Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 168 (1996) 337-366

Self-reproduction in a reversible cellular space

Kenichi Morita*, Katsunobu Imai

Department of Industrial and Systems Engineering, Faculty of Engineering, Hiroshima University,
Higashi-Hiroshima-shi, 739 Japan

Abstract

We investigate a problem whether self-reproduction is possible in a two-dimensional “re-
versible” cellular space, and give an affirmative answer. A reversible (or injective) cellular
automaton (RCA) is a CA such that every configuration has at most one predecessor. In order
to design an RCA we use a framework of partitioned cellular automaton (PCA). A PCA with
von Neumann neighborhood is a special type of CA whose cell is divided into five parts. We
designed here a reversible PCA SR; having 8 states in each part (thus one cell has 8 states).
In this cellular space, encoding the shape of an object into a “gene” represented by a command
sequence, copying the gene, and interpreting the gene to create an object, are all performed
reversibly. We show that, by using these operations, various objects can reproduce themselves
in a very simple manner.

1. Introduction

It is well known that von Neumann [9] first showed a computation- and construction-
universal self-reproducing machine using his 29-state two-dimensional cellular automa-
ton. Since then, various models of cellular automata that support self-reproduction have
been studied. For example, Codd [2] proposed an 8-state cellular model that has essen-
tially the same ability as von Neumann’s model. Langton [3] showed that, if universal
computing and construction abilities are not required, a very simple self-reproducing
object can be designed in a modified 8-state model of Codd.

We investigate here a problem whether self-reproduction is possible in a two-dimen-
sional “reversible” cellular space. A reversible (or injective) cellular automaton (RCA)
is a CA such that every configuration has at most one predecessor. It can be regarded
as a model of reversible physical space. In spite of the constraint of reversibility, RCA
has rich ability of information processing. Toffoli [10] showed that every (irreversible)
k-dimensional CA can be simulated by a & + 1-dimensional RCA in real time. Another
method to simulate an irreversible CA by an RCA without increasing the dimension

* Corresponding author. E-mail: {morita, imai}@ke.sys.hiroshima-u.ac.jp.

0304-3975/96/815.00 © 1996 —Elsevier Science B.V. All rights reserved
P11 S0304-3975(96)00083-7

338 K. Morita, K Imail Theoretical Computer Science 168 (1996) 337-366

(but not in real time) was proposed by Morita [6]. From these results, existence of
computation- and construction universal (and thus self-reproducing) RCA can be con-
cluded. However, if we use these “emulation methods” to convert an irreversible CA
to an RCA, a large amount of garbage signals are generated and spread out in the re-
versible cellular space. Therefore, direct and elegant method for designing RCA having
desired property should be explored.

As for computation-universal RCA, Margolus [4] proposed an elegant model of
2-state RCA with so called Margolus neighborhood. Morita and Ueno [8] showed
two models of computation-universal 16-state RCA having the usual von Neumann
neighborhood. It has also been shown that a reversible Turing machine, which is
known to be universal [1], can be directly embedded in a one-dimensional RCA [7, 5].
However, until now no direct method to construct a self-reproducing RCA has been
known.

We give here an RCA in which various objects can self-reproduce in a very sim-
ple fashion, although they have neither computation- nor construction-universality in
von Neumann’s sense. However, we do not consider this type of self-reproduction as
a trivial self-replication of patterns. Because these objects can handle with a “com-
mand sequence” or a “gene”, and have an ability of encoding, decoding and exe-
cuting it. Self-reproduction is carried out by interpreting a gene as a kind of pro-
gram.

In order to design an RCA we use a framework of partitioned cellular automaton
(PCA) [7]. A PCA with von Neumann neighborhood is a special type of CA whose
cell is divided into five parts. The next state of each cell is determined by the present
states of the center part of this cell, the lower part of the upper cell, the left part
of the right cell, the upper part of the lower cell, and the right part of the left cell
(not depending on the entire five cells). In PCA, injectivity of the global map is
equivalent to injectivity of the local map [7]. Therefore, it makes easy to design an
RCA.

We present a reversible PCA “SRg” having 8 states in each of five parts. Thus one
cell has 8% states. First, a signal transmission wire on which commands propagate is
designed. We then give two types of objects called a “Worm” and a “Loop”. A Worm
is a simple wire with end points, while a Loop is a simple closed wire. We design
the local transition function of SRg so that the operations of encoding the shape of
a wire into a gene, copying the gene, and interpreting the gene to create a wire, are
all performed reversibly in this cellular space. We show that any Worms and Loops
satisfying some appropriate condition can reproduce themselves indefinitely using these
operations.

2. Definitions and preliminaries

In this section, we give definitions of a (usual) cellular automaton (CA) and a
partitioned cellular automaton (PCA), and then state some basic properties on PCA.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 339

Definition 2.1. A deterministic two-dimensional cellular automaton (CA) with von
Neumann neighborhood is a system defined by

4= (Zz, Q’f,#)a

where Z is the set of all integers, Q is a non-empty finite set of internal states of each
cell, f: Q0% — Q is a mapping called a local function, and # € Q is a quiescent state
that satisfies f(#,#,# #,#) = #.

A configuration over Q is a mapping « : Z° — Q. Let Conf(Q) denote the set of
all configurations over Q, i.e., Conf(Q) = {a | a: Z* — Q}.

The function F:Conf(Q) — Conf(Q) defined as follows is called the global function
of 4.

V(x,y) € Z*:

F(a)(x’y) = f(“(X,Y)’“(X,Y+ 1),(1(X+ 1,}’),0‘(?‘,)/ - 1),@(1’ - 17y))
We say A is a reversible (or injective) CA (denoted by RCA) iff F is one-to-one.

Definition 2.2. A deterministic two-dimensional partitioned cellular automaton (PCA)
with von Neumann neighborhood is a system defined by

P =(Z2,(C, U, R, D, L), g,(#,##,##)),

where C, U, R, D, and L are non-empty finite sets of states in center, up, right, down
and left parts of each cell, g: C X DXL xUXR —- CxUxXxRxDxLis a
local function, and (#,#,#,#,#) € C x U x R x D x L is a quiescent state satisfying
g(# #,#,#.#) = (4, #,#,#,#).

Let CENTER (UP, RIGHT, DOWN, LEFT, respectively) be the projection function
which picks out the center (up, right, down, left) element of a quintuple in C x
U xRxDxL. The global function G : Conf(C x U x Rx D x L) — Conf(C x U x R x
D x L) of P is defined as follows.

V(x,y) e Z? :

G(o)(x, y) = g(CENTER (a(x, y)), DOWN (a(x, y + 1)), LEFT (a(x + 1, y)),
UP (a(x, y — 1)), RIGHT ((x — 1, y)))

We say P is globally reversible iff G is one-to-one, and locally reversible iff g is
one-to-one.

PCA is a subclass of CA such that each cell is partitioned into five parts (Fig. 1),
and the next state of each cell is determined depending on the center part of this cell,
the lower part of the upper cell, the left part of the right cell, the upper part of the
lower cell, and the right part of the left cell.

State transition of a cell by the equation g(c,d,lu,r) = (¢',u',¥',d’,I') can be
depicted as in Fig. 2. We call this figure a rule of P. Besides such a figure, we also
use an abbreviated figure as shown in Fig. 3 or the notation

le,d, Lur] — [c,r,d,1I']

340 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Fig. 1. Cellular space of PCA.

d d
UI u,
r I - (I'ld]r’ rl e I = e
d d'
u u
Fig. 2. A representation of a rule. Fig. 3. An abbreviated representation of a rule.

to represent a rule of P. In what follows, we regard the local function g as the set of
such rules.

It is easy to show the following propositions on PCA. Proofs are omitted here, since
analogous results for one-dimensional PCA are proved in [7].

Proposition 2.1. Let P be a PCA. P is globally reversible iff it is locally reversible.

Proposition 2.2. For any PCA P, there is a CA A whose global function is identical
with that of P.

By Proposition 2.1, globally or locally reversible PCA is called simply “reversible”
and denoted by RPCA. Proposition 2.2 says that PCA is a subclass of CA.

By above, if we want to construct a reversible CA, it is sufficient to give a PCA
whose local function g is one-to-one (note that the numbers of elements of domain
and range of g are the same). As for a one-to-one mapping the following proposition
holds (it is easily proved).

Proposition 2.3. Let A and B be finite sets having the same number of elements. If
f': A" — B is one-to-one for A’ C A, then there is a one-to-one mapping f : A — B
that is an extension of f’.

Thus, to give an RPCA, it is sufficient to define a one-to-one function g only on a
subset of C x D x L x U x R which is needed to show desired property.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 341

3. Designing an RPCA that supports self-reproduction

We now give an RPCA “SRg” that supports self-reproduction. It is defined by
SRs = (Z2,(C, U, R, D, L), g, (#,#,#,#,#)),
C=U=R=D=L={#x+,—, AB,C,D}.

Hence, each of five parts of a cell has 8 states. The states A,B,C and D mainly act
as signals that are used to compose “commands”. The states x,+, and — are used to
control these signals.

The local function g is defined below. In SRg, g is isotropic, i.e., invariant under
the rotation of 90°,180° and 270°. Namely, if there is a rule

le,d, Lu,r] — [c,u,r,d"I']
in g, then there are also the following three rules.
le,r,d, Lul — [, Id,r,d]
[e,u,r,d, 1] — [c',d I',d,¥]
le,l,u,r,dl — [c,r,d, I u]
Therefore, in this section, we write only one of the four rules and omit the other rotated
ones. Rules in g and their functions are explained in order.
3.1. Quiescent state rule

This rule is shown in Fig. 4 (# is indicated as a blank).

3.2. Signal transmission on a wire

A wire is a configuration to transmit signals A,B, and C. Fig. 5 shows an example
of a part of a simple (i.e., non-branching) wire.

By the rules (2)—(4) in Fig. 6, signals x; and y; in Fig. 5 shift by one cell along
the wire in two time steps. Note that, strictly speaking, (2)—(4) are “rule schemes”.
For example, (2) represents 36 rules since x,y € {A,B,C} and it is isotropic.

A wire may contain two-way (bifurcating) or three-way (trifurcating) branches. A
branching point acts as a “fan-out”, i.e., the signals are copied at this point. Rules
(5)—(7) in Fig. 7 are for two-way branch, and rule (8) is for three-way one. Fig. 8
shows an example of a wire with a bifurcation.

- (1)

Fig. 4. Quiescent state rule.

342 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

t=20
Y1l 1|+ Yo o[=
+
1P
=14 Ys s+l
t=1
Y1+ 1Yo
+
Y2
+Z4|Y3[+ 3
t=2
Y217 2|+ Y11
+
T3
+Yafr4]+1Y3

Fig. 5. Signal transmission on a part of a simple wire (xi,y; € {A,B,C}).

| ¥ |+ — |[+zy| (2 z| Y —»+zalc (4)
+
+
y
zy Y - |+ 3)

Fig. 6. Rules for signal transmission (x € {A,B,C}, y € {A,B,C}).

+ +
y Y
| ¥ [+ — j+rey] (5) z| Y = |t (7N
+
+
v
zy+—»+§y (6) xy+—»+§y (8)
+ +

Fig. 7. Rules for signal transmission at a branching point (x € {A,B,C}, y € {A,B,C}).

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 343

3.3. Commands and their execution

A command is a signal sequence composed of two signals. There are six commands
consisting of signals A,B and C as shown in Table 1. These commands are used for
extending or branching a wire. (Commands containing signal D will be explained later).

We assume that, at even time step, two signals of a command are in one cell
of a wire. For example, the command sequence on the wire shown in Fig. 9 is
AC,BB, AB,BC.

A head is an end cell of a wire to which signals flow, and a tail is an end cell from
which signals flow. Fig. 10 shows a wire with two heads and a tail.

t=10 =1
To Yo
Yo+K1 YoZo) 1 +[Y122 Z1Y0
+ + + +
T3 1 Y2 Y1
+ Y3z3|+ Y2 T2+ Y1 + Zay3[+ T3Y2o+ T2

Fig. 8. Signal transmission on a wire with a bifurcation (x;, y; € {A,B,C}).

Tabel 1

Six commands composed of A,B, and C
Command

First [Second Operation

signal| signal

Advance the head forward
Advance the head leftward
Advance the head rightward
Branch the wire in three ways
Branch the wire in two ways
(making leftward branch)

| = > > >
W > O|W| >

B C | Branch the wire in two ways
(making rightward branch)
t=2n

* +AC

+

BBHCA A
+ A *
A X x
+CB|+B + [+ CAR BAMAANC

Fig. 9. Command sequence AC,BB, AB,BC trav- Fig. 10. A wire with two heads (with * in the

elling on a wire. center part) and a tail (with + in the center part).

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Phase 0 Phase 2
Al * - |+- (9) - - [++ (13)
Phase 1
z| A - |+zx (14
Af - — |[+A-[(10)
*
z| B — |4z (15)
Bl - | - [+B | (1)
*
C| - - +C (12)
— Phase 3
x| + - |+x* (17)

Fig. 11. Rules for advancing a head (x € {A,B,C}).

t=0 t=20
+ Y2z Y1T+ A A+ * 4 Y222+ 1z1(+ B A[+ *
t=1 t=1
+ Zay2|+ T291|+T1 A+ — + Zay2l+Z2y1(+Z1 Bi+ ~
t=2 t=2
+ Yaza{+ Y222+ Y171|+ A — + Y3za3l+ Y222+ 171+ B
t=3 t=3
+
_+.
*
4 Za¥s|dz3y2[4+z2¥1H 71 x|+ + + T4 Y|+ T3y2|+z2y1|+ 21
t=4 - t=4
*
+
I
+ Y4 Za|4- Y3 T3+ Y2Z2|+ Y1 Z1[4 * -+ Y4 Taj+ Y3Ta|+ Y2 T2(4+ 1

Fig. 12. Execution of advance commands AA (left) and AB (right) (x;, »; € {A,B,C}).

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 345

Six commands shown in Table | are “decoded” and “‘executed” at the head of a
wire. Here we explain how the advance commands AA, AB, AC are executed. (Branch
commands BA, BB, BC are explained later). Rules (9)—(17) in Fig. 11 are for executing
these commands. Since it takes four time steps to execute an advance command, these
rules are classified into four groups (from Phase O to Phase 3) according to the phase
of the execution. An example of this prosess is shown in Fig. 12, where one of the
“Phase ¢ rules in Fig. 11 is applied at time ¢.

3.4. A Worm

A Worm is a simple wire with open ends, thus has a head and a tail. It crawls
in the reversible cellular space. As explained in the previous subsection, commands
in Table 1 are decoded and executed at the head of a Worm. On the other hand,
at the tail cell, the shape of the Worm is “encoded” into an advance command.
That is, if the tail of the Worm is straight (or left-turning, right-turning, respec-
tively) in its form, the command AA (AB,AC) is generated. The tail then retracts
by one cell. These operations are done by rules (18)—(29) in Fig. 13. Note that
in a reversible cellular space, simple retraction (or erasure) of a tail without leav-
ing the shape information is impossible. Therefore, retraction must accompany some

Phase 0
+
A
+ [+ — —*| (18) *| * - B (24)
x| Y |+ = |—xy| (19) x| ox - g (25)
+
+
y Phase 2
* — == (20)
- A |+ — *Al (26)
x| Y — |{—* 21
; (21) _
* -| B - % | @
Phase 1
- - = - 22 -1 C — * 28
(22) & (28)
+
Phase 3
s x4+ = | aal (9 ase
* |+ — | 4+ (29)

Fig. 13. Rules for retracting a tail (y € {A,B,C}).

346 K. Morita, K. Imai/ Theoretical Computer Science 168 (1996) 337-366

encoding process. Fig. 14 shows an example of encoding and retracting processes.
It takes four time steps to encode and retract a tail by one cell. The command
sequence generated by the encoding process may be regarded as a “gene” of the
Worm.

It is easy to see that the length (i.e., the number of cells) of a Worm does not vary
if it contains only advance commands and never touches itself. Hence it is also easy to
see that the same configuration appears infinitely many times if we identify translated
configurations as the same ones. Thus, we can classify Worms into two categories:
“cycling” and “travelling” ones. A Worm is called cycling iff its configuration appears
at the same position after some time steps. A Worm is called travelling iff its translated
configuration appears after some time steps, thus it moves away in some direction.
Fig. 15 show examples of cycling and travelling Worms.

=0 t=4
+*+BAHA +*tA
A A
+ +
AAM* BAH A Al *
t=1 t=5
— *xj— x B+ A — k|- %
A A
+ +
AAft- ABHAA[H -
t=2 t=6
—-| AAlB - ¢
A A
+ +
AAHA- AAHBAHA-
t=3 t=7
* A A *
B c
+ F
AAHA*H+ AAHABHA <1+
t=8
+
*
+
CAHAAMHBANK *

Fig. 14. Retracting process of a tail, where encoding the shape of a tail into advance commands (here, AA
and AC are generated) is also carried out.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

t=0 t=35 t=12
cHAA
s
.
- +
1
+e+BA+s cycling [P
+++an+s travelling —e-eAt— +otAnte
++4BA+CA+* —e—sAtA +
. B .
travelling rd +
- CA+AA+*
t=1 t=6 t =16
+AB+ e+
N
+
A
~+—+B+— - B
—s—tAt— - AA+A- +etAnte
—~+-eB+ACH— - AAtA
s
B- +++BA+CA+~
t=2 t=17 =20
+ Atet
+ A
* +
A H
3
- B
— AA+B .
- AA+A- rAtAs+E +etAAt
~ AA+BA+C *A+R
by
Astd +etantD
3
H
t=3 t=28 t=24
. +
+ .
A +
+ B B
+ + A
. . 3
sA+A + .
TA+AsHt +etAAte +o+AAT
*A+AB+A +etA
. A
+ +
+ AA+e +'+2
I
AAt»
t=4 t=9 t =32
n
B
. .
+ z
A .
+o4A - +++BAt*
+rtAAT —r— At - +rEAAT*
+++AA+B P
A A
+ +
. AA+-—
+++BA+CA+*

Fig. 15. Behavior of one cycling and two travelling Worms.

347

348 K Morita, K. Imai! Theoretical Computer Science 168 (1996) 337-366

3.5. Self-reproduction of a Worm

We now explain branching and splitting processes of a Worm, and then show that a
travelling Worm can self-reproduce indefinitely in the two-dimensional plane by giving
a branch command. Rules (30)—(37) in Fig. 16 are for executing branch commands
BA,BB,BC. A branching process initiated by a command BA is shown in Fig. 17. In
the case of a command BB or BC, a Worm branches in two-ways.

At the branching point, a command sequence (or gene) is copied by rules (5)—(8).
Hence, these branches have the same shape, though they grow in different directions.

When a tail reaches a branching point, splitting rules (38)—(52) in Fig. 18 are
applied.

Fig. 19 shows an example of splitting process caused by a command BA that finally
produces three daughter Worms. These Worms also have branch commands, but they

Phase 0
Bl * — [++B| (30) Ct + - C- (34)
Phase 1 Phase 2
*
B — |B (31) Al A B — +é* (35)
— *
Al + — |[+A-] (32) Al B [B — [+Ax| (36)
B| + - |+B-| (33) Al © B — |+A%| @0)
Fig. 16. Rules for branching a head.
t=0 t=1 t=2 t=3 t=4
+ *
B + +
B - * A
* + - A— ++H[*A*x++ * A A A *
+ + + + +
B A A A A
A A A A A
+ + + + +
A A A A *
A * A * +
+ -
* * —
+ —

Fig. 17. Execution of a branch command BA.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Phase 0
+
y
| Yy |+ — |-*xy| (38)
¥
+
_+.
y
| ¥+ - [-*xy] (39)

¥y |+ — [-*xy| (40)

+
Phase 2
+
B
- A+ - * Al (44)
C
+
+
A
-l B |+ — | *B| (45)

Fig. 18. Rules for splitting a tail (y € {A,B,C}).

Phase 3

*

* 4 #*
¥*

+ +

*

—+ %
*

Phase 4

+ [+ + +

Phase 5

(46)

(47)

(48)

(49)

(51)

(52)

349

differ: the center daughter has a three-way branch command BA, while the left and
right daughter have a leftward and rightward branch commands BB, BC, respectively,

by the rule (44).

Fig. 20 shows a splitting process caused by BB that produces two daughters. In this
case, the left daughter has no branch command, while the center one has the leftward
branch command BB by rule (45). As we shall see below, overcrowding of Worms

can be avoided by this mechanism.

By using branching and splitting mechanism, a travelling Worm with a branch com-
mand can self-reproduce indefinitely provided that it does not touch itself in the branch-
ing process. Figs. 21 and 22 show self-reproducing processes of Worms.

350 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

+ *
+ +
f * m
< m %)
+ + +
Mm (9 <
6} < <
+ + +
< < *
< » +
i
| <+ <-H<< || | +He*oOH<<-H* * Ho<HaegHe +
< * +
< < *
+ + +
@ < <
jus] =5
+ + +
< o m
=) 1 - * o os]
+ +
i I i N !
-3 ol -
+ . I
+ + +
G < <
< < m
+ + +
< m [&)
[+1] &) -
+ + 1
&) - *
++*<+<m+<£’n * Ha < HO<H* + I HamH<» || |
* &
¥ + |
] m »
< 4] jos
+ + +
< < fer]
* < <
+ + >
+ * |
<
Il It It
bl
f
* i <
+ + +
< < <
b < <
+ + +
= < =]
* HO < H <Hr + | Ha<Hq<n I]e | | <H<<Hm< |!
= < 2]
+ + +
< < <
< < <
+ + +
* i <
o — 1
1l i il
-

Fig. 19. A splitting process that produces three daughter Worms.

It is easy to see that a travelling Worm (with no branch command) of length n
repeats its (translated) configuration every 8(n — 2) steps. Assume at time 0 there is a
configuration of a travelling Worm having only one branch command BA. It also takes
8(n — 2) steps to become a configuration containing three daughter Worms identical

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 351

t=0 t=4 t=28
*
+
B
* B
4 +
A A
* A A
+ hd +
A B »
A B +
X +
*
‘+AA+Ai *HAAHAAS*+ *+AA+HAA]+ +
*
+

Fig. 20. A splitting process that produces two daughter Worms.

to the initial one except that they may have different branch command and may be
rotated. The center daughter further produces three granddaughters. Each of the left
and right daughters produces two, and so on. Fig. 23 shows a family of Worms and
their positions.

Let A(k),B(k),C(k) and Z(k) be the total number of Worms having a branch com-
mand BA, BB, BC, and no branch command, respectively, at time 8(n — 2)k. Then the
following equations hold for £ = 0,1,2,....

Ak) =1

B(0) =0, B(k+ 1) = A(k) + B(k)

C0)=0, C(k+1)=A(k)+C(k)

Z(0)=0, Z(k+1)=Z(k)+ Bk)+ C(k)
By solving these equations we can get

def

N(k) = A(k)+ Bk) + C(k)+ Z(k) = k* + k + 1,

the total number of Worms at the kth generation.

3.6. Self-reproduction of a loop

A Loop is a simple closed wire, thus has neither a head nor a tail as shown in
Fig. 24.

If a Loop contains only advance or branch commands, they simply rotate in the
Loop and self-reproduction does not occur. In order to make a Loop self-reproduce,
commands in Table 2 are used.

352 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

t=0 t=28
*+AC
¥
B
A .
+ +
K A
CHBBY o+ e4CBHC
3
. N
I
A
+24CB4C
: 1
+ A
B +
AtaA C+BBt*+ CA++
: R
+ . A
A
¥
CAts
t=12 t =32
N
+
B
A+AA
4
.
+ CB+»
+
A
Atet +e+A
4
*+AC *+BB CH++
b ¥
B A
A b +rt+a
+ +
. A
GHBB+ e+ +CBHC +
H
+ +
. Atet AA+A
A A
+ +
*+BB + .
+
AA+A
A
+
.
t=16 t=48
.
+
ﬁ#—AA
4
.
+ CB+*
ga+
A
Atet +r4
A
¥
+4+BB CB++
¥
A
FetA
N + CB+»
+ 1 gB+
B + A
AtAA At ot AAt+A +r+A
i $:
.
+ CB++ *+BB + . +
1 . "
A + +
A+t +e+A AA+A AAtA
A A A
+ b +
«+BB . .
Atrt
A
++BB + +
] .
+ +
AAata AAata
A A
: + 1
M
Tata
A
+
.

Fig. 21. Self-reproducing process of a Worm (1).

A command DB is transmitted by rules (53)—(58) in Fig. 25. On a straight part
of a wire, it propagates in the same way as other commands in Table 1 (rules (53)—
(56)). But, at the corner of a wire, it starts to make an “arm” (rules (57) and (58)).
An arm is a kind of branch to construct an offspring of a Loop. Rules (59)—(67) in
Fig. 26 are for creating an arm.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

1=0 t =96
A+AA
A4
+ .
A+
A
Iy
A x
B+
+ A
AATA A+BCHAATAA
A +
+ A
Atet sHAA AA++ trtA
A +
+ A
AA+AA+BBHA
A+BCHAA+AA
& 1
A+AA Ated sHAA AAte detRA
At A +
+ + A
A+ AA+AA+BB+A A+AA A+AA
A A+ A+
¥ + A + A
A v . A « A
B+ + +
+ A A A
AA+A + A + A
« O+ .+
tash + A
A+A AA+A

Fig. 22. Self-reproducing process of a Worm (2).

Fig. 23. Lineage of Worms. (The number represents the generation of a Worm.)

+
=
Lt

B+ P
P

>

+ A At

Fig. 24. An example of a Loop.

353

354 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Phase 0 Phase 1
D] ¥ [+ — |+D¥{ (53) Bl D |4+ — |+BD| (56)
+ +
y A
D| ¥ — |+D (54) Bf D — |+ D| (57)
D ¥ — |+p | 5 B| D — |+ p| 58
Y A
+ +

Fig. 25. Rules for transmitting a command DB (y € {A,B,C}).

Phase 0 Phase 2
+
C
D — ID (59) Al — |B — |+xx*| (64)
+
B
A — |+-B| (60) Al = B = frax] (6)
+
Phase 3
A — |+=B| (61) o
T A
z| v [+ — [+yw] (66)
Phase 1
+
D
Al — |ID = [H+=-=] (62 xv+—»+zw (67)
+
Al = |Ip = [+=—| (63
57| 69
+

Fig. 26. Rules for creating an arm ((v,w) € {(*,A), (—,B), (+,C)}, (x,») € {(A,*), (B,—), (C.,+)}).

Table 2
Commands DB and DC

Command

First {Second Operation
signal| signal

D B Create an arm
D C | Encode the shape of a Loop

K. Morvita, K. Imail Theoretical Computer Science 168 (1996) 337-366 355

The root of an arm is a special kind of branching point. Signals reaching this cell are
transmitted only to the arm, and signals A’s are put into the mother Loop (rules (66)
and (67)). Note that at the center part of this branching cell, the states *, —, + are used
to represent the signals A, B, C, respectively. Fig. 27 shows a process of transmitting
a command DB and creating an arm.

After creating an arm, the form of the mother Loop is encoded into a sequence
of advance commands. This process is controlled by a special command DC, which
is generated when the arm is created (at time ¢t = 6 and 7 in Fig. 27). Encoding is

t= t=4
A+AA Ataa
AL+ Al +
+ [A + | A
A | AHAA A | A+|aa
A + A +
F A + A
BD[+AAlA AAFAAMH D
t=1 t=35
A+AA A+laa
Al + A
+ A +
Al AHaa A | A+AA
A + A +
+ A + B
ABH+DANHA AAAAR-BD
A+HAA A+AA
A+ AL+
+ | A + | A
A | A+HAA A | A+AB
A + A +
+ A + D
AAHBDHA AARFAAH--B
t=3 t=7
A+faa A+AA
AL+ Al 4
+ A t | A
A | Ataar A | A+BD
A + A +
+ A + ¢
AAFABfHD AAHAAR = =+
t=8
A+laa
Al 4
+ A
A | BHA+
A +
+ A
AAHAAM x A«

Fig. 27. Processes of transmitting a command DB (0 <¢<4) and creating an arm (4 <t<8).

356 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Phase 1
Ol D [+ — [++a] (68 AL+ | — Mo (@
+
+
A Phase 3
ct D — ++ (69)
Al - [+ — [+cD| (14)
¢l b S)
i) * 5
+ Al - - +C | (79)
Phase 2
Al + 1+ = =A] (71 Al - - +8 (76)
+
B
Al + - [+ | (1)

Fig. 28. Rules for encoding the shape of a Loop by a command DC. (Note that rules (53)—(55) are used
in Phase 0.)

t=10 t=13
A+AB A+BA
AL+ B I +
+ A +1C
A | B+pC A | —+AA
+ A +

+ A + A
AAHFAAH *Al+A- AAHAAH x AHAAH—
t=11 t=14
A+BA B+AC
A + A +
+ B + D
A | D+Cca B | C+HAA
A + A +
+ A + A
AAHAAH *AHA *H+ AARAAR xAHAAHA-
t=12
B+/AB

+
+ [A
A | +4+AA
A +
+ A
AAHAAM « AHAAM *

Fig. 29. Encoding the shape of a Loop into an advance command by a command DC. (Advance command
AC is generated at 1 = 14.)

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 357

performed by rules (68)—(76) in Fig. 28. Generated sequence of advance commands
travel through the Loop and then sent to the arm by rules (66) and (67). This command
sequence is the gene of the mother Loop. Fig. 29 shows an example of an encoding
process.

If the command DC reaches the branching point encoding process terminates.
Then the arm is cut off by rules (77)—(84) in Fig. 30. This process is shown in
Fig. 31.

The arm cut off from the mother Loop acts just like a Worm. But its head will
eventually meet its tail to form a Loop identical to its mother. Rules (85)—(92) in
Fig. 32 are for making a daughter Loop, and Fig. 33 shows its process.

An example of an entire self-reproducing process of a Loop is shown in Fig. 34,
By putting a command DB at an appropriate position, every Loop having only AA
commands in the other cells can self-reproduce in this way.

3.7. Reversibility of SRy

All the rules of SRy are listed in the Appendix. Parenthesized number attached to
each rule corresponds to the rule number in this section. There are 765 rules in total
including rotated ones. Since the rules in the Appendix are sorted on the right-hand

Phase 0 Phase 2
+ +
A
p| = [+ — [+Dy| () Al D |+ - [+ = @D
D| = [+ — [+D¥| (78) Al D [+ — |+ = (82
A A
+ +
Phase 1 Phase 3
+ +
A
Cl D [+ — [+D*| (79) A - — |+A-| (83)
C| D [+ — [+D*| (80) A - — |[HA-| (84)
+ +

Fig. 30. Rules for cutting off an arm ((x, y) € {(*, A), (—,B), (+,O)}).

358 K Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

~
Il

w

~

+
-

> L P
*

>
S
Q
jw)
¥

AH+BA+AAHBAHBAH CAHBAHB

~
i

oo

n

+
>

+
3
O»H-»

N O
>+

A+ ABHAAH ABH AB|+AC|+ABRH

b

<+

»>

e i
+
>
T»+ o

&+ e+
>

—+

-

o

¥

ook ol g

*HAAHBAHAAHBAHBAH CAH

o~
i

o

-3

>

>+%>+>>
= T
Py

+AAM *|- * A[FABH AAHABH AB+ACH

>
Q>Hw

- AAFAAHBAHAAHBAHBAH

Fig. 31. A process of cutting off an arm.

sides, we can easily verify (but of course tedious!) that there is no pair of distinct
rules having the same right-hand side (we also tested it by a computer). Hence, by
Propositions 2.1 and 2.3, we can define the local function of SRy totally so that it is
reversible.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366 359

Phase 0 Phase 2
- A
+ +
-l A |+ — |D Al (85) D + 4+ — Al (89)
- + - 86 Dl + |+ — A 90
A D A (86) + (90)
— A
Phase 1 Phase 3
* B
¥ ¥
+ — [D+A| (87) D + — BD| (91)
+ — [D+A[(88) D + — BD| (92)
+ +
* C
Fig. 32. Rules for making a daughter Loop.

4. Concluding remarks

In this paper, we gave a reversible PCA SRg, and showed that Worms and Loops
can self-reproduce in the reversible cellular space. Since PCA is a subclass of CA
(Proposition 2.2), we can also conclude that self-reproduction is possible in a (usual)
reversible CA.

In SRg, conversion between an object itself and its description (gene) can be per-
formed in a very simple manner in both directions. This makes self-reproducing mech-
anism simple.

The following problems are left for the future study.

1. To design a simpler RPCA (i.e., to reduce the number of states) that supports
self-reproduction.

2. To design an RPCA that supports both computation- and construction-universality
(i.e., self-reproduction in von Neumann’s sense).

Appendix. The set of rules of SRg

Fig. 35 shows the complete list of 765 rules of SRs. Rules are sorted on their right-
hand sides, and the parenthesized number corresponds to the rule number shown in
Section 3.

54

<H<< <t < <H<< <H<<
< | + < | + < | + < |+ < | +
| < T < ¥ < F [< F | <
<H<x | < <t | <« ALAA < <Hw< | « <He< | <
< + + < + < + +
+ < + < ¥ < + < + a
mdt<i| < AB+A*+D <d+mad++ < <f+<ml+ <<+ <<d+m
o
i a a
<4< < <t < <+ << <H<<
< | + < | + < | + < | + < | +
A+ M + | < T < + | < + | <
A <Hate | < <Haw | < <Haw | « <Ha< | <
+ | 3= + | 8l « + | B< + | Bl +
< + < ¥ < e < T <
+ << <<t N <gq+<a+< N <<+<dt< i AA+AJ «
bl D -~ -~

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

360

Fig. 33. A process of making a daughter Loop.

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

t=0

+AA+AA+A

T2+ B+ b

A
D+AA+AA+A

+AB+A++A

Q43 O 3> W42t 33>

A
A+AA+CA+*A+BA+BA+AA+AA+TAATAA+AA+AA+AA+HAAL

t =100

A+AA+AA+AA

A +

+ A

A AA+A A

A + A +

+ A + A -

A A AA+A A

A+ +

+ A A

A AtAA+Ad C+ACHAB
+ A A
AA+AA+AA+A — AA+AA+AA+AA+AA+AA+BA+AA+AA+AA+BA+AA+AA+BA+ALLB
t =152

A+AA+AA+AA A+AA+AA+AA
A + A Es
+ A + A
A AA+A A A AA+A A
A+ A 4+ A+ A %
+ A + A T A+ A
A A AA+4A A A AA+A
A 4+ A+

+ A + A

A A+AA+AA A A+AA+AA
A + A

+ A + A
AA+AA+AA4A BD+AA+AA+A

Fig. 34. Self-reproducing process of a Loop (2).

361

362

[#,8,8,4,8)
[-,#,%,8,-]
[#,%,4,%,B]
[#,%,%,4,0]
[+,%,D,4,+]
[-,%,%,-,4]
[-,%,%,-,-
[+,D,#,+,A]
(#,#,%,8,4]
(#,4,8,D,%]
[D,%,+,+,A]
[+,D,A,+,%]
[D,#,A,+,+]
[D,#,B,+,#]
[-,%,-,#,%]
[-,%,-,-,4]
[-,%,--,-
[+,%,+,4,D]
[A,#,+,-,-]
[#,%,B,#,%]
[#,%,D,%,%]
[A,%,-,-,4]
[D,#,#,+,B]
[D,+,#,4,+]
[D,+,+,4,#]
[+,4,D,#,+]
[D,A,#,+,+]
[D,B,¥,#,+]
[+,A,+,#,D]
[A,-,+,%,-]
[D,A,+,+,#]
[D,B,+,#,#]
[A,-,-,#,+]
[-,-.%,%,2]
[-,-,#,%,-]
[-,-,#,-,-
[-,-.-.#,%]
[-,-.-,#,-]
[-,==,~,%]
[+,+,#,D,4]
[A,+,%,-,-
[D,+,+,%,A]
[+,+,4,D,8]
[D,+,A,#,+]
[D,+,B,#,#]
[A,+,-,-,%]
[D,+,#,#,B]
[#,B,%,%,8]
[#,D,%,8.8)
(D,#,#,8,+]
[A,-,#,+,-]
[A,-,~,+,%]
[D,#,+,B,#]
[+, 8, 8,%,5]
(A, #,-,#,+]
[B,#,%,-,+]
[c,-,#,#,+]
[+,#,%,%,%]
[A,#,8,%,4]
[B,#,#,%,+]
[C,#,#,+,+]
[A,-.%,+,4]
[A,#,%,+,4]
[B,#,-,+,+]

K. Morita, K.

L O O T O O O L L L L L L L T T T O L A O O I A A A I O A A A I A A

il il lnlw
HUHHEHEHHEERERERES

bt idbidiadt Y

[#,#,-,#,%]
[#,%,-,-,8]
[#,8,-.-,~

[#,8,4,+,8]
(#,#,4,+,D]
[#,%,B,#,4]
[#,#,D,%,%]
[#,#,D,+,4]
[#,#,D,4,+]
[#,%,%,+,4]
[#,%,4,+,4]
[#,+,8,8,4]
[#,+,%,%,A]
[#,+,#,D,4]
[#,+,A,%,%]
[#,+,4,4,D]
[#,+,4,%,8)
[#,+,4,D,8]
[#,+,D,%,A]
[#,-,%,4,%]
[#,-,%,%,-]
(#,-,%,-,-

{#,-,-,4,4]
[#,-,-,#,-1
[#,-,-,-,%]
[#,A,%,8,+]
[#,4,8,D,+]
[#,4,%,%,+]
[#,4,+,4,4]

BT T X e an
>g‘“

W R R R
+
i)

H
—

*

,+]
,A]
B)
c)
#
A

*

[mlmlnlmimlnimlelm

4, 4]
»=» 4]
[*,#,%,-,B]
[*,#,%,-,C]
[*,#,8,4,%]
De,8t,2,0,-]
[*,%,%,A,B]

»
’
»

Imai | Theoretical Computer Science 168 (1996) 337-366

[GBY]
(22)
(31)
(59)
(89)
(22}
(52)
(90)
31
(59)
(82)
(89)
(81)
(s7)
(22)
(52)
(51)
90)
(86)
(31)
(59)
(85)
(58)
(81)
(82)
(90)
(82)
(58)
(89)
(85)
(81)
(57)
(86)
(22)
(52)
(51)
(52)
(51)
(51)
(89)
(85)
(81)
(50)
(82)
(58)
(86)
(57)
31
(59)
(57)
(86)
(85)
(58)
)
(26)
@7
(28)
an
(20)
20)
(20)
(26)
(21)
(45)

[B,#,-,+,%]
[B,8,%,+,%]
[c,#,#,+,-]
[C,#,8,+,2]
[C.-,#,+,+]
[-,#,B,+,A]
[+,%,%,8,8]
[*,%,4,+,4]
[-,#,A,+,4]
[+,#,A,+,4]
[-,#,4,+,B]
[A, %, %,%,+]
[B,#,,%,+]
[C,#,»,%,+]
[7.9% X 3|
(A, #,%,+,+]
[B.#,%,+,%]
[B,#,,+,+]
[C,#,%,+,%]
[C,#,%,+,4]
[a,8,+,%,-]
[A,#,+,%,%]
[A,#,+,%,8]
[«,#,+,+,4]
(A,#,+,+,%]
[B,-,+,+,%]
[B,~,+,#,%]
[B,#,+,%, *]
[B,#,+,%,%]
[-.#,+,+,4]
[A,-,+,+,+]
[B,#,+,+,%]
[C,#,+,-,%]
[C,#,+,#]
[C,#,+,%, %]
[C,#,+,+,-]
[+,#,+,+,4]
[C,#,+,+,%]
[-,B,#,A,+]
[~,B,+,A,8]
[+,%,8,%,4]
[~,A,%#,8,+]
[*,4,8,+,+]
{-,A,8,+,4]
[+,A,#,+,4]
[*,4,+,+,#]
[-,4,+,+,%]
[+,4,+,+,%]
[-,4,+,B,%]
(A, ,2,8,+]
[B,*,%,2,+]
[C,*,8,8,+]
[A,*,#,+,%]
[A,*,#,4,4]
[B,*,#,+,%]
[B,*,#,+,4]
[C,x,%,+,#]
[C,*,#,+,4]
[A,*,+,8,4)
[A,%,+,+,%]
[A,*,+,+,4]
(B,*,+,%,8)
[B,*,+,+,#]
[B,*,+,+,+]

L O T T O T T s R A T A A A A A A A A A A N

[*,#,%,8,#]
[+,%,%,8,-1
[*,%,%,C,8]
[=,#,%,C,-]
[*,#,#,C,A]
[*,#,%,C,4]
[#,%,+,8,#]
[#,8,+,4,4]
[*,#,+,4,8]
[*,#,+,4,C]
[*,#,+,0,#]
[*,#,-,#,A)
[*,#,~,%,8B]
[*,#,~,%,C]
[*,%,-,4,%)
[*,%,-,4,4)
[*,#,-,B,#]
[+,%,-,B,B]
[*,%,-,0,4]
[+,%,-.c.C]
[*,8,4,%,8]
[e,%,4,%,-]
[+,8,4,-,2]
[*,%,4,4,+]
[*,#,4,4,-]
[*,#,A,B,%]
[e,#,B,%,8]
[*,#,B,%,-]
[*,%,8,-,8]
[*,#,8,4,+]
[*+,#,8,4,C]
[+,%,B,8,-]
[*,#,C,%,%]
[»,%,C,%,-]
[+,%,C,-,#]
[*,#,C,A,%]
[*,#,C,A,+]
[*,#,C,C,-]
[*,*,8,+,C]
[x,%,C,+,#]
[*,+,%,2,4]
[*,+,#,%,C]
[*,+,%,4,4]
[+,+.,#,B,4]
[*,+,#,C,4]
[*,+,A,4,8]
[*,+,4,8,¢]
[*,+,A,C,%]
[*,+,C,*,#]
[%,-,%,4,A3
[*,-,#,%,B]
[»,-,#,8,C]
[,-,#,A,#]
[*,-,%,4,A]
[+,-.%,B,#)
[*,-,#,B,B]
[*,-,%,C,%]
[*,-,%,0,C]
[*,-,A,%,%]
[*,-,A,4,%]
[*,-,A,A,4)
[*,-,B,%,%]
[*,-,B,B,#]
[+,-.B,B,B]

@n
(¢30]
(28)
(21)
(46)
(65)
an
(66)
(66)
(66)
(64)
(19)
(19)
(19)
(20}
(39)
(20)
(39)
(20)
39)
(26)
(19)
(21)
(67)
(40)
(45)
27
(19)
(¢33]
687)
(44)
(40)
(28)
(19)
1)
(46)
67)
(40)
(64)
(65)
amn
(65)
67
(67)
(67)
(66)
(66)
(66)
(64)
(21)
[¢3)]
@n
19
(40)
19)
(40)
(19)
(40)
(20)
39)
(38)
(20)
(39)
(38)

[C,»,+,#,#]
[C,*,+,+,#]
[C,*,+,+,+]
[a,+,%,-,%)
[A,+,%,%,+]
[C,+,-,#,+]
[e,+,8,4,4]
[A,+,8,+,%]
[A,+,#,%,+]
[x,+,4,%,+]
[-,+,4,8,+]
[+,+,4,8,+]
[A,+,*,%,#]
[A,+,%,8,4]
[A,+,%,+,+]
[, +,+,%,4]
{A,+,+,8,%]
[*,+,+,4,%]
[A,+,+,%,4]
[A,+,+,%,+]
(A, +,+,+,x]
[B,+,+,%,-]
[-,+,+,#,4]
[+,+,+,%,4]
[A,+,+,-,+]
[B,+,#,%,-]
[B,+,8,%, %)
[B,+,%,-,+]
[-,+,2,4,+]
[B,+,#,%,%]
[B,+,#,%,+]
[B,+,=,%,#]
(B,+,*,8,+]
[B,+,*,+,+]
[-,+,+,4,8]
A, +,+,+,-]
[B,+,+,#,%]
[B,+,+,%,#]
[B,+,+,%,+]
[B,+,+,+,%]
[C,+,-,#,8]
[C,+,#,#,x)
[+,+,#,4,4]
[C,+,#,*,%]
[C,+,#,%,+]
[A,+,~,+,+]
[-,+,B,#,4]
{-,+.4,4,8)]
{C,+,+,%,#4]
[C,+,*,%,+]

RN
[C,+,»,+,+]
[c,+,+,-,#%]
[+,+,+,4,8]
[C,+,+,#,%]
[C,+,+,*,#]
[C,+,+,%,+]
[C,+,+,+,%]
[e,#,8,8,4]
[#,8,8,%,-]
[+, #,%,+,%]
[x, 8,8, +,+]
[#,8,8,-,%]
[D,#,#,C,+]
[D,#,#,+,C]

Fig. 35. Complete list of 765 rules of SRg.

L A T L O T A A A A I A I A A O A A R A |

[*,-,C,%,8]
[+,-,C,C,#]
[*,-,c,c,cC]
[, 4,%,%,4]
[*,a,%,%,-]
[+,a,%,8,C]
[*,A,8,+,4]
(+,4,4,-,4]
[e,4,%,-,4]
[*,A,+,8,4]
[*,A,+,%,B]
[*,A,+,%,C]
[*,4,-,%,8]
[*,4,-,%,4)
[«,4,-,4,A]
[*,8,4,8,+]
[*,4,4,%,-]
[«,4,4,+,%)
[*,4,4,-,#]
[+,A,4,~,4]
[*,A,4,A,-]
[+,4,8,%,%]
[#,A,B,%,+]
[*,A,C,%,4]
{*,4,C,%,8]
[*,B,#,%,#]
[x,B,%,%,-]
[*,B,#,%,4]
[«,B,%,+,4]
(*,B,2,-,%]
[+,B,#,-,B]
[*,B,-,#,#]
[+,B,-,%,8]
[,8,-,B,B]
[*,B,4,+,#%]
[*,B,4,C,%]
[+,B,B,%,-]
[+,B,B,~,#]
(+,B,B,-,B]
[*,B,8,8,-]
[*,C,4,%,8]
[=,c,%,%,-]
[*,c,#,+,4]
(%,C,%,~,%]
[*,c,#,-,C]
[=,C,#,B,A]
[%,C,=,%#,+]
[%,C,+,#,%]
[*,C,~,#,%]
[*,c,-,#,C]
[*,c,-,C,c]
[*,C,a,%,#]
[*,C,A,+,%]
[+,C,c,#,-]
[*,c,C,-,4]
[+,c,C,-,C]
[*,c,c,6,-]
[+,%,%,%,%]
[+,8,8,%,+]
[+,8,8,%,%)
[+,8%,8,%,%]
[+,#,8,+,8]
[+,#,8,+,4]
[+,%,%,4,4)

(20)
(39)
(38)
(26)
(20)
(46)
(66)
(19)
(39)
(67)
(67)
(67)
(21)
(40)
(38)
(66)
(39)
(67)
(40)
(38)
(38)
(45)
(66)
(66)
(44)
@7
[¢10)]
(45)
(66)
(19)
(39)
(21)
40)
(38)
(67)
(44)
(39)
(40)
(38)
(38)
(28)
(20)
(66)
(19)
(39)
(44)
(64)
(65)
21)
(40)
(38)
(46)
(67)
(39)
(40)
(38)
(38)
29)
(13)
(29)
(48)
(13)
(69)
(70)

363

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Pl el e e o e e R o R e R i
EWONLOIFPI I~ OFNONONY
MO N m = R

NN RS RN INS A R NN NN
[l mbmimlwlalmbmbnbnlmbnlsblalmlmln
HOE B RN F S DO SRS ROR O
LA L R L mmU O

AN A NS A A~
NSNS WOW SO 0w
= Rk
Teoww 22222
Pl sl nimirairn
M+ RO+ +o#RFF

+ % on
MO OOLHH® R

i e M T e e i T T e W W Mo W i e T T M
oo e e I T o e e W s e e o s s e e e s s W e S W O v v e e e s i s e

EIN T I T O I R R T IO A A O

frabrl el ndiov koo ko Lom kom ol i el ool mislrel el mirallom fom Rl Sl syl o Lon Lol el o L vadon B o K vl nom B mdong B onEre ksl bl K el ey

rrrrrrrrrrrEn

+ P LS BRSSO+

"

+

o e ¥ W 4 L LW 4

A
A
A

+ -

- k] Lk Lk

SEESESSESSSE5S
rrrrrrrrtrrrrTETILLDY
R R DD YT YR E R Y YT Y
P L LI

< 0D KD D D)

- MO Mmoe % <o m

| % % «t <€ «¢ < 0 M M @

[v o e o e R i v e e e e P e 0 0 0 ' e o

))))))))))))))))))))
WOHN ™ OCOOWNONM MNP =M~ 0Q
L0 < MWD WWHNOVWIWNWIWWN W
Lz . LcELeEgegeeeEeegeEze
O) M e e Y) e e e o
A T O
B A AB L L LD N OO KL + <

*] (49)
*] (50)
*] (49)
t] (49)

R R e L T
NN ON® ™ ©N M~
OO WN YOO
SRR
Ll mimlm Il L Lt
HHrEROBE <=<mO

DLV VMO | HkdmmO O
Soo oSS58 582L855888°2
P e T N P N N NP
WHWONWOMNMOMWMHMNMNMOW
W OWOMWE WYY OMWWOON
—woCooTolIIIITIILEELTT
il il Il iyl Lyl
R e

¥ - [-
4 - [-
+] - [-
+)] — [-
+] — [~
- [

*] (47)
#] (48)

+] — [~

%] — [-

R A A R A R e e L L L LR T- T
L U U P L L UL L A L U UL A UL UL I Yo Ve

B R Y N R A T R e T Y N a g Y P L e Y e w s el w

LR R L L L L A L LR L R L L L]

,,,,, LR R L R R L L R L L L R E -)
« -+ A L L R L R TR L

* 4 1+ %I+ %)+ LR R)RR+ IS+ +HF | ¥FOmM
SooosLSoal oL LALLM LEEAFESLLASS

AN N N AN AN N N S o N N IS e S s N N I s S s s O S S A S S

MOV OO VD RONINRY-ONMNM ROV OUWSMNONNONEODDOOHNM

N OWMOOWOOL WD WWONWIWIWDWW WO NWIWWWD 0 Ral’z] Mo

(R AAVESAAAE AR AR RSB IANAAIAR AINRNR AP MR

[le Ivder Il i bl il Ll i bd e Ll i i s e el i i e L e
HIHLRCAROB R+ BTt RIDOR LR LW CH - 8 ®+ 00D
HHLCOMOORRLOOHER+ +OBREEROH L HH+ + + +F R E &+ + O

+EHEEBS
P L L T E E E E RS L R R
i AAELLAALBERASS
P e N NP NN
DO MOOOMNIWWWOOWNSONDNINDD
NP A OMOOWOOROMOORNF
SIITIIIISIIEEZIITES2CT
Pl Il b i i T
R RSO MO R S
LR E L L E E LR L EEE L E LN
R EEEEE L L LYY
M L L L RS IR T
AR AAAAAAASAANAAAAR
~ o mm
T W TR T Y YW WS R oY r
R L EEEEE L EEE TR Y
+ 4+ 4+ 1 OMOVVO+ Rt R

Tttt

]
—

B+ H+HS AR

rrrrrrrrn

H O R+ R+ 4+

rrrrrrrrrrrnnd

HOROOUH + 2+ 3% #3 +

HO O %+ OO E R R
s Yo Yl on RS PRIFRIY o ¥ s Trad Pla Pl PR F R Rl il

Fig. 35. (Continued)

K. Morita, K Imail Theoretical Computer Science 168 (1996) 337-366

364

o o N N S S O S S N o S S s s o o o o S N S N N P NN
WMHEH®OOMBOONMWNONMNWO LT ANNDHTNONWLNSTONDOWWODONNMNNIDMS FONBUWWOWOMANWNSPOMNSDOIDWNRHONWOW
- - PR R PN PV N
RN Ae R C R NN NN NN I NN NN PN RN NN AN A 2 2 2 R R R R
o T T e T 1 1 7 Y T P T T 0) Y e e = g e e e - Y e e) e)) T e) 1) e
A N R I H AN RO BEOR OB+ ((+HA HL+ HLBLLTHLr R IR O T HOBED+I RO+ +HO+BOBO + HO+ + B+ *

* _,AAAABBBE,C)C'.C;CyDvoﬁv“y_,«wy#awn#»aﬂ++y++AAAAB##*’#++++BBnD.,Rw#,aﬂ.,aﬂ-”y.o.n.—.,.?,+~.C)CrC.,C,aﬂ;«#y+,aﬂn#«w’
R e e e e e e e L e R b b St
e Y Y o Y o Fa R o P o R o PR A
Pttt T rrr T It Ittt ettt t i eIttt ittt

mome - - = = -] = == moeem
R T e T T T T Y E e YR T e e Y e R e e T e R T E R Y Y Y e T R YT E e Y e Y W T e m s T ow

B
#

Mmoo 4ol mm Mm@+ 4 N » m » DOVOLLLLDHO®ESOM
o W AN Fun Ruar P i Y o ¥ i e v e e 1 G P R R | Pl a Fid] ot BB e e o e S e
P e e ol e e el ol o e o e R R e e o e e L e e L e e i L R e o i R R T R R R R B R B Rt R Ry
DFOWAT NN N FLPTAFPFIAFSOLFIANNDOLDLAOONOLOLEFAISNDANNISEONFEOCOANTORIFIINLTNONON OO

N o N « P o [RSN o~ <« WO > w
NN N e N e M S N N M A S e e N N s e s S N S S S S N e S e N e N e e N S S s S A N S N N NN N S N S A N N S N S e N s e N
MEAP A E O A M I I e M M I M O M M S O I O D M O M O P S M S e E M S s r e e
+ @t ¥) MO O+ 4+ FRICENODOAOARR | BRI BOBOBER RS+ H+BO L+ RO+ HFTHEEISC<OOOHEBIHRMHEOR

e Yy e Y Y
Prt Tttt e T T Pt r It I I T T I T Ittt ettt ittt
=ittt inininini~d=ini il {~riniaininl ikl =ikt lbl ki teinininlagei it it ity
+‘#BBBBBB++++++*B*##"#“u¢,+++++++#..“BB++”BB¢‘BB+#Q*B&Q#“*'«“#+++++¢.+

VLM I DU S FRODOURLOCTEMOAM |+ MMOOHH ot $ODMOMOOD DO P M- OO MO N amm D
[/l vy v s e s R e R o e e i s S s P i 0 Y e W e S e v f e e e b e e Y [t W e A W W o e

8]

P o e L e e e el el ol s e o A e o e o o r o Y e o o e e e o e e e e Lo i i bl ke ke La b e R a e el]
WOWMNMM~MDOWONMMLEMENLRISCANNNINNNNE IO TNV ORVONNWE APONOWAWO AR NWLNSTON0LWW0 K
—“momm] "R MmMmmoN ©] + = «

N "t N N Mt N M N A e N e S S M e i P N N S e e e e N e N A e N M S M N A A M e N A S M S N S N N N S e S M A e S W N N
I P O S O P M O FI O I I A O I I O A Y O I I S O S I O S P S S S S I S M C A e S S S e M e e e e e eI
W | Ha BB RO MBOHORD | | +HE+ L+ 8 SR+ B+ M +OHEOAHED+OHDHE O+ HOHRO RO

- R e M B T e W B W e W W M e S W A i Wi e W e S s A 2 T B i W W i W W W Mo o s s e
fons o R v R R e s R e i i R s v o i e e e e

L300 T T T T T T T T T T A T A A O R R A R R B A AR

N eI O M Y D e o e e - T el — = —— —— -
o T A T T o T I . R R T T

A

oM< + S HFaamMN@OD@ODODOR | # 4+ R
[R Ve O e e A O e i e i R e e N e TP

Fig. 35. (Continued)

365

K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

N A N N s P S N N N S S S N N S IS 8 N S o o o~ o~
P N N O N o N N N S R R S QAN NS Gl Gl R GR S RS QR P
LWLV AEMSNAEODDWVELDLERNVDMAENSNOVWLVUEREWLNMNWVREWLSEDEMNNNMNOWVWWNSRLWOOMMMM MM RMWID NS WD MWL W MW
CLCLoooELLLEELL 2R LLESE L REREER LR E A BN
e P P N P I O D E M D) M e e TN Lo

T R R O T T i i i = vink whr i i mhmba bl s b sy
HHHL LS LD H L CH L LR L <+ L RHEE A LODOCHE S IMOUBHE L + HREBE RS RER L L8+ H L+ %S
P FE L+ 4 4+ 4+t AL L EDMBDOOHABBH B E AL B LTSS OOUBE BN+ + o+ F et MORE R <BHH T =

e ey Y oy e e o e Y Y g ey e e e ey e e N E e NN e T e R RSN Y R

L A O A A A O A O A O Y Y N A S N A S A

e =
Y Y e e e e e e e Y T T e e s e e W YO R T Y T YR E R e T s T w

D
D
D

LMOLA# | + NV #MMIOVO+OAANLMOAO < *¥M | O+ * | +MO < #$ O % | + %%) +mmimIiI OO0+ O 4
SOl Lo Shusuwooos SO LSSL8naL S oo L L onas A Es S oA LN AALLEALALERAE S
e o e o o e o oo o R o N N o e S DAy
M OOENOEOFNVOLAPIUNRNLEFOROLORONNWNSFONOTRLOEOEONWNSNFTONONDOOEWLSOHSHWDD W
R R R -+ EERKLWWOWWWw®H
N N e e A e S N N N D N e S e A S e e e S e N e e e S S e e e i e e e e S A e e e e e e e e e e o e e e e e S8
S M T R e e e e T O M S P R e O e e P Y Y T e e P P T e Y) e e e e T e e e T e e e e) e o
CHCHDOROROBRORE | HHE+ OB <+ R+ RIS+ + RO+ HOEME + M+ + RO+ HORO+ BO+ + HBEt DO+ + + +

SER2E R R B e e e e R e B e Rt S8 e R e BB s EEEE g8 E88sssdgsssa888888
RN RN R R AN R RN NN SN RN R N
TR TR TR TR T T EEN RS TE Y8R TR TCE RO TR TRERTCERTOR TR TORT e SRR TTTEEES

- DL Lt 4+ MomM@O#»omMmMOMOMDOLLLLD It MmO ewm DR
= saatibia s 88882428883 252228 LLLS8g2s5288
N N N N s N S s v N S S N N s A N S S S s s o S~ o~ o~ N~~~ -~
~ - Q RN e e ~ - M~ - [N S=E R R ~ - ~
e w T8 LT Ll el el lC8C T lEETZZZT e el 8 v uwuule
= - e I el i b rs —= —o -
g e Y Y U e e O T e A N e T Y e Y R W T S0 T el wanowww
LX 4+ 1 <dmmMUAN +t AR E RS CLOMMOUAY | HH L L LB S OB LOHIHE L REE U NBER L | << @mDOO DS
HEE B RBEREBEREE R+ L L LAt t i+t 444 | <A< LODDDOBOOOO D EE + HHEE LR KRN B EH SRR
L L L L L L I L L L L I I L T i NN aN N N S S SN
L2222 0 8222822222822l L8222 LR80L8828222288222885282828805885
- i n il e i e Dl
Y W O O ww e m e r e H e F COe F r 0 e D T n T T T TR e n e T BT w "

Oamo | me © ' -« m FMODLOO I | MO |
SBRELLASEAE SEE SRS LS SRR L LSS SARAAARLRRRLLASRR LSRR LSASS8RRs LRSS

Fig. 35. (Continued)

366 K. Morita, K. Imail Theoretical Computer Science 168 (1996) 337-366

Acknowledgements

The authors express their thanks to the referee for his valuable comments.

References

[1] C.H. Bennett, Logical reversibility of computation, /BM J. Res. Dev. 17 (1973) 525-532.
[2] E.F. Codd, Cellular Automata (Academic Press, New York, 1968).
[3] C.G. Langton, Self-reproduction in cellular automata, Physica D10 (1984) 135-144.
[4] N. Margolus, Physics-like model of computation, Physica D10 (1984) 81-95.
{5] K. Morita, Computation universality of one-dimensional one-way reversible cellular automata, Inform.
Process. Lett. 42 (1992) 325-329.
[6] K. Morita, Reversible simulation of one-dimensional irreversible cellular automata, Theoret. Comput.
Sci. 148 (1995) 157-163.
[7] K. Morita and M. Harao, Computation universality of one-dimensional reversible (injective) cellular
automata, Trans. IEICE Japan ET72 (1989) 758-762.
[8] K. Morita and S. Ueno, Computation-universal models of two-dimensional 16-state reversible cellular
automata, I[EICE Trans. Inform. Systems E75-D (1992) 141-147.
[9]1 J. von Neumann, Theory of Self-reproducing Automata A.-W. Burks, ed. (The University of Illinois
Press, Urbana, 1966).
[10] T. Toffoli, Computation and construction universality of reversible cellular automata, J. Comput.
Systems Sci. 15 (1977) 213-231.
[11] T. Toffoli and N. Margolus, Invertible cellular automata: a review, Physica D 45 (1990) 229-253.

