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Abstract 

This paper reasons about the need to seek for particular kinds of models of computation that 

imply stronger computability than the classical models. A possible such model, constituting a 
chaotic dynamical system, is presented. This system, which we term as the analog shift map, 
when viewed as a computational model has super-Turing power and is equivalent to neural 
networks and the class of analog machines. This map may be appropriate to describe idealized 
physical phenomena. 

1. Introduction 

A straightforward method of measuring the area of a surface is by counting the 

number of atoms there. One may be able to develop smart algorithms to group atoms 

together in sets, and thus speed up the counting time. A totally different approach is 

by assuming continuous rather than quantized/discretized universe and calculating the 

relevant integral. Such a continuous algorithm should ideally be implemented on an 

analog machine, but it can also be approximated by a digital computer that allows for 

finite precision only. Although the actual hardware is discrete, the core assumption of 

continuity allows the development of inherently different algorithms to evaluate areas. 

It is possible that in the theory of computation, we are still at the stage of developing 

algorithms to count faster. Maybe just by assuming an analog media (although not 

really having it), we would be able to do much better for some tasks. 

A more fundamental reason to look for analog computation models stems from recent 

advances in the field of physics and the aim to simulate idealized physical phenomena 

on computers. Already in the 18th century, PoincarC realized that the orbits of simple 

dynamical systems may be extremely unpredictable, and mathematicians have been 

dealing with this phenomenon since. However, since 1975 “chaos” has been realized 

by physicists to occur in many systems of scientific interest [7]. Turing machines are 

indeed able to simulate a large class of systems, but seem not to capture the whole 
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picture of computation in nature, like the evolvement of many chaotic systems along 

with their exponential sensitivity to initial values. 

We propose an alternative model of computation, whose computational power can 

surpass that of the Turing model. The proposed model builds on a particular analog 

chaotic system [6]; by applying the system to computer science, a super-Turing model 

is developed. (In this paper, the term “super-Turing” is meant to denote any system of 

computing that incorporates, but is more powerful than, the standard Turing model.) 

This model assumes analog medium and it demonstrates exponential sensitivity; thus 

it can be considered as an analog computational paradigm. 

2. Analog computation 

The term computation is not totally agreed upon. There are those that understand it in 

terms of standard digital computers and others that interpret computation by means of 

neuro-modeling of the brain. In the field of analog computation, any experiment done in 

a physics laboratory is referred to as a computation. The basic characteristic of analog 

computation that differentiates it from the classical, digital computers is the use of real 

constants. Physical dynamics can be characterized by the existence of real constants 

that influence the macroscopic behavior of the system. For example, planetary motion 

is used to measure time with very high precision although we know the gravitational 

constant G only to 2 digits. The planets, of course, evolve according to the exact value 

of G, irrespective of its measurement by humans. The constants have their definite 

meaning even without being measured, just as the case with the Planck’s constant, the 

charge of the electron, and so forth. Other real values that may affect a laboratory 

system can be length and mass. (In contrast, in digital computation all constants must 

be fully known in all their finite digits to the programmer.) 

Many chaotic dynamical systems require exact precision of their parameters. Consider 

for example the Henon map [7], defined by 

X,+I =a+@, -xi, 
Yn+l =-xm 

for constants a and b. The behavior of this system is very sensitive to the choice of 

its constants. For a = 1.3 and b = 0.3, the system cycles in a 7-period cycle. When 

the constant a is minutely increased, the system moves into a 14-period cycle, then 

into a 2%period cycle, etc. For a further small increase in a, the system gets into a 

chaotic motion; see Fig. 1 (Fig. 1 was plotted using Dynamics [15]). See e.g. [2,7, 161 
for many other systems with similar sensitivity. As for the real constants the dynamics 

is defined on continuous - rather than discrete - space. 

The first to recognize the need of real constants were Blum, Shub and Smale [5]. 

They suggested a new type of computational model that adheres to the fact that phys- 

ical systems do not evolve according to the binary representation of their constants 
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Fig. I. The Henon map for different constants. 

but rather by the values themselves. They call their model “model for computation 

over the real numbers” [5]. It consists of finitely many building blocks in a recurrent 

interconnection, where each block computes either a polynomial or a binary decision. 

In [22,23], Siegelmann and Sontag introduced another model of analog computation 

that is based on systems used in the field of neural networks. In addition to the use of 

real constants their model is characterized also both by “continuity in each computation 

step” (i.e., there are no “tests for zero” and non-continuous binary decisions) and by 

finite dimensionality. Both analog models - the one in [5] and the one in [22] - compute 

more than the Turing machine does and include some non-recursive functions. In what 

follows we will refer to the neural networks based model as ARNN (analog recurrent 

neural networks). The computational power of the ARNN model is currently fully 

known and it will serve as the basic model in this text. 

3. The ARNN model 

In the science of computing, machines are classified according to the classes of tasks 

they can execute or the functions they can compute. The most popular model is the 

Turing machine, but there are others that result in stronger, though non-realizable, mod- 

els. “Nonuniform Turing machines” exemplify such models [3]: the machine receives 

on its tape, in addition to its input, another sequence w, to assist in the computation. 

For all possible inputs of the same length n, the machine receives the same advice 

sequence w,,, but different advice is provided for input sequences of different lengths. 

We will focus on the class of non-uniform machines that compute in polynomial time 

(and use a polynomial long advice), denoted by P/poly [3]. The class P/poly strictly 

includes P and it also computes functions which are non-recursive - “super-Turing” 

functions. To get an intuition for this class, note that if both advice and time are 
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exponentially long (i.e., 0(2”)), the advice can be used to indicate the desired re- 

sponse for each of the 2” possible input strings of length n, and, thus, compute all 

functions f : (0, l}* H (0, l}, in c u mg non-computable ones. Here in P/poly only 1 d’ 

polynomial many bits can be used in the advice and only polynomial time is allowed; 

thus it computes non-recursive functions, but yet only an exponentially small subset of 

them. 

In [22,23], Siegelmann and Sontag noticed that the non-uniform classes are indeed 

natural for analog computation models. They introduced the model of computation 

which is uniform (though includes real constants) but yet has non-uniform super-Turing 

capabilities; this model is the classical analog recurrent neural network (ARNN), which 

is popular in practice as a machine having automatic learning and adaptation capabil- 

ities [9]. The ARNN consists of a finite number of neurons. The activation of each 

neuron is updated by the equation 

Xi(t + 1) = B Ci 9 ) i = l,...,N, (1) 

where N is the fixed number of neurons, M is the number of external input signals, xj 

are the activations of the neurons, Uj are the external inputs, and aij, b,, ci are the real 

coefficients, also called constants or weights (the name “analog” is due to the real 

rather than rational coefficients). The function c is the simplest possible “sigmoid”, 

namely the saturated-linear function: 

a(x) := 

( 

0 if x < 0, 

x if Odxfl, (2) 
1 ifx>l. 

A subset of the N neurons is singled out to communicate the output of the network to 

the environment. Inputs and outputs are streams of letters, and computability is defined 

under the convention that is sometimes used in practical communication networks: there 

are two binary input channels, where one is used to carry the binary input signal, and 

the other one indicates when the input is active. A similar convention is applied to the 

output. 

The ARNN computes the super-Turing class P/poly in polynomial time, and all bi- 

nary functions in exponential time [22]. This fact is connected to classical computability 

by observing that when the real weights are constrained to be rational numbers, the net- 

work has the Turing power [21,23]. (Follow-up generalizations appear in [4, 12, 181.) 

This result implies that the use of real constants in the field of analog computation is 

closely related to the polynomial nonuniformity in classical digital computation theory. 

The ARNN model was suggested as a basic analog computation model, stating that 

“any reasonable analog computer with the characteristics of real numbers, finite di- 

mensionality, and continuous computation, will have no more power (up to polynomial 

time) than the analog recurrent networks.” The same statement holds for stochastic 

ARNN [18]. 
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4. The analog shift map 

We next present a chaotic dynamical system that computationally is as strong as 

the ARNN; In the literature of dynamical systems, chaos is commonly exemplified by 

the “shift map” (such as Baker’s map [l] or the Horseshoe map [S]) over a set of 

bi-infinite dotted sequences. Assume E is a finite alphabet. A dotted sequence over E 
(denoted by I?) is a sequence of letters where exactly one is the dot sign “.” and the 

rest are all in E. The dotted sequences can be finite, (one-side) infinite, or bi-infinite 

over E. 
Let k E N be an integer, the shift map 

sx : ii 4 E: (a); f-+ (U)j+k 

shifts the dot k number of places, where negative values cause a left shift and positive 

ones a right shift. For example, 

S3(.‘.a_2a-i .a] u2a3a4a5 ...) = ..‘a-_2u-l al u2a3.u4a5 .... 

The “generalized shift” map is defined by Moore [ 13, 141 as follows: a finite dotted 

substring is replaced with another dotted substring according to a function G, then this 

new sequence is shifted an integer number of places either left or right according to a 

function F. Formally, the generalized shift is the function 

@ : a H sFCa)(a @ G(u)), (3) 

where the function F: i? + Z indicates the amount of shift (where negative val- 

ues cause a left shift and positive ones a right shift), and the function G: g ---f l? 

describes the modification of the sequence. Both F and G have a finite domain of 
dependence (DOD), that is, F and G depend only on a finite dotted substring of the 

sequence on which they act. G has a finite domain of effect (DOE), i.e. every se- 

quence in the image of G consists of a finite dotted sequence, padded to both sides 

by infinitely many E’S, where I: is the “empty element”, not contained in E. Note that 

the DOD and DOE of G do not need to have equal length. Finally, the operation $ is 

defined by 

The generalized-shift function is homeomorphic to the action of a piecewise dif- 

ferentiable map on a square Cantor set. Moore conjectured that such maps arise in 

physical systems consisting of a free particle moving between plane mirrors. Most in- 

terestingly for the present discussion, Moore proved that the generalized-shift map is 

computationally equivalent to the Turing machine. This result, thus, connects chaotic 

dynamical systems with the classical computational model. 

Here, we introduce a new chaotic dynamical system: the “analog shift map”. It is 

similar to the generalized-shift function in Eq. (3), except for allowing the substituting 



466 H.T. Siegelmann I Theoretical Computer Science 168 (1996) 461-472 

dotted sequence (DOE) defined by G to be finite, infinite, or bi-infinite, rather than 

finite only. The name “analog shift map” implies the combination of the shift operation 

with the computational equivalence to the analog computational models (of the ARNN 

form), as will be proved later. 

Example 4.1. To illustrate, assume the analog shift defined by: 

DOD F G 

0.0 1 ii. q 0.1 1 .lO 

1.0 0 1.0 

1.1 1 .o 

Here 71 denotes the left infinite string . .5 1413 in base 2 rather than base 10. The 

table is a short description of the dynamical system, in which the next step depends 

upon the first letter to the right of the dot and the one to its left. If these letters (i.e. 

the DOD) are 0.0, then (according to the first row of the table) the left side of the dot 

is substituted by ?I and the dot moves one place to the right. If the DOD is instead 0.1 

(as in the second row of the table), the second letter to the right of the dot becomes 0 

and there is a right shift; etc. 

The dynamic evolving from 

000001.10110 

is as follows: here the DOD is 1.1, hence (by the fourth row of the table) the letter to 

the right of the dot becomes 0 and the dot is shifted right: 

1.1: (000001.00110) 0000010.011 

Now, the DOD is 0.0: 

0.0: ( FL.01 10) ?10.110 

0.1: (~0.100) ito1.00 

1.0: (?Il.OO) ii01.00 

Here the DOD is 1.0 and no changes occur, this is a fixed point. 

The computation associated with the analog shift systems is the evolution of the 

initial dotted sequence until reaching a fixed point, from which the system does not 

evolve anymore. The computation does not always end; when it does, the input-output 

map is defined as the transformation from the initial dotted sequence to the final sub- 

sequence to the right of the dot. (In the above example, a fixed point is reached in 

four steps, and the computation was from “000001.10110” to “OO”.) To comply with 

computational constraints of finite input/output, attention is constrained to systems that 

start with finite dotted sequences and halt with either finite or left infinite dotted se- 

quences only. Even under these finiteness constraints, the analog shift computes richer 

maps than the Turing machines; this will be proved in the next section. 
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5. The analog shift map is super-Turing 

Here we prove the computational equivalence between the analog shift map and 

the analog recurrent neural network model. Denote by AS(k) the class of functions 

computed by the AS map in time k, by NN(k) the class of functions computed by the 

ARNN in time k, and by Poly(k) the class of polynomials in k. The main theorem 

states that: 

Theorem 1. Let F be a function so that F(n)>n. Then, AS(F(n)) G NN(Poly(F(n))) 

and NN(F(n)) C AS(Poly(F(n))). 

Proof. We assume, without loss of generality, that the finite alphabet E is binary; 

E = (0, 1). 
1. AS(F(n)) & NN(Poly(F(n))): Given a bi-infinite binary sequence 

S = . . . a-_3 a-2 a-1 . al a2 a3 . . , 

we map it into the two infinite sequences 

S, = . al a2 a3 . . Sl = . a-1 a-2 a-3 . f . 

A step of the AS map can be redefined in terms of the two infinite sequences Sl and 

S, rather than the bi-infinite sequence S itself: 

Here, dl = a-1 a-2.. . a-d and d, = al a,, . . . ad, assuming, without loss of generality, 

that the DOD is of length 2d and is symmetric; that is id/l = Id,./ = d. The DOE of 

the binary sequences Gl(dl, d,.) and G,(dl, d,) may be unbounded. 

We next prove the computational inclusion of the analog shift map in neural net- 

works. We do so by implicitly constructing an analog recurrent net that simulates the 

AS map. This is done using the high-level programming language NIL [ 191 that is 

associated with a neural compilation scheme; the compiler translates a NIL program 

into a network which computes exactly the same. 

In the following algorithm, we consider the binary sequences Sl and S,. as unbounded 

binary stacks; we add two other binary stacks of bounded length, Tl and T,, as a 

temporary storage. The stack operations we use are: Top(stack), which returns the top 

element of the stack; Pop(stack), which removes the top element of the stack; and 

Push(element, stack), which inserts an element on the top of the stack. We are now 

ready to describe the parts of the algorithm: 

(a) Read the first d elements of both Sl and S, into Tl and T,, respectively, and 

remove them from Si,S,. 

Procedure Read; 

Begin 

For i = 1 to d 
Parbegin 
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TI = Push (Top(&), TI), Sl = Pop (Sr); 

T,. = Push (Top(&), T,), S, = Pop (S,); 

Parend 

End; 

The same task could be shortly written as the sequence Pushd(Sl, TI), Pushd(S,, T,), 
Popd(Sl), Popd(S,), where the Push and Pop operations are well defined for any 

finite d, to be executed d times. 

(b) For each choice of the pair 

vi = (<;,li) E (0, l}d x (0, l}d, i = l,..., 22d 

of the DOD, there is an associated pair of substituting strings: 

(&&> E {o,l}“; x {o,l}“: 

(of the DOE), where each length rci. (i = 1,. . . , 22d, u E { 1, Y}) is either bounded by 

some constant k or is cc. We also consider ,LL’s as stacks. 

(c) Computing the $ function. 

Procedure Substitute(pl, pL,, SI, S,); 

Begin 
Parbegin 

If(k-l > k) (* pi is Infinitely long *) 

then SI = pLI 
else SI = Push”‘(pl,Sj); 

If(Kr > k) (* The parallel case of Y * ) 

then S, = pL, 
else S, = PushK’ (p,., S,); 

Parend 
End; 

The following program simulates one step of the AS map: 

Program AS-step( ); 

Begin; 
Read; 

Substitute 

End; 

That is, there is an ARNN which computes as the AS map, and it is constructible by 

the methods in [ 191 from the algorithm above. 

2. NN(F(n)) C AS(poly(F(n))): W e next show how to simulate a Turing machine 

with polynomial advice via an AS map. Because NN(poly) = P/poly this will prove 

the result. We will use the following observation. Denote the infinite string which is 

the concatenation of all advice by 

w = (..., w3,w2,wl), 
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and the concatenation of the first n advises by 

Constrained by polynomial computation time it is easy to verify that a Turing ma- 

chine that receives the polynomially long advice w, ’ is equivalent to a Turing ma- 

chine that receives the advice w. (One side, the (x, w) machine retrieves the relevant 

part and ignores the rest of the information; the other side, the machine (x,w) can- 

not read more than the first polynomially many advice bits during polynomial time 

computation.) 

We now show how to simulate a Turing machine with a polynomial advice via an 

AS map; our simulation is similar to the one made by Moore, but some preprocessing is 

required. A configuration of the Turing machine consists of its tape, the relative location 

of the read/write head in the tape, and its internal control state. Moore encoded the 

configuration in the bi-infinite string using the fields: 

That is, the string starts with infinitely many O’s (b), followed by the part of the 

tape to the left of the read/write head, then the decimal point, the internal state of 

the machine, the part of the tape under the head and to its right, and again infinitely 

many O’s that encode the empty part of the tape. In each step of Moore’s simulation, 

the DOD contains the state, the tape letter under the read/write head, and the two let- 

ters surrounding it. The DOE is such that the operation may simulate writing a new 

tape letter, entering a new control state, and moving the head one bit to either right 

or left. 

In our simulation, we allow for more flexible encoding of the Turing machine con- 

figuration: 

We substitute the 6 string to the left of the tape with two fields: garbage and left-end 

marker. Here, garbage means infinitely many bits with no relevant meaning, and the 

left-end marker implies that there is no relevant information to its left. 

We suggest the following encoding that will allow to clearly interpret the string: 10 

will present the 0 letter on the tape, 11 will present the letter 1 on the tape; 01 will 

present the left-end marker. The internal state of the machine will be encoded by a 

sequence of O’s only and will end with 1; and 6 still denotes the infinite sequence 

of O’s that represents the empty right part of the tape. 

Assume the Turing machine has the set of internal states {pi,. . . , pp}. We add the 

dummy states {q,, . . . , qr} for a constant r. Now the Turing machine with a polynomial 

advice will act as follows: 

(a) The initial bi-infinite string is 
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where x is the input string. (Note that the string is describable in finite terms as required 

by a computational model.) 

(b) In the next step the string is transferred to 

where w = (... ,ws, w2,w1). (As was previously observed, the string w adds no more 

advise information than the string WI, for computations on the length n input string.) 

(c) In polynomially many steps, the part (wn_ 1 . . . WI) is removed, and the remaining 

part of the infinite string w is partitioned into the relevant part w, and the garbage part 

( . ..%+2%+1). 

lgarbagejIleft-end\B.@mm 

This is done by a recursive algorithm, that requires linear time in the length of the 

input string x, and thus can be executed easily by a Turing machine or, equivalently, 

by a GS map. The w, part is next transferred to the right side of the tape: 

where pl is the initial state of the Turing machine with advice. 

(d) From now on, each step of the machine is simulated as in Moore, with the only 

one difference that the left-end marker should be preserved to the immediate left of 

the relevant tape information. 0 

6. The physical plausibility 

The appeal of the analog shift map is not only as an almost classical, chaotic dynam- 

ical system that is associated with analog computation models. It is also a mathematical 

formulation that is conjectured to describe idealized physical phenomena. The ideal- 

ization allows for model assumptions such as any convenient scale to describe the 

system, noise-free environment, and physics of continuous medium. Some of the phys- 

ical models, previously believed to equate Turing machines, turn out to be as strong 

as the analog models (both to simulate and be simulated by) when their “real na- 

ture” is recognized. This assertion can be demonstrated, for example, with the system 

introduced by Moore [ 131. 

The system is a “toy model”, describing the motion of a particle in a three- 

dimensional potential, such as a billiard ball or a particle bouncing among parabolic 

mirrors. A finite number of mirrors suffices to describe the full dynamics, one mir- 

ror for each choice of the DOD. The (x, y) coordinates of the particle, when passing 

through a fixed, imaginary plane [0, l] x [0, 11, simulate the dotted sequence “x.y”. To 

define the computation, the particle starts in input location 0.y where y is the finite 

input string; the output is defined in finite terms as well. The main difference between 

Moore’s view and ours is that, for us, the characterizations of the few mirrors cannot 
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be fully described finitely, although we are not necessarily interested in more than 

some precision to some computation. On one side, analog shift can simulate this sys- 

tem, even with unbounded characteristics. To simulate P/poly, we note that the advice 

can be encoded in a uniform manner by the characterizations of the mirrors (e.g., the 

concatenation of all advice can be the characterization of the first mirror that is being 

hit, continuing with mirrors of finite characterizations, simulating the finite DOE). The 

particle that starts in location (0, y) first hits a particular mirror (the advice mirror) that 

throws it back to the plain to location (a, y), where i < CI < i is a constant character- 

izing that mirror. The particle continues bouncing in the mirror system, simulating the 

Turing machine operation, where it starts the “computation” at the point (a, y) rather 

than (0, y), and is confined to the [a, l] x [0, l] part of the plane rather than to the 

unit square. When reaching the halting state of the Turing machine, the particle hits a 

mirror that throws it to a particular observable x coordinate, there all points are fixed. 

The output is defined as the y coordinate when reaching this observable X. Forcing the 

input and output to reside in observable areas, using for example Cantor set encoding, 

makes the halting state realizable. Another possible realization may be based on the 

recent optical realization of Baker’s map [ 111. 

Although it could have seemed that infinite precision was required to fully describe 

the associated computation, this is not the case because linear precision suffices for 

analog computation models [22]. That is, if one is interested in computing up to time q, 
both the mirror system and the location of the particle bouncing there are not required 

to be described (or measured) with more than q bits. Digital computers are still able 

to approximate the model with some round-off error. This property is in accordance 

with the sensitivity of chaotic systems to initial conditions (here, the mirror system), 

suggesting that the analog shift map is indeed a natural model of chaotic (idealized) 

physical dynamics. 
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