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a b s t r a c t

We propose a new hash function, the unique permutation hash function, and a performance
analysis of its hash computation. We denote the cost of a hash function h by Ch(k,N),
which stands for the expected number of table entries that are checked when inserting
the (k + 1)st key into a hash table of size N , where k out of N table entries are filled by
previous insertions. A hash function maps a key to a permutation of the table locations.
A hash function, h, is simple uniform if items are equally likely to be hashed to any table
location (in the first trial). A hash function, h, is random or strong uniform if the probability
of any permutation to be a probe sequence, when using h, is 1

N!
, where N is the size of the

table.
We show that the unique permutation hash function is not only a simple uniform

hash function but also a random hash function, i.e., strong uniform, and therefore has the
optimal cost. Namely, each probe sequence is equally likely to be chosen when the keys
are uniformly chosen. Our hash function ensures that each empty table location has the
same probability to be assigned by a uniformly chosen key.We also show that the expected
time for computing the unique permutation hash function isO(1) and the expected number
of table locations that are checked before an empty location is found during insertion (or
search) is also O(1) for constant load factors α < 1, where the load factor α is the ratio
between the number of inserted items and the table size.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we introduce a new hash function, the unique permutation hash function, for implementing the open
addressing hashing scheme [4]. Our hash function is based on mapping each key (and its auxiliary data item) to a unique
permutation. The unique permutation defines the probe sequence, namely, the locations that should be checked when
inserting a key into the hash table (or when searching for a key).

Unique permutation hashing in a nutshell. Consider a hash table of sizeN , a hash function, h, maps a key to a table location
in 1, 2, . . . ,N . The probe sequence of a key, defined by the hashing method and h is, in fact, a permutation of 1, 2, . . . ,N .
For a given key x, assume that the probe sequence is i1, i2, . . . , iN . In this case, when inserting a key, x, into the hash table,
the first location that is checked is i1. If location i1 is filled, then location i2 is checked and so on until an empty location is
found into which the key is inserted. Similarly, the same probe sequence also defines the sequence of table locations that
are checkedwhen searching for x. In this case, table locations are checked until x is found or until an empty location is found,
indicating that the search has failed (x is not on the table).
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Consider a hash table of size N with locations denoted by 1, 2, . . . ,N . Let Π(N) = {π1, π2, . . . , πN!} be the set of all
permutations of 1, 2, . . . ,N , lexicographically ordered. The unique permutation hash functionmaps a key to a unique probe
sequence in Π(N). That is, if for a key x, h(x) = π ∈ Π(N) and π = i1, i2, . . . , iN , then π is the probe sequence used for
inserting x as well as for searching for x. As there are N! permutations of the N table locations, the keys can be divided into
N! classes [π ], where [π ] = {x : h(x) = π}. We next discuss the performance of the unique permutation hash function.

Optimal performance.We show that our unique permutation hash function is a random hash function, also defined as strong
uniform hash function, which ensures that each empty entry has the same probability to be filled with a uniformly chosen
key. Therefore, according to [13], our hash function also has an optimal expected number of location trials while inserting an
element. The random property neither holds for linear probing nor for the widely used double hashing, since when probing
a filled location using these methods some locations have a higher probability to be tried next, as we will demonstrate in
Section 2. We note that [10] shows that double hashing has asymptotically uniform probing properties.

Let α be the ratio between the number of inserted keys and the table size; in the sequel we always assume that α is less
than 1. The expected number of local steps done by the algorithm that computes the next probe number during insertion is
a function of the load factor, namely, O( 1

(1−α)3
) steps.

The minimal expected number of locations that are inspected during key insertion (or key search) is analyzed in [13]
with relation to random insertion. In this paper, it is stated that when inserting keys into the table at random, it holds that
the expected number of locations which must be looked for until an empty one is found is 1+ k/(N − k+ 1), where k is the
number of filled locations and N is the table size. This expression is denoted by C0(k,N) and is used to measure a hash table
efficiency. It refers to a case that the keys are chosen out of an infinite set of keys, I . The value of C0(k,N) can be improved for
certain k and N , yet, it is a lower bound on the hash table performance in the sense that if an insertion algorithm is superior
to random insertion for some random k, then it is inferior for some smaller value of k. We show that the unique permutation
hash function has the performance of C0(k,N). Namely, the unique permutation hash function is random, which according
to [13], implies that the expected number of table entry accesses is given by C0(k,N) = 1 + k/(N − k + 1), where k is the
number of filled table entries. Note that for a bounded load factor, say α < 2

3 , both the expected number of local steps and
the expected number of table entry accesses are constants.

Relatedwork. Research regarding efficient hash functions for implementing the hash table data structure and hash function
analysis have been of great interest for a long time, e.g., [13,6,3,5,11,14]. The main open addressing hash methods include
linear probing and double hashing.

Consider a hash table of size N , with locations denoted by 1, 2, . . . ,N . In linear probing [4], given a hash function,
h, and a key, x, the probe sequence of x is denoted by linear_probe(x) = i1, i2, . . . , iN , where i1 = h(x) and ij =

(h(x) + (j − 1) · c)modN , for j = 2, . . . ,N . That is, the interval (modulo N) between two sequential probes is fixed and
given in c , where c is a constant number, usually 1.

In double hashing [4], given a hash function, h1, a step function, h2, and a key, x, the probe sequence of x is denoted by
double_probe(x) = i1, i2, . . . , iN , where i1 = h1(x) and ij = (h1(x) + (j − 1)h2(x)) mod N , for j = 2, . . . ,N . That is, the
interval (modulo N) between two sequential probes is fixed and given in h2(x).

Linear probing and the double hashing techniques are very well known and studied. We next present additional hashing
schemes.

In quadratic probing [4], the probe sequence is denoted by quadratic − probe(x) = i1, i2, . . . , iN , where ij = (h(x) + c1 ·

(j − 1) + c2 · (j − 1)2) mod N + 1, h is a hash function, j = 0, 1, . . . ,N − 1, c1, c2 are constants and c2 ≠ 0.
In dynamic perfect hashing [8], a solution to the dynamic dictionary problem is suggested. Multiple levels of table

hierarchies are used for storing the elements. In each level, the hash function used is chosen uniformly at random out of
a set H s = {h : U −→ {1, . . . , s}|h(x) = (kx mod p) mod s, 1 ≤ k ≤ p − 1}, where U is the universe of the keys, p is
prime, and p ≥ |U|. The randomized algorithm takesO(1)worst-case time for lookups andO(1) amortized expected time for
insertions and deletions. The deterministic algorithm has an amortized worst-case time complexity of Ω(log n). The space
complexity is linear in the number of elements currently stored in the table.

The Cuckoo hashing method has the same worst-case lookup time and the amortized expected time as dynamic perfect
hashing in [8]. Two hash tables, T1 and T2, of the same size and two hash functions, h1 and h2, are used to store the keys in
the universe, U. Each key x ∈ U is stored either in T1[h1(x)] or in T2[h2(x)].

Our hash method does not involve rehashing and thus no amortized runtime analysis is required, but rather expected
time analysis.

Jeffrey Ullman suggested in [13] a criterion for analyzing the performance of a hash function. The technique suggested
evaluates the success of the hash function by uniformly distributing the keys to the hash table entries. We use this approach
in order to analyze the performance of the unique permutation hash function. To the best of our knowledge, there are no
other open addressing hashing schemes that achieve the optimal bound, C0(k,N), on the cost. In fact, we conjecture that
the only hash scheme that may achieve this bound is the unique permutation hash scheme.

Recently, (later than [7]), a related scheme in terms of the general approach of using permutations for hashing was
suggested in [1]. The main difference between the two approaches is in the goal of using permutations; whereas, in our
scheme, permutations are used for determining the probing sequences of the elements, while [1] uses permutations for
saving space.
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Given two integers, N and x, we propose an algorithm that generates the xth permutation in Π(N), where permutations
are lexicographically ordered. Producing a permutation in lexicographic order was addressed in the past in a different
context. Alon Itai [2] presents an algorithm to produce n consecutive permutations of {1, 2, . . . ,m} in O(n+m) local steps.
Given a permutation, σ , the algorithm in [2] requires O(1) amortized number of local steps and O(1) additional space to
produce n consecutive permutations in lexicographical order. In contrast, we compute each number in the permutation only
upon request. For the sake of presentation completeness, we present a simple algorithm which finds the first j numbers in
the xth permutation in O(j2) operations. In fact, it takes O(1) expected number of operations for inserting a key, when α is
bounded, say α < 2

3 .

Number and range of keys.We also address the cases in which the value of the keys inserted can be greater than or smaller
than N!. In case the value of the largest key is c · N!, where c is a positive integer (c can be computed as a function of
N), our function satisfies the random property. Note that when c is a non integer number greater than 1, there are some
permutations that are chosen with a probability ⌊c⌋

N!
, while other permutations are chosen with a probability ⌊c⌋+1

N!
. The ratio

between these probabilities is negligible for a large enough c.
In case the range of keys is in (or can bemapped to) a smaller range than 0 toN!, we can start probing the first table locations

in a uniform fashion, using our hash function (mapping the key to an index of a permutation in a shorter permutation domain,
N!/b!, the largest domain that is equal to or smaller than the domain of the keys) and continuing in any deterministic fashion
(say in a double hashing fashion) that probes the rest of the table locations.

Note that the use of the above smaller domain, N!/b! (for a convenient choice of b), can be chosen to support efficient
arithmetics when N! is expensive to be used, even in case the value of the largest key is of the order of N! or larger. We
elaborate on this in the sequel.

2. Unique permutation hashing

For ease of presentation of our scheme, we assume a finite set of keys, I , of N! possible key values, in the range
1, 2, . . . ,N!. The unique permutation hash function hup maps a key x ∈ I to a permutation πi ∈ Π(N), hup(x) = πx, where
πx is the xth permutation in Π(N), where all permutations are lexicographically ordered. We refer to the permutation
πx = ⟨i1, i2, . . . , iN⟩, where hup(x) = πx , as the probe sequence of x. Thus, when x is inserted into the hash table, the first
location that is checked is i1. If location i1 is filled, then location i2 is checked and so on until an empty location is found, into
which x is inserted.

As there are N! permutations of 1, 2, . . . ,N , and there are N! unique identifiers, one for each key in I , there is exactly one
key in each one of the N! classes, [π ], where [π ] =


x : hup(x) = π


.

A definition of a simple uniform hashing property is given in [4]. Assume we are given a hash table of size N and a key,
x, which is independently chosen from a set of keys with a probability px. A hash function h is simple uniform if each table
location, j ∈ {1, 2, . . . ,N} has an equal probability that the chosen key x is hashed into that table location. Formally, a hash
function, h, is simple uniform if


x:h(x)=j px =

1
N for all j = 1, 2, . . . ,N . Note that the above definition of simple uniform

hash function only refers to the first probe, i.e., the first number in the probe sequence of x. In other words, the probability
that key x is inserted into a given table entry, when no collision occurs, is 1

N . A hash function, h, is random if for any key, x,
in the set of keys, the probe sequence ⟨i1, i2, . . . , iN⟩, defined by h(x) and the probing method, is equally likely to be any
permutation of 1, 2, . . . ,N [13]. This property of a hash function is a rather theoretical model for analyzing the performance
of the function. Yet, the suggested unique permutation is an actual implementation of a hash function, which satisfies the
random property.

Lemma 2.1. The unique permutation hash function hup satisfies the simple uniform hashing property.

Proof. Let x be a key, which is randomly chosen out of the set I . As there are N! keys in I , the probability of x to be chosen
is Pr(x) =

1
N!
. Also, let hup(x) = πk, where πk = i1, i2, . . . , iN . Given j ∈ {1, 2, . . . ,N}, the probability that x is inserted into

location j in the hash table, when there are no collisions, is equal to the probability that i1 = j. The number of permutations
in Π(N), for which i1 = j, is (N − 1)!. It is also the number of keys x ∈ I , for which the first number in hup(x) is j. The
probability of such a key to be chosen is 1

N!
. Therefore,


x:h(x)=j Pr(x) =

(N−1)!
N!

=
1
N . �

2.1. The random property of the permutation hash

As defined in [13], S(πi1 , πi2 , . . . , πik) is the set of table locations filled as a result of inserting the sequence of keys
⟨x1, x2, . . . , xk⟩, where πij = hup(xj) for j = 1, . . . , k. Additionally, pπ denotes the probability of permutation π ∈ Π(N) as
computed from the hash function. A hash function, h, is random if pπ = 1/N! for all permutations in Π(N). Namely, each
permutation is equally likely to be a probe sequence of a hashed key.

By the definition of hup, it is clear that hup is a random hash function. Each key is chosen uniformly out of I with a
probability 1

N!
, and each key is mapped to a unique permutation in Π(N) by hup. Therefore, pπ =

1
N!

for every permutation
π ∈ Π(N). The cost of a hash function, h, denoted by Ch(k,N), is equal to C0(k,N) = 1 + k(N − k + 1) if h is random (see
[13]). Therefore, it holds that Chup(k,N) = C0(k,N).
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We now analyze the probability of a given table location to be assigned with a key, given a set, A, of filled table locations.
We assume that a key can be drawn from the set of keys, I , independently and more than once (this is an approximation
done for the sake of analysis). In this case, a key x ∈ I , which is inserted into the table and already exists in it, appears twice
in the table.

We analyze the following process. Let A be any subset of {1, 2, . . . ,N}, where |A| = k and 0 ≤ k < N and a hash table
with filled locations in the indexes of A. Also given, an empty table location j. We claim that the probability of an element
xk+1, chosen uniformly at random out of I , to be inserted at location j is 1

N−k . Namely, each empty table location is equally
likely to be filled with key xk+1.

First, for a hash table of size N and a hash function h, we define S(πi1 , πi2 , . . . , πik) to be the set of locations filled by
the insertion sequence Xk = ⟨x1, x2, . . . , xk⟩, where h(xj) = πij for all j = 1, . . . , k (as defined in [13]). We also define
ph(loc(xk+1 = j)|A) to be the probability that key xk+1, chosen uniformly at random out of I , is inserted at location j, when
using the hash function, h. The filled table locations are denoted by a set A (|A| = k, 0 ≤ k < N). We use the notation
p(loc(xk+1 = j)|A) when h is known (as in our case, when h is the unique permutation hash function).

For example, given a hash table of sizeN = 3 and a set of keys I = {x1, . . . , x6}, where, for every i = 1, . . . , 6, xi = i. Also
a sequence of insertions X = ⟨xi1 , xi2 , xi3⟩ is given. Denote the ith number in a given permutation π by π(i). By definition,
Π(3) = ⟨(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)⟩. For every j = 1, . . . , 6, let πij = hup(xij).

Initially, the hash table is empty, thus A = ∅ (i.e., locations 1, 2, 3 are empty and |A| = 0). The first key, x1, is chosen
out of I with a probability 1

N!
=

1
6 . The probability p(loc(x1 = 1)|A) equals the probability that the first number in the

permutation πi1 is 1 (denoted by pi1 [1] = 1). There are two such permutations in Π(N): (1, 2, 3) and (1, 3, 2). Therefore
p(loc(x1 = 1)|A) equals the probability that πi1 = (1, 2, 3) or πi1 = (1, 3, 2), which is 2

6 =
1
3 . The same argument holds for

locations 2 and 3 and hence it is clear that p(loc(x1 = 1)|A) = p(loc(x1 = 2)|A) = p(loc(x1 = 3)|A) =
1
3 .

Now, assume that x1 is inserted into the table at location 1; hence A = 1 and the empty table locations are 2 and 3.
The next inserted element is x2 and let πi2 = hup(x2). The probability p(loc(x2 = 2)|A) is equal to the probability that
either πi2 [1] = 2 (there are two such permutations) or πi2 [1] = 1 and πi2 [2] = 2 (there is one such permutation).
Hence, p(loc(x2 = 2)|A) =

2
6 +

1
6 =

1
2 . The same argument holds when calculating p(loc(x2 = 3)|A), and hence

p(loc(x2 = 2)|A) = p(loc(x2 = 3)|A) =
1
2 .

Lemma 2.2. Consider a hash table of size N with 0 ≤ k < N filled entries denoted by a set A ⊂ {1, 2, . . . ,N} (clearly, |A| = k).
Also, consider a finite set, I , of N! distinct keys in the range {1, 2, . . . ,N!} and an insertion sequence Xk = ⟨xi1 , xi2 , . . . xik⟩ of keys,
chosen uniformly out of I such that S(hup(xi1), hup(xi2), . . . hup(xik)) = A. We claim that p(loc(xk+1 = j)|A) =

1
N−k for every

empty table location j.

Proof. Let A be the set of filled table locations (|A| = k, 0 ≤ k < N), and let j be any empty table location. We calculate the
probability p(loc(xk+1 = j)|A), for the newly inserted key, xk+1, and assume that πik+1 = hup(xk+1). Key xk+1 is inserted at
location j if one of the following cases holds.
(1) πik+1 [1] = j and the probability of this case is (N−1)!

N!
=

1
N .

(2) πik+1 [1] ∈ A and πik+1 [2] = jwith a probability (k1)·1!·(N−2)!
N!

.

(3) πik+1 [1], πik+1 [2] ∈ A and πik+1 [3] = j with a probability (k2)·2!·(N−3)!
N!

, and so on. . . .
Generally, case (i) stands for the case in which the first i probes in πik+1 fail and probe i+1 succeeds. The probability of case

(i), where i = 0, . . . , k, is (ki)·i!·(N−i−1)!
N!

.
Hence, the probability p(loc(xk+1 = ik+1)|A) is the sum of the probabilities that either one of the above cases holds. Note

that the cases are distinct.

p(loc(xk+1 = j)|A) =
1
N!

·

k
i=0


k
i


· i! · (N − i − 1)!


(1)

The probability p(loc(xk+1 = j)|A) is calculated in the same way for any given set, A, of size 0 ≤ k < N , as well as for any
given empty index, j. Therefore, any empty location is equally likely to be assigned with the newly inserted key xik+1 and it
holds that p(loc(xk+1 = j)|A) =

1
N−k . �

Comparison with double hashing. In the case of double hashing, the ith probe number of a key x is denoted by
((h1(x) + (i − 1) · h2(x)) mod N) for i = 1, . . . ,N . Consider k < N probe sequences πi1 , . . . πik , which respectively
match the sequence of keys ⟨x1, . . . , xk⟩ previously inserted to the table. Also, consider a set A ⊆ {1, 2, . . . ,N}, where
S(πi1 , πi2 , . . . , πik) = A, namely, the set of filled table locations resulting from the insertion of x1, . . . , xk to the initially
empty hash table. The probability that the next randomly chosen key, xk+1, is inserted into a given table location, ik+1,
depends on A.

Lemma 2.3. Consider a hash table of size N, a hash function, h1, a step function, h2, and a randomly chosen key x. The probe
sequence implied by h1, h2 and x is ⟨i1, i2, . . . , iN⟩ where


ij = (h1(x) + (j − 1)h2(x)) mod N


for j = 1 . . .N. There exist

0 ≤ k < N, a set A = {i1, i2, . . . , ik} and a table location ik+1 /∈ A, such that p(loc(xk+1 = ik+1)|A) ≠
1

N−k .
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1. state:
2. x′

∈ I
3. probe_seq ⊆ {1, . . . ,N} /* probing order */
4. i ∈ {0, . . . ,N}

5. M ∈ 1, . . .N!

6. findKPermutation_init(x)
7. x′

:= x
8. probe_seq := ∅

9. i = 0
10. M := N!

11.findKPermutation_probe()
12. x′

:= x′modM /* find the key position within the current bucket range */
13. M = M/(N − i) /* define the next bucket size */
14. j := ⌊x′/M⌋ + 1 /* find the bucket index in which the key resides */
15. next_probe := convert(j, probe_seq) /* convert to index in remaining unprobed entries */
16. probe_seq.insert(next_probe)
17. if i < N − 1 /* and hash table next_probe entry occupied */
18. i := i + 1
19. findKPermutation_probe()

Fig. 1. Finding the xth permutation of 1, 2, . . . ,N .

Proof. For a given N (assuming N > 6), we construct A = {i1, i2, . . . , ik} as follows. First, we pick k = 2 and i1 = 1. Next,
we choose an interval, 1 ≤ j ≤ N , such that 2j + 1 ≤ N . Next, we define i2 = (i1 + j) and i3 = (i1 + 2j). Note that i3 ≤ N .
Finally, we calculate the probability that a randomly chosen key, x, is inserted at location i3, namely PrA(loc(x) = i3). Key x
is inserted at location i3 if any of the following cases hold:

1. h1(x) = i3
2. h1(x) = i1 and h2(x) = j
3. h1(x) = i1 and h2(x) = 2j
4. h1(x) = i2 and h2(x) = j.

Assuming h1 and h2 are simple uniform hash functions, the probability of case (1) is the probability that h1(k) = i3 and
that is 1

N , assuming h is uniform. The probability of either one of the cases (2, 3, 4) is 1
N2 . Therefore, the probability that x is

inserted at location i3 is 3
N2 +

1
N . p(loc(x = 3)|A) =

3
N2 +

1
N . Assuming N > 6, 3

N2 +
1
N ≠

1
N−2 . �

Expected constant time table insertion. In order to calculate the table locations for probing using the unique permutation
hash function, any algorithm that graduallymaps a key to a permutationwill fit.We suggest the specific algorithmpresented
in Fig. 1. The algorithm is composed of two methods. The first, findKPermutation_init(x), is called before probing for
insertion of the key x. Thismethod is used for initiating the algorithm. The secondmethod,findKPermutation_probe(),
is called each time the next probe number in the probe sequence is required.

Code description. For simplicity, the code is written for a key x that is in the range 1 to N!, each such key belongs to one
of the N portions, say the jth portion, of the range 1 to N!, which we call the jth bucket. The index of this bucket is the first
index in the probe sequence. Once we extract the index of the first bucket, we change the scope to the position of the key
x within the first bucket, by partitioning the first bucket (of size (N − 1)!) to smaller N − 1 buckets of size (N − 2)! each.
The index of the smaller-bucket, j′, in which the key x resides, implies the next index probed, which is the j′th in the ordered
left, not-yet-probed indexes. The next indexes are found in a similar fashion.

Given an integer 1 ≤ x ≤ N!, where N is known, the algorithm findKPermutation_init(x) initiates the state which
is updated by the algorithm findKPermutation_probe(). The latter iterates over the numbers in the xth permutation
in Π(N), where permutations are lexicographically ordered. For example, for N = 3 and x = 3, after the state is initiated
the first call for findKPermutation_probe() returns 2, the second call returns 1 and the third returns 3, because the
third permutation in Π(3) is (2, 1, 3).

The state of the algorithm presented in Fig. 1 is described in lines 2–5. Line 2 declares the variable x′, which is, roughly
speaking, the key not yet used information that defines the part of the xth permutation that has not been probed yet. Line 3
declares the variable probe_seq, which is the probe sequence that has been probed so far (sorted by the order of the probe).
Line 4 declares the variable i that keeps track of the number of probes already made. Line 5 declares M , which, roughly
speaking, is used for holding the current scope in which the position of the key is examined. We assume that N! is known
prior to all hash insertions.
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1. /* finds the jth number not in taken, j ∈ 1, 2, . . . ,N */
2. convert(j, taken)
3. curr := first(taken)
4. j′ := j
5. while (curr! = null) and (data(curr) ≤ j′)
6. j′ := j′ + 1 /* increment the index to accommodate past probe */
7. curr := next(curr) /* pass the already existing probe */
8. return j′

Fig. 2. The convert method.

The method findKPermutation_init(x) initiates the state trivially. The method findKPermutation_probe(),
presented in lines 11–19 of Fig. 1, is used for obtaining the next probe number in the probe sequence. The algorithm starts
by calculating x modN! (and thus fits even larger range of keys), as shown in line 12. Note that in line 13, N − i dividesM in
each probe, that changing the scope in which the position of the key is examined (namely the new bucket position within
the last greater bucket). Line 14 sets jwith ⌊k′/M⌋+ 1, which indicates the index of the (bucket, and) next probe number in
the sorted sequence of numbers yet to be probed. Line 15 calls a sub-method for the jth number in {1, 2, . . . ,N}\probe_seq.
The variable next_probe is set with this number and inserted to the probe_seq in the following line. Line 17 checks whether
there is a need to increment i by one (line 18) and then the next index should be computed (line 19).

Fig. 2 contains the implementation for the convert method. The method finds the jth probe number simply by it-
erating the sorted set taken of already chosen probe numbers, increasing j on each encounter with a chosen number.
Thus, the method’s time complexity is bounded by O(|taken|). Moreover, the time complexity of the ith execution of
findKPermutation_probe() is O(i), since the insertion of the chosen probe into probe_seq also takes O(i) as it is sorted.

When analyzing the expected performance of hash table operations, it is customary to define the complexity in terms of
the maximum load factor, α =

n
N , where n is the maximum number of filled table entries.

The expected number of filled entries that are checked until finding an empty entry for the newly inserted key is analyzed
similarly to the open addressing analysis in [4]. The idealized assumption of that analysis, where each permutation has an
equal probability to be a probe sequence is, in fact, a verified assumption in our systemmodel. Hence, the expected number
of probes while inserting a key is less than or equal to 1

1−α
.

We now turn to analyze the probe sequence computation in terms of α. We claim that the current implementation of the
hash function computation providesO

 1
1−α

3
expected time complexity for insertion (or unsuccessful search). That is, we

assume that the probability of each table location to be filled is atmostα. Our implementation providesO
 1

1−α

3
expected

time complexity for insertion (or unsuccessful search) operation with no assumptions on the current table configuration.
Notice that in terms of the table size, we still obtain average constant time complexity. The following lemma formally states
the expected runtime for insertion.

Theorem 2.4. Using the unique permutation hash function for inserting keys into a hash table with a load factor of at most α,
then regardless of the table configuration it holds that the expected runtime is at most O

 1
1−α

3
.

Proof. The use of the unique permutation hash function ensures that the probability of each probe number in the probe
sequence to fail is at most α for every table configuration. Let c be a constant, such that c · i bounds the runtime of the ith
call to findKPermutation_probe() for a given x. Thus, an insertion that succeeds after j probes takes

j
i=1 c · i = O(j2).

E[runtime of insertion] =

n
j=1

j2 · Pr[key is inserted in exactly j probes]

≤

n
j=1

j2 · αj−1(1 − α)

≤

∞
j=1

j2 · αj−1(1 − α)

≤

∞
j=1

j2 · αj−1

=


∞
j=1

j · αj

′

=


1

(1 − α)2

′

=
2

(1 − α)3
= O


1

(1 − α)3



(2)
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Note that for j > N it holds that Pr[key is inserted in exactly j probes] = 0. �

Computationwith large values. The above analysis assumes thatmodulo and division operations on numbers are executed
in constant time. The number of basic ALU operations needed to compute themodulo and division is architecture dependent.
In some cases, one may consider using a smaller key range, N!/b!, to facilitate the use of efficient ALU operations for
computing a sufficient prefix of the probe sequence and continue in a different way, such as double hashing over the
leftover entries. Such a reduction in the values handled by the ALU will keep the benefits of the scheme in the first N − b
probes (which suffices for reasonable α values) and reduce the computation needed for finding the next index to be probed.
Note that arithmetic is always done in the range of possible key values or smaller, as the value of a key encodes a specific
permutation, or a prefix of a permutation. Thus, the arithmetic used during the computation of probes is always based on
the size of the key range values or less.

Experimental results. Experiments for comparing the performance of the unique permutation hashing with standard
hashing were performed and the results are reported in [9,12]. The experiments used Python implementations of the insert
procedure of the compared hash tables. The sizes of the tables examined, N , in the experiments were in the range of 50
to 750 and consider range of load factors from 0.1 by steps of 0.1 up to almost 1. Keys were randomly chosen uniformly
in the range 0 to N! − 1 and the number of probes to insert keys were counted and compared among the different hash
table schemes. The conclusions from [9,12] are that the unique permutation hash function performs better than the linear
probing, quadratic hashing, and double hashing,withwhich it is compared. The unique permutation hash functionmaintains
its optimal performance over a wide range of table sizes — both prime and non prime number table sizes. The practical
experiments support our theoretical proof that the unique permutation hash function is a random hash function; any not-
yet-explored entry has the same probability to be explored during the key insertion/search, which is a property that does
not hold for other hash functions, in particular for double hashing. We believe that our technique is a better alternative to
double-hashing and other popular hashing techniques when there is a need to optimize the performance at the expense of
losing some of the simplicity of the double hashing technique.

3. Conclusions

Wepresented theuniquepermutationhash functiondesigned forN! keys andproved that it satisfies the randomproperty.
According to [13], the random property implies an optimal number of failed probes when inserting a key into the table. This
implies the best worst-case insertion time. In the case I = {1, . . . , (c · N!)}, where c is a constant integer, the random
property of our hash function hup is not affected. In this case, the number of keys in each equivalent set of keys that share
the same probing sequence is c . On the other hand, if |I| < N!, we may still use a prefix of the permutation according to our
algorithm and complete the permutation in some pre-defined deterministic way. In this case, we preserve uniformity while
scanning table locations by using the first permutation indexes. When α is small enough, the entire process takes a small
number of uniform probing steps over the table indexes.
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