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Abstract 

Given the class of symmetric discrete weight neural networks with finite state set (0, l}, we 
prove that there exist iteration modes under these networks which allow to simulate in linear 

space arbitrary neural networks (non-necessarily symmetric). As a particular result we prove that 
an arbitrary symmetric neural network can be simulated by a symmetric one iterated sequentially, 
with some negative diagonal weights. Further, considering only the synchronous update we prove 
that symmetric neural networks with one refractory state are able to simulate arbitrary neural 
networks. 

1. Introduction 

Let us consider a real n x n matrix W, a vector b E R” and a partition Y = {II,. . . , Zp}, 

p 2 1, of the set {l,... , n}. We say that J” = ( W, b, Y, n) is a neural network updated 

under the partition Y, i.e. given a global state x E (0, 1)” for the network the new 

global state F(x), is computed as follows: 

ViE{l,..., P} Vj EIi Fj(X) = U 

( 
C wjkFk(X) + C WjkXk - bj , 

kEI,- kE1,’ > 

where U(u) = 1 iff u B 0 (0, otherwise), Ii- = Ul,,I~ and I,’ = Ulai Il. 

It is clear that previous scheme can be formulated as a non-linear iterative system 

F(x) = U”( WLF(x) + W”x - b), 

L- 
wjk - 

{ 

wjk 2 jEZi, kEZi_, 
and w$ = 

wjk T jEZi, kEIi+, 
0 

, otherwise 0, otherwise. 
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Moreover, II” is the function defined from R” into (0, 1)” as the function llin each 

component. 

Previous update mode can be interpreted as follows: one iterates the network block 

by block in the periodic order 1,2,. . . , p. Inside each block the neurons are updated 

synchronously. 

For instance, consider the example given in Fig. 1. There, we have a neural network 

with four neurons connected with the weight matrix W. Consider the partition Y = 

{{1)~~2,3~,{4~}. Th en, if we set the initial state of the network to x = (1, 0, 1,O) we 

get as the new global state F(x) = (0, 1, 1,l). One global transition is split in three 

substeps. First, neuron one is updated producing the substate x’ = (0, 0, 1,O). Second, 

neurons two and three are updated in parallel giving the substate x”=(O, 1, l,O). Finally, 

neuron four is updated alone. 

As particular cases of previous schema one finds: the parallel update rc= { { 1,. . . , n}} 

or WL=O and W"= W, which means that the whole network is updated synchronously. 

The sequential update corresponds to ,u = { { 1 }, . . . , {n}}, that is to say one updates the 

network site by site in the periodic order 1,2,. . . , n. Partition p is also called the finest 

partition. It is easy to see that the sequential update is associated to upper triangular 

matrices W". 
In previous context, one step of the neural network dynamic consists in the iteration 

of every neuron under the partition Y. 

We will say that a network T = (@, b”, Y, n”) simulates N = ( W, b, Y, n) if given 

a_trajectory {x(t)} taO of the neural network J” there exists a trajectory {~(t)}t~a on 

N, where y(O) contains as a subconfiguration a code of x(O), such that y(tq), t > 0, 

contains a subconfiguration coding x(t), for some q E Q. It is natural to measure the - 
complexity of the simulation as the product of the size of J1’ and the time factor q. 

So, when this product is cn we say that the simulation is in linear time. When c= 1 we 

Fig. 1. Block-sequential iteration of a neural network with four neurons. 
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speak about a real time simulation. We impose that the coding be an injective function 

and easily computable. 

It is well known that without restrictions on the matrix weights, a finite state neural 

network iterated in parallel can simulate arbitrary algorithms, and, if infinitely many 

neurons are provided a Universal Turing Machine [3,6]. In this paper we will focus 

our attention in internal simulation capabilities of neural networks, i.e. given a class 

of neural nets defined by some weights and/or partition characteristics, we study the 

capabilities of such class in order to simulate in polynomial time and space every other 

neural network. 

In previous framework we will study the simulation capabilities of symmetric neural 

networks iterated under a given partition 9Y. In fact, we will prove that previous class 

is universal in the sense that every neural network (non necessarily with symmetric 

weights) can be simulated in linear time and space by a symmetric one iterated under 

a partition &. Furthermore, we prove that one may always consider only the sequential 

iteration, so the class of symmetric weights neural nets iterated sequentially is universal. 

This last result is interesting because, as we will recall in next paragraph, the sequential 

iteration with symmetric and non-negative diagonal weights corresponds to the Hopfield 

model and it admits an energy operator which implies the convergence only to fixed 

points [3,5]. So, our universality result holds because we relax the non-negativity 

hypothesis on diagonal weights. 

As notation we define the following classes of neural networks. Given a partition 

gy, 

NV,,) ={( IV, b,+Y,n); b E R”, W being a n x n real matrix}, 

NS(+Y, n) ={( IV, b, 9Y, n); b E R”, W being a symmetric n x n matrix}, 

NS+(g, n) ={( IV, b, g/, n); b E R”, W being symmetric, diug( W) 2 0). 

Clearly, NS+(+Y, n) L NS(‘?Y, n) c N(+Y, n). 

In the context of partition iteration we have the following result, which will be useful 

in next sections. 

Proposition 1. Given a neural network Jf = (W, b, C?Y, n), where 3’ is not the finest 
partition, there exists 7 = (E,b,p,2n), which simulates JV in real time. 

Proof. The iteration in Jf = ( W, b,g,n) is given by F(x) = I]“( WLF(x) + W”x - b). 

We define I? and b by 

q;: ;q, b=(i). 

The sequential iteration of 2 is given by 

G(z) = U*‘( WLG(z) + ii;‘z - b) = 
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where 

and Gi(z) E (0, I}“, i = 1,2. Now, consider z = (21,~~) and set zi = z2 = x. Then, 

G*(z) = U”( WLGl(z) + W ‘z2 - b) = U”( WLGl(z) + W”x - b) = F(x) 

and 

G2(z) = U”( @G,(z) + WLG2(z) - b) = 117 WLG2(z) + W”F(x) - b) = F2(x). 

So, G&x) = (F(x),i2(x)). It is easy to see that G(x,F(x)) = (F2(x),F3(x)). Thus, 

each global step in JV computes two step of JV. Therefore, the simulation is carried 

out in real time. 0 

A schema of previous morphism is given in Fig. 2. 

As a particular case of previous iteration we have that the parallel iteration can be 

simulated by the sequential one. In this case the new architecture is shown in Fig. 3. 

It is important to point out that between the set of block-sequential updates, the 

sequential one is universal in the sense that it may simulate any other iteration mode. 

Since the size of 2 is 2n and the time factor is i, we get a real time simulation 

(n=2n x $). 

Another neural network model was proposed by Shingai [9]. It takes into account 

the refractory properties of neurons, i.e. after firing, a neuron needs a refractory time 

to be fired again, Shingai modelized this fact by adding some extra special states. 

In this context we will prove that the class of refractory neural networks with three 

states { - 1, 0, 1 } and with symmetric interconnections is able to simulate arbitrary (non- 

necessarily symmetric) classical neural networks with states (0, l}, in linear time and 

linear space. 

Iv‘ w” 
WI 

-i 1 w” w‘ 

Fig. 2. Neural network _% for V = {Zl,Iz, 13). H: denotes arcs of wL, in both ways (if there exists). -: 

denotes arcs only in one way. 
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Fig. 3. Neural network 2 for the parallel update. Here there are only arcs between the two layers. 

2. Symmetric weight neural networks 

The motivation to study symmetric neural networks appeared from the application 

of the Hebb rule to stock pattern as attractors of the neural network dynamics. Since 

the Hebb rule produces symmetric weights one may associate an energy operator to 

the network behavior. 

First we recall some classical properties about symmetric networks. 

Proposition 2. Suppose that W is a n x n symmetric weight matrix. Then: 

(i) The parallel iteration on N = (W, b, z,n) converges to fixed points or two 

cycles [ 1,5]. 

(ii) The transient time of the parallel iteration could be exponential on n [3]. 
(iii) With the additional hypothesis, diag( W) 3 0, the sequential iteration converges 

to fixed points [4,5]. 
(iv) The transient time of the sequential update could be exponential on n [3]. 
(v) Given a partition SY = {II , . . . , Ik}, if the submatrices corresponding to each 

block I, are positive definite the neural network converges to fixed points [2]. 

Previous results (i), (iii), (v) have been obtained by the construction of algebraic 

and energy operators which drives the network dynamics [ 1,3]. It is interesting to point 

out that (i) can be obtained from (iii) by applying Proposition 1. In fact, it sulhces 

to simulate the parallel update of J1’ by a neural neuron with 2n sites as in Fig. 4. 

Clearly, the new weight matrix is symmetric with null diagonal, so by (ii) it converges 

to fixed points of the form (x(q),x(q+ 1)) which represents fixed points or two cycles 

for the parallel trajectory. 

It is also important to point out that, by using the construction given in (ii), Or- 

ponen [8] proved that non-necessarily symmetric neural network whose convergence 

time to an attractor is polynomial, can by simulated by a symmetric one iterated in 

parallel. 
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1 2 3 8x8 4 5 6 

Fig. 4. Simulation of the parallel iteration by the sequential 

sequential one in the symmetric case. 
Fig. 5. A symmetric neural network. 

Table 1 
(i) Parallel iteration; cycle of period 2. (ii) Block-sequential iteration for 

g= {{l}, {2,3}, (4)); cycle of period T 7 2. (iii) Sequential iteration; 

cycle of period T z 2 

(i) 3 2 1 4 

0 1 0 0 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

(iii) 3 2 1 4 

(ii) 3 2 1 4 
0 1 0 0 

0100 

0110 

0 0 1 0 

0011 

0001 

1001 

1 0 0 1 

1001 

0101 

0100 

0110 

0010 

0 0 1 0 

0 0 1 1 

0 Q 0 1 

0001 

1001 

1001 

1 0 0 1 

1 1 0 1 

0 1 0 1 

0100 

Further, previous results (i) and (iii) show that, in our sense, the symmetric and 

diagonal constraints on the neural networks implies that this kind of networks, iterated 

sequentially or parallel are not universal. 

Suppose, for instance, the symmetric network given in Fig. 5. Clearly, its associated 

matrix is symmetric, so, from Proposition 2, the parallel iteration converges to fixed 

points or two cycles for any initial configuration. But since there exists a negative 

diagonal weight it is not the case for the sequential update p = {{l}, {2}, {3}, (4)) 

and neither for the partition ?!Y = {{I}, {2,3}, (4)). In both cases there exists a cycle 

of period T > 2, as we exhibit in Table 1. 

The next result establishes that an arbitrary neural network can be simulated in real 

time and linear space by a symmetric one. 

Proposition 3. Let ( W, b, Y, n) E N(Y, n); then there exists ( W', b’, Y’, 3n) E NS(Y’, 3n) 
such that (W’, b’, Y’, 3n) simulates ( W, b, Y, n). The simulation is carried out in 3n 
time. 

Proof. Let us take the interconnection scheme of two neurons 1,2 in ( W, b, Y, n) as 

shown in Fig. 6. 
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Fig. 6. Directed neural network. Fig. 7. Symmetric neural network 

We replace the previous scheme by the one given in Fig. 7, where d(i)=C,,,, wjl 
fl, c(i) = 2d(i). 

So the new network corresponds to the previous one plus 2n neurons {(i, 1 ), (i, 2)}::‘=, 

connected as above. 

Neurons (i, 1) and (i, 2) must be updated sequentially and they copy the state of 

neuron i. Suppose that x(i,i) =X(Q) and consider the argument of neuron (i, l), C(i, 1) 

(the first one to be updated), so 

C(i, 1) = Xl - C I X(,,J) + C(i)X(i,z) - 1 = Xi - 1, (‘) 

hence x;~,,) = U(xi - 1) = xi. Now, one updates (i,2): 

x(&2) = -xi + c(i)x(i,l) + Cwijxj - d(i). 
.i#l 

Suppose first xi = 0, so, from definition of d(i), 

C(i, 2) = C Wl,xj - d(i) < 0, hence x;,,~) = O(C(i, 2)) = 0 = xi 

If xi = 1, we get 

C(i,2) = c(i) - d(i) - 1 + C wijxj 
j#i 

= d(i) - 1 + C Wjlxj = C (Wij( + 1 - 1 + C Wjixj 2 0 
j#i j#i j#i 

SO, Xi,2 = O(C(i,2)) = Xi = 1. 

Hence, neurons (i, 1) and (i, 2) copy the current state of neuron i when we update 

them sequentially. Clearly, in the next update for i, states x(i,l) and X(Q) will be not 

significant. Now to simulate (IV, b, Y, n); let x be the initial configuration of ( W, b, Y, n). 

We define the initial configuration, y, of ( W', b’, Y’, 3n) as follows: yi =xi Vi= 1,. . . , n, 

y(i,~) = =y(~,)(0) = xi. On the other hand, if ?Y = {Ii,. . . ,Zp}, the new partition is the 

following: 

Y’ = (11, {(i, 1 )jra,, {(i,2))i~1,,12,. . .,I,, ((6 l)}iElp, {(i,2)}iap}. 

It is direct that each application of the update on ( W, b, Y, n) is simulated by one 

update of (W’, b’, Y’, 3n). 0 

Corollary 1. Consider .A’” = (W, b, p, n) E N(,u, n), then there exists (W, b, p, 3n) E 
NS(p,3n) with negative diagonal, i.e. (W, b,p,3n) 4 NS+(p,3n), which simulates Jlr, 
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Proof. Direct from the previous theorem. It suffices to remark that in the construction 

of Theorem 1, the weights w(i,l)(i,t) are negatives. Thus, the new partition is given by 

~{l~~{(l~l)~,{(l,~)>,...,o,((n,l)),((n,~)}} q 

The previous corollary proves that the sequential iteration on symmetric matrices 

with some negative diagonal entries is universal, i.e. it may simulate arbitrary neural 

networks. This fact gives an explanation to the non-negativity diagonal hypothesis 

assumed to determine the fixed point behavior of Hopfield networks [I, 51. Furthermore, 

one may eliminate the negative diagonal entries by changing the iteration mode as in 

the following result. 

Proposition 4. Let Jf =( W, b, CY, n) E NS(g, n) \ NS+(g, n), then JV can be simulated 

by a neural network (W’, b’,C?f,2n) which belongs to NS+(CY’,2n). 

Proof. It suffices to change in the initial network (W, 6, CY,n), each neuron i, for two 

neurons (i, l), (i,2) such that 

Vi,jE{l,...,n}: w (r,1)~,1) = w(i,l)v,2) = Fw(i,2)u,2) = w(i,2)G,l) = Tb(i,l) = b(i,2) = bi. 

SO, for any x(i,i ),X(i,2) with x(i,l) = X(i,2) = Xi, one gets 

CCC 1) = C w(i,l)~,l)x~,~) + Cw(i,l)o.,2)~~,2) - b, 
j j 

= C(W(r,l)~,l) + W(i,l)G,2)rx/ - bi = Cj wljXj - bi. 
j 

By taking the x(i,i 1 =x(i,2) =xi and 1; = { (i, 1 ), (i, 2) 1 i E Ii}, the element of the partition 

OY’, we simulate the initial network by using 2n neurons and diag( W’) = 0. 0 

Corollary 2. The network ( W, b, Oy, n) E N(CV, n) can be simulated by (W’, b’, CY’, 6n) E 

NS+(CY’, 6n). 

Proof. From Proposition 3, we first determine (pi, 6, Y, 3n) E NS(@, 3n). From Propo- 

sition 4, we determine ( W’, b’, CY’, 6n) E NS+(g’, 6~). q 

In particular, the previous corollary shows that any neural network (W, b, x,n) E 

N(n, n) can be simulated by ( W', b’, ?V’, 6n) E NS+(g’, 6n). It is important to point out 

that Y’ is not a trivial partition, i.e. Yy’ # 4 and Yl’ # ~1. 

3. Neural networks with a refractory state 

One of the alternative models of neural networks was proposed in [7]. It takes into 

account the fact that when a neuron fires there exists a time delay such that the neuron 

is inhibited to fire. In this section we study the simulation capabilities of such model 

for the parallel update, symmetric interconnections and only one refractory state. 
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A refractory neural network is defined by the tuple JV = ( W, b, Q, n) where the set 

of states Q is given by Q = { -l,O, 1). The dynamics of such network is synchronous 

and given by: for y E {-l,O, l}“, 

1 

if yi=-1, 

-1 if yI=l, 
G(Y) = 

O( ) 

Ii 2 wijyj - bi if yi = 0, 
J=l 

where U = 1 iff u = 1 (0 otherwise). 

We define the class of symmetric refractory neural networks of size n E N as follows: 

RNS(n) = {JV = (W, b, {-l,O, l},n); W being symmetric, n E fV}. 

Our result in this section establishes that each neural network d E N({ { 1,2,. . , n}}, 

n) (in the sequel denoted by N(n)) can be simulated by a neural network 69 E 

RNS(3n). Recall that a classic neural network works only, as in previous section, 

with two states, (0, l}. 

Before proving the principal result, we show how asymmetric interactions in d can 

be simulated by symmetric ones in 99. Consider two neurons i and j in & as shown 

in Fig. 8(a). 

The interactions between these neurons are simulated in network 9J by nine neurons: 

i, n + i, 2n + i, j, n + j, 2n + j and a, b and c, connected in the way shown in Fig. 8(b). 

Previous scheme can be generalized to any element in N(n). In fact, given d E N(n) 

we build 5J E RNS(3n + 3) as follows: 

Neuron iE{l,... ,n} in 9L9 play the role of the neurons in ~4. 

Neuron nti, iE{l,..., n} will be used to copy the state of neurons i and to delay 

the transmission between i and j. 

Neuron 2n+i, iE{l,. . . , n} produce a copy of the state of neuron i which is sent 

to all neurons j, j E { 1,. . . , n} with weight wji. 

Neurons a, b and c belong to a cycle sending every three steps the value 1 - 6, to 

neuron i. This cycle allows to neuron i to reproduce its threshold each three steps. 

Fig. 8. Schema of how a neural network &EN(~) is simulated by a neural network .%’ E RNS(9). (a) 

neural network d without loops and non-necessarily symmetric; (b) refractory symmetric neural network 3 

simulating to .ti. 
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The non-zero elements in the matrix connection U of S3 are 

Uj,Zn+r = U2n+i,j = Wji, Ui,, = Uq = 1 - bi, 

&,b = ub,a = r/,,c = Uc,b = ua,c = uc,a = 1, 

where di = C,,, ,0 wji + 1. The threshold vector u 

(1) 

of B is given by 

Vi=Vn+i=V,=vb=~,=I, i=l,.,., n and vzn+i=di fori=l,..., n. 

Notice that the neighborhoods in $3 are given by 

K={n+i}U{2n+j: j=l,...,12}, V,+l = {a + Li}, 

V&+i={?Z+i}U{j: j=l,...,iZ}, 

Va={b,c}U{i: i=l,..,, n}, Vb = {a,~} V, = {a, b}. 

Now we describe how the evolution in & is simulated in g!. We define the map 

v] : {O,l}” + {-LO, 1}3”+3 by 

Y]k(x) = 

&xi), k = i, 

Xi, k=n+i, %(X) = 

0, k = 2n + i, 

where 

0, u = a, 

1, u = 6, 

-1, u = c. 

Then, q maps global configurations of ~4 into global configurations in B. 

In Fig. 9 we describe the dynamical evolution of d together with those of S?, when 

we take x = (1,0) as the global state of d. Then, the global state of S? is given by 

(- 1, 0, 1, 0, 0, 0, 0, 1, - 1). Now, we prove our result. 

Theorem 1. For any A E N(n) there exists ~28 E RNS(3n + 3) built as above such that 

Vx E (0, 1)” Vt 2 0 q(F’(x)) = G3’(q(x)). 

Proof. We only need to prove it for t = 1. 

Let Y = Y(X) and MY) = CICK u,~yl - di. Then, from definition of U given in Eq. 

(I), we get 

n 

&+k(Y) = _?k + 2PkY2,+k - 1, 62,,+k(_Y) = 2Pky,,k + c Wlk.?I - Px-3 
I=1 

Sk(y) = Yn+k + &klY2n+k +(l -bk)Y, - 1, 
I=1 
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Fig. 9. Refractory symmetric neural network simulating a neural network. Each step in .d is simulated in 

three steps in 3’. 

n 

6,(y) = c<l - h)Y, + yb + Yc - ‘, 
I=1 

6b(Y) = 3, + Y, - ‘, 6,(y) = j, + jb - l. 

Computation of G(@)). 

Let kg {l,..., n}. we must split our computation according to xk = 0 or Xk # 0. 

Assume xk = 0. Then, yk = 0 = yn+k. Therefore, 

n 
Gk(y) = 0, G,+k(y) = -1, Gzn+k(y) = 11 

( 
c “‘k/FL - pk = 0. 
I=1 > 

Now, suppose Xk = 1. Then yk = -1 and yn+k = 1. Thus, 

n 
Gk(y) = 0, G,+k(y) = -1, Gzn+k(y) = 1 

( 
pk + c wkly/ = 1. 

I=1 ) 

Moreover, since &xl) = 0 we obtain G,(y) = 1. Finally, Gb(y) = -1 and G,(y) = 0. 

so, 

{ 

0, k = i, 

l 

1, k = a, 

Gdy) = &xi), k = n + i, G,(Y) = -1, k=b, 

Xi, k = 2n + i, 0, k = c. 

To compute G2(y) we use the previous formula for z = G(y). Since Gk(y) = zk = 0 

we have 

_ n 
G&) = 1 

( 
&xk) + c w/&I + 1 - b/ - 1 

> ( 
= 11 5 Wk[X/ - bj 

I=1 I=1 > 
= Fk(X). 

Assume xk = 0. Then zk = z,+k = z2nfk = 0 which implies Gn+k(z) = 0 and 

&n+k(z) = 1 2Pd6k) + 5 wkl . 0 - Pk 
> 

= 0. 
I=1 
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Now, suppose xk = 1. Then z,+k = - 1 which implies G,,+k(z) = 0 and GZ,,+k = - 1. 

Clearly, G,(z) = -1, Gb(z) = 0 and G,(z) = 1. Thus, 

Fk(x), k = i, -1, k=a, 

G&‘) = 0, k=n+i, G(z) = 0, k = b, 
&xi), k = 2n + i, 1, k=c. 

Finally, G3(y) is given by 

4(Fk(x)), k = i, 0, k = a, 

G,%v) = Fk(X), k=n+i, G(z) = 1, k=b, 
0, k = 2n + i, -1, k=c. 0 

4. Conclusions 

We have proved that arbitrary neural networks can be simulated in linear space 

(O(n) neurons) by symmetric neural nets, iterated in a block-sequential mode. This 

implies that symmetry is not enough to insure simple dynamics of neural network. The 

dynamics depends strongly on the iteration mode. 

Also, our result proved that when the non-negative diagonal hypothesis for sequen- 

tial iteration does not hold, the class is universal, i.e. symmetric neural networks with 

negative diagonal entries iterated sequentially may simulate arbitrary neural nets. Sim- 

ilarly, the class of block-sequential iterations on symmetric neural nets which does not 

verify the hypothesis of non-negative definite submatrices, is also universal. Finally, 

we proved that symmetric refractory neural nets with only three states are universal in 

the sense they simulate any arbitrary classical two-states neural net. 
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