
ELSEVIER Theoretical Computer Science 168 (1996) 461472

Theoretical
Computer Science

The simple dynamics of super Turing theories

Hava T. Siegelmann *

Information Systems Engineering, Faculty of Industrial Engineering and Munagement, Technion,

Haifb 32000, Israel

Abstract

This paper reasons about the need to seek for particular kinds of models of computation that

imply stronger computability than the classical models. A possible such model, constituting a
chaotic dynamical system, is presented. This system, which we term as the analog shift map,
when viewed as a computational model has super-Turing power and is equivalent to neural
networks and the class of analog machines. This map may be appropriate to describe idealized
physical phenomena.

1. Introduction

A straightforward method of measuring the area of a surface is by counting the

number of atoms there. One may be able to develop smart algorithms to group atoms

together in sets, and thus speed up the counting time. A totally different approach is

by assuming continuous rather than quantized/discretized universe and calculating the

relevant integral. Such a continuous algorithm should ideally be implemented on an

analog machine, but it can also be approximated by a digital computer that allows for

finite precision only. Although the actual hardware is discrete, the core assumption of

continuity allows the development of inherently different algorithms to evaluate areas.

It is possible that in the theory of computation, we are still at the stage of developing

algorithms to count faster. Maybe just by assuming an analog media (although not

really having it), we would be able to do much better for some tasks.

A more fundamental reason to look for analog computation models stems from recent

advances in the field of physics and the aim to simulate idealized physical phenomena

on computers. Already in the 18th century, PoincarC realized that the orbits of simple

dynamical systems may be extremely unpredictable, and mathematicians have been

dealing with this phenomenon since. However, since 1975 “chaos” has been realized

by physicists to occur in many systems of scientific interest [7]. Turing machines are

indeed able to simulate a large class of systems, but seem not to capture the whole

* E-mail: iehava@ie.technion.ac.il.

0304-3975/96/$15.00 @ I996 - Elsevier Science B.V. All rights reserved

PZZ SO304-3975(96)00087-4

462 H.T. Sieyelmann I Theoretical Computer Science 168 (1996) 461-472

picture of computation in nature, like the evolvement of many chaotic systems along

with their exponential sensitivity to initial values.

We propose an alternative model of computation, whose computational power can

surpass that of the Turing model. The proposed model builds on a particular analog

chaotic system [6]; by applying the system to computer science, a super-Turing model

is developed. (In this paper, the term “super-Turing” is meant to denote any system of

computing that incorporates, but is more powerful than, the standard Turing model.)

This model assumes analog medium and it demonstrates exponential sensitivity; thus

it can be considered as an analog computational paradigm.

2. Analog computation

The term computation is not totally agreed upon. There are those that understand it in

terms of standard digital computers and others that interpret computation by means of

neuro-modeling of the brain. In the field of analog computation, any experiment done in

a physics laboratory is referred to as a computation. The basic characteristic of analog

computation that differentiates it from the classical, digital computers is the use of real

constants. Physical dynamics can be characterized by the existence of real constants

that influence the macroscopic behavior of the system. For example, planetary motion

is used to measure time with very high precision although we know the gravitational

constant G only to 2 digits. The planets, of course, evolve according to the exact value

of G, irrespective of its measurement by humans. The constants have their definite

meaning even without being measured, just as the case with the Planck’s constant, the

charge of the electron, and so forth. Other real values that may affect a laboratory

system can be length and mass. (In contrast, in digital computation all constants must

be fully known in all their finite digits to the programmer.)

Many chaotic dynamical systems require exact precision of their parameters. Consider

for example the Henon map [7], defined by

X,+I =a+@, -xi,
Yn+l =-xm

for constants a and b. The behavior of this system is very sensitive to the choice of

its constants. For a = 1.3 and b = 0.3, the system cycles in a 7-period cycle. When

the constant a is minutely increased, the system moves into a 14-period cycle, then

into a 2%period cycle, etc. For a further small increase in a, the system gets into a

chaotic motion; see Fig. 1 (Fig. 1 was plotted using Dynamics [15]). See e.g. [2,7, 161
for many other systems with similar sensitivity. As for the real constants the dynamics

is defined on continuous - rather than discrete - space.

The first to recognize the need of real constants were Blum, Shub and Smale [5].

They suggested a new type of computational model that adheres to the fact that phys-

ical systems do not evolve according to the binary representation of their constants

H. T Siegelmann / Theoretical Computer Science 168 (1996) 461-472 463

Fig. I. The Henon map for different constants.

but rather by the values themselves. They call their model “model for computation

over the real numbers” [5]. It consists of finitely many building blocks in a recurrent

interconnection, where each block computes either a polynomial or a binary decision.

In [22,23], Siegelmann and Sontag introduced another model of analog computation

that is based on systems used in the field of neural networks. In addition to the use of

real constants their model is characterized also both by “continuity in each computation

step” (i.e., there are no “tests for zero” and non-continuous binary decisions) and by

finite dimensionality. Both analog models - the one in [5] and the one in [22] - compute

more than the Turing machine does and include some non-recursive functions. In what

follows we will refer to the neural networks based model as ARNN (analog recurrent

neural networks). The computational power of the ARNN model is currently fully

known and it will serve as the basic model in this text.

3. The ARNN model

In the science of computing, machines are classified according to the classes of tasks

they can execute or the functions they can compute. The most popular model is the

Turing machine, but there are others that result in stronger, though non-realizable, mod-

els. “Nonuniform Turing machines” exemplify such models [3]: the machine receives

on its tape, in addition to its input, another sequence w, to assist in the computation.

For all possible inputs of the same length n, the machine receives the same advice

sequence w,,, but different advice is provided for input sequences of different lengths.

We will focus on the class of non-uniform machines that compute in polynomial time

(and use a polynomial long advice), denoted by P/poly [3]. The class P/poly strictly

includes P and it also computes functions which are non-recursive - “super-Turing”

functions. To get an intuition for this class, note that if both advice and time are

464 H. T Siegelmann I Theoretical Computer Science 168 (1996) 461-472

exponentially long (i.e., 0(2”)), the advice can be used to indicate the desired re-

sponse for each of the 2” possible input strings of length n, and, thus, compute all

functions f : (0, l}* H (0, l}, in c u mg non-computable ones. Here in P/poly only 1 d’

polynomial many bits can be used in the advice and only polynomial time is allowed;

thus it computes non-recursive functions, but yet only an exponentially small subset of

them.

In [22,23], Siegelmann and Sontag noticed that the non-uniform classes are indeed

natural for analog computation models. They introduced the model of computation

which is uniform (though includes real constants) but yet has non-uniform super-Turing

capabilities; this model is the classical analog recurrent neural network (ARNN), which

is popular in practice as a machine having automatic learning and adaptation capabil-

ities [9]. The ARNN consists of a finite number of neurons. The activation of each

neuron is updated by the equation

Xi(t + 1) = B Ci 9) i = l,...,N, (1)

where N is the fixed number of neurons, M is the number of external input signals, xj

are the activations of the neurons, Uj are the external inputs, and aij, b,, ci are the real

coefficients, also called constants or weights (the name “analog” is due to the real

rather than rational coefficients). The function c is the simplest possible “sigmoid”,

namely the saturated-linear function:

a(x) :=

(

0 if x < 0,

x if Odxfl, (2)
1 ifx>l.

A subset of the N neurons is singled out to communicate the output of the network to

the environment. Inputs and outputs are streams of letters, and computability is defined

under the convention that is sometimes used in practical communication networks: there

are two binary input channels, where one is used to carry the binary input signal, and

the other one indicates when the input is active. A similar convention is applied to the

output.

The ARNN computes the super-Turing class P/poly in polynomial time, and all bi-

nary functions in exponential time [22]. This fact is connected to classical computability

by observing that when the real weights are constrained to be rational numbers, the net-

work has the Turing power [21,23]. (Follow-up generalizations appear in [4, 12, 181.)

This result implies that the use of real constants in the field of analog computation is

closely related to the polynomial nonuniformity in classical digital computation theory.

The ARNN model was suggested as a basic analog computation model, stating that

“any reasonable analog computer with the characteristics of real numbers, finite di-

mensionality, and continuous computation, will have no more power (up to polynomial

time) than the analog recurrent networks.” The same statement holds for stochastic

ARNN [18].

H. T. Siegelmannl Theoretical Computer Science 168 (1996) 461-472 465

4. The analog shift map

We next present a chaotic dynamical system that computationally is as strong as

the ARNN; In the literature of dynamical systems, chaos is commonly exemplified by

the “shift map” (such as Baker’s map [l] or the Horseshoe map [S]) over a set of

bi-infinite dotted sequences. Assume E is a finite alphabet. A dotted sequence over E
(denoted by I?) is a sequence of letters where exactly one is the dot sign “.” and the

rest are all in E. The dotted sequences can be finite, (one-side) infinite, or bi-infinite

over E.
Let k E N be an integer, the shift map

sx : ii 4 E: (a); f-+ (U)j+k

shifts the dot k number of places, where negative values cause a left shift and positive

ones a right shift. For example,

S3(.‘.a_2a-i .a] u2a3a4a5 ...) = ..‘a-_2u-l al u2a3.u4a5

The “generalized shift” map is defined by Moore [13, 141 as follows: a finite dotted

substring is replaced with another dotted substring according to a function G, then this

new sequence is shifted an integer number of places either left or right according to a

function F. Formally, the generalized shift is the function

@ : a H sFCa)(a @ G(u)), (3)

where the function F: i? + Z indicates the amount of shift (where negative val-

ues cause a left shift and positive ones a right shift), and the function G: g ---f l?

describes the modification of the sequence. Both F and G have a finite domain of
dependence (DOD), that is, F and G depend only on a finite dotted substring of the

sequence on which they act. G has a finite domain of effect (DOE), i.e. every se-

quence in the image of G consists of a finite dotted sequence, padded to both sides

by infinitely many E’S, where I: is the “empty element”, not contained in E. Note that

the DOD and DOE of G do not need to have equal length. Finally, the operation $ is

defined by

The generalized-shift function is homeomorphic to the action of a piecewise dif-

ferentiable map on a square Cantor set. Moore conjectured that such maps arise in

physical systems consisting of a free particle moving between plane mirrors. Most in-

terestingly for the present discussion, Moore proved that the generalized-shift map is

computationally equivalent to the Turing machine. This result, thus, connects chaotic

dynamical systems with the classical computational model.

Here, we introduce a new chaotic dynamical system: the “analog shift map”. It is

similar to the generalized-shift function in Eq. (3), except for allowing the substituting

466 H.T. Siegelmann I Theoretical Computer Science 168 (1996) 461-472

dotted sequence (DOE) defined by G to be finite, infinite, or bi-infinite, rather than

finite only. The name “analog shift map” implies the combination of the shift operation

with the computational equivalence to the analog computational models (of the ARNN

form), as will be proved later.

Example 4.1. To illustrate, assume the analog shift defined by:

DOD F G

0.0 1 ii. q 0.1 1 .lO

1.0 0 1.0

1.1 1 .o

Here 71 denotes the left infinite string . .5 1413 in base 2 rather than base 10. The

table is a short description of the dynamical system, in which the next step depends

upon the first letter to the right of the dot and the one to its left. If these letters (i.e.

the DOD) are 0.0, then (according to the first row of the table) the left side of the dot

is substituted by ?I and the dot moves one place to the right. If the DOD is instead 0.1

(as in the second row of the table), the second letter to the right of the dot becomes 0

and there is a right shift; etc.

The dynamic evolving from

000001.10110

is as follows: here the DOD is 1.1, hence (by the fourth row of the table) the letter to

the right of the dot becomes 0 and the dot is shifted right:

1.1: (000001.00110) 0000010.011

Now, the DOD is 0.0:

0.0: (FL.01 10) ?10.110

0.1: (~0.100) ito1.00

1.0: (?Il.OO) ii01.00

Here the DOD is 1.0 and no changes occur, this is a fixed point.

The computation associated with the analog shift systems is the evolution of the

initial dotted sequence until reaching a fixed point, from which the system does not

evolve anymore. The computation does not always end; when it does, the input-output

map is defined as the transformation from the initial dotted sequence to the final sub-

sequence to the right of the dot. (In the above example, a fixed point is reached in

four steps, and the computation was from “000001.10110” to “OO”.) To comply with

computational constraints of finite input/output, attention is constrained to systems that

start with finite dotted sequences and halt with either finite or left infinite dotted se-

quences only. Even under these finiteness constraints, the analog shift computes richer

maps than the Turing machines; this will be proved in the next section.

H. T Siegelmann I Theoretical Computer Science 168 (1996) 461472 467

5. The analog shift map is super-Turing

Here we prove the computational equivalence between the analog shift map and

the analog recurrent neural network model. Denote by AS(k) the class of functions

computed by the AS map in time k, by NN(k) the class of functions computed by the

ARNN in time k, and by Poly(k) the class of polynomials in k. The main theorem

states that:

Theorem 1. Let F be a function so that F(n)>n. Then, AS(F(n)) G NN(Poly(F(n)))

and NN(F(n)) C AS(Poly(F(n))).

Proof. We assume, without loss of generality, that the finite alphabet E is binary;

E = (0, 1).
1. AS(F(n)) & NN(Poly(F(n))): Given a bi-infinite binary sequence

S = . . . a-_3 a-2 a-1 . al a2 a3 . . ,

we map it into the two infinite sequences

S, = . al a2 a3 . . Sl = . a-1 a-2 a-3 . f .

A step of the AS map can be redefined in terms of the two infinite sequences Sl and

S, rather than the bi-infinite sequence S itself:

Here, dl = a-1 a-2.. . a-d and d, = al a,, . . . ad, assuming, without loss of generality,

that the DOD is of length 2d and is symmetric; that is id/l = Id,./ = d. The DOE of

the binary sequences Gl(dl, d,.) and G,(dl, d,) may be unbounded.

We next prove the computational inclusion of the analog shift map in neural net-

works. We do so by implicitly constructing an analog recurrent net that simulates the

AS map. This is done using the high-level programming language NIL [191 that is

associated with a neural compilation scheme; the compiler translates a NIL program

into a network which computes exactly the same.

In the following algorithm, we consider the binary sequences Sl and S,. as unbounded

binary stacks; we add two other binary stacks of bounded length, Tl and T,, as a

temporary storage. The stack operations we use are: Top(stack), which returns the top

element of the stack; Pop(stack), which removes the top element of the stack; and

Push(element, stack), which inserts an element on the top of the stack. We are now

ready to describe the parts of the algorithm:

(a) Read the first d elements of both Sl and S, into Tl and T,, respectively, and

remove them from Si,S,.

Procedure Read;

Begin

For i = 1 to d
Parbegin

468 H. T Siegelmann I Theoretical Computer Science 168 (1996) 461-472

TI = Push (Top(&), TI), Sl = Pop (Sr);

T,. = Push (Top(&), T,), S, = Pop (S,);

Parend

End;

The same task could be shortly written as the sequence Pushd(Sl, TI), Pushd(S,, T,),
Popd(Sl), Popd(S,), where the Push and Pop operations are well defined for any

finite d, to be executed d times.

(b) For each choice of the pair

vi = (<;,li) E (0, l}d x (0, l}d, i = l,..., 22d

of the DOD, there is an associated pair of substituting strings:

(&&> E {o,l}“; x {o,l}“:

(of the DOE), where each length rci. (i = 1,. . . , 22d, u E { 1, Y}) is either bounded by

some constant k or is cc. We also consider ,LL’s as stacks.

(c) Computing the $ function.

Procedure Substitute(pl, pL,, SI, S,);

Begin
Parbegin

If(k-l > k) (* pi is Infinitely long *)

then SI = pLI
else SI = Push”‘(pl,Sj);

If(Kr > k) (* The parallel case of Y *)

then S, = pL,
else S, = PushK’ (p,., S,);

Parend
End;

The following program simulates one step of the AS map:

Program AS-step();

Begin;
Read;

Substitute

End;

That is, there is an ARNN which computes as the AS map, and it is constructible by

the methods in [191 from the algorithm above.

2. NN(F(n)) C AS(poly(F(n))): W e next show how to simulate a Turing machine

with polynomial advice via an AS map. Because NN(poly) = P/poly this will prove

the result. We will use the following observation. Denote the infinite string which is

the concatenation of all advice by

w = (..., w3,w2,wl),

H. T Siegelmann I Theoretical Computer Science 168 (I 996) 461-472 469

and the concatenation of the first n advises by

Constrained by polynomial computation time it is easy to verify that a Turing ma-

chine that receives the polynomially long advice w, ’ is equivalent to a Turing ma-

chine that receives the advice w. (One side, the (x, w) machine retrieves the relevant

part and ignores the rest of the information; the other side, the machine (x,w) can-

not read more than the first polynomially many advice bits during polynomial time

computation.)

We now show how to simulate a Turing machine with a polynomial advice via an

AS map; our simulation is similar to the one made by Moore, but some preprocessing is

required. A configuration of the Turing machine consists of its tape, the relative location

of the read/write head in the tape, and its internal control state. Moore encoded the

configuration in the bi-infinite string using the fields:

That is, the string starts with infinitely many O’s (b), followed by the part of the

tape to the left of the read/write head, then the decimal point, the internal state of

the machine, the part of the tape under the head and to its right, and again infinitely

many O’s that encode the empty part of the tape. In each step of Moore’s simulation,

the DOD contains the state, the tape letter under the read/write head, and the two let-

ters surrounding it. The DOE is such that the operation may simulate writing a new

tape letter, entering a new control state, and moving the head one bit to either right

or left.

In our simulation, we allow for more flexible encoding of the Turing machine con-

figuration:

We substitute the 6 string to the left of the tape with two fields: garbage and left-end

marker. Here, garbage means infinitely many bits with no relevant meaning, and the

left-end marker implies that there is no relevant information to its left.

We suggest the following encoding that will allow to clearly interpret the string: 10

will present the 0 letter on the tape, 11 will present the letter 1 on the tape; 01 will

present the left-end marker. The internal state of the machine will be encoded by a

sequence of O’s only and will end with 1; and 6 still denotes the infinite sequence

of O’s that represents the empty right part of the tape.

Assume the Turing machine has the set of internal states {pi,. . . , pp}. We add the

dummy states {q,, . . . , qr} for a constant r. Now the Turing machine with a polynomial

advice will act as follows:

(a) The initial bi-infinite string is

470 H. T. Siegelmannl Theoretical Computer Science 168 (1996) 461-472

where x is the input string. (Note that the string is describable in finite terms as required

by a computational model.)

(b) In the next step the string is transferred to

where w = (... ,ws, w2,w1). (As was previously observed, the string w adds no more

advise information than the string WI, for computations on the length n input string.)

(c) In polynomially many steps, the part (wn_ 1 . . . WI) is removed, and the remaining

part of the infinite string w is partitioned into the relevant part w, and the garbage part

(. ..%+2%+1).

lgarbagejIleft-end\B.@mm

This is done by a recursive algorithm, that requires linear time in the length of the

input string x, and thus can be executed easily by a Turing machine or, equivalently,

by a GS map. The w, part is next transferred to the right side of the tape:

where pl is the initial state of the Turing machine with advice.

(d) From now on, each step of the machine is simulated as in Moore, with the only

one difference that the left-end marker should be preserved to the immediate left of

the relevant tape information. 0

6. The physical plausibility

The appeal of the analog shift map is not only as an almost classical, chaotic dynam-

ical system that is associated with analog computation models. It is also a mathematical

formulation that is conjectured to describe idealized physical phenomena. The ideal-

ization allows for model assumptions such as any convenient scale to describe the

system, noise-free environment, and physics of continuous medium. Some of the phys-

ical models, previously believed to equate Turing machines, turn out to be as strong

as the analog models (both to simulate and be simulated by) when their “real na-

ture” is recognized. This assertion can be demonstrated, for example, with the system

introduced by Moore [131.

The system is a “toy model”, describing the motion of a particle in a three-

dimensional potential, such as a billiard ball or a particle bouncing among parabolic

mirrors. A finite number of mirrors suffices to describe the full dynamics, one mir-

ror for each choice of the DOD. The (x, y) coordinates of the particle, when passing

through a fixed, imaginary plane [0, l] x [0, 11, simulate the dotted sequence “x.y”. To

define the computation, the particle starts in input location 0.y where y is the finite

input string; the output is defined in finite terms as well. The main difference between

Moore’s view and ours is that, for us, the characterizations of the few mirrors cannot

H. T Siegelmann I Theoretical Computer Science 168 (1996) 461-472 471

be fully described finitely, although we are not necessarily interested in more than

some precision to some computation. On one side, analog shift can simulate this sys-

tem, even with unbounded characteristics. To simulate P/poly, we note that the advice

can be encoded in a uniform manner by the characterizations of the mirrors (e.g., the

concatenation of all advice can be the characterization of the first mirror that is being

hit, continuing with mirrors of finite characterizations, simulating the finite DOE). The

particle that starts in location (0, y) first hits a particular mirror (the advice mirror) that

throws it back to the plain to location (a, y), where i < CI < i is a constant character-

izing that mirror. The particle continues bouncing in the mirror system, simulating the

Turing machine operation, where it starts the “computation” at the point (a, y) rather

than (0, y), and is confined to the [a, l] x [0, l] part of the plane rather than to the

unit square. When reaching the halting state of the Turing machine, the particle hits a

mirror that throws it to a particular observable x coordinate, there all points are fixed.

The output is defined as the y coordinate when reaching this observable X. Forcing the

input and output to reside in observable areas, using for example Cantor set encoding,

makes the halting state realizable. Another possible realization may be based on the

recent optical realization of Baker’s map [111.

Although it could have seemed that infinite precision was required to fully describe

the associated computation, this is not the case because linear precision suffices for

analog computation models [22]. That is, if one is interested in computing up to time q,
both the mirror system and the location of the particle bouncing there are not required

to be described (or measured) with more than q bits. Digital computers are still able

to approximate the model with some round-off error. This property is in accordance

with the sensitivity of chaotic systems to initial conditions (here, the mirror system),

suggesting that the analog shift map is indeed a natural model of chaotic (idealized)

physical dynamics.

Acknowledgements

I thank Allen Ponak from the University of Calgary, Jermey Schiff from Bar-Ilan

University, and Shmuel Fishman from the Technion for helpful comments. Brian Hunt

from the University of Maryland provided Fig. 1.

References

[I] V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968).

[2] G.L. Baker and J.P. Gollub, Chaotic Dynamics: An introduction (Cambridge University Press,

Cambridge, 1990).

[3] J.L. Balcazar, J. Diaz and J. Gabarro, Structural Complexity, Vols. I and II, EATCS Monographs

(Springer, Berlin, 1988-1990).

[4] J.L. Balcazar, R. Gavalda, H.T. Siegelmann and E.D. Sontag, Some structural complexity aspects of

neural computation, in: IEEE Structure in Complexity Theory Conf, San Diego, CA (May 1993)

253-265.

472 H. T. Siegelmann I Theoretical Computer Science 168 11996) 461472

[5] L. Blum, M. Shub and S. Smale, On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions, and universal machines, BUN. AMS 21 (1989) l-46.

[6] R.L. Devaney, Dynamics of simple maps, in: Proc. Symp. in Applied Mathematics (1989) l-24.
[7] C. Grebogi, E. Ott and J.A. Yorke, Chaos, strange attractors, and fractal basin boundaries in nonlinear

dynamics, Science 238 (1987) 632-637.

[8] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bijurcations of
Vector Fields (Springer, New York, 1983).

[9] J. Hertz, A. Krogh and R. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley,

Redwood City, 1991).

[IO] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation
(Addison-Wesley, Reading, MA, 1979).

[l I] J.P. Keating, J.H. Hannay and A.M.O. Dealmeida, Optical realization of the baker transformation,

Nonlinearity 7 (1994) 1327-1342.
[I21 P. Koiran, M. Cosnard and M. Garzon, Computability with low-dimensional dynamical systems, Theoret.

Comput. Sci. 132 (1994) 113-128.

[I31 C. Moore, Unpredictability and undecidability in dynamical systems, Phys. Reu. Lett. 64 (1990)

2354-2357.

[14] C. Moore, Generalized shifts: unpredictability and undecidability in dynamical systems, Nonlinearity 4
(1991) 199-230.

[15] H.E. Nusse and J.A. Yorke, Dynamics: Numerical Explorations (Springer, New York, 1994).

[16] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).

[I71 R. Penrose, The Emperor’s New Mind (Oxford University Press, Oxford, 1989).

[181 H.T. Siegelmann, On the computational power of probabilistic and faulty neural networks, in: S. Abitebul

and E. Shamir, eds., Automata, Languages and Programming, Lecture Notes in Computer Science,
Vol. 820 (Springer, Jerusalem, 1994) 23333.

[19] H.T. Siegelmann, On NIL: the software constructor of neural networks, Parallel Process. Lett., to

appear; previous version appeared in Proc. 12th AAAZ Conj:, Seatle (August 1994) 8877882.

[20] H.T. Siegelmann, Computation beyond the turning limit, Science 268 (5210) (1995) 545-548.
[21] H.T. Siegelmann and E.D. Sontag, Turing computability with neural nets, Appl. Math. Lett. 4 (6)

(1991) 77780.
[22] H.T. Siegelmann and E.D. Sontag, Analog computation via neural networks, Theoret. Comput. Sci.

131 (1994) 331-360.
[23] H.T. Siegelmann and E.D. Sontag, On computational power of neural networks, J. Comput. System

Sci. 50 (1995) 132-150; previous version appeared in Proc. 5th ACM Workshop on Computational
Learning Theory, Pittsburgh (July 1992) 440-449.

