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Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if ;;s instances are 
restricted to be realizable by sets of points on the Euclidean plane. 

The Traveling Salesman Problem (TSP) can be stated as follows 
(n - l)n/2 integers denoting the distances bjetween all pairs of n cities, fin 
that is, a simple path visiting all cities, so that the total traversed distance is the leas 
possible. Recently there have been increasingly many reasons for one to believe 
that the TSP is extremely hard. There is evidence that there are no polyno 
algorithms for obtaining an exact solution (even if the distances are restrict 
0-l [5]) or a solution of some guaranteed accuracy [8]. oreoyer, the p 

iven solution is (exactly or approxi 

Euclidean metric) there is little known about the complexity o 

is almost alwayseasy in t 



C. H. Papadimi#iolr 

Hn fact, we are dealing with two problems. The first, the Rw-TSB, is the ordinary 
The oth,er, the path -1”sp, is the problem facing traveling salesmen who can 
from any city, and are not particularly interested in returning to the starting 

h&r t~~ur. The path-BP can be especiahy ~~efull as a\ more precise model for 
ferns arising in applications, like the hole drilling problems [6]. 
wing suggests that the computational requirements of these probfems 

are closely related to each other: 

L The problems tour - ?SP and path- TSP reiduce to each other in linear 
~~~~ct~~~~ increasing the number of cities by only an additive constant. 

q&h the path-TSP, create a new city with equal distances from all 
imal tour in the resulting TSP corresponds in a natural way to an 

opl,“c?sit~ direction suppose that we have at cities cl,. . . 9 col and that 1; 
eq’rtals n times the largest distance bttyleen any two cities. Let d be the distance 

eneralized to denote the length of paths and tours). We create a new 
ct, and modify d as follows: 

d’(G Cj) = d(Ci, Cl) if i, if 1, 

d’(cI, Ci) = ~(CI, Cj) + 2k for all i, 

d”(c ; , cj ; =:. d(Cl, Cj) + 2k for all j, , 

dr(clJ c::, = 3k. 

claim that any optimal path in this TSP has cl and c: as endpoints. To show 
first note that cl and c: cannot be adjacent in any optimal path, since an 

the longest link, Moreover any path with cl, c’, as 

an optimal path has endpoints {G, Cj} # {cl, G i}. If only one of 
this path has length at least 4k. If none of Ci, Cj i:i cl or c :, then 
t feast 8k (since: c1 and c: cannot be adjacent). ‘This establishes 

in the modified TSP has cl and c: as endpoints. 
esponds t9 a tour t in the original TSP with 
in the original TSP can be obtained from such a 

SP corresponds to 
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other. Obviously the above reductions do not work. Of course, one way to reduce 
the Euclidean cases to each other is to show that both are N -Complete (Theorems 
2 and 3). 

We will now give a more precise definition of the Euclidean TSP. The cities can 
be given in terms of a list of pairs of integers denoting the coordinates with re 
to 83me coordinate system, It is not clear what the distance matrix should be. 
t&e it to be the (infinite’ recision) real-valued Euclidean metric, it is a nontrivial 
task to show that the resulting problem is in NP, since there is no obvious upper 
ba)lrnd for the precision required in order to compare the length of a tour or path 
wr”,t:- a given integer. In what follows we will assume that the elements of the 
distance matrix are the integral parts of this metric. Any desired precision can be 
t?lus obtained by increasing the scale accordingly. oreover in the constructions 
that will follow we will also allow rational coordinates, with the understanding that 
the scale. will be eventually multiplied by an adequately large inte:ger, so rhat all 
coordinates become integral and any necessary precision is obtained. 

We will refer to Yiscs of pairs of integers or, equivalently, “maps” of sets of cities 
with integer-valued c-oordinates, as configurations. The configuration of Fig. la will 
be referred to as a 2-c/2&2. The vertical distance between the two parallel rows is 1; 
horizontal distances within the chain are 2. A 2-chain can be traversed by optimal 
paths either in mode 1 (Fig. lb) or in msde 2 (Fig. lc). We will abbreviate a 2-chain 
schematically by Fig. Id. 

0 0 0 0 0 

0 , . . 0 
0 0 0 0 0 

q *-*a r- . . . J-b 

b 

0 0 

d 

Fig. 1. The 2-chain. 
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1Q ~-chain is a configuration like the one in Fig. 2a. (The distance between any 

clowst pair of cities within the chain is 1). We will use for l-chains the schematic 
breviation of Fig. 2b. 

0 0 0 *** Q cl 

0 

0 

0 0 0 0.0 0 0 

(3 

0 

b 

Fig. 2. A l-chain. 

The configuration # is shown in Fig. 3a (abbrev. as in Fig. 3b). The distance 
&tween A and B is 1, the distance between D and D’ is 6, and that between A 
and C is 7. For this configuration the following statement is true: 

c 0 [j’ C’ 

Fig. 3. The configuration EL 

w 1. Arn~g ail Traveling Salesman paths having as endpoinirs two of the 
cities A,A', ', CT9 tI.Y1 D and D’, there are 4 optimal paths with Zengtih 32, namely 
t&e with endpoints (A,, A ‘) (shown in Fig. 3a), (B, B’), (C, C’), (D, D’). 

EXWO ~OWP Problem is the following: Given a family F of subsets of the 
is there a subfamily F’ of F3 consisting of disjoint sets, such that 
is problem is known to be WP-complete [S]. 

er an instance (not necessarily Euclidean) of the TSP, that is, a set E 
c&s (Cl f 8 e l , ~~1 and a distance function (2. A subset (6 of E is a b-rccfmponent 

all c E &3 we have 

F’ 

of 

@ 
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and G is maximal with respect to this property. Note that the b-components, if any, 
are disjoint, but do not necessarily exhaust E. 

A k-path (k an integer) in an instance E is a set of k node-disjoint, not closed 
paths covering E. Traveling Salesman paths are thus l-paths. 

An instance E is b-com:pact if, for all positive integers k, an optimal k-path has 
length less than b plus the length of an optimal (k + l)-path. Note that b;- 
components are trivially rb -compact. 

The following technical Lemma is needed: 

Lemma 2. Suppose that in an insta,nce E of the TSP we have N a-components 
23 l,. . . , GN, such that the distance between >any two components is at least 2a, and 
GO, the remaining part of E, is a-compact. Suppose that any optimal Traveling 
Salesman path of E has its endpoints on G, and that they do not contain links between 
any two a-components of E. Let L1,. . . , LN be the lengths of the optimal l-paths of 
G l,. . . , GN and LO the leqgth qf the qptimal (N + I)-pat of G. If there is a l-path P 
of E consisting of the union of c/n optimal (N + @path of Go, N optimal l-paths of 
G l,a*v, GN and I,N edges of length a connecti:ag a-components to GO, then P ir: 
optimal. If no .~h l-path exists, the optimal l-path of E has length greater thail 
L = LO+L1+=~+ LN+2Na. 

Proof. Suppose that the optimal l-path of E traverses Gi by a ki-path, i = 
1 , . . . , N; then it traverses Go by a I&path, where k. = c ki + 1. The length of this 
l-path will be L’a Lt, -t 1;: + l . l + LA+ 2(ko - l)a, where L: is the length of the 
optimal ki-path of i;i, a’ == 0, 1, . . . , IV. Since all Gi are a-compact, we have that 
L: 2 Li - (ki - l)a, (!’ = 1,. . . , N and LA 2 Lo- (ko- N)a. L’a CE,[Li - (ki - l)a!] 
+ 2( k. - 1)a + Lo - (ko e- N)a = L. Moreover, the equality is obtained only in the 
case where k, = 1, i = 1, . . . , N and. all paths are optimal. 0 

We can now prove the following theorem: 

Theorem 2. The Euclidean path - 7’SP is NP- Complete. 

roof. We will reduce the Exacl. Cover Problem to it. The construction is 
essentially an e-Iaboration on the proof (appearing in [2]) of the NIP-Completeness 
of the planar Clirected Hamiltonian path problem. 

Suppose that we are given an instance of the Exact Cover Problem with 
F = {S 19.. . , S,,j and U = (ul, . . . , u,,}. Let p = &,,I S I. The basis for our construc- 
tion is the “skeleton” shown schematically in Fig. 4. (-An adequate value of a is 2 

onskts of n 2-chains join 

of the skeleton correspond to the n sets of the exact cover problem, whereas the m 



p_.-_. 5 - --I H,2 . . . 

R 
o--------d 

. ..* 

Cn 0 

Fig. 4. The skeleton, schematically. 

columns correspond i:o the EPZ elements of II. Q and R are the endpoints oii’ this 

nl!Dte that, so fa:r, only the parameters m and pt are taken into account fob the 
construction of the skeleton. The structure ol” the instance of the exact cover 

roblem will affect the construction via the following modifications: In the chain Cj 
!e replace the portion exactly above , i (j# PI) (or equivalently, under H,-1, i if 

j# 1) by the configuration .A of Fig. 5, if Ui E sj9 and by the configuration B of Fig. 
d 6a, 6b the configurations and are shown together 

istance shown is 1; the width of both 
e observe that, no matter in which 

veling Salesman path, from the co we 
is traversed in 
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I f 
L---‘--_--_ - I 

-----------J 

b 

Fig. 6. The configuration B (within dotted lines). 

mode 2 and @-j,i is visited). From the configuration B we can visit one of 
H j-l,i, .Hj,i in an optimal way only if Cj is traversed in mode 1 (Fig. Sh), whereas 
traversing Cj ha mode 2 would force US,~O skip both -H”-l,i, Hj,i (Fig. 6a) or deviate 
from optimality. Note that both configurations do not change the mode in which Cj 
is traversed. 

The precision required for this configuration is the precision necessary in order to 

distinguish between G and (a* + l)? Moreover, it should be clear that an optimal 
Travehng Salesman ath for the resulting configuration mus: have 

endpoints. 

Now we observe that this configuration eets the hypotheses of Lemma 2 with 

N=m(n-l), El=***= LN==32 and 

LO= ma(6a +20;+ n(4a f 13+2112)+8p +2m -2ce - 11. 
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configuration H, since all edges between GO and copies of H must have length a 
(and not (4’ + 1)‘“). Moreover this must happ& exactly once for each “column” of 
the configuraItion, since there are n - 1 copies of H and .‘t configurations A and B 
in each column. Hence, if we consider the fact that Cj is traversed in mode 2 (resp. 
mode 1) to mean that Si is (resp. is not) contained in the cover, we see that the 
exkence of path P, as described in Lemma 2, implies that F’ covers U exactiy. 

Conversely, if U has aa exact cover F’ in F, we assign, as above, mlodes to the 
chains according to whether or not Sj E F’. We are then in a position lto exhibit a 
path P meeting the requirements of thf: Lemma. Hence the configurat,ion at hand 

B Traveling Salesman path of length no more than 

L = mpt(52+8a)+ n(4a + 13+2’n)+8p - m(30+2a)-2a - 11 

if and only if the given instance of the Exact Cover Problem is solvaible. R 

The fotlowing result was independently shown in [l]. 

3. The Euclidean tour- TSP is NP- Complete. 

The construction is identical, except that we connect Q and u with a l-chain 
crease L accordingly. 0 

Finally we note that, since all edges used in P are either vertical or horizontal 
(except for the s4ges at the ends of the 2-chains, for which a simple independent 
srgument is a;;lalicable) the same construction can be used to prove that the 
rectilinear (or “Manhattan”) TSP is NP-Complete’. 
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