
Theoretical Computer Science 815 (2020) 121–146
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Recognizing hyperelliptic graphs in polynomial time ✩

Jelco M. Bodewes a, Hans L. Bodlaender a,1, Gunther Cornelissen b,
Marieke van der Wegen b,∗
a Departement Informatica, Universiteit Utrecht, Postbus 80.089, 3508 TB Utrecht, Nederland
b Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, Nederland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 September 2019
Received in revised form 23 January 2020
Accepted 8 February 2020
Available online 12 February 2020
Communicated by S. Saurabh

Keywords:
Algorithms
Gonality
Graphs
Hyperelliptic
Reduction rules
Treewidth

Based on analogies between algebraic curves and graphs, Baker and Norine introduced
divisorial gonality, a graph parameter for multigraphs related to treewidth, multigraph
algorithms and number theory. Various equivalent definitions of the gonality of an
algebraic curve translate to different notions of gonality for graphs, called stable gonality
and stable divisorial gonality.
We consider so-called hyperelliptic graphs (multigraphs of gonality 2, in any meaning
of graph gonality) and provide a safe and complete set of reduction rules for such
multigraphs. This results in an algorithm to recognize hyperelliptic graphs in time O (m +
n log n), where n is the number of vertices and m the number of edges of the multigraph.
A corollary is that we can decide with the same runtime whether a two-edge-connected
graph G admits an involution σ such that the quotient G/〈σ 〉 is a tree.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Motivation In this paper, we consider a graph theoretic problem that finds its origin in algebraic geometry, and can be
formulated in terms of a specific type of graph search, namely monotone chip firing. The case with two chips is of special
interest in the application, and we show that we can decide this case in O (n log n +m) time on a multigraph with n vertices
and m edges.

In algebraic geometry, a special role is played by so-called hyperelliptic curves; these are smooth projective algebraic
curves possessing an involution, i.e. an automorphism of order two, for which the quotient is the projective line. Such curves
can be described by an affine equation y2 = f (x), for some one-variable polynomial f (x) without repeated roots. They are
widely studied and used, for example in the study of moduli spaces of abelian surfaces, invariants of binary quadratic
forms, Diophantine problems (finding integer or rational solutions to such equations), and in so-called hyperelliptic curve
cryptography (see, e.g., [17] and [32]).

Recognizing hyperelliptic curves is an important, decidable problem in algorithmic algebraic geometry; an algorithm has
been implemented when the curve is given by some set of polynomial equations, e.g., in the computer algebra package

✩ An extended abstract is published in Graph-Theoretic Concepts in Computer Science [10].

* Corresponding author.
E-mail addresses: jelcobodewes@gmail.com (J.M. Bodewes), h.l.bodlaender@uu.nl (H.L. Bodlaender), g.cornelissen@uu.nl (G. Cornelissen),

m.vanderwegen@uu.nl (M. van der Wegen).
1 This research was partially supported by the NETWORKS project, funded by the Netherlands Organization for Scientific Research N.W.O.
https://doi.org/10.1016/j.tcs.2020.02.013
0304-3975/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2020.02.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.02.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jelcobodewes@gmail.com
mailto:h.l.bodlaender@uu.nl
mailto:g.cornelissen@uu.nl
mailto:m.vanderwegen@uu.nl
https://doi.org/10.1016/j.tcs.2020.02.013
http://creativecommons.org/licenses/by/4.0/

122 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
Magma [15]. No exact runtime analysis is available, but, the method being dependent on Gröbner basis computations,
worst-case performance is expected to be more than exponential in the input size.

In recent work of Baker and Norine [6], the notion of a “hyperelliptic graph” was introduced, based on an analogy
between algebraic curves and multigraphs. We show that the recognition problem for hyperelliptic graphs can be solved
in quasilinear time. This can be applied to the recognition of certain hyperelliptic curves, since if an algebraic curve has a
non-hyperelliptic stable reduction graph, the curve itself cannot be hyperelliptic (see [5, 3.5]).

Divisorial gonality Hyperelliptic graphs are graphs with divisorial gonality at most two. The notion of divisorial gonality
has several equivalent definitions; intuitively, we use a chip firing game: we have a graph and some initial configuration
that assigns a non-negative number of “chips” to each vertex. We can fire a subset of vertices by moving a chip along
each outgoing edge of the subset, if every vertex has sufficiently many chips. We say that an initial configuration reaches
a vertex if a sequence of firings results in that vertex having at least one chip. The divisorial gonality of a graph is the
minimum number of chips needed for an initial configuration to reach each vertex of the graph. It actually suffices to
consider a ‘monotone’ variant of the chip firing procedure, in which the sequence of subsets that are fired to reach a vertex
is increasing; this is similar to several other graph search games, where the optimal number of searchers does not increase
when we require the search to be monotone, see e.g., [8,29].

Different notions of graph gonality An equivalent definition of the gonality of an algebraic curve is the minimal degree of a
morphism onto the projective line. A good analogue of this notion for graphs is the so-called stable gonality introduced in
[18] as the minimal degree of a harmonic morphism from a refinement of the graph onto a tree (cf. Section 2.2 infra). In
contrast to the case of algebraic curves, the stable gonality of a graph is not always equal to its divisorial gonality. In [18],
refinements of the graph arises from the theory of reductions of algebraic curves and tropical geometry [1], and it makes
equal sense to consider the notion of stable divisorial gonality, defined as the minimal divisorial gonality of a refinement of
the graph.

Known results The termination of similar chip-firing games was discussed by Björner, Lovász and Shor [9]. A polynomial
bound on the minimal number of required firings to terminate the Björner, Lovász and Shor-game was given by Tardos [34].
In the guise of “abelian sandpile model”, chip-firing games play an important role in the study of self-organized criticality
in statistical physics [4,20]. The chip firing game introduced by Baker and Norine is relevant for classical combinatorial
problems about graphs, relating to spanning trees [16], the uniqueness of graph involutions [6], and potential theory on
electrical network graphs [7].

In [23], a lower bound for the divisorial gonality of a graph is given in terms of its expansion. The gonality of a graph
G (in any sense) is larger than or equal to its treewidth tw(G) [22]. Since treewidth is insensitive to the presence of
multiple edges while gonality is not, the parameters are different; actually, they are not “tied” in the sense of Norin [31];
for example, there exists G with tw(G) = 2 but dgon(G) arbitrarily high [28]. The relation between the various notions of
gonality is expounded in [24, Section 1 and 5].

We study all three kinds of gonality of graphs from the point of view of computational complexity. The analogous
problem of computing the gonality of an algebraic curve is decidable [33]. From the definition of divisorial gonality, it
follows that divisorial gonality is computable. For stable gonality and stable divisorial gonality, this does not follow from the
definition, but both notions are computable as well [25], [14]. We know that treewidth is FPT, and that computing all three
kinds of gonality is NP-hard and APX-hard [24]. Moreover, divisorial gonality is in XP [21, Section 5].

Our results Our main result is the following.

Theorem A (=Theorem 6.1). There is an algorithm that decides whether a graph G is hyperelliptic in O (n logn + m) time.

To obtain our algorithm, we provide a safe and complete set of reduction rules. We do this for all three notions of
gonality. Similar to recognition algorithms for graphs of treewidth 2 or 3 (see [2]), in our algorithm the rules are applied to
the graph until no further rule application is possible; we decide positively if and only if this results in the empty graph.
One novelty is that some of the rules introduce constraints on pairs of vertices, which we model by colored edges. To deal
with the fact that some of the rules are not local, we use a data structure that allows us to find an efficient way of applying
these rules, leading to the stated running time.

Application to detecting special involutions on graphs There is no known polynomial time algorithm for the graph automor-

phism problem, the question whether a graph admits a non-trivial automorphism, a problem that is known to be in NP;
recently, a quasi-polynomial time algorithm was given by Babai [3] (compare [27]).

The question of the computational complexity of the problem is known to be very sensitive to alterations of the question.
For example, deciding whether a graph has a fixed point free automorphism of order two is NP-complete (see Lubiw [30]).
Our main result implies the following result as corollary.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 123
. . .
.
.
.

.

.

.

.

.

.

Fig. 1. The reduction of X : (xp − x)(yp − y) = p modulo p and the intersection dual graph K p,p .

Corollary A (=Corollary 6.4). There is an algorithm that, given a two-edge-connected graph G, decides in O (n logn +m) time whether
G admits an involution σ such that the quotient G/〈σ 〉 is a tree.

Relation to number theory We briefly elucidate the relevance of gonality for number theoretical problems. This paragraph
can safely be skipped, but provides some motivation for the interest in computing gonality of graphs.

If an algebraic curve X is defined over the rational numbers and has gonality γ , then we have a so-called “uniform
boundedness” result for X : the total number of points on X with coordinates in any number field of degree (γ − 1)/2, is
finite. Now the gonality of X is bounded below by the gonality of the dual graph of a reduction of the curve modulo a
prime [18, §11]. We illustrate this with an example.

For a prime number p, consider the algebraic curve X : (xp − x)(yp − y) = p in the (x, y)-plane over the field of rational
numbers Q. Reducing the curve modulo p, the equation becomes a union of lines x(x − 1) . . . (x − (p − 1)) · y(y − 1) . . . (y −
(p − 1)) = 0 (see also Fig. 1). The intersection dual graph is given by a vertex for each component of this reduction, where
two vertices are connected by an edge if and only if the corresponding components intersect; in the example, it is the
complete bipartite graph K p,p . The stable gonality of K p,p is p (since tw(K p,p) = p and there is an obvious map of degree
p from K p,p to a tree, see Section 2.2). From [18, 4.5 & 11.1] one concludes that the set

⋃
X(K) is finite, where K runs over

all the (infinitely many for p ≥ 5) number fields of degree bounded above by (p − 1)/2.

2. Preliminaries

Whenever we write “graph” we refer to a multigraph G = (V , E), where V is the set of vertices and E is a multiset of
edges.

Let G be a graph and u and v two vertices. Let C be the connected component of G\{v} that contains u. By G v (u) we
denote the induced subgraph of G on C ∪ {v}.

2.1. Divisorial gonality

There is a number of different definitions of divisorial gonality. The one we use is shown to be equivalent to the chip
firing procedure without the ‘monotonicity’ property by [21]. The definition given here allows us to prove correctness of the
reduction rules in our algorithm, and avoids more heavy algebraic terminology.

A divisor D in a graph G = (V , E) is a mapping D : V → Z (a divisor represents a distribution of chips, see Section 1).
We call a divisor D effective (notation D ≥ 0) if D(v) ≥ 0 for all v ∈ V . The degree, deg(D), of a divisor D equals

∑
v∈V D(v).

Given an effective divisor D and a set of vertices W ⊆ V , we call W valid for D , if for each v ∈ W , D(v) ≥ |E(v, V \ W)|
(i.e., v has at least as many chips as it has neighbors in V \ W). If W is valid for D , we can fire W starting from D , this
yields another divisor: for v ∈ W , D(v) is decreased by the number of edges from v to V \ W , and for x ∈ V \ W , D(x)
is increased by the number of edges from W to x. Intuitively, firing W means moving a chip along all edges from W to
V \ W . Note that the divisor obtained by firing is effective as well.

We call two effective divisors D and D ′ equivalent, in notation D ∼ D ′ , if there is a sequence of non-empty subsets
A1 ⊆ A2 ⊆ . . . ⊆ Ak−1 ⊂ Ak = V , such that for all i the set Ai can be fired when A1, . . . , Ai−1 are fired starting from D ,
and the divisor obtained by firing A1, . . . , Ak is D ′ . This defines an equivalence relation on the set of effective divisors [21,
Chapter 3]. For two equivalent effective divisors D and D ′ , we call the difference of functions D ′ − D the transformation
from D to D ′ , and the sequence A1 ⊆ A2 ⊆ . . . ⊆ Ak−1 ⊂ Ak = V the level set decomposition of this transformation. This level
set decomposition is unique [21, Remark 3.8].

We say that an effective divisor D reaches a vertex v , if there exists a D ′ such that D ∼ D ′ and D ′(v) ≥ 1. The divisorial
gonality, dgon(G), of a graph G is the minimum degree of an effective divisor D that reaches each vertex of G .

Example 2.1. Let T be a tree. Then T has divisorial gonality 1. Let v be a vertex of T and consider the divisor D with
D(v) = 1 and D(x) = 0 for all x = v . This divisor has degree 1 and reaches each vertex of T : Let w be a vertex of T . Let
vu be the first edge on the unique path from v to w . Let Av be the component that contains v of the cut induced by vu.
Firing Av yields the divisor D(u) = 1 and D(x) = 0 for all x = u, thus we moved a chip from v to u. Repeating this process
yields a divisor with a chip on w .

124 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
u v w

Fig. 2. Graph with divisorial gonality 3 and treewidth 1 (see Example 2.3).

u v

Fig. 3. Graph with divisorial gonality 3 and treewidth 2 (see Example 2.4).

Example 2.2. Let G be a cycle, then G has divisorial gonality 2. First note that every set of vertices of G induces a cut of size
at least 2. Hence for all degree 1 divisors, there are no valid sets. Hence a degree 1 divisor does not reach every vertex. To
see that there is a divisor with 2 chips that reaches every vertex, number the vertices v1, v2, . . . , vn and consider the divisor
D with a chip on v1 and a chip on vn . To reach a vertex vk with k ≤ n

2 , fire the set {vi | 1 ≤ i ≤ j} ∪ {vi | n − j + 1 ≤ i ≤ n}
for j = 1, 2, . . . , i − 1. Analogous for a vertex vk with n

2 ≤ k ≤ n.

Example 2.3. Consider the graph G in Fig. 2. This graph has treewidth 1 and divisorial gonality 3. A divisor that reaches all
vertices either has a chip on u and 2 more chips to reach both v and w , or has at least 3 chips to move along the three
edges from v to u. See also [18, Table 3].

Example 2.4. Consider the graph G in Fig. 3. This graph has treewidth 2 and divisorial gonality 3. A divisor that reaches all
vertices needs two chips to traverse the left cycle and 2 chips to traverse the right cycle. But we cannot move two chips
from u to v , so these two chips on the left side cannot be the same as the two on the right side. Hence we need at least
three chips.

For a disconnected graph, the divisorial gonality is equal to the sum of the divisorial gonalities of the connected compo-
nents.

2.2. Stable gonality

We define stable gonality as in [18, Definition 3.6].

Definition 2.5. Let G and H be connected graphs. A finite morphism is a map φ : G → H such that

(i) φ(V (G)) ⊆ V (H),
(ii) φ(uv) = φ(u)φ(v) for all uv ∈ E(G),

together with, for every e ∈ E(G), an “index” rφ(e) ∈N .

Definition 2.6. We call a finite morphism φ : G → H harmonic if for every v ∈ V (G) it holds that for all e, e′ ∈ Eφ(v)(H)∑
d∈E v (G),φ(d)=e

rφ(d) =
∑

d′∈E v (G),φ(d′)=e′
rφ(d′).

We write mφ(v) for this sum.

Definition 2.7. The degree of a finite harmonic morphism φ : G → H is∑
d∈E(G),φ(d)=e

rφ(d) =
∑

u∈V (G),φ(u)=v

mφ(u),

for e ∈ E(H), v ∈ V (H). This is independent of the choice of e or v ([6], Lemma 2.4).

Example 2.8. For a tree T we can use the identity map φ : T → T , and assign index 1 to all edges, to obtain a finite harmonic
morphism. This morphism has degree 1.

Example 2.9. Consider the graph G in Fig. 4. Assign index 2 to the edge (v, w), and 1 to the other edges. Map this graph to
a path on 4 vertices. This yields a finite harmonic morphism of degree 2.

We can now prove a lemma about finite harmonic morphisms, that we will need in Section 4.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 125
u v w x2

Fig. 4. Graph with stable gonality 2 (see Examples 2.9 and 2.13).

u v

Fig. 5. Graph with stable gonality 3 and treewidth 2 (see Example 2.14).

Lemma 2.10. Let G be a connected graph, and φ : G → T a finite harmonic morphism of degree 2. If φ(u) = φ(v), then deg(u) =
deg(v).

Proof. Notice that mφ(u) = mφ(v) = 1. Let e be an edge incident to φ(u). By harmonicity, there is exactly one edge e′
such that e′ is incident to u and φ(e′) = e. On the other hand every edge that is incident to u is mapped to an edge
that is incident to φ(u). So we conclude that degG(u) = degT (φ(u)). Analogously we find that degG(v) = degT (φ(v)). Since
φ(u) = φ(v), it follows that deg(u) = deg(v). �

Before we can define the stable gonality of a graph, we need one last definition: the notion of refinements.

Definition 2.11. A graph G ′ is a refinement of G if G ′ can be obtained by applying the following operations finitely many
times to G .

(i) Add a leaf, i.e. a vertex of degree 1;
(ii) subdivide an edge by adding a vertex.

We call a vertex of G ′\G from which there are two disjoint paths to vertices of G , internal added vertices, we call the other
vertices of G ′\G external added vertices.

Definition 2.12. The stable gonality of a connected graph G is

sgon(G) = min{deg(φ) | φ : G ′ → T a finite harmonic morphism,

G ′ a refinement of G , T a tree}.

Example 2.13. As we have seen in Example 2.8, sgon(T) = 1 for a tree T . On the other hand, if G is not a tree, then any
refinement of G contains a cycle. Such a cycle cannot be mapped to a tree injectively. Thus sgon(G) > 1 if G is not a tree.

Since the graph G in Fig. 4 is not a tree and we have seen a morphism of degree 2 in Example 2.9, we conclude that
sgon(G) = 2.

Example 2.14. Consider the graph G of Example 2.4, see Fig. 3. This graph has stable gonality 2. Add a vertex to the edge
(u, v), a vertex to left triangle and a vertex to the right triangle (see Fig. 5). This refinement can be mapped to a path on 7
vertices, where u is mapped to the third vertex and v to the fifth vertex of the path. If we assign index 1 to all edges, this
is a finite harmonic morphism of degree 2.

For a disconnected graph G its stable gonality is defined to be the sum of the stable gonalities of its components.

2.3. Stable divisorial gonality

We can combine the previous two notions of gonality, first refine a graph and then consider the divisorial gonality, to
obtain a third notion of gonality: stable divisorial gonality.

126 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
u v

Fig. 6. Graph with divisorial gonality 3 and stable divisorial gonality 2 (see Example 2.16).

Definition 2.15. The stable divisorial gonality of G is

sdgon(G) = min{dgon(G ′) | G ′ a refinement of G}.

Example 2.16. Consider the graph G of Example 2.4, see Fig. 3. This graph divisorial gonality 3, but stable divisorial gonality
2. This is because we can refine G to a graph with divisorial gonality 2: add a vertex to the edge (u, v) (see Fig. 6). A divisor
with 2 chips on vertex u reaches all vertices.

For a disconnected graph G its stable divisorial gonality is defined to be the sum of the stable divisorial gonalities of its
components.

2.4. Reduction rules, safeness and completeness

A reduction rule is a rule that can be applied to a graph to produce a smaller graph. Our final goal with the set of
reduction rules is to show that it can be used to characterize the graphs in a certain class, that of the graphs with divisorial
gonality two, that of the graphs with stable gonality two, and that of graphs with stable divisorial gonality two, by reduction
to the empty graph. For this we need to make sure that membership of the class is invariant under our reduction rules.

Definition 2.17. Let U be a rule and S be a set of reduction rules. Let A be a class of graphs. We call U safe for A if for all
graphs G and H such that H can be produced by applying rule U to G it follows that H ∈A ⇐⇒ G ∈A. We call S safe for
A if every rule in S is safe for A.

Apart from our sets of rules being safe, we also need to know that, if a graph is in our class, it is always possible to
reduce it to the empty graph.

Definition 2.18. Let S be a set of reduction rules and A be a class of graphs. We call S complete for A if for any graph
G ∈A it holds that G can be reduced to the empty graph by applying some finite sequence of rules from S .

For any set of rules that is both complete and safe for A the set is suitable for characterizing A: a graph G can be
reduced to the empty graph if and only if G is in A. Additionally it is not possible to make a wrong choice early on that
would prevent the graph from being reduced to the empty graph: if G ∈ A and G can be reduced to H , then H can be
reduced to the empty graph.

These properties ensure that we can use the set of reduction rules to create an algorithm for recognition of the graph
class.

2.5. Constraints

In the process of applying reduction rules to a graph, we will need to keep track of certain restrictions otherwise lost by
removal of vertices and edges. We will maintain these restrictions in the form of a set of pairs of vertices, called constraints,
and then extend the notions of gonality to graphs with constraints.

Definition 2.19. Given a graph G = (V , E), a constraint on G is an unordered pair of vertices v, w ∈ V , usually denoted as
(v, w), where v and w can be the same vertex.

A graph with constraints consists of a graph G = (V , E) and a set of constraints C. Constraints are, like edges, pairs of
vertices, so we can consider them as an extra set of edges. The conditions that a constraint places on the divisors and firing
sets for divisorial gonality and the morphisms for stable gonality, are described in Sections 3 and 4, respectively.

3. Reduction rules for divisorial gonality

We will now show that there exists a set of reduction rules that is safe and complete for the class of graphs with
divisorial gonality at most two. We will assume that our graph is loopless and connected. Loops can simply be removed
from the graph since they never impact the divisorial gonality and a disconnected graph has divisorial gonality two or lower
exactly when it consists of two trees, which can easily be checked in linear time.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 127
3.1. Constraints for divisorial gonality

Checking whether a graph has gonality two or lower is the same as checking whether there exists a divisor on our graph
with degree two that reaches all vertices. Our constraints place restrictions on what divisors we consider, as well as what
sets we are allowed to fire.

Definition 3.1. Given a graph G with set of constraints C, and two equivalent effective divisors D and D ′ . We call D and
D ′ C-equivalent (in notation D ∼C D ′), if for every set Ai of the level set decomposition of D ′ − D and every constraint
(u, v) ∈ C, either u, v ∈ Ai or u, v /∈ Ai .

Note that this defines a finer equivalence relation. Now we can extend the definition of reach using C-equivalence: a
divisor D reaches a vertex v , if there exists a D ′ such that D ∼C D ′ and D ′(v) ≥ 1.

Definition 3.2. Given a graph G with a set of constraints C. A divisor D satisfies C if for every constraint (u, v) ∈ C there is
a divisor D ′ ∼C D such that D ′(u) ≥ 1 and D ′(v) ≥ 1 if u = v and D ′(u) ≥ 2 if u = v .

Definition 3.3. Given a graph G = (V , E) with constraints C, we call a divisor D suitable if it is effective, has degree 2,
reaches all vertices using the C-equivalence relation and satisfies all constraints in C.

Definition 3.4. We will say that a graph with constraints has divisorial gonality 2 or lower if it admits a suitable divisor.
Note that for a graph with no constraints this is equivalent to the usual definition of divisorial gonality 2 or lower. We will
denote the class of graphs with constraints that have divisorial gonality two or lower as Gd

2 .

Constraints & cycles It will be useful to determine when constraints are non-conflicting locally:

Definition 3.5. Let C be a cycle in a graph G with constraints C. Let CC ⊆ C be the subset of the constraints that contain a
vertex in C . We call the constraints CC compatible if the following hold.

(i) If (v, w) ∈ CC then both v ∈ C and w ∈ C .
(ii) For each (v, w) ∈ CC and (v ′, w ′) ∈ CC , the divisor given by assigning a chip to v and w must be equivalent to the one

given by assigning a chip to v ′ and w ′ on the subgraph consisting of C .

3.2. The reduction rules

We are given a connected loopless graph G = (V , E) and a yet empty set of constraints C. The following rules are
illustrated in Fig. 7, where a constraint is represented by a red dashed edge.

We start by covering the two possible end states of our reduction:

Rule Ed
1. Given a graph consisting of exactly one vertex, remove that vertex.

Rule Ed
2. Given a graph consisting of exactly two vertices, u and v , connected to each other by a single edge, and C =

{(u, v)}, remove both vertices.

Next are the reduction rules to get rid of vertices with degree one. These rules are split by what constraint applies to
the vertex:

Rule T d
1. Let v be a leaf, such that v has no constraints in C. Remove v .

Rule T d
2. Let v be a leaf, such that its only constraint in C is (v, v). Let u be its neighbor. Remove v and add the constraint

(u, u) if it does not exist yet.

Rule T d
3. Let v1 be a leaf, such that its only constraint in C is (v1, v2), where v2 is another leaf, whose only constraint is

also (v1, v2). Let u1 be the neighbor of v1 and u2 be the neighbor of v2 (these can be the same vertex). Then remove v1
and v2 and add the constraint (u1, u2) if it does not exist yet.

Finally we have a set of reduction rules that apply to cycles containing at most 2 vertices with degree greater than two.
The rules themselves are split by the number of vertices with degree greater than two.

128 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
Rule Ed
1 Rule Ed

2

Rule T d
1 Rule T d

2

Rule T d
3

Rule Cd
1 Rule Cd

2

Rule Cd
3

Fig. 7. The reduction rules for divisorial gonality. Constraints are represented by red dashed edges.

Rule C d
1. Let C be a cycle of vertices with degree two. If the set of constraints CC on C is compatible, then replace C by a

new single vertex.

Rule C d
2. Let C be a cycle with one vertex v with degree greater than two. If the set of constraints CC on C plus the

constraint (v, v) is compatible, then remove all vertices except v in C and add the constraint (v, v) if it does not exist yet.

Rule C d
3. Let C be a cycle with exactly two vertices v and u of degree greater than two. If there exists a path from v to

u that does not share any edges with C and the set of constraints CC on C plus the constraint (v, u) is compatible, then
remove all vertices of C except v and u, remove all edges in C and add the constraint (v, u) if it does not exist yet.

We denote by Rd the set consisting of all the above reduction rules: Ed
1 , Ed

2 , T d
1 , T d

2 , T d
3 , Cd

1 , Cd
2 and C d

3 .
We will now state the main theorem stating that this set of reduction rules has the desired properties. After this we will

build up the proof.

Theorem 3.6. The set of rules Rd is safe and complete for Gd
2 .

3.3. Safeness

In this section it is assumed there is a graph G and another graph H that follows from G by applying a rule. Now we
first make an observation on the connectivity of our graphs:

Lemma 3.7. Let G and H be graphs. If G is connected and H can be produced from G by applying some rules, then H is connected.

Proof. We observe that the only rule that removes a path between two remaining vertices is C d
3 . In the case of C d

3 however
we demand that there is a path between v and w outside of C so this path will still exist and it follows that H is still
connected. �

Since we assume our graph G is connected it follows that each produced graph H is also connected. Now we will show
for each of the rules in Rd that it is safe.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 129
Lemma 3.8. Rules Ed
1 and Ed

2 are safe.

Proof. For both rules it should be clear that their starting states as well as the empty graph have divisorial gonality two or
lower. From this it follows they both are safe. �
Lemma 3.9. Rules T d

1 and T d
2 are safe.

Proof. Let v be our vertex with degree 1 and u its neighbor. We know that the only constraint on v can be the constraint
(v, v).

Note that if H ∈ Gd
2 then there is a divisor on H that puts at least one chip on u. Considering this divisor on G , note that

we can move chips to v by firing G − {v}, it follows that this divisor is also suitable for G .
Given that G ∈ Gd

2 note that we can find a suitable divisor that has no chips on v by firing v until it contains no chips.
This divisor will also be suitable on H .

For T d
2 the proof is analogous, except with two chips on v . �

Lemma 3.10. Rule T d
3 is safe.

Proof. Let v1 and v2 be the vertices with degree one, such that their only constraint is (v1, v2) and let u1 and u2 be their
(possibly equal) neighbors. We first assume that H ∈ Gd

2 , then there is a suitable divisor on H with one chip on u1 and
another chip on u2. Consider this divisor on G . Then by firing V (G) \ {v1, v2} we can move a chip to v1 and v2. For every
vertex v ∈ V (G) \ {v1, v2} there is a sequence A1, A2, . . . , Ak ⊆ V (H) such that firing this sequence yields a divisor D ′ with
a chip on v . Now add vi to every set A j that contains ui for i = 1, 2. Firing these sets on G starting from D results in D ′
on G , so D reaches v . Moreover, every set we fired contains either both v1 and v2, or neither. We conclude that D is also
suitable on G .

Assume that G ∈ Gd
2 , then the divisor on G with one chip on v1 and v2 is suitable. By firing {v1, v2} we can create a

divisor with a chip on u1 and u2 (or two on u1 if u1 = u2). It follows that this divisor is suitable when considered on H . �
Lemma 3.11. Rule Cd

1 is safe.

Proof. We start by assuming that H ∈ Gd
2 . Note that by Lemma 3.7 we have that H is connected. Therefore it follows that H

must consist of a single vertex, and G consists of a single cycle. It follows that G ∈ Gd
2 , since all constraints are compatible.

Assume then that G ∈ Gd
2 instead. Since G is connected it must consist exactly of the cycle C , thus H consists of a single

point and H ∈ Gd
2 . �

Lemma 3.12. Rule Cd
2 is safe.

Proof. Let C be our cycle with one vertex v with degree greater than 2. Assume that H ∈ Gd
2 ; then there is a suitable

divisor on H with two chips on v . Consider this divisor on G . Note that if we fire V (G) − C + {v} then we move the two
chips onto the two neighbors of v in C . Since all constraints on C are compatible with the constraint (v, v) it follows that
we can move the chips along C while satisfying the constraints on C . From this it follows that our divisor is suitable on G .

Assume now that G ∈ Gd
2 . Since all constraints on C are compatible with (v, v), it follows that we can find a suitable

divisor with two chips on v . Considering this divisor on H gives a suitable divisor there. Thus, H ∈ Gd
2 . �

Lemma 3.13. Rule Cd
3 is safe.

Proof. Let C be our cycle and v, w the two vertices with degree greater than two in C . We first assume that H ∈ Gd
2 . From

this it follows that the divisor on H with a chip on v and a chip on w is suitable. Consider this divisor on G . It is clear that
from v and w we can move chips along either of the two arcs between v and w in C . We know that in G all constraints
on C plus (v, w) are compatible. Therefore the divisor is also suitable on G and thus G ∈ Gd

2 .
Let us now assume that instead G ∈ Gd

2 . Clearly there exists a suitable divisor D on G that has a chip on v . We will show
that there is a suitable divisor that has a chip on both v and w: Assume that D(w) = 0, then there should be a suitable
divisor D ′ with D ′(w) = 1 and D ∼C D ′ . This implies there is a level set decomposition A1, . . . , Ak of the transformation
from D to D ′ .

Let Ai be the first subset that contains v and Di the divisor before firing Ai . Notice that Di(v) ≥ 1, since D(v) ≥ 0
and v is not fired yet. Notice that we have Di(a) ≥ |E(a, V (G) \ Ai)| for all a ∈ Ai , since all firing sets are valid. Since
deg(Di) = 2 it follows that

∑
a∈Ai

|E(a, V (G) \ Ai)| ≤ 2. This is the same as the cut induced by Ai having size two or lower.
The minimum cut between v and w is at least three, since they are both part of C and there exists an additional path
outside of C between them. Therefore it follows that Ai can only induce a cut of size two or lower if w ∈ Ai as well. But

130 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
this implies that Di(w) ≥ 1, since a vertex can not receive a chip after entering the firing set. We conclude that Di(v) = 1
and Di(w) = 1.

Also by the fact that the minimum cut between v and w is at least three it follows that a subset firing can only be valid
if the subset contains either both v and w or neither (since otherwise the subset would have at least three outgoing edges).
It follows we can satisfy the set of constraints including (v, w).

Therefore the divisor Di gives us a suitable divisor when considered on H . We conclude that H ∈ Gd
2 . �

Since we have shown that each of the rules in Rd is safe, we conclude:

Lemma 3.14. The set of rules Rd is safe for Gd
2 . �

3.4. Completeness

By Lemma 3.14 we have that membership in Gd
2 is invariant under the reduction rules in Rd . For the reduction rules to

be useful however we will also need to confirm that any graph can be reduced to the empty graph by a finite sequence of
rule applications.

Lemma 3.15. Let G be a graph and v ∈ V (G) a vertex. If there are two different constraints on v, so (v, w), (v, w ′) ∈ C, with w = w ′ ,
then G /∈ Gd

2 .

Proof. Any suitable divisor should be equivalent to the divisor D with D(v) = 1, D(w) = 1 (or D(v) = 2 is w = v), and
equivalent to the divisor D ′ with D ′(v) = 1, D ′(w ′) = 1. This means that these divisors are equivalent to each other. Notice
that any firing set that contains v also contains both w and w ′ by our constraints. Moreover, any firing set containing w
contains v and w ′ by our constraints. Starting with divisor D , notice that any valid firing set must contain v or w (they
are the only vertices with chips). It follows that it also contains w ′ . This implies that the number of chips on w ′ cannot
increase, so no level set decomposition from D to D ′ exists, thus D and D ′ cannot be equivalent. We conclude no suitable
divisor exists and therefore G /∈ Gd

2 . �
Lemma 3.16. Let G ∈ Gd

2 be a graph where none of the Rules Ed
1 , Ed

2 , T d
1 , T d

2 or T d
3 can be applied. Then G contains no vertices of

degree 1.

Proof. Assume on the contrary that G does contain a vertex v with degree 1. By Lemma 3.15 and the fact that G ∈ Gd
2 we

have that at most one constraint contains v . If there is no constraint on v , we could apply Rule T d
1 to it, therefore there is

exactly one constraint on v . If this constraint is (v, v) we would be able to apply Rule T d
2 to v . If the constraint is (v, w),

where w is another vertex of degree 1, Rule T d
3 could be applied to v . The only remaining possibility is that the constraint

on v is the constraint (v, w) where w is a vertex with degree greater than 1. We will use D to denote the divisor with
D(v) = D(w) = 1. Since we have the constraint (v, w) and G ∈ Gd

2 , D is a suitable divisor.
We first consider the case where w is not a cut-vertex. Let u be the neighbor of v . Consider the transformation from

D to a divisor D ′ with D ′(u) = 1. Let A1 be the first firing set in the level decomposition of this transformation. Note that
we have v, w ∈ A1 and u /∈ A1. Since w is not a cut-vertex, it follows for each neighbor wi of w that either there is a path
from wi to u that does not contain w or wi = u. Note that if a neighbor wi = u is in A1, then somewhere on its path to u
must be an edge that crosses between A1 and its complement Ac

1. But such a crossing edge would imply that the firing set
is not valid, since no vertex on this path contains a chip. Since w has degree at least two, and none of its neighbors are in
A1, it follows that the firing set is not valid, since w would lose at least two chips. We have a contradiction.

We proceed with the case where w is a cut-vertex. Let Cx be a connected component not containing v after removing
w . Consider the subset Cx in G . Note that from D we can never obtain an equivalent divisor with two chips on Cx . Since
the chip from v would have to move through w to get to Cx , this would require D to be equivalent to a divisor with two
chips on w , which is impossible by Lemma 3.15 if G ∈ Gd

2 . Since D reaches all vertices, it follows that Cx must be a tree.
This means Cx must contain a vertex x of degree one, we know however that since we cannot apply Rules T d

1 , T d
2 or T d

3 to
G , x must have a constraint (x, y) where y is a vertex with degree greater than one. We now consider the possible locations
of y.

If y ∈ Cx , then D must be equivalent to a divisor with a chip on x and a chip on y. As mentioned before, D cannot be
equivalent to a divisor with two chips on Cx , so it follows that y /∈ Cx .

Since y /∈ Cx , D has to be equivalent to the divisor D ′′ with D ′′(x) = D ′′(y) = 1. Let C y be the component containing
y. Let A1 be the first subset of the level set decomposition of the transformation of D into D ′′ . Note that v, w ∈ A1 and
x, y /∈ A1. But this implies that w has at least one neighbor w1 in C y , with w1 /∈ A1, namely the first vertex on the path
from w to y. But w also has at least one neighbor w2 in Cx , with w2 /∈ A1, namely the first vertex on the path from w to
x. This means w has two neighbors that it will send a chip to, but w only has one chip. This yields a contradiction.

We conclude that no vertices with degree 1 can exist in G . �

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 131
Lemma 3.17. Let G be a graph with a set of constraints C and let C be a cycle in G with CC the set of constraints that contain a vertex
in C. If G ∈ Gd

2 then the constraints CC are compatible.

Proof. We start by showing that the first property of a compatible constraint set holds. Let (v, w) ∈ CC be a constraint and
let v ∈ C without loss of generality. We show that w ∈ C . Assume on the contrary that w /∈ C , then let D be the suitable
divisor with D(v) = D(w) = 1. Let x be a vertex in C with x = v . Let D ′ ∼C D be a divisor with D ′(x) ≥ 1. Let A1 be the
first firing set of the level set decomposition of the transformation of D into D ′ . Note that v, w ∈ A1 and x /∈ A1. Note there
are two disjoint paths from v to x, since they are on the same cycle. This implies a chip will be sent along both these paths
by A1, but since w /∈ C , both these chips must come from v . However, v only has one chip, a contradiction. We conclude
that w ∈ C .

For the second property, let (v, w), (v ′, w ′) ∈ CC be two constraints on C . By our first property we have that
v, w, v ′, w ′ ∈ C . Let D be the divisor with D(v) = D(w) = 1 and D ′ the divisor with D ′(v ′) = D ′(w ′) = 1. We know D
and D ′ must be equivalent, since G ∈ Gd

2 and both correspond to constraints on G . Let A1, . . . , Ak be the level set decompo-
sition of the transformation of D into D ′ . Note that v, w ∈ A1 and v ′, w ′ /∈ A1. We observe that v and w split C into two
arcs. Note that both v ′ and w ′ must be on the same arc: if they are not on the same arc, there exist disjoint paths from v
to v ′ and to w ′ that do not contain w . This implies that A1 sends two chips along these paths, but v has only one chip.

Now note that C is biconnected, which implies that for a firing set A with w ∈ A and w ′ /∈ A to be valid there must be
at least two chips on vertices in C . This follows since there are at least two edges crossing between A and its complement
Ac in C . Since each of the firing sets A1, . . . , Ak is valid, it follows this transformation leaves two chips on C at each
intermediate divisor. It follows that if we restrain these firing sets to C , we have a sequence of firing sets that transforms D
into D ′ on C . Therefore D and D ′ are equivalent on C , so our second property is also fulfilled. �
Lemma 3.18 (Folklore, see e.g., [13, Lemma 4]). Let G be a simple graph of treewidth 2 or lower and containing at least 4 vertices, then
G has at least two vertices with degree 2 or lower.

Lemma 3.19. Given a non-empty graph G ∈ Gd
2 , there is a rule in Rd that can be applied to G.

Proof. Let G ∈ Gd
2 be such a graph and assume that no rule in Rd can be applied to G . By Lemma 3.16 it follows that all

vertices of G have degree at least 2. Consider the minor H of G created by contracting each path of degree 2 vertices to an
edge. Then any edge in H was either created by contraction of a path of any number of vertices with degree 2 in G or it
already was an edge in G .

If H contains a loop, there is a path of degree 2 vertices in G going from a degree 3 or greater vertex to itself (since G
contains no loops). So this path plus the vertex it is attached to forms a cycle with exactly one vertex of degree 3 or greater.
Since we cannot apply Rule C d

2 to G , it follows that the constraints CC are not compatible. This contradicts Lemma 3.17.
Hence H contains no loops.

Now we find a subgraph H ′ of H with no multiple edges. If H contains no multiple edges, simply let H ′ = H . Otherwise
let v and w be two vertices such that there are at least two edges between v and w . Suppose that v and w are still
connected to each other after removing two edges e1, e2 between them. The removed edges each represent a single edge or
a path of degree 2 vertices in G . Thus v, w plus these paths form a cycle C in G with exactly two vertices of degree 3 or
greater, where there is also a path between v and w that does not share any edges with C . Since we cannot apply Rule C d

3
to G , it follows that the constraints CC are not compatible. Again, this contradicts Lemma 3.17. It follows that G must be
disconnected after removing e1 and e2. So any multiple edge in H is a double edge, whose removal splits the graph in two
connected components. Let H ′ be the connected component of minimal size over all possible removals of a double edge in
H . Note that H ′ cannot contain any double edge, since this would imply a smaller connected component.

We now have a minor H ′ of G , which is a simple graph since it has no loops or multiple edges. Also, each vertex of H ′
has degree at least 3 with at most one exception, namely the vertex that was incident to the two parallel edges that were
removed to obtain H ′ . Since a graph with treewidth at most two has at least two vertices of degree at most two, it follows
by Lemma 3.18 that tw(H ′) ≥ 3. Since treewidth is closed under taking minors we get tw(G) ≥ 3. But then, since treewidth
is a lower bound [22], it follows that dgon(G) ≥ 3, creating a contradiction, since G ∈ Gd

2 . We conclude that our assumption
must be wrong and there must be a rule in Rd that can be applied to G . �

Now we have everything required to prove our main theorem:

Proof of Theorem 3.6. By Lemma 3.14 we have that Rd is safe. It remains to prove that Rd is also complete.
Assume that G ∈ Gd

2 . By Lemma 3.19 and Lemma 3.14 we can keep applying rules from Rd to G as long as G has not
been turned into the empty graph yet. Observe that each rule removes at least one vertex or at least two edges, while never
adding more vertices or edges. Since G is finite, rules from Rd can only be applied a finite number of times. When no more
rules can be applied, it follows that the graph has been reduced to the empty graph. Therefore Rd is complete. �

132 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
Hence Rd has the properties we want it to have so that we are able to use it for characterization of the graphs with
divisorial gonality two or lower.

4. Reduction rules for stable gonality

In this section, we give a complete set of safe reduction rules to recognize stable hyperelliptic graphs, i.e. graphs with
stable gonality 2. We will first introduce the constraints for stable gonality and then we will state all rules. Next we will
show that all rules are safe for graphs with stable gonality at most 2 and that those graphs can be reduced to the empty
graph. It is not hard to see that the set of rules implies a polynomial time algorithm to test if a graph has stable gonality at
most 2; in Section 6, we discuss how we can obtain an algorithm with a running time of O (m + n log n).

4.1. Constraints for stable gonality

For a given graph G , we want to know whether there exists a finite harmonic morphism of degree 2 from a refinement
of G to a tree. We will do this by reducing G to the empty graph. During this process we sometimes add constraints to our
graph. The set of constraints gives restrictions to which morphisms we allow.

Definition 4.1. Let G be a graph, G ′ a refinement of G , T a tree. Let φ : G ′ → T be a map. We call φ a suitable morphism if
it is a finite harmonic morphism of degree 2 and it satisfies the following conditions.

(i) For all pairs (v, v) ∈ C it holds that mφ(v) = 2.
(ii) For all pairs (u, v) ∈ C with u = v it holds that φ(u) = φ(v) and mφ(u) = mφ(v) = 1.

We say that a graph with constraints has stable gonality at most 2 if there exists a suitable morphism from a refinement
of G to a tree. Let Gs

2 be the class of graphs with constraints that have stable gonality at most 2. We define the empty graph
to have stable gonality 0 and thus ∅ ∈ Gs

2.
We will denote the set of constraints that contain a vertex v by Cv .

4.2. Reduction rules

We will now state all rules. Fig. 8 shows all rules in pictures, constraints are showed as green dashed edges. Sometimes
it is convenient to think of constraints as an extra set of edges, from now on we will refer to the constraints as green edges.
We apply those rules to a given graph G with an empty set of constraints. When a rule adds a constraint uv , and there
already exists such a constraint, then the set of constraints does not change.

Rule T s
1. Let v be a leaf with Cv = ∅. Let u be the neighbor of v . Contract the edge uv .

Rule T s
2. Let v be a leaf with Cv = {(v, v)}. Let u be the neighbor of v . Contract the edge uv .

Rule S s
1. Let v be a vertex of degree 2 with Cv = ∅. Let u1, u2 be the neighbors of v (possibly u1 = u2). Contract the edge

u1 v .

Rule T s
3. Let G be a graph where every leaf and every degree 2 vertex is incident to a green edge. Let v1 and v2 be two

leaves that are connected by a green edge. Let u1 and u2 be their neighbors (possibly u1 = u2). Contract the edges u1 v1
and u2 v2.

Rule S s
2. Let G be a graph where every leaf and every degree 2 vertex is incident to a green edge. Let v be a vertex of

degree 2 with a green loop, such that there exists a path from v to v in G (possibly containing green edges). Let u1 and u2
be the neighbors of v (possibly u1 = u2). Remove v and connect u1 and u2 with a green edge.

Rule Ls . Let v be a vertex with a loop. Remove the loop from v and add a green loop to v .

Rule P s
1. Let uv be an edge such that there also exists a green edge uv . Remove the black edge uv .

Rule P s
2. Let u, v be vertices, such that |E(u, v)| > 1. Let e and f be two of those edges. If there exists another path, possibly

containing green edges, from u to v , then remove e and f and add a green edge from u to v .

Rule Es
1. Let G be the graph consisting of a single vertex v with Cv = ∅. Remove v .

Rule Es . Let G be the graph consisting of a single vertex v with a green loop. Remove v .
2

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 133
Rule T s
1 Rule T s

2

Rule S s
1

Rule T s
3

Rule S s
2

Rule Ls Rule P s
1

Rule P s
2 Rule Es

1

Rule Es
2 Rule Es

3

Fig. 8. The reduction rules for recognizing stable hyperelliptic graphs. Constraints are represented by green dashed edges.

Rule Es
3. Let G be the graph consisting of a two vertices u and v that are connected by a green edge. Remove u and v .

We will write Rs for this set of reduction rules. We can now state the main theorem; in the next sections we will prove
this theorem.

Theorem 4.2. The set of rules Rs is safe and complete for Gs
2 .

4.3. Safeness

Now we will prove that the rules Rs are safe for Gs
2, i.e., if G a is graph, and H is obtained from G by applying one of

the rules, then sgon(G) ≤ 2 if and only if sgon(H) ≤ 2. In all proofs we assume that the original graph is called G and the
graph obtained by applying a rule is called H .

Lemma 4.3. Rule T s
1 is safe.

Proof. Let v be the leaf in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Since G is a refinement of H , it is clear that sgon(H) ≤ 2.
Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and a suitable morphism φ : H ′ → T . Write u for the

neighbor of v in G . We distinguish two cases.
Suppose that mφ(u) = 2. Then add a leaf v to u in H ′ to obtain G ′ . Now we see that G ′ is a refinement of G . Give the

edge uv index rφ′(uv) = 2, and give all other edges e index rφ′(e) = rφ(e). Add a leaf v ′ to φ(u) in T to obtain T ′ . Then we
can extend φ to φ′ : G ′ → T ′ ,

134 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
v uv1 v2

x1 x

w

y

Fig. 9. Proof of Lemma 4.4.

φ′(x) =
{

φ(x) if x ∈ H ′

v ′ if x = v.

It is clear that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2.
Suppose that mφ(u) = 1. Let w be the other vertex such that φ(w) = φ(u). Then add leaves v1 and v2 to u and w in H ′

to obtain G ′ . We see that G ′ is a refinement of G . Give the edges uv1 and w v2 indices rφ′ (uv1) = rφ′(w v2) = 1, and give
all other edges e index rφ′(e) = rφ(e). Add a leaf v ′ to φ(u) in T to obtain T ′ . Then we can extend φ to φ′ : G ′ → T ′ ,

φ′(x) =
{

φ(x) if x ∈ H ′

v ′ if x = v1, v2.

It is clear that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2. �
Lemma 4.4. Rule T s

2 is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Then there exists a refinement G ′ of G and a suitable morphism φ : G ′ → T . Let u be the

neighbor of v in G . We distinguish two cases:
Suppose that mφ(u) = 2. Define H ′ as the graph G ′ with a green loop at vertex u and without the green loop at v , then

H ′ is a refinement of H . Now we see that φ : H ′ → T is a suitable morphism, so sgon(H) ≤ 2.
Suppose that mφ(u) = 1. It follows that there is a vertex x = u, with φ(x) = φ(u). We first show that x is an external

added vertex. Let v0 = v, v1, . . . , vk = u be the vertices that are added to the edge uv of G . Let i be the smallest integer
such that mφ(vi+1) = 1. Notice that i < k. Since φ is harmonic at vi and mφ(vi) = 2 and mφ(vi+1) = 1, there exists a
neighbor x1 = vi+1 of vi such that φ(vi+1) = φ(x1). If i = 0, it follows that x1 is an external added vertex. If i > 0, notice
that x1 = vi−1, since mφ(vi−1) = 2. Since vi is an internal added vertex, it follows that x1 is an external added vertex.

If vi+1 = u, write x = x1, and we see that x is an external added vertex. If vi+1 = u, it follows by harmonicity of φ at
x1 that there is an edge x1x2 that is mapped to φ(vi+1 vi+2). And since x1 is an external added vertex, we see that x2 is
external added as well, and x2 = vi+2. Inductively, it follows that there exist x1 = vi+1, x2 = vi+2, . . ., xk−i = vk such that
φ(vi+ j) = φ(x j) for all 1 ≤ j ≤ k − i, and x j is external added for all 1 ≤ j ≤ k − i. Write x = xk−i , then φ(x) = φ(u) and x is
external added. See Fig. 9 for an illustration of this.

We will now show that for every vertex w ′ in G vi (vi+1)\{vi} it holds that mφ(w ′) = 1. For the vertices vi+1, . . . , vk , we
have seen that there are vertices x1 = vi+1, x2 = vi+2, . . ., xk−i = vk such that φ(vi+ j) = φ(x j) for all 1 ≤ j ≤ k − i. It follows
that mφ(v j) = 1 for i + 1 ≤ j ≤ k. Let w be a neighbor of u in G ′ , that is not equal to vk−1. Then, by harmonicity of φ at x,
we see that there exists a neighbor y of x such that φ(uw) = φ(xy). Since x is an external added vertex, we see that w = y.
We conclude that mφ(w) = 1. Inductively we see that for every vertex w ′ in G vi (vi+1)\{vi} it holds that mφ(w ′) = 1.

Define H ′ as G vi (vi+1)\{vi}, with a green loop at vertex u. Notice that H ′ is a refinement of H . Now we can restrict φ
to H ′ and give every edge index rφ′(e) = 2 to obtain a suitable morphism: φ′ : H ′ → T ′ , where T ′ = φ(G vi (vi+1)\{vi}). We
conclude that sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and a suitable morphism φ : H ′ → T . Write u for the
neighbor of v in G . We know that mφ(u) = 2. Then add a leaf with a green loop to u in H ′ to obtain G ′ . Now we see that
G ′ is a refinement of G . Give the edge uv index rφ′(uv) = 2, and give all other edges e index rφ′(e) = rφ(e). Add a leaf v ′ to
φ(u) in T to obtain T ′ . Then we can extend φ to φ′ : G ′ → T ′ ,

φ′(x) =
{

φ(x) if x ∈ H ′

v ′ if x = v.

It is clear that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2. �
Lemma 4.5. Rule S s

1 is safe.

Proof. Let v be the vertex in G to which the rule is applied.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 135
v1 a1 a2 u1

v2 b1 b2 b3
u2

c

(a) Case 1.

v1 a1 a2 u1

v2 b1 b2 b3
u2

x

w

(b) Case 2.

Fig. 10. Proof of Lemma 4.6.

Suppose that sgon(G) ≤ 2. Let G ′ be a refinement of G such that there exists a suitable morphism φ : G ′ → T . Since G ′
is a refinement of H too, it is clear that sgon(H) ≤ 2.

Now suppose that sgon(H) ≤ 2. Let H ′ be a refinement of H such that there exists a suitable morphism φ : H ′ → T .
Write u1 and u2 for the neighbors of v in G . We distinguish two cases. Suppose that u1 = u2. It follows that the edge u1u2
is subdivided in H ′ , thus H ′ is a refinement of G ′ too. We conclude that sgon(G) ≤ 2. Suppose that u1 = u2. If the edge
u1u2 is subdivided, we see again that H ′ is a refinement of G , and sgon(G) ≤ 2. So suppose that u1 and u2 are neighbors
in H ′ . Again, we distinguish two cases.

If r(u1u2) = 2, then add a vertex v on the edge u1u2 to obtain a graph G ′ . Notice that G ′ is a refinement of G . Give the
edges u1 v and vu2 index 2, and give all other edges e index rφ′(e) = rφ(e). And add a vertex v ′ on the edge φ(u1)φ(u2) in
T to obtain T ′ . Now we see that φ′ : G ′ → T ′ given by

φ′(x) =
{

φ(x) if x ∈ H ′,
v ′ if x = v,

is a suitable morphism. We conclude that sgon(G) ≤ 2.
If r(u1u2) = 1, then there exists another edge w1 w2 such that φ(u1u2) = φ(w1 w2). Now add a vertex v1 on the edge

u1u2 and a vertex v2 on the edge w1 w2 to obtain a graph G ′ . Notice that G ′ is a refinement of G . Give the edges u1 v1,
v1u2, w1 v2 and v2 w2 index 1, and give all other edges e index rφ′(e) = rφ(e). Add a vertex v ′ on the edge φ(u1)φ(u2) in
T to obtain T ′ . Now we see that φ′ : G ′ → T ′ given by

φ′(x) =
{

φ(x) if x ∈ H ′,
v ′ if x = v1, v2,

is a suitable morphism. We conclude that sgon(G) ≤ 2. �
Lemma 4.6. Rule T s

3 is safe.

Proof. Let v1 and v2 be the vertices in G to which the rule is applied.
“=⇒”: Suppose that sgon(G) ≤ 2. Let G ′ be a minimum refinement of G such that there exists a suitable morphism

φ : G ′ → T , i.e. for every refinement G ′′ with less vertices than G ′ there is no suitable morphism φ′ : G ′′ → T ′ for any tree
T ′ . Let u1 and u2 be the neighbors of v1 and v2 in G . We distinguish three cases.

Case 1: Suppose that u1 = u2, and that there does not exist a path from v1 to v2 in black and green edges, except
the green edge v1 v2. Let a0 = v1, a1, . . . , ak = u1 be the subdivision of the edge u1 v1 and b0 = v2, b1, . . . , bl = u2 the
subdivision of the edge u2 v2. (See Fig. 10a.) We know that there exists an edge v2c such that φ(a0a1) = φ(v2c). It is clear
that c = a1, thus mφ(a1) = 1. Inductively we find that for every vertex a′ in G ′

a0
(a1) it holds that mφ(a′) = 1. We conclude

that G ′
a0

(a1) is a tree. Analogously we find that G ′
b0

(b1) is a tree. Thus G v1 (u1) and G v2 (u2) are trees. Thus H consists of
two black trees connected by a green edge.

Now we can construct a refinement H ′ of H , a tree T ′ and a suitable morphism φ′ : H ′ → T ′ . Copy every branch of u1
and add them to u2 and copy every branch of u2 and add them to u1. Write H ′ for this graph. Now we see that the two
trees of H ′ are the same, say T ′ . Now we can define φ′ : H ′ → T ′ as the identity map on each of the components, where
φ′(u1) = φ′(u2). Thus φ′ is a suitable morphism. We conclude that sgon(H) ≤ 2.

Case 2: Suppose that u1 = u2 and that there exists a path (possibly containing green edges) from v1 to v2. Assume that
φ(u1) = φ(u2). Let a0 = v1, a1, . . . , vk = u1 be the added vertices on the edge v1u1 and let b0 = v2, b1, . . . , bl = u2 be the
added vertices on the edge v2u2. Assume without loss of generality that k ≤ l. (See Fig. 10b.) It is clear that all vertices
a0, . . . , ak, b0, . . . , bl lie on the path from v1 to v2. Suppose that φ(a1) = φ(b1). The path from a1 to b1 is mapped to a
walk from φ(a1) to φ(b1). It is clear that φ(v1) is contained in this walk, so there is a vertex x in the path from a1 to
b1 that is mapped to φ(v1). This yields a contradiction. Thus φ(a1) = φ(b1). Inductively we find that φ(ai) = φ(bi) for all
i ≤ k. We conclude that φ(bk) = φ(u1). Notice that bk = u2, since we assumed φ(u1) = φ(u2). It follows by Lemma 2.10 that
deg(bk) = deg(u1). We again distinguish two cases.

Suppose that deg(u1) > 2. Then bk has an external added neighbor w . We see that u1 has a neighbor x such that
φ(bk w) = φ(u1x). Since w is an external added vertex, it follows that w = x. Thus mφ(w) = 1. (See Fig. 10b.) Iteratively we

136 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
see that for every vertex w ′ in G ′
bk

(w), it holds that mφ(w ′) = 1. Notice that G ′
bk

(w) is a tree, since w is an external added
vertex. Now let y be a leaf in G ′

bk
(w), and let y′ be such that φ(y) = φ(y′). Then y′ is a leaf. It is clear that y′ has no green

edge incident to it, thus y′ is an added vertex. We conclude that we can remove y and y′ from G ′ and φ(y) from T and
still have a suitable morphism. This yield a contradiction with the minimality of G ′ .

Suppose that deg(u1) = 2 in G ′ . Then the degree of u1 in G is also 2. It follows that Cu1 = ∅. Let u1c be a green edge.
If c = u1, so if u1 has a green loop, then mφ(u1) = 2. This yields a contradiction. It is clear that c = bl , since bl is an added
vertex. It follows that there are 3 distinct vertices that are mapped to φ(u1). This yields a contradiction.

Altogether we conclude that φ(u1) = φ(u2). Define H ′ as G ′ with a green edge u1u2. Now H ′ is a refinement of H , and
φ : H ′ → T is a suitable morphism. We conclude that sgon(H) ≤ 2.

Case 3: Suppose that u1 = u2. Analogous to the second case, we prove that mφ(u1) = 2. Define H ′ as G ′ with a green
loop at vertex u1. Now H ′ is a refinement of H , and φ : H ′ → T is a suitable morphism. We conclude that sgon H ≤ 2.

“⇐=”: Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and a suitable morphism φ : H ′ → T . Write
u1 and u2 for the neighbors of v1 and v2 in G . We know that φ(u1) = φ(u2). Then add leaves v1 and v2 to u1 and u2

and a green edge v1 v2 in H ′ to obtain G ′ . Now we see that G ′ is a refinement of G . Give the edges u1 v1 and u2 v2 index
rφ′(u1 v1) = rφ′(u2 v2) = 1, and give all other edges e index rφ′(e) = rφ(e). Add a leaf v ′ to φ(u1) in T to obtain T ′ . Then we
can extend φ to φ′ : G ′ → T ′ ,

φ′(x) =
{

φ(x) if x ∈ H ′

v ′ if x = v1, v2.

It is clear that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2. �
Lemma 4.7. Rule S s

2 is safe.

Proof. This proof is analogous to the proof of the second and third case in the proof of Lemma 4.6, so we omit it. �
Lemma 4.8. Rule Ls is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Then there exists a refinement G ′ of G and a suitable morphism φ : G ′ → T . Let u be a vertex

that is added to the loop v v . We distinguish two cases.
Suppose that mφ(v) = 2. Define H ′ as the graph G ′\G ′

v (u) with a green loop at vertex v , then H ′ is a refinement of H .
Let T ′ = T \φ(G ′

v (u)) we see that the restricted morphism φ : H ′ → T ′ is a suitable morphism, so sgon(H) ≤ 2.
Suppose that mφ(u) = 1. Let v0 = v, v1, . . . , vk = v be the vertices that are added to the loop v v of G . Let i be the integer

such that φ(vi) = φ(v). Let w be a neighbor of v not equal to v1 or vk−1. Then there is a neighbor x of vi , not equal to
vi−1 and vi+1, such that φ(w) = φ(x). Notice that x is an external added vertex, thus mφ(w) = mφ(x) = 1. Inductively we
see that for every vertex w ′ in G ′

v(w) it holds that mφ(w ′) = 1. We conclude that G ′
v (w) is a tree.

Define H ′ as G ′
v (w), with a green loop at vertex v . Notice that H ′ is a refinement of H . Now we can restrict φ to H ′

and give every edge index rφ′(e) = 2 to obtain a suitable morphism: φ′ : H ′ → T ′ , where T ′ = φ(G ′
v (w)). We conclude that

sgon(H) ≤ 2.
Suppose that sgon(H) ≤ 2. Then there exists a refinement H ′ of H and a suitable morphism φ : H ′ → T . We know that

mφ(v) = 2. Then add a vertex u to H ′ with two black edges to v to obtain G ′ . Now we see that G ′ is a refinement of G .
Give both edges uv index rφ′(uv) = 1, and give all other edges e index rφ′(e) = rφ(e). Add a leaf v ′ to φ(u) in T to obtain
T ′ . Then we can extend φ to φ′ : G ′ → T ′ ,

φ′(x) =
{

φ(x) if x ∈ H ′

v ′ if x = u.

It is clear that φ′ is a suitable morphism, so we conclude that sgon(G) ≤ 2. �
Lemma 4.9. Rule P s

1 is safe.

Proof. Let uv be the edge in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Let G ′ be a refinement of G and φ : G ′ → T a suitable morphism. Let Guv be all internal and

external added vertices to the edge uv . Now define H ′ = G ′\Guv and T ′ = T \(φ(Guv)). Write φ′ for the restriction of φ to
H ′ . Notice that φ′ is a suitable morphism and that H ′ is a refinement of H . Thus sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Let H ′ be a refinement of H and φ : H ′ → T a suitable morphism. Add an edge uv and
a vertex w on this edge to H ′ , to obtain a refinement G ′ of G . Add a vertex w ′ to T with an edge to φ(u), to obtain
tree T ′ . Give the edges uw and v w index rφ′(uw) = rφ′(v w) = 1, and give all other edges e index rφ′(e) = rφ(e). Look at
φ′ : G ′ → T ′ , defined as

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 137
φ′(x) =
{

φ(x) if x ∈ H ′

w ′ if x = w.

Notice that φ(uw) = φ(v w), since there is a green edge uv . We conclude that φ′ is a suitable morphism, thus sgon(G) ≤
2. �
Lemma 4.10. Rule P s

2 is safe.

Proof. Let u and v be the vertices in G to which the rule is applied.
Suppose that sgon(G) ≤ 2. Let G ′ be a refinement of G and φ : G ′ → T a suitable morphism. If φ(u) = φ(v), then there

are at least three paths that are mapped to the path from φ(u) to φ(v) in T . This yields a contradiction. Thus φ(u) = φ(v).
Now we see, analogous to the proof of Lemma 4.9, that sgon(H) ≤ 2.

Suppose that sgon(H) ≤ 2. Then we find analogous to the proof of Lemma 4.9, that sgon(G) ≤ 2. �
Lemma 4.11. Rules Es

1 , Es
2 and Es

3 are safe.

Proof. All these graphs have stable gonality at most 2, so the statement holds true. �
Now we have proven that all rules are safe, thus we have the following lemma:

Lemma 4.12. The set of rules Rs is safe for Gs
2 . �

4.4. Completeness

Now we will prove that the set of rules is complete. If G is a disconnected graph, then sgon(G) = 2, if and only if G is
a forest with two components. This can easily be checked. So we need to show that every connected graph can be reduced
to the empty graph. We will do this by showing that a rule can be applied to every connected graph with stable gonality 2
(Lemma 4.16). Since applying rules maintains connectivity (Lemma 4.13), this suffices.

Lemma 4.13. Let G and H be graphs. If G is connected in the sense of black and green edges, and H can be produced from G by applying
some rules, then H is connected in the sense of black and green edges.

Proof. Notice that contracting an edge maintains connectivity, so for Rules T s
1 , T s

2 , S s
1 and T s

3 this lemma holds. The lemma
is also clearly true for Rules Es

1 , Es
2 and Es

3 . All the other rules introduce a green edge that makes sure that the graph H is
connected. �

First, we show two lemmas about constraints, that we need to show that we can apply a rule to every connected graph
in Gs

2.

Lemma 4.14. Let G be a graph with constraints. If there is a vertex v with |Cv | > 1, then sgon(G) ≥ 3.

Proof. Let G be a graph with sgon(G) = 2. Suppose that |Cv | > 1. Let (u, v) and (v, w) be two constraints that contain v .
We know that u = w . Suppose that φ is a suitable morphism of degree 2. We distinguish two cases. Suppose that u = v .
Then we know that mφ(v) = 2. On the other hand we have that mφ(v) = mφ(w) = 1. This yields a contradiction. Now
suppose that u = v and w = v . Notice that φ(u) = φ(v) = φ(w), thus there are at least three vertices mapped to φ(v). We
conclude that deg(φ) ≥ 3. This yields a contradiction. We conclude that |Cv | ≤ 1. �
Lemma 4.15. Let G be a graph where every leaf is incident to a constraint, so if deg(u) = 1 then Cu = ∅ for all u. Suppose that
(u, v) ∈ C. If deg(u) = deg(v), then sgon(G) ≥ 3.

Proof. Suppose that deg(u) = deg(v). Assume without loss of generality that deg(u) > deg(v). Suppose that sgon(G) = 2.
Let G ′ be a refinement of G with a minimal number of vertices such that there exists a suitable morphism of degree 2. Let
φ : G ′ → T be such a morphism.

We know that φ(u) = φ(v), thus, by Lemma 2.10, degG ′ (u) = degG ′ (v). So there is a neighbor x of v which is an external
added vertex. Now we look at φ(x). Notice that there is a neighbor y of u such that φ(x) = φ(y). It is clear that y = x, since
x is an external added vertex. Thus mφ(x) = mφ(y) = 1.

Let x′ be a neighbor of x, not equal to v . Suppose that mφ(x′) = 2. We know that the edge e = (x, x′) has index 1, so there
exists another neighbor of x′ that is mapped to φ(x). We know that y is the unique vertex other than x that is mapped to

138 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
φ(x), it follows that y is a neighbor of x′ . This yields a contradiction, since x′ is an external added vertex. We conclude that
mφ(x′) = 1. Inductively we find that mφ(x′′) = 1 for all vertices x′′ ∈ G v (x).

Because G v (u) is an external added tree, there is a leaf x′ = v in G v(x); then mφ(x′) = 1. Let y′ be the vertex such
that φ(x′) = φ(y′). Now it follows, by Lemma 2.10, that deg(x′) = deg(y′), thus y′ is a leaf. Since x′ is an added vertex,
it also follows that Cy = 0. Since every leaf G was incident to a constraint, we conclude that y′ is added to G . It follows
that G ′\{y′, x′} is a refinement of G and that φ′ : G ′\{y′, x′} → T \{φ(y′)} is a suitable morphism of degree 2. This yields a
contradiction with the minimality of G ′ .

We conclude that sgon(G) ≥ 3. �
Let G be a graph in Gs

2, that is connected in the sense of black and green edges. We will show that we can apply a rule
to G .

We define the graphs H1, H2 and H3 as a single vertex, a vertex with a green loop and two vertices connected by a
green edge respectively. These are exactly the graph that can be reduced to the empty graph by Rules E s

1 , Es
2 and Es

3 .

Lemma 4.16. Given a non-empty connected graph G ∈ Gs
2 , there is a rule in Rs that can be applied to G.

Proof. Let G be a non-empty connected graph with sgon(G) ≤ 2. Suppose that no rule can be applied to G .
We first say something about the structure of G . If there is a double edge between two vertices u and v , then removing

these two edges yields a disconnected graph, otherwise we could apply Rule P s
2 . Let u1 v1, . . . , uk vk be all double edges in

G . Let Gi,1, Gi,2 be connected components after removing the edges ui vi . If there is a degree 2 vertex with a green loop,
then removing this vertex yields a disconnected graph, otherwise we could apply Rule S s

2 . Let v1, . . . , vl be all degree two
vertices with a green loop. Let G ′

i,1, G
′
i,2 be the connected components after removing vi . Let H be the element of

{Gi, j | 1 ≤ i ≤ k, j ∈ {1,2}} ∪ {G ′
i, j | 1 ≤ i ≤ l, j ∈ {1,2}}

with the minimum number of vertices. Notice that there is at most one vertex v in H with degH (v) = degG(v), namely the
vertex that was adjacent to the removed edge or edges. Now we can say the following about H .

• If H contains only one vertex, then we could have applied Rule T s
1 , T s

2 , S s
1 , S s

2 , Es
1 or Es

2 . Thus H contains at least 2
vertices.

• If there is a vertex that is incident to more than one green edge, then sgon(G) ≥ 3 by Lemma 4.14. So we can assume
that no vertex is incident to more than one green edge.

• If H contains a vertex u = v of degree 0, then degG(u) = degH (u) = 0. We see that Cu = {(u, w)} with u = w , because
H is connected in black and green edges and contains at least two vertices. By Lemma 4.15 it follows that degG(u) =
degG(w) = 0. Since G is connected it follows that G = H3, so we can apply Rule Es

3 . This yields a contradiction. So we
can assume that G does not contain vertices with degree 0.

• If G contains a leaf u = v , then degH (u) = degG(u) = 1. We see that u is incident to a green edge uw , with degG(w) = 1,
otherwise we could apply Rule T s

1 , T s
2 or T s

3 . By Lemma 4.15, it follows that sgon(G) ≥ 3. So we can assume that G
does not contain leaves.

• If G contains a vertex u = v of degree 2, then we see that Cu = {(u, w)} with u = w , by Rules S s
1 and S s

2 and by the
choice of H .

• We see that H does not contain black loops because of Rule Ls .
• By Rules P s

1 and P s
2 and by the choice of H it follows that H has no multiple edges.

Write H ′ for the graph obtained from H by removing all green loops and coloring all green edges of H black. Altogether
we see that H ′ is a simple graph with at least two vertices and every vertex, except at most one, has degree at least 3. It
follows that H ′ has treewidth at least 3.

If we change the color of all green edges to black, we see that all rules are deletions of vertices or edges, contractions of
edges and/or additions of loops. Since the set of graphs with treewidth at most k is closed under these operations, we see
that tw(G) ≥ tw(H ′) ≥ 3. But then it follows that sgon(G) ≥ tw(G) ≥ 3. This yields a contradiction.

We conclude that there is a rule in Rs that can be applied to G . �
Now we have everything required to prove our main theorem:

Proof of Theorem 4.2. By Lemma 4.12 we have that Rs is safe. By Lemma 4.16 we can keep applying rules from Rs to any
graph G ∈ Gs

2 as long as G has not been turned into the empty graph yet. It remains to prove that we can apply rules from
Rs only a finite number of times.

Consider the following potential function f : let f (G) = n + 2m + g for a graph G with n vertices, m (black) edges,
and g green edges. Each rule decreases f (G) by at least one. Thus rules from Rs can only be applied a finite number of
times. When no more rules can be applied, it follows that the graph has been reduced to the empty graph. Therefore Rs is
complete. �

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 139
Rule S sd
1a Rule Lsd

Fig. 11. The reduction rules different from the rules for sgon.

So, we can use this set of rules to recognize graphs with stable gonality at most 2.

5. Reduction rules for stable divisorial gonality

In this section we show a set of reduction rules to decide whether stable divisorial gonality is at most two. This set is
similar to the set of rules for stable gonality, and it uses the concept of constraints of divisorial gonality.

5.1. Constraints for stable divisorial gonality

We use the notion of constraints as in the section about divisorial gonality. We will refer to them as red edges. We call
an effective divisor of degree 2 that satisfies all conditions given by the constraints a suitable divisor. Again, let Gsd

2 be the
set of all graphs with constraints with stable divisorial gonality at most 2.

5.2. Reduction rules

We will now state all rules. When a rule adds a red edge uv , and there already exists such a red edge, then the set of
constraints does not change. The reduction rules for stable divisorial hyperelliptic graphs are almost the same as the rules
for stable hyperelliptic graphs. Instead of green edges we use red edges, and we replace Rule S s

1 and Ls by new Rules S sd
1a ,

S sd
1b and Lsd , see Fig. 11 for the new rules.

Rule T sd
1 (=T s

1). Let v be a leaf with Cv = ∅. Let u be the neighbor of v . Contract the edge uv .

Rule T sd
2 (=T s

2). Let v be a leaf with Cv = {(v, v)}. Let u be the neighbor of v . Contract the edge uv .

Rule S sd
1a . Let v be a vertex of degree 2 with Cv = ∅. Let u be the only one neighbor of v . Remove v and add a red loop to

u.

Rule S sd
1b . Let v be a vertex of degree 2 with Cv = ∅. Let u1 and u2 be the two neighbors of v , with u1 = u2. Contract the

edge u1 v .

Rule T sd
3 (=T s

3). Let G be a graph where every leaf and every degree 2 vertex is incident to a red edge. Let v1 and v2 be
two leaves that are connected by a red edge. Let u1 and u2 be their neighbors. Contract the edges u1 v1 and u2 v2.

Rule S sd
2 (=S s

2). Let G be a graph where every leaf and every degree 2 vertex is incident to a red edge. Let v be a vertex
of degree 2 with a red loop, such that there exists a path from v to v in the black and red graph G . Let u1 and u2 be the
neighbors of v . Remove v and connect u1 and u2 with a red edge.

Rule Lsd . Let v be a vertex with a loop. Remove all loops from v .

Rule P sd
1 (=P s

1). Let uv be an edge. Suppose that there also exists a red edge from u to v . Remove the black edge uv .

Rule P sd
2 (=P s

2). Let u, v be vertices, such that |E(u, v)| > 1. Let e and f be two of those edges. If there exists another path,
possibly containing red edges, from u to v , then remove e and f and add a red edge from u to v .

Rule Esd
1 (=Es

1). Let G be the graph consisting of a single vertex v with Cv = ∅. Remove v .

Rule Esd
2 (=Es

2). Let G be the graph consisting of a single vertex v with a red loop. Remove v .

Rule Esd (=Es). Let G be the graph consisting of a two vertices u and v that are connected by a red edge. Remove u and v .
3 3

140 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
We will write Rsd for the set of these reduction rules. We can now state our main theorem.

Theorem 5.1. The set of rules Rsd is safe and complete for Gsd
2 .

5.3. Safeness

We will show that the set Rsd is safe for Gsd
2 .

Lemma 5.2. Rule T sd
1 is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Suppose that sdgon(G) ≤ 2. Since every refinement of G is a refinement of H , it is clear that sdgon(H) ≤ 2.
Suppose that sdgon(H) ≤ 2. Then there exists a refinement H ′ of H and a suitable divisor D . Write u for the neighbor

of v in G . There exists a divisor D ′ ∼C D such that D ′(u) ≥ 1. Now define G ′ as H ′ with a leaf v added to u. Look at the
divisor D ′ on G ′ . For every vertex w ∈ H ′ we can reach a divisor with one chip on w . By adding v to every firing set that
contains u, we see that we can still reach w in G ′ . And we can reach a divisor with a chip on v by firing H ′ in G ′ . Thus D ′
is a suitable divisor on G ′ . We conclude that sdgon(G) ≤ 2. �
Lemma 5.3. Rule T sd

2 is safe.

Proof. This proof is analogous to the proof of Lemma 5.2. �
Lemma 5.4. S sd

1a is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Let u be the neighbor of v . Suppose that sdgon(G) ≤ 2. Let G ′ be a refinement of G such that there exists a suitable

divisor D . Let C be the cycle through v and u. Notice that D is equivalent to a divisor D ′ with two chips on C . If G\{C} ∪{u}
is a tree, then we are done. Otherwise we see that D ′ is equivalent with D ′′ , where D ′′(u) = 2. Let H ′ be G ′\C ∪ {u} with a
red loop at u. We see that H ′ is a refinement of H and D ′′ is a suitable divisor for H ′ , thus sdgon(H) ≤ 2.

Suppose that sdgon(H) ≤ 2. Then there exists a refinement H ′ of H such that D , with D(u) = 2, is a suitable divisor. Let
G ′ be H ′ without the red loop on u and with a vertex v with two edges to u. Then G ′ is a refinement of G . It is clear that
D is a suitable divisor for G ′ too. We conclude that sdgon(G) ≤ 2. �
Lemma 5.5. S sd

1b is safe.

Proof. Let v be the vertex in G to which the rule is applied.
Let u1, u2 be the neighbors of v . We know that u1 = u2. Suppose that sdgon(G) ≤ 2. Then there is a refinement G ′ of G

such that there exists a suitable divisor on G ′ . Notice that G ′ is a refinement of H too, so sdgon(H) ≤ 2.
Now suppose that sdgon(H) ≤ 2. Let H ′ be a refinement of H and D a suitable divisor on H ′ . If the edge u1u2 is

subdivided in H ′ , then H ′ is a refinement of G too, and we are done. Assume that the edge u1u2 is not subdivided in H ′ .
Let D ′ be the divisor with D ′(u1) = D ′(u2) = 1. If D ∼C D ′ , then we can subdivide u1u2 to obtain a refinement G ′ of G . By
starting with the divisor D ′ , we can reach all vertices of H ′ as before and we can reach v by firing all vertices of H ′ .

Suppose that D �C D ′ . There exist divisors Du1 and Du2 such that Du1 ∼C D ∼C Du2 and Du1 (u1) = 1 and Du2 (u2) = 1.
It follows that Du1 (u2) = 0 and Du2 (u1) = 0. Let A1, . . . Ak be the level set decomposition of the transformation from Du1

to Du2 . Let D j be the divisor before firing A j . Let Di be the first divisor such that Di(u2) > 0, then it is clear that u2 /∈ A j
for j < i. Since Di �C D ′ we see that Di(u1) = 0. It follows that u1 ∈ Ai−1. We conclude that there is a chip fired along
the edge u1u2. For every vertex w in H ′ we can find a divisor D w with at least one chip on w , let B w,1, . . . B w,lw be all
sets that occur in the level set decomposition of the transformation from Du1 to D w . For all w , i, let E w,i be the set of all
edges along which a chip is fired by the set B w,i . Subdivide all edges that occur in some E w,i to obtain a refinement G ′ of
G . Let V w,i be set of vertices that are added on the edges in E w,i . Define B ′

w,i as B w,i together with all added vertices that
are on an edge with both endpoints in B w,i . We can replace every set B w,i by two sets B ′

w,i, B
′
w,i ∪ V w,i in the level set

decomposition B w,1, . . . B w,lw to see that for every vertex w we can still reach a divisor with at least one chip on w . Notice
that we still satisfy all constraints. And for every vertex in V w,i we will encounter a divisor with a chip on that vertex when
we transform Du1 in D w . We conclude that sdgon(G) ≤ 2. �
Lemma 5.6. T sd

3 is safe.

Proof. Let v1 and v2 be the vertices in G to which the rule is applied.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 141
Suppose that sdgon(G) ≤ 2. Let G ′ be a minimum refinement of G and D a suitable divisor on G ′ . Let u1 and u2 be the
neighbors of v1 and v2 in G . We distinguish three cases.

Case 1: Suppose that u1 = u2, and that there does not exist a path from v1 to v2 in black and red edges, except the
red edge v1 v2. Then we can reach all vertices in G v1 (u1) with only one chip, thus G v1 (u1) is a black tree. Thus G v1 (u1)

contains a leaf that is not incident to a red edge. This yields a contradiction with the minimality of G ′ .
Case 2: Suppose that u1 = u2 and that there exists a path P , possibly containing red edges, from v1 to v2. Assume that

D � D ′ where D ′ is the divisor such that D ′(u1) = D ′(u2) = 1. Let a0 = v1, a1, . . . , ak = u1 be the added vertices on the edge
v1u1 and let b0 = v2, b1, . . . , bl = u2 be the added vertices on the edge v2u2. Assume without loss of generality that k < l.
It is clear that all vertices a0, . . . , ak, b0, . . . , bl lie on P . Notice that firing the sets {ai, bi | i ≤ j} for j = 0, 1, . . . , k results
in the divisor Dk with Dk(ak) = Dk(bk) = 1. Thus Dk(u1) = 1. Since bk is an internal added vertex and G ′ is a minimum
refinement, we see that deg(bk) = 2.

Suppose that u1 is incident to a red edge u1x. We know that x = bk , since bk is an added vertex. Let D ′′ be the divisor
with D ′′(u1) = D ′′(x) = 1. Let A1, . . . , As be the level set decomposition of the transformation from Dk to D ′′ . We see that
u1 cannot lose its chip. Thus bk fires its chip to one of its neighbors when we fire A1. But then we see that the cut of A1 is
at least two, and we can only fire one chip. This yields a contradiction. We conclude that u1 is not incident to a red edge.

By the conditions of the rule it follows that deg(u1) ≥ 3. Let w /∈ P be a neighbor of u1. Now we see that G ′
u1

(w) is a
black tree. It follows that G ′

u1
(w) contains a leaf that is not incident to a red edge. Since G ′ is a minimum refinement, this

yields a contradiction. Altogether we conclude that k = l.
Let P1, P2 be the two arcs of P between u1 and u2. Notice that, if there are two chips on P , then they are either on u1

and u2 or on the same arc Pi . Suppose that there are divisors E, E ′ such that E ∼C E ′ and that there is a set A in the level
set decomposition of E ′ − E such that u1 ∈ A and u2 /∈ A. It follows that there is a chip fired along each of the arcs P1 and
P2. This yields a contradiction. We conclude that for every firing set it holds that either u1 and u2 are both fired or they
are both not fired.

Now let H ′ be G ′ without the red edge v1 v2 and with a red edge u1u2. We see that D is a suitable divisor for H ′ as
well. Thus sdgon(H) ≤ 2.

Case 3: Suppose that u1 = u2. This case is analogous to case 2.
Suppose that sdgon(H) ≤ 2. Then it is clear that sdgon(G) ≤ 2. �

Lemma 5.7. Rule S sd
2 is safe.

Proof. This proof is analogous to the proof of cases two and three in the proof of Lemma 5.6, so we omit it. �
Lemma 5.8. Rule Lsd is safe.

Proof. There will never be a chip fired over a loop, so loops do nothing for the stable divisorial gonality. Thus sdgon(G) ≤ 2
if and only if sdgon(H) ≤ 2. �
Lemma 5.9. Rule P sd

1 is safe.

Proof. Let uv be the edge in G to which the rule is applied.
Suppose that sdgon(G) ≤ 2. Let G ′ be a refinement of G and D a suitable divisor with D(u) = D(v) = 1. Let Guv be all

internal and external added vertices to the edge uv . Now define H ′ = G ′\Guv . Look at the divisor D on H ′ and notice that
D is a suitable divisor. Observe that H ′ is a refinement of H . Thus sdgon(H) ≤ 2.

Suppose that sdgon(H) ≤ 2. Let H ′ be a refinement of H and D a suitable divisor. Add an edge uv to H ′ , to obtain a
refinement G ′ of G . We see that D ′ is a suitable divisor for G ′ , thus sdgon(G) ≤ 2. �
Lemma 5.10. Rule P sd

2 is safe.

Proof. This proof is analogous to the proof of Lemma 3.13. �
Lemma 5.11. Rules Esd

1 , Esd
2 and Esd

3 are safe.

Proof. All those graphs have stable gonality at most 2, so the statement holds true. �
Now we have proven that all rules are safe, so we can conclude the following.

Lemma 5.12. The set of rules Rsd is safe for Gsd. �
2

142 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
5.4. Completeness

Now we will prove that Rsd is complete for Gsd
2 , i.e. if G ∈ Gsd

2 , then G can be reduced to the empty graph by applying
finitely many rules.

Lemma 5.13. Let G and H be graphs. If G is connected in the sense of black and red edges, and H can be produced from G by applying
some rules, then H is connected in the sense of black and red edges.

Proof. See the proof of Lemma 4.13. �
Lemma 5.14. Let G be a graph. If there is a vertex v with |Cv | > 1, then sdgon(G) ≥ 3.

Proof. See the proof of Lemma 3.15. �
Lemma 5.15. Let G be a graph where every leaf is incident to a red edge, so if deg(u) = 1 then |Cu| > 0 for all u. Suppose that u is a
leaf and (u, v) is a red edge. If deg(v) = 1, then sdgon(G) ≥ 3.

Proof. Analogous to the proof of Lemma 3.16. �
We define the graphs H1, H2 and H3 as a single vertex, a vertex with a red loop and two vertices connected by a red

edge respectively, these are the graphs that can be reduced to the empty graph by Rules E sd
1 , Esd

2 and Esd
3 .

Lemma 5.16. Given a non-empty connected graph G ∈ Gsd
2 there is a rule in Rsd that can be applied to G.

Proof. Let G be a connected graph with sdgon(G) ≤ 2, and suppose that no rule can be applied to G .
As in the proof of Theorem 4.16, if there are two edges between the vertices u and v , then removing these edges lead

to G being disconnected. And if there is a degree 2 vertex v with a red loop, then removing v yields a disconnected graph.
Let H be the smallest connected component that can be created by removing two parallel edges or a degree 2 vertex, as in
the proof of Theorem 4.16.

Now we color all red edges black and remove all loops to obtain H ′ , as in the proof of Theorem 4.16. Then we see that
H ′ is a simple graph that contains at least two vertices and all vertices, except at most one, have degree at least three. Thus
H ′ has treewidth at least three. It follows that sdgon(G) ≥ tw(G) ≥ tw(H ′) ≥ 3.

We conclude that a rule can be applied to G . �
Proof of Theorem 5.1. Lemma 5.12 shows that the set of reduction rules Rsd is safe. We need to show that Rsd is complete
as well. Lemma 5.16 shows that to any graph G ∈ Gsd

2 we can keep applying rules from Rs to as long as G has not been
turned into the empty graph yet. We can use the same potential function as in the proof of 4.2 to prove that we can apply
rules from Rsd only a finite number of times. Thus Rsd is complete. �

Thus, we can use the set Rsd to recognize graphs with stable divisorial gonality at most 2.

6. Algorithms

In this section, we discuss how the reduction rules of Sections 3, 4 and 5 lead to efficient algorithms that recognize
graphs with divisorial gonality, stable gonality, or stable divisorial gonality 2 or lower.

Theorem 6.1 (=Theorem A). There are algorithms that, given a graph G with n vertices and m edges, decide whether dgon(G) ≤ 2,
sgon(G) ≤ 2 or sdgon(G) ≤ 2 in O (n logn + m) time.

For each of the algorithms, we first check whether a given graph is connected or not. The only disconnected graphs
with dgon(G) ≤ 2, sgon(G) ≤ 2 or sdgon(G) ≤ 2 are forests that consist of two trees. This can be done in linear time.
After that we can assume that our graph is connected, and the algorithms will use the reduction rules to check whether
dgon(G) ≤ 2, sgon(G) ≤ 2 or sdgon(G) ≤ 2. Each of the algorithms is of the following form: first, with an additional rule,
we can ensure that on each pair of vertices, there are at most two parallel edges and at most one red or green edge; then,
we verify that the treewidth of G is at most 2; if not, we can directly decide negatively. After that, we repeatedly apply a
rule, until none is possible. By Theorems 3.6, 4.2, and 5.1, the final graph after all rule applications is empty, if and only if
dgon(G) ≤ 2, sgon(G) ≤ 2 or sdgon(G) ≤ 2, respectively. It is not hard to see that for each rule, deciding whether the rule
can be applied, and if so, applying it, can be done in polynomial time; the fact that we work with graphs of treewidth 2
yields an implementation with O (n log n) steps, after the O (m) work to remove the extra parallel edges.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 143
Rule Ms Rule Md

Fig. 12. An extra reduction rule for stable gonality and one for divisorial gonality.

Proof of Theorem 6.1. We now present the details of the algorithm, in various steps.

Step 1. First we introduce a new rule for each of the gonalities, cf. Fig. 12.
For divisorial gonality we introduce the following rule:

Rule Md . Let u, v be vertices, such that |E(u, v)| ≥ 3. Let k = �(|E(u, v)| − 1)/2�, then remove 2k edges between u and v
and add a constraint (u, v).

Note that this rule merely shortcuts repeated applications of Rule C d
3 . Now we introduce a new rule for stable gonality.

Rule Ms . Let u, v be vertices, such that |E(u, v)| ≥ 3. Remove all edges in E(u, v) and add a green edge from u to v .

It is clear that this rule is the same as first applying Rule P s
2 and then applying Rule P s

1 to all remaining edges (u, v).
For stable divisorial gonality we introduce a similar rule.

Rule Msd . Let u, v be vertices, such that |E(u, v)| ≥ 3. Remove all edges in E(u, v) and add a red edge from u to v .

This is again the same as first applying Rule P sd
2 and then applying Rule P sd

1 to all remaining edges (u, v).
All applications of these rules can be done in O(m) at the start of the algorithm, after which we know that no pair of

vertices can have more than two edges between them. For stable and stable divisorial gonality, by application of Rule Ls

and Lsd we can also ensure in O(m) time that no loops exist (in the case of divisorial gonality loops can be safely ignored).

Step 2. Recall that treewidth is a lower bound on divisorial gonality, stable gonality and stable divisorial gonality [22].
Therefore it follows that if tw(G) > 2, the algorithm can terminate. Checking whether treewidth is at most 2 can be done
in linear time. Hereafter, we assume our graph has treewidth at most 2.

Step 3. Recall that graphs of treewidth k and n vertices have at most kn edges. It follows that the underlying simple graph
has at most 2n edges. By our previous steps there are at most 2 edges between a pair of vertices and no loops, so there are
at most 4n edges left.

Lemma 6.2. Let G be a graph of treewidth at most 2, with at most 2 parallel edges between each pair of vertices. For each of the three
collections of rules, the number of successive applications of rules is bounded by O (n).

Proof. For the reduction rules for divisorial gonality from Section 3 note that all rules except Rule C d
3 always remove at

least one vertex. It follows they can be applied at most n times. For Rule C d
3 note that the only case where it removes

no vertex is when the cycle C consists of a double edge between two vertices. Since in this case we remove 2 edges and
there are at most 4n edges left, it follows this rule can also be applied at most 2n times. Therefore at most 3n rules can be
applied before we reach the empty graph.

For the rules in Section 4, consider the following potential function f : let f (G) = n + 2m + g for a graph G with n
vertices, m remaining (black) edges, and g green edges. One easily observes that f (G) = O (n), and each rule decreases
f (G) by at least one.

The same argument holds for the collection of reduction rules of stable divisorial gonality from Section 5. �
Thus, for dgon, sgon and sdgon, the given sets of rules already lead to polynomial time algorithms: for each of the rules,

one can test in polynomial time for a given graph (with constraints) if the rule can be applied to the graph, and if so, apply
the rule in polynomial time.

Step 4. In the remainder of the proof, we will argue that there is an implementation that leads to recognition algorithms
running in O (n log n + m) time.

For the case of divisorial gonality, by Lemma 3.15, each vertex can only have one constraint that applies to it. Therefore,
checking for compatible constraints can be done in time linear in the number of vertices that will be removed by the rule.

144 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
To maintain this property it is necessary to check for conflicts whenever a rule adds a new constraint, but this can be done
in constant time per rule application.

By keeping track of the degree of each vertex as we apply rules, vertices with degree one or zero can be found in
constant time. It is also easy to directly detect when the graph is one induced cycle; e.g., by keeping track of the number
of vertices of degree unequal two or with an incident selfloop or colored edge; this takes care of Rule C d

1 . The remaining
problem then is efficiently finding applications of the following rules:

(∗) C d
2 , C d

3 , S s
2, P s

2, S sd
2 and P sd

2 .

To do this in O (n log n) time in total, we use a technique, also employed by Bodlaender et al. [11, Section 6]. (See also
[26] for more results on dynamic algorithms on graphs of bounded treewidth.) Due to the highly technical aspects, the
discussion here is not self-contained, and assumes a knowledge of techniques for monadic second order logic formulas on
graphs of bounded treewidth.

We build a data structure that allows the following operations: deletions of vertices, deletions of edges, contractions of
edges, adding a (possible colored) self-loop to a vertex changing the color of an edge (e.g., turning an edge into a green
edge), and deciding whether the rules (∗) can be applied, and if so, yielding the pair of vertices to which the rule can be
applied.

First, by [12, Lemma 2.2], we can build in O (n) time a tree decomposition of G of width 8, such that the tree T in
the tree decomposition is binary and has O (log n) depth. We augment G with a number of labels for edges and vertices.
Vertices are labeled with a value that can be ‘selfloop’, ‘deleted’, or ‘usual’ (no selfloop, not deleted). Edges are labeled
with a value that can be one of the following: ‘usual’ (black edge, without parallel edge); ‘parallel’; ‘red’; ‘green’; ‘deleted’;
‘contracted’. When we perform an operation that changes the multiplicity of an edge, deletes it, or changes its color, we do
not change the tree decomposition, but instead only change the label of the edge.

For each of the rules in (∗), there is a sentence φ in Monadic Second Order Logic (MSOL) with two free vertices variables,
such that φ(v, w) holds if and only if the corresponding rule in (∗) is applicable to vertices v and w .

We can modify these sentences φ to sentences φ′ that apply to graphs where edges can be labeled with labels ‘deleted’
or ‘contracted’, i.e., if G ′ is the graph obtained from G by deleting edges with the label ‘deleted’, then φ(v, w) holds for G ′
if and only if φ′(v, w) holds for G .

First, when we perform a quantification over edges, we add a condition that the edge is not a deleted edge. A quantifi-
cation ∀F ⊆ E : ψ(F) becomes

∀F ⊆ E : (∀e ∈ F : ¬deleted(e)) ⇒ ψ(F);
a quantification ∃F ⊆ E : ψ(F) becomes

∃F ⊆ E : (∀e ∈ F : ¬deleted(e)) ∧ ψ(F).

Secondly, we modify the sentence to deal with contracted edges, by making the following three changes. For any quantifi-
cation over sets of edges, we ensure that there are no edges with the label contracted. For any quantification over sets of
vertices, we add the condition that for any edge with the label ‘contracted’, either both endpoints are in the set or both
endpoints of the contracted edge are not in the set. Finally, elementary predicates like “v = w” or v is incident to e, become
a phrase in MSOL: “v = w” is translated to an MSOL sentence that expresses that there is a path from v to w (possibly
empty) with all edges on the path labeled as ‘contracted’, and “v incident to e” is translated to a property that expresses
that there is a path with contracted edges from v to an endpoint of e. In the same way, we can further modify the sentences
to also deal with vertices with the label ‘deleted’.

A consequence of Courcelle’s theorem [19] is that for a sentence φ(v, w) with two free vertex variables, we have an
algorithm that, given a tree decomposition of a graph G of bounded width, determines if there are vertices v and w for
which φ(v, w) holds, and if so, outputs the vertices v and w , and that uses linear time. Using the techniques from [11],
we can modify this algorithm such that we can update the graph by changing labels of vertices and edges, and do these
queries, such that each update and query costs time that is linear in the depth of the tree of the tree decomposition, i.e.,
O (log n). (For the details, we refer to [11, Section 6].)

We are now ready to wrap up. Each of the rules can be executed by doing O (1) deletions of vertices, edges, contractions
of edges, adding or deleting a selfloop, or changing color or multiplicity of an edge. As discussed above, each of such
operation costs O (log n) time to the data structure, and finding (if it exists) a pair of vertices to which we can apply a rule
from (∗) also costs O (log n) time. It follows that the total time is O (log n) times the number of times we apply a rule; as
argued earlier in this section, we have O (n) rule applications, giving a total of O (n log n) time, excluding the O (m) time to
remove edges with multiplicity larger than 2. This gives Theorem 6.1. �
Remark 6.3. The constant factors produced by the heavy machinery of Courcelle’s theorem and tree decompositions of width
8 are very large; a simpler algorithm with a larger asymptotic (but still polynomial) algorithm will be faster in practice.

J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146 145
Corollary 6.4 (=Corollary A). There is an algorithm that, given a two-edge-connected graph G, decides in O (n logn +m) time whether
G admits an involution σ such that the quotient G/〈σ 〉 is a tree. �
Proof. If G is two-edge-connected and b1(G) ≤ 1, then G is a cycle. For a cycle such an involution does exist. So we can
decide this in linear time.

If b1(G) ≥ 2, this follows from Theorem 6.1, since Baker and Norine [6, Thm. 5.12] have shown that a two-edge-connected
graph G with b1(G) ≥ 2 is divisorial hyperelliptic precisely if G admits an automorphism as stated in the theorem. �
7. Conclusion

We have provided an explicit set of safe and complete reduction rules for (multi-)graphs of divisorial, stable, and stable
divisorial gonality at most 2, and we have shown that stable, divisorial, and stable divisorial hyperelliptic graphs can be
recognized in polynomial time (actually, O (n log n + m)).

Finally, we mention some interesting open questions on (divisorial) gonality from the point of view of algorithmic com-
plexity: (a) Can hyperelliptic graphs be recognized in linear time? (b) Does there exist a set of reduction rules to recognize
graphs with gonality 3? (c) Is gonality fixed parameter tractable? (d) Which problems become fixed parameter tractable
with gonality as parameter? (e) Is there an analogue of Courcelle’s theorem for bounded gonality?

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] Omid Amini, Matthew Baker, Erwan Brugallé, Joseph Rabinoff, Lifting harmonic morphisms II: tropical curves and metrized complexes, Algebra Number
Theory 9 (2) (2015) 267–315.

[2] Stefan Arnborg, Andrzej Proskurowski, Characterization and recognition of partial 3-trees, SIAM J. Algebraic Discrete Methods 7 (2) (1986) 305–314.
[3] László Babai, Graph isomorphism in quasipolynomial time [extended abstract], in: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory

of Computing, STOC’16, 2016, pp. 684–697, extended abstract of arXiv:1512 .03547v2.
[4] Per Bak, Chao Tang, Kurt Wiesenfeld, Self-organized criticality, Phys. Rev. A 38 (1) (1988) 364.
[5] Matthew Baker, Specialization of linear systems from curves to graphs, Algebra Number Theory 2 (6) (2008) 613–653, with an appendix by Brian

Conrad.
[6] Matthew Baker, Serguei Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN 15 (2009) 2914–2955.
[7] Matthew Baker, Farbod Shokrieh, Chip-firing games, potential theory on graphs, and spanning trees, J. Comb. Theory, Ser. A 120 (1) (2013) 164–182.
[8] Daniel Bienstock, Paul Seymour, Monotonicity in graph searching, J. Algorithms 12 (1991) 239–245.
[9] Anders Björner, László Lovász, Peter W. Shor, Chip-firing games on graphs, Eur. J. Comb. 12 (4) (1991) 283–291.

[10] Jelco M. Bodewes, Hans L. Bodlaender, Gunther Cornelissen, Marieke van der Wegen, Recognizing hyperelliptic graphs in polynomial time [extended
abstract], in: Andreas Brandstädt, Ekkehard Köhler, Klaus Meer (Eds.), Graph-Theoretic Concepts in Computer Science, WG 2018, in: Springer Lecture
Notes in Computer Science, vol. 11159, 2018, pp. 52–64.

[11] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, Michał Pilipczuk, A ckn 5-approximation algorithm for
treewidth, SIAM J. Comput. 45 (2) (2016) 317–378.

[12] Hans L. Bodlaender, Torben Hagerup, Parallel algorithms with optimal speedup for bounded treewidth, SIAM J. Comput. 27 (6) (1998) 1725–1746.
[13] Hans L. Bodlaender, Arie M.C.A. Koster, Treewidth computations II. Lower bounds, Inf. Comput. 209 (7) (2011) 1103–1119.
[14] Hans L. Bodlaender, Marieke van der Wegen, Tom C. van der Zanden, Stable divisorial gonality is in NP [extended abstract], in: Barbara Catania, Rastislav

Královič, Jerzy Nawrocki, Giovanni Pighizzini (Eds.), SOFSEM 2019: Theory and Practice of Computer Science, SOFSEM 2019, in: Springer Lecture Notes
in Computer Science, vol. 11376, 2019, pp. 81–93, extended abstract of arXiv:1808 .06921.

[15] Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symb. Comput. 24 (3–4) (1997) 235–265.
[16] Melody Chan, Darren Glass, Matthew Macauley, David Perkinson, Caryn Werner, Qiaoyu Yang, Sandpiles, spanning trees, and plane duality, SIAM J.

Discrete Math. 29 (1) (2015) 461–471.
[17] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, Frederik Vercauteren, Handbook of Elliptic and Hyperelliptic

Curve Cryptography, 2nd edition, Chapman & Hall/CRC, 2012.
[18] Gunther Cornelissen, Fumiharu Kato, Janne Kool, A combinatorial Li-Yau inequality and rational points on curves, Math. Ann. 361 (1–2) (2015) 211–258.
[19] Bruno Courcelle, The monadic second-order logic of graphs. I: Recognizable sets of finite graphs, Inf. Comput. 85 (1) (1990) 12–75.
[20] Deepak Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64 (14) (1990) 1613.
[21] Josse van Dobben de Bruyn, Reduced divisors and gonality in finite graphs, Bachelor thesis, Leiden University, 2012, https://www.universiteitleiden .nl /

binaries /content /assets /science /mi /scripties /bachvandobbendebruyn .pdf.
[22] Josse van Dobben de Bruyn, Dion Gijswijt, Treewidth is a lower bound on graph gonality, preprint, arXiv:1407.7055, 2014.
[23] Neelav Dutta, David Jensen, Gonality of expander graphs, Discrete Math. 341 (9) (2018) 2535–2543.
[24] Dion Gijswijt, Harry Smit, Marieke van der Wegen, Computing graph gonality is hard, preprint, arXiv:1504 .06713v2, 2019.
[25] Ragnar Groot Koerkamp, Marieke van der Wegen, Stable gonality is computable, Discret. Math. Theor. Comput. Sci. 21 (1) (2019), ICGT 2018.
[26] Torben Hagerup, Dynamic algorithms for graphs of bounded treewidth, Algorithmica 27 (3) (2000) 292–315.
[27] Harald Andrés Helfgott, Isomorphismes de graphes en temps quasi-polynomial [d’après Babai et Luks, Weisfeiler-Leman,. . .], in: Séminaire Bourbaki.

Vol. 2016/2017. Exposés 1120–1135, in: Astérisque, vol. 407:Exp. No. 1125, 2019, pp. 135–182.
[28] Kevin Hendrey, Sparse graphs of high gonality, SIAM J. Discrete Math. 32 (2) (2018) 1400–1407.
[29] Andrea S. LaPaugh, Recontamination does not help to search a graph, J. ACM 40 (2) (April 1993) 224–245.
[30] Anna Lubiw, Some NP-complete problems similar to graph isomorphism, SIAM J. Comput. 10 (1) (1981) 11–21.
[31] Sergey Norin, New tools and results in graph minor structure theory, in: Surveys in Combinatorics 2015, in: London Math. Soc. Lecture Note Ser.,

vol. 424, Cambridge Univ. Press, 2015, pp. 221–260.

http://refhub.elsevier.com/S0304-3975(20)30097-9/bibA692BBDE61D5667391583CF43B15021Bs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibA692BBDE61D5667391583CF43B15021Bs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib1FCA67100BEF1F203E01691404ABB534s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib97078CEC9CA9A82D4A9D4CB0F874B451s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib97078CEC9CA9A82D4A9D4CB0F874B451s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib0A1EAD2AB5F1B5645987B7FCD0EF84D0s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibF30B7F25F10AFC8546D3B1CEF55F1F05s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibF30B7F25F10AFC8546D3B1CEF55F1F05s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib9EFD5EEAF0E043BBD5803FBCEA2C6282s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib7A33752BA37C95D782A3C1CFF2F93B74s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib7C7C2A8786EF46A4C33D7985FB9DB4DFs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib7219D59AB850D03BEFC2C446FF3F604Bs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib9312AAA4F923C5AF48898C8E595D9962s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib9312AAA4F923C5AF48898C8E595D9962s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib9312AAA4F923C5AF48898C8E595D9962s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib8DE7ABBD46A264E602685608AD20C74Es1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib8DE7ABBD46A264E602685608AD20C74Es1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib85A7D9D932D2501CA5F8BBCC3ED6F8B1s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib6EC1B5A08D2AD651538D30A5A277E691s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib3D586ADA0B1E86B96966DDC69DE14F81s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib3D586ADA0B1E86B96966DDC69DE14F81s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib3D586ADA0B1E86B96966DDC69DE14F81s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib1B62E99F86D45E754E5E79D9FA9DFCDEs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibF456B0043152F75B9C49226E91BA4981s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibF456B0043152F75B9C49226E91BA4981s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib61B606952D604A6C28ED8D49F59AD1DAs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib61B606952D604A6C28ED8D49F59AD1DAs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib0D61F8370CAD1D412F80B84D143E1257s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibE5B14834C549F342252F6631058CFD06s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib37DB2F9CA7D1F43DE3F9AC377ED707EFs1
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib2A3DA254CB49167BF82B3A66068ABE61s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib9D5E8CDEFAB738DA8107A6504421D8EFs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib973D3670749019FCC8DD11190D85859Cs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibD00CBAE80FE12655DD537B0A91DCD5EAs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibF1A62C43BA990946FED2EED7BB8EFBE9s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib664879130FC3C28802E55966E1167E34s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib664879130FC3C28802E55966E1167E34s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibE3E708E876F0C00DC8A6D0988C7719B2s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibEC64404818BBCE62DF2C06B186AB130Es1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib23A787079D4DD0B4D43EFD68C6B4A397s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib588E4B4460C3DF192B4E4DF4378AE0F9s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib588E4B4460C3DF192B4E4DF4378AE0F9s1

146 J.M. Bodewes et al. / Theoretical Computer Science 815 (2020) 121–146
[32] Bjorn Poonen, Computing rational points on curves, in: Number Theory for the Millennium, III, Urbana, IL, 2000, A K Peters, Natick, MA, 2002,
pp. 149–172.

[33] Josef Schicho, Frank-Olaf Schreyer, Martin Weimann, Computational aspects of gonal maps and radical parametrization of curves, Appl. Algebra Eng.
Commun. Comput. 24 (5) (2013) 313–341.

[34] Gábor Tardos, Polynomial bound for a chip firing game on graphs, SIAM J. Discrete Math. 1 (3) (1988) 397–398.

http://refhub.elsevier.com/S0304-3975(20)30097-9/bib66AB0DCBDC3A1DF1A2A4D49CC3D30114s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bib66AB0DCBDC3A1DF1A2A4D49CC3D30114s1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibEF7C41BCF8FFA05F829F2937E99F40AEs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibEF7C41BCF8FFA05F829F2937E99F40AEs1
http://refhub.elsevier.com/S0304-3975(20)30097-9/bibCACE11BA42482DCF46713D6019DB8E83s1

	Recognizing hyperelliptic graphs in polynomial time
	1 Introduction
	2 Preliminaries
	2.1 Divisorial gonality
	2.2 Stable gonality
	2.3 Stable divisorial gonality
	2.4 Reduction rules, safeness and completeness
	2.5 Constraints

	3 Reduction rules for divisorial gonality
	3.1 Constraints for divisorial gonality
	3.2 The reduction rules
	3.3 Safeness
	3.4 Completeness

	4 Reduction rules for stable gonality
	4.1 Constraints for stable gonality
	4.2 Reduction rules
	4.3 Safeness
	4.4 Completeness

	5 Reduction rules for stable divisorial gonality
	5.1 Constraints for stable divisorial gonality
	5.2 Reduction rules
	5.3 Safeness
	5.4 Completeness

	6 Algorithms
	7 Conclusion
	References

