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a b s t r a c t

A star in an undirected graph is a tree in which at most one vertex has degree larger than
one. A star forest is a collection of vertex disjoint stars. An out-star (in-star) in a digraph
D is a star in the underlying undirected graph of D such that all edges are directed out of
(into) the center. The problemof partitioning the edges of the underlying graph of a digraph
D into two star forests F0 and F1 is known to be NP-complete. On the other hand, with
the additional requirement for F0 and F1 to be forests of out-stars the problem becomes
polynomial (via an easy reduction to 2-SAT). In this article we settle the complexity of
problems lying in between these two problems. Namely, we study the complexity of the
related problems where we require each Fi to be a forest of stars in the underlying sense
and require (in different problems) that in D, Fi is either a forest of out-stars, in-stars, out-
or in-stars or just stars in the underlying sense.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Notation on digraphs which is not given here is consistent with [2]. Generally a digraph is denoted by D = (V , A) where
V is the set of vertices in D and A is the set of arcs. We also use V (D) (A(D)) to denote these two sets. If there is an arc from
a vertex x to a vertex y in D, then we say that x dominates y and use the notation xy ∈ A to denote this. An (x, y)-path is a
directed path from x to y.

We let N−(x) (respectively, N+(x)) denote the set of vertices dominating (respectively, dominated by) x in D, and let
d−(x) = |N−(x)|, d+(x) = |N+(x)| and d(x) = d+(x) + d−(x).

The underlying graph UG(D) of a digraph D = (V , A) is the graph with vertex set V and edge set E = {xy|xy ∈ A
or yx ∈ A}. A digraph D is connected if UG(D) is a connected graph and the connected components of D are the connected
components of UG(D).

The work in this paper was motivated by work in [3–6]. The purpose of these papers was to investigate what happens to
the complexity of problems that aremixed versions of problemswhich arewell-defined both for directed and for undirected
graphs (this is made precise below).

• In their seminal paper [7] Fortune et al. characterized (among others) the complexity of linking problems where we are
seeking a collection of paths (or cycles) P1, P2, . . . , Pk where Pi is an (si, ti)-path or a cycle (when si = ti) and no vertex on
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any Pi occurs on any other path Pj, j ≠ i except possibly that si or ti is the initial or terminal vertex of Pj. They showed that
these problems are alwaysNP-complete unlesswehave s1 = · · · = sk or t1 = · · · = tk, inwhich case the problems are all
polynomially solvable. In [3] a mixed version of these linking problems was considered, namely we are looking for paths
or cycles P1, P2, . . . , Pk as above but with the difference that now some prescribed set of these just have to be paths or
cycles in the underlying digraphUG(D) of the input digraphD and hence do not have to respect the orientation of the arcs
ofD. In the case when all of the paths and cyclesmay ignore the directions on arcs inDwe have the k-linkage problem for
undirected graphs which is polynomially solvable by the famous disjoint path algorithm of Robertson and Seymour [12].
Hence, given these extremes (always polynomial for undirected and almost always NP-complete for directed graphs) it
is natural to ask whether there is any case of the problem which involves both undirected (ignoring the direction of arcs
in D) and directed (must follow the arcs of D) paths which is polynomial. The answer is that there are none, they are all
NP-complete [3].

• Deciding whether a (di)graph has a pair of vertex-disjoint cycles is polynomially solvable both in the undirected and the
directed case [10,11]. In the directed case this is highly non-trivial to prove. In [4] it was shown that one can decide in
polynomial time whether the underlying graph UG(D) of a strongly connected digraph D has vertex-disjoint cycles C, C ′

such that C ′ is also a directed cycle in D (but C may not be). However, when D is not strongly connected, the problem
becomes NP-complete [5].

• Deciding whether a graph has two edge-disjoint spanning trees as well as whether a digraph has two arc-disjoint out-
branchings1 with prescribed roots are both polynomial problems, see e.g. [2, Chapter 9]. The mixed version of these
problems is the following. Given a digraph D, does D contain an out-branching from some root s such that deleting the
arcs of this branching leaves a connected digraph? This problem turns out to be NP-complete [6].

All of the results discussed above indicate that one can obtain an interesting insight into the structure of (problems
concerning the structure of) digraphs by studying problems of the mixed type above where only part of the structure that
is sought has to obey the direction of the arcs in D.

An out-star (resp. in-star) is a directed graph whose underlying graph is a star, and such that all the arcs are oriented
from the center to the leaves (resp. from the leaves to the center). Similarly, an out-star forest (resp. an in-star forest)
is a digraph whose connected components are out-stars (resp. in-stars). A dir-star forest is a forest of out-stars and in-
stars. A gen-star forest is a directed graph whose underlying graph is a star forest. The problem of partitioning the edges
of an undirected graph into two star forests (a.k.a. 2-STAR ARBORICITY) is NP-complete even when restricted to the class of
bipartite graphs [8,9]. Conversely, the problem of partitioning the edges of a directed graph D into two forests of out-stars
(a.k.a. 2-DIRECTED-STAR ARBORICITY) is polynomial [1] (see also the proof in Section 2 below).

In this article we consider the (X,Y)-STAR ARBORICITY problems where we have X,Y ∈ {OUT,IN,DIR,GEN} for directed
graphs. Here the problem is to decide whether a directed graph admits a partition of its arc set into an X-star forest F0
and a Y-star forest F1. The motivation for studying these problems comes from the fact that they may be seen as variants
(restrictions) of the 2-STAR ARBORICITY problem. Namely (GEN,GEN)-STAR ARBORICITY is the original 2-STAR ARBORICITY
problem on the underlying digraph UG(D) of a digraph D and in the other cases we only allow a subset of all possible stars
in each of the two forests in UG(D) and the restrictions on these come for the orientations of the edges in D.

Clearly the complexity of (X,Y)-STARARBORICITY is the same as that of (Y,X)-STARARBORICITY.We shall use thiswithout
further mention below.

We have mentioned that (OUT,OUT)-STAR ARBORICITY is polynomial and it is clear (e.g. by reversing all arcs) that it is
also the case for (IN,IN)-STAR ARBORICITY. We show in Section 2 that it is also the case of (IN,OUT)-STAR ARBORICITY.

Theorem 1.1. The (X,Y)-STAR ARBORICITY problem is polynomial for every choice of X,Y ∈ {IN,OUT}.

An (U→W )-digraph is a bipartite digraph D with independent sets U and W , such that every arc is oriented from U to
W . Since 2-STAR ARBORICITY is NP-complete for the class of bipartite graphs, it is clear that (DIR,DIR)-STAR ARBORICITY,
(DIR,GEN)-STAR ARBORICITY and (GEN,GEN)-STAR ARBORICITY are NP-complete problems, even when reduced to the class
of (U→W )-digraphs (as by orienting all edges in a bipartite graph such that an (U→W )-digraph is obtained we see that
the problems are equivalent).

Thus the complexity status of all the (X,Y)-STARARBORICITYproblems are knownexcept for (DIR,OUT)-STARARBORICITY
(which is equivalent to (DIR,IN)-STAR ARBORICITY, by reversing all arcs) and (GEN,OUT)-STAR ARBORICITY (which is
equivalent to (GEN,IN)-STAR ARBORICITY). In Sections 3 and 4 we give the complete answer to these questions.

Theorem 1.2. The (DIR,OUT)-STAR ARBORICITY problem is polynomially solvable.

Theorem 1.3. The (GEN,OUT)-STAR ARBORICITY problem is NP-complete for general digraphs and polynomially solvable for
(U→W )-digraphs.

1 An out-branching in a digraph is a spanning tree in the underlying graph which is oriented such that every vertex except one, the root, has in-degree
one.
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2. Proof of Theorem 1.1: decomposing a digraph into two forests of out-stars or a forest of in-stars and a forest of
out-stars

In this short section we show how to reduce the (OUT,OUT)-STAR ARBORICITY and (OUT,IN)-STAR ARBORICITY problems
to 2-SAT in polynomial time. It is well-known that 2-SAT is solvable in linear time (see e.g. [2, Section 17.5]).

First consider an instanceD = (V , A) of (OUT,OUT)-STAR ARBORICITY and form the following instance ID of 2-SAT. There
is a variable xuv for each arc uv ∈ A and the following clauses:

• For each directed path uvw in D, ID contains the clauses (xuv ∨ xvw), (x̄uv ∨ x̄vw) where x̄ is the negation of variable x.
• For each pair of arcs uv, wv in A, ID contains the clauses (xuv ∨ xwv), (x̄uv ∨ x̄wv).

Note that if D contains an out-star that is a connected component in D, then ID contains variables that do not appear
in any clause, and may therefore be assigned any truth value. It is easy to check that if we interpret a true variable xuv as
putting the arc uv inF0 and putting all other arcs (corresponding to false variables) inF1 then every truth assignmentwhich
satisfies ID corresponds to a partition of A into two out-star forests F0, F1 (as no directed path of length two and no vertex
of in-degree two appears in any of the classes F0, F1) and conversely, given such a partition, we can make a satisfying truth
assignment by setting xuv true if and only if the arc uv is in F0. Clearly the reduction can be done in polynomial time.

Now consider an instance H = (V , A) of the (OUT,IN)-STAR ARBORICITY problem and form the following instance IH of
2-SAT. There is a variable xuv for each arc uv ∈ A and the following clauses:

• For each directed path uvw in H , IH contains the clauses (xuv ∨ xvw) and (x̄uv ∨ x̄vw).
• For each pair of arcs uv, uw ∈ A, IH contains the clause (x̄uv ∨ x̄uw).
• For each pair of arcs uv, wv ∈ A, IH contains the clause (xuv ∨ xwv).

Now it is easy to see that the 2-SAT formula IH is satisfiable if and only if the desired partition into an out-star forest F0 and
an in-star forest F1 exists. Note that here we interpret an arc being true as equivalent to the arc belonging to F1. Again the
reduction is easily performed in polynomial time.

3. Proof of Theorem 1.2: decomposing a digraph into a forest of out-stars and a forest of in- and out-stars

Our next goal is to prove Theorem 1.2. For this we again apply a polynomial reduction to the problem 2-SAT. In order to
perform this reduction, which is less straightforward than the one used above, we first derive some properties of a positive
solution of our problem.

Definition 3.1. Let D be a digraph. Define an arc, uv ∈ A(D), to be an i-arc (‘‘i’’ stands for ‘‘in’’) if one of the following three
conditions holds.

(i) d−(v) ≥ 3.
(ii) d−(v) = 2 and d+(v) ≥ 1.
(iii) d−(v) = 2 and d+(v) = 0 and N−(v) = {u, u′

} and d−(u) = d+(u) = d−(u′) = d+(u′) = 1.

Definition 3.2. An IOO-partition of the arcs of a digraph D is a partition of A(D) into three disjoint sets I0,O0,O1 such that
each of O0 and O1 induces a collection of out-stars and I0 induces a collection of in-stars and all stars in O0 ∪ I0 are vertex-
disjoint and all stars in O1 are vertex-disjoint.

Furthermore we say that an arc has color 0 if it belongs to I0 ∪ O0 and it has color 1 if it belongs to O1. We will often
denote the color of an arc e by c(e).

Note that if (I0,O0,O1) is an IOO-partition then (I0 ∪ O0,O1) is an (DIR,OUT)-partition.

Lemma 3.3. If there exists an IOO-partition, (I0,O0,O1), of A(D), then there exists such a partition where all arcs in I0 are i-arcs
and no arc in O0 is an i-arc.

Proof. Let D be a digraph and let (I0,O0,O1) be an IOO-partition of A(D) with the maximum number of arcs in O1.
Furthermore assume that any star in I0 ∪ O0 which only consists of one arc belongs to I0 if it is an i-arc and otherwise it
belongs to O0 (we may do this as each such arc can be placed arbitrarily in one of O0, I0).

Consider some star in I0 with center vertex x and leaves y1, y2, . . . , yl. If l ≥ 3 then yjx is an i-arc for all j = 1, 2, . . . , l,
by part (i) of Definition 3.1. If l = 1 then by our assumption on the IOO-partition (I0,O0,O1) we note that y1x is an i-arc. So
assume that l = 2. If d+(x) ≥ 1, then by part (ii) of Definition 3.1 y1x and y2x are i-arcs, so assume that d+(x) = 0.

If d+(y1) ≥ 2, then let w ∈ N+(y1) \ {x} and note that y1w ∈ A(O1) and we may move the arc y1x from I0 to O1 (where
it gets added to the same star as y1w), contradicting the maximality of |A(O1)|. Therefore d+(y1) = 1 and analogously
d+(y2) = 1.

If d−(y1) = 0, then as abovewemaymove the arc y1x from I0 toO1 (where it becomes a star with one arc). So d−(y1) ≥ 1.
If d−(y1) ≥ 2, thenwe get a contradiction as the arcs into y1 must be of color 1, but then O1 is not a vertex-disjoint collection
of out-stars. Therefore d−(y1) = 1 and analogously d−(y2) = 1. So by part (iii) of Definition 3.1 we note that y1x and y2x are
i-arcs. We have now shown that all arcs in I0 are i-arcs.
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Wewill now prove that no arc in O0 is an i-arc. For the sake of contradiction assume that uv is an i-arc in O0. We consider
the three reasons why uv is an i-arc in Definition 3.1 separately. First assume that d−(v) ≥ 3. As the stars in I0 ∪ O0 are
vertex-disjoint, we note that all arcs into v, except uv belong to O1, a contradiction to O1 being a collection of out-stars. So
nowassume that d−(v) = 2 and d+(v) ≥ 1. Clearly the arc out of v must be of color 1,whichmeans that both arcs into v have
color 0, a contradiction against the stars in I0 ∪ O0 being vertex-disjoint. So we now consider part (iii) of Definition 3.1 and
assume that d−(v) = 2 and d+(v) = 0 and N−(v) = {u, u′

} and d−(u) = d+(u) = d−(u′) = d+(u′) = 1. Let N−(u) = {w}

and note that c(wu) = 1. Clearly c(u′v) = 1, as uv is an arc in O0, which implies that uv is a star in O0 containing only one
arc. Therefore it would have been added to I0 instead of O0, a contradiction. Therefore no arc in O0 is an i-arc. �

Proof of Theorem 1.2. By the remark after Definition 3.2, it suffices to show that we can decide in polynomial time if a
digraph D has an IOO-partition of A(D). Let D be any digraph.Wewill now build an instance of 2-SAT as follows. For each arc,
e, in D let xe be a variable, which will be true if e will belong to O0 and false otherwise. We now add the following clauses.

(a) For all directed paths, uvw, of length 2 add the clauses (xuv ∨ xvw) and (x̄uv ∨ x̄vw).
(b) If uv and u′v are distinct arcs into the same vertex, v, then add the clause (x̄uv ∨ x̄u′v).
(c) If uv and u′v are distinct arcs into the same vertex, v, and they are not both i-arcs, then add the clause (xuv ∨ xu′v).
(d) If uv and uv′ are distinct arcs out of the same vertex, u, and at least one of them is an i-arc, then add the clause (xuv ∨xuv′).

We will now show that the above instance of 2-SAT is satisfiable if and only if D contains an IOO-partition (I0,O0,O1) of
A(D). First assume that it is satisfiable. Assign color 1 to an arc, e, if and only if xe is true. Consider D1 which is the digraph
induced by the arcs of color 1 and note that there is no path of length two in D1 by (a) above. Furthermore no vertex has
in-degree more than one in D1 by (b) above. This implies that D1 is a set of vertex-disjoint out-stars. Now consider D0 which
is the digraph induced by the arcs of color 0.

If uv ∈ A(D0) is an i-arc then d+

D0
(u) = 1 by (d) and d+

D0
(v) = 0 by (a). If d−

D0
(v) = 1 then uv is an in-star in D0, so now

assume that d−

D0
(v) ≥ 2 and wv ∈ A(D0) is different from uv. By (c) we note that wv is an i-arc and therefore analogously

to above d+

D0
(w) = 1. Continuing this for all arcs into v in D0 we note that we get an in-star consisting of i-arcs and which

is vertex-disjoint from all other arcs in D0.
If uv ∈ A(D0) is not an i-arc then d−

D0
(v) = 1 by (c) and d−

D0
(u) = 0 by (a). If d+

D0
(u) = 1 then uv is an out-star in D0,

so now assume that d+

D0
(u) ≥ 2 and uz ∈ A(D0) is different from uv. By (d) we note that uz is not an i-arc and therefore

analogously to above d−

D0
(z) = 1. Continuing this for all arcs out of u in D0 we note that we get an out-star containing no

i-arcs and which is vertex-disjoint from all other arcs in D0.
Therefore we do have a IOO-partition of A(D) when the instance of 2-SAT is satisfiable.
Now assume that there exists a IOO-partition (I0,O0,O1) of A(D) and let xe be true if and only if c(e) = 1 for all arcs e in

D. By Lemma 3.3 we may assume that all stars in I0 consist of i-arcs and there is no i-arc in A(O0). Clearly the constraints in
(a) are satisfied as there is no path of length two in an in-star or out-star. As no vertex has in-degree greater than one in O1
we note that the constraints in (b) are satisfied. If a constraint, (xuv ∨ xu′v), in (c) was not satisfied, then c(uv) = c(u′v) = 0
which implies that uv and u′v belong to I0, contradicting the fact that one of the arcs is not an i-arc. So the constraints in (c)
are satisfied. If a constraint, (xuv ∨ xuv′), in (d) was not satisfied, then c(uv) = c(uv′) = 0 which implies that uv and uv′

belong to O0, contradicting the fact that one of the arcs is an i-arc. So the constraints in (d) are satisfied. This implies that
the instance of 2-SAT is satisfiable when we have an IOO-partition of A(D). �

4. Decomposing a digraph into a forest of out-stars and a forest of stars

In this section we prove Theorem 1.3. First observe that if D is an U→W -digraph then every star of a star forest in UG(D)
is either an in-star or an out-star and hence it follows from Theorem 1.2 that the (OUT,GEN)-STAR ARBORICITY is polynomial
in this case. This proves the last assertion in Theorem 1.3. Clearly the (OUT,GEN)-STAR ARBORICITY problem belongs to the
class NP so it remains to prove that it is NP-hard.

The proof of this below uses a number of small digraphs (so-called gadgets) and certain properties of these with respect
to legal partitionings of their arcs.

Definition 4.1. Let D be any digraph and let c be any 2-coloring of A(D) into {0, 1}. Let Di denote the digraph with vertex set
V (D) and containing exactly the arcs of D with color i (for i = 0, 1). The 2-coloring is called good if D1 is a vertex-disjoint
collection of out-stars and D0 is a vertex-disjoint collection of stars in UG(D0).

If a vertex x has at least two arcs incident with it of color i then we call it an i-center. Note that a vertex can be both a
0-center and a 1-center.

Definition 4.2. Let D(x, y) denote the digraph with vertex set {p0, p1, p2, p3, p4, w, x, y} and arc set {p0p1, p1p2, p2p3, p3p4,
p1w, p2x, p3y}. See Fig. 1.

Lemma 4.3. If c is a good 2-coloring of D(x, y), then the following holds.

(a) c(p2x) ≠ c(p3y).
(b) p2 is a c(p2x)-center and p3 is a c(p3y)-center.
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Fig. 1. Part (a) shows the Gadget D(x, y) and (b) shows a symbolic representation with the two important vertices x, y. Here and in the figures below the
black rectangles indicate vertices that are centers in any good 2-coloring.

Fig. 2. The left part shows the gadget D2(x, x′) and the right part is a symbolic representation of D2(x, x′).

Furthermore there exists a good 2-coloring of D(x, y), say c0, where c0(p2x) = 1 and c0(p3y) = 0 and also a good 2-coloring,
c1, where c1(p2x) = 0 and c1(p3y) = 1.

Proof. Let c be a good 2-coloring of D(x, y) and name the vertices of D(x, y) as it is done in Definition 4.2. As d(p2) = 3,
we note that p2 is either a 0-center or a 1-center. Analogously we note that p3 is either a 0-center or a 1-center. We now
consider the following four possibilities.

p2 and p3 are 0-centers: Wemust have c(p2p3) = 1 as otherwisewe get a path of length three inUG(D0). As p2 is a 0-center
we must therefore have c(p1p2) = c(p2x) = 0. However the arcs p0p1 and p1w cannot both be colored 1 as D1 is a
vertex-disjoint collection of out-stars, so we obtain a path of length three in UG(D0), a contradiction. So p2 and p3
cannot both be 0-centers.

p2 and p3 are 1-centers: In this case all out-neighbors of p2 and p3 are colored 1 since these vertices have precisely two
out-neighbors each (as color 1 is a collection of out-stars). However this implies that c(p2p3) = c(p3p4) = 1, a
contradiction, so p2 and p3 cannot both be 1-centers.

p2 is a 0-center and p3 is an 1-center: As p3 is an 1-centerwenote that c(p3p4) = c(p3y) = 1. This implies that c(p2p3) = 0.
If c(p2x) = 1, then we must have c(p1p2) = 0 and as either p0p1 or p1w is colored 0 we get a path of length three
in UG(D0), a contradiction. So we must have c(p2x) = 0. Therefore both (a) and (b) hold.

p2 is a 1-center and p3 is a 0-center: As p2 is a 1-center we note that c(p2p3) = c(p2x) = 1. As p3 is a 0-center we note that
c(p3p4) = c(p3y) = 0. Therefore both (a) and (b) hold.

Finally let c0 be the 2-coloring such that the arcs {p2x, p2p3, p0p1} have color 1 and the arcs {p1p2, p1w, p3p4, p3y} have
color 0 and note that c0 is a good 2-coloring. Swap all colors of c0 in order to obtain c1 and note that c1 is a good 2-coloring. �

Definition 4.4. Let D2(x, x′) denote the digraph obtained from two disjoint copies of D, say D(x, y) and D(x′, y′), by adding
the arc yy′ (see Fig. 2).

Lemma 4.5. Let c be a good 2-coloring of D2(x, x′) and denote the vertices in D(x′, y′) by p′

0, p
′

1, p
′

2, p
′

3, p
′

4, x
′, y′,w′. The following

now holds.

(i) c(p2x) = c(p′

2x
′).

(ii) p2 and p′

2 are both c(p2x)-centers.

Furthermore there exists a good 2-coloring, c0, where c0(p2x) = 0 and c0(p′

2x
′) = 0 and a good 2-coloring, c1, where

c1(p2x) = 1 and c1(p′

2x
′) = 1.

Proof. Note that by Part (b) of Lemma 4.3 we have c(yy′) ≠ c(p′

3y
′) and c(yy′) ≠ c(p3y), which implies that c(p′

3y
′) =

c(p3y). Part (a) of Lemma 4.3 now implies that c(p2x) ≠ c(p3y) = c(p′

3y
′) ≠ c(p′

2x
′), which proves part (i). Part (ii) follows

immediately from Part (b) of Lemma 4.3.
Using Lemma 4.3 it is not difficult to construct the colorings c0 and c1 mentioned in the statement of the Lemma (we just

color yy′ differently to p3y and p′

3y
′). �

Definition 4.6. Let Q (x, a1, a2) denote the digraph with vertex set {x, v0, v1, v2, a1, a2} and arc set xv0, v0v1, v1v2, v2a2,
v1a1 (Fig. 3).
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Fig. 3. The digraph Q (x, a1, a2). The right part is the symbolic representation used below.

Fig. 4. The digraph S(x1, x2, x3) with a symbolic drawing to the right.

Lemma 4.7. If c is a good 2-coloring of Q (x, a1, a2), then the following holds.

(1) (c(xv0), c(v1a1), c(v2a2)) ∉ {(0, 0, 0), (0, 1, 1)}

For every q0, q1, q2 ∈ {0, 1} with (q0, q1, q2) ∉ {(0, 0, 0), (0, 1, 1)} there exists a good 2-coloring, c, with c(xv0) = q0,
c(v1a1) = q1 and c(v2a2) = q2.

Proof. First assume that (c(xv0), c(v1a1), c(v2a2)) = (0, 0, 0). As either v0v1 or v1v2 must have color 0 we get a path of
length three in UG(D0), a contradiction. So now assume that (c(xv0), c(v1a1), c(v2a2)) = (0, 1, 1). Clearly c(v0v1) = 0 (as
c(v1a1) = 1) and c(v1v2) = 0 (as c(v2a2) = 1), which gives us a path of length three in UG(D0). Therefore (1) holds.

Let q0, q1, q2 ∈ {0, 1} with (q0, q1, q2) ∉ {(0, 0, 0), (0, 1, 1)}. Let c(xv0) = q0, c(v1a1) = q1, c(v2a2) = q2 and let
c(v1v2) = 1 − q2. Finally if (q0, q1, q2) = (0, 0, 1), then let c(v0v1) = 1 otherwise let c(v0v1) = 0. We note that c is a good
2-coloring with c(xv0) = q0, c(v1a1) = q1 and c(v2a2) = q2. �

Definition 4.8. Let S(x1, x2, x3) denote the digraph obtained from three copies of Q , say Q1(x1, a1,1, a1,2), Q2(x2, a2,1, a2,2)
and Q3(x3, a3,1, a3,2) and three copies of D2, say D2(b1, b′

1), D2(b2, b′

2) and D2(b3, b′

3), by identifying the following pairs of
vertices (b′

1, a1,1), (a1,2, b2), (b
′

2, a2,1), (a2,2, b3), (b
′

3, a3,1) and (a3,2, b1) (Fig. 4).

Lemma 4.9. Let c be a good 2-coloring of S(x1, x2, x3) and let yi be the unique out-neighbor of xi for i = 1, 2, 3. Then the following
holds.

(I) We do not have c(x1y1) = c(x2y2) = c(x3y3) = 0.

For every q1, q2, q3 ∈ {0, 1} with (q1, q2, q3) ≠ (0, 0, 0) there exists a good 2-coloring, c, with c(x1y1) = q1, c(x2y2) = q2
and c(x3y3) = q3.
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Fig. 5. The digraph DI corresponding to the formula I = (v1 ∨ v̄2 ∨ v3) (v̄1 ∨ v2 ∨ v̄3) (v1 ∨ v2 ∨ v̄3).

Proof. First assume that c(x1y1) = c(x2y2) = c(x3y3) = 0. Let the arc into ai,j in Qi be denoted by ei,j for i = 1, 2, 3 and
j = 1, 2 By Lemma 4.7 we note that c(ei,1) ≠ c(ei,2), for i = 1, 2, 3. By Lemma 4.5 we note that c(e1,1) = c(e3,2) and
c(e2,1) = c(e1,2) and c(e3,1) = c(e2,2). However at least two out of these three values (that is, c(e1,1), c(e2,1) and c(e3,1))
have the same value, contradicting the fact that c(ei,1) ≠ c(ei,2), for i = 1, 2, 3.

Let q1, q2, q3 ∈ {0, 1} be arbitrary with (q1, q2, q3) ≠ (0, 0, 0). By symmetry we may without loss of generality assume
that q1 = 1. Let c(e1,1) = c(e1,2) = c(e3,2) = c(e2,1) = 0 and c(e3,1) = c(e2,2) = 1 and note that by Lemmas 4.5 and 4.7
we can color the rest of the arcs in S(x1, x2, x3) in order to get a good 2-coloring, c , with c(x1y1) = q1, c(x2y2) = q2 and
c(x3y3) = q3. �

Theorem 4.10. It is NP-hard to decide if a digraph has a good 2-coloring.

Proof. Wewill reduce 3-SAT to the problem of deciding if a digraph has a good 2-coloring. Let I be an instance of 3-SATwith
n variables v1, v2, . . . , vn andm clauses C1, C2, . . . , Cm. For each clause Ci we take a copy of the gadget S, say Si(xi,1, xi,2, xi,3),
and three copies of the gadget D2, say D1

i,2(x
′

i,1, yi,1), D
2
i,2(x

′

i,2, yi,2) and D3
i,2(x

′

i,3, yi,3). For each variable, vi, we take a copy of
D(x, y), say Di(ai, bi), and we connect these subgraphs in the following way (Fig. 5):

Identify xi,j with x′

i,j for all i ∈ [m] and j ∈ [3].
Add an arc from ai to yr,s if and only if vi is the s’th literal in Cr (for all i ∈ [n], r ∈ [m] and s ∈ [3]).
Add an arc from bi to yr,s if and only if v̄i is the s’th literal in Cr (for all i ∈ [n], r ∈ [m] and s ∈ [3]).
Call the resulting digraph DI. Clearly we can construct DI in polynomial time given I. We will now show that DI has a

good 2-coloring if and only if I is satisfiable. So first assume that I is satisfiable, and fix a satisfying assignment of truth values.
Let qi = 0 if vi is true and let qi = 1 if vi is false. Build a good 2-coloring c as follows. Let the arc into ai in Di(ai, bi) have
color qi and let the arc into bi have color 1 − qi. Let all arcs of the form aiyr,s have color 1 − qi and all arcs of the form biyr,s
have color qi. For each Ds

r,2(x
′
r,s, yr,s) let the arc into yr,s within Ds

r,2(x
′
r,s, yr,s) have the opposite color of the arc into yr,s from

an ai or bi. Let the arc into x′
r,s in Ds

r,2(x
′
r,s, yr,s) have the same color as the arc into yr,s within Ds

r,2(x
′
r,s, yr,s). Finally let the

arc out of xr,s in Sr(xr,1, xr,2, xr,3) have color opposite to the arc into yr,s within Ds
r,2(x

′
r,s, yr,s). As we started with a satisfying

assignment we note that no gadget Sr(xr,1, xr,2, xr,3) has color 0 on all arcs out of xr,1, xr,2 and xr,3 within Sr(xr,1, xr,2, xr,3).
Therefore the above lemmas imply that we can complete this coloring to a 2-good coloring of DI.

So now assume that we have a 2-good coloring, c , of DI. Let qi denote the color of the arc into ai within Di(ai, bi) and let
vi be true if and only if qi = 0. By Lemma 4.9 we note that for all r ∈ [m] there is some s ∈ [3], such that the color on the arc
out of xr,s in Sr(xr,1, xr,2, xr,3) is 1. By Part (ii) of Lemma 4.5 we note that the arc into x′

r,s in Ds
r,2(x

′
r,s, yr,s) must be colored 0.

By Part (i) of Lemma 4.5 we note that the arc into yr,s in Ds
r,2(x

′
r,s, yr,s) must be colored 0. By Part (ii) of Lemma 4.5 we note

that if the s’th literal in Cr is vi then the arc aiyr,s must be of color 1, which implies that qi = 0, by Lemma 4.3, and so vi is
true. Furthermore if the s’th literal in Cr is v̄i then the arc biyr,s must be of color 1, which implies that qi = 1, by Lemma 4.3,
and so vi is false. So in both cases the clause Cr is satisfied and as r was arbitrary we note that I is satisfiable. �

As Theorem 4.10 proves the first part of Theorem 1.3 and the remark at the beginning of this section proves the second
part of Theorem 1.3 we note that Theorem 1.3 has now been proved.

5. Remarks

The digraph DI is not bipartite so our proof above does not show that (GEN,OUT)-STAR ARBORICITY is NP-complete
already for bipartite graphs. However, the following remarks show that this is indeed the case.
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Definition 5.1. Let D∗(x, x′) denote the digraph obtained from two disjoint copies of D, say D(x, y) and D(x′, y′), by
identifying y and y′. Furthermore denote the vertices in D(x, y) as in Definition 4.2 and the vertices in D(x′, y′) by
p′

0, p
′

1, p
′

2, p
′

3, p
′

4, x
′, y′, w′ in the natural way.

Lemma 5.2. If c is a good 2-coloring of D∗(x, x′) (see Definition 5.1), then the following holds.

(a) c(p2x) ≠ c(p′

2x
′).

(b) p2 is a c(p2x)-center and p′

2 is a c(p′

2x
′)-center.

Furthermore there exists a good 2-coloring of D∗(x, x′), say c0, where c0(p2x) = 1 and c0(p′

2x
′) = 0

and also a good 2-coloring, c1, where c1(p2x) = 0 and c1(p′

2x
′) = 1.

Proof. By Lemma 4.3 we note that c(p2x) = 1 − c(p3y) = c(p′

3y
′) = 1 − c(p′

2x
′), so (a) holds.

By Lemma 4.3 it is not difficult to show that c0 and c1 exist as we always set the color
of p3y to be different from p′

3y
′. �

Wenote that in the proof of Theorem4.10we can use a copy ofD∗(x, x′) instead ofD(x, y) for each variable in the instance
of 3-SAT. In this case DI in the proof of Theorem 4.10 becomes bipartite by the following easy observations.

Observation 1. The following holds.

• D(x, y) defined in Definition 4.2 is bipartite and x and y belong to different partite sets.
• D∗(x, x′) defined in Definition 5.1 is bipartite and x and x′ belong to the same partite sets.
• D2(x, x′) defined in Definition 4.4 is bipartite and x and x′ belong to different partite sets.
• Q (x, a1, a2) defined in Definition 4.6 is bipartite and x and a2 belong to the same partite set, which is different to the partite

set containing a1.
• S(x1, x2, x3) defined in Definition 4.8 is bipartite and x1, x2 and x3 belong to the same partite sets.
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