
EISEVIER Theoretical Computer Science 168 (1996) 405416

Theoretical
Computer Science

Symmetric discrete universal neural networks ’

Eric Goles *, Martin Matamala

Departamento de Ingenieria Matemcitica. Universidad de Chile,
Fact&ad de Ciencias Fisicas y Matembticas, Casilla 170-3 Correo 3, Santiago, Chile

Abstract

Given the class of symmetric discrete weight neural networks with finite state set (0, l}, we
prove that there exist iteration modes under these networks which allow to simulate in linear

space arbitrary neural networks (non-necessarily symmetric). As a particular result we prove that
an arbitrary symmetric neural network can be simulated by a symmetric one iterated sequentially,
with some negative diagonal weights. Further, considering only the synchronous update we prove
that symmetric neural networks with one refractory state are able to simulate arbitrary neural
networks.

1. Introduction

Let us consider a real n x n matrix W, a vector b E R” and a partition Y = {II,. . . , Zp},

p 2 1, of the set {l,... , n}. We say that J” = (W, b, Y, n) is a neural network updated

under the partition Y, i.e. given a global state x E (0, 1)” for the network the new

global state F(x), is computed as follows:

ViE{l,..., P} Vj EIi Fj(X) = U

(
C wjkFk(X) + C WjkXk - bj ,

kEI,- kE1,’ >

where U(u) = 1 iff u B 0 (0, otherwise), Ii- = Ul,,I~ and I,’ = Ulai Il.

It is clear that previous scheme can be formulated as a non-linear iterative system

F(x) = U”(WLF(x) + W”x - b),

L-
wjk -

{

wjk 2 jEZi, kEZi_,
and w$ =

wjk T jEZi, kEIi+,
0

, otherwise 0, otherwise.

‘Partially supported by Fondecyt 1940520(E.G) and 1950569(M.M), ECOS (E.G, M.M) and CEE-

CIl *CT92-0046.

* Corresponding author.

0304-3975196/$15.00 @ 1996-Elsevier Science B.V. All rights reserved
PZI SO304-3975(96)00085-O

406 E. Gales, M. Matamalal Theoretical Computer Science 168 (1996) 405-416

Moreover, II” is the function defined from R” into (0, 1)” as the function llin each

component.

Previous update mode can be interpreted as follows: one iterates the network block

by block in the periodic order 1,2,. . . , p. Inside each block the neurons are updated

synchronously.

For instance, consider the example given in Fig. 1. There, we have a neural network

with four neurons connected with the weight matrix W. Consider the partition Y =

{{1)~~2,3~,{4~}. Th en, if we set the initial state of the network to x = (1, 0, 1,O) we

get as the new global state F(x) = (0, 1, 1,l). One global transition is split in three

substeps. First, neuron one is updated producing the substate x’ = (0, 0, 1,O). Second,

neurons two and three are updated in parallel giving the substate x”=(O, 1, l,O). Finally,

neuron four is updated alone.

As particular cases of previous schema one finds: the parallel update rc= { { 1,. . . , n}}

or WL=O and W"= W, which means that the whole network is updated synchronously.

The sequential update corresponds to ,u = { { 1 }, . . . , {n}}, that is to say one updates the

network site by site in the periodic order 1,2,. . . , n. Partition p is also called the finest

partition. It is easy to see that the sequential update is associated to upper triangular

matrices W".
In previous context, one step of the neural network dynamic consists in the iteration

of every neuron under the partition Y.

We will say that a network T = (@, b”, Y, n”) simulates N = (W, b, Y, n) if given

a_trajectory {x(t)} taO of the neural network J” there exists a trajectory {~(t)}t~a on

N, where y(O) contains as a subconfiguration a code of x(O), such that y(tq), t > 0,

contains a subconfiguration coding x(t), for some q E Q. It is natural to measure the -
complexity of the simulation as the product of the size of J1’ and the time factor q.

So, when this product is cn we say that the simulation is in linear time. When c= 1 we

Fig. 1. Block-sequential iteration of a neural network with four neurons.

E. Gales, M. MatamalalTheoretical Computer Science 168 (1996) 405416 401

speak about a real time simulation. We impose that the coding be an injective function

and easily computable.

It is well known that without restrictions on the matrix weights, a finite state neural

network iterated in parallel can simulate arbitrary algorithms, and, if infinitely many

neurons are provided a Universal Turing Machine [3,6]. In this paper we will focus

our attention in internal simulation capabilities of neural networks, i.e. given a class

of neural nets defined by some weights and/or partition characteristics, we study the

capabilities of such class in order to simulate in polynomial time and space every other

neural network.

In previous framework we will study the simulation capabilities of symmetric neural

networks iterated under a given partition 9Y. In fact, we will prove that previous class

is universal in the sense that every neural network (non necessarily with symmetric

weights) can be simulated in linear time and space by a symmetric one iterated under

a partition &. Furthermore, we prove that one may always consider only the sequential

iteration, so the class of symmetric weights neural nets iterated sequentially is universal.

This last result is interesting because, as we will recall in next paragraph, the sequential

iteration with symmetric and non-negative diagonal weights corresponds to the Hopfield

model and it admits an energy operator which implies the convergence only to fixed

points [3,5]. So, our universality result holds because we relax the non-negativity

hypothesis on diagonal weights.

As notation we define the following classes of neural networks. Given a partition

gy,

NV,,) ={(IV, b,+Y,n); b E R”, W being a n x n real matrix},

NS(+Y, n) ={(IV, b, 9Y, n); b E R”, W being a symmetric n x n matrix},

NS+(g, n) ={(IV, b, g/, n); b E R”, W being symmetric, diug(W) 2 0).

Clearly, NS+(+Y, n) L NS(‘?Y, n) c N(+Y, n).

In the context of partition iteration we have the following result, which will be useful

in next sections.

Proposition 1. Given a neural network Jf = (W, b, C?Y, n), where 3’ is not the finest
partition, there exists 7 = (E,b,p,2n), which simulates JV in real time.

Proof. The iteration in Jf = (W, b,g,n) is given by F(x) = I]“(WLF(x) + W”x - b).

We define I? and b by

q;: ;q, b=(i).

The sequential iteration of 2 is given by

G(z) = U*‘(WLG(z) + ii;‘z - b) =

408 E. Gales, M. Matamalal Theoretical Computer Science I68 (1996) 405416

where

and Gi(z) E (0, I}“, i = 1,2. Now, consider z = (21,~~) and set zi = z2 = x. Then,

G*(z) = U”(WLGl(z) + W ‘z2 - b) = U”(WLGl(z) + W”x - b) = F(x)

and

G2(z) = U”(@G,(z) + WLG2(z) - b) = 117 WLG2(z) + W”F(x) - b) = F2(x).

So, G&x) = (F(x),i2(x)). It is easy to see that G(x,F(x)) = (F2(x),F3(x)). Thus,

each global step in JV computes two step of JV. Therefore, the simulation is carried

out in real time. 0

A schema of previous morphism is given in Fig. 2.

As a particular case of previous iteration we have that the parallel iteration can be

simulated by the sequential one. In this case the new architecture is shown in Fig. 3.

It is important to point out that between the set of block-sequential updates, the

sequential one is universal in the sense that it may simulate any other iteration mode.

Since the size of 2 is 2n and the time factor is i, we get a real time simulation

(n=2n x $).

Another neural network model was proposed by Shingai [9]. It takes into account

the refractory properties of neurons, i.e. after firing, a neuron needs a refractory time

to be fired again, Shingai modelized this fact by adding some extra special states.

In this context we will prove that the class of refractory neural networks with three

states { - 1, 0, 1 } and with symmetric interconnections is able to simulate arbitrary (non-

necessarily symmetric) classical neural networks with states (0, l}, in linear time and

linear space.

Iv‘ w”
WI

-i 1 w” w‘

Fig. 2. Neural network _% for V = {Zl,Iz, 13). H: denotes arcs of wL, in both ways (if there exists). -:

denotes arcs only in one way.

E. Gales, M. Matamalal Theoretical Computer Science 168 (1996) 405-416 409

Fig. 3. Neural network 2 for the parallel update. Here there are only arcs between the two layers.

2. Symmetric weight neural networks

The motivation to study symmetric neural networks appeared from the application

of the Hebb rule to stock pattern as attractors of the neural network dynamics. Since

the Hebb rule produces symmetric weights one may associate an energy operator to

the network behavior.

First we recall some classical properties about symmetric networks.

Proposition 2. Suppose that W is a n x n symmetric weight matrix. Then:

(i) The parallel iteration on N = (W, b, z,n) converges to fixed points or two

cycles [1,5].

(ii) The transient time of the parallel iteration could be exponential on n [3].
(iii) With the additional hypothesis, diag(W) 3 0, the sequential iteration converges

to fixed points [4,5].
(iv) The transient time of the sequential update could be exponential on n [3].
(v) Given a partition SY = {II , . . . , Ik}, if the submatrices corresponding to each

block I, are positive definite the neural network converges to fixed points [2].

Previous results (i), (iii), (v) have been obtained by the construction of algebraic

and energy operators which drives the network dynamics [1,3]. It is interesting to point

out that (i) can be obtained from (iii) by applying Proposition 1. In fact, it sulhces

to simulate the parallel update of J1’ by a neural neuron with 2n sites as in Fig. 4.

Clearly, the new weight matrix is symmetric with null diagonal, so by (ii) it converges

to fixed points of the form (x(q),x(q+ 1)) which represents fixed points or two cycles

for the parallel trajectory.

It is also important to point out that, by using the construction given in (ii), Or-

ponen [8] proved that non-necessarily symmetric neural network whose convergence

time to an attractor is polynomial, can by simulated by a symmetric one iterated in

parallel.

410 E. Gales, M. Matamalal Theoretical Computer Science 168 (1996) 405-416

1 2 3 8x8 4 5 6

Fig. 4. Simulation of the parallel iteration by the sequential

sequential one in the symmetric case.
Fig. 5. A symmetric neural network.

Table 1
(i) Parallel iteration; cycle of period 2. (ii) Block-sequential iteration for

g= {{l}, {2,3}, (4)); cycle of period T 7 2. (iii) Sequential iteration;

cycle of period T z 2

(i) 3 2 1 4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 1

1 0 1 0

0 1 0 1

(iii) 3 2 1 4

(ii) 3 2 1 4
0 1 0 0

0100

0110

0 0 1 0

0011

0001

1001

1 0 0 1

1001

0101

0100

0110

0010

0 0 1 0

0 0 1 1

0 Q 0 1

0001

1001

1001

1 0 0 1

1 1 0 1

0 1 0 1

0100

Further, previous results (i) and (iii) show that, in our sense, the symmetric and

diagonal constraints on the neural networks implies that this kind of networks, iterated

sequentially or parallel are not universal.

Suppose, for instance, the symmetric network given in Fig. 5. Clearly, its associated

matrix is symmetric, so, from Proposition 2, the parallel iteration converges to fixed

points or two cycles for any initial configuration. But since there exists a negative

diagonal weight it is not the case for the sequential update p = {{l}, {2}, {3}, (4))

and neither for the partition ?!Y = {{I}, {2,3}, (4)). In both cases there exists a cycle

of period T > 2, as we exhibit in Table 1.

The next result establishes that an arbitrary neural network can be simulated in real

time and linear space by a symmetric one.

Proposition 3. Let (W, b, Y, n) E N(Y, n); then there exists (W', b’, Y’, 3n) E NS(Y’, 3n)
such that (W’, b’, Y’, 3n) simulates (W, b, Y, n). The simulation is carried out in 3n
time.

Proof. Let us take the interconnection scheme of two neurons 1,2 in (W, b, Y, n) as

shown in Fig. 6.

E. Gales, M. Matamalal Theoretical Computer Science 168 (1996) 405-416 411

Fig. 6. Directed neural network. Fig. 7. Symmetric neural network

We replace the previous scheme by the one given in Fig. 7, where d(i)=C,,,, wjl
fl, c(i) = 2d(i).

So the new network corresponds to the previous one plus 2n neurons {(i, 1), (i, 2)}::‘=,

connected as above.

Neurons (i, 1) and (i, 2) must be updated sequentially and they copy the state of

neuron i. Suppose that x(i,i) =X(Q) and consider the argument of neuron (i, l), C(i, 1)

(the first one to be updated), so

C(i, 1) = Xl - C I X(,,J) + C(i)X(i,z) - 1 = Xi - 1, (‘)

hence x;~,,) = U(xi - 1) = xi. Now, one updates (i,2):

x(&2) = -xi + c(i)x(i,l) + Cwijxj - d(i).
.i#l

Suppose first xi = 0, so, from definition of d(i),

C(i, 2) = C Wl,xj - d(i) < 0, hence x;,,~) = O(C(i, 2)) = 0 = xi

If xi = 1, we get

C(i,2) = c(i) - d(i) - 1 + C wijxj
j#i

= d(i) - 1 + C Wjlxj = C (Wij(+ 1 - 1 + C Wjixj 2 0
j#i j#i j#i

SO, Xi,2 = O(C(i,2)) = Xi = 1.

Hence, neurons (i, 1) and (i, 2) copy the current state of neuron i when we update

them sequentially. Clearly, in the next update for i, states x(i,l) and X(Q) will be not

significant. Now to simulate (IV, b, Y, n); let x be the initial configuration of (W, b, Y, n).

We define the initial configuration, y, of (W', b’, Y’, 3n) as follows: yi =xi Vi= 1,. . . , n,

y(i,~) = =y(~,)(0) = xi. On the other hand, if ?Y = {Ii,. . . ,Zp}, the new partition is the

following:

Y’ = (11, {(i, 1)jra,, {(i,2))i~1,,12,. . .,I,, ((6 l)}iElp, {(i,2)}iap}.

It is direct that each application of the update on (W, b, Y, n) is simulated by one

update of (W’, b’, Y’, 3n). 0

Corollary 1. Consider .A’” = (W, b, p, n) E N(,u, n), then there exists (W, b, p, 3n) E
NS(p,3n) with negative diagonal, i.e. (W, b,p,3n) 4 NS+(p,3n), which simulates Jlr,

412 E Go/es, A4 Matamalal Theoretical Computer Science 168 (1996) 405-416

Proof. Direct from the previous theorem. It suffices to remark that in the construction

of Theorem 1, the weights w(i,l)(i,t) are negatives. Thus, the new partition is given by

~{l~~{(l~l)~,{(l,~)>,...,o,((n,l)),((n,~)}} q

The previous corollary proves that the sequential iteration on symmetric matrices

with some negative diagonal entries is universal, i.e. it may simulate arbitrary neural

networks. This fact gives an explanation to the non-negativity diagonal hypothesis

assumed to determine the fixed point behavior of Hopfield networks [I, 51. Furthermore,

one may eliminate the negative diagonal entries by changing the iteration mode as in

the following result.

Proposition 4. Let Jf =(W, b, CY, n) E NS(g, n) \ NS+(g, n), then JV can be simulated

by a neural network (W’, b’,C?f,2n) which belongs to NS+(CY’,2n).

Proof. It suffices to change in the initial network (W, 6, CY,n), each neuron i, for two

neurons (i, l), (i,2) such that

Vi,jE{l,...,n}: w (r,1)~,1) = w(i,l)v,2) = Fw(i,2)u,2) = w(i,2)G,l) = Tb(i,l) = b(i,2) = bi.

SO, for any x(i,i),X(i,2) with x(i,l) = X(i,2) = Xi, one gets

CCC 1) = C w(i,l)~,l)x~,~) + Cw(i,l)o.,2)~~,2) - b,
j j

= C(W(r,l)~,l) + W(i,l)G,2)rx/ - bi = Cj wljXj - bi.
j

By taking the x(i,i 1 =x(i,2) =xi and 1; = { (i, 1), (i, 2) 1 i E Ii}, the element of the partition

OY’, we simulate the initial network by using 2n neurons and diag(W’) = 0. 0

Corollary 2. The network (W, b, Oy, n) E N(CV, n) can be simulated by (W’, b’, CY’, 6n) E

NS+(CY’, 6n).

Proof. From Proposition 3, we first determine (pi, 6, Y, 3n) E NS(@, 3n). From Propo-

sition 4, we determine (W’, b’, CY’, 6n) E NS+(g’, 6~). q

In particular, the previous corollary shows that any neural network (W, b, x,n) E

N(n, n) can be simulated by (W', b’, ?V’, 6n) E NS+(g’, 6n). It is important to point out

that Y’ is not a trivial partition, i.e. Yy’ # 4 and Yl’ # ~1.

3. Neural networks with a refractory state

One of the alternative models of neural networks was proposed in [7]. It takes into

account the fact that when a neuron fires there exists a time delay such that the neuron

is inhibited to fire. In this section we study the simulation capabilities of such model

for the parallel update, symmetric interconnections and only one refractory state.

E. Gales, M. Matamalal Theoretical Computer Science 168 (1996) 405-416 413

A refractory neural network is defined by the tuple JV = (W, b, Q, n) where the set

of states Q is given by Q = { -l,O, 1). The dynamics of such network is synchronous

and given by: for y E {-l,O, l}“,

1

if yi=-1,

-1 if yI=l,
G(Y) =

O()

Ii 2 wijyj - bi if yi = 0,
J=l

where U = 1 iff u = 1 (0 otherwise).

We define the class of symmetric refractory neural networks of size n E N as follows:

RNS(n) = {JV = (W, b, {-l,O, l},n); W being symmetric, n E fV}.

Our result in this section establishes that each neural network d E N({ { 1,2,. . , n}},

n) (in the sequel denoted by N(n)) can be simulated by a neural network 69 E

RNS(3n). Recall that a classic neural network works only, as in previous section,

with two states, (0, l}.

Before proving the principal result, we show how asymmetric interactions in d can

be simulated by symmetric ones in 99. Consider two neurons i and j in & as shown

in Fig. 8(a).

The interactions between these neurons are simulated in network 9J by nine neurons:

i, n + i, 2n + i, j, n + j, 2n + j and a, b and c, connected in the way shown in Fig. 8(b).

Previous scheme can be generalized to any element in N(n). In fact, given d E N(n)

we build 5J E RNS(3n + 3) as follows:

Neuron iE{l,... ,n} in 9L9 play the role of the neurons in ~4.

Neuron nti, iE{l,..., n} will be used to copy the state of neurons i and to delay

the transmission between i and j.

Neuron 2n+i, iE{l,. . . , n} produce a copy of the state of neuron i which is sent

to all neurons j, j E { 1,. . . , n} with weight wji.

Neurons a, b and c belong to a cycle sending every three steps the value 1 - 6, to

neuron i. This cycle allows to neuron i to reproduce its threshold each three steps.

Fig. 8. Schema of how a neural network &EN(~) is simulated by a neural network .%’ E RNS(9). (a)

neural network d without loops and non-necessarily symmetric; (b) refractory symmetric neural network 3

simulating to .ti.

414 E. Gales, M. MatamalalTheoretical Computer Science 168 (1996) 405416

The non-zero elements in the matrix connection U of S3 are

Uj,Zn+r = U2n+i,j = Wji, Ui,, = Uq = 1 - bi,

&,b = ub,a = r/,,c = Uc,b = ua,c = uc,a = 1,

where di = C,,, ,0 wji + 1. The threshold vector u

(1)

of B is given by

Vi=Vn+i=V,=vb=~,=I, i=l,.,., n and vzn+i=di fori=l,..., n.

Notice that the neighborhoods in $3 are given by

K={n+i}U{2n+j: j=l,...,12}, V,+l = {a + Li},

V&+i={?Z+i}U{j: j=l,...,iZ},

Va={b,c}U{i: i=l,..,, n}, Vb = {a,~} V, = {a, b}.

Now we describe how the evolution in & is simulated in g!. We define the map

v] : {O,l}” + {-LO, 1}3”+3 by

Y]k(x) =

&xi), k = i,

Xi, k=n+i, %(X) =

0, k = 2n + i,

where

0, u = a,

1, u = 6,

-1, u = c.

Then, q maps global configurations of ~4 into global configurations in B.

In Fig. 9 we describe the dynamical evolution of d together with those of S?, when

we take x = (1,0) as the global state of d. Then, the global state of S? is given by

(- 1, 0, 1, 0, 0, 0, 0, 1, - 1). Now, we prove our result.

Theorem 1. For any A E N(n) there exists ~28 E RNS(3n + 3) built as above such that

Vx E (0, 1)” Vt 2 0 q(F’(x)) = G3’(q(x)).

Proof. We only need to prove it for t = 1.

Let Y = Y(X) and MY) = CICK u,~yl - di. Then, from definition of U given in Eq.

(I), we get

n

&+k(Y) = _?k + 2PkY2,+k - 1, 62,,+k(_Y) = 2Pky,,k + c Wlk.?I - Px-3
I=1

Sk(y) = Yn+k + &klY2n+k +(l -bk)Y, - 1,
I=1

E. Gales, M. MatamalalTheoretical Computer Science 168 (1996) 405-416

Fig. 9. Refractory symmetric neural network simulating a neural network. Each step in .d is simulated in

three steps in 3’.

n

6,(y) = c<l - h)Y, + yb + Yc - ‘,
I=1

6b(Y) = 3, + Y, - ‘, 6,(y) = j, + jb - l.

Computation of G(@)).

Let kg {l,..., n}. we must split our computation according to xk = 0 or Xk # 0.

Assume xk = 0. Then, yk = 0 = yn+k. Therefore,

n
Gk(y) = 0, G,+k(y) = -1, Gzn+k(y) = 11

(
c “‘k/FL - pk = 0.
I=1 >

Now, suppose Xk = 1. Then yk = -1 and yn+k = 1. Thus,

n
Gk(y) = 0, G,+k(y) = -1, Gzn+k(y) = 1

(
pk + c wkly/ = 1.

I=1)

Moreover, since &xl) = 0 we obtain G,(y) = 1. Finally, Gb(y) = -1 and G,(y) = 0.

so,

{

0, k = i,

l

1, k = a,

Gdy) = &xi), k = n + i, G,(Y) = -1, k=b,

Xi, k = 2n + i, 0, k = c.

To compute G2(y) we use the previous formula for z = G(y). Since Gk(y) = zk = 0

we have

_ n
G&) = 1

(
&xk) + c w/&I + 1 - b/ - 1

> (
= 11 5 Wk[X/ - bj

I=1 I=1 >
= Fk(X).

Assume xk = 0. Then zk = z,+k = z2nfk = 0 which implies Gn+k(z) = 0 and

&n+k(z) = 1 2Pd6k) + 5 wkl . 0 - Pk
>

= 0.
I=1

416 E. Gales. M. Matamalal Theoretical Computer Science 168 (1996) 405416

Now, suppose xk = 1. Then z,+k = - 1 which implies G,,+k(z) = 0 and GZ,,+k = - 1.

Clearly, G,(z) = -1, Gb(z) = 0 and G,(z) = 1. Thus,

Fk(x), k = i, -1, k=a,

G&‘) = 0, k=n+i, G(z) = 0, k = b,
&xi), k = 2n + i, 1, k=c.

Finally, G3(y) is given by

4(Fk(x)), k = i, 0, k = a,

G,%v) = Fk(X), k=n+i, G(z) = 1, k=b,
0, k = 2n + i, -1, k=c. 0

4. Conclusions

We have proved that arbitrary neural networks can be simulated in linear space

(O(n) neurons) by symmetric neural nets, iterated in a block-sequential mode. This

implies that symmetry is not enough to insure simple dynamics of neural network. The

dynamics depends strongly on the iteration mode.

Also, our result proved that when the non-negative diagonal hypothesis for sequen-

tial iteration does not hold, the class is universal, i.e. symmetric neural networks with

negative diagonal entries iterated sequentially may simulate arbitrary neural nets. Sim-

ilarly, the class of block-sequential iterations on symmetric neural nets which does not

verify the hypothesis of non-negative definite submatrices, is also universal. Finally,

we proved that symmetric refractory neural nets with only three states are universal in

the sense they simulate any arbitrary classical two-states neural net.

References

[1] E. Goles, Fixed point behavior of threshold functions on a finite set, SIAM J. Algebra Discrete Methods

3 (1982) 529-531.

[2] E. Goles, F. Fogelman-Soulie and D. Pellegrin, The energy as a tool for the study of threshold networks,

Discrete Appl. Math. 12 (1985) 261-277.

[3] E. Goles and S. Martinez, Neural and Automata Networks (Kluwer, Dortrecht, 1990).

[4] E. Goles and _I. Olivos, Periodic behavior of generalized threshold functions, Discrete Math. 30 (1980)

187-189.

[5] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities,

Proc. Natl. Acad Sci. USA 79 (1982) 25542558.

[6] W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math.

Biophys. 5 (1943) 115-133.

[7] M. Matamala, Complejidad y dinamica de redes de automatas, Ph.D. Thesis, Universidad de Chile, 1994.

[8] P. Orponen, Complexity classes in neural networks, in: PYOC. 20th Znternat. CON. on Automata,

Language, and Programming, Lecture Notes in Computer Science, Vol. 700 (Springer, Berlin, 19xx)

215-226.

[9] S. Shingai, Maximum period of 2-dimensional uniform neural network, Inform and Control 41 (1979)

324-341.

