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Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if {is instances are
restricted to be realizable by sets of poinis on the Euclidean plane.

The Traveling 5alesman Problem (TSP) can be statcd as follows: Given
(n — 1)n/2 integcrs denoting the distances between all pairs of n cities, find a tour,
that is, a simple path visiting all cities, so that the total traversed distance is the least
possible. Recently there have been increasingly many reasons for one to believe
that the TSP is extremely hard. There is evidence that there are no polynomial time
algorithms for obtaining an exact solution (even if the distances are restricted to be
0-1 [5]) or a solution of some guaranteed accuracy [8]. Moreover, the problem of
simply verifying whether a given solution is (exactly or approximately) optimal also
seems to be intractabie [7].

Although the motivation for the TSP can probably be traced back to the
Euclidean case (tae cities are points on the map and the distances are the usual
Euclidean metric) there is little known about the complexity of the Euclidean TSP.
There is a general feeling in the literature (e.g..[6]) that the Euclidean TSP is
considerably easier than the general case, either because the heuristics seem to
perform better, or because special methods of attack are applicable. For example, it
is almost always'easy in the Euclidean TSP to exhibit edges that are not contained
in any optimal towr (namely the chords of the convex hull ¢f the cities), whereas the
same task seems 10 be considerably harder in the general case (see Theorem 4 in
[7]). Nevertheless, in this paper it is shown essentially that the Euclidean TSP
cannot be “much’ easier than the general probiem, at least as far as exact solutions
are concerned.

* This work was supported by NSF Grant GK-42048 and the U.5. Army Research Office, Durham
under Contract DAHC4-75-G0192.

237



238 C.H. Papadimiiriou

In fact, we are dealing with two problems. The first, the four-TSP, is the ordinary
TSP. The other, the path-TSP, is the problem facing traveling salesmen who can
start from any city, and are not particulariy interested in returning to the starting
city of their tour. The path-TSP can be especially useful as 4 more precise model for
some problems arising in applications, like the hole drilling problems [6]. -

The foliowing suggests that the computational requirements of these problems
are closely related to each other:

Theorem i. The problems tour-TSP and path-TSP reduce to each other in linear
time, by reductions increasing the number of cities by only an additive constant.

Proof. Starting with the path-TSP, create a new city with equal distances from all
other cities. An optimal tour in the resulting TSP corresponds in a natural way to an
optimal path in the original.

For the opposite direction suppose that we have n cities ¢i,..., ¢, and that L
eqaals n times the largest distance beiveen any two cities. Let d be the distance
funiction (generalized to denote the length of paths and tours). We create a new
cooy ¢ of ¢, and modify d as follows:

d'(c, ¢)=d(ci,¢) ifi,j#1,
d'(ci,¢)=d(ci, ) +2k for all
d'(ct,¢;)=d(ci,¢;))+2k  for all j,
d'(c,, ¢y = 3k.

We claim that any optimal path in this TSP has ¢, and c; as endpoints. To show
tkis, we first note that ¢, and ci cannot be adjacent in any optimal path, since an
ostimal path cannot contain the longest link. Moreover any path with ¢, ¢} as
eadpoints has length at most 5k.

Now suppose that an optimal path has endpoints {c, ¢;} # {c;, ¢i}. If only one of
¢, ¢ is ¢, or ¢, then this path has length at least 6k. If none of ¢, ¢; is ¢, or ¢1, then
tais path has length at least 8k (since ¢, and ¢{ cannot be adjacent). This establishes
that any optinial path in the modified TSP has ¢, and c| as endpoints.

Now, every such path p corresponds to a tour ¢ in the original TSP with
d'(p)=d(t)+ 4k. Also any tour ¢ in the original TSP can be obtained from such a
pati. Consequently, minimizing paths in: the resulting TSP corresponds to minimiz-
ing tours in the original. [J

Since there are algorithms solving the TSP with n cities in O(n?2") time [3], the
above result suggests that the complexities of these two problems are within a
constant factor from each other.

it is not clear though how the Euclidean cases of these problems relate to each
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other. Obviously the above reductions do not work. Of course, one way to reduce
the Euclidean cases to each other is to show that both are NP-Complete (Theorems
2 and 3).

We will now give a more precise definition of the Euclidean TSP. The cities can
be given in terms of a list of pairs of integers denoting the coordinates with respect
to some coordinate system. It is not clear what the distance matrix should be. If we
take it to be the (infinite precision) real-valued Euclidean metric, it is a nontrivial
task o show that the resulting problem is in NP, since there is no obvious upper
bound for the precision required in order to compare the length of a tour or path
wit.- a given integer. In what follows we will assume that the elements of the
distance matrix are the integral parts of this metric. Any desired precision can be
tiius obtained by increasing the scale accordingly. Moreover in the constructions
that will follow we will also allow rational coordinates, with the understanding that
the scale will be eventually multiplied by an adequately large integer, so that all
roordinates become integral and any necessary precision is obtained.

We will refer to lis:s of pairs of integers or, equivalently, “maps” of sets of cities
with integer-valued coordinates, as configurations. The configuration of Fig. 1a will
be referred to as a 2-chain. The vertical distance between the two parallel rows is 1;
horizontal distancss within the chain are 2. A 2-chain can be traversed by optimal
paths either in mode 1 (Fig. 1b) or in made 2 (Fig. 1c). We will abbreviate a 2-chain
schematically by Fig. 1d.

Fig. 1. The 2-chain.
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A 1-chain is a configuration like the one in Fig. 2a. (The distance between any
closest pair of cities within the chain is 1). We will use for 1-chains the schematic
abbreviation of Fig. 2b.
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Fig. 2. A 1-chain.

The configuration H is shown in Fig. 3a (abbrev. as in Fig. 3b). The distance
between A and E is 1, the distance between D and D' is §, and that between A
and C is 7. For this configuration the following statement is truc:
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Fig. 3. The configuration H.

Lemma 1. Among all Traveling Salesman paths having as endpoints two of the
cities A,A',B,B’,C,C’', D and D', there are 4 optimal paths with length 32, namely
those with endpoints (A, A’) (shown in Fig. 3a), (B, B"), (C,C"), (D, D’).

The Exact Cover Problem is the following: Given a family F of subsets of the
finite set U, is there a subfamily F’ of F, consisting of disjoint sets, such that F’
covers U. This problem is known to be NP-Complete [5].

Consider an instance (not necessarily Euclidean) of the TSP, that is, a set E of

cities {ci,...,c.} and a distance function d. A subset G of E is a b-coraponent (b
an integer) 1f for all c € G we have

min{dic,c’):¢c' € G} =
and
max {d{c,c'}:c' € G} < b,
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and G is maximal with respect to this property. Note that the b-components, if any,
are disjoint, but do not necessarily exhaust E.

A k-path (k an integer) in an instance E is a set of k node-disjoint, not closed
paths covering E. Traveling Salesman paths are thus 1-paths.

An instance E is b-compact if, for all positive integers k, an optimal k-path has
length less than b plus the length of an optimal (k + 1)-path. Note that b-
components are trivially b-compact.

The following technical Lemma is needed:

Lemma 2. Suppose that in an instance E of the TSP we have N a-componenis
Gy, ..., Gn, such that the distance between any two components is at least 2a, and
G, the remaining part of E, is a-compact. Suppose that any optimal Traveling
Salesman path of E has its endpoints on G, and that they do not contain links between
any two a-components of E. Let L,,. .., Ly be the lengths of the optimal 1-paths of
Gy, ..., Gy and L, the length of the optimal (N + 1)-path of G. If there is a 1-path P
of E consisting of the union of an optimal (N + 1)-path of Go, N optimal 1-paths of
G, ..., Gy and 2N edges of length a connecting a-components to G,, then P is
optimal. If no such 1-path exists, the optiral 1-path of E has length greater than
L=Lo+L,+---+Ly+2Na.

Proof. Suppose that the optimal 1-path of E traverses G by a ki-path, i =
1,...,N; then it traverses G, by a ko-path, where ko = 2 k; + 1. The length of this
1-path will be L'= Lo+ Li+---+ Lx+2(ko— 1)a, where L is the length of the
optimal k;-path of G, i=0,1,...,N. Since all G; are a-compact, we have that
Li=zL—-(k-1a i=1,....,Nand L{=Lo—(ko— N)a. L'=Z},[L; — (ki - 1)a]
+2(ko—1)a + Lo—(ko— N)a = L. Moreover, the equality is obtained only in the
case where k, =1, i=1,...,N and all paths are optimal. [J

We can now prove the following theorem:

Theorem 2. The Euclidean path-TSP is NP-Complete.

Proof. We will reduce the Exact Cover Problem to it. The construction is
essentially an elaboration on the proof (appearing in [2]) of the NP-Completeness
of the planar cirected Hamiltonian path problem.

Suppose that we are given an instance of the Exact Cover Problem with
F={S,....,Sand U ={u,,...,un}. Let p = Zscr|S|. The basis for our construc-
tion is the “‘skeleton” shoown schematically in Fig. 4. {An adequate vaiue of a is 20.
b = 4a + 2). The skeleton consists of n 2-chains joined by I-chains (in Fig. 6 n is
even) with m copies of H between two consecutive 2-chains. Intuitively, ine n rows
of the skeleton correspond to the n sets of the exact cover problem, whereas the m
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Fig. 4. The skeleion, schematically.

columns correspond ic the in elements of IJ. Q and R are the endpoints of this
configuration.

We note that, so far, only the parameters m and n are taken into account fox the
construction of the skeleton. The structure oi the instance of the exact cover
problem will affect the construction via the following modifications: In the chain G
we replace the portion exactly above H;; (j# n) (or equivalently, under H;_, , if
j# 1) by the configuration A of Fig. 5, if u;  S,, and by the configuration B of Fig.
6a if u; € S;. (In Fig. 5 and 6a, 6b the configurations A and B are shown together
with paths traversing them. The shortest distance shown is 1; the width of both
configurations is 8, identical to that of H.) We observe that, no matter in which
mode G is traversed by a Traveling Salesman path, from the configuration A we
can also “‘visit”, i~ an optimal way. one of H;;, H;-,; (in Fig. 5 G is traversed in

Fig. 5. The configuration A (within dotted lines).
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L

Fig. 6. The configuration B (within dotted lines).

mode 2 and H;_,; is visited). From the configuration B we can visit one of
H;_, ., H;; in an optimal way only if C; is traversed in mode 1 (Fig. 6b), whereas
traversing C; i mode 2 would force us to skip boith H;_, ;, H;; (Fig. 6a) or deviate
from optimality. Note that both configurations do not change the mode in which C;
is traversed.

The precision required for this configuration is the precision necessary in order to
distinguish between ¢ and (a®+ 1)'”. Moreover, it should be clear that an optimal
Traveling Salesman path for the resulting configuration mus: have Q and R as
endpoints.

Now we observe that this configuration meets the hypotheses of Lemma 2 with
N=m(n-1), L,=---= Ly =32 and

Lo=ma(6a +20)+ n(4a + 13+2"*)+8p +2m —2a — 11.

(By 2'* we denote the square root of 2 evaluated up to the precision required.)

We will examine when this configuration has an optimal path P, as described in
the Lemma. Suppose that such a path P exists. P traverses all 1-chains in the
obvious way, and all 2-chains in one of the two modes. It follows from the
construction of .A and B, that the mode of traversal of the 2-chains will not be
affected by the presence of these configurations. Since its portion on G; has to be
optimal, P mus: ‘“‘visit” a component H from any configuration A encountered,
and it must return (by Lemma 1) to the symmetric node of A, since its portion on H
must be optimal, too. If P encounters a configuration B and the corresponding
chain is traversed in mode 1, P will also visit a component H. However, if the
corresponding chain is traversed in mode 2, P will traverse B witnout visiting any
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configuration H, since all edges between G, and copies of H must have length a
(and not (a*+ 1)'*). Moreover this must happen exactly once for each “column” of
the configuration, since there are n — 1 copies of H and - configurations A and B
in each column. Hence, if we consider the fact that C; is traversed in mode 2 (resp.
mode 1) to mean that §; is (resp. is not) contained in the cover, we see that the
existence of path P, zs described in Lemma 2, implies that F' covers U exactly.

Conversely, if U has an exact cover F' in F, we assign, as above, modes to the
chains according to whether or not S; € F'. We are then in a position to exhibit a
path P meeting the requirements of the Lemma. Hence thie configuration at hand
has a Traveling Salesman path of length no more than

L=mn(52+8c)+n(da+13+2")+8p -m(30+2a)—2a - 11

if and only if the given instance of the Exact Cover Problem is solvable. L[]
The following result was independently shown in [1].
Theorem 3. The Euclidean tour- TSP is NP-Complete.

Proof. The construction is identical, except that we connect Q and a with a 1-chain
and increase L accordingly. [

Finally we note that, since all edges used in P are either vertical or horizontal
(except for the edges at the ends of the 2-chains, for which a simple independent
argument is ajplicable) the same construction can be used to prove that the
rectilinear (or “‘Manhattan’) TSP is NP-Complete’.
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