agrees with the input string. In 

and the fact that all recursive sequences are practic we 

. lf x is recurs& then x E 0’. 

It is perskaps instructive to establish this result directly in terms of inference 
devices. Let x be recursive and let qj, (n) = x(n). We define a & such that x F O-& 
as follows~ 

if w = ~~,(l)-~~~(Jwl), 

otherwise. 

tulrn our attention toward the construction of non-recursive seqtiences 
belonging to and an investigation of their minimal-program complexity. 
begin with a partic r example of such a sequence which has several interesting 

n =c s 12 and vi(l) J,) 



On the inference of optimal descriptions 

$ is non-recursive. 

(c) X, is recuzively enumerable. 
d) x,EO. 
e) Xf X G X, then VfE x E qf 1 t]. 

eferri&lg to (e) of Theorem 2.3 we see that the initia segments of x $ can be 

uted by arbitrarily (in an effective sense) short programs 1Jvhich run very 
ly. Indeed, depending on the complexity measure {@i} (e.g., Turing machine 

ace or time) the function t can be chosen to be linear or near linear. Additional 
properties of x .+ are described in [7] and [12]. L 
described in (e) of heorem 2.3 so that Celo,,, = 
that membership in %’ low is not a sufficient condition for membership in 6’. 

Thew exist a recursively enumerable sequence x and a retraceable 
sequence y such thaf x, y E %$,,,, - 6’. 

roof. We first r’onstruct r a non-recursive sequence z * which is a variant of the 
sequence x *. In fact, z * will be retraceable with recursively enumerable comple- 
ment and if Z C 2, then z E %FIOw. We define the partial recursive function /pg such 
that qL(i, n) = qi(n) and 

Q?,(, ij( n) 2 32*0f(“’ l 5”“. 

Let d = s(e), so that 
(a(e,i)(-liJih. 

efine, 

( f9 2. 

(2 9) . 

4 m, n = 3pmSn for 1 G n S 2”, 

Z*= (4 I rr.. * m 3 1,l G n G 2”). 

Clearly 2, is non-recursive 

4 m+l.l* NOW 4 

C2.11) 
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we conclude that 2 * E %a,VS We obtain the same conclusion for any subset 2 of 2, 

Gnce we can specify all those members of Z* which are s n and which belong to Z 
by a string of length s Yn+l, and by virtue of (2.11) the addition of such a string to 

the program for z *” would not result in a progranl of appreciably larger size relative 
to n. . 

We first construct the sequence x. Let z1 be the recursively enumerable sequence 
of Theorem 1.3 b, so that Vt E K’(zr; n) > n/2. Define the set X by 
r&X C=S 3m n is the m th member of Z, and m I;I 25. Clearly x is non- 
recursive and! since X C 2, and % low is obviously closed under complements, 

x E %ow. 
Consider x”. Recall that m, = max{m Jpm s n}. Thtre are at most 2mn+2 mem- 

bers of 2, which are s n, each of which can be computed from om,. Thus given 22 
and i3fm”+’ we can compute x “. Therefore, it follows from (2.10) and Theorem 1.3(a) 
that 

#(x”;n)~c*m,. (2.12) 

Now suppose 3e 331t E K’(x”;n)=%~m,.Let n=2’+j-2,whereia 
1, 1’s j ~2’. Then by the ition of ~1, z+x(~& l l X(qi,j), SO that ZF is 
computable from x pi+l and z gi+l. But then from (2.10) and our supposition 
concerning x it follows that 3c 3t E K’(z;l; n) s c l log,n, which con- 
tradicts Theorem 1.3(b). Hence Vc Vt K’(x”;n)>c em,,, which to- 
gether with (2.12) proves that x e eY. 

To show that x is recursively enumerable we describe a procedure which 
enumerates the members of X in stages. P ,t successive stages progiessively larger 
portions of X will be enumerated. The procedure uses a list of natural numbers and 
infir&ely many imarkers whlich are moved down the list of integers. There are two 
types of markers p-markers m and q-markers , for 1 s n s 2”. Marker 
1x1 is associated with the set of computations m - d} and its final 
resting place will be pm. The final resting place is 9m.n. At any 
particular stage, if 
to integer 3’ 

is adjacent to integer k will be adjacent 
4”. In addition, for each marker there are two colors possible: white 

all q-markers are white and all p-markers are black, and once a 
lack it remains black. The final resting place of a black marker 
hile that of a white marker will not. The markers are ordered 
ering of their corresponding members of Z,, i.e., 
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(b) Find the program j of least size s n such that @j(l) = yt. If no such j exists go 
to (c). Otherwise, let m = 1 j 1. ove all markers q , I-1,. . . , widown to 

m integer t2 on the list and markers k i , m G k G n - 1, 1 s i s Zk, down to integer 
3” ’ 5’. 

(c) Color the /I’m q-marker black. 
(d) Enumerate all integers s n which are not adjacent to a white marker, i.e., 

tit them into X. Go to stage II + 1. (Note that some integers s II may be adjacent 
‘0 both a white marker and a black marker. Such integers are not put into X at this 

An examination of the above procedure reveals that in fact the final resting 
places of all the q-markers are the membe&s o f 2, and that of the white markers 
are the members of 2. 

We now construct the sequence y. Let z2 be the retraceable sequence of Theorem 
1.4(b), so that Vt E K’(zg; n)> n/2. We define the set Y by, 

nE Y e 3mrn is the mth member of 2, and m EZ2. 

Clearly Y is non-recursive and since Y c Z,, y E qlOw. The proof that y tZ 0 is the 
same as that for x $Z 0. The retraceability of Y follows from the retraceability of 2, 
and z2. 0 

The next theorem shows that membership in %’ low is not necessary for member- 
ship in 0’. Let (clog = {x 1 Vc V”n K(x” ; M) G log2 n - c}. 

Theorem 2.5. There exists Q recursively enumerable sequence x and a retrclceable 
sequence y such that x, y E 0 - %flog. 

l+oof. Let pl be so large that for each number p > pl, M,oB2(P) > 4 l p. This will 
insure that s, > r, below. Let s1 = p1 and define 

ince then qn s r,,. Observe that 

efine e se 
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The basic idea in 
details may tend to 
XE Referring to 

the construction of x is fairly simple although the necessary 
obscure it. We therefore first give ;a sketch of the proof that 
the diagram below we see that x is defined in segments: 

. . . . 9 . . . . 

I I I I 1 1 I 1 I 

I 1 I I i I I I I 

pr q1 rr p”-1 qn-1 F”-1 pn qn cl 

Let us consider the na segment (i.e., the interval (r,,.+ r,,]). Notice that p,, and + 
are computable from k,, and that k,+ is computable frolm ~“-1 and hence from k,. 
Thus x’m and hence ++a-* can be computed from k,. Since p,, > snml we can 
effectively bound how long such a computation will take. Thus for some t E 9’ and 
some constant cl, 

To show 

K’(x’n; P”)S log*(k,)+ Cl s log2(p,)+ Cl. 

that x E: 6 it su%ces to show that for some constant c2, 

~(x’“;~n)>.logs(p,)-c2. 

Suppose to the contrary that there is a program E for xqn such that 1 i 16 log2 (p,) - c 
for a sufficiently large value of c. Then-it is possible to transform i into a program j 
(see q(e, i, m) below) such that 1 j 1 s log2 &,) and that j refutes k, = $,, - p,, in the 
sense that cpi(i j j e j is not among tbe first qn - p,.. programs of size 6 log2 @,J 
which halt on injput 1. It is essential here that pn be computable from 4”. 

The function Q is defined by, 
Q(e, i, 1): Compute Qi(Z), Qi(2), . . . until tne least 4 is found satisfying 

0 i 
0 ii . . . 

( ) iu 
4” GlI 

Let 
which 

vi(q) = 0 and pi(q - 1) = ‘I: 
f o(e, i)l G log2 pV where p is the unique number of the form 4” such that 
c 4*+‘. This completes the definition of q. 
k = 4 -p. Compute the finite set J = {first k programs of length G log2 (p) 

halt on input I). If o(e, i) E J then enter an infinite loop. Otherwise output 
the value 0 and halt. 

Choose an e. such that cp,(i, m) = Q(eo, i, m). If K(xqn; q,,) C log&,) - 8(eo) 

then there exists a program i such that 1 i I< log&,) - 8(eo) and 
efinition of ~(e~, i, m) we see that q = qj, p = pj and k = kj where 

r s yt with 1 c(eo, i)l s 1 i I+ s(eO) c log @j). From this it is also 
J. l C-q a(eo, i) fZ J, w implies that qj - pj# kj, which is an 

immediate cent &on. Thus we have Vn (x4”; q,,) 2 log2 (p”) - 8(eo), and thus 

m)Hog&)- b(eo)Nog2(r,)- &eo)-2. (2.13) 
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3c3tE Qn Qm < q,+l K’(x”;m)~~k,~+c~log2(~~)+c. (2.14) 

Combining (2.13) and (2.~4) we have that x E 6’. 
To see that x is recursively enumerable we give the following procedure using 

markers which enumerates the members of X. There is an infinite number of pairs 
of markers m 1 171, Iv/, and the final resting-places of mi and w[ are pm 
and qrn respectively. We now describe stage ua of the procedure. We use (m, I) and 
&2) I-O denote the current positions of- pvi and 1-1 respectively. 

Stage n. Find the program j of least size m s n such that @j(l) = n. Place 
integer (m, 2) into X and move marker [rnTi to integer (m, 2) + 1. Move all 
markers [mq’, -1,. . . , ml, rrl n 2 next to integer 4”, and place into 
X all integers k such that 3 l (m, 1) s k < 4’“. 

That this procedure enumerates the members of X is easily seen. We define the 
sequence y by the condition Y = {qn 1 n 2 1). Clearly, y is retraceable and u,sing the 
same proofs used for x we obtain y E O and y fZi @loge 0 

The results in Theorem 2.5 are the best possible for recursively enumerable and 
retraceable sequences in view of Theorem 1.3a and Theorem 1.4a. Thus we see that 
although there is a characterization of sequences in O in terms of minimal-program 
complexity notions, there does not seem to be any relationship between sequences 
in C7 and their actual minimal-program complexity. 

We now take up the question of whether the order of the experimentation (an 
by this we understand an effective and complete enumeration of experimental data 
points) can affect our ability to infer the optimal description of a phenomenon. In 
other words is the set O closed under recursive permutations. Certainly every 
recursive permutation of a recursive sequence (being itself recursive) belongs to 6. 
Moreover, as we shall see below there are many non-recursive sequences with this 

11. However, it does seem plausible that there is some phenomenon, 
has been constructed here, whose inferrability is sensitive to order of 

presentation. 

Every recursive permutation of x * belongs to 0. 

we can compute all 
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amounts of time relative to lg and hence we can determine all k 5~ II for which 
y(k) = 1. In other words we can compute y” from G, in time t(n),, for an 
appropriately chosen recursive t. ‘Thus (i) is satisfied. 

We can transform any (such) program 7~ into a program T’ such that IdI s 

f 7~ I+ c * (where c * is independent of nJ which first uses a to find the least p such 
that r;p, 01) = 1 and min (1 k 11 @ic (1) = f-‘(TV)} 2 I ~‘1, and then loops until Q+(l) > 
f-‘(p). Such a program transformation clearly involves a use of the Recursion 
Theorem. Suppose now there exists an II and a program 7~ for y” such that 

I I 9r ~m,-c*. Then using the above transformation we consjtruct a program V’ 
with f ~‘1 s mn such that @,Jl) > M,,, which contradicts the fact that 7~ computes 
y”. Thus (ii) must hold and therefore ,y E: 9 and so y E 0’. !J 

In [12] an infinite retraceable subset X0 of X, is constructed such that.if Y E X0 
and v is recursively enumerable, then Y is retraceable (in fact, Y is retraced by a 
total recursive retracing function). By means analagous to those used in Theorem 
2.5 *we have, 

Theorem 2.7. There exists an infinite subset X0 of X, such that if Y G X0 and F is 
recursively enumerable then every recursive permutation of y belongs to 0” 

Moreover, it is shown in 1121 that x0 is an atomless recursively enumerable set so 
that every infinite non-recursive corecursivsly-enumeraible subset Y of X0 has an 
infinite non-recursive corecursively-enumerable subse:t 2, such that Y - 2 is 
infinite. 

In this section we consider some notions which are rela ed to the inference 
problem described in Section 1 but which represent an alternative approach to that 
of Section 2, We first consider t’he situation where arbitrary partial recursive 
functions instead of inference devices are used to infer optimal descriptions of 

To this end we define O* = UpEivij 0,. Clearly, 0 c O*. We begin by 
cient conditions for membership in 0”. 

If f E 9 and x is a sequence satisfying 

n)S f(C)+ c, then x E 0”. 

ne by, 
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In [6] it was shown that for every f E 9 such that 
f (n + 1) - f(n) 6 1 there exists a sequence x such that 

K(x “; n) s f(n) at- c. We remark that the conch f(n+l)-f(n)Glisnota 
severe restriction in view of the fact that any f E 9 which serves as a non-trivial 
upper bound for program complexity will sa.tisfy Vn f(n) S n. We now give an 
improvement of the above mentioned result. Let S+ be the set of all f E 9 
satisfying 

cardinality {m 1 f(m)= n)b YE + 1. 
mple, hn( ]d<J) E z&. Condition (i) can be viewed as a smoothness 
Note that since g1 E 9, every f E 55 is non decreasing. 

Thewem 3.2. Fdw every f E Sl there exists a sequfence x such that 

f(n)< K(x”; n)S f(n)+ c. 

Proof. Let f be ai function satisfying the conditions of the hypothesis of the theorem 
and let g E 9 be defined by g(n)= min{m 1 f(m)= n}. Since f E S1, 

g(n) - g(n - 1) >b n + 1. Let wn be the binary re:presentation of lengt 
g(n - 1) (using the necessary number of high order Q’s) of the number Kn. Such a Wn 

ways exists since there arc less than 2”+l programs of length s n and there are 
exactly p(n)-&n--V strings of length g(n)- g(n - 1). Define the sequence x by 
x(&z-l)+l).c*x(g(n))= Wm. By an argument an;alogous to that used to estab- 
lish (2.13) we can shovv that 

3c Vn Vm a g(n) K(x”;m)>n-c. . W) 

The number Kn can be represented by a string of length at most n + 1 (without the 
high ordler O’S), and since Kn-1 can be computed from Kn we have, 

3c Vn Vm S g(n), K(x”;m)sn+c. (3 2) . 

Combining (3.1) and (3.2) we have 3c Vn Vm g(n - 1)s m C g(n) * n - c S 
K(x”;m)s n +-c, and since Vn < g(n + 1) * f(m)= 13, we ar- 
rive at the desialed conclusion 3c i+ f(x)+ c. El 

We are now prepared to show that S# 0*. e modify the preceding construc- 
tion as follocws. Let g(1) = 1 and g(n) = g(n - l)+ 3n + 2, and define f by th 
condition f(n) ‘= maxim 1 g(m n}. Let 8,, be the least s 
order of length 2n -O- 1 such t S, B {qi(g(n - 

}. Such a & exists since there are less 
n - l)+ 1) l l x(g 

the same manner as above that 
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and so x E O*, Gi n any c, ~2, i and t E 

Ii Isf(n)+c and (?Dt)c t(n) for all 
pi(g(n - 1) -t- t2 + 2) l l 9 qi(g(M)) # S,. Therefore, 
f(n) + c, so that in view of (3.3) we hav 

nition of S, we see that 

have the following 

h (a) SFS*. 
ere exists a recursiucly enumerable sequence x such that x E 0” and x e 6: 

(c) There exists a retraceable sequence y such that y E O* and y fZ 0: 

me slequences x and y in parts (b) and (c) above can be constructed in a 
straightforward manner by using a combination of several of the preceding 
constructions. . 

e ROW consider two formulations of the inference problem which involve a 
slightly different notion of program complexity. Let a non-recursive sequence x be 
fixed for the remainder of this paragraph, and let m and n be integers with T-Z much 
greater than rn+ and let pns pm be minimal /programs for x “, x”, respectively. With 
respect to the complexity measure K’ whic:h we have thus far been considering for 
I~)M we require that Qip,(m)~ t(m), but for p” we require only that QPJrn)G t(n). 

ut up,,= (a,,(m) = x(m). Suppose now that we want t(m) to be an upper 
und for the computation of x(m) by a program p regardless of how large an 

initial segment of x p may compute, i.e. replace the condition @i(m) s t( 1 w 1) in the 
dekition of K’(w ; 1 w I) by the condition @i(m) G t(m). As things stand this would 
constitute an impossible situation for many computational complexity measures. 
Indeed, Eny program for any arbitrarily large initial segment of x (or what amounts 
to the same thing, any arbitrarily large program) would be required to compute x (1) 

e untenable, for example, in the real life situation 
used for a computation includes the memory used to 
ut of this dilemma is to observe that the program pn 

re information than p,,, since it can compute the initial segments of x of 
etween m ;snd y1 in addition to x*. If we take the view that pn IS obtained 

g” information to pm, then it should also be possible to obtain pm 
information from pn. Combining these notions we arrive at 

c monotonic operator complexity of ex*in [15] (see also 
the process complexity of 

onotonlc if and only if 

an 
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(w;~w~)=min{~j~~ Qi(m) = W(m)}, 

et !P” denote the set of inference devices relative to the monotonic complexity, 
i.2. the set of all total recursive functions $ such that 

Qi(m) = X (WI)* 

e next define 

m(x”; n)+ c}. 

In a manner analogous to the proof of Theorem 2.1 we can show 

However, the reverse inclusion does not appear to hold, because it seems 
unlikely that t e appropriate time bound t,,, can be constructed. This could be 
remedied perhaps by placing more restrictions on Pm. For example we could 
require that for $ E ?P” $ be monotonic, i.e. u C u + $(u)C +(v), which 
would be suflicient to show Om C Pm, but which unfortunately also invalidates the 
current proof of Theorem 3.4. 

A Martin-Lijf ran sequence (see [ 171) is a sequence which in a certain sense 
satisfies all constructive tests for randomness. In [12] Schnorr showed that a 

Since for suffic 
and Km(x”; ,n)< Km’(x”; n), it immediately 

sequences ran 
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One has no difficulty in showing that @” 2 @‘. The interesting feature of the 
definition of & is that for any x such that x E &’ and x e 0” there is an inference 
device which, while not producing the minimal descriptions of x”, produces 
descriptions which one cannot prove to be not minimal. This notion is similar to one 
considered by Schnorr and Fuchs in 1251. A sequence x is called learnable by them 
if and only if 

lit’ E Km’(~“;n)~X~m”(x”;n)+f(n). 

In their paper it was shown that learnable sequences coincide with sequences which 
are random in a sense due to Schnorr (see [23]) and whi& is weaker than the above 
notion of generalized Martin-L&f randomness. It is interesting to note that it was 
shown in [7] that the sequence x r(c is ‘learnable and so is random in Schnorr’s s&se. 

Some open questions in this area are (i) what is the relation between 6, and 
Schnorr randomness, or alternately qx:hat properties of randomness do sequences in 
6”’ oossess, and (ii) can a characterization of 6” be found which is analagous to the 
one&given in TRiorem 2.1 for O’? 
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