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Abstract 

A k-counter machine (CM(k)) is an automaton having k counters as an auxiliary memory. 
It has been shown by Minsky that a CM(2) can simulate any Turing machine and thus it 
is universal. In this paper, we investigate the computing ability of reversible (i.e., backward 
deterministic) CMs. We first show that any irreversible CM(R) can be simulated by a reversible 
CM(k + 2). In this simulation, however, the reversible CM(k + 2) leaves a large number as 
a garbage in some counter when it halts. We then show that, if k more counters are added, 
this garbage information is erased reversibly. Finally, we prove that any reversible CM(R) (k = 
1,2,3,. . .) can be simulated by a reversible CM(2). From these results computation-universality 
of a reversible CM(2) is established. 

1. Introduction 

A k-counter machine (CM(R)) is an automaton with k counters, each of which can 

store an arbitrary nonnegative integer. In one time step, a finite-state control of a CM(R) 

can increment or decrement the contents of a counter by one, or can test whether it is 

0 or not. Minsky [8] showed that a CM(2) can simulate any Turing machine and thus 
it is universal. 

In this paper, we study a “reversible” version of CM. A reversible computing system 
is a backward deterministic system, i.e., roughly speaking, each computational config- 
uration of it has at most one predecessor. Until now, various reversible systems, such 
as reversible Turing machines, reversible cellular automata, reversible logic gates, have 
been studied (see, e.g., [4,12, 13,151 for a general survey). One interesting point of a 
reversible system is that it is closely related to physical reversibility and the problem 
of energy dissipation in a computing process. It is known to be possible to construct a 
reversible computer that works without dissipating energy in an ideal situation [2,3,5]. 
It is also interesting from a computational viewpoint that several systems have univer- 
sal computing ability even if reversibility constraint is added. Bennett [l] showed that 
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any (irreversible) Turing machine can be simulated by a reversible one without leav- 

ing garbage symbols on the tape. Reversible cellular automata have also been shown 

to be computation-universal for both one-dimensional [lo] and two-dimensional cases 

[7,11,14]. 

Here, we investigate the computing ability of reversible CMs. In Section 2, we 

give definitions of a CM and its reversibility. In Section 3, we first show that any 

irreversible CM(K) M can be simulated by a reversible CM(R + 2) M’. But M’ 

leaves a large number as a garbage, in which a “history” of computation is en- 

coded, when it halts. We then show a garbage-less construction of a CM(2k + 2) 

M” that simulates A4 by applying the method of Bennett [l] to CM. In Section 

4, we prove that any reversible CM(R) (k = 1,2,3,. . .) can be simulated by a re- 

versible CM(2). From these results computation-universality of a reversible CM(2) is 

obtained. 

2. Definitions 

We define a counter machine (CM) as a kind of multi-tape Turing machine whose 

heads are read-only ones and whose tapes are all blank except the leftmost squares as 

shown in Fig. 1 (a similar formulation is used e.g. in [6]). This definition is convenient 

for giving the notion of reversibility. 

Definition 2.1. A k-counter machine (CM(k)) is a system 

~4 = (kQ,kqo,q), 

where k is the number of tapes (or counters), Q is a nonempty finite set of inter- 

nal states, qo E Q is an initial state, and q E Q is a final (halting) state. M uses 

I I Finite 
Control 

I I 

1 Counter 1 

lZlPlPlPlPjP/PlPj. I + 

Counter 2 

IZ]P(PIPIPIPjPJPI~ 1.1’ 

I 
I Counter k 

\ZlPlPlPlPlPlPlPl. 1.1’ 

Fig. 1. A k-counter machine (CM(A)). 
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{Z,P} as a tape alphabet (P is a blank symbol). 6 is a move relation which is a 

subset of (Q x {l,..., k} x {Z,P} x Q>U<Q x {l,...,k} x {-,O,+} x Q) (where 
“ -” “O”, and “+” denote left-shift, no-shift, and right-shift of a head, respectively). 

Tapes are one-way (rightward) infinite. The leftmost squares of the tapes contain the 

symbol “Z’s, and all the other squares contain “P’s (Z and P stand for “zero” and 

“positive”). 

Each element of 6 is called a quadruple, and is either of the form 

[q,4s,q’l or [q,i,d,q’l, 

where q,q’ E Q, i E {l,..., k}, s E (5 P}, d E {-, 0, +}. The quadruple [q, i,s, q’] 
means that if M is in the state q and the ith head is reading the symbol s then change 

the state into q’. It is used to test whether the contents of a counter are zero or positive. 

On the other hand, [q, i,d, q’] means that if M is in the state q then shift the ith head 

to the direction d and change the state into q’. It is used to increment or decrement a 

counter by one (or make no change if d = 0). 

Definition 2.2. An instantaneous description (ID) of a CM(k) M = (k, Q, 6, go, qy) is 

a (k + 1 )-tuple 

(9,W,%..., wc) E Q x Nk, 

where N = (0, 1,. . . }. It represents that M is in the state q and the counter i keeps ni 

(we assume the position of the leftmost square of a tape is 0). The transition relation 

h over IDS of M is defined as follows: 

(q,nl,...,ni-l,ni,ni+I,...,nk) 

b (4’9n1 ,...,ni-l,nl,ni+l,...,~~) 

holds iff one of the following conditions (l)-(5) is satisfied. 

(l)[q,i,Z,q’] E 6 andni = ni = 0. 

(2) [q, i, P,q’] E 6 and ni = ni > 0. 

(3) [q,i, -,q’] E 6 andni - 1 = ni. 

(4) [q, i, 0, q’] E 6 and ni = ni. 

(5) [q, i, +, q’] E 6 and ni + 1 = ni. 

We denote reflexive and transitive closure of b by c-, and n-step transition by 

G (n = O,l,...). 

Definition 2.3. Let A4 = (k, Q, S,qo,qf) be a CM(k), and 

~1 = b1,6,xl,p’,l and ~2 = hh,xz,p~l 

be two distinct quadruples in 6. We say c11 and a2 overlap in domain iff the following 

holds, where D = { -, 0, +}. 

PI = p2 A [il # i2 V x1 =x2 V XI E D V x2 E D] 
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We say at and a2 overlap in range iff the following holds. 

pi = pi A [il # i2 V x1 =x2 V x1 E D V x2 E D] 

A quadruple a is called deterministic (reversible, respectively) iff there is no other 
quadruple in 6 which overlaps in domain (range) with a. M is called deterministic 
(reversible, respectively) iff every quadruple in 6 is deterministic (reversible). 

For example, the following pair 

hZf’,q31 and h,%+,q31 

overlaps in range, while the pair 

does not. As seen from this definition, every ID of a deterministic (reversible, respec- 
tively) CM(k) has at most one ID that immediately follows (precedes) it. Hereafter, 
we consider only deterministic reversible and deterministic irreversible CM(k)s. 

3. Simulating an irreversible counter machine by a reversible one 

In this section we show that any (irreversible) CM can be simulated by a reversible 
one by adding some extra counters. As a preparation, we define a notion of “state- 
degeneration degree” for CMs, and show a lemma on it (a similar notion for Turing 
machines is in [9]). 

Definition 3.1. Let M = (k, Q, 6,qo,4f) be a deterministic CM(k). A state q E Q 
is called state-degenerative iff there are at least two distinct quadruples [ql, &,x1, q] 
and [q2,i2,xz,q] in 6. If there are exactly k such quadruples in 6, we say that the 
state-degeneration degree of q is k, and denote it as sdeg(q)=k. That is, 

sdeg(q) = \{a E 6 I %‘,i,x (a = [q’,i,x,ql))l. 

State-degeneration degree of A4 is defined as 

sdeg(M) = max{sdeg(q) 1 q E Q}. 

Lemma 3.1. For any deterministic CM(k) A4 = (k, Q, 6, qo, q~), there is a deterministic 
CM(k) M’ = (k, Q’, 8, qo, 9) with sdeg(M’) < 2 such that 

(qo,w,..., m) t+ (qf,nl,...,nk) 

iff 

(qo,m1,..., w) I$ (qf,w,-..,nk) 

holds for all ml ,..., mk,nl,..., nk E N. 
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Proof. Choose a state q E Q such that sdeg(q) > 2 (if no such q exists, we have 

done). If sdeg(q) = k there are k quadruples 

h,,h,xl,ql, [qrz,i2,x2,ql, . . . . [qrkYik,Xk,ql. 

In M’, these k quadruples are replaced by the 2k - 2 quadruples shown below, where 

qs,, . . . ,qSt_-2 are new states (see Fig. 2). 

Repeating this procedure for all q E Q such that sdeg(q) > 2, a CM(k) M’ with 

sdeg(M’) <2 is obtained. It is clear that M’ simulates M. 0 

We now show that any irreversible CM can be simulated by a reversible one by 

adding two extra counters to keep a “history” of a computation (but the history is left 

as a garbage when it halts). 

(1) kh, h, xl, qs,l 

[qr2, i2, x2, qs,] 

(2) [qs,, 1, 0, qsJ 

[qr3, i3, x3, qs21 

hrk-,, ik-1, xk-1, qsk-J 

(k- 1) [qsk-_z> 1, 0, ql 

Fig. 2. Reducing the state-degeneration degree to 2 by adding new states q~,, . , qsk_-2. 
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Theorem 3.1. For any deterministic CM(k) A4 = (k, Q, 6,qo, q), there is a determin- 

istic reversible CM(k + 2) M’ = (k + 2, Q’, 8, qo, qf ), such that 

(40, ml ,...,mk> t$ (qr,v, . . . . nk) 

iff 

3h E N [(qo,ml >...,mk,O,O) I$ (q,w,...,wkW 

holds for all ml ,..., mk,nl,.,., nk E N. 

Proof. By Lemma 3.1 we assume sdeg(M) = 2 (if sdeg(M) = 1 then M is already 

reversible, so we need not consider this case). Further assume M has no quadruple in 

which qo appears as the fourth element (i.e., qo appears only at time 0). 

We now construct CM(k + 2) M’ that simulates M. M’ uses k counters to simulate 

those of M, and keeps the history of its computation by the counter k + 1 in order to 

make M’ reversible. The counter k + 2 is for working. 

The state set Q’ and the quadruple set 6’ of M’ are constructed as follows. 

1. For each reversible quadruple [qs, z&x,, qt] in 6, include the states qs and qt in 

Q’, and include the following quadruple in 6’. 

kh, is, xs, 4tl (1.1) 

2. For each pair of quadruples [q,.,i,,x,.,q,] and [qs, is,xs,qt] in 6 which overlap in 

range, include the states qr,qs, qt,q(r, t,j), q(s, t,j),q(t, c!) (j = 1,. . . ,5, 8 = 1,. s . ,6) 

in Q’, and the following quadruples in 6’. 

[qr, ir Xr, 4(r, t, 1 )I 
kdr, 6 11, k + 2, 5 q@-, 6 211 
M-,&2), k + 1, Z q(& 111 
Mr,62), k+ 1, P, qG-,&3)1 
Mr, t, 3 ), k + 1, -, q(r, t, 4)l 

Mr, t, 41, k + 2, +, qk t, 5N 

Mr, t, 5>, k + 2, P, q(r, t, 2)l 

h is, -k 4b 6 1)l 

Ms, c 11, k + 2, 5 q(s, t, 2)l 

Ms, &2), k + 1, 5 q(c 5)l 

Ms, c 21, k + 1, P, 46, t, 311 

k&,&3), k + 1, -, &,&4)1 

kids, c 41, k + 2, +, &, 6 5)l 

Ms, c 51, k + 2, P, qh 6 2)l 

Ed& I), k + 2, 5 qtl 

M& 11, k + 2, P, q(c211 

M&2), k + 2, -9 q@,3)1 

(2.1) 
(2.2) 
(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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M&3), k + 1, +, 4(&4)1 (2.18) 

[4(&4), k + 1, p> 4(&5)1 (2.19) 

[q(t,5), k + 1, +, q(66)l (2.20) 

[q(t, 6), k + 1, P, q(t, 1 )I (2.21) 

When A4 executes a reversible quadruple, M’ simply does so by (1 .l ). On the 

other hand, when A4 executes an irreversible quadruple, M’ writes the information 

which quadruple is used into the counter k + 1. This is done by (2.1 H2.21). Since 

sdeg(M) = 2, there are always two possibilities of executed quadruple, say [qr, &,a+, qt] 

and [qs,is,xs,q,]. Thus the choice sequence of quadruples (i.e., history) can 

be expressed in a binary number, and M’ holds it in the counter k + 1. 

We first consider the case [qr, i,,x,, qt] is used by M. Assume the counter k-t 1 keeps 

n, which represents the history up to this moment, and the counter k+2 keeps 0. After 

simulating the operation of M by (2.1), M’ transfers the number n from the counter 

k + 1 to the counter k + 2 by (2.2H2.7). Then, using (2.15)-(2.21), M’ multiplies 

the contents of the counter k + 2 by 2. Thus the result 2n is obtained in the counter 

k + 1. Next, consider the case [qs,is,xs,q,] is used by M. Quadruples (2.8)-(2.14) act 

essentially the same as (2.1H2.7). However, in this case, the quadruple (2.20) (rather 

than (2.15)) is executed first among (2.15)-(2.2 1). By this, the result 2n + 1 is obtained 

in the counter k + 1. 

Consequently, the information which quadruple was executed is kept as the least 

significant bit of the number in the counter k + 1. Due to this operation M’ becomes 

reversible. Indeed, it is easily verified that M’ is deterministic and reversible (for 

example, the pairs of quadruples [(2.2), (2.7)], [(2.9), (2.14)], [(2.3), (2.21)], and 

[(2.10), (2.19)] do not overlap in range). 0 

Example 3.1. Consider a deterministic irreversible CM(2) M, = (2, Q, {Z, P}, 6, qo, cjy, 

P) having the following quadruples as 6. 

[qo, 1, 0, 411 (K-l) 

kI1, 2, z ql @L-2) 

[41, 2, p, q21 @f,-3) 

[q2, 2, -9 431 @&i-4) 

[q3, 1, +, 411 V&-5) 

M, adds two numbers given in the counters 1 and 2, and stores the result in the counter 

1, For example, (qo,2,2) t& (q~, 4,0). Note that sdeg(M,) = 2. The state transition of 

M, is shown in Fig. 3. 

A deterministic reversible CM(4) M,’ = (4, Q’, {Z, P}, 8, qo, qf,P) constructed by 

the method of Theorem 3.1 has the following 24 quadruples. 

1. Quadruples corresponding to the reversible ones (M,-2)--(M,-4) of A4,: 

[41, 2, Z, VI 

[qr, 2, p, q21 

[qz, 2, -3 q31 
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[43,1, +, Q11 
This transition 

is labeled by “1”. 

This transition 
is labeled by “0”. 

Fig. 3. A CM(2) Ma that performs addition. 

2. Quadruples corresponding to the irreversible pair [qo, 1, 0, ql] (Ma-l) and 

[q3,1, +,411 (K-5): 

[40, 1, 0, do, 1,1)1 

MO, 1,1), 4, z do, 1,2)1 

km 1,2), 3, z q(L 1)l 

MO, 1,2), 3, p, q(O, 1,311 

MO, 1,3), 3, -7 do, L4)l 

MO, 1,4), 4, +, do, 1,511 

MO, 1951, 4, p, 4@, 1,211 

[q3, 1, +, 40, 1, 111 
M3,1,1), 4, z, 4(3,1,2)1 

k?(3,1,2), 3, -T q(L5)l 

[4(3,1,2), 3, p, d3,1,3)1 

M3, L3), 3, -> d3,1,4)1 

M3, L4), 4, +, q(3,1,5)1 

M3,1,5), 4, p, 4(3,1,2)1 

ML I), 4, z, 411 

MLl), 4, p, q(L2)l 

[4(1,2), 4, -9 dL3)l 

M1,3), 3, +, q(1,4)1 

ML4), 3, p, qU,5)1 

ML5), 3, +, q(L6N 

M1,6), 3, P, q(l,l)l 

When M, executes the irreversible quadruple [qo, l,O, ql], bit “0” is attached to the 

binary number kept in the counter 3 as the least significant bit. On the other hand, 

when M, executes [q3,1,+,ql], bit “1” is attached. For example, the addition 2+2 is 
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carried out by &f,’ in the following way. 

The reversible CM(k + 2) M’ constructed in Theorem 3.1, however, leaves in gen- 
eral a very large number in the counter k + 1 when it halts. This number is in fact 
a garbage information, but it cannot be simply erased by a reversible CM. If we 
want to erase it reversibly, we must add a backward computing process that “un- 
does” the forward computing process as in the case of a reversible Turing machine 
[l] (of course, copying process of results should be inserted between the forward 
and backward computing processes). This method for CM is shown in the following 
theorem. 

Theorem 3.2. For any deterministic CM(k) A4 = (k, Q, 6, qo, q), there is a determin- 
istic reversible CM(2k + 2) M” = (2k + 2,Q”,6”,qg, PO), such that 

(40, Ml,. . ., m) t+ (qf,nl,...,nk) 

iff 

(qo,w,...,m, O,O,O,...,O) t& (pO,ml,...,mk,O,O,nl,...,nk) 

holds for all ml ,,.., mk,nl,..., nk E N. 

Proof. Assume A4 has no quadruple in which qo appears as the fourth element. By 
using the method in Theorem 3.1, we first convert M to an equivalent reversible 
CM(k + 2) M’ = (k + 2, Q’, 6’,qo,@). We then construct M” from M’. Like M’, 
M” uses the counters 1 through k to simulate those of M, and the counters k + 1 
and k + 2 for keeping history and for working. The remaining k counters are used 
for recording the result of the computation. The entire computation process of M” 
is divided into three stages. They are forward computation stage, copy stage, and 
backward computation stage. The state set Q” and the quadruple set 8’ of M” are as 
follows. 

I. Forward computation stage: Internal states and quadruples needed for this stage 
are exactly the same as M’ in Theorem 3.1. 

II. Copy stage: In this stage, the contents of the counters 1 through k are copied to 
the counters k + 3 through 2k + 2 using the counter k + 2 for working. 

1. Include c( 1,1) in Q”, and include the following quadruple in 6”. 

[q, k + 2, Z ~(1,111 (3.1) 
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2.Foreachi~{l,..., k},includec(i,l) ,..., c(i,5),c(i+l,l),andd(i,l) ,..., d(i,6) 

in Q”, and include the following quadruples in 8’. 

[c(i, 11, i, Z, 46 1 )I 
[c(i, 11, i, p, 44 211 
idi, 2 1, i, -3 c(i, 311 
[c(i, 3), k + 2, +, 4i,4)1 
[c(i,4), k + 2, P, c(i, 1 )I 
[d(i, 11, k +2, Z, c(i + 1, l)] 

Hi, l), k + 2, P, d(i, 2)l 
H&2), k+2, -, 44 3 )I 
Mi, 31, i, +, 464)l 
[d(i, 4), i + k + 2, +, d(i, 91 
[d(i, 9, i, R 4i, 1 )I 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
(4.10) 

(4.11) 

The contents of the counter i is first transferred to the counter k + 2 by (4.1)-(4.5), 

and then to the counters i and i + k + 2 by (4.6H4.11). 

3. Include py in Q”, and the following quadruple in 6”. 

[c(k + 1, 1 ), k + 2, Z, pfl (5.1) 

III. Backward computation stage: In this stage, the computation performed in the 

forward computation stage is undone, and thus the contents of counter k + 1 is erased 

reversibly. We define x-’ for x E { +, 0, -, Z, P} as follows. 

- ifx=+ 

0 if x=0 
x-1 = +ifx=- 

Zifx=Z 

Pifx=P 

For each quadruple [qs,is,xs,qt] in 8, include the states ps and pt in Q”, and the 

following quadruple in 6”. 

-1 
[pt, is, x, , ps 1 (6.1) 

Note that (6.1) is the reverse quadruple of [qs, i,,xs,ql] in the sense that it undoes 

the operation of the latter quadruple. Since quadruples in 6’ are all deterministic and 

reversible, (6.1) is also so. 

By the above quadruples (1.1)-(6.1), M” acts as follows for all I?z~, . . . , mk, ni, . . . , nk 

E N such that (C&ml ,..., mk) t$ (4f,ni ,..., nk): 

(qO,ml,...,mk,O,0,0,...,0) 

& (C?f,nl, . . ..nk. h,O,O,...,O) 
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6 (J’f,nl, . . ..nk. h,o,nl,...,nk) 

& (PO,ml,...,mk,O,O,nl,...,nk) 

for some h E N. 13 

Remark. In the copy stage of the above construction, all the counters 1 through k are 

copied. But it is of course not necessary. We can copy only needed results and reduce 

the number of counters. 

4. Universality of a reversible two-counter machine 

The next proposition has been shown by Minsky [8]. 

Proposition 4.1 (Minsky [S]). For any Turing machine T there is a CM(5) M that 

simulates T. 

His formulation of CM is slightly different from ours. But, it is easily seen (from the 

proof of Proposition 4.1) that five counters are enough to simulate a Turing machine 

for our CM. 

Minsky further showed that any k-counter machine can be simulated by a two-counter 

machine by using a GGdel number. 

Proposition 4.2 (Minsky [8]). For any CM(k) A4 (k = 1,2,. . .) there is a CM(2) M’ 

that simulates M. 

We now show a reversible version of Proposition 4.2. 

Theorem 4.1. For any deterministic reversible CM(k) M = (k,Q, 6,qo,q), there is a 
deterministic reversible CM(2) M’ = (2, Q’, S’,qb, a,), such that 

(40,ml,..., mk> G (qf~~l~~~~~~k) 

iff 

(qo,p)lf’...$,O) 6 (!?&‘...P;JV 

holds for all ml,..., mk,nl,. . . ,nk E N, where pi denotes the ith prime number (i.e., 

p1 = 2, p2 = 3, p3 = 5,. . .). 

Proof. From CM(k) M, the sets Q’ and 6’ of M’ are constructed as follows. 

1. For each quadruple [qr, i, 0, qs] in 6, include the states qr and qS in Q’, and include 

the same quadruple in 6’. 

[qr, 1, 0, 481 (7.1) 



314 K. Morita I Theoretical Computer Science 168 (1996) 303-320 

2. For each quadruple [qr, i, +, qs] in 6, include the states qr, qs, q(r,j), q(r, 6, e) ( j = 

1 )..., 7, L=l,..., pi) in Q’, and the following pi + 10 quadruples in 6’. 

h 2, 5 dr, 1 )I 
[q(r, I), 1, 5 dry 5 >I 
[q(r, 11, 1, P, dry 211 
[4@,2), 1, -) q(r,3)1 
Mr, 31, 2, +, q(r,4)1 
Cq(r,4), 2, P, 4(c 1 )I 

Mr, 9, 2, Z, 481 
[q(r,U 2, P, dry 6 )I 
Mr, 61, 2, -, q(r,6,1)1 
Mr, 6,1), 1, +, q(r,6,2)1 
Mr, 6,2), 1, +, q(r,63)1 

(8.1) 
(8.2) 
(8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 
(8.10.1) 

(8.10.2) 

Mr, 6, Pi - 11, 1 T +, dr, 6, Pi)1 (8.1O.pi-1) 

k(r, 6, Pi), 1, +, q(r, 7)l (8.1O.pi) 

Mr,7), 1, P, 4(r, 5 )I (8.11) 

By quadruples (8.1H8.6) the contents of the counter 1 is transferred to the counter 2. 

Then by (8.7)+8.11) it is multiplied by pi and stored in the counter 1. In this way, 

[qr, i, +, qs] of A4 is simulated by M’. It is easy to verify that the above quadruples are 

all deterministic and reversible in a’, since [qr, i, +, qs] is deterministic and reversible 

in 6. 

3. For each quadruple [qr, i, -, qs] in 6, include the states q,., qs, q(r,j), q(r, 5, e) (j = 

1 )...) 7, e=1,..., pi) in Q’, and the following pi + 10 quadruples in 6’. 

h 
Mr, 11, 
[q(r, I), 

Mr, 21, 
[q(r,3), 
[q(r,4), 

[q(r, 5), 

[dry 5 ), 

I.&, 5,1), 

Mr, 5,2), 

2, z, 4(r, 1 )I 
1, 3 dr, 5 )I 

1, P, 4(r, 2 )I 
1151 46 311 

dr, 4)l 

2, P, 4(r, 1 )I 

2, Z 4sl 

2, P, 4(r,5,1)1 

2, -, q(r,5,2)1 

2, -, q(r,5,3)1 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 
(9.9.1) 

(9.9.2) 

h(r, 5, Pi - I), 2, -, q(r, 5, piI1 (9.9.pi- 1) 

Mr, 5, Pi), 2, -, q(r,6)1 (9.9.Pi) 

[q(r,6), 1, +, q(r, 7)l (9.10) 

[q(r,7), 1, P, 4(r, 5)l (9.11) 
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Quadruples (9.1H9.6) are just the same as (8.1H8.6). By (9.7H9.11) the contents 

of the counter 2 is divided by pi and stored in the counter 1, and thus [qr, i, -, qs] of 

A4 is simulated. It is also easy to verify that the above quadruples are all deterministic 

and reversible. 

4. For each pair of quadruples [q,., i, 2, qs] and [qr, i, P, ql] in 6, include the states qr, 

q(r,j, I), q(r,j, 2) 0’ = 0,. . . , Pi) in Q’, and the following 3pi + 3 quadruples in 6’. 

[qr, 2, z 
MC 0, 1 ), 1, z 

MC 0, 1 ), 1, p, 

Mr,O,2), 1, -> 

W, 1, l), 1, z 

M-,1,1), 1, p, 

W,l,2), 1, -, 

M-,2,1), 1, Z, 

[q(r,2, l), 1, P, 

Mr,2,2), 1, -, 

e-2 03 1 >I 

4’(& 031 )I 
q(r, 092 )I 

4(C lYl)l 

q’(s, 191 )I 

q(r, 1,2)1 

4(r, 2,l >I 

q’(s, 231 )I 
4(r, 2,211 

4(r,3,1 )I 

(10.0) 

(10.0.1) 

(10.0.2) 

(10.0.3) 

(10.1.1) 

(10.1.2) 

(10.1.3) 

(10.2.1) 

(10.2.2) 

(10.2.3) 

Mr, Pi -2, 11, 1, 5 q’(% Pi -Xl )I 

[q(r,Pi-2, I>, 1, P, 4(r,Pi-2,2)1 
[4(r,Pi-2,2), 1, --, 4(r,Pi-1,1)1 

(lO.Pj_2.1) 

(lO.pi-2.2) 

(lO.pi-2.3) 

[4(r,Pi-1,1), 1, 5 4’(S,Pi-1,1)1 (lO.pi-1.1) 

[q(r,Pi-1,1), 1, P, q(r,Pi-1,211 (lO.pi-1.2) 

[q(r,Pi-1,2), 1, -, dry Pi7 1 )I (lO.pi-1.3) 

Mr, Pi, I), 2, +, 4(r, Pi3 2)l (1O.pi.l) 

Mr, Pi, 21, 2, P, dr, O,l )I (lO.Pj.3) 

Note that, if only [qr, i, Z, qs] exists in 6 (and [qr, i, P, ql] +Z 6), then 3pi + 2 quadruples 

except (10.0.1) are added to 6’. On the other hand, if only [qr, i, P, q,] exists in 6, then 

2pi +4 quadruples except (lO.i.1) G= l,...,pi-1) are added to 6’. 

In order to test whether the contents of the counter i of M is positive or zero, M’ 

must check whether the contents of the counter 1 is divisible by pi or not. This is 

performed by the above quadruples. When division is completed, the contents of the 

counter 1 becomes 0, and the quotient is in the counter 2. Then M’ transits to the 

state q’(t, 0,l) if the remainder is 0, or q’(s,j, 1) if the remainder is i(= 1,. . . , pi - 1). 

Restoration of the original contents of the counter 1, and the transition to the state qt 

or qs are performed by the quadruples (11 .O.l )-(l 1 .pi.2) below. 

5. For each state qs such that [q, i,x,q,] exists in 6 for some q E Q, i E { 1,. . . , k}, 

x E {Z,P}, include qs,q’(s,j, l),q’(s,j,2) 0’ = 0,. . . , pi) in Q’, and the following 
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2pi + 3 quadruples in 6’. (Note that to such qs there corresponds unique i because M 
is reversible.) 

k’(&O, l), 2, Z, ssl 
k&TO, l), 2, p, 4’(& 0,211 

k’(s, 0,2), 2, -3 4’(S, Pi, l )I 

[4’(& Pi, 11, 1, +, q’(S, Pi, 211 
[4’(S, Pi, 2), 19 PY 4’(S,Pi-1,1)1 

[4’(S7Pi_l,l), 1, +T q’(S,Pi-1,2)1 

[4’(& Pi - 13 2 )Y 1 Y P, q’(S, Pi -29 1 )I 

(11.0.1) 

(11.0.2) 

(11.0.3) 

(ll.Pj.1) 

(1 l.pi.2) 

(Il.pi-1.1) 

(ll.pi-1.2) 

[q’(s,2,1), 1, +, q’ts, 2,211 (11.2.1) 

[4’(%2,2), 1, P, q’(s, 19 1 )I (11.2.2) 

[4’(& 1, l), 1, +, 4’(& 1,2)1 (11.1.1) 

C4’(& 1,2), 1, p, q’(s, 031 )I (11.1.2) 

We can verify that the quadruples (lO.O)+lO.pi.2) and (ll.O.l)-(ll.pi.2) are all de- 
terministic and reversible from the fact that M is deterministic and reversible. 0 

Example 4.1. Consider a deterministic reversible CM(3) Mt = (3, Q, 6, qo, q, P) having 
the following quadruples as 6. 

k70, 2, Z, 411 &G-l) 

kl, 1, Z, +I (M-2) 

[41, 1, p, q21 (M,-3) 

[q2, 1, -9 q31 (Mt-4) 

k3, 2, +, q41 G&5) 

kl4, 3, +, 451 (M&) 

k5, 2, p, 411 (M-7) 

Mt reversibly transfers the number given in the counter 1 to the counters 2 and 3. For 
example, 

(qo,3,0,0) I-& (4r,O,3,3). 

A deterministic reversible CM(2) M{ = (2, Q’, b’,qo,q, P) constructed by the 
method of Theorem 4.1 has the following 93 quadruples. 

1. Quadruples corresponding to [qo, 2, Z, ql]: 

[qov 2, 5 q(O,O, 1)l 

[4(0, 0, 1 )> 1, p, 4(0,0,2)1 
[4(0,0,2), 1, -9 do, 1,111 
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MO, 1, l), 1, z, qv, 1,111 
MO,Ll), 1, p, q(O,L2)1 
MO, 1,2), 1, -> dO,Zl>l 

MO, 2,1), 1, z q’u, 291 )I 
MO,2,1), 1, p, q(O,2,2)1 
MO,2,2), 1, -9 do, 3,111 

MO,3, I), 2, +, do, 3,211 
E4(0,3,2), 2, p, dO,O, 111 

2. Quadruples corresponding to the state ql: 

[q’t 1, 0, 11, 2, z 411 
[q’(LO, 11, 2, p, q’(LO92)l 
[q’W,2), 2, -9 q’U,3,1)1 

[q’(L3,1>, 1, +, q’U,3,2)1 
[q’U,3,2), 1, p, q’(L2,l)l 

k’U,2,1>> 1, +, d(L2?2)1 
[q’U,2,2), 1, p, q’W,lN 

wu, 1, I), 1, +, 4’UY L2)l 
[q’(LL2), 1, p, q’U,Wl 

3. Quadruples corresponding to the pair [ql, l,Z,qr] and [ql, l,P,qz]: 

[41, 2, z q(LO,1)1 

MLO,l), 1, 5 q’(2,Wl 
E4(1,0,l), 1, p, dLO,2)1 
MLO,2), 1, -7 q(LLl)l 

k(l,Ll), 1, z, q’u-AU 
ML 1, I), 1, p, qu, 1,211 
MLL2), 1, -9 q(42,l)l 

ML2, I), 2, +, q(1,2,2)1 
ML2,2), 2, p, 4(LO, 1)l 

4. Quadruples corresponding to the state 9: 

k’(f,O, l), 2, z, 971 
kw,o, l), 2, p, 4’(fY0,2)1 
[q’U,0,2), 2, -9 q’(f,2,1)1 

[q’u-,2, l), 1, +, 4’U~2~2)1 
kI’(f,2,2), 1, p, q’(f, 191 )I 

[s’u-, Ll), 1, +, 4’U, 1,211 
[q’u-,1,2), 1, p, q’u-,0,1)1 
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5. Quadruples corresponding to the state q2: 

k7’(2,0,1), 2, 2, q21 

WC& 0, 1 ), 2, p, 4’cT 0,211 
kic?w, 2, -> q’cv, 1)l 

kI’cT2~ 11, 1, +, q’(2,2,2)1 
km,w, 1, p, cm, 1, I>1 

kI’c%L 11, 1, +, q’c? 1,211 
k?‘cT 1,217 1, p, q’G 0, 111 

6. Quadruples corresponding to [q2,1, -, q3]: 

[q2, 2, z 4(2,1>1 

MT 112 1, z> 4G 511 

ML 113 1, p, @, 2)l 

[4(2,2h 1, -9 q(2,3)1 

[4(2,3), 2, +, d&4)1 

[4(2,4), 2, p, 4(2,1 )I 

kc& 51, 2, z, cl31 

M2,5), 2, p, qG5,1)1 

kc? 5,113 2, -7 qcz 5,2)1 

M2,5,2), 2, -9 @,@I 

M2,6), 1, +, d2,7)1 

W,7), 1, p, 4(2,5)1 

7. Quadruples corresponding to [q3,2, +, q4]: 

kl3, 2, z, 4(3,1)1 

k(3,1), 1, z, 4(X5)1 

[co, I), 1, p, q(3,2)1 

[4(3,2), 1, -3 9(3,3)1 

M3,3), 2, +, d3,4)1 

M3,4), 2, p, d3, I>1 

M3,5), 2, z q41 

MX5h 2, P, d3,6)1 

M3,6), 2, -3 q&6,1 )I 

M3,6,1), 1, +, q(3,6,2)1 

M3,6,2), 1, +, d3>6,3)1 

[q&6,3), 1, +, qR7)l 

M3,7), 1, p, 4(%5)1 
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8. Quadruples corresponding to [qd, 3, +, q5]: 

kJ4? 2, -T q(4,1 )I 

[4(4,1), 1, 5 q(4,5)1 

[4(4,1), 1, P, q(4,2)1 

k7(4,2), 1, -7 q(4,3)1 

M4,3), 2, +, q(4,4)1 

[4(4,4), 2, P, 4(4,1)1 

[q(4,5), 2, z, 451 

M4,5), 2, P, q(4>6)1 

M4,6), 2, -2 q(4,6> 1)l 

[q(4,6,1), 1, +, q(4,k 2)l 

M4,6,2), 1, +, q(4,6,3)1 

[q(4,6,3), 1, +, q(4,6,4)1 

M4,6,4), 1, +, q(4,6,5)1 

[q(4,6,5), 1, +, q(4,7)1 

[4(4,7), 1, P, q(475)l 

9. Quadruples corresponding to [q5,2, P, ql]: 

[95, 2, z q(KO, 1)l 

[4(5,0,1), 1, z, 4’(L 071 )I 

[4(5,0,1), 1, P, q(5,0,2)1 

[q(5,0,2), 1, -3 q(5,Ll)l 

k/(5,1, I), 1, P, 4(5,1,2)1 

k(5, L2), 1, -3 q(5,2,1)1 

[4(5,2,1), 1, P, q(5,2,2)1 

k/(5,2,2), 1, -> q(5,3,1)1 

[4(5,3, I), 2, +, q(5,3,2)1 

[4(5,3,2), 2, P, 4(5,0,1)1 

For example, by the above quadruples, the computation of Mt 

(qo,2,0,0) tj+ (4r,O,2,2) 

is simulated by AI{ as follows: 

(qo, 223050, 0) g’ (9, 2°3252, 0). 

From Proposition 4.1, Theorems 3.1, 3.2, and 4.1, we can derive the following 

theorem. 

Theorem 4.2. For any deterministic Turing machine T there is a deterministic re- 

versible CM(2) A4 that simulates T. 
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5. Concluding remarks 

In this paper we gave conversion methods from an irreversible CM to an equivalent 

reversible CM, and from a reversible CM(R) to an equivalent reversible CM(2) (these 

methods were tested by computer simulation). Thus, we can conclude that a reversible 

CM is computation-universal even if it has only two counters. Since reversible CM(2) 

is a very simple model of computation, its universality will be useful to show other 

reversible systems’ universality. 
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