
e
UEVIER Theoretical Computer Science 168 (1996) 267-301

Theoretical
Computer Science

Small universal register machines

Ivan Korec

Mathematical Institute, Slovak Academy of Sciences, Stefbnikova 49, 814 73 Bratislava, Slovakia

Abstract

Several small universal register machines are constructed. The number of instructions vary
from 32 to 14, depending on the chosen instruction base and the chosen notion of universality.
The proof uses a special coding function for finite sequences of positive integers and some strong

classical results concerning distribution of primes.

1. Introduction and the main theorem

The notion of register machines will be discussed in details later, here they are

described only very briefly. Every register machine has a finite control unit and uses

finitely many registers from the infinite sequence &, Ri, R2, Each register contains

an (arbitrarily large) nonnegative integer. (The set of nonnegative integers will be

denoted by N.) Register machines work in discrete time and are deterministic (anal-

ogously as, e.g. Turing machines). Various classes of register machines differ in the

class of allowed one-step tests and/or operations. In our basic (and most usual) variant

of register machines the first three from the following possibilities will be used:

m Add 1 to the content of a register, Ri : = Ri + 1,

m] Subtract 1 from the content of a register, Ri := Ri 2 1. If the original

0
content of Ri is 0 it remains unchanged.

Ri Test whether the content of Ri is positive or not. The new inner state

depends on the result of the test.

(m) Test whether the content of Ri is positive or not, and subtract 1 from
the content of Ri in the first case. The new inner state depends on

the result of the test. (In essential, (RiZM) joins @ and WI,

and can replace both.)
To every n E IV and every R-machine M an n-ary partial function PM is associated;

we shall say that M computes it. To obtain the value y = @h(xi, . . . ,x,,), the machine

starts with xi,. . . ,x,, in the registers RI,. . . , R,, and with zeros in all other registers;

the initial inner state is q,. If the machine M halts in the inner state qa then the value

y is contained in Rc. Otherwise, e.g. by halting in another inner state, the value y is

0304-3975/96/$15.00 @ 1996 -EElsevier Science B.V. All rights reserved

PII SO304-3975(96)00080-l

268 I. Korecl Theoretical Computer Science 168 (1996) 267-301

not defined. It is well known that R-machines compute all partial recursive functions

(and only them, of course).

Let (&,4i, $2,. . .) be a fixed admissible enumeration of the set of unary partial

recursive functions (this is a classical notion, but we explain them in the next section).

Various approaches to the notion of universal machine differ in the type of allowed

coding. Now we shall provide only two variants:

Definition. (i) A register machine M will be called strongly universal if there is a

recursive function g such that for all x, y E N we have &(y) = $,(g(x), y).

(ii) A register machine M will be called universal if there are recursive functions

f, g, h such that for all x, y E N we have &(y) = f(@L(g(x), h(y))).

Typical functions f, h for (ii) are f(x) = log,(x), h(x) = 2’.

By [l 1,131 there are strongly universal R-machines with three registers and univer-

sal R-machines with two registers; these numbers of registers are minimal possible.

However, we shall not deal with the numbers of registers. The main question which

we shall study is

“How many instructions has the smallest universal R-machine?”

We do not hope to give a definitive answer but only some upper bounds; the situation

is similar as in small universal Turing machines. Further, the answer strongly depends

on the forms of instructions and therefore they are explicitly mentioned in the theorem

below. (The instruction codes used in (b4) will be explained in the next section.)

Main Theorem. (a) There are strongly universal register machines

(al) with 32 instructions of the forms [m, WI, ; 0 Rj

(a2) with 22 instructions of the forms m, m;

(a3) with 21 instructions of the forms m, 0 Ri , (m).
(b) There are universal register machines

(bl) with 29 instructions of the forms PI, m, ; 0 Rj

(b2) with 20 instructions of the forms m, (Ri;

(b3) with 19 instructions of the forms m, 0 pi , (Rim);
(b4) with 14 instructions of the forms (R1’pz).

The machines above can be (and will be) effectively constructed. The machine U32

for the statement (al) is displayed in Fig. 1. Later we shall see that “Stop” need not

be counted as an instruction.

The plan of the paper is as follows.

In Section 2 various variants of register machines and of their universality will be

discussed. Section 3 contains some necessary number theoretical results, e.g. concerning

distribution of primes. Also a special coding function F for finite sequences of positive

integers is introduced.

I. Korecl Theoretical Computer Science 168 (1996) 267-301 269

.
i Instruction reader

1

.

.
I

.

.

.

. .

. .

. .

.

.

. .

. .

. .

. .

.

. .

.

. .

. .

. .

931

R3P

: Simulation block Decoder : .

Fig. 1. The universal register machine U32.

The proof of the part (al) of the Main Theorem will be divided into three following

sections.

(1) In Section 4 the so-called R3a-machines are investigated. We prove that ev-

ery unary partial recursive function is computable by an R3amachine. We shall use

the classical idea from [13] or [111, but the proof will be a little tricky because the

instruction base of R3a-machines is rather artificial.

(2) In Section 5 we introduce enumeration of (some) R3a-machines and explain

how the machine Us2 simulates them. The content x of Ri will be considered as the

270 I. Korecl Theoretical Computer Science 168 (1996) 267-301

number of the simulated R3a-machine M,. The simulation is correct only for some x;

let us call them “good”, and let us denote the set of all “good” x by W.

(3) In Section 6 we prove that every R3a-machine M is equivalent with an R3a-

machine M, with the number x E W (in the sense that they both compute the same

unary partial function). A construction of M, (and of x) will be given. However, the

proof that the construction is resultative (after a formalization: a minimalisation used

here is regular) needs some strong results about distribution of primes. The proof of

(al) will be finished by application of Chinese Remainder Theorem.

In Section 7 the remaining parts of the Main Theorem (except (b4)) will be proved.

The necessary machines are easily obtained from UQ. Also a strongly universal reg-

ister program (defined below) with 42 instructions is presented; it is obtained by a

transformation of Us2. The part (b4) is considered in Section 8. The last two sections

contain some remarks about lower bounds, other variants, etc.

2. Variants of register machines and of their universality

The aim of the present section is to give an overview of variants of register ma-

chines which has been considered in the literature (preferably in textbooks) or will be

important for the present paper. A similar overview will be given about the notion of

universal register machines. Of course, the presented overview will not be complete.

No formal theory of classes of register machines will be build, hence general defini-

tions here need not be given very strictly. However, at least those concrete classes of

R-machines which will appear in the theorems must be defined precisely.

Register machines (R-machines) use registers from the infinite sequence of registers

Ro,Ri,Rz,.... Every R-machine really uses only finitely many of them but we may

imagine that it has as many registers as it need. Each register contains an (arbitrarily

large) nonnegative integer (but we may assume that at each moment only finitely many

registers contain nonzero integer). We shall say that a register is empty if it contains

zero. We shall usually use the same symbol for a register and its content. Besides these

registers a register machine has a finite control unit. R-machines work in discrete time

and are deterministic. In every step an R-machine can tests the contents of registers,

and can change these contents and the state of its control unit (called also “inner

state”). The inner states will be chosen from the infinite sequence qs, qi, q2, qs, . . .; this

restriction is not substantial but it is technically suitable. From similar reason we shall

fix the start state q, and the final state q,,.

The strength of a class of R-machines depends on the chosen instruction base. If

we allow very strong instructions then the obtained class would not correspond to

the (informal) idea of register machines. From the obvious reasons we do not con-

sider any non-recursive operations. However, even some primitive recursive operations

could enable such “R-machines” to simulate, e.g., many-tape many-dimensional Turing

machines in real time (and we do not wish that). It also seems reasonable not to allow

any strong arithmetical operations (to avoid random access machines) as well as any

I. Koreci Theoretical Computer Science 168 (1996) 267-301 211

second-order addressing (to avoid RASP machines, “random access stored program”).

We allow only very elementary operations and tests, each with a small number of reg-

isters. (The bound, e.g. at most 2 or 3 registers in one instruction, concern the class of

machines, and not only a particular machine. For the classical R-machines it is equal

to 1.) We shall usually speak simply about operation codes instead “operation and test

codes”. We can see that some operation codes contain parameters which must be re-

placed by numbers of registers (they can be considered as “schemes of codes”); some

other do not contain such parameters, and are used always with the same registers.

Although the operation codes are composed of several letters or digits (to remember

their semantics more easily) they ought to be understood as unique symbols.

Various classes of R-machines differ in the class of allowed one-step operations.

Four operation codes m, WI, Ri , (RiZM) were introduced in the previous 0
section; we shall also use the following ones:

pi := 01

(Ri

(R1’pz)

(R20ZM)

(R3ZMOP)

LR23pI
IRo23pI

(ROP2ZM)

(ROM3ZM)

(R23poz)

(R023)

(R02ZM)

Assign the content of Rk to R;; the content of Rk is not changed.

Assign 0 to Ri.

Test whether the contents of the registers Ri, Rk are equal. The new inner

state depends on the result of the test (it is 4k2 by equality).

Test whether the contents of the registers Ri, Rk are equal. If yes, put 0

into Ri, otherwise add 1 to Ri (the content of Rk is not changed). The

new inner state depends on the result of the test; it is e(z if the original

contents of Ri, Rk were equal, Q, otherwise.

The instruction tests whether Rz = 0 and if yes, it tests whether R,, = 0.

If a positive content is found, 1 is subtracted from it. The next inner state

will be Q, if R2 was positive or if both R2, & contained zero. Otherwise

the next state will be Q~.

The instruction tests whether R3 = 0 and if yes adds 1 to &; the next

inner state will be ec,. Otherwise 1 is subtracted from Rs and the next

state is Q,.

The instruction adds 1 to both R2 and Rs; the next inner state will be qj.

The instruction adds 1 to all three registers &, R2 and R3.

The instruction adds 1 to Rc and then performs (R2ZM).

The instruction subtracts 1 from Re (if possible) and then performs.

(R3ZM).

The instruction adds 1 to both R2, R3 and then tests whether & is empty

(like @).

If the contents of all three registers &, R2, Rs are positive, 1 is subtracted

from every of them, end the next inner state will be Q,. Otherwise the

contents remain unchanged and the next inner state is Q,.

Like above, but only with the registers &, R2.

Most of the operation codes above are collected from some textbooks, e.g. [ll, 131.

We have used rectangles m for purely operational codes of instructions with n = 1

272 I. Korecl Theoretical Computer Science 168 (1996) 267-301

in definition (2.1) and hexagons () (or rhomboids 0) for instructions (2.1)

with n >2, i. e. containing tests. (The bigger forms will be used in flowcharts, the

smaller one in the text and formulas.) In flowcharts the arrows corresponding to Q,

will be denoted by ‘z’ (from “zero”).

Remark. Rather artificial codes (m) , (w) , m corresponds to the

activity of the simulation block of U 32, see Fig. 1. The role of other artificial codes is

similar.

Definition 2.1. (i) Instructions of register machines will be ordered (n + 2)tuples of

the forms

(2.1)

where X is an operation code, n is determined by X (usually n d 2) and j, kl, . . . , k,,
are nonnegative integers.

(ii) A register machine is a finite set of instructions which does not contain two

distinct elements with the same first component.

(iii) A class of register machines can be specified by the set of allowed operation

codes and by the conditions on j, kl, . . . , k, (which may be formulated for the whole

machines).

We can consider the first component of every instruction (2.1) as the address where

the other components (the operation code and the next addressee(s)) can be found.

The condition in (ii) expresses that register machines are deterministic. The parts (i)

and (ii) can be considered as real definition (provided we ask that X is taken from

the list above or another similar fixed list). However, the part (iii) only shows an

idea, and cannot be a base for a theory. Some conditions can be formulated for single

instructions. However, some other (e.g. that concerning the forms of allowed flowcharts,

in particular: allowed jumps) must consider whole machines.

If a class of machines is specified we can speak about their computations as finite

or infinite sequences of con$gurations. We shall omit these trivial but tedious con-

siderations. Further we can determine the computed (partial) functions @k for M

from the considered class and suitable II (usually at least for n = 1, very often for all

n E N). We shall do that like in the previous section; any change will be explicitly

mentioned. The computations which are used to compute values of !#$, called normal
computations (the considered values n must be clear from the context). In particular,

they usually start in the initial state q,.

2.2. Variants of register machines

2.2.1. Classical register machines use all instructions (2.1) for

There are no special restrictions on i, j, kl, kz.

I. Korecl Theoretical Computer Science 168 (1996) 267-301 213

2.2.2. Modijied register machines are defined similarly, only we use

x E {piq,(RzKQ}.

2.2.3. The class of machines used in (a3) and (b3) of the Main Theorem is specified

by

XE {IRIP,@,(RiZM)}.

It is not so nice that the two classes above because the set of operation codes is

superfluous: it can be reduced without any change of the strength of the class. We do

not introduce a special name for them.

2.2.4. A class of register machines well corresponding to the unlimited register
machines of [19] uses

(the corresponding codes used there are Z(i), S(i), T(i,k), J(i, k, kz)). The instructions

are linearly ordered (so that they are enumerated by positive integers 1,2,3,. .) and

are executed in this order unless a conditional jump is performed. This fact can be

expressed by the condition kl = j+ 1 in (2.1). Like above, there is no stop instruction;

the machine halts when it ought to perform a non-existing instruction. Notice that in

this case we could rather speak about programs than about machines.
2.2.5. The same as in 2.2.4 can be done also with the instruction codes from 2.2.1.

We shall use the term register programs for the obtained machines. (In 2.2.4 we

preserved the term used in the literature.)

2.2.6. A class of register machines well corresponding to the bar bones programming
language of [l] uses

X E {IRiPJ,m,@};

the book uses incr i and deer i for the first two instructions. For the control WHILE

statements with conditions Ri = 0 are used; otherwise the instructions are performed

in the given order. We can simulate that by the condition kl = j + 1 (which will hold

with some exceptions). WHILE statements can also be simulated, but we must ask

that the jumps are nested in suitable way (some conditions on the allowed form of the

flowcharts can be formulated).

2.2.7. A very similar class of register machines can be associated to the abacus
machines of [2]. The book uses symbols ai and si for the first two instructions, and

(. . .)k for the WHILE statement with the condition Rk = 0.
2.2.8. R3-machines use three registers b, R2, R3 and

There are also some specific conditions on the subscripts in (2.1); the most important

is k2 = kl + 1 whenever n = 2, the other, e.g., arrange that an R3-machine never halts

214 I KoreclTheoretical Computer Science 168 (1996) 267-301

in a nonfinal state. R3-machines compute all unary partial recursive functions (they use

R2 as the input register). They roughly correspond to the operator algorithms with the

operations : 2, : 3, : 5 and x30. (They would correspond better if the condition k2 =
kl + 1 is omitted.) R3-machines were used in [4] to construct a (strongly) universal

register machine with 37 instructions. (The register Rt was deleted on purpose; the

universal machine uses it for the number of the simulated R3-machine.)

2.2.9. R3a-machines are similar to R3-machines above, and they also will be used

similarly. They use the same three registers but use operation codes

Specific restrictions (also similar to that of R3-machines) will be discussed in Section

4. This rather artificial class is only introduced to prove the Main Theorem. (In the

name “R3a-machines” the digit 3 expresses the number of used registers and “a” is

used to distinguish the class from the previous one; below we shall continue similarly.)

2.2.10. R3b-machines are very similar to R3a-machines; they use

x E {(ROP2ZM),(ROM3ZM),(R23POZ)}.

They are in some sense nicer than R3a-machines, and they could be used to prove

(al) and (bl) of Main Theorem. However, they are not so suitable for the proof of

the other parts. The corresponding machine U& can be obtained from Us2 if we replace

the original simulation block by that given in the left-hand part of Fig. 8.

2.2.11. R3c-machines are similar to R3-machines but the used operation codes are

They roughly correspond to the operator algorithms with the operations x2, x3, x5

and :30.

2.2.12. R2-machines use the registers &, R2 and

XE {(ROZM),m,)}.
They compute all unary partial recursive functions on the set (2’ 1 x E N} of the

powers of 2. Hence they compute all unary partial recursive functions provided the

input or output x is coded as 2”. They are used in the proofs of the parts (blt(b3) of

the Main Theorem (and were used similarly in [4]). Like R3-machines, they use R2

as the input register. They correspond to the operator algorithms with the operations

12, 13, and x6.

2.2.13. R2a-machines use the registers I?), R2 and

They compute all unary partial recursive functions on the set (2” 1 x E N} of the

powers of 2. Hence they compute all unary partial recursive functions provided the

I. Korecl Theoretical Computer Science 168 (1996) 267-301 215

input or output x is coded as 2’. Like above, they use R2 as the input register. They

correspond to the operator algorithms with the operations x2, x3, and : 6.

2.2.14. R2b-machines use the registers IQ, R2 and

x E {(ROPZ:R2),(R2PZ:}.

They must use the same register for input and output; let it be the register &. Also

the condition k2 = kl + 1 is required. R2b-machines do not compute (without coding)

all unary partial recursive functions on any infinite (recursive) subset of N because

max(&, R2) cannot decrease during any computation. However, they compute all unary

partial recursive functions if we use “the exponent of 2 in the factorization of x” for

the output decoding. They are used in the proof of the part (b4) of the Main Theorem.

The classes of machines 2.2.1-2.2.7 are in some sense natural. Some of the further

classes of machines are rather artificial; they may be useful in some proofs but they

are not suitable, e.g., as a basic model for teaching.

At some places above operator algorithms were mentioned. They are considered

e.g. in [111. An operator algorithm works with one non-negative integer variable x and

it iteratively applies given operations and tests on it (so it could be considered as a

one-register machine, but the operations are rather strong). The operation :n means “if

nix then divide x by n, otherwise do not change it”, and the next inner state depends

on the test; the meaning of xn is clear. The idea of operator algorithms with the

mentioned instructions is standardly used in simulation of many-register machines by

two-register ones (we shall also use it).

Now we shall consider various variants of the notion of universal register machines.

Let (~$0, 41, 42, . . .) be a fixed admissible enumeration of the set of unary partial recur-

sive functions. (For example, 4i can be the unary partial recursive function computed

by the ith Turing machines; we can consider any usual variant of Turing machines,

any usual I/O codings and any usual enumeration of chosen Turing machines. We can

also effectively enumerate the classical R-machines defined above, and define di as

the unary partial function computed by the ith R-machine.) Various approaches to the

notions of universal partial function and universal machine differ in the type of cod-

ing. The difference is often unimportant when a general theory is developed, but may

be very substantial when the number of instructions is studied. For R-machines we

shall provide several variants (for the completeness we repeat also the variants from

Section 1).

Definition 2.3. (i) A register machine M will be called strongly universal if there is

a recursive function g such that for all x, y E IYJ we have &x(y) = @$(g(x), y).

(ii) A register machine M will be called 2-universal if there are recursive functions

h, g such that for all x, y E N we have &.x(y) = @L (g(x), h(y)).

(iii) A register machine M will be called 3-universal if there is a recursive function

g2 such that for all x, y E N we have C&(Y) = @L(g~(x, y)).

(iv) A register machine M will be called 4-universal if there are recursive functions

f,g such that for all x, y E N we have &(y) = f (@L(g(x), y)).

276 I. Korecl Theoretical Computer Science 168 (1996) 267-301

(v) A register machine M will be called universal if there are recursive functions

f, g, h such that for all X, y E N we have &(y) = f (@‘&(g(x), h(y))).

(vi) A register machine A4 will be called 6-universal if there are recursive functions

f, g2 such that for all x, y E N we have &(y) = f (@h(gz(x, y))) .

(vii) A register machine A4 will be called 7-universal if there are k E N, a unary

recursive function f and binary recursive functions gi, . . . , gk such that for all x, y E N

we have

cur> = f (~(gl(X,Y),...,gk(X,Y))).

(viii) A register machine M will be called &universal if

{~y.~~(x,y)Ix~~}={~,IxE~}.

Of course, we shall not deal with all notions above; we only wanted to show a

wide spectrum of possibilities for the notion of universality. Obviously there are also

well-acceptable weaker notions which also suffice, e.g., for undecidability of halting

problem. The machines satisfying (iii), (iv), (vi), (vii or (viii) will be also called)

weakly universal (for (ii) it is better to say “universal”). In (viii) we use i notation;

the left-hand side consists of all unary partial functions obtained from @M(x, y) when

the first argument is fixed. The function h is input coding function and f is output

decoding function. The definition above allows f, h to be general recursive (but total).

Sometimes they are asked to be primitive recursive but such restrictions seems to be

unnecessary; on the other hand, in concrete cases only primitive recursive functions are

usually used. We may not allow f, h to be arbitrary partial recursive; in such case the

machine A4 need not compute anything nontrivial. Concerning the functions g, gi, we

cannot reasonably restrict them to primitive recursive functions because the admissible

sequence is defined only up to recursive isomorphism. (We shall not consider the

possibility of special choice of (&,4i, 42,. . .).)

We can summarize this section as follows. The answer to our main question (on the

minimal number of instructions of universal register machine) depends on:

(1) The allowed operation codes. Here we also determine the used registers. We

may allow different possibilities for different registers.

(2) The chosen flow control. There are following possibilities:
_ Arbitrary flowcharts allowed. (This approach is usual in theoretical computer science.

It was used for Turing machines, finite automata, pushdown automata, etc., hence

we can consider it as the most natural also for register machines.)
_ The instructions are linearly ordered, and are executed in this order until a jump

instruction (maybe, a conditional one) is reached. We can speak about programs (it

is only a terminological question).
_ Structured programs of various kinds, e.g. WHILE cycles allowed.
_ Other restrictions. For example, the instructions are linearly ordered, and conditional

instructions must always choose one of two consecutive instructions; R3a-machines

will belong there.

I. Korecl Theoretical Computer Science 168 (1996) 267-301 271

(3) The chosen notion of computed functions; it mostly depends on the input and

output coding. Since we consider number functions we can put arguments directly to

some registers, and leave the other registers empty. We shall say in this case that no

input coding is used. Analogously, the result can directly be found in a register; we

shall say that no output code is used. However, we also can use a (nontrivial) input or

output coding or both; so we have four possibilities. Usually, the concrete subscripts

of input/output registers are not important, but it may be important whether the output

register coincides with one of the input registers or not. (However, the equivalence of

registers can be destroyed in (1).) In any case, we shall fix I/O coding (including I/O

registers) for every considered class of machines.

(4) The chosen notion of universality of machines, which is usually related to the

notion of a universal partial recursive function. (However, the relationship need not be

so direct.) The concrete subscripts of input/output registers are not important (provided

that the equivalence of register was preserved in (1)). However, it may be important

whether the output register coincides with an input register or not.

By Church thesis we have a big freedom in the choice of above when we want to

study (partial) recursive functions. However, very small details can change the numer-

ical answer to the question above.

3. Number theoretical preliminaries.

N will denote the set of non-negative integers. We shall use the symbols DIV and

MOD for the quotient and the rest by integer division. The integer part of a real x will

be denoted 1x1. The number of primes not exceeding x will be denoted n(x); it is well

known (see e.g. [151) that z(x) is asymptotically equal to x/(ln x); some less known

results are contained in Theorem 3.3. We shall also need the following functions (not

so commonly used).

Definition 3.1. For all x, y E N we denote

(3.1.1) MaxPr(x) =
the maximal prime divisor of x, if x > 1,

0 otherwise;

(3.1.2) ndky) =
the yth non-divisor of x, if x # 0, y # 0,

(3.1.3) F(x, y) = (x + 1) MOD nd(x + 1, y).

To illustrate the definition, let us give several examples. We have MaxPr(30) = 5,

MaxPr(17) = 17. Now let us compute F(29,4). Since,

nd(30,l) = 4, nd(30,2) = 7, nd(30,3) = 8, nd(30,4) = 9,. . .

we have F(29,4) = 30 MOD nd(30,4) = 30 MOD 9 = 3.

278 I. Korecl Theoretical Computer Science 168 (1996) 267-301

The function MaxPr, nd, F obviously are primitive recursive (cases for small ar-

guments were written only to arrange that). The function F will be used as a coding

function, similarly as the Gijdel’s coding function

&, _Y) = l(X) Moo (1 + (J’ + 1) . r(X))

(where 1, r are suitable pairing functions) is usually used. The only advantage of F is

that we can compute it with a smaller number of instructions.

Lemma 3.2. For every finite sequence (al, a2,. . . , ak) of positive integers there is

x E N such that

F(x,i)=ai for all i= 1,2 ,..., k.

Proof. Let us take k primes p1

for all i = 1,. . , k. The number

of congruences:

x+1 ~ai (mod pi)

< p2 < . . . < pk such that pk < 2pt and pi > ai

x can be obtained by solving the following systems

for i = l,...,k;

In pk
x+1 ~0 (modp’), wheree- ~ I 1 In P

for all other primes p < pk.

By the second part (and the inequality p1 < p2 < . . . < pk) the only non-divisors

of x + 1 not exceeding pk are ~1,. . . , pk. By the first part they all are non-divisors

of x + 1 and, therefore, we have nd(x + 1, i) = pi for all 1 <i< k. Then the first

part arranges F(x, i) = (x + 1) MOD pi = ai. The moduli of the presented system of

congruences are pairwise relatively prime, hence the system is solvable by Chinese

Remainder Theorem. 0

We shall need the following results about distribution of primes; they are only easy

reformulations of deep number theoretical theorems.

Theorem 3.3. For every E > 0, a 30.55, 1 > y > g and 1 > 6 > Q we have

lim sup (rr(N + NE) - rc(N)) = co;
N+O2

Jim (7c(N + IV’) - n(N)) = 03;

liminf4~+~Y)--(w>~.

N-CC N; -
In N

’ 177’

Nlim, n(N+N”) - n(N) = 1
N”
In N

Proof. The first result can be derived from the asymptotic formula for rc(n). (We can

also replace N” by, e.g., (In N)l+&.) To prove the second result we use the statement

I. Korecl Theoretical Computer Science 168 (1996) 267-301 219

from [15, p. 1601 that for every r20.548 and all sufficiently large N there is a prime

between N and N + N’. The third result can be found in [5], and the fourth one in

[3, p. 196 of Russian translation]. 0

Theorem 3.4. Let us denote

A(N,p)= {x E N 10 < x<NAMaxPr(x) > ND}.

Then for every real ,i3, i < /? < 1 we have

Nlim,
card A(N, p)

N = In A,
B

Proof. Since fi> i every x E A(N, /I) has exactly one prime divisor greater than Nfl.

Therefore, the set A(N,/?) can be divided into pairwise disjoint subsets of multiples of

these primes. The number of multiples of a prime p>NB in A(N, /?) is equal to [;J

and, hence,

(The summation subscript

we shall use the formula

,5x; =lnlnx+Bt

where B is a constant; see

p here and below runs over primes.) To estimate the sum

[15, p. 1061. Remember that O(f (x)) denotes a summand

with absolute value not exceeding C . f(x) for a constant C. Using this notation, we

have

N,f$,[$] = ’ ’ +“k%, =N’N,,;<N; +‘(&) ~fl<p<~P

=N. (lnlnN-lnlnNb+o(&)j +o(&)

=N.ln ~+O(&)=N.ln~+O
B

This immediately gives the statement of the theorem. 0

4. R3A-machines

These machines are rather artificial and the only purpose to introduce them is their

role in our construction of the universal R-machine U32 (and some derived ones). Their

inner states (again) will be qO,ql,qt,. . ., the start state q, and the only final state will

be q,,. As we shall see, the fixed sequence of inner states is now much more substantial

280 I. Korecl Theoretical Computer Science 168 (1996) 267-301

than it was for the basic variant of R-machines. R3a-machines will use three registers,

Rc,, R2 and Rs. The register Ri is omitted on purpose because the R-machine Us2 will

use it for the number of a simulated machine. (Its content will not be deleted when

writing R3a-configurations, but it remains constant and plays no role in the tests during

a computation.)

Definition 4.1. An R3a-machine is a finite set of ordered triples resp. quadruples of

the forms

j, k E N, which does not contain two distinct elements with equal first components and

which satisfies the conditions:

(1) q,, is not the first component of any instruction;

(2) if qj, j # 0 is the third or the fourth component of any instruction then q, is

also the first components of some instruction;

(3) no instruction has the form (qj, (R20ZM) ,qc,,q,).

The triples or quadruples above will be also called R3a-instructions, or simply in-

structions. Conditions (1 >-(3) are only technical and do not influence the computational

strength of R3a-machines. They will be useful by the enumeration of R3a-machines.

The definition of computed unary functions must be modified so that Rz (and not Ri)

is used as the input register. If an R3a-machine stops it will always give a result (in

the register &). Hence, a non-defined value always requires an infinite computation.

Theorem 4.2. Every wary partial recursive function is computable by an R3a-

machine.

Proof. We prove a more effective statement than that formulated in the theorem.

Namely, we shall show how to construct an R3a-machine which computes a given

partial function f (where f is given by its index or, e.g., by a Turing machine which

computes f). We shall use the standard techniques (described e.g. in [1 l] or [131).

The computation of any partial recursive function f(x) will consist of three stages:

(1) Computing 2X from x.

(2) Computing 2f@) from 2’; this part will not finish if f(x) is not defined.

(3) Computing f(x) from 2f@).

The stage (1) will be performed by the flowchart in Fig. 2. (The only change will be

that the non-zero subscripts of qi will be enlarged by an additive constant; the constant

depends on the computed function.) This part transforms

(91; O,GGO) into (q9; O,z, 0,2’).

Table 1 contains an example of computation for x = 2 where all typical cycles can

be found. If an arrow is directed into a bullet l then it will be never used in any

reasonable computation, e.g. any one from the initial state. (However, by the definition

I. Korecl Theoretical Computer Science 168 (1996) 267-301 281

of R3a-machines these arrows are directed to some instructions, which can easily be

found be the labels qj. The bullets only help us to understand the activity of a machine.)

Notice that the content of R2 is transferred into Rc, in the first part of the computation.

Further, notice that the instruction q14 indeed tests only whether Rc = 0 (because

R2 = 0 can be predicted). Hence, the arrow labelled by “z” corresponds to non-zero

content of RQ in this case.

Let us consider the stage 2 now. The left part of Fig. 3 contains several “macro-

instructions” for R3a-machines and its right part contains translations of these macro-

instructions into the original R3a-instructions (or previously defined macroinstructions).

Table 1

The computation of the block from Fig. 2 for x = 2

0: (ql; 0, 9, 2, 0)

l:(q2; 1,9,2,0)

2: (q3; 1, 9, 1, 0)

3: (q2; 2, 9, 1, 0)

4: (q3; 2, 9, 0, 0)

5: (q2; 3, 9, 0, 0)

6: (q4; 2, 9, 0, 0)

7: (q5; 2, 9, 1, 1)

8: (q14; 2, 9, 0, 1)

9: (ql0; 1, 9, 0, 1)

10: (qll; 1, 9, 0, 0)

11: (q6; 1, 9, 1, 1)

12: (q7; 1, 9, 1, 0)

13: (q8; 1, 9, 2, 1)

14: (q10; 1, 9, 2, 0)

15: (q12; 2, 9, 2, 0)

16: (q13; 2, 9, 1, 0)

17: (q15; 2, 9, 2, 1)

18: (q12; 2, 9, 1, 1)

19: (q13; 2, 9, 0, 1)

20: (q15; 2, 9, 1, 2)

21: (q12; 2, 9, 0, 2)

22: (q14; 1, 9, 0, 2)

23: (ql0; 0, 9, 0, 2)

24: (qll; 0, 9, 0, 1)

25: (q6; 0, 9, 1, 2)

26: (q7; 0, 9, 1, 1)

27: (q8; 0, 9, 2, 2)

28: (q10; 0, 9, 2, 1)

29: (qll; 0, 9, 2, 0)

30: (q6; 0, 9, 3, 1)

31: (q7; 0, 9, 3, 0)

32: (q8; 0, 9, 4, 1)

33: (ql0; 0, 9, 4, 0)

34: (q12; 1, 9, 4, 0)

35: (q13; 1, 9, 3, 0)

36: (q15; 1, 9, 4, 1)

37: (q12; 1, 9, 3, 1)

38: (q13; 1, 9, 2, 1)

39: (q15; 1, 9, 3, 2)

40: (q12; 1, 9, 2, 2)

41: (q13; 1, 9, 1, 2)

42: (q15; 1, 9, 2, 3)

43: (q12; 1, 9, 1, 3)

44: (q13; 1, 9, 0, 3)

45: (q15; 1, 9, 1, 4)

46: (q12; 1, 9, 0, 4)

47: (q14; 0, 9, 0, 4)

48: (q9; 0, 9, 0, 4)

RSZMOP l

Z

'14 45

R23P R20ZM -z”
I

914 5
47 R20ZM -

%
R23P R3ZMOP

Z
,

I

Z

. ,"" R3ZMOP

411

R23P

Z

415

. Z RSOZM

I

413 912

R23P

T

- q9

Fig. 2. The block of R3a-machines for 2x

282 I. Koreci Theoretical Computer Science 168 (1996) 267-301

Fig. 3. Macroinstructions in R3a-machines.

The bullets l are used as above. To understand the fourth macroinstruction, remember

that the left part is an R3a-instruction only if it = m+ 1. Otherwise we have a branching

not allowed by the definition of R3a-machines. However, we can replace such general

branching by seven original instructions (every GOT0 replaces three instructions, as

is shown above). Of course, we shall generalize the instruction (m similarly.

Then we can use inner states as freely as we could in the original R-machines.

The first two “macroinstructions” are the instructions m for i = 2 and i = 3. If

we could similarly translate all three instructions m,mj, Rj for all i = 0,2,3 0
then we could use this fact to prove that R3a-machines compute all (unary) partial

recursive functions. However, such translations do not exist in general (at least such

simple ones). Therefore, we have to prove the theorem in a modified way.

In the second stage we can use only two counters R2, Rs in essential, but we can

imagine 2X as e.g. 2X .3’ .5’ ’ pi, and the exponents can be considered as contents

of IZ registers. To work with them, we must be able to multiply and to divide by some

constants; the necessary (schemes of) blocks are given in Fig. 4. The upper block

performs multiplication, more precisely, it transforms

(qi; YAOJ) into (qj; y + l,z,ax + b,O).

The lower block performs division; it transforms

(q; y + 1,.&&O) into (qj; y,z, 0,x mv d),

where qj depends on x MOD d. Notice that the non-zero content of one of the registers

is (modified and) transferred from one register to the other. The opposite transfers

(without modification) can be obtained by the choice a = 1, b = 0, d = 1.

I. Koreci Theoretical Computer Science 168 (1996) 267-301 283

The third stage need not depend on f (similarly as the first stage), and the block

for it is given in Fig. 5; macroinstructions are not used. The block transforms

(q14; 0,2,0,2’) into (90; X,z,O,O).

However, if we remove the bullet under the vertical arrow from qs,, (and if we direct

the arrow back to qss) then 2X can be replaced by arbitrary 2” . (2~ + 1) in the formula

above. (In other words, the block computes the exponent of 2 in the factorization of

Rs.) Table 2 contains the computation for 2’ = 4. 0

/
%

R2P

b times

b-1 1-1 k-C’+ R2P ... R2P R2P R3ZMOP z qJ

. /
a times

d times

Fig. 4. Multiplication and division by constants in R3a-machines.

Table 2

The computation of the block from Fig. 5 for x = 4

0: (q24; 0, 9, 0, 4)

1: (q25; 0, 9, 0, 3)

2: (q29; 0, 9, 0, 2)

3: (q28; 0, 9, 1, 3)

4: (q24; 0, 9, 1, 2)

5: (q25; 0, 9, 1, 1)

6: (q29; 0, 9, 1, 0)

7: (q28; 0, 9, 2, 1)

8: (q24; 0, 9, 2, 0)

9: (q26; 1, 9, 2, 0)

10: (q27; 1, 9, 1, 0)

11: (q23; 2, 9, 1, 0)

12: (q21; 2, 9, 2, 1)

13: (q22; 2, 9, 1, 1)

14: (q23; 2, 9, 0, 1)

15: (q21; 2, 9, 1, 2)

16: (q22; 2, 9, 0, 2)

17: (q24; 1, 9, 0, 2)

18: (q25; 1, 9, 0, 1)

19: (q29; 1, 9, 0, 0)

20: (q28; 1, 9, 1, 1)

21: (q24; 1, 9, 1, 0)

22: (q26; 2, 9, 1, 0)

23: (q27; 2, 9, 0, 0)

24: (q23; 3, 9, 0, 0)

25: (q21; 3, 9, I, 1)

26: (q22; 3, 9, 0, 1)

27: (q24; 2, 9, 0, 1)

28: (q25; 2, 9, 0, 0)

29: (q30; 3, 9, 0, 0)

30: (q31; 2, 9, 0, 0)

31: (q32; 2, 9, 1, 1)

32: (q33; 2, 9, 0, 1)

33: (q0; 2, 9, 0, 0)

284 I Korecl Theoretical Computer Science 168 (1996) 267-301

929

R23P

425

R3ZMOP RPOZM Z*

z

430 q31

. . .

Fig. 5. The block of R3a-machines for log, x.

5. The activity of the machine U32

The role of the R-machine Us2 is to simulate (some) R3a-machines; to speak about,

an enumeration of R3a-machines must be introduced. Analogously, as R3a-machines in

general, their presented enumeration has the only role in essential, to enable us to prove

the Main Theorem. The enumeration will be chosen so that the number of instructions

necessary to decode it is minimalized. Neither the elegance nor the computation time

will be so important. In the following definition we shall define an R3a-machine A4,

to every nonnegative integer x, and we shall define a set W of “good” numbers x; in

what follows mainly “good” numbers will be considered.

Definition 5.1. (i) For every i,j E N, z E {O,l, 2) we denote

(e, 0 &lp9,+1> if z = 0;

(5.1.1) Znstr(i,3j +z) = (e, (R3ZMOP ,qj,qj+t) if z = 1;

(qi,wlYqj) if z = 2.

(ii) For every x E N we denote by Qx the smallest set with the properties:

(1) 1 E Qx;
(2) if i E Qx and F(x, i) 23 then F(x, i) DIV 3 E Qx;

(3) if i E Qx and F(x, i) MOD 3 # 2 then (F(x, i) DIV 3) + 1 E Qx.

(iii) For every x E IV we denote

A4, = {Z&r(i, F(x, i)) (i E Qx}

(iv) We denote by W the set of all x E N such that for every y E N and every con-

figuration (qi; U,X, v,w), i # 0 in the computation of n/r, from the initial configuration

I. Koreci Theoretical Computer Science 168 (1996) 267-301 285

(qI ; 0, x, y, 0) the following condition is satisfied:

(5.1.2) (F(x,i)= low > 0) V F(x,i)=2 Vnd(x+l,i)-F(x,i) < nd(x+l,l).

Since F(x,i) is always positive the machine M, cannot contain any instruction

(qi; (R%?!@ , qa, qI); this was the reason for the condition (3) in Definition 4.1. This

condition is not too restrictive because we can use the macroinstruction GOTOq, for

the end of computation. For every x we can consider the flowchart of “an infinite ma-

chine” {Znstr(i,F(x,i)) 1 i E N \ (0)). Then QX is the set of all non-final inner states

which can be reached from q, by the paths along the rows in this infinite flowchart

(without paying attention to the labels ‘z’). The set QX is finite because for every

j E QX we have

we shall see on examples that the presented estimation is very rough. Generally speak-

ing, not all qi, i E Qx occur in the normal computations of M, . However, the sets Q;

of the subscripts of all reachable inner states cannot be effectively determined (in other

words, it is undecidable whether an inner state occurs in a computation of A4,). The

sets QX can be effectively determined.

W is the set of those x for which the machine 1732 properly simulates M, pro-

vided x is put into RI, etc. (Of course, also for x 6 W the machine U32 with x

in RI simulates a machine, but the simulated machine can be distinct from M,. We

could analyze the activity of U32 in more general situations, and obtain more adequate

definition of A4,. However, for our purposes x E W will be sufficient.) Notice that

the set W is not recursive; we shall (implicitly) work with some recursive subsets

of w.

Theorem 5.2. For every x E W and all y E N we have

(5.24 &,(x,Y) = &(Y).

Proof. We shall analyze the activity of the machine U32, and we shall see that (under

given assumptions) the machine U32 simulates the computation of A4,. So the required

statement will be proved.

Let us enumerate the instruction codes of R3a-machines as follows:

(5.22) n((R20ZM)) = 0, n((R3ZMOP)) = 1, n([R23Pj) = 2;

that corresponds to the formula (5.1.1). Let the simulation step for an instruction

(qi,X, qj) of M, ought to be performed.

The machine U32 starts the simulation either in the inner state q,5 or in qI; in

the first case & contains i, in the second case it contains i - 1. The registers &,

R2, R3 (now and always) correspond to the same registers of M,. The register RI

contains the number x; this number will be preserved as the sum RI + R7 during the

286 I. Korecl Theoretical Computer Science I68 (1996) 267-301

whole simulation. The sum Rs +% must be sufficiently small, more precisely less than

nd(x + 1,l). The register R5 is always empty at this stage. However, the content of Rs

is equal to 0 only in the first step; later it may be positive, but the requested bound is

arranged by (5.1.2).

The simulation step consists of three phases which are performed by three parts of

U32 shown in dotted rectangles (see Fig. 1).

(1) Computation of 3j+n(X) is performed by the upper dotted rectangle, called also

the instruction reader; the result is put into Rg, and R4 becomes empty. This phase

will be described in more details later.

(2) Computation of j and n(X) (division by 3 in essential) is performed by lower

right-hand rectangle, the decoder. The quotient j is put into R_+, and Rs becomes 0.

The remainder (which determines the operation code by (5.1)) is not stored into a

register but it determines one of the three output arrows.

(3) Immediate simulation steps are performed by the lower left-hand rectangle, the

simulation block. Its left-hand and right-hand output arrows correspond to the next

inner states qj+, and qj, respectively. If the right-hand output arrow is used then a

test for halting is performed (see q,,) before the phase (1) of the next simulation step

follows.

The phases 2 and 3 are clear. We give some more details to the phase 1. The value

F(x, i) (= 3j + n(X)) is computed so that x + 1 is divided by consecutive integers,

starting with 1 or RS + & + 1. Then F(x, i) will be the ith nonzero test. (Now the

requested bound for Rs +& is clear: the initial sum must be less than the least positive

non-divisor of x + 1. Then no non-divisor is lost.) One division is performed by the

nine instructions in the three upper lines of Fig. 1. Technically, in each division x

is moved from Ri to R7 at first, then the divisor is enlarged (and put into &), and

only after that the proper division is performed, and x is moved from R7 back to Ri.

(During the division & and R7 are simultaneously diminished and Rs is raised. The

actual divisor is preserved as Rs +%. The content of % is renewed from Rs whenever

necessary. The quotient is not computed; we need only the remainder which arises in

Rs.) Divisors are skipped (the test in qis), every nondivisor decreases the content of

h. When RJ become empty the phase (1) is finished.

Now pay attention to the formula (5.1.2). If the first or the second member is

valid then the simulated step is the last one (hence the instruction reader will work

no more). Otherwise the third member expresses that the content of & (equal to

nd(x + 1, i) - F(x, i)) is sufficiently small for correct work of the instruction reader in

the next simulation step.

The above described simulating cycle is performed for every step of the computation

of M,. Notice that the computation of U32 starts from qi and with & = 0. Hence the

instruction of A4, with the first component q1 is simulated. Both U32 and M, use qi

as the initial inner state.) The halting of M, is checked by the instruction qs2 of U32,

and the result can be read in &. 0

I. Korecl Theoretical Computer Science 168 (1996) 267-301

Table 3
A computation of lJ32

287

0: (ql; 0, 23, 1, 0, 0, 0, 0, 0)
1: (q2; 0, 23, 1, 0, 0, 0, 0, 0)
2: (q3; 0, 22, 1, 0, 0, 0, 0, 0)

68: (q3; 0, 0, 1, 0, 0, 0, 0, 22)
69: (ql; 0, 0, 1, 0, 0, 0, 0, 23)
70: (q6; 0, 0, 1, 0, 0, 0, 0, 23)
71: (q4; 0, 0, 1, 0, 0, 0, 1, 23)
72: (q7; 0, 0, 1, 0, 0, 0, 1, 23)

73: (q8; 0, 0, 1, 0, 0, 0, 1, 23)
74: (q9; 0, 0, 1, 0, 0, 0, 0, 23)
75: (q10; 0, 0, 1, 0, 0, 1, 0, 23)
76: (qll; 0, 0, 1, 0, 0, 1, 0, 23)
77: (q12; 0, 0, 1, 0, 0, 1, 0, 22)

319: (q12; 0, 22, 1, 0, 0, 1, 0, 0)
320: (q7; 0, 23, 1, 0, 0, 1, 0, 0)
327: (q9; 0, 23, 1, 0, 0, 0, 0, 0)
328: (q10; 0, 23, 1, 0, 0, 1, 0, 0)
329: (q13; 0, 23, 1, 0, 0, 1, 0, 0)
330: (ql; 0, 23, 1, 0, 0, 1, 0, 0)
399: (ql; 0, 0, 1, 0, 0, 1, 0, 23)
400: (q6; 0, 0, 1, 0, 0, 1, 0, 23)
401: (q4; 0, 0, 1, 0, 0, 1, 1, 23)
409: (qll; 0, 0, 1, 0, 0, 1, 1, 23)
410: (q12; 0, 0, 1, 0, 0, 1, 1, 22)
630: (q12; 0, 22, 1, 0, 0, 1, 1, 0)
631: (q7; 0, 23, 1, 0, 0, 1, 1, 0)
632: (q8; 0, 23, 1, 0, 0, 1, 1, 0)
633: (q9; 0, 23, 1, 0, 0, 1, 0, 0)
634: (q10; 0, 23, 1, 0, 0, 2, 0, 0)
635: (q13; 0, 23, 1, 0, 0, 2, 0, 0)
636: (ql; 0, 23, 1, 0, 0, 2, 0, 0)
637: (q2; 0, 23, 1, 0, 0, 2, 0, 0)
638: (q3; 0, 22, 1, 0, 0, 2, 0, 0)
704: (q3; 0, 0, 1, 0, 0, 2, 0, 22)
705: (ql; 0, 0, 1, 0, 0, 2, 0, 23)
706: (q6; 0, 0, 1, 0, 0, 2, 0, 23)
719: (q12; 0, 0, 1, 0, 0, 1, 2, 22)
928: (q12; 0, 22, 1, 0, 0, 2, 1, 0)
929: (q7; 0, 23, 1, 0, 0, 2, 1, 0)
930: (q8; 0, 23, 1, 0, 0, 2, 1, 0)
931: (q9; 0, 23, 1, 0, 0, 2, 0, 0)
932: (q10; 0, 23, 1, 0, 0, 3, 0, 0)
933: (q13; 0, 23, 1, 0, 0, 3, 0, 0)
934: (ql; 0, 23, 1, 0, 0, 3, 0, 0)
935: (q2; 0, 23, 1, 0, 0, 3, 0, 0)

936: (q3; 0, 22, 1, 0, 0, 3, 0, 0)
1002: (q3; 0, 0, 1, 0, 0, 3, 0, 22)
1003: (ql; 0, 0, 1, 0, 0, 3, 0, 23)
1004: (q6; 0, 0, 1, 0, 0, 3, 0, 23)
1227: (q13; 0, 23, 1, 0, 0, 4, 0, 0)
1228: (ql; 0, 23, 1, 0, 0, 4, 0, 0)
1297: (ql; 0, 0, 1, 0, 0, 4, 0, 23)
1298: (q6; 0, 0, 1, 0, 0, 4, 0, 23)
1535: (q29; 0, 23, 1, 0, 1, 0, 1, 0)
1536: (ql; 1, 23, 1, 0, 1, 0, 1, 0)
1605: (ql; 1, 0, 1, 0, 1, 0, 1, 23)
2728: (ql; 1, 23, 1, 0, 0, 4, 1, 0)
2797: (ql; 1, 0, 1, 0, 0, 4, 1, 23)
3015: (ql; 1, 23, 1, 0, 0, 6, 0, 0)
3084: (ql; 1, 0, 1, 0, 0, 6, 0, 23)
3317: (q14; 1, 23, 1, 0, 0, 3, 4, 0)
3318: (q16; 1, 23, 1, 0, 0, 3, 4, 0)
3327: (q24; 1, 23, 1, 0, 1, 0, 4, 0)
3328: (q32; 1, 23, 0, 0, 1, 0, 4, 0)
3329: (q15; 1, 23, 0, 0, 1, 0, 4, 0)
3330: (ql; 1, 23, 0, 0, 0, 0, 4, 0)
3400: (q6; 1, 0, 0, 0, 0, 0, 4, 23)
3619: (q21; 1, 23, 0, 0, 0, 2, 1, 0)
3620: (q22; 1, 23, 0, 0, 0, 1, 1, 0)
3623: (q18; 1, 23, 0, 0, 1, 0, 1, 0)
3624: (q27; 1, 23, 0, 0, 1, 0, 1, 0)
3625: (q29; 1, 23, 0, 0, 1, 0, 1, 0)
3626: (ql; 2, 23, 0, 0, 1, 0, 1, 0)
3695: (ql; 2, 0, 0, 0, 1, 0, 1, 23)
4818: (ql; 2, 23, 0, 0, 0, 4, 1, 0)
4819: (q2; 2, 23, 0, 0, 0, 4, 1, 0)
4820: (q3; 2, 22, 0, 0, 0, 4, 1, 0)
4886: (q3; 2, 0, 0, 0, 0, 4, 1, 22)
4887: (ql; 2, 0, 0, 0, 0, 4, 1, 23)

5105: (ql; 2, 23, 0, 0, 0, 6, 0, 0)
5106: (q2; 2, 23, 0, 0, 0, 6, 0, 0)
5107: (q3; 2, 22, 0, 0, 0, 6, 0, 0)
5173: (q3; 2, 0, 0, 0, 0, 6, 0, 22)
5174: (ql; 2, 0, 0, 0, 0, 6, 0, 23)
5414: (q22; 2, 23, 0, 0, 0, 0, 4, 0)
5420: (q2; 1, 23, 0, 0, 1, 0, 4, 0)
5487: (q3; 1, 0, 0, 0, 1, 0, 4, 22)
5488: (ql; 1, 0, 0, 0, 1, 0, 4, 23)
5704: (ql; 1, 23, 0, 0, 0, 4, 1, 0)
8680: (ql; 1, 23, 0, 0, 0, 4, 1, 0)

A computation of the machine U32 is shown in Table 3. To show a bigger piece,

many configurations are deleted; deleted parts can be recognized by the number of

steps. The last two displayed configurations show that the computation is ultimately

periodic and its periodic and its period divides 2976 (it is equal to 2976 indeed).

288 I. KorecITheoretical Computer Science 168 (1996) 267-301

6. Existence of “good” R3a-Machines

To finish the proof of the part (al) of the Main Theorem we have to prove that

every unary partial recursive function is computable by an R3a-machine with “good”

number. It will be done below.

At first we shall explain the principle how Lemma 3.2 can be used to find the

numbers of (some) R3a-machines. Let all non-final inner states of an R3a-machine M

belong to qi, q2 , . . . ,qk. We shall look for an integer x such that for every instruction

(qi, X, Q, %+I) (without the fourth component if X = I=/) of A4 it holds

(6.1) F(x, i) = 3j + n(X);

remember that X,j are uniquely determined by i and that n(X) was defined in (5.2.2).

If the right-hand sides of (6.1) are positive (and we may restrict ourselves to such

machines) we can apply Lemma 3.2. The integer x given by the lemma is not a

number of M; however, (the reachable part of) the flowchart of M can be embedded

into the flowchart of M,. This is only a simplified principle, in fact some further

technical problems must be solved to arrange x E W. (Most of them could be avoided

if we allow arbitrary initial states instead of qi, or if we add two new instructions into

U32, which will empty the register % before leaving the instruction reader.) For that

we shall need the following result.

Lemma 6.1. For every c > 1, k > 1 there are s > c and primes

(6.1.1) rl < r2 <r$_] < rS = PO < pr < ..’ < pk

such that if we denote h(t) = CgC1 It] + Ci=, [i] then

(6.1.2) r? > Pk;

(6.1.3) h(Pk) = h(po) + k;

(6.1.4) e 'h(pk) < PO-C;

(6.1.5) pk - rl < c. h(po).

(6.1.6) rj+l - rj < rl -C for all j = l,..., s - 1;

(6.1.7) c.h(rj+l) < ri-c for aZIj=l,..., s-l.

The lemma will be proved later, now we only explain its meaning. It will help us

to find the good number x of an R3a-machine (equivalent with) M. The integer k will

be the number of its instructions and c = 3 corresponds to the number of input arrows

of the simulation block of U32. The primes p1 , . . . , pk will be the non-divisors of x + 1

corresponding to the non-final inner states of M. Lemma 6.1 summarizes conditions

on non-divisors of x + 1, without explicit dealing with x. (Through the function h it

I. KorecITheoretical Computer Science 168 (1996) 267-301 289

deals implicitly with all non-divisors of x up to pk, even if it explicitly mentions only

prime nondivisors.)

Theorem 6.2. For every R3a-machine M there is x E W such that $M = 4M,,

Proof. The flowchart of M, will be obtained by joinng many macroinstructions GOT0

(see Fig. 3) before the starting state of M. The macroinstructions obviously do not

influence the result of the computation but are necessary in the construction of x. We

shall assume that M is reduced in the sense that all its instructions are reachable along

the arrows from the initial instructions (it does not mean that they are really used in

some normal computations).

Let the machine A4 use (some of) the inner states qo, qi, . . . , qk. Let us choose a

system of primes (6.1.1) which satisfy all the conditions from Lemma 6.1. We shall

also use the function h. Let Q denote the set of all primes p < pk which do not occur

in (6.1 .l). We shall write a system of congruences for x + 1. It will consist of four

parts. The first part will be

(6.2.1) x + 1 E 0 (mod p”), for all primes p E Q.

The other parts will be written later; they will imply

(6.2.2) x + 1 f O(mod p) for all primes p from(6.1.1).

(6.1.2), (6.2.1) and (6.2.2) imply that for all positive {y<pk}

yjl(x+1)~MaxPr(y)~{rl,...,r,,pl,...,pk}.

Let us denote d = h(r,) = h(po). The condition (6.1.2) arranges that every positive

integer y d pk has at most one divisor among (6.1.1). Hence, h(y) is the number of

non-divisors of x + 1 which do not exceed y. Therefore, we have

(6.2.3) nd(x + 1, h(y)> = y for every y 6 pk, y /x + 1,

in particular,

(6.2.4) nd(x + 1, d + i) = pi for all i = 0, 1,. . .,k.

For every i = 1,. . . , k the prime pd+i (i.e. the (d + i)th non-divisor of x + 1) will

correspond to the inner state qi (but po do not correspond to the final inner state 40).

If A4 contains Znstr(i, 3j + z), j > 0 then M, will contain Znstr(i + d, 3j + 3d + z);

for j = 0 the member 3d is not added. The corresponding congruences are

(6.2.5) x + 1 E 3j + sg(j) . 3d + z (modpi) if Znstr(i, 3j + z) E M,

where sg denotes the signum function, sg(O)=O, sgCj) = 1 for j > 0.

Finally, M, will contain several GOT0 macroinstructions to reach the inner state

qdfi from the initial state qi. To arrange that, let us choose a sublist

(6.26) 41 =ri,qz,...,qf = Po,qt+l = PI

290 I. Koreci Theoretical Computer Science 168 (1996) 267-301

of (61.1) such that qj+i is reachable from qi, i.e.

qi - ri < 3h(qj+i) < qi - 3 for all i = 1,. . . , t.

(The symbols qi and qi must be distinguished; there is no direct relationship between

them.) The list (6.2.6) can easily be constructed backwards; we know qt (even if we do

not know t). If we know qj+i = ri, i > 1, we can compute h(qj+i), and then choose a

suitable qj among ri, . . . , t--l. The right-hand inequality follows from (6.1.7). We finish

when q1 = 1-1 is chosen (only at this moment t is determined). The process is possible

by (6.1.6) and (6.1.7). The number of chosen qi can be controlled in some degree,

and so the length of (6.2.6) modulo 3 can be prescribed; let 31t. The corresponding

congruences will be

(6.2.7) x + 1 E 3h(qi+i) + (i + 1) MOD 3 (mod qi) for all i = 1,. . ., t.

Finally, we added e.g. the congruences

(6.28) x + 1 E 2 (mod p) for all other primes p < pk;

the words “for all others” mean “not used in (6.2.1), (6.2.5), (6.2.7)“. (Of course, for

practical computation it would be better to leave here $ 0 instead of s 2; a smaller

solution x can be obtained.)

If x is a (positive) solution of the system of congruences (6.2.1), (6.2.5) (6.2.7),

(6.2.8) then the machine A4, has all required properties, and is equivalent with M.

(In fact, the flowchart of A4 with additional GOT0 instructions is embedded into the

flowchart of M,.) However, the moduli of the system of congruences are pairwise

relatively prime, and hence the system is solvable by Chinese Remainder Theorem.

0

Now the part (al) of the Main Theorem can be obtained as follows. By Theorem

4.2 every unary partial recursive function f is computable by an R3a-machine M. By

Theorem 6.2 we can replace M by M, for some x E W. Finally, by Theorem 5.2 A4,

is simulated by U32.

Proof of Lemma 6.1. We choose sufficiently large N so that:

(1) For every X, No.6 <X<N the interval (X, X + N”.56) contains more than No.”

primes.

(2) The set {x<NIMaxPr(x) > N”.6} has at least N/c + No.9 elements.

(3) For every X, No.6 <X <N the interval (X, X + N”.57) contains a subinterval of

length at most N”.O1 which contains at least k + 1 primes.

Condition (1) follows from the second formula of Theorem 3.3; we can divide

the mentioned interval into No.” intervals of length N”.55, and each of them con-

tains (many) primes. Condition (2) can be obtained by Theorem 3.4 because In &- =

0.5108... > i 3 :. Condition (3) can be obtained by Theorem 3.3; we use that $ =

0.5625.. < 0.57. The exponent 0.01 is used instead of arbitrarily small positive E; it

I. Korecl Theoretical Computer Science 168 (1996) 267-301 291

suffices here. (Notice that for c > 2 we can replace the exponents 0.6, 0.56, etc. by

bigger ones, and so use a little weaker number theoretical results.)

Our aim is to choose (6.1.1) so that ps, PI,. . , pk will be consecutive primes from

the interval (N0.6,N) such that pk - po <No.” and

{rl ,...,rs}= pE(N0.6,N)IpprimeA
1

IF] = [$J}.

So (6.1.2) (6.1.3) would be obviously satisfied. Also (6.1.6) can be proved. Indeed,

let R denote the set of primes p, No.6 d p 6 pk which do not belong to (6.1.1); we

also have

R = {MaxWx) I x E (PO, Pk)} n (No.? PO).

If (6.1.6) does not hold then we have ri+l - r, > rl - c > No.6 and, hence, by (1) the

interval (rj, ri+l) contains at least N”.05 primes. All these primes beong to R, which

contradicts card(R) < pk - po <No.“.

Now let us denote g(t) = CN061pCN[i]. Let gg’t be defined as the minimal y

such that g(y) = t, and analogously for h. While the function h depends on (6.1.1)

(and so indirectly on N), the function g depends on N only. However, h and g are

near each to the other in the sense

g(t) - No.41 <h(t)<g(t).

Indeed, the difference between g(t) and h(t) is caused only by the primes from R, and

therefore

< C t < card(R) . IV~.~<N~.~‘.
tER No.6

To arrange (6.1.4) and (6.1.7) we must choose a suitable pk E (N0.6, N); by this

choice (and the decisions above) the list (6.1.1) will be completely determined. Let

q be the smallest prime from this interval such that the interval (q, g-’ [(q - c)/cJ)

contains less than k primes. Such q exists because g-’ [(q - c)/cJ - q is greater than

No.6 for small q (e.g. near to 2N0.6) and negative for big q (near to N); moreover,

the function G(t) = g-‘[iJ - t cannot decrease too quickly. Now we can apply (3)

to the interval (q - N”.57, q), and choose po , . . . , pk f?Olll it SO that pk - PO < No.“.

Then we have

< g-’ q-c L-J 1

C
- No.6 + No.4’ < q _ 2N0.6 < po.

Therefore, we have also h-’ L(pk -rl)/cj < PO, what can be transformed into (6.1.5).

cl

292 I. Korec! Theoretical Computer Science 168 (1996) 267-301

Primes seem to be distributed much more regularly than Theorem 3.3 shows. For

example, it seems that

J@m(7t(N + NO.“) - n(N)) = co.

Hence, we can take arbitrary sufficiently large prime as po, then determine ~1,. . . , pk

as the consecutive primes, and computer ri backwards from r, = po (without knowing

s in advance). Also ri will be consecutive primes whenever possible; however, some

gaps are necessary to obtain (6.1.3). We can also replace po by p1 in some places

of Lemma 6.1. (Roughly speaking, we need not jump from po to pn and back, but

only from po and p,, to p1 and from p1 to p,,. For general considerations p1 was

eliminated from the inequalities of Lemma 6.1 to simplify their form.)

The obtained numbers of machines are huge, even if we follow only the idea of

the construction above, and pay not any attention to the numerical bounds requested in

number-theoretical theorems ([9] does not mention explicitly these bounds; maybe they

are not effective). Notice that we need not use Lemma 6.1 or all inequality conditions

above in particular cases when suitable systems of primes are determined explicitly

(and their required properties are verified by computations). We shall show some nu-

merical examples.

Example 6.3. For c = 3, k = 6 and po M 590 a computer computation gives e.g. the

following possibility:

(a) PI,..., pb =593, 599, 601, 607, 613, 617; further we have po = 587 and

h(pi)= 19O+i for i=O,l,..., 6.

(b) There are 9 divisors of integers 588, 589,. . ., 616 among the primes between 52

and 588; they are 59, 61, 67, 101, 149, 151, 197, 199, 307.

(c) The other s = 83 primes are 53, 71, 73,. . ., 577, 587; they are taken as ri.

(d) A possible choice of qj starts 53, 71, 97, 137,. . .; However, the second or the

third member (or both) can be deleted; so we can arrange 31t. Without the last condition

we can arrange arbitrary t, 106 t<23.

(e) The moduli pe of the congruences (6.2.1) will be

29, 35, 53, 73, 112, 132, 172, 192, 232, 29, 31, 37, 41, 43, 47

and 9 primes listed in (b) (together 24 values).

A trivial bound for x is given by the product of all considered moduli. Practically,

it can be diminished by suitable choice of non-fixed rests by some moduli, but x ob-

viously remains very large.

Example 6.4. If we consider c = 3 and choose po = 9973 (the greatest prime under

10000) then we may take k = 22 (and any less value, of course). Then ~1,. . , ~22

will be the primes from 10007 to 10181. It will hold h(pi) = 3285 + i. Ther will be

1077 primes ri, from r1 = 331 to r1077 = 9973; the number of excluded primes will be

I. Korecl Theoretical Computer Science I68 (1996) 267-301 293

86 (the least one is 337, which is excluded becaused 337=MaxPr(101 lo)), and t = 15

can be arranged. 86 prime powers with bases less than 331 are considered.

We shall give also examples for two other values of c; one of them, c = 2, is

necessary for the part (b4); the value c = 4 is only as an illustrative example.

Example 6.5. If we consider c = 2 and choose po = 8999 (it appeared better than

9973) then we may take k = 9. We shall have p1 = 9001, p9 = 9059 and h(pi) =

4474 + i. There will be s = 1054 primes Ti, from ~1 = 149 to ri054 = 8999; the num-

ber of excluded primes will be 29 (the least one is 167, which is excluded because

167=MaxPr(9018), and the greatest is 4523), and we can arrange t = 24. Besides, we

have to consider 34 prime power divisors with the bases less than 149.

Example 6.6. If we consider c = 4 and choose po = 9973 (the same as in Ex. 6.4) then

we may take k = 42. We shall have p1 = 10007,p42 = 10357 and h(pi) = 2447 + i.

There will be s = 1002 primes ri, from ri = 577 to ~1002 = 9973; the number of

excluded primes will be 122 (the least one is 587, the greatest 5 17 1), and we can

arrange t = 12. Further, 105 prime powers with bases less than 577 are considered.

7. The machines derived from Us2

The machines U22, U2i, U29, U20, lJi9 for the parts (a2),. . .,(b3) of the Main Theorem

will work similarly as the machine U32. (The subscripts again denote numbers of

instructions.) In particular, the partition into three dotted block and their role will be

preserved. Therea are two ways how the number of instructions is diminished:

(1) The instructions 0 Ri and ml are glued together whenever possible.

(2) The number of registers of simulated machines is reduced to 2. To do that, we

shall simulate R2-machines from 2.2.11. In the proof we shall need Lemma 6.1 for

c = 2 (while for U32 we have used c = 3, what is a weaker statement).

The first possibility is used in (a2) and (a3), the second one in (bl), both possibil-

ities in (b2) and (b3). All these machines have very similar structure, and work very

similarly to U32. Therefore, we shall present only one of them. The machine U,g is

presented in Fig. 6. The inner states are numbered so that the relationship with U32 is

as clear as possible. From similar reason in Ui9 the roles of registers are preserved;

only the register Rs is not used at all. The machine Uis is not “nice” in the sense that

the used instruction base is not minimal; 0 Ri can be eliminated. However, to

do so we need one instruction more: the unique ~6 instruction must be replaced by 0 (m) and m. So a nicer machine U 20 is obtained. The situation between U2i

and U22 is quite similar.

Remark. There is another not quite “honest” possibility to spare one instruction in

any of the machines above: To allow the dynamical stop. (The spared instruction will

294 I. Korecl Theoretical Computer Science 168 (1996) 267-301

2
.

qR4ZM>+m]

.

923 : 416 - 422 :
c ROZM ; j z R5ZM R4P ;

z : : L . . I

q31 '130 : : qzo 1

R2P ROP i i z R5ZM
.

Fig. 6. The universal register machine U19

be q32.) The machines will always work forever, but sometimes it will work in a

trivial (and easily recognizable) cycle, and the content of the register RQ will not be

changed.

For an example of a small universal program we shall use the register programs

from 2.2.5. To construct a small universal program from this class we shall linearly

order (by the first component) the instructions of U32 and then we insert GOT0 where

necessary. GOT0 can be simulated by the conditional jump with respect to a regis-

ter which is empty at this moment. The simplest way is to use a new register, Rs

in our case; in the normal computations it will always remain empty. It suffice to

insert together 10 instructions; we can find them in Table 4. Instead of our usual

operation codes we use the operation symbols INCR, DECR and a BASIC-like form of

conditional jump in the table (and also in Theorem 7.1). We preferred to insert new

non-numerical labels (capitals A, . . . ,J) so that the relationship to Us2 remains clear.

The re-enumeration (necessary from the formal point of view) is straightforward. So we

obtain:

Theorem 7.1. There is a strongly universal register program with 42 instructions of

the forms INCR Ri, DECR Ri, and IF Ri = 0 GOTO~.

I. Korecl Theoretical Computer Science 168 (1996) 267-301 295

Table 4

A strongly universal register program

1: IF RI=0 GOTO 6

2: DECR R,

3: INCR R7

A: IF Rs=O GOT0 1

4: IF Rs=O GOT0 7

5: DECR R5

6: INCR R6

B: IF R8=0 GOT0 4

7: IF R6=0 GOT0 4

8: DECR &j

9: INCR R5

10: IF R7=0 GOT0 13

11: DECR R7

c: IF Rs=O GOT0 7

13: IF &j=o GOT0 1

14: IF &=o GOT0 16

15: DECR &

D: IF Rs=O GOT0 1

16: IF R5 =0 GOT0 23

17: DECR R5

18: IF R5=0 GOT0 27

19: DECR R5

20: IF R5=0 GOT0 30

21: DECR R5

22: INCR kj

/??: IF Rg=0 GOT0 16

24: DECR R2

F: IF Rs=O GOT0 32

25: IF &=O GOT0 32

26: DECR b

G: IF Rs=O GOT0 1

27: IF R3=0 GOT0 29

28: DECR R3

H: IF R8=0 GOT0 32

29: INCR &,

I: IF Rx=0 GOT0 1
30: INCR R2

31: INCR R3

32: IF &=o GOT0 33

12: INCR RI 23: IF R2=0 GOT0 25 J: IF Rg=0 GOT0 15

Of course, similar results could be obtained for some other classes of register pro-

grams. We shall not do that in the present paper.

8. A universal machine with 14 instructions (R1’PZ)

To finish the proof of the Main Theorem it remains to prove the part (b4). The

general schema of the proof remain similar to the above but there are more differences

than there were, e.g., between (al) and (b3). Some parts of the proof will be only

sketched.

Proof of the part (b4). The machine Ui4 (Fig. 7) is divided into three blocks which

have the same roles as those of U32; we shall also use the same names for them.

A small difference is that the instruction qi4 (which decides halting) belong to the

instruction reader. (Therefore, it is not clear whether “dynamical stop” allows to spare

one instruction). To understand the activity of Ui4 we have to realize that

(1) (R1’PZ: is equivalent with -1 and

(2) @%??I@ is equivalent with m provided we know Rj # Rk.

The second statement can be better explored if we restrict the analyse of lJi4 to the

normal computations; then, e.g., we can assume that always & < Ri and & < RI.

Further, it is clear from the flowchart that the content of Ri remains constant in every

computation. It will always contain the number of a simulated machine; in U32 we have

to preserve the number of a simulated machine as the sum of two registers. Analo-

gously, during a division the divisor permanently remains in one counter. The docoder

divides (by 2) the difference & -Rs, and not Rg. (There are small differences, e.g. kl

at some places. This fact must be considered but is not substantial.) A computation of

Ui4 is presented in Table 5; we can see there the process of division very well. This re-

marks could suffice to understand the activity of the instruction reader and the decoder.

296 I. KoreclTheoretical Computer Science 168 (1996) 267-301

,.................... .,...........................
Fig. 7. The universal register machine U14.

Table 5

A computation of (114

0: (ql; 2, 5, 0, 0, 0, 0, 0, 0, 0,) 26: (q5; 2, 5, 0, 0, 0, 2, 2, 0, 0,)

l: (q2; 2, 5, 0, 0, 0, 0, 0, 0, 0,) 27: (q2; 2, 5, 0, 0, 0, 0, 2, 0, 0,)

2: (q3; 2, 5, 0, 0, 0, 0, l, 0, 0,) 28: (q3; 2, 5, 0, 0, 0, 0, 3, 0, 0,)

3: (q4; 2, 5, 0, 0, 0, 0, l, 1, 0,) 29: (q4; 2, 5, 0, 0, 0, 0, 3, 1, 0,)

4: (q3; 2, 5, 0, 0, 0, l, l, l, 0,) 30: (q3; 2, 5, 0, 0, 0, 1, 3, 1, 0,)

5: (q4; 2, 5, 0, 0, 0, l, 1, 2, 0,) 31: (q4; 2, 5, 0, 0, 0, 1, 3, 2, 0,)

6: (q3; 2, 5, 0, 0, 0, 0, l, 2, 0,) 32: (q3; 2, 5, 0, 0, 0, 2, 3, 2, 0,)

7: (q4; 2, 5, 0, 0, 0, 0, l, 3, 0,) 33: (q4; 2, 5, 0, 0, 0, 2, 3, 3, 0,)

8: (q3; 2, 5, 0, 0, 0, l, l, 3, 0,) 34: (q3; 2, 5, 0, 0, 0, 3, 3, 3, 0,)

9: (q4; 2, 5, 0, 0, 0, l, 1, 4, 0,) 35: (q4; 2, 5, 0, 0, 0, 3, 3, 4, 0,)

10: (q3; 2, 5, 0, 0, 0, 0, 1, 4, 0,) 36: (q3; 2, 5, 0, 0, 0, 0, 3, 4, 0,)

11: (q4; 2, 5, 0, 0, 0, 0, 1, 5, 0,) 37: (q4; 2, 5, 0, 0, 0, 0, 3, 5, 0,)

12: (q3; 2, 5, 0, 0, 0, 1, 1, 5, 0,) 38: (q3; 2, 5, 0, 0, 0, 1, 3, 5, 0,)

13: (q5; 2, 5, 0, 0, 0, 1, 1, 0, 0,) 39: (q5; 2, 5, 0, 0, 0, 1, 3, 0, 0,)

14: (q2; 2, 5, 0, 0, 0, 0, 1, 0, 0,) 40: (q6; 2, 5, 0, 0, 0, 2, 3, 0, 0,)

15: (q3; 2, 5, 0, 0, 0, 0, 2, 0, 0,) 41: (q8; 2, 5, 0, 0, 0, 2, 3, 0, 0,)

16: (q4; 2, 5, 0, 0, 0, 0, 2, 1, 0,) 42: (q9; 2, 5, 0, 0, 0, 2, 3, 0, 0,)

17: (q3; 2, 5, 0, 0, 0, 1, 2, 1, 0,) 43: (q10;2, 5, 0, 0, 0, 3, 3, 0, 0,)

18: (q4; 2, 5, 0, 0, 0, 1, 2, 2, 0,) 44: (q13;2, 5, 0, 0, 0, 0, 3, 0, 0,)

19: (q3; 2, 5, 0, 0, 0, 2, 2, 2, 0,) 45: (ql; 2, 5, 0, 0, 0, 0, 3, 0, 0,)

20: (q4; 2, 5, 0, 0, 0, 2, 2, 3, 0,) 46: (q2; 2, 5, 0, 0, 0, 0, 0, 0, 0,)

21: (q3; 2, 5, 0, 0, 0, 0, 2, 3, 0,) 47: (q3; 2, 5, 0, 0, 0, 0, 1, 0, 0,)

22: (q4; 2, 5, 0, 0, 0, 0, 2, 4, 0,) 48: (q4; 2, 5, 0, 0, 0, 0, 1, 1, 0,)

23: (q3; 2, 5, 0, 0, 0, 1, 2, 4, 0,) 49: (q3; 2, 5, 0, 0, 0, 1, 1, 1, 0,)

24: (q4; 2, 5, 0, 0, 0, 1, 2, 5, 0,) 50: (q4; 2, 5, 0, 0, 0, 1, 1, 2, 0,)

25: (q3; 2, 5, 0, 0, 0, 2, 2, 5, 0,) 51: (q3; 2, 5, 0, 0, 0, 0, 1, 2, 0,)

I. Korecl Theoretical Computer Science 168 (1996) 267-301 297

In global, they use the same principle (and the same function F) as the corresponding

blocks of the machine U32. Moreover, some difficulties disappear because & becomes

empty always when the instruction reader starts to work. The activity of the simula-

tion block is very simple; it simulates R2b-machines from 2.2.14. A little less trivial

is the proof that R2b-machines compute sufficiently many partial recursive functions.

Remember that R2b-machines use the instruction codes (ROPZ)and (R2PZ) ,

their test instructions are restricted similarly as that in R3a-machines (k~ = ki + 1 in

(2.1)), and Ra is their input and output register. We shall use the input coding function

h(x) = 2’. However, we cannot use the output decoding function f(x) = log,(x); we

have to use e.g. exz(x) =the exponent of 2 in the factorization of x.

R3a-machines were able to multiply and to divide an integer (given in R2) by

arbitrary (positive) integer constants. Our R2b-machines are able to multiply, but are

not able to divide (by integer constants > 1). However, they are able to multiply by

rational constants 2 > 1. To do that, they start with x in Rc, and R2 empty. Then in a

cycle they add c - d to Rs and c to RZ until equality takes place (and so R2 becomes

empty again; the equality stops to hold whenever it is observed). The exact output from

the cycle enables to recognize x MOD d. So we can construct IUb-machines similarly

as the second stage blocks of R3a-machines (the stage from 2’ to 2f@)) but we shall

use “a garbage prime” 4 greater than any constant used before. Divisions by d will be

replaced by multiplication by 3. So we can obtain the result of the form 2f@) . q”@),

and the function exz can extract f(x) from it. Cl

9. Strongly universal R-machines for nary functions

Since n-ary functions can be coded by unary ones, universal machines for n-ary

functions usually are not considered. For Turing machines a (nontrivial) coding is

necessary, simply because they do not work with the numbers directly. However, for

register machines the direct input and output of numbers is very natural; that was also

an idea in the distinguishing of strong universality from the usual one. So it has sense

to study the machines from the title of the paragraph.

Theorem 9.1. There is a constant C such that for every n there is a strongly universal

R-machine Ul for the set of n-ary partial recursive functions nlhich has C+2n+3 [Jt;l

instructions.

Sketch of proof. The universal machine U,+ will read the values from input registers

at first, and code them into (say) two working registers. Only the block for reading

input registers depends on n. For n = 9 it is displayed in Fig. 8; notice that every

hexagon replaces two instructions. The other parts of U,+ do not depend on n (up

to the enumeration of registers). The input reading block works as follows. Let n

input registers be placed into a k x k square schema (some positions may be empty),

k = [fil. The blcok obtains a question “which column” (from 0th to (k - 1)th) in

298 I. Korecl Theoretical Computer Science 168 (1996) 267-301

Fig. 8. The input reading block of lJ,* for n = 9

the register b, and gives an answer “which row” (from the first to kth, enumerated

from the bottom) also in b. The answer 0 shows that all input register of the column

are already empty.

Note also that the constant 3 can be diminished to any c > 2 if several registers

are used to code “questions”. 0

As we have seen, the constant C can be effectively found. The member 2n cannot

be diminished because for every input register we need at least two instruction.

An analogon of Theorem 9.1 can be proved also for some variants of register ma-

chines. For example, for the modified register machines from 2.2.2 the expression in

Theorem 9.1 can be replaced by C + II + 2 Ifi1 (and the member n cannot be dimin-

ished).

10. Some concluding remarks

The author intends to consider some of the ideas below in his future work; some

other are presented rather as suggestions for (thinking about and) a discussion.

1. Lower bounds. To obtain a lower bound for the number of instructions of universal

R-machines we can use the following statement (it concern the basic variant of R-

machines):

Theorem 10.1. If every strongly connected component of the jlowchart of a regis-

ter machine A4 contains at most 8 instructions then the halting problem for M is

decidable.

For the equivalence problem of two R-machines the exact bound in a similar state-

ment is known: the undecidability begins with components of cardinality 8; see [7].

So we have the lower bound 9 for the number of instructions of universal R-machines

(this bound belong to the upper bound 29; we obviously ought to consider both bounds

for the same class of machines). The attempts to increase the lower bound very soon

I. Korecl Theoretical Computer Science 168 (1996) 267-301 299

meet some unsolved number theoretical problems. For example, a connection with the

3x + 1 problems arises by 14 instructions. (We do not claim the equivalence, only a

relationship.)

2. Speed of simulation. The machine Us2 simulates every R3-machine M in linear

time, with the proportionality constant CM depending on M. The linear time is usually

considered as very good. However, in our case the constants CM (dependent on the

numbers of simulated machines) are so huge that the computations cannot be performed

in any reasonable time (with exception of some very trivial cases). Of course, this is

not a big surprise.

3. Very strong instructions. Let us allow that the activity of an R-machine in one step

depends on (the emptiness or nonemptiness) of all n their registers. (An instruction will

have the form (qj,F) where F is a mappping of (0, 1)” to (-1, 0, 1)” x (40, 41,. . .};

above we have excluded such classes of machines.) Then we can simulate 2k inner

states by k additional registers. Hence there is a universal register machine with one

instruction and with two inner states, including the final one. The answer to our main

question is trivial in this case.

4. The notion of “one instruction”. The trivial answer in the previous paragraph was

caused by too strong “instructions”. Maybe, a more adequate notion of “one instruc-

tion” must be found for this case. A natural suggestion for the class of R-machines

considered there seems to be that an instruction is an ordered (2n + 2)tuple of the form

(qj, al,...,&, qk, bit..., b,) where ai E (0, 1) represents the actual states of registers

(empty/non-empty) and b, E { - 1, 0 1) represents operations with them. (Then a ma-

chine will be a finite set of such instructions which does not contain any two distinct

instructions which coincide in the first n + 1 components.) So one original instruction

is divided into 2” new instructions; maybe, some of them are unnecessary. The trivial

solution above stops to be valid. However, such approach too strongly influences also

the counting of instructions for R-machines considered, e.g., in the Main Theorem.

Maybe a “wildcard” for both 0, 1 could be allowed as a value of ai; the numbers of

instructions will be changed, but not too much (only the nontrivial test instructions

will be counted twice).

Another point of view is to restrict the activity prescribed in one instruction. Also

for the instructions considered in Section 2 we can ask whether they are sufficiently

elementary. How elementary the instruction of R-machines ought to be? Is (m)

more suitable as one instruction or ought it be divided into two instructions? If we

prefer the second possibility then we could ask something similar also for Turing

machines. Three activities, writing a symbol, moving the head and changing the inner

state ought to be separated. (This can be done indeed but more tape symbols are

necessary.)

Of course, these questions have not the unique right answers. We present them only

as a further argument that some decisions must be clearly declared before evaluating

the numerical results in the theorems similar to presented above.

5. A simplification for teaching. All hard number theoretical results (i.e. those about

distribution of primes) can be omitted if the register & becomes empty every time

300 I. KorecITheoretical Computer Science 168 (1996) 267-301

when the instruction reader ends its activity. To do that, a cycle consisting of two

instructions must be inserted into the instruction reader of U32 or U29; for U22,. . . , U19

one new instruction suffices.

6. Variants of simulation blocks. Two new simulation blocks are suggested in

Fig. 9. The right-hand one is very small; it use only 4 natural instructions; “natu-

ral” means that the corresponding set of instruction codes I-, m, (Ri

belongs to widely used ones.

The left-hand block can be used instead of the original simulation block of the

machine U32; the only disadvantage is that the instructions concerning Rs cannot be

glued together (what was done when further machines for the Main Theorem were

constructedd). However, the block is more symmetric, and probably more suitable for

teaching.

The number 9 instructions of the simulation block cannot be diminished if we want to

simulate three registers (directly and) completely; remember once more that it concerns

the basic variabt of R-machines. However, if we would be able to diminish the number

of input arrows from 3 to 2 then we can spare 2 instructions in the decoding block.

7. One-state linear operator algorithms. Every such algorithm is determined by

its modulus m and by 2m integers Ui, bi. As an input, it obtains x E N, and in

every step it at first determines i := x MOD m, and depending on i it replaces x

by ai . (x DIV m) + bi; this procedure halts when the result would be negative. (So

we can arrange halting by negative ai.) KaSEak [6] constructed a universal one-state

linear operational algorithm with the modulus 396. Non-trivial cases exist already for

the modulus 2 (e.g. concerning the 3x + 1 problem), hence the gap between proved

decidability and proved undecidability is very large. Since, the model is very simple

the author suggests to study it (as he also suggested in the past).

8. Perspectives of reductions. Roughly speaking, the instruction reader and the de-

coder together simulate the finite control unit of any simulated machine, and the sim-

ulation block simulates its registers. Maybe, such division into two parts will not be

.T...T.........................

.

Fig. 9. New suggestion of simulation blocks.

I. Korec I Theoretical Computer Science 168 (I 996) 267-301 301

possible for the smallest universal machines. However, while it remains possible the

author expects more progress in reductions of the union of the first two blocks.

Acknowledgements

This work was supported by Grant 1224194 of Slovak Academy of Sciences.

The author acknowledges Prof. M. Margenstem for possibility to present the results at

the MCULJMC’95 Conference, and also many participants (including him) for fruitful

discussions. The author also thanks Dr. T. %Eik for his help with the diagrams of

register machines.

References

[l] J.G. Brookshear, Formal Languages, Automata, and Complexity (Benjamin/Cummings, Redwood City,

1989).

[2] D.E. Cohen, Computability and Logic (Ellis Horwood, Chichester, 1987).

[3] H. Davenport, Mdtiplicatiue Number Theory (Markham, Chicago, 1967) (Russian translation Moskva,

Nauka, 1971).

[4] L. GreguSova and 1. Korec, Small universal Minsky machines, in: J. BeEvaf ed., Mathematical

Foundations of Computer Science, Proc 8th Symp., Olomouc, September 3-7, 1979, Springer Lecture

Notes in Computer Science, Vol. 74 (Springer, Berlin, 1979) 308-316.

[5] H. Iwaniec and M. Jutila, Primes in shorts interval, Ark. Mat. 17 (1979) 167-176.

[6] F. KaSEak, Small universal one-state linear operator algorithm, in: I.M. Havel, V. Koubek, Eds.,

Mathematical Foundations of Computer Science, Proc 17th Symp., Prague, August 21-28, 1992,

Springer Lecture Notes in Computer Science, Vol. 629 (Springer, Berlin, 1992) 327-335.

[7] I. Korec, A complexity valuation of the partial recursive function following the expectation of the length

of their computations on Minsky machines, Acta F. R. N. Univ. Cornen-Mathematics 23 (1969) 533

112.

[8] I. Korec, Computational complexity based on expectation of the time of computation on Minsky

Machines, in: I.M. Havel, ed., Mathematical Foundations of Computer Science, Proc. High Tatras,

September 3-8, (1973), VVS OSN, Bratislava, 247-250.

[9] 1. Korec, Introduction to Theory of Algorithms (In Slovak), PF UK Bratislava, 1974.

[lo] I. Korec, Decidability (undecidability) of equivalence of Minsky machines with components consisting

of at most seven (eight) elements, in: J. Gruska, ed., Mathematical Foundations of Computer Science,

Proc. 6th Symp., Tatranska Lomnica, September 5-9, 1977, Springer Lecture Notes in Computer

Science, Vol. 53 (Springer, Berlin, 1977) 324-332.

[l I] A.I. Malcev, Algorithms and Recursive Functions (in Russian) (Nauka, Moscow, 1965).

[12] M. Margenstem, Nonerasing Turing machines: a frontier between a decidable halting problem and

universality, Theoret. Comput. Sci. 129 (1994) 419424.

[13] M.L. Minsky, Computations: Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs NJ).

[14] C.J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986) 181-187.

[151 W. Narkiewicz, Number Theory (in Polish) (PWN, Warszawa, 1990).

[16] H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York,

1967).

[17] Yu. V. Rogozhin, Seven universal Turing machines (in Russian), Matematiceskije issledouanija 69

(1982) 76-90.

[18] K. Weihrauch, Computability (Springer, Berlin, 1987).

[19] N.J. Cutland, Computability (Cambridge University Press, 1980).

