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a b s t r a c t

We study NP-hard Chooser–Picker biased games on hypergraphs and their connections to
classic Maker–Breaker games. We prove two weight-function-based winning criteria for
Picker and show that the Erdős–Selfridge winning criterion for Breaker’s win is also the
winning criterion for Picker in (1 : 1) games. Thereby we improve previous results by Beck
and by Csernenszky, Mándity and Pluhár. Moreover we estimate the critical bias for Picker
in Chooser–Picker (1 : q) games in which the aim of Chooser is to build a copy of a fixed
size graph G in Kn.
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1. Introduction

Let H = (V , E) be a hypergraph, i.e. V is a finite set and E is a collection of subsets of V . The elements of V and E are
called the vertices and edges of the hypergraph, respectively. We allow multi-edges and empty edges in H .

We study the following class of positional games played onH . Two players claim in turns previously unselected elements
of V , until all vertices are occupied. One of the players, let us call him the builder, winswhen he claims all elements in at least
one edge of the hypergraph; otherwise the other player, the spoiler, is the winner. In a well-known Maker–Breaker version
of the game, Maker, who is the builder, selects at most p > 1 elements and Breaker claims at most q > 1 elements per turn.
Every player has to select at least one element in his move. We denote such games by MB(H, p, q)M and MB(H, p, q)B,
where the subscript letter indicates who starts the game.

Beck [4,5] introduced another two versions of the builder–spoiler games played on H , Picker–Chooser and Chooser–
Picker games, which we will denote by PC(H, p, q) and CP (H, p, q), respectively. In PC(H, p, q) Picker is the builder
and Chooser is the spoiler. At every turn Picker selects at most p + q (but not less than q + 1) unoccupied vertices. Chooser
keeps q of the vertices selected by Picker and the remaining elements go to Picker. We have a special rule for the last turn,
if there are t < p + q unoccupied vertices left: then Chooser takes min{t, q} of them and the remaining elements (if any)
belong to Picker. In CP (H, p, q) Chooser is the builder, Picker is the spoiler and the rules are analogous to these in the
previous game. At every turn Picker selects at most p + q (but not less than p + 1) unoccupied vertices. Chooser takes p of
the vertices offered him by Picker and the remaining elements go to Picker.

Let us emphasize that in MB(H, p, q)M , MB(H, p, q)B, PC(H, p, q), CP (H, p, q) and in the phrase ‘‘a (p : q) game’’
the first number always refers to the number of vertices selected by the builder.

While studying Maker–Breaker games, the authors usually consider them in the strict version: it is assumed that Maker
and Breaker claim exactly p and q elements, respectively. It is natural since the players can take no advantage of selecting
less elements than the maximum allowed. Throughout the paper we pay attention to this assumption every time it may
influence the results.
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It is well known that Maker–Breaker games in the strict version, as well as MB(H, p, q)M and MB(H, p, q)B, possess
two nicemonotonicity properties: with respect to subhypergraphs ofH andwith respect to the bias q (or p). More precisely,
if Breaker wins for instanceMB(H, p, q)M , then hewinsMB(H ′, p, q)M for every subhypergraphH ′

⊆ H . Also, if Breaker
can win MB(H, p, q)M , then he can win MB(H, p, q′)M for every q′ > q.

On the contrary, in Chooser–Picker and Picker–Chooser games, the assumption that at every turn Picker can offer less
than p + q vertices is quite important. Otherwise it might have happened that CP (H, 1, 1) is won for Picker, while Picker
loses in CP (H, 1, q) with q > 1; consider for example H consisting of q/2 + 1 disjoint edges, each of size 2, where q is
even.

The above assumption guarantees the subhypergraph monotonicity as well. One can check that for q = 1, if Picker has a
winning strategy in CP (H, p, q), then he can win CP (H ′, p, q) for every subhypergraph H ′

⊆ H (see [10] for a rigorous
proof). The same holds for q > 1, provided we allow Picker to select less than p + q vertices per turn.

Beck observed that sometimes the results of Maker–Breaker, Picker–Chooser, and Chooser–Picker (1 : 1) games sur-
prisingly resonate. As an illustration, consider the following clique game, described in graph language. Suppose that
the players select edges of the complete graph KN and we ask about the greatest n such that the builder can create
Kn in KN . A remarkable result of Beck is that in the Maker–Breaker and Chooser–Picker versions the greatest such n
equals ⌊2 log2 N − 2 log2 log2 N + 2 log2 e − 3 + o(1)⌋, and in the Picker–Chooser version the corresponding number is
⌊2 log2 N − 2 log2 log2 N + 2 log2 e − 1 + o(1)⌋. The proofs are long and difficult and we refer the reader to [5] for de-
tails. Observe that the latest number is also the clique number of the random graph G(n, 1/2). Nonetheless, the interesting
connection between random graphs and positional games is not the subject of this note.

Beck remarked [4,5] that seemingly Picker in PC(H, 1, 1) has an easier job than Maker in MB(H, 1, 1)B. Similarly, it
is easier to win as Picker in CP (H, 1, 1) than as Breaker in MB(H, 1, 1)M . This remark has been formalized in [10] as the
following conjecture.

Conjecture. If Breaker wins MB(H, 1, 1)M , then the spoiler Picker wins CP (H, 1, 1). If Maker wins MB(H, 1, 1)B, then the
builder Picker wins PC(H, 1, 1).

In fact both parts of the conjecture are equivalent since every game PC(H, p, q) is equivalent to the game CP (H∗, q, p)
played on the so-called transversal hypergraph [10].

Recently the above conjecture has been disproved by Knox [16] by constructing a 3-uniformhypergraphH on 15 vertices
such that BreakerwinsMB(H, 1, 1)M but the spoiler Picker losesCP (H, 1, 1). Though the conjecture is not true in general,
it holds, as wewill prove in this paper, for a class of games inwhichwinning strategies of Breaker (orMaker) are determined
by natural weight functions.

The weight function method is a standard tool in combinatorial game theory. Since the problem of deciding who has,
a winning strategy in Picker–Chooser and Chooser–Picker games is NP-hard [11], and the analogous problem for Maker–
Breaker games is PSPACE-complete [18], it is natural to look for efficient winning criteria at least for some classes of the
hypergraphs H . A well-known Erdős-Selfridge theorem [12] says that if

w(H) =


A∈E(H)

2−|A| <
1
2
, (1)

then Breaker has an explicit winning strategy in MB(H, 1, 1)M . This result was generalized by Beck [2], who proved that
the inequality

w(H) =


A∈E(H)

(q + 1)−|A|/p <
1

q + 1
(2)

is a winning criterion for Breaker in MB(H, p, q)M . As noted by Beck [5], this is also a winning criterion for the spoiler
Chooser in PC(H, p, q).

In [5] a reader can find other winning criteria for Picker–Chooser and Chooser–Picker games. They proved useful in
studying the clique game, the Van der Waerden game, discrepancy games and games played on the lattice grid [5]. Results
in that direction were obtained also by Csernenszky [9] and Csernenszky, Mándity and Pluhár [10]. Let us mention two
winning criteria for the spoiler Picker in biased Chooser–Picker games.

The following one was proved by Csernenszky.

Theorem 1.1 ([9]). If

w(H) =


A∈E(H)

2−|A|/p <
p + 1

|V (H)|
,

then Picker has a winning strategy in CP (H, p, 1).

The next criterion, due to Beck, applies to games in which Picker’s bias is larger than 1. Here the rank of the hypergraph
H is rank(H) = maxA∈E(H) |A|.
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Theorem 1.2 ([5], Thm. 47.1). Let q > 2 and H be a hypergraph of rank a0. Suppose that there exists a natural number t, with
1 6 t 6 a0, such that

w(H) =


A∈E(H)

(q + 1)−|A|+t 6 1.

Moreover assume that for every X ⊆ V (H) such that |V (H) \ X | 6 q24a120 there are at most 2t−3/(t + 1) different edges in the
set {A \ X : A ∈ E(H)}. Then Picker has a winning strategy in CP (H, 1, q).

In the proofs of all presented above winning criteria the winning strategy of the spoiler is based, roughly speaking, on
minimizing the weight function w. The weight w is defined on the set of all positions which may arise in the course of the
play, and at every turn a player makes a move leading to one of the positions with minimal possible weight. To be more
precise, we introduce some notation.

If X ⊆ V (H), thenH \X denotes the hypergraphwith the vertex-set V (H)\X and the edge-multiset {A\X : A ∈ E(H)}.
By H − X we denote the hypergraph with the vertex-set V (H) \ X and the edge-multiset {A ∈ E(H) : A ∩ X = ∅}. We
write H − x and H \ x instead of H − {x} and H \ {x}, respectively. Suppose that at a given moment of a game played on
a hypergraph H , X is the set of all vertices the builder has selected so far and Y is the set of vertices which belong to the
spoiler. Then we call the hypergraph (H \ X) − Y the position at the given moment.

Let us consider a Maker–Breaker (1 : q) game played on a hypergraph H . Given a real-valued function w, the weight,
defined on the class of all hypergraphs with vertex-sets contained in V (H), we say that Maker in a Maker–Breaker (1 : q)
game uses a max-weight strategy, if at every turn, for the resulting position H ′, he selects a vertex for which w(H ′

\ x)
is maximal over all x ∈ V (H ′). Similarly, by a min-weight strategy of Breaker in a Maker–Breaker (p : 1) game we mean
selecting in every position H ′ a vertex for which w(H ′

− x) is minimal over all x ∈ V (H ′).
It turns out that if the gameMB(H, p, 1)M satisfies criterion (2), then Breaker has awinningmin-weight strategy, which

can be easily transformed into a winning strategy of the spoiler Chooser in PC(H, p, 1). The only difference between the
strategies of Breaker and Chooser is that Chooser keeps the vertex forwhich theweightw(H ′

−x) isminimal over all vertices
offered him by Picker. Similarly, we have winning criteria for Maker in MB(H, 1, q)M which guarantee the existence of his
max-weight winning strategy (see [5]), and based on this strategy we can obtain a winning strategy of the builder Chooser
in CP (H, 1, q). It is an interesting problem to find a simple rule which relates the existence of a winning weight-function-
based strategy of Maker or Breaker with a winning strategy of the corresponding Picker. The theorem below, which is our
main result, establishes a relationship of this kind, for a restricted but still wide class of games. We need the following
definition.

Given a set V0 and a weight function w on the class of all hypergraphs with vertex-sets contained in V0, we say that w
has property (GW) if for every hypergraph H with V (H) ⊆ V0 and distinct x1, . . . , xn ∈ V (H), the following condition is
satisfied:

n
i=1

w((H \ xi) − xi+1) =

n
i=1

w((H \ xi+1) − xi), (GW)

where xn+1 = x1. Throughout the paper, when considering a game on a hypergraph H , by default we assume that every
weigh function we talk about is defined on the class of all hypergraphs with vertex-sets contained in V (H).

Theorem 1.3. Suppose that Breaker has a winning min-weight strategy in MB(H, 2p − 1, 1)M , for some weight w which has
property (GW). Then the spoiler Picker has an explicit winning strategy in CP (H, p, 1).

Suppose that Maker has a winning max-weight strategy in MB(H, 1, 2q− 1)B, for some weight w which has property (GW).
Then the builder Picker has an explicit winning strategy in PC(H, 1, q).

The assumption that the weight function satisfies (GW) is not so restrictive as it may seem. For instance the Erdős-
Selfridge weight function (1) has property (GW). As a consequence, wewill obtain the following perfect analog of the Erdős-
Selfridge winning criterion (1).

Corollary 1.4. If
A∈E(H)

2−|A| <
1
2
,

then the spoiler Picker has a winning strategy in CP (H, 1, 1).

The above corollary improves previous bounds: 1/(8rank(H) + 1) obtained by Beck [4] and 1/(3(rank(H) + 1/2)1/2)
proved by Csernenszky, Mándity and Pluhár [10]. The bound 1/2 is optimal, which we discuss in Section 6.

Unfortunately, with Theorem 1.3we are only partially successful in adapting Beck’s winning criterion (2) to the Chooser–
Picker purpose. Aswewill show, the result of Beck, togetherwith Theorem1.3, gives the following Picker’swinning criterion.
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Corollary 1.5. If
A∈E(H)

2−|A|/(2p−1) <
1
2
,

then Picker has an explicit winning strategy in CP (H, p, 1).

If we compare it with Theorem1.1, we see that none of the two criteria is stronger than the other. Corollary 1.5 is stronger
for example in the case of uniform hypergraphs on n vertices with rank of order O(ln n), provided p is fixed.

The second main result of our paper is the following winning criterion, for Picker in CP (H, 1, q).

Theorem 1.6. Let q0 > 2 and H be a hypergraph for which
A∈E(H)

(q0 + 1)−|A| <
1

2(q0 + 1)
.

Then Picker (the spoiler) has a winning strategy in CP (H, 1, q) for every q > 100a0q0 ln(a0q0), where a0 = rank(H).

Weare going to use Theorem 1.6 in Chooser–Picker (1 : q) games inwhich the rank of the hypergraph is fixed and q tends
to infinity with |V (H)|. On the contrary, Theorem 1.2 is more useful in games played on hypergraphs H with rank tending
to infinity with |V (H)|. For example Theorem 1.2 was applied by Beck to study asymptotic aspects of the Chooser–Picker
clique game in biased (1 : q) version, with q fixed [5].

The problem of estimating the greatest q such that the builder has a winning strategy in a (1 : q) game is one of the
most extensively studied problems of Maker–Breaker games. There are several papers ([3,6,8,13,14,17], to mention just a
few) which study this problem for games played on the complete graph Kn or, more precisely, games MB(H, 1, q)M and
MB(H, 1, q)B in which V (H) = E(Kn) and E(H) corresponds to some family of subgraphs of Kn. We are not going to
consider in detail the same problem for Chooser–Picker games, but we would like to illustrate the weight function methods
by estimating the spoiler ‘‘threshold bias’’ of games in which the builder wants to create a copy of a small graph G in Kn. We
consider such games in the last section.

Our paper is organized in the following way. We prove Theorem 1.3 in Section 3 and Theorem 1.6 in Section 4. In
Section 5 we formulate a winning criterion for Chooser in CP (H, 1, q), used later in Section 6. The last section contains
some applications of Theorems 1.3 and 1.6.

2. Preliminaries

Apart from the definitions formulated in the Introduction, we will use the following notation.
For a hypergraph H and X ⊆ V (H), we denote by HX the subhypergraph of H , induced by all edges A ∈ E(H) such that

X ⊆ A. For simplicity we write Hx1,x2,...,xt instead of H{x1,x2,...,xt }.
For a natural number s and a multiset X let

X
s


be the family of all s-element subsets of X . We assume that in an s-

element subset of X an element can appear with multiplicity not greater than in X . Given a hypergraph H , we denote by H s
2

the hypergraph with the vertex-set V (H) and the following edge-multiset:

E(H s
2) =


s

i=1

Ai : {A1, . . . , As} ∈


E(H)

s


and

 s
i=1

Ai

 > 2


.

Even if all A1, . . . , As are distinct, themultiple edges in E(H s
2) are possible: for example if

s
i=1 Ai =

s
i=1 A

′

i for two different
sets {A1, . . . , As} and {A′

1, . . . , A
′
s}, then we have two copies of the edge

s
i=1 Ai in E(H s

2).
Let us recall that by a position at a moment of a game played on a hypergraph H wemean the hypergraph (H \ X) − Y ,

where X is the set of all vertices the builder has selected so far and Y is the set of vertices which belong to the spoiler. By
H(i) we denote the position after the i-th turn and put H(0) = H . Clearly, if a player uses his winning strategy in a game
played on H and we assume that after the i-th turn the new game, played on H(i), starts, then the player has a winning
strategy in this new game as well. Moreover, if H(i) is a hypergraph after the last turn of the game, then the builder wins if
and only if E(H(i)) contains an empty edge.

Consider a hypergraph H and a weight function w. We say that a vertex x ∈ V (H) is Breaker’s w-best response in H if

w(H − x) 6 w(H − x′) for all x′
∈ V (H).

A vertex x ∈ V (H) is Maker’s w-best response in H if

w(H \ x) > w(H \ x′) for all x′
∈ V (H).

ByMaker’s w-best response to y in H (y ∈ V (H)) we mean any vertex which is Maker’s best response in H − y. A vertex
is Breaker’s w-best response to x in H if it is Breaker’s best response in H \ x. Thus, if x is Maker’s w-best response to y in H ,
then for every x′

≠ y

w((H \ x′) − y) 6 w((H \ x) − y),
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while if y is Breaker’s w-best response to x in H , then for every y′
≠ x

w((H \ x) − y′) > w((H \ x) − y).

We will use the above best response definitions for hypergraphs H in general, not only in Maker–Breaker games.
Notice that, given a weight function w, Maker in a Maker–Breaker (1 : q) game uses a max-weight strategy if and only

if at every turn, for the resulting position H ′, he selects Maker’s best response in H ′. Similarly, Breaker in a Maker–Breaker
(p : 1) game carries out his min-weight strategy if and only if in every position H ′ he selects Breaker’s best response in H ′.

Usually in applications w(H) is the sum of some weights of edges of the hypergraph H and these edge-weights depend
linearly or exponentially on the size of an edge. We define the weight functions Tδ of the latter kind, with δ > 0, as follows:

Tδ(H) =


A∈E(H)

δ|A|.

If E(H) = ∅, then Tδ(H) = 0, so the final position of a game is won by the builder if and only if its weight Tδ is positive.

Fact 2.1. For every δ > 0 the weight function Tδ has property (GW).

Proof. Indeed, we have

Tδ((H \ xi) − xi+1) − Tδ((H \ xi+1) − xi) = δ−1(Tδ(Hxi) − Tδ(Hxi,xi+1)) − Tδ(Hxi+1)

−δ−1(Tδ(Hxi+1) − Tδ(Hxi,xi+1)) + Tδ(Hxi)

= (δ−1
+ 1)(Tδ(Hxi) − Tδ(Hxi+1)),

and summation over i leads to the conclusion that Tδ has property (GW). �

Throughout the paper we will utilize weight functions Tδ very often, as well as the fact that they satisfy (GW). As the
reader may have noticed, in almost every theorem mentioned in the Introduction, a function Tδ is involved.

3. Proof of Theorem 1.3

We begin by the key lemma.

Lemma 3.1. Suppose that a weight function w has property (GW). Then for every hypergraph H with at least two vertices there
exist distinct vertices v, v′

∈ V (H) such that they are Breaker’s w-best responses to each other. Analogously, we can find two
vertices which are Maker’s w-best responses to each other.

Proof. We will prove only the first part of the lemma since an analogous argument applies to the second one.
Given a hypergraph H , let us define an auxiliary directed graph G. The vertex-set of G is V (H), and (v, v′) is an edge of G

if and only if v ≠ v′ and v′ is Breaker’sw-best response to v in H . Then every vertex in G has the non-zero out-degree so for
some k > 2 there exists an oriented cycle v1v2 . . . vk in G. By the definition of aw-best response, the following k inequalities
are true, with v0 = vk and vk+1 = v1:

w((H \ vi) − vi+1) 6 w ((H \ vi) − vi−1) for i = 1, 2, . . . , k.

Wesum themup and, in viewof (GW),we conclude that all of the inequalitiesmust be equalities. Thus, for all i = 1, 2, . . . , k,
the vertices vi and vi+1 are Breaker’s w-best responses to each other. �

Proof of Theorem 1.3. To prove the first part of the theorem, consider a game CP (H, p, 1) and a weight function w which
satisfies (GW).

We assume that the spoiler Picker records the history of the game by creating a sequence (a) of vertices occupied in the
game: before the first move the sequence (a) is empty and after each turn Picker adds at the end of (a) all p + 1 vertices
selected at this turn, in the order we will define later.

The key realization is that we can consider a sequence (a) also as a history of the game MB(H, p′, 1)M , where Chooser’s
elements of (a) correspond toMaker’s choices inMB(H, p′, 1)M , Picker’s elements of (a) correspond to vertices selected by
Breaker, and p′ is themaximal length of a subsequence of consecutive Chooser’s elements in (a). Herewe use the assumption
that Maker in MB(H, p′, 1)M is allowed to select less than p′ vertices per turn. Clearly, if at the end of the Maker–Breaker
game, played according to the history (a), no edge of H is occupied entirely by Maker, then also the builder Chooser loses
the Chooser–Picker game played according to (a).

Wewill show that at every turn ofCP (H, p, 1) Picker can select the vertices so that nomatter which ones go to Chooser,
the remaining element (which goes to Picker) will form Breaker’s w-best response to one of the elements of Chooser.

Now let us describe the strategy of Picker and define the order of the vertices in (a). Suppose that H ′ is the position
after some turn (at the start H ′

= H). Picker selects vertices v1, v2, . . . , vp+1 recursively: v1 and v2 are any two Breaker’s
w-best responses to each other in H ′. Notice that such two elements exist by Lemma 3.1, since w satisfies (GW). For i > 2,
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vi is Breaker’s w-best response in the hypergraph H ′
\ {v1, . . . , vi−1}. Then, if Chooser decides that the vertex v1 goes to

Picker, Picker adds the vertices to the sequence (a) in the order: v2, v1, v3, . . . , vp+1; otherwise he adds them in the order:
v1, v2, . . . , vp+1.

Suppose that at the end of the game (a) = (a1, a2, . . . , at) and ak1 , ak2 , . . . , akj is the subsequence of all Picker’s vertices
in (a). By a straightforward analysis of the strategy of Picker we conclude that k1 > 2 and ak1 is Breaker’s best w-response
in H \ {a1, . . . , ak1−1}. Similarly, for i = 1, 2, . . . , j − 1, if A = {ak1 , ak2 , . . . , aki} and A′ is the set of Chooser vertices
in the sequence a1, a2, . . . , aki , then aki+1 is Breaker’s best w-response in the hypergraph (H \ A′) − A. Finally, it is not
difficult to check that the maximal length of a subsequence of consecutive Chooser’s elements in (a) is not greater than
2p − 1.

Thereby we can view a sequence (a) as a history of the game MB(H, 2p − 1, 1)M , in which Maker starts by selecting
a1, a2, . . . , ak1−1 and then for i = 1, 2, . . . , j, at the i-th turn, in a position H ′, Breaker selects Breaker’s best response aki
in H ′, followed by the choice of {am : ki < m < ki+1} by Maker in the next turn (we put kj+1 = t + 1). Thus Breaker in
MB(H, 2p − 1, 1)M carries out his min-weight strategy. By the assumption of our theorem this is his winning strategy so
Maker cannot win this game. It implies that also Chooser in CP (H, p, 1) cannot win, which completes the proof of the first
part of the thesis.

The argument for the second part is analogous, with the only difference that the builder Picker in PC(H, 1, q) creates
the sequence (a) so that his every element in (a) is Maker’s w-best response to the preceding (Chooser’s) element, and we
treat (a) as a history of the game MB(H, 1, 2q − 1)B. �

4. Proof of Theorem 1.6

The idea of the proof is based on the technique used by Beck for proving Theorem 1.2. We analyze the game in stages,
depending on the size of the position. If it has many edges, we use the argument by Beck, stated below as a lemma. When
the hypergraph is smaller, our argument is different.

Lemma 4.1 ([5], proof of Thm. 47.1). Let q0 > 2, H be a hypergraph of rank a0 and let T (H) = T1/(q0+1)(H) =


A∈E(H)

(q0 + 1)−|A|. Then Picker in CP (H, 1, q0) has a strategy such that if after the i-th turn |V (H(i))| > a120 q240 , then

T (H(i + 1)) < T (H) exp


8
|V (H(i))|1/8


.

Proof of Theorem 1.6. Let H be a hypergraph of rank a0, q0 > 2, T = T1/(q0+1) and q > 2q0. The size of the position H(i) is,
obviously, a monotonically decreasing function of i and it is natural to divide the game CP (H, 1, q) into consecutive stages
depending on |V (H(i))|. Not all the stages must appear during the game but it does not influence our argument.

Stage 1: |V (H(i))| > a120 q400 .
As long as the above condition is satisfied, the spoiler Picker selects q0 +1 vertices of H(i), according to Picker’s strategy

in CP (H, 1, q0), described in Lemma 4.1. Note that in Stage 1 Picker selects less than q + 1 vertices per turn and it is
permissible by the rules of the game CP (H, 1, q).

Let t1 be the last turn of Stage 1, i.e.

|V (H(t1 − 1))| > a120 q400 and |V (H(t1))| 6 a120 q400 .

(If |V (H)| < a120 q400 , then we assume that t1 = 0.) Then, by Lemma 4.1 and the assumption that q0 > 2,

T (H(t1)) < T (H) exp


8
(a120 q400 )1/8


6 e1/4T (H). (3)

Stage 2: 2q + 1 6 |V (H(i))| 6 a120 q400 .
In every position for which the above condition holds, Picker selects consecutively q + 1 vertices x1, x2, . . . , xq+1 ∈

V (H(i)) for which T (H(i)x) is as small as possible. Because of the minimality of T (H(i)x1), . . . , T (H(i)xq+1), we have

T (H(i)xj) 6
1

|V (H(i))| − q


x∈V (H(i))

T (H(i)x) 6
a0T (H(i))

|V (H(i))| − q

for every j 6 q + 1.
Now Chooser chooses xj ∈ {x1, . . . , xq+1} and we see that the function T cannot increase by more than

(q0 + 1)T (H(i)xj) − T (H(i)xj) = q0T (H(i)xj) 6
q0a0

|V (H(i))| − q
T (H(i)).
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Therefore, if t2 is the last turn of Stage 2 andm1 = |V (H(t1))|, the following inequalities hold:

T (H(t2)) 6 T (H(t1))


i : 2q+16|V (H(i))|6m1


1 +

q0a0
|V (H(i))| − q



= T (H(t1))
⌈
m1+1
q+1 ⌉−1
i=1


1 +

q0a0
m1 + 1 − (q + 1)i



< T (H(t1)) exp

 q0a0
q + 1

⌈
m1+1
q+1 ⌉−1
i=1


m1 + 1
q + 1

− i
−1


< T (H(t1)) exp


q0a0
q + 1

ln
m1 + 1
q + 1


< T (H(t1))


m1

q

 q0a0
q

.

In view of the above estimation, inequality (3), and the fact thatm1 6 a120 q400 ,

T (H(t2)) 6


m1

q

 q0a0
q

e1/4T (H) 6


a120 q400

q

 q0a0
q

e1/4T (H).

Hence, for T (H) < 1/(2(q0 + 1)) and q > 100a0q0 ln(a0q0), simple calculations show that

T (H(t2)) <
1

q0 + 1
. (4)

Stage 3 : the ending.
Notice that (4) guarantees that in H(t2) there is no edge of size 0 or 1. Thus Chooser has not won yet. Picker is going to

finish the game within 2 turns (|V (H(t2))| 6 2q) so all edges of size larger than 2 are irrelevant for him and for the final
result of the game. Thereby without loss of generality we can assume that |A| = 2 for every A ∈ E(H(t2)) and the condition
(4) still holds.

Thus |E(H(t2))| = T (H(t2))(q0 + 1)2 < q0 + 1, so H(t2) consists of less than q/2 edges, all of size 2. At the (t2 + 1)-st
turn Picker selects two vertices in every edge and thereby wins the game. �

Let us add thatwe did notmake an effort to optimize the constant 100 in Theorem1.6, since our proof relies on the lemma
by Beck, in which the constants are not optimal as well. In our applications of Theorem 1.6 this constant is not relevant.

5. Advanced building criterion

Given a hypergraph H of small rank, we are going to find, based on Theorem 1.6, an upper bound for q such that Picker
wins CP (H, 1, q). On the other hand, we would be interested to what extent the obtained results could be improved. Thus
we need also a winning criterion for Chooser in CP (H, 1, q).

For Maker–Breaker games we have the so-called Advanced Building Criterion, due to Beck. Before we present it, we need
an additional definition.

Fix λ > 0 and a natural number s > 2. For a given weight function T we define a corresponding weight function

Lsλ(H) = T (H) − λT (H s
2) for every hypergraph H .

Let us recall that H s
2 is the hypergraph with the vertex-set V (H) and the edge-multiset

E(H s
2) =


s

i=1

Ai : {A1, . . . , As} ∈


E(H)

s


and

 s
i=1

Ai

 > 2


.

Here is the Advanced Building Criterion for Maker–Breaker (1 : 1) games.

Theorem 5.1 ([5], Thm. 24.2). Consider a game MB(H, 1, 1)M with the weight function T = T1/2 and suppose that for some
s > 2

T (H) > |V (H)|s

1 + 4 T (H s

2)
1/s .

Then Maker has a winning strategy.
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As noted by Beck [5], this is also a winning criterion for Chooser in CP (H, 1, 1). We have no such criterion for biased
games MB(H, 1, q)M and thus no immediate result for CP (H, 1, q). Fortunately, the techniques in [5] allow us to solve
partially this problem. Let us start with the following two lemmata.

Lemma 5.2 ([5], Thm. 24.1). Let δ ∈ (0, 1) and T = Tδ . Then for every s > 2 and two distinct vertices x1, x2 of the hypergraph
H we have

T (Hx1,x2) 6 s

1 + T (H s

2)
1/s .

Lemma 5.3 ([5], Proof of Thm. 33.4). Let s > 2 be a natural number and let λ > 0. Consider a game CP (H, 1, q) with the
weight function T = T1/(q+1) and the corresponding function Lλ = Lsλ. If at turn i + 1 (i > 0) Picker offers q + 1 vertices
x1, . . . , xq+1 to Chooser, then Chooser can take one of them so that

Lλ(H(i + 1)) − Lλ(H(i)) > −


16j<k6q+1

T (H(i)xj,xk).

In future considerations we will make some, artificial at first glance, assumption that at any turn Chooser can refuse
accepting any of the vertices offered him by Picker. It is important only for evaluating the weight function during the game
and in a real play can be carried out without breaking the rule of accepting a vertex by Chooser (Chooser, while evaluating
the weight function, can simply ‘‘forget’’ about some of his vertices). The reason for such an assumption is explained in the
remark after the following corollary.

Corollary 5.4. Let T , Lλ be the weight functions as in the previous lemma. If at turn i + 1 (i > 0) of a game CP (H, 1, q) Picker
offers b vertices x1, . . . , xb (b 6 q + 1), then Chooser can make a choice after which

Lλ(H(i + 1)) − Lλ(H(i)) > −


b
2


s

1 + T (H(i)s2)

1/s . (5)

Remark. The corollary would follow from Lemmas 5.2 and 5.3, but we must be careful if b < q + 1. Suppose for instance
that q > 2 and in the first turn Picker offers two vertices x and y such that V (Hx) and V (Hy) are disjoint. Moreover assume
that Lλ(Hx) = Lλ(Hy) < 0. Then, if one vertex, say x, goes to Chooser, we have

Lλ(H(1)) − Lλ(H) = qLλ(Hx) − Lλ(Hy) < 0 = −T (Hx,y)

and we do not know how to obtain (5). In this particular case we can deal with the problem if we allow Chooser not to take
any of x, y. If x and y go to Picker, then the function Lλ changes by −Lλ(Hx) − Lλ(Hy) > 0 and (5) holds.

Proof of Corollary 5.4. Suppose that at turn i + 1 Picker offers vertices x1, x2, . . . , xb to Chooser. If b = q + 1 then the
assertion is an immediate consequence of Lemmas 5.2 and 5.3.

If b < q + 1, we assume that Picker offers additionally isolated vertices xb+1, xb+2, . . . , xq+1 (that is, we formally add
q + 1 − b isolated vertices to the hypergraph H). Obviously T (H(i)X ) = 0 and T ((H(i)s2)X ) = 0 for every set X containing
an isolated vertex so, by Lemma 5.3, Chooser can choose one of x1, . . . , xq+1 such that

Lλ(H(i + 1)) − Lλ(H(i)) > −


16j<k6q+1

T (H(i)xj,xk) = −


16j<k6b

T (H(i)xj,xk).

If a vertex chosen by Chooser is one of the (artificial) isolated vertices xb+1, . . . , xq+1, we interpret that fact as giving all
vertices x1, . . . , xb to Picker.

Finally, we apply Lemma 5.2 and receive the desired inequality. �

A straightforward consequence of the above three lemmata and the proof technique of Theorem 5.1 is the following
winning criterion for Chooser in CP (H, 1, q) :

T (H) > |V (H)|s

q + 1
2

 
1 + 4 T (H s

2)
1/s ,

where T = T1/(q+1).
However, it is not sufficient for our purpose since we are going to deal with small rank hypergraphs and large q, and in

this situation the exponent of q is important. Thus we will strengthen the above inequality a little bit.

Theorem 5.5. Consider a game CP (H, 1, q) with the weight function T = T1/(q+1) and suppose that for some s > 2

T (H) > |V (H)|qs

1 + 2 T (H s

2)
1/s . (6)

Then the builder Chooser has a winning strategy.
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Proof. The proof is very similar to the proof of Theorem 5.1, with slight modifications.
Let s > 2, β0 = 2 and βk+1 = βs

k/2 for k = 0, 1, . . .. Notice that βk > 1 for k = 0, 1, . . .. Based on this fact, we can divide
the game into the following stages.

The first stage consists of all consecutive i > 0 for which

T (H(i)s2) 6 βs
0 T (H s

2).

It may happen that the above condition is satisfied until the end of the game; otherwise by t1 we denote the smallest
i > 0 violating it, which means that

T (H(t1)s2) > βs
0 T (H s

2).

In such a case we define γ1 for which the following condition holds:

T (H(t1)s2) = (γ1β0)
s T (H s

2).

Of course γ1 > 1.
Inductively we define the (k + 1)-st stage for k = 1, 2, . . ., provided the game has not ended yet. It consists of all

consecutive i > tk for which

T (H(i)s2) 6 βs
k T (H(tk)s2).

By tk+1 we denote the next turn (if any) after the end of the (k + 1)-st stage, i.e. the smallest i > tk such that

T (H(i)s2) > βs
k T (H(tk)s2).

Additionally we define γk+1 such that the condition

T (H(tk+1)
s
2) = (γk+1βk)

sT (H(tk)s2)

is satisfied. Obviously γk+1 > 1.
Let λ = T (H)/(2T (H s

2)). We will show that if in every stage k + 1 (k > 0) the builder considers the weight function
Lλ/2k = Ls

λ/2k
and plays so that the condition (5) is satisfied, then he wins the game, provided (6) holds.

We are going to prove by induction that the following properties hold for every k > 0 and for every j of the (k + 1)-st
stage:

(i) Lλ/2k(H(tk)) > T (H(tk))/2.
(ii) T (H(tk)s2) = (

k−1
i=0 βi

k
i=1 γi)

s T (H s
2).

(iii) T (H(tk)) >
k

i=1 βi(
k

i=1 γi)
s T (H).

(iv) Lλ/2k(H(j + 1)) > 0 and thus T (H(j + 1)) > 0.

(For k = 0 we put t0 = 0 and assume that the empty products equal 1.)
Checking (i)–(iii) in the base case of k = 0 and the induction argument to prove (i)–(iii) for k > 1 is fairly standard.

Moreover the details can be found in [5] in the proof of Thm. 24.2 so we omit them. Let us remark that in [5] the initial
condition for β0 is different (4 instead of 2) but it is not used in (i)–(iii).

It remains to prove part (iv). Suppose that (i)–(iii) are true for some k > 0 and fix j with tk 6 j < tk+1. Moreover assume
that in every position H(i) of the (k + 1)-st stage Chooser plays according to the strategy defined in Corollary 5.4, with the
weight function Lλ/2k . Then, after turn i+1, theweight function Lλ/2k does not decreasemore than by

bi
2


s

1 + T (H(i)s2)

1/s

,

where bi 6 q + 1 is the number of vertices offered by Picker in the position H(i). Hence

Lλ/2k(H(j + 1)) > Lλ/2k(H(tk)) −

j
i=tk


bi
2


s

1 + T (H(i)s2)

1/s . (7)

By (i), (iii), and the property that γi > 1 for every i, we obtain

Lλ/2k(H(tk)) >
1
2
T (H(tk)) >

1
2
T (H)

k
i=1

βiγ
s
i >

1
2
T (H)

k
i=1

βiγi.

The definition of the (k + 1)-st stage and property (ii) imply that

T (H(i)s2) 6 βs
k T (H(tk)s2) 6 T (H s

2)


β0

k
l=1

βlγl

s

for i = tk, tk+1, . . . , j.

Moreover it is easy to check that if bi 6 q + 1 for i ∈ J and


i∈J bi = S, then
i∈J


bi
2


6

S
q + 1


q + 1
2


=

1
2
Sq.
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With the above three estimations we return to (7) and calculate that

Lλ/2k(H(j + 1)) >
1
2
T (H)

k
i=1

βiγi − s


1 + T (H s

2)
1/sβ0

k
i=1

βiγi


j

i=tk


bi
2



>
1
2
T (H)

k
i=1

βiγi −
1
2
|V (H)|qs


1 + T (H s

2)
1/sβ0

k
i=1

βiγi



>
1
2

k
i=1

βiγi

T (H) − |V (H)|qs


1 + β0T (H s

2)
1/s .

Thus, by the assumption (6), for β0 = 2we have Lλ/2k(H(j+1)) > 0, which also implies that T (H(j+1)) > λ

2k
T (H(j+1)s2)

> 0 and hence the proof of (iv) is complete.
Thereby we showed that the builder Chooser can keep the function T positive until the end, which means he wins the

game. �

6. Applications

In this sectionwe are primarily concernedwith consequences of Theorems 1.3 and 1.6.We begin by proving Corollary 1.5
and showing that in case of p = 1 the upper bound 1/2 in the assumption of the corollary is optimal.

Proof of Corollary 1.5. In [2] the author shows that if δ = (q + 1)−1/p′

and Tδ(H) =


A∈E(H) δ−|A| < 1/(q + 1), then
Breaker has awinningmin-weight strategy inMB(H, p′, q)M . Though the author assumes thatMaker always selects exactly
p′ elements per turn, the proof, without any modifications, applies also to the game in which Maker can select p′ or less
elements. This fact, for q = 1 and p′

= 2p − 1, together with Theorem 1.3, and the fact that Tδ has property (GW), implies
Corollary 1.5. �

For p = 1 the upper bound is 1/2 and it is optimal since H consisting of one single-element edge is won for Chooser
and T1/2(H) = 1/2. It is not the only example and we may construct an infinite class of ‘‘extremal’’ hypergraphs. Let
V (Hn) = {1, 2, . . . , 2n+1}, and E(Hn) = {A0, A1, . . . , An}with A0 = {1, 3, 5, . . . , 2n+1}, Ai = {1, 3, 5, . . . , 2i−1}∪ {2i}
for i = 1, 2, . . . , n. Then T1/2(H) = 1/2 and it is not hard to check that the following strategy of Chooser guarantees him a
win in CP (Hn, 1, 1) : at every turn he chooses the smaller number of the two offered him by Picker.

Theorem1.6 can be applied to games inwhich the builderwants to create a copy of a small graph in Kn. Given a nonempty
graphGwith at least three vertices, byHG,n wedenote the hypergraphwith the vertex-set E(Kn), such that every hyper-edge
consists of all edges of a copy of G in Kn. In [6] it was proved that in MB(HG,n, 1, q)M and MB(HG,n, 1, q)B the greatest q
for whichMaker canwin the game is of orderΘ(n1/m2(G)), wherem2(G) = max


(e(F)−1)/(v(F)−2) : F ⊆ G, v(F) > 3


.

Here v(G) and e(G) denote the number of the vertices and edges of G, respectively. In the theorem below we estimate the
corresponding threshold bias for the Chooser–Picker version. For that purpose we define two graph parameters. Let

m′(G) = max
F⊆G: v(F)>1

e(F) − 1
v(F)

and m′′(G) = max
F⊆G: v(F)>3

e(F) + 1
v(F) − 2

.

Theorem 6.1. Let G be a graph with at least two edges. Then for every ε ∈ (0, 1) there exists n0 such that for every n > n0 the
following holds.

(i) If q > n1/m′(G)+ε then the spoiler Picker has a winning strategy in CP (HG,n, 1, q).
(ii) If q 6 n1/m′′(G)−ε then the builder Chooser wins CP (HG,n, 1, q).

Proof. Let us begin the proof of part (i) by a trivial observation. If the spoiler Picker can prevent a subgraph of G in Chooser’s
graph, then he prevents creating the graph G as well. Thus, without loss of generality, we can assume that the maximum
m′(G) is attained by G.

Observe that there are O(nv(G)) copies of G in Kn so we can find some constant c > 0 (which depends on G) such that if
q0 = ⌈cnv(G)/(e(G)−1)

⌉, then
A∈E(HG,n)

(q0 + 1)−e(G)+1 <
1
2
.

Obviously rank(HG,n) = e(G) so, by Theorem 1.6, Picker has a winning strategy in CP (HG,n, 1, q) for q > 100e(G)q0 ln
(e(G)q0) = O(nv(G)/(e(G)−1) ln n). Hence for every ε > 0, q > nv(G)/(e(G)−1)+ε , and sufficiently large n Picker can block a copy
of G.

To prove part (ii), fix ε > 0, put v0 = v(G) and e0 = e(G), and suppose that q < n1/m′′(G)−ε . We will check that if n is big
enough, condition (6) in Theorem 5.5 holds for some s > 2.
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We need to estimate the weight T (H s
2) with T = T1/(q+1). Every hyper-edge of H s

2 corresponds to s different copies
G1, . . . ,Gs of G in Kn which have 2 edges in common so they intersect in at least 3 vertices. Hence

T (H s
2) =


S⊂Kn

S corresp. to a hyper-edge

(q + 1)−e(S)

6


n
3


(v0!)

s


v: v<sv0,

( v−3
v0−3)v0!>s


F⊆G:

v(F)>3


v − 3

v(F) − 3


n − 3

v0 − v(F)


(q + 1)e(F)−e0


s

.

Indeed, the factor
n
3


counts the possible choices for the vertices in the common intersection of G1, . . . ,Gs, v =s

i=1 V (Gi)
, the sum in the parenthesis stands for the number of ways one can add Gj to the copies G1, . . . ,Gj−1 we have

chosen so far and here by F we denote all possible intersections E(Gj) ∩
j−1

i=1 E(Gi). Thus, if by F ′ we denote a subgraph of
Gwhich maximizes the terms of the interior sum, then for some constant c1 > 1, which depends only on G,

T (H s
2) 6 n3cs1

sv0
v=v0

vv0s

nv0−v(F ′)qe(F

′)−e0
s

6 n3cs1sv0(sv0)
v0s

nv0−v(F ′)qe(F

′)−e0
s

.

Hence for q < n1/m′′(G) and some constant c2 (which depends on G) we have

|V (H)|qs

1 + 2(T (H s

2))
1/s /T (H) < c2n2qs


n−v0qe0 + n3/ssv0+1n−v(F ′)qe(F

′)


< c2sv0+1n3/s


n−

v0−2
e0+1 q

e0+1

+


n−

v(F ′)−2
e(F ′)+1 q

e(F ′)+1


6 2c2sv0+1n3/s(n−1/m′′(G)q)e(F
′)+1.

For q < n1/m′′(G)−ε , s = ⌈6/ε⌉ and sufficiently large n, the right hand side of the last inequality is less than 1 so (6) is satisfied.
Thus by Theorem 5.5 the builder Chooser wins CP (HG,n, 1, q). �

Finally, we present four examples, inwhich by Theorem1.3we can transform immediately the results forMaker–Breaker
graph games into the similar results for Picker–Chooser games. We only sketch themethods of the proofs and for the details
we refer the reader to the cited papers.

The first game, considered by Alon, Hefetz and Krivelevich [1], is played on a graph G and the players select edges of G.

Lemma 6.2 ([1]). Suppose that G is a graph on n vertices, q > 2 and k = k(n) > log2 n are integers. If G is (100kq log2 q)-edge-
connected, then Maker as the second player in a Maker–Breaker (1 : q) game can build a spanning k-edge-connected subgraph
of G.

The authors consider the strict version of the above k-connectivity Maker–Breaker game, i.e. Breaker selects exactly
q edges per turn, but the assumption of selecting at most q edges by Breaker does not change their proof, which is a
straightforward application of Beck’s winning criterion (2).

In order to win the game, Maker defines a hypergraph H such that V (H) = E(G), and E(H) consists of all subsets of
E(G) of the form C \ A, where C is a cut in G, A ⊆ C and |A| = k − 1. It is clear that Maker in the k-connectivity game on
G can build a spanning k-edge-connected subgraph iff Breaker in MB(H, q, 1)M has a winning strategy. The assumptions
of Lemma 6.2 guarantee that Breaker in MB(H, q, 1)M wins by a min-weight strategy for the standard weight function Tδ

with δ = 2−1/q. Thus, by Theorem 1.3, we can state the analogous result for the Picker–Chooser game.

Corollary 6.3. Suppose that G is a graph on n vertices, q > 4 and k = k(n) > log2 n are integers. If G is (201kq log2 q)-edge-
connected, then Picker in a Picker–Chooser (1 : q) game can build a spanning k-edge-connected subgraph of G. �

Several authors [7,19] consider Maker–Breaker games played on the random graph G(n, p). The random graph G(n, p)
is obtained from Kn by deleting independently every edge of Kn with probability 1 − p. For games on G(n, p) it is natural
to ask for p = p(n) such that a given player has a winning strategy asymptotically almost surely (a.a.s.), which means with
probability tending to 1 with n → ∞.

Consider the following ∆-tree-universality (1 : q) game. This is a Maker–Breaker (1 : q) game in which the players
select edges of the random graph G(n, p). The goal of Maker is to build a ∆-tree-universal graph, i.e. a subgraph of G(n, p)
containing all spanning trees of maximal degree not greater than ∆. We assume that q, p and ∆ depend on n. Johannsen,
Krivelevich and Samotij [15] proved the following result.

Lemma 6.4 ([15]). Suppose that ∆ = ∆(n) > ln n and p = p(n) > 840q∆n−1/3 ln2 n. Then a.a.s. Maker wins the ∆-tree-
universality (1 : q) game.
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We point out that in [15] Maker starts the game and Breaker selects exactly q edges per turn, but the proof would be
the same under the assumptions that Breaker is the first player and can select at most q edges. The core of the proof is to
study an auxiliary game on some hypergraph H . Universality-game-Maker plays in the auxiliary game a role of Breaker and
wins by a min-weight strategy with the weight function Tδ for δ = 2−1/q. Based on Theorem 1.3, we obtain the following
corollary for Picker and Chooser.

Corollary 6.5. Suppose that ∆ = ∆(n) > ln n and p = p(n) > 1680q∆n−1/3 ln2 n. Then a.a.s. the builder Picker wins the
∆-tree-universality Picker–Chooser (1 : q) game. �

The connectivity game is another example of Maker–Breaker game played on random graph G(n, p). Here Maker, the
second player, aims to build a spanning tree in G(n, p). The lemma below is a special case of the more general result of
Stojaković and Szabó [19].

Lemma 6.6 ([19]). If p = p(n) = ω(ln n/n) then a.a.s. Maker wins the connectivity (1 : 1) game on G(n, p).

In the proof of Lemma 6.6 the authors define the hypergraph H such that V (H) = E(G(n, p)) and E(H) consists of all
cuts in G(n, p). Then connectivity-Maker wins (a.a.s.) playing as Breaker in MB(H, 1, 1)M by a min-weight strategy, with
the standard weight function T1/2. Thus we get the corollary for the Picker–Chooser connectivity game.

Corollary 6.7. If p = p(n) = ω(ln n/n) then a.a.s. the builder Picker wins the Picker–Chooser (1 : 1) connectivity game on
G(n, p). �

In the next example probability is also involved. Consider the random graph process, in which we build a graph on n
vertices step by step. Starting with the empty graph, at every step we add to the graph an edge chosen uniformly at random
from all edges not selected before. Given a monotone increasing graph property P , we define the hitting time τ(P ) as the
first moment the graph obtained in the process has the property P . Let δ2 denote the graph property of having minimum
degree at least 2. By Mperf we denote the graph property that Maker, playing a Maker–Breaker (1 : 1) game on a graph with
2n vertices, can obtain a perfect matching in the graph. One of the theorems by Ben-Shimon et al. [7] says that the moment
we get the minimum degree 2 in the random graph process is also the moment Maker can build (a.a.s.) a perfect matching
in the obtained graph.

Lemma 6.8 ([7]). In the random graph process on an even number of vertices a.a.s.

τ(Mperf) = τ(δ2).

Here is the idea of the proof. It is easy to see that τ(Mperf) > τ(δ2) so it is enough to verify that at themoment the random
process reaches minimum degree 2, Maker has a winning strategy in the perfect matching game.

The winning strategy of Maker presented in [7] has two ingredients. Maker splits the board G (a graph obtained in the
randomprocess) into two edge-disjoint subgraphs, and at the first subgraph he uses a simple pairing strategy. For the second
subgraph he defines an auxiliary hypergraph and applies a min-weight strategy with the weight function T1/2.

Consider the corresponding Picker–Chooser hitting time problem: by Pperf we denote the property that Picker wins the
perfect matching game. Observe that the above arguments for the Maker–Breaker version can be adapted to the Picker–
Chooser (1 : 1) version as well. Indeed, the inequality τ(Pperf) > τ(δ2) is true since if a graph G obtained in the random
graph process has a vertex x of degree one, then the spoiler Chooser sooner or later will isolate x. Secondly, any pairing
strategy can be easily carried out by Picker. Finally, by Theorem 1.3 we can transform themin-weight strategy of Maker into
an effective strategy of the builder Picker. Thus we obtain a perfect analog of Lemma 6.8.

Corollary 6.9. In the random graph process on an even number of vertices a.a.s.

τ(Pperf) = τ(δ2). �
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