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ABSTRACT  

 

Burland, Amy, Ed.D., Spring 2011        Education 

     

 

The Statistical Relationship Among Number Sense, Computational Fluency, and the Montana 

Comprehensive Assessment System. 

 

Chairperson:  Dr. Trent Atkins 

 

 

  According to recent studies, less than half of U.S. students perform at the proficient or 

advanced levels in mathematics by the time they reach grade 4 and the trend continues through 

high school.  In order to improve instruction many districts have adopted scientifically based 

researched programs such as Response to Intervention (RTI), which allows for the examination 

of the effectiveness of the core curriculum that is being used in a school or classroom.  In 

addition, RTI provides school administrators and teachers with educational tools to identify 

students who may be at-risk of failing and to inform teachers of supplemental instruction needed 

to build up skills that are identified as weak or lacking.  Research on early mathematics skills 

indicates that skills performance at the kindergarten and first grade level may predict 

performance at later grade levels.  Providing intervention early has been shown to have a positive 

effect on students’ future mathematics success. 

 

  This study investigated the long-term predictive validity of the AIMSweb measures for 

kindergarten through grade 2 and the Montana Comprehensive Assessment System (MontCAS).  

The kindergarten and grade 1 assessments included the Test of Early Numeracy which measures 

number sense skills that include Oral Counting, Number Identification, Quantity Discrimination, 

and Missing Number.  The grade 1 and 2 Mathematics-Curriculum Based Measures assessed 

computational fluency.  The scores on these K-2 assessments were analyzed to investigate 

correlations with the grade 3 MontCAS scores of the same students.  The results indicated that 

Number Identification and Quantity Discrimination provided the most explained variance.  

Overall, the kindergarten scores were stronger indicators of grade 3 performance than the grade 1 

scores.   

 

  A sequential multiple regression model was also used to explore which of the TEN measures 

along with the hierarchy of tests from kindergarten through grade 2 had the greatest explained 

variance for the grade 3 MontCAS. The results showed that each test from kindergarten to grade 

1 increased the predictability of the grade 3 MontCAS scores; however, the grade 2 scores did 

not contribute to the predictability of the grade 3 assessment.  Overall, Oral Counting indicated 

the highest explained variance using this model. 
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Chapter One 

 

Background of the Problem 

 

 The development of mathematical understanding has come to be known as the ―new civil 

right‖ in the United States.  With only 37% of U.S. fourth
 
graders and 34% of eighth

 
graders 

performing at proficient and advanced levels, mathematical achievement and success have 

become a social justice interest defined as the right of all students to be given the opportunity to 

receive high quality mathematics instruction (Lago & DiPerna, 2010; National Assessment of 

Educational Progress [NAEP], 2009; Thurber, Shinn, & Smokowski, 2002).  This is based on the 

fact that today’s students who develop mathematical understanding are granted far more 

opportunities and career choices in shaping their future (Boaler, 2008; Jordan, Glutting, 

Ramineni, & Watkins, 2010; Lago & DiPerna, 2010).   

Advancements in technology and information have produced an urgency to train more 

people in mathematics to work in the fields of medicine, science, and technology.  In a broader 

sense, advancements in these fields have made understanding mathematics necessary for all 

students rather than for a select few (Boaler, 2008; Jordan et al., 2010; Lago & DiPerna, 2010;  

National Council of Teachers of Mathematics [NCTM], 2000).  For example, most if not all 

workplaces have been impacted by the increased emphasis on technology and require all 

employees to come with higher skill levels in mathematics than ever before (Lago & DiPerna, 

2010).  The same can be said about how technology has changed daily life, where fundamental 

mathematics language is used to describe national budgets, profits, inflation, demographics, and 

global warming (Boaler, 2008).   

In the past decade the most notable federal action taken to improve K-12 mathematics 

instruction includes the 2001 reenactment of the Elementary and Secondary Educational Act 
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(ESEA) entitled No Child Left Behind Act (NCLB).  This bi-partisan statute was passed in an 

attempt to make schools accountable in providing quality education that allows all students to be 

academically successful, as measured by student performance on federally approved 

assessments, student attendance, student graduation rates, and teacher credentials.  Schools that 

do not meet Adequate Yearly Progress (AYP) based on federal goals are labeled as needing 

school improvement, corrective action, or restructuring; therefore, these schools are mandated to 

take measures that improve the system through comprehensive school reform. Action to improve 

must be implemented by using scientifically research-based approaches in curriculum and 

professional development.  In addition, these schools are required to provide families with 

quality services outside of the school program at district expense until they meet AYP for two 

consecutive years (U.S. Department of Education, 2002).   

Response to intervention (RTI).  Traditionally, the special education screening process 

was initiated by a ―wait to fail‖ and then an intelligence quotient (IQ) discrepancy assessment.  

The reauthorization of the Individuals with Disabilities Education Act (IDEA) in 2004 

reconstructed this process because it did not allow for inadequate instruction nor did it allow for 

the fact that kindergarten and primary elementary students have not had enough academic 

instruction to accrue an IQ discrepancy.  The reconstruction of the screening has mainly seen the 

implementation of the Response to Intervention (RTI) approach, which is an evidence-based 

system where students progress through increasingly intensive levels of a prevention process.  

After progressing through the three-tiered levels, only students who do not show achievement 

through standard instruction are formally assessed for special education services (Fuchs, 2004; 

Seethaler & Fuchs, 2010).  In addition, with the increased emphasis on schools to demonstrate 

accountability and meet AYP under NCLB, early identification of students at-risk of struggling 
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in mathematics in later grades and intervention for identified students has taken center stage.  

Even though RTI has been used in education settings for decades, for the above reasons it has 

recently come back into educational methods as a ―new‖ approach to identify learning 

disabilities and/or students who are at-risk of failing.  Many states adopted this process because it 

meets the NCLB standards of an approach that is based on scientific research and provides a 

structured intervention protocol (Kashi, 2008).  According to Kashi (2008), it has been used 

especially in districts with minority and English-as-a-Second-Language (ESL) student 

populations and/or other cases where the district students are underperforming academically.  

The structure of RTI has been proven to effectively individualize instruction regardless of 

inherent diversity of the overall classroom’s cognitive differences (Kashi, 2008). 

 This first chapter provides background on the need for early identification and 

intervention for students who are at-risk of low-performance in K-12 mathematics, as well as an 

overview of the AIMSweb Mathematics-Curriculum Based Measure (M-CBM) tools that are 

used to monitor and guide instruction for students entering elementary school.  These educational 

tools include the Test of Early Numeracy (TEN) for kindergarten and first grade students and the 

M-CBM for grades 1 through 8.  The current study compared the TEN and M-CBM scores to 

grade 3 Montana Comprehensive Assessment System (MontCAS) scores in order to investigate 

correlations among tests as students progress from kindergarten to third grade.  Accordingly, this 

longitudinal study reports findings from analysis of the predictive validity and reliability of TEN 

and how it relates to M-CBM and performance on third grade MontCAS.  This overview 

provides insight into the purpose and outline of the current study. 

Number sense.  The development of Number Sense begins pre-verbally at infancy 

through experiences that relate number to spatial representations.  For example, the toys that 
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infants are given to play with represent sets of small objects, which are precise representations of 

larger objects (VanDerHeyden, 2010).  In fact, infants have a natural number sense that builds 

through their observations of the world around them, as they categorize and organize information 

to make sense of it.  Such experiences provide a foundation for acquiring symbolic mathematics 

understanding, which is built up by the indirect use of the following: base ten number system, 

counting, sorting, comparing, and using number operations.  An understanding of verbal and 

symbolic number systems depends upon early experience and can be successfully taught in 

preschool and kindergarten (Jordan, Kaplan, Ramineni, & Locuniak, 2009).  Thus the 

importance of early identification and intervention during preschool years sets forth the 

experience and mathematics skill development in K-12 years (Fuchs, Compton, Fuchs, Paulsen, 

Bryant, & Hamlett, 2005; Jordan et al., 2010).   

Noted researchers have not produced a concise clear definition of number sense because 

no two researchers define it in the exact same way (Berch, 2005; Gersten & Jordan, 2005).  

Berch (2005) compiled a list of number sense features while studying number sense literature in 

the areas of mathematical cognition, cognitive development, and mathematics education.  He 

found ―that number sense reputedly constitutes an awareness, intuition, recognition, knowledge, 

skill, ability, desire, feel, expectation, process, conceptual structure, or mental number line‖ (p. 

333).  These numerical features allow one to be flexible in understanding simple to complex 

mathematical procedures. These understandings range from whole number quantities, such as 

how adding and subtracting relate to quantities, to making mathematical connections with 

mathematical operations and procedures, to inventing mathematical procedures, to recognizing 

numerical errors, and finally to being able to communicate mathematically (Berch, 2005).    
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Although operational definitions vary for number sense, there are commonalities in the 

tasks associated with measuring number sense in preschool and kindergarten children.  These 

tasks include quantity discrimination, counting objects, counting aloud, number identification, 

basic computation, estimation, understanding measurement concepts, number production, and 

identifying a missing number (Bryant & Bryant, 2008; Lago & DiPerna, 2010).  Using these 

early indicators to identify children who may experience difficulties in understanding 

mathematics later allows for early interventions at the most receptive periods of a child’s 

education (Lago & DiPerna, 2010).  Control group comparison studies show that teaching early 

number competencies to kindergarteners results in significant gains in first grade mathematics 

skills (Jordan et al., 2009). 

For the above reasons, a child’s level of number sense in preschool and kindergarten puts 

him/her on a path of either mathematical success or mathematical struggles throughout 

elementary and beyond (Gersten & Chard, 1999; Jordan et al., 2010; VanDerHeyden, 2010).  

Early intervention can make a difference since children at this level are more likely to retain and 

learn information.  Furthermore, early intervention can prevent emotional and behavioral 

problems that contribute to repeated mathematics failure and frustration in later years (Lago & 

DiPerna, 2010). 

Test of Early Numeracy (TEN).  The TEN is one of the tools used for the current study. 

This test is made up of four individual one-minute assessments administered to kindergarten and 

first grade students.  The short administration time makes them repeatable throughout the year, 

age appropriate, and nonintrusive in the classroom instructional setting.  They are conducted as a 

natural part of the curriculum because they are specific to the skills that build a foundation for 

understanding symbolic mathematics (Clarke & Shinn, 2004).  Again, one of the purposes of the 
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TEN/M-CBM design is to assist teachers in identifying children at an early age who are at risk of 

failing to understand mathematics as they progress through elementary, middle school, and high 

school. 

Mathematics curriculum-based measurement (M-CBM).  The AIMSweb TEN and 

M-CBM system is an RTI component, which involves individual formative computation 

assessments that are conducted in the fall, winter, and spring for each student.  These 

assessments inform instruction by identifying areas of difficulty in basic skills.  The assessments 

narrowly encompass one concept at a time and track growth and mastery from which teachers 

design interventions that give the student a higher likelihood of future success (Christ & Vining, 

2006; Keller-Margulis, Shapiro, & Hintze, 2008).  

Early identification.  Gersten, Jordan, and Flojo (2005) studied kindergarten, first, and 

second grade children’s performance in mathematics.  They concluded that some students were 

―typical‖ in performance and understanding while others showed difficulties in basic fact 

computation, counting strategies, and number sense, which they define as a strong understanding 

of number relationships and basic understandings of the size of numbers.  Gersten et al. (2005) 

found that as students move on to intermediate and upper elementary school lacking the 

understanding of basic facts, they continue to have difficulties throughout their education.  Such 

mathematical difficulties are broad-based in regard to the misunderstandings of concepts and 

behaviors exhibited in applying mathematics concepts.  These difficulties are shown by students 

of all ages (Bryant & Bryant, 2008; Jordan et al., 2010; Lago & DiPerna, 2010). 

 In the current study, predictive validity was investigated on kindergarten and first grade 

students using the EM-CBM or TEN. This system measures number sense through four specific 

assessments that include oral counting (OC), number identification (NI), quantity discrimination 
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(QD), and missing number (MN).  The OC measure requires the participant to begin with one 

and orally count for one minute. NI requires students to use a list of random numbers ranging 

from 1 to 20 and to orally identify them.  The QD measure requires the participant to look at two 

numbers and to name the number that is larger.  Lastly, the MN measure requires the participant 

to identify the missing number in a three-number string of consecutive numbers within the 1 to 

20 range (Clarke & Shinn, 2004). 

 The formative assessment used to investigate predictive validity for grades 2 through 

grade 3 was the AIMSweb M-CBM.  This assessment is considered curriculum-based because it 

is aligned with the grade level curriculum and emphasis on expected computational skills for 

each grade level.  The system provides 40 alternative forms for each grade level use for 

Benchmark Assessment, Strategic Monitoring, and frequent Progress Monitoring.  Again, this 

assessment made it possible to test the interventions being used in a time efficient way that is 

sensitive to change over time (Shinn, 2004).  

Traditional versus standards-based reform mathematics instruction.  Computation is 

the hallmark or fundamental mathematical foundation for students in grades 1 through 6.  This is 

the central agreement between the traditional and the standards-based reform approaches to 

mathematical instruction.  This seems to be the only agreement between the two polarized 

approaches when discussing the pedagogy behind each (Baroody, Bajwa, & Eiland, 2009).    

The traditional approach is teacher-centered—meaning that the teacher teaches students 

in a linear fashion addressing a single concept at a time.  This approach has the students solve 

each problem by using memorized algorithms given by the teacher or textbook followed by as 

many as 75 practice problems.  The traditional approach stresses basic fact rapid recall and is 

usually assessed through repetition and timed tests (Boaler, 2008).   
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Traditional methods are said to teach by working through an operation one place value at 

a time with transition to an adjacent position (trades or regrouping) thinking in terms of digits 

rather than the composite number that the digits make up (Kamii, 2000).  This approach is 

criticized for teaching students to use memorized formulas and prescribed strategies—omitting 

the opportunity for them to make conjectures and strategize ways that helps them make sense out 

of concepts.  Without this experience students become more concerned with restating the 

formulas and steps dictated to them than understanding mathematics and building confidence in 

their own constructs (Boaler, 2008).   

On the opposite end of the instructional spectrum is the standards-based reform approach 

which was introduced in the late 1980s and reinforced through the NCTM Principles and 

Standards (2000).  This approach uses discovery and inquiry based methods that promote higher 

order thinking, reasoning, and problem solving.  A majority of mathematics instruction time is 

spent by students interacting with peers to find solution strategies for problems that integrate a 

range of concepts (e.g. geometry, statistics, probability, measurement, and number sense) 

(Bryant & Bryant, 2008).  It requires primary students to solve real-life problems through 

discussion and investigation as well as through games that prompt them to use various number 

operations while discovering the relationships among the operations and properties of numbers.  

Children are required to invent their own flexible strategies through an emphasis on 

understanding whether their solution makes sense based on their experiences and mathematical 

knowledge.  The reform approach does not suggest teaching specific traditional strategies until 

grades 5 or 6 when students have had ample experience with the base ten system and have had 

time to construct their own knowledge through these discovery experiences.  By inventing their 

own strategies and observing peers develop different ways to solve problems, students acquire 



 9 

the foundation for higher mathematic skills based on mastery of operations and number 

properties (Russell, 2000).  

Criticism of the standards-based reform approach appears in research findings that focus 

on children with mathematics learning disabilities.  These studies suggest that the reform 

approach in and of itself is insufficient for struggling students.  According to Bryant & Bryant 

(2008), these students need explicit strategic instruction that teaches subskills and uses a 

combination of procedural rules, metacognitive cues, memory retention and retrieval techniques, 

and mnemonics.  Small group pullout sessions work best so that students receive immediate 

feedback and take part in more interaction with peers and teacher.  This approach is an 

intervention service component of RTI (Bryant & Bryant, 2008). 

Purpose of the Study 

 The purpose of this study was to investigate the long-term predictive validity of TEN 

measures that include oral counting (OC), number identification (NI), missing numbers (MN), 

and quantity discrimination (QD).  These dynamic indicators were analyzed to learn more about 

their validity as an EM-CBM.  This study analyzed the correlations among student TEN scores to 

student mathematics scores on grades 1 and 2 M-CBM, and grade 3 MontCAS.  Originally, an 

analysis of grade 4 scores was included but not enough data were available.  In addition, the 

study was also to analyze concurrent validity with grade 3 M-CBM and grade 3 MontCAS scores 

but again, there was not enough data available.  Correlations for each of the TEN probes were 

analyzed individually.  The research questions for this study were as follows. 

Research Questions 

1. Did an Oral Counting test of early numeracy in kindergarten and grade 1 correlate with 

mathematics performance in grade 3? 
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2. Did a Number Identification test of early numeracy in kindergarten and grade 1 correlate 

with mathematics performance in grade 3? 

3. Did a Missing Number test of early numeracy in kindergarten and grade 1 correlate with 

mathemathics performance in grade 3? 

4. Did a Quantity Discrimination test of early numeracy in kindergarten and grade 1 

correlate with mathematics performance in grade 3? 

5. Did Mathematics-Curriculum-Based Measurement in grades 1, 2, and 3 predict student 

performance on third and fourth grade MontCAS?   

6. Which of the Test of Early Numeracy (TEN) measures explained the most variance on 

the MontCAS and M-CBM assessments? 

H01:  There would be no statistical significance in the relationship between the Oral Counting test 

of early numeracy in kindergarten and grade 1 and proficiency in grade 3. 

H02:  There would be no statistical significance in the relationship between the Number 

Identification test of early numeracy in kindergarten and grade 1 and proficiency in grade 3. 

H03:  There would be no statistical significance in the relationship between the Missing Number 

test of early numeracy in kindergarten and grade 1 and proficiency in grade 3. 

H04:  There would be no statistical significance in the relationship between the Quantity 

Discrimination test of early numeracy in kindergarten and grade 1 and proficiency in grade 3. 

H05:  There would be no statistical significance in the relationship between M-CBM and the end 

of year Montana Comprehensive Assessment System (MontCAS) for grades 3 and 4. 

H06:  Each of the Test of Early Numeracy (TEN) measures would equally explain variance on the 

MontCAS. 
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Definition of terms 

 

Adequate Yearly Progress (AYP): A mandate under the 2001 reenactment of the Elementary 

and Secondary Education Act (ESEA) entitled No Child Left Behind (NCLB) which states that 

all public elementary and secondary school students must meet academic achievement standards 

and schools must work toward narrowing achievement gaps among different socio-economic, 

racial, and gender groups.  Measures include performance on standardized tests, attendance rate, 

graduation/drop-out rates, retention rate, and percentage of students completing advanced 

placement and gifted programs (U.S. Department of Education, 2002). 

Computational Fluency: Ability to use basic mathematics facts and foundational skills that 

include calculating with flexibility, efficiency, and accuracy (Boerst & Schielack, 2003).  

Curriculum Based Measurement (CBM): The standardized formative assessment procedure 

that monitors student academic growth in fundamental skills relevant to school outcomes (Christ 

& Schanding, 2007; Shinn & Bamonto, 1998). 

Early Mathematics Curriculum Based Measurement (EM-CBM):  Assessment tools used to 

identify kindergarten and first grade students who are at-risk of failing in mathematics during 

later grades (Clarke & Shinn, 2004). 

High Stakes Tests:  State and national standardized assessments that measure student 

proficiency with consequences imposed on schools that fail to show student success; therefore, 

"high stakes" pressure on administrators, teachers, and students impact educational systems 

through funding and renewal of teacher and administrative contracts (Reys & Lappan, 2007; 

United States Department of Education, 2004). 

Mathematics Curriculum Based Measurement (M-CBM):  An established procedure of 

formative assessment that measures individual student growth and mastery of computational 
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fluency.  The assessments are aligned with grade level curriculum standards and materials 

(Christ & Schanding, 2007; Keller-Margulis et al., 2008). 

Mathematics Proficiency:  Federal measures, which apply uniform annual measurable 

objectives in mathematics to all students across the United States and territories.  Student 

mathematics mean scores on standardized tests are used to measure how well a school is meeting 

the objectives and AYP (Kim & Sunderman, 2005).   

Number Sense: The understanding of whole number quantities and relating addition and 

subtraction to quantity while making connections that provide a foundation to the understanding 

of symbolic mathematics (Jordan et al., 2010).  This mathematical understanding allows for 

flexible ways to solve problems through construction and deconstruction of numbers (Gurganus, 

2004; Jiban & Deno, 2007; NCTM, 2000). 

Response to Intervention (RTI): An intervention approach based on scientific research that 

provides continuous monitoring of individual student data.  Student performance objectives 

designed to meet individual student needs are used to show growth (Kashi, 2008). 

Summary 

This study was intended to provide information for primary educators who seek early 

intervention techniques for students who are at risk of failing in mathematics.  Early intervention 

is pivotal in providing quality instruction that allows students to progress at standardized levels 

throughout the K-12 curriculum.  Analyzing individual skills provides more information for 

teachers, as it points out which early number skills are most critical to predicting success on third 

and fourth grade MontCAS tests, which directly impact AYP status.  This same information can 

be shared with parents to promote early mathematics experiences for preschoolers within their 

daily lives.  
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Educators who use this study and others like it will find that expanding the use of 

formative tests can be tools for demonstrating accountability to state and federal agencies.  In 

fact, formative assessments that measure teaching through student learning may be better than 

summative standardized assessments as an indicator of high quality instruction that prepares 

students for deeper understanding and higher performance in mathematics. Ideally, using this 

system as an accountability measure would make it possible to eliminate high stakes tests and at 

the same time increase instruction time lost to the current mandated testing system. 
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Chapter 2 

 

Review of Literature 

 

The importance of mathematics scores has become more and more pronounced in 

political and social sectors throughout the world, including the United States.  At a time when 

global economics has more and more emphasis, U.S. students’ mathematics test scores rank well 

below their peers in other advanced countries.  Indeed, it is each student’s right to be provided 

with a quality mathematics education to ensure that he/she truly has a future in choices of 

lifestyle and career.  For these reasons, research on quality instruction and intervention at the 

earliest educational level is important to provide future opportunities for all students.   

This chapter examines investigative mathematics assessment research approaches that 

provide intervention for students who are at-risk of failing to understand mathematics at the 

intermediate and higher level of education.  In addition, Chapter 2 first summarizes the current 

challenges that schools and teachers face in the political and social arenas.  The chapter also 

reviews historical and theoretical frameworks for RTI approaches that are used for early 

identification of mathematics difficulties.  Third, research on number sense is presented in order 

to define preschool and kindergarten mathematics skills that are needed for success in higher 

levels of mathematical skills.  Further explanation of the relationship between specific early 

mathematical skills and contextually relevant variables is provided.  The chapter concludes with 

a discussion of the reliability and validity found in current research on primary grade early 

mathematics skills. 

Social and Political Pressures Facing Schools 

 

Nationally, one in five students receives special education services in order to lessen an 

achievement deficit.  Research on reading disabilities has more attention than mathematics 
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learning disabilities (Thurber et al., 2002).  Reading deficit researchers claim that the number of 

studies conducted regarding reading creates a false assumption that students struggle less with 

mathematics, but in reality, national mathematics tests show that only 39% of fourth
 
graders and 

34% of eighth
 
graders perform at proficient and advanced levels (NAEP, 2009; Thurber et al., 

2002).  Previous research in mathematics has mainly focused on young children who become 

learning disabled in mathematics as they progress through elementary levels.  More research 

needs to be done on students at all achievement levels including those who struggle but are not 

identified as having a cognitive learning disability (Bryant & Bryant, 2008).   

Scientifically Research Based (SRB) Programs and Assessments 

 

As was referred to earlier in Chapter 1, the 2001 enactment of the NCLB Act holds 

schools accountable in providing quality education that allows all students to be academically 

successful.  Success as defined by a school that meets AYP, is measured based on student 

performance on standardized tests, attendance, and high school graduation rates among other 

administrative standards including teacher qualifications (United States Department of 

Education, 2004).  

NCLB requires schools that do not meet AYP to institute comprehensive reforms that 

implement programs that have been shown to be successful through scientifically based research 

(SBR).  The NCLB Act (2001, section 9101) defines SBR as rigorous, systematic, and objective 

procedures to obtain reliable and valid knowledge.  The Act (2001) breaks this definition down 

further to explain that SBR requires empirical methods that involve observation or experiments 

that test a stated hypothesis and then justify the conclusions.  Furthermore, these studies must be 

clearly detailed to enable them to be replicated or at least built upon in other studies.  Lastly, to 

be considered SBR, a study must show that it was published by a peer-reviewed journal or 
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approved by a panel of independent experts through a comparably rigorous, objective, and 

scientific process (U.S. Department of Education, 2002).   

One SBR approach is RTI, which began use in education settings decades ago but has 

recently come back into educational methods as a ―new‖ approach to identify learning 

disabilities.  In addition, it has been found to assist district students who are academically 

underperforming—based on standardized tests used to demonstrate whether or not districts meet 

AYP and compliance with the NCLB mandate (Kashi, 2008).   

History of RTI   

 

Response to Intervention (RTI) can be traced back to B.F. Skinner’s work in the 1950s.  

It has evolved over decades because the early framework was thought to be too expensive for a 

regular school district to implement.  The charting system alone at different stages required 

classroom teachers to enroll in a semester-long course to become trained in using the system.  

Researchers continued to study ways to provide effective instruction for basic skills, building 

upon the work of educators striving to reform the common educational approaches.  The best 

approaches used in public schools were those that monitored individual student progress; 

therefore, that was the main focus of the work being studied (Crawford & Ketterlin-Geller, 2008; 

Kashi, 2008).   

During the 1980s and 1990s, more longitudinal individualized monitoring procedures 

were introduced including the Personalized System of Instruction (PSI).  This criterion-

referenced system was not widely accepted because it lacked conformity with grade level 

distributions; however, it still made sense in the way of individualized monitoring of students.  

For this reason, it kept the interest alive to continue to work toward an individualized system that 

was realistically cost effective and would improve on the general instruction and assessment for 
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early intervention of academic difficulties in basic skills (Crawford & Ketterlin-Geller, 2008; 

Kashi, 2008).   

Theoretical Framework and Response to Intervention (RTI)  

 

RTI is an evolution of special education protocols that traditionally used a combination of 

one-point-in-time assessments such as intelligence, achievement, and behavior evaluations to 

make special education decisions for students at risk of academic failure.  This screening process 

was controversial because it failed to be a valid and reliable decision making process for low-

performing students.  In addition, it failed to provide ongoing effective intervention that led to 

positive results for students (Barnett, Daly, Jones, & Lentz, 2004).   

In 2002, the President’s Commission on Excellence in Special Education echoed the 

criticism of the traditional assessments saying that they do not provide functional outcomes to 

make special education decisions.  Functional outcomes, they claimed, are those that lead to 

social and academic trajectories for low-performing students and students with disabilities.  The 

report went so far as to recommend a total abandonment of the traditional classification system 

and replace it with a decision-making process based on response to instruction. The 

recommendation required a scientific process shown to be valid and reliable through continuous 

progress monitoring and do away with the ―wait to fail‖ model previously used in special 

education identification (Barnett et al., 2004).   

The President’s Commission on Excellence in Special Education (2002) followed soon 

after the enactment of NCLB.  In 2004, IDEA adopted the Commission’s recommendations so 

that children with disabilities would be served through SBR programs and all students would 

receive effective instruction and progress monitoring in the general education classroom; 

especially before entering special education programs (Barnett et al., 2004).  The purpose of 
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utilizing progress monitoring over the one-time assessments was to assure that individual student 

needs were identified and effective interventions were designed to meet those needs as students 

progressed (Gilbertson, Witt, Duhon, & Dufrene, 2008). 

For these reasons, more and more general education teachers are trained in RTI to guide 

their instruction and make effective educational decisions that meet individual student needs.  

Schools and districts are using it as an SBR approach for NCLB comprehensive reform efforts in 

meeting AYP (Kashi, 2008). 

Response to Intervention (RTI) Process  

 

RTI in most cases involves a multi-tiered approach aimed at preventing students from 

experiencing long-term inadequate general classroom instruction that develops into extenuating 

existing disabilities (Bryant & Bryant, 2008; Stecker, Fuchs, & Fuchs, 2008).  The first step of 

RTI involves training classroom teachers on scientifically validated instruction.  Teachers are 

trained to use the general classroom curriculum data to make instructional decisions that are 

individual-based.  This allows gaps in student learning to be discovered early-on through 

formative assessments and intervention.  Tier two uses the information provided in tier one to 

provide supplemental support for students who demonstrate needs.  Tier three provides 

intensified instruction specific to needs still unmet which sometimes includes special education 

services (Hoover & Love, 2010).  These actions take place before students are failing to keep up 

with peers and standard grade level benchmarks.  With RTI, students who demonstrate a low 

level of achievement receive intervention services earlier and not only make gains on specific 

skills but also build on skills that may have caused them to lag at more progressive stages of the 

curriculum (Bryant, Bryant,  Gersten et al., 2008). 
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 Multi-tiered prevention and intervention approaches have become common for early 

reading programs but more research needs to be done for use in early mathematics.  Research 

that investigates relationships between specific weaknesses identified in early mathematics 

understandings and later mathematics difficulties is essential to improving instruction to benefit 

all students (Bryant, Bryant, Gersten et al., 2008). 

Number Sense and Critical Early Mathematics Skills   

 

Number sense is defined by NCTM (2000) as the ability to view numbers in a flexible 

manner where one can decompose numbers as well as developmental computation strategies 

using reference points such as 10 or 100 or 1/2.  Moreover, it is a progression of mathematical 

understanding that involves moving from the initial development of standings on the size of 

numbers, number relationships, patterns, operations, and place value.  Number sense is also 

described as number knowledge or the ability of understanding quantity.  This is especially 

important and significant for first graders so that they develop skills that allow them to begin 

calculating in their heads and understanding the fundamentals of how a base ten system works in 

regard to place value (Bryant et al., 2008). 

Developing number sense as a young child is critical if students are to avoid 

mathematical difficulties as they progress through the elementary grades and beyond.  It allows 

them to develop a sense of basic mathematical concepts that lead to mastery and fluency in 

manipulating arithmetic combinations.  In short, students with number sense gain command of 

numbers instead of developing math anxiety through the belief that numbers command them.  

Student understanding of how to compose and decompose numbers puts them in control of the 

numbers and makes them confident in their mathematical abilities.  Progressing in this way 

allows students to gain sophistication in their strategies and allows them to build an 
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understanding of the magnitude and or quantity of numbers (Locuniak & Jordan, 2008).  This 

becomes evident in their representations, their ability to compute mentally, and in their 

mathematical explanations (Bass, 2003; Boaler, 2008; Kamii, 2000). 

Van de Wall et al. (2010) found that an early understanding of the base ten system is a 

critical part of mathematics instruction because students who do not master the system are 

challenged in multi-digit operations and calculations.  The progression of place-value 

understandings that children must advance through by the end of first grade includes: 

a. Single numeral:  where a student sees a number such as 36 and thinks of it as just 

36—without cognizance of any other representation. 

b. Position names:  where a student can name the digit place value positions (i.e. 3 is 

in the ten’s place and 6 is in the one’s place) but still no awareness that 36 is not 

only 3 tens and 6 ones but is also 36 ones or 2 tens and 16 ones and so forth 

(decomposing and composing numbers). 

c. Face value:  using place value blocks, a student will place 3 ten-blocks to the left 

of 6 ones-blocks but still not understand the quantity composition of the number. 

d. Transition to place value:  students begin to register quantity of 3 tens and 6 ones 

demonstrated by placing 30 ones-blocks in the one group left of 6 ones-blocks. 

e. Full understanding:  students group 3 sets of tens-blocks and another 6 blocks for 

the ones. 

Preschool children informally develop skill in working with arithmetic combinations by 

grouping and partitioning objects.  In primary grades these skills are strengthened by 

opportunities to solve simple problems of basic facts through the use of arithmetic combinations.  

Students who struggle with arithmetic combinations are identified as early as first grade when 
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they show difficulties in counting strategies, recalling basic facts from long-term memory, and 

decomposing and composing numbers.  Longitudinal studies that follow students with these 

difficulties in primary grades demonstrate the same weaknesses as they advance in grade level 

(Gersten & Chard, 1999; Jordan et al, 2010).  The difficulties noted above detour them from 

developing computational fluency.   

Computational Fluency 

   

NCTM (2000) defines computational fluency as having efficiency, accuracy, and 

flexibility. Efficiency requires a student to solve problems using steps that keep him or her 

working toward a solution without getting lost but always understanding the logic behind each 

step.  Accuracy involves careful recording of steps with an understanding of number 

combinations and an understanding of how number operations and number properties relate.   

Flexibility requires the ability to choose an appropriate strategy with which to solve the problem 

and the ability to double-check it using a second strategy.  Flexibility refers to flexible thinking.  

In short, fluency requires more from students than just memorizing a single procedure.  Students 

who learn procedures before developing a deeper understanding of number operations and 

properties and how they relate, will depend on memorized rules.  

The traditional approach to teaching students involved providing traditional algorithms or 

rules and is said to have students work through digits (i.e. ―carrying‖ and ―borrowing‖ according 

to the rules) rather than numbers (i.e. 14 is understood to be 12 + 2 or 10 + 4 or 15 – 1 and so 

forth.) (Kamii, 2000).  Critics of the traditional approach claim that it does not allow students to 

develop the understanding and command over their ability to decompose and compose numbers 

(breaking apart or combining) as they design a strategy to solve a problem (Kamii, 2000).  An 

example of a student decomposing a number can be seen with the problem of 57 x 2.  The 
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traditional approach uses multiplication moving from right to left where the student takes 2 x 7 

and ―carries‖ the 1 then solves for 2 x 5 and adds the 1 to make 114.  A student with number 

sense and a command of how numbers and properties relate would know to think of 50 x 2 as 

100 and 7 x 2 as 14 which again computes to 114.  Once students build that understanding and 

command of numbers throughout the primary grades, traditional algorithms and rules make sense 

(Van De Walle et al., 2010).   

This is how students develop long-term computational fluency and in turn build more 

sophisticated number sense connections.  Furthermore, students become more flexible in 

developing strategies, more efficient in finding solutions, and more accurate in computation 

(Russell, 2000).   

 Sometimes computational fluency is thought of only as accuracy (the right answer) and 

efficiency (done with speed).  Without flexibility—a higher level of thinking where a student can 

recognize whether a solution is reasonable and makes sense—is absent (Bass, 2003).   As 

important as accurate and exact answers are, according to Reys (1998), a deep understanding of 

numbers requires that students making sense of "what is reasonable" is even more important.  

This requires a highly developed number sense that allows reflective and higher-order thinking.  

This is not only a trajectory to the following grade level but serves students throughout their lives 

(Reys R. E., 1998).   

 Computational fluency and number sense may be defined separately but research on 

mathematical knowledge provides strong evidence that they develop simultaneously.  According 

to Griffin (2003), a student who has developed one has always developed the other and vice 

versa.   She gives an example of this based upon an item on the Number Knowledge Test (NKT), 

which asks questions similar to, ―If Tom has 4 marbles and then Mary gives him 3 more marbles, 
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how many marbles will Tom have all together?‖  There are five levels of performance on the test 

and the first level is demonstrated by most preschoolers of age 3 or 4 as they show no attempt to 

solve the problem.  Four and five year-olds at the second level will tend to give a solution such 

as a lot, 5, or 10 marbles.   According to Griffin (2003), students at this second level, responded 

with at least five, which indicates mental evaluation and developing number sense (not 

necessarily computation at this point).  At 5 years old, the third level is demonstrated by counting 

from one with their fingers—sometimes without redeeming the exact solution but closer than the 

previous level and demonstrating computation.  Opportunities to solve similar problems 

contribute to stronger number sense and computational skills while leading to more sophisticated 

strategies in Level 4.  At this level, 5 and 6 year-olds begin to count-on meaning they will start at 

4 and count up 3 more numbers to find their solution.  Finally at level 5, children will 

automatically retrieve the answer mentally and demonstrate a long progression of development 

that occurs over the years.  At this level, if a child is asked how they figured it out, they tend to 

explain that they just knew it.  This happens through the progression that develops from lowest 

to highest levels as both their number sense and computation skills advance. 

Intervention for Students Who Lack Number Sense   

 

Interventions for students with arithmetic difficulties should begin with numeracy skills 

in preschool or kindergarten.  Basic understandings of quantity need to be reinforced when 

students demonstrate a lack of knowledge at the very earliest of stages in kindergarten.  First 

grade interventions need to continue with basic skills in order to get the rudimentary foundation 

needed for long-term progress in arithmetic achievement (Bryant, Bryant, Gersten et al., 2008).   

The intervention process should begin by identifying students with difficulties in the 

regular classroom setting and assessing specific skills that are lacking.  Based on the assessments 



 24 

and observations, interventions within or outside of the regular classroom should be 

implemented.  Such interventions should emphasize building student skills with relationships of 

10 and basic fact computational fluency (Bryant, Bryant, Gersten et al., 2008).   

The range of interventions for ages 3 to 6 begin with the 1 to 10 number sequence and 

continue all the way through mentally computing simple problems.  A rich environment that 

provides a variety of repeated opportunities for counting and solving problems eventually leads 

to inventing and modeling strategies that are progressively more efficient.  Simple computation 

and number sense rich classrooms embed a network of meaning that directly links to 

computational fluency and number sense (Griffin, 2003).  The intervention process provides a 

foundation for future mathematic achievement (Bryant, Bryant, Gersten et al., 2008; Griffin, 

2003). 

What is Curriculum Based Measurement (CBM)   

 

The CBM process is a central component of RTI assessment because it establishes an 

initial baseline for student achievement that is used to measure changes in student performance.  

Shinn and Bamonto (1998) describe CBM results as dynamic indicators of basic skills—dynamic 

in the way of being an assessment that is sensitive to student differences.  CBM assists teachers 

to individualize instruction for students by pinpointing each student’s understanding of 

individual basic skills and concepts.  In addition, frequent assessment results are tracked over 

time to measure change and to consistently inform teachers of reinforcements needed by 

individual students.  The scores provide an accurate picture of a student's performance in a broad 

number of tasks using basic skills (Shinn & Bamonto, 1998).   It is used to determine the level 

and pace that students progress in learning basic skills (Christ & Vining, 2006; Thurber et al., 
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2002).  It allows instructional short-term and long-term goals to be set after a student is placed at 

the appropriate level.   

Formative assessments are needed for intervention so that deficits are identified early and 

modified instruction is implemented to address the findings.  Conducting only summative 

assessments does not provide opportunity for intervention because they are given after 

instruction while formative are given during instruction.  Indeed, formative evaluation informs 

teachers of modifications needed for individual students to increase summative assessment 

performance (Thurber et al., 2002). 

 The mathematics curriculum based measurement (M-CBM) is frequently conducted as 

short, quick, and easy computation tests.  They are usually two to five minutes in length (Thurber 

et al., 2002).  Two main constructs that are measured in M-CBM include computation and 

application mathematic skills.  Computation refers to use of mathematical operations.  

Application skills involve solving word problems through knowledge of number patterns, 

measurement, and operations to devise strategies to solve problems (Thurber et al., 2002).  

AIMSweb Assessment  

 

AIMSweb is an M-CBM system and product of the Pearson Company (2010), which 

provides RTI formative assessments for students in K-8.  As was stated earlier, the EM-CBM for 

kindergarten and early-year first grade students is the TEN, which is made up of four 1-minute 

assessments that are done with individual students.  This assessment measures number sense 

through four specific tests that include Oral Counting (OC), Number Identification (NI), 

Quantity Discrimination (QD), and Missing Number (MN).  The OC measure requires the 

participant to begin with 1 and orally count for one minute. NI requires students to use a list of 

random numbers ranging from 1 to 20 and orally identify them.  The QD measure requires the 
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participant to look at two numbers and to name the number that is larger.  Lastly, the MN 

measure requires the participant to identify the missing number in a 3-consecutive number string 

within the 1-20 range (Clarke & Shinn, 2004). 

 These assessments are considered curriculum-based because they are aligned with the 

grade level curriculum with emphasis on expected computational skills.  The system provides 40 

alternative forms for each grade level to be used for Benchmark Assessment, Strategic 

Monitoring, and frequent Progress Monitoring.  These components make it possible to test the 

interventions being used in a time-efficient way that is sensitive to change in performance 

(Shinn, 2004).  

Generalizability, Validity, and Reliability of CBM   

 

According to Chard et al. (2005), over the past 25 years hundreds of studies designed to 

screen students at-risk of reading difficulties have been conducted and published as compared to 

50 or less mathematics studies designed for mathematics difficulties.  The mathematics studies 

that have been done indicate that various EM-CBM assessments demonstrate reliability, validity, 

and sensitivity at the pre-school through first grade level (Baglici, 2008; Chard et al, 2005; 

Clarke & Shinn, 2004; Gersten & Jordan, 2005).  Long-term studies that analyzed predictive 

validity including Jordan et al., (2009) and Jordan et al., (2010) found that pre-school through 

kindergarten EM-CBM are strongly correlated; evidenced by significant growth and accuracy of 

pre-school measures for identifying children in need of mathematics intervention (Baglici, 2008).    

The earliest studies on early mathematics screening for mathematics difficulties began in 

the late 1980s.  These studies mainly assessed children at a single point-in-time.  In recent years, 

emphasis has been placed on the need for longitudinal studies of growth trajectories that provide 

a better understanding of mathematics difficulties and interventions at the preschool and 
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kindergarten level (Gersten et al., 2005).  The first longitudinal mathematics difficulties studies 

investigated the relationship between reading and mathematics difficulties.  These researchers 

analyzed the nature of the deficits for different types of mathematics difficulties (Gersten et al., 

2005).  Contemporary tests that have been developed for preschool and kindergarten students 

include the Number Knowledge Test (NKT), Stanford Early School Achievement Test (SESAT), 

Number Sense Test (NST), Test of Early Mathematics Ability (TEMA), Preschool Math 

Curriculum-Based Measurement (PM-CBM), Kindergarten Number Sense Battery (KNSB), and 

Test of Early Numeracy (TEN).   

EM-CBM studies use number sense theory to assess early mathematical skills.  The 

assessments measure each student’s ability to count, identify numbers, make judgments in 

quantity comparisons, and his/her use of a concrete and abstract number line (Baglici, 2008).  

For example, Clark and Shinn (2004) investigated the reliability, validity, and sensitivity of the 

early mathematics measures with first graders using the AimsWeb TEN.  This study became a 

springboard for a multitude of others that replicated and expanded their work using other 

kindergarten and first grade mathematics tests and frequent data collection to measure student 

growth patterns for specific concepts and skills. 

Concurrent validity.  Clarke and Shinn (2004) assessed both concurrent and predictive 

validity for the EM-CBM TEN measures of OC, MN, QD, and NI.  Correlations between those 

four EM experimental measures were examined against the outcome on three criterion 

assessments:  Woodcock Johnson – Applied Problems (WJ-AP), NKT, and the M-CBM.   

The intercorrelations among the experimental measures were high.  OC had the lowest 

consistency (ranging from .55 to .79 with a median of .69) and therefore was excluded when 

measuring the other three measures.  The range of NI measures in all three data collection 
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periods was .72 to .93 with a median of .85.  The range of QD measures was .86 to .93 with a 

median of .88 and the MN measures ranged from .72 to .90 with a median of .86. 

Clarke and Shinn (2004) reported findings for the relations among the experimental and 

criterion measures in which QD measures had the strongest concurrent validity correlations 

ranging from .71 to .88 with a median of .75.  The OC measures had the lowest concurrent 

validity correlations ranging from .49 to .70 with a median of .60.  The NI measures ranged 

between .60 and .70 with a median of .66.  The MN measure ranged from .68 to .75 with a 

median of .71. 

To further investigate the concurrent validity correlations, Clarke and Shinn (2004) 

conducted a test of differences between dependent correlation coefficients.  Their findings 

included the following: 

 When comparing OC and QD, QD had significantly higher correlations with data 

collection of M-CBM scores in the winter assessment with t (49) = 2.93, p < .05 

and spring with t (49) = 3.31, p < .05.    

 When comparing NI and QD, QD had significantly higher correlations with data 

collection of NKT in the fall, t (49) = 3.18, p < .05.   

 When comparing NI and QD, QD had significantly higher correlations with the 

spring data collection of M-CBM, t (49 = 3.03, p < .05. 

 When comparing OC and MN assessment from the winter data collection, MN 

demonstrated a stronger relationship with M-CBM, t (49) = 3.50, p < .05. 

Predictive validity.  Predictive validity was assessed with the following measures 

(Clarke & Shinn, 2004): 

1. Fall data collection of EM-CBM and winter data collection of M-CBM, 
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2. Spring data collection of WJ-AP and spring data collection of M-CBM, 

3. Winter data collection of EM-CBM and winter data collection of WJ-AP and 

spring data collection of M-CBM. 

 All four of the experimental EM measures demonstrated strong relationships.  The 

highest median correlation was a .76 for the QD measure.  The median for MN was .76, NI was 

.68 and OC had .56 (Clarke & Shinn, 2004). 

 According to Clarke and Shinn (2004) other evidence of predictive validity was 

supported by comparisons between the strength of correlations for the EM-CBM by testing the 

differences between two dependent correlation coefficients. 

1. In comparing QD and OC, QD had significantly higher correlation coefficients with M-

CBM between fall and winter, t (49) = 3.18, p < .05 and between winter and spring, t (49) 

= 3.34, p < .05. 

2. In comparing MN and OC, MN had significantly higher correlation coefficients with M-

CMB between fall and winter, t (49) = 3.08, p < .05 and between winter and spring, t (49) 

= 3.34, p < .05. 

Reliability.  Using Pearson product moment correlation coefficients, Clarke and Shinn 

(2004) analyzed reliability of inter-scorer, alternate-form, and test and retest reliability of the 

early mathematics (EM) measures.   The results were based on criteria on reliability analysis 

from Salvia and Ysseldyke (as cited in Clarke & Shinn, 2004):  

a.) .90 or greater is recommended for making educational decisions for individual students; 

b.) .80 or greater is recommended for making screening decisions for individual students; 

c.) .60 or greater is recommended for making educational decisions for groups of students. 
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 Clarke and Shinn (2004) used .80 as the reliability standard for their study based on the 

fact that this was a study for early identification of individual students without the involvement 

of high stakes tests and the fact that it did not change a student’s grade level placement or 

educational classification. 

 Clarke and Shinn (2004) calculated the inter-scorer reliability by dividing the number of 

items that the two scorers agreed upon by the number of items they disagreed upon.  This was 

done with the fall collection using 12 student protocols.  The OC, NI, and QD measured at .99 

reliability while the MN measured at .98; all surpassed the standard for making educational 

decisions. 

 The alternate form reliability was analyzed during the fall and winter sessions using three 

different alternate tests: 

1. M-CBM grade 1 computation probes involving addition and subtraction,  

2. WJ-AP subtest where students solved addition and subtraction problems,  

3. NKT, which required students to work through levels of problems.  The first level 

consisted of counting chips and identifying geometric shapes.  The second level involved 

identifying bigger or smaller numbers and solving simple addition and subtraction 

problems.  The third level required students to solve similar problems to level 2; 

however, the problems were made more difficult by using larger numbers.  In addition, 

this level has problems that require students to state how many numbers are between a 

given pair. 

 The OC assessment for the EM-CBM measures was used for the alternate measures as 

well because the children were required to count orally for one minute in each assessment.  Since 

the assessment was the same in each, the student was not asked to perform the test again.  The 
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NI, QD, and MN alternative tests were done in different orders for students to avoid the practice 

effect (Clarke & Shinn, 2004). 

 The results of the reliability investigation found the OC, NI and QD all above the .90 

standard for individual educational decision making.  The MN was .83 in the fall and .78 in the 

winter so when averaged out it still exceeded the .80 standard for educational screening decisions 

on individual students (Clarke & Shinn, 2004). 

 The long-term test-retest reliability was examined with 13 weeks between fall and winter 

assessments and again with a 26-week period between fall and spring.  Each of the EM-CBM 

measures came out above an acceptable  .80 standard that is the minimum recommended for 

screening decisions made for individual students (Clarke & Shinn, 2004). 

 The study with Chard et al., (2005) extended Clarke and Shinn (2004) by administering 

TEN measures to 436 kindergarten students and 483 first grade students in the Pacific 

Northwest.  This study included analyzing the early mathematics measures’ sensitivity to growth 

by examining gains made from fall to spring.  Although all four TEN tasks (OC, QD, MN, and 

NI) were used—modifications were made for kindergarten in that OC was only assessed in the 

fall, and the other three used numbers ranging from 1 to 20 in the fall but changed to 1 to 10 in 

the winter and spring.  For the criterion assessment in the spring, the NKT was used based on 

prior research citing it as highly correlated with published measures of mathematics achievement 

in both kindergarten and first grade samples.   

The Chard et al. (2005) replicated predictive and concurrent validity findings from the 

Clarke and Shinn (2004) study with kindergarten students.  Patterns observed from the student 

growth data indicated that performance in the spring of kindergarten was higher on each task as 

compared to the fall of first grade.  The same growth changes occurred in both kindergarten and 
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first grade students when measuring QD, MN, and NI in the fall to winter to spring time spans; 

however, only NI task showed considerable change from fall to spring when compared to QD 

and MN. 

Lembke et al. (2008) extended the previous research of Chard et al. (2005) with an 

emphasis on sensitivity to student progress over time.  To monitor student growth, taken monthly 

rather than just two to three times a year as other studies had done.   The results indicated that 

NI, QD, and MN had satisfactory alternate form reliability, with QD and NI having the stongest 

reliability coefficients with a range of .79 to .93 for kindergarten students.  The strongest 

coefficients for the first grade students was observed in the QD task which ranged from .70 to 

.85.  Concurrent validity was found by correlating the scores on the EM-CBM grade 1 standard 

scores of the SESAT and teacher ratings of mathematics performance.  This data indicated that 

the validity were low to moderate ranging from .19 to .46 across the measures (Lembke et al., 

2008).   

Lembke et al. (2008) used a two-level hierarchical linear growth model to measure 

student progress over time while administering the MN, NI, and QD on a monthly basis.  The 

results indicated that both kindergarten and first grade students showed a significant linear 

growth in NI by estimated weekly growth rates of .34 in kindergarten students and .24 in first 

grade students.  The results for QD and MN were curvilinear which Lembke et al. (2008) 

indicated may suggest that either these measures are not good indicators of progress or students 

learn in ―bursts of performance‖ as they progress in their learning.  The strong results of the NI 

measure indicates that it may be a reliable tool for differentiating students within a specific grade 

level.  
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Lembke and Foegen (2009) conducted a study with 300 kindergarten and first grade 

students using QD, MN, NI, and quantity array to examine the reliability and validity of these 

single skill assessments.  Lembke and Foegen (2009) administered the TEN tests to individual 

students as one-minute tasks, similar to Clark and Shinn (2004).  The reliability results indicated 

the strongest coefficients for the NI, QD, and MN tasks with most correlations in the mid to high 

.80s.  Validity findings were parallel with moderate to strong concurrent and predictive validity 

coefficients for the NI, QD, and MN tasks.   The lowest correlations for both kindergarten and 

first grade were produced by the quantity array measure.  This was a one-year study where 

students were tested in the fall, winter, and spring of the same school year. 

Seethaler and Fuchs (2010) studied approximately 200 kindergarten and first grade 

students by creating and administering a group Computational Fluency assessment, an 

individually administered Number Sense test, and individually administered a single skill test for 

Quantity Discrimination.  The purpose of the study was to examine the reliability, validity, and 

predictive use of EM-CBM assessments to screen students in kindergarten and first grade for 

indicators that would predict which students would be at-risk for mathematics difficulties.   

Seethaler and Fuchs (2010) also compared the results between the multi-screen 

assessments and the single-skill assessment for QD.  Reliability findings showed coefficients for 

the average of the two multi-skill screeners were .90 for both the fall and spring administrations.  

Concurrent and predictive validity for the multi-screeners in respect to the fall kindergarten to 

spring first grade measures ranged from .55 to .72, which was closely aligned with the QD that 

varied from .52 to .66.  In addition, there were no significant differences in predictive utility 

when comparing the single-skill (QD) and multi-skill tests that take much longer to administer.  



 34 

However, Seethaler and Fuchs  noted that the multi-skill assessments provided more information 

to teachers than the single-skill assessment of just QD. 

 Jordan et al. (2009) studied the predictive relationship between early number competence 

in kindergarten and later mathematics achievement in third grade student performance on 

criterion assessments.  This study used the Number Sense Brief (NSB) to measure 204 

kindergarteners’ number sense and measured the same children again in the beginning of first 

grade.  NSB is a research-based untimed multiple-skills assessment that takes approximately15 

minutes to administer and consists of 33 number sense items.   

Based on the results of the NSB, strong predictability was shown to correlate to 

performance on the Woodcock Johnson Calculation and Applied Problems (WJ-AP) assessment 

at the end of both first grade and third grade.  This also was the outcome of the correlation when 

comparing a fourth year of data on the same students generated from the Delaware Student 

Testing Program (DSTP), the state criterion high stakes test.  Repeated measures analysis of 

variance (the test was conducted 7 times throughout the year) showed a statistically significant 

main effect for the group which revealed that children who met the DSTP mathematics standard 

at the end of third grade consistently obtained higher NSB scores across time than those who did 

not meet the mathematics standard.   

The kindergarten early number competency battery consisted of 42 items that included 

tapped counting and number recognition, number comparisons, nonverbal calculation, story 

problems, and number combinations.  The WJ-AP was used to measure third grade composite 

mathematics scores.  According to Jordan et al. (2009), the WJ-AP demonstrated high content 

validity and was significantly correlated with performance on the grade 3 DSTP. 
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 Over the four-year period the students were assessed 11 times between kindergarten and 

grade 3.  The number measure was administered four times in kindergarten and two times in the 

beginning of their first grade year.  The mathematics achievement assessments were conducted 

five times—the spring of first grade and the fall and spring of both second and third grade.  The 

results of the study indicated that all of the correlations between the number competence 

measures and the mathematics achievement scores were positive and significant (p<.01). 

 As was noted, mathematical EM-CBM is in its infancy compared to the work completed 

in reading.  More mathematical research needs to be done to pinpoint early numeracy skills that 

most critically build a foundation for later hierarchical mathematics studies and reinforce current 

research that supports identifying students who would benefit from intervention (Baglici, 2008; 

Clarke & Shinn, 2004; Jordan, Glutting, & Ramineni, 2009).   

The current study was designed to expand the one year kindergarten study of Clarke and 

Shinn (2004) to a 4 year kindergarten to third grade study to investigate concurrent and 

predictive validity among the individual TEN measures, M-CBM assessments, and the grade 3 

MontCAS.  
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Chapter 3 

 

Methodology 

This chapter begins with a demographic overview of the participating school district.  In 

addition, a description of the participants, measures, research design, data collection and data 

selection processes are explained.  A presentation of the data analysis procedures utilized 

concludes this section.  

Population and Participant Selection Process 

 

 The school district involved in this study was located in a rural area of Montana with 

agriculture, timber, and tourism central to the economy.  The district serves approximately 264 

students in kindergarten through eighth grade and approximately 129 high school students.  

Enrollment has declined by 73 students over the past 5 years.  Ninety percent of the students are 

Caucasian with 10% being of other races (not specified). 

In the overall district, 36% of the student population qualified for free and reduced lunch.   

District percentage of IDEA students has dropped slightly over the last four years and holds at 

12% while the graduation rate has been at 98% over the past 4 years. 

This district was selected because of the number of years that the AIMSweb has been part 

of the grade K-6 curriculum.  During the 2005-2006 school year, the district began utilizing 

AIMSweb assessment system and continued to do so throughout the time of this study.    

The district adopted the McGraw Hill textbook series for the 2007-2008 school year but 

the textbook was not a major part of the primary grade curriculum during this study.  The core 

mathematics program includes doing Calendar Math and Rocket Math each day in all 

classrooms.  The district began developing their own mathematics curriculum during the last 

year of the study with an instructional emphasis on concrete-representational-abstract (C-R-A) 
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methods for teaching all math concepts at all grades.  The focus for mathematics content is 

driven by the Common Core Standards, the NCTM Focal Points, and the MontCAS.  The district 

has combined these targets to address their students’ specific needs.   

The district’s most widely used math intervention is Number Worlds.  In addition, 

supplements include Corrective Math (multiplication & division), Plato (computer-based 

program), and Skill Builders.  The main intervention work in mathematics during this study 

focused on re/pre teaching using the C-R-A method for students identified as needing 

intervention.  The district also began implementing a 90 minute mathematics block in the daily 

schedule during the last two years of the study. 

Process Used to Collect Data  

The data were retrospectively attained through the district in accordance with The 

University of Montana Institutional Review Board and the standards required by the participating 

school district.  Permission was attained by the district elementary principal who provided an 

anonymous database with students' names replaced with a unique identification number.  This 

anonymous data bank did not identify any other demographics including gender, social economic 

background, or age.  The only data provided included a unique identification number, available 

TEN fall, winter, and spring assessment scores for kindergarten and first grade students along 

with available first, second, and third grade M-CBM fall, winter, and spring scores, and available 

grade 3 MontCAS scores.   

For statistical purposes, two cohorts of students were combined by using the kindergarten 

group from the 2005-2006 school year and comparing their scores with the kindergarten 2006-

2007 group during their kindergarten through grade 3 years.  The available data showed 12 

students with scores in the 2005-2006 kindergarten class and 31 in the 2006-2007 kindergarten 
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class for a total of 43 students.  The data were screened based on the criteria that participant 

information needed to include grade 3 MontCAS scores.  Eight students from kindergarten 2005-

2006 fit the criteria as did 21 students from the 2006-2007 kindergarten class. Twenty-nine 

students who had data from kindergarten to grade 2 and a grade 3 MontCAS score were included 

in the study.  Although some students were missing one or more kindergarten and/or first grade 

AIMSweb assessments but had a recorded MontCAS score they were considered to have met the 

criteria to be included in the study.   

An independent-sample t-test was conducted to compare the available TEN and M-CBM 

scores for the non-eligible students with the participating students.  The following table 

compares the descriptive statistics and t-scores that were calculated. 

Table 1 

Descriptive Statistics Comparing K-2 AIMSweb Scores of non-Eligible and Participating Groups  

 Non-Eligible Participating Difference t-score 

Assessment Mean SD Mean SD Mean SD  

Gr2 CBM 17 7 21 7 4 0 1.2 

K MN 11 5 14 5 3 0 1.6 

Gr1 CBM 10 4 13 4 3 0 1.7 

Gr1 MN 17 3 20 5 3 2 1.7 

Gr1 QD 32 10 38 8 6 2 1.8 

K QD 18 8 24 7 6 1 1.9 

Gr1 NI 59 18 71 12 12 6 2.1 

K NI 39 13 50 12 11 1 2.1 

Gr1 OC 77 9 91 13 14 4 2.7 

K OC 41 17 64 18 23 1 3.1 

Note. Gr2 = grade 2, K = kindergarten, Gr1 = grade 1, M-CBM = Mathematics Curriculum 

Based Measures, MN = Missing Number, QD = Quantity Discrimination, NI = Number 

Identification, OC = Oral Counting. 
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In every assessment comparison, the non-participating group had a lower average score 

than the participants.  Figure 1 illustrates the outcome of the t-score procedure conducted for the 

comparison of the two groups. 

 

Figure 1. Non-eligible and Participating Students’ t-scores on AIMSweb Assessments Scores. 

Gr2 = grade 2, K = kindergarten, Gr1 = grade 1, M-CBM = Mathematics Curriculum Based 

Measures, MN = Missing Number, QD = Quantity Discrimination, NI = Number Identification, 

OC = Oral Counting. 

 The assessments with the least similarity in scores were the Oral Counting and Number 

Identification for both kindergarten and first grade.  For example, the kindergarten Oral Counting 

assessment showed that the non-eligible students scored on the average 23 points less than the 

participating students.  The t-score of 3.1 informs the research that very few scores in the non-

eligible group would be found in the set of participating students’ data.  This is to say that the 

scores of those that were not eligible were substantially less on the average than the scores of the 

students who were found to be eligible participants in Oral Counting and Number Identification. 

On the other hand, the non-eligible kindergarten students in the Missing Number subtest 

scored 3 points less on the average than the participating group.  The t-value of 1.7 suggests that 

scores between the non- eligible group and the participating group co-mingle to a greater extent 
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than in subtests that have larger t-scores.  This can be said about each of the subtests except the 

Oral Counting and Number Identification as stated above. 

The next step of data selection involved a comparison of the participating students’ 

scores from the two cohorts who included the 2005-2006 kindergartners through their third grade 

year (first cohort) and the 2006-2007 kindergarteners through their third grade year (second 

cohort).  It was found that the two groups performed at comparable levels and were combined in 

order to have a larger population.  There were eight students from the kindergarten 2005-2006 

cohort and 21 from the 2006-2007 cohort that had grade 3 MontCAS scores; however, some of 

those students were missing one or two scores from the fall, winter, and/or spring AimsWEB 

assessments.  These students were still included based on the fact that the study included 18 

AIMSweb assessments and so the available scores provided valuable information to the results 

of the study.   

In order to set up the comparison, the mean scores of each assessment were calculated by 

averaging the fall, winter, and spring TEN scores, which included Oral Counting (OC), Number 

Identification (NI), Quantity Discrimination (QD), and Missing Number (MN) for grades 

kindergarten and grade one.  A mean was also calculated for the fall, winter, and spring scores 

for the Mathematics-Curriculum Based Measures (M-CBM) conducted in grades 1 and 2 in order 

to correlate them with the grade 3 Montana Comprehensive Assessment System (MontCAS).   

 Figure 2 demonstrates that the two cohorts were comparable through similar performance 

on each assessment.  The MontCAS is scored using a scaled system where raw scores are 

grouped as indicated in Table 2 (Montana Office of Public Instruction [OPI], 2011).  The 

analysis of the data utilized the scaled scores that were provided by the school district.  Raw 

scores were not available. 
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Assessments 

Figure 2.  Comparison of Tests of Early Numeracy (TEN) for Cohorts 1 and 2.  K = 

kindergarten, G1 = grade 1, OC = Oral Counting, NI = Number Identification, QD = Quantity 

Discrimination, and MN = Missing Number,  CBM = Math Curriculum Based Measures, and G3 

MC = Grade 3 Montana Comprehensive Assessment System.  Cohort 1:  N = 8 and Cohort 2:  N 

= 21.   

Each TEN and M-CBM average includes the fall, winter, and spring scores.  In some 

cases, the student may have missed one assessment score for fall, winter, or spring.   The second 

cohort was not given the grade 3 M-CBM because the District had upgraded the AIMSweb 

system in grade 1 through 8 assessments to Math Concepts and Applications (M-CAP).  The M-

CBM assessed computational fluency and the M-CAP assessed problem solving so only the 

MontCAS score was used in the study for grade 3.  

 The comparison of the groups demonstrated that it was reasonable to combine the two 

cohorts to investigate the questions for this study.  The mean of the fall, winter, and spring 

assessments indicated the comparable levels of performance throughout the four years of 

available data that was analyzed.  
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Instruments Used to Collect Data 

 Kindergarten and early first grade participants’ mathematics skills were assessed with the 

TEN. These measures were the independent variables and experimental measures that consisted 

of four number sense measures that include Oral Counting (OC), Number Identification (NI), 

Quantity Discrimination (QD), and Missing Number (MN). 

 The OC measure required the participant to begin with 1 and orally count for one minute.  

The participant used no classroom materials.  The recorder held a sheet with numbers and 

marked any numbers that were skipped.  If a participant struggled for 3 seconds, the recorder 

said the next number.  The participant’s score indicated the number of correct numbers counted 

in that one minute and ranged from 0 to over 100, depending on how many numbers the student 

counted in that single minute.   

 The NI measure provided an 8x7 grid of randomly listed numbers ranging from 1 to 20.  

The participant was required to orally name the numbers from left to right in the rows.  If the 

participant hesitated for 3 seconds, he/she was told to go to the next number.  After one minute, a 

score was calculated by counting the number of correct responses during that minute of time.  

Fifty-six (56) test items appeared on this measure; therefore, the range of scores possible was 0 

to 56. 

 The QD measure required the participant to be provided with a grid of 28 individual 

boxes with two different numbers in each box ranging from 1 to 10 for kindergarteners and 1 to 

20 for first graders.   The participant was asked to begin with the left box in the top row and 

name the number in each box that is larger.  The participant’s score was based on how many 

boxes he/she correctly identified and named the higher number.  When a participant hesitated for 
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3 seconds, he/she was told to try the next box.  The assessment contained 28 items; therefore, the 

possible range of scores is from 0 to 28.   

 The MN measure required the participant to be provided with a grid of 21 boxes each of 

which had a string of 3 consecutive numbers; however, one number was missing.  The numbers 

ranged from 0 to 20 and the participants were given one minute to identify the missing number in 

each beginning at the top and proceeding.  A score of one point was given for each correct 

response.  If a participant hesitated for 3 seconds, he/she was told to try the next box.  There 

were 21 items on this assessment; therefore, possible scores ranged from 0 to 21.   

 The formative assessment used for grade 1 through grade 6 was the AIMSweb M-CBM 

and Math Fact Probes.  These assessments are considered curriculum-based because they are 

aligned with the relative grade level curriculum.   The program’s emphasis on computation is 

based on expected computational skills for each grade level.  The system provides 40 alternative 

forms for each grade level use for Benchmark Assessment, Strategic Monitoring, and frequent 

Progress Monitoring.  These components make it possible to test the interventions being used in 

a time efficient way that is sensitive to improvement (Shinn, 2004).  

 The assessments were made up of a wide-range of computation problems aligned with 

grade level curriculum.  The problems are narrow-band tests meaning that they consist of many 

problems.  Students typically had two to four minutes to complete the test depending upon grade 

level.  Common to the EM-CBM, the assessment was based on what the student did correctly.  

The score was derived by the number of Correct Digits written instead of the correct answer as a 

whole (Shinn, 2004).  These assessments were conducted each fall, winter, and spring for the 

district and those available scores were used for this study. 

 The Montana Comprehensive Assessment System (MontCAS) includes the Criterion 
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Referenced Test (CRT) that was administered in grades 3 through 8 and grade 10 each spring in 

Montana accredited schools.  The mathematics CRT consisted of word problems that were meant 

to demonstrate the students’ thinking; therefore, students were required to write computation and 

in some instances devised tables and charts in the responses. The CRT was intended to be a 

measure of student proficiency rather than speed; therefore, suggested times were given but 

students were allowed to continue as long as they were working productively. The suggested 

time for grades 3-8 mathematics CRT was 45 to 55 minutes (Montana Office of Public 

Instruction, 2010). 

The Montana Comprehensive Assessment System (MontCAS) is a criterion test that is 

administered to students in grade 3 through 8 and grade 10 across the state.  As can be seen in 

Table 2, the raw scores are scaled and divided into categorical levels with Proficient being the 

minimal benchmark set for defining grade level performance. 

Table 2 

Mathematics MontCAS Raw to Scaled Score Ranges Defining Performance Level 

Raw Score Ranges  

Scaled Scores 

 

Performance Level 2008-2009 2009-2010 

 

54-66 

 

53-66 

 

290-300 

 

Advanced 

 

41-53 

 

41-52 

 

250-289 

 

Proficient 

 

33-40 

 

33-40 

 

225-249 

 

Nearing Proficiency 

 

0-32 

 

0 - 32 

 

200-224 

 

Novice 

 

Note.  MontCAS = Montana Comprehensive Assessment System. 

 

 The scaled scores were those that determined the level of performance each student had 

attained and the scores that were available for the study.  The raw scores are unevenly distributed 

with nearly half included in the Novice level.   
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Reliability and Validity of Instruments  

The assessments were conducted by trained staff in each classroom.  Data entry was 

conducted by the elementary principal who was also trained in AIMSweb.  The data were 

analyzed to investigate correlations for each of the EM-CBM’s Test of Early Numeracy (TEN) 

measures (OC, NI, QD, and MN) in kindergarten and grade 1 with the M-CBM in grades 1 and 2 

along with the CRT grade 3 MontCAS scores.  The study looked for predictive validity and 

significance of the relationship between the participants’ performance in K-1 early measures and 

the same participants’ performance on grade 3 MontCAS scores. 

Research Design 

This quantitative study implemented a longitudinal design to measure student 

performance over a four-year period.  The study measured student performance from 

kindergarten (year 1) through grade 3 (year 4).  As was stated earlier, two cohorts were used that 

included the kindergarten class of 2005-2006 and the 2006-2007 kindergarten class.  The data 

collected included three administrations of kindergarten (year 1 and year 2) TEN measures.  This 

took place during the fall, winter, and spring of the year with approximately 13 weeks in-

between.  During these same students’ first grade year, the TEN measures were administered 

again during the fall, winter, and spring of the school year approximately 13 weeks apart.  In 

addition, the M-CBM was administered three times throughout the year (fall, winter, and spring) 

to each cohort during grades 1 and 2.  Finally, when participants were in grade 3, the MontCAS 

was administered in the spring. 

Procedures 

Prior to beginning data collection, permission was granted from the district and The 

University of Montana Institutional Review Board (IRB) for conducting research.  Immediately 
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after acquiring permissions from the IRB and district office, authorization from the elementary 

principal/test coordinator was granted and the retrospective data were provided through a 

spreadsheet with student names omitted and substituted with unique identification numbers. 

Analysis Procedures 

Data analysis procedures used in this study included descriptive statistics, Pearson 

product moment correlations, and sequential regression.  Descriptive statistics were used to find 

means and standard deviations that describe participant characteristics and overall performance 

on each of the measures. 

Correlations and regression equations were utilized to answer the research questions 

regarding the predictive validity of kindergarten TEN performance for first grade TEN and M-

CBM performance.  This was done by calculating Pearson product moment correlations for all of 

the data as an initial step.  Regression analysis was used to investigate a relationship between 

kindergarten TEN performance, first grade TEN performance, grades 1 and 2 M-CBM and grade 

3 MontCAS scores.  The kindergarten and grade 1 TEN scores, along with grade 1 and 2 M-

CBM scores were used as predictor variables and MontCAS scores were used as the outcome 

variables. 

Delimitations.  Students who had not attended the district from kindergarten through the 

first grade and/or did not have recorded grade 3 MontCAS scores were not included in the study. 

For this reason, the study represents a more stable population than the district overall. 

Limitations.  Fidelity of testing is one limitation.  The researcher is using data submitted 

by the classroom teachers who implemented the assessments.  The researcher is making the 

assumption that all testing regulations were followed consistently by the different individuals 

conducting the tests from year to year. 
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Summary 

 The methodology design for this research consisted of a quantitative design that allowed 

the researcher to investigate the correlation of each TEN measure in kindergarten and grade 1 

and M-CBM in grades 1 and 2 with the criterion referenced MontCAS tests in grade 3.  The 

study explored the predictive validity as well as the significance of the relationship between the 

participants’ performance in kindergarten and first grade on each of the TEN and grades 1 and 2 

M-CBM tasks with the grade 3 MontCAS scores. 

 Participants for this study included 29 kindergarten through grade 3 students from a 

school district located in rural Montana.  Only students who had at least one assessment score 

from each grade level were included in the 4-year longitudinal study.   
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Chapter 4 

 

Results 

 

Introduction 

 A minimal number of studies in early mathematics interventions have taken place over 

the past 25 years when compared to the hundreds of studies completed for screening students at-

risk of reading difficulties (Chard et al., 2005).  Modeled after studies done in reading, more and 

more long-term mathematics studies for preschool through grade 1 have been conducted and 

have shown strong correlations to statistically significant growth and accuracy in student 

mathematics performance (Gersten et al., 2005).  These studies play a crucial role in developing 

scientifically based assessments that will allow educators to identify students who are at risk of 

struggling in mathematics at the preschool through grade 1 level (Jordan et al., 2009; Jordan et 

al., 2010).   

 For these reasons, this study was designed to investigate whether there is a longitudinal 

association between performance on kindergarten and first grade Tests of Early Numeracy 

(TEN), grade 1 and grade 2 Mathematics Curriculum Based Measurement (M-CBM) and the 

same students' performance on the grade 3 Montana Comprehensive Assessment System 

(MontCAS).  

 This chapter reports and summarizes the findings based on the correlation and regression 

statistics explored through the experimental (TEN and M-CBM) and the criterion (MontCAS) 

variables.  Descriptive statistics include the mean and standard deviation for the fall, winter, and 

spring testing periods for the experimental measures and the grade 3 testing for the criterion 

measure.  Second, the predictive validity of each TEN measure is illustrated with charts and then 

discussed.  Appendix B provides scatter plots to illustrate the linear regression for each of the 
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AIMSweb assessments with the grade 3 MontCAS.  Third, a correlation matrix is presented to 

examine the relationship among the TEN and M-CBM assessments and MontCAS scores.  

Fourth, sequential multiple regression analysis was used to assess the relationship among the 

kindergarten and grade 1 TEN measures built upon with grades 1 and 2 M-CBM, and the 

MontCAS assessment. 

Data 

 The data used in this study includes two cohorts of kindergarten through grade 3 students 

from a single rural school district.  The population that met specific criteria (a grade 3 MontCAS 

score) was used from the two cohorts who included the 2005-2006 kindergartners through their 

third grade year (first cohort) and the 2006-2007 kindergarteners through their third grade year 

(second cohort).  The two classes were combined for an N of 43 cases; however, 14 students did 

not meet the eligibility criteria because they were missing grade 3 MontCAS scores and were 

screened out.  The elimination involved four of 12 students from the first cohort and 10 of 31 

students from the second cohort leaving 29 cases to be included in the study.  

 The eliminated students’ available kindergarten and grade 1 TEN scores along with 

available grade 1 and 2 M-CBM scores were compared to those of the participating group.  The 

eliminated students scored below in each subtest especially in kindergarten and grade 1 Oral 

Counting (OC) and Missing Number (MN).  The rest of the assessment scores between the two 

groups co-mingled to a greater extent (see Table 1). 

 To demonstrate that it was reasonable to combine the two cohorts of participating 

students, the mean scores of each assessment were calculated by averaging the available fall, 

winter, and spring TEN scores which included OC, NI, QD, and MN for grades kindergarten and 

grade one.  A mean was also calculated for the available fall, winter, and spring scores for the M-
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CBM conducted in grades 1 and 2 in order to correlate them with the grade 3 MontCAS.   When 

a test score from fall, winter, or spring was not available, no mean score was recorded and the 

participant was not included in the overall average for that assessment.  Figure 2 demonstrates 

that the two cohorts were comparable through similar performance on each assessment based on 

the fact that some of the 29 students were not included as indicated in the Descriptive Analysis 

charts below and explanations that follow each chart. 

Descriptive Analysis 

First the data were sorted and organized by cohort based on the year each group began 

kindergarten.  As was stated above, the cohorts that fit the study included the 2005-2006 class 

and 2006-2007 kindergarten classes.  The researcher then examined the data for patterns and 

trends which included sorting the participants into performance levels on the MontCAS.  The 

following figure illustrates the level of performance of the participating students. 

 
Figure 3.  Grade 3 performance on the Montana Comprehensive Assessment System 

(MontCAS). 

 

The shape of the histogram above shows that most scores are found at the Advanced and 

Proficient performance levels respectively with no scores at the Novice level.  The fairly 

homogeneous distribution is skewed to the left.  The results of these findings indicate that the 

group is the not- at-risk students and will be referred to as such from here on in the analysis.  

Table 3 provides descriptive statistics for the scores. 
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Table 3 

MontCAS Scores Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

MontCAS 29 226 300 283.3 21.5 

 

Note. MontCAS = grade 3 Montana Comprehensive Assessment System 

 

A longitudinal analysis was done for each of the TEN and M-CBM formative assessments 

that were scored during the fall, winter, and spring of grades kindergarten through 3.  The TEN 

assessments were utilized for kindergarteners and first graders.  The M-CBM was used in grades 

1 through 6 up until the first cohort completed grade 3 and then a different assessment was used 

for grades 1 through 6.  For this reason, the current study was able to use only grades 1 and 2 M-

CBM scores.  The following tables and charts illustrate the mean, range, and standard deviation 

for each implementation of the assessments. 

 
 

Figure 4.  Longitudinal descriptive analysis on Oral Counting (OC).  K = kindergarten, Gr1 = 

grade 1, F = fall, W = winter, S = spring, N = number of available scores, M=mean score, 

Minimum = minimum score, Maximum = maximum score, SD = standard deviation. 

The results of the oral counting longitudinal analysis indicated continual growth for 

students between kindergarten and grade 1.  The mean doubled from the kindergarten fall 
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assessment to the grade 1 spring assessment with a plateau between the kindergarten spring and 

grade 1 fall scores.  The standard deviation results indicated that the distribution of scores 

decreased throughout each year from fall to spring.  The distribution of scores decreased by more 

than half  between kindergarten fall and grade 1 spring.   

 
 

Figure 5.  Longitudinal descriptive analysis on Number Identification (NI).  K = kindergarten, 

Gr1 = grade 1, F = fall, W = winter, S = spring, N = number of available scores, M = mean score, 

Minimum = minimum score, Maximum = maximum score, SD = standard deviation.  

 The results of the Number Identification longitudinal analysis indicated continual growth 

for students between kindergarten and grade 1.  The mean more than doubled from the 

kindergarten fall assessment to the grade 1 spring assessment with a decrease between the 

kindergarten spring and grade 1 fall scores.  The range and standard deviation results indicated 

that the largest distribution of scores was in the kindergarten fall assessment and smallest in the 

kindergarten spring assessment. 
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Figure 6.  Longitudinal descriptive analysis on Quantity Discrimination (QD).   

K = kindergarten, Gr1 = grade 1, F = fall, W = winter, S = spring, N = number of available 

scores, M = mean of scores, Minimum = minimum score, Maximum = maximum score, SD = 

standard deviation.  

 The results of the Quantity Discrimination longitudinal analysis indicated continual 

growth for students between kindergarten and grade 1.  The maximum kindergarten score in the 

winter was over twice as high as the fall and nearly twice as high as the spring maximum.  The 

minimum score rose steadily with a stronger gain in between grade 1 fall and winter minimum 

score.  The mean nearly tripled from the kindergarten fall assessment to the grade 1 spring 

assessment with a plateau between the kindergarten spring and grade 1 fall scores.  The standard 

deviation results indicated that the largest distribution of scores was in the kindergarten winter 

assessment which was also with one student score missing and smallest in the kindergarten 

spring scores when all students had available scores.  The first grade distribution and N stayed 

the same with each assessment throughout the year. 
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Figure 7.  Longitudinal descriptive analysis on Missing Number (MN).  K = kindergarten, Gr1 = 

grade 1, F = fall, W = winter, S = spring. 

 The results of the Missing Number longitudinal analysis indicated continual growth for 

students between kindergarten and grade 1.  The maximum kindergarten score in the spring was 

nearly three times higher than the winter maximum score.  The minimum score rose steadily 

except for a drop between the kindergarten spring and grade 1 fall scores.  The mean tripled from 

the kindergarten fall assessment to the grade 1 spring assessment with a decrease between the 

kindergarten spring and grade 1 fall scores.  The standard deviation results indicated that the 

smallest distribution of scores was in the kindergarten winter and grade 1 spring assessments.  

Grade 1 scores showed a steady distribution level throughout the year with the smallest variation 

in the spring based on the range and standard deviation. 
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Figure 8.  Longitudinal descriptive analysis on Mathematics Curriculum Based Measurement 

(CBM).  K = kindergarten, Gr1 = grade 1, F = fall, W = winter, S = spring, N = number of 

available scores, M = mean of the scores, Minimum = minimum score, Maximum = maximum 

score, and SD = standard deviation.   

 The results of the Mathematics-Curriculum Based Measurement (M-CBM) longitudinal 

analysis indicated continual growth for students during each school year; however, there were 

significant decreases between the kindergarten spring and grade 1 fall scores.  The decreases are 

also evident in the minimum and maximum scores.  In addition, each school year showed the 

mean multiplied from the fall assessments to spring assessments.  The standard deviation results 

indicated that the smallest distribution of grade 1 scores was in the fall and stayed steady for the 

remainder of the year.  The distribution of Grade 2 scores slightly rose from fall to spring.   

Statistical Analysis  

 

 The first four research questions investigated the predictive validity of each kindergarten 

and first grade TEN experimental measure.  Predictive validity of each measure was examined to 

see how well it predicted the grade 3 score on the MontCAS criterion referenced test.  According 

to Cohen (1992) the criteria for effect sizes, small, medium and large coefficients are measured 

by an r of .10, .30, and .50 respectively.  These criteria were used in analyzing the following 
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correlations calculated with SPSS software.  Variables for each case included the individual fall, 

winter, and spring scores along with a separate variable for the average of each student's three 

scores in each grade level.  For students who were missing one of the three scores, the average 

score was not calculated as it would not have been accurate since noted on the tables below, the 

measured scores increased throughout each school year.  For example, if a student was missing a 

fall score, the average score for fall, winter, and spring was also missing because an average of 

the winter and spring scores alone would not be accurate to be considered with the rest of the N's 

fall, winter, and spring score averages.  In addition, when processing the analysis procedures 

with SPSS, the option to ―exclude cases pairwise‖ was chosen in dealing with missing data.  This 

option excluded the cases only if they were missing required data for the specific analysis being 

run.  On the other hand, the same cases were included in any of the analyses that they had all 

required information (Pallant, 2007). 

 Questions 1:  Does an Oral Counting test of early numeracy in kindergarten and 

grade 1 correlate with mathematics performance in grade 3? 

 To address research question 1, the following correlation table was prepared by including 

the individual scores for each administration of the measure followed by the average score for 

fall, winter, and spring as a separate variable. 
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Table 4 

Correlation of Kindergarten and Grade 1 Oral Counting and Grade 3 MontCAS Scores 

 

Grade Level and Test Interval 

 

Pearson r 

 

Pearson r
2
 

 

Kindergarten Oral Counting Fall 

 

.44 

 

20% 

 

Kindergarten Oral Counting Winter 

 

.38 

 

14% 

 

Kindergarten Oral Counting Spring 

 

.40 

 

16% 

 

Kindergarten Oral Counting Average Fall, Winter, Spring 

 

.44 

 

20% 

 

Grade 1 Oral Counting Fall 

 

.16 

 

2% 

 

Grade 1 Oral Counting Winter 

 

.04 

 

0% 

 

Grade 1 Oral Counting Spring 

 

.09 

 

1% 

 

Grade 1 Oral Counting Average Fall, Winter, Spring 

 

.09 

 

1% 

 

Note.  One kindergarten student had a missing fall score. 

  

 

 Oral Counting predictive validity correlations ranged from r = .04 in the winter grade 1 

scores to .44 in the fall kindergarten scores.  Therefore, all kindergarten scores were medium 

predictors of Grade 3 MontCAS scores but decreased to small for all first grade scores.  When 

calculating the correlation of the mean of the three kindergarten scores, the correlation stays at 

the highest level throughout the kindergarten year at .44.  In first grade the correlation remained 

small for individual and calculated mean scores.  Based on these findings, a mean of 44% of the 

variance of the kindergarten Oral Counting variable explained its linear relationship with Grade 

3 MontCAS scores and a mean of 1% of the grade 1 Oral Counting variable explained its linear 

relationship with the Grade 3 MontCAS scores.  Considering these data, the kindergarten scores 

would require one to reject the hypothesis (H01) that there is no statistical relationship between 
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OC and the grade 3 MontCAS because it showed a moderate association; however, the grade 1 

scores would require one to support the hypothesis. 

 Questions 2:  Does a Number Identification test of early numeracy in kindergarten 

and grade 1 correlate with mathematics performance in grade 3? 

 To address research question 2, the following correlation table was prepared by including 

the individual scores for each administration of the measure followed by the average score for 

the year as a separate variable. 

Table 5 

Correlation of Kindergarten and Grade 1 Number Identification and Grade 3 MontCAS Scores 

 

Grade Level and Test Interval 

 

Pearson r 

 

Pearson r
2
 

 

Kindergarten Number Identification Fall 

 

.56 

 

31% 

 

Kindergarten Number Identification Winter 

 

.58 

 

33% 

 

Kindergarten Number Identification Spring 

 

.49 

 

24% 

 

Kindergarten Number Identification Fall, Winter, Spring Average 

 

.62 

 

39% 

 

Grade 1 Number Identification Fall 

 

.50 

 

25% 

 

Grade 1 Number Identification Winter 

 

.39 

 

15% 

 

Grade 1 Number Identification Spring 

 

.33 

 

11% 

 

Grade 1 Number Identification Fall, Winter, Spring Average 

 

.47 

 

22% 

 

Note.  Two kindergarten students had missing fall scores. 

 Number Identification predictive validity correlations ranged from r = .33 in the spring of 

grade 1 to .58 in the winter of kindergarten.  The kindergarten year correlation for the average 

scores exceeded the individual test correlations and came out with a mean of 39% explained 

variance of the Number Identification variable's linear relationship with Grade 3 MontCAS 
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Scores.  Grade 1 scores showed a large correlation in the fall but continually decreased to a 

medium correlation and indicated a 16% mean of grade 1 variance of the Number Identification 

variable with explained linear relationship of Grade 3 MontCAS scores. Considering these data 

would require one to reject the hypothesis (H02) that there is no statistical relationship between 

NI and the grade 3 MontCAS for both kindergarten and grade 1. 

 Question 3:  Does a Quantity Discrimination test of early numeracy in kindergarten 

and grade 1 correlate with mathematics performance in grade 3? 

 To address research question 3, Table 6 was prepared by including the individual scores 

for each administration of the measure followed by the average score for the year as a separate 

variable. 

Table 6 

Correlation of Kindergarten and Grade 1 Quantity Discrimination and Grade 3 MontCAS 

Scores 

 

Grade Level and Test Interval 

 

Pearson r 

 

Pearson r
2
 

 

Kindergarten Quantity Discrimination Fall 

 

.44 

 

19% 

 

Kindergarten Quantity Discrimination Winter 

 

.48 

 

25% 

 

Kindergarten Quantity Discrimination Spring 

 

.42 

 

19% 

 

Kindergarten Quantity Discrimination Fall, Winter, Spring Average 

 

.59 

 

35% 

 

Grade 1 Quantity Discrimination Fall 

 

.42 

 

22% 

 

Grade 1 Quantity Discrimination Winter 

 

.19 

 

4% 

 

Grade 1 Quantity Discrimination Spring 

 

.37 

 

14% 

 

Grade 1 Quantity Discrimination Fall, Winter, Spring Average 

 

.39 

 

15% 
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Note.  Two kindergarten students had missing fall scores and one grade 1 student had a missing 

winter score.  

 Quantity Discrimination predictive validity correlations ranged from r = .19 in the winter 

grade 1 scores to .48 in the winter kindergarten scores.  All three kindergarten scores were 

medium predictors of Grade 3 MontCAS scores; however, when using the mean variable of 

those score' predictability rose to large at .59.  Therefore, the mean kindergarten scores indicated 

35% of the explained variance of this variable.  First grade scores ranged from a small 

correlation of .19 for the winter administration of the assessment to a medium correlation for fall 

and spring.  The mean grade 1 scores indicated 15% explained variance of Quantity 

Discrimination.  Again these data require one to reject the hypothesis (H03) that there is no 

statistical relationship between QD and the grade 3 MontCAS in grades kindergarten and 1. 

 Questions 4:  Does a Missing Number test of early numeracy in kindergarten and 

grade 1 correlate with mathematics performance in grade 3? 

 To address research question 3, Table 7 was prepared by including the individual scores 

for each administration of the measure followed by the average score for the year as a separate 

variable. 
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Table 5 

Correlation of Kindergarten and Grade 1 Missing Number and Grade 3 MontCAS Scores 

 

Grade Level and Test Interval 

 

Pearson r 

 

Pearson r
2
 

 

Kindergarten Missing Number Fall 

 

.52 

 

27% 

 

Kindergarten Missing Number Winter 

 

.39 

 

15% 

 

Kindergarten Missing Number Spring 

 

.03 

 

0% 

 

Kindergarten Missing Number Fall, Winter, Spring Average 

 

.36 

 

13% 

 

Grade 1 Missing Number Fall 

 

.43 

 

19% 

 

Grade 1 Missing Number Winter 

 

.30 

 

9% 

 

Grade 1 Missing Number Spring 

 

.32 

 

11% 

 

Grade 1 Missing Number Fall, Winter, Spring Average 

 

.37 

 

14% 

 

Note.  Four kindergarten students had missing fall scores. 

 Missing Number predictive validity correlations ranged from r = .03 in the spring 

kindergarten scores to .52 in the fall kindergarten scores.   Therefore, beginning kindergarten 

scores were large predictors of Grade 3 MontCAS scores but decreased to medium in the winter 

and small in the spring.  The mean of the three kindergarten scores indicated 13% explained 

variance on the grade 3 MontCAS scores.  In grade 1 Missing Number scores were each medium 

predictors.   The mean of the three first grade scores indicated 14% of the variance in the 

Missing Number variable explained its linear relationship with Grade 3 MontCAS scores.  

Considering these data, especially the mean of the 3 administrations would require one to reject 

the hypothesis (H04) that there is no statistical relationship between MN and the grade 3 

MontCAS. 
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Table 8 

Correlations Between Average Fall, Winter, and Spring Scores for Each of the Measures 

Note.  N=29.  K= kindergarten, G1 = grade 1,  OC = Oral Counting, NI = Number Identification, 

QD = Quantity Discrimination, MN = Missing Number, GR1 MCBM = Grade 1 Mathematics 

Curriculum Based Measure, GR2 MCBM = Grade 2 Mathematics Curriculum Based Measures, 

and MontCAS = Grade 3 Montana Comprehensive Assessment System criterion test.   

 In general, the intercorrelations among the TEN measures were medium and large. The 

kindergarten TEN had large correlations with the same grade 1 TEN measure (i.e. OC and QD 

each had large correlations between same measures). 

Each of the assessments showed significance to grade 3 MontCAS test scores except 

kindergarten Missing Number and grade 1 Oral Counting.  Kindergarten NI, grade 1 NI, grade 1 

 Variables 1 2 3 4 5 6 7 8 9 10 11 

1 K OC 1.00 .60** .71** 0.36 .77** 0.24 .48** .47* .68** .53** .44* 

 N 28 27 27 25 28 28 28 28 19 28 28 

2 K NI - 1.00 .67** .48* .40* .70** .55** .59** .81** .62** .62** 

 N  27 27 25 27 27 27 27 18 27 27 

3 K QD - - 1.00 .48* .38* 0.35 .52** .49** .58* .55** .59** 

 N   27 25 27 27 27 27 18 27 27 

4 K MN - - - 1.00 0.15 0.18 .42* .43* .70** 0.34 0.36 

 N    25 25 25 25 25 18 25 25 

5 Gr1 OC - - - - 1.00 0.35 .52** .42* .60** .41* 0.09 

 N     29 29 29 29 20 29 29 

6 Gr1 NI - - - - - 1.00 .64** .52** .56* .58** .47** 

 N      29 29 29 20 29 29 

7 Gr1 QD - - - - - - 1.00 .79** .72** .74** .39* 

 N       29 29 20 29 29 

8 Gr1 MN - - - - - - - 1.00 .69** .70** .370* 

 N        29 20 29 29 

9 Gr1 MCBM - - - - - - - - 1.00 .86** .57** 

 N         20 20 20 

10 Gr2 MCBM - - - - - - - - - 1.00 .49** 

 N          29 29 

11 MONTCAS - - - - - - - - - - 1.00 

 N           29 

 **. Correlation is significant at the 0.01 level (2-tailed).     

 *. Correlation is significant at the 0.05 level (2-tailed). 
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QD and grade 1 MN showed significance with each of the other variables as well as the grade 3 

MontCAS scores.  Grades 1 and 2 M-CBM variables showed significance with all variables 

except kindergarten MN. 

Question 5: Do Mathematics-Curriculum-Based Measurement in grades 1, and 2 

and 3 predict student performance on third and fourth grade MontCAS?   

 The second cohort of 20 students did not have grade 3 M-CBM scores or grade 4 

MontCAS scores and so only grades 1 and 2 M-CBM scores were correlated with grade 3 

MontCAS scores from both cohorts for a total of 29 students.    

Table 9 

Correlation of Grade 1 and Grade 2 M-CBM with Grade 3 MontCAS Scores 

 

Grade Level and Test Interval 

 

Pearson r 

 

Pearson r
2
 

 

Grade 1 M-CBM Fall 

 

.25 

 

7% 

 

Grade 1 M-CBM Winter 

 

.67 

 

45% 

 

Grade 1 M-CBM Spring 

 

.47 

 

22% 

 

Grade 1 M-CBM Fall, Winter, Spring Average 

 

.57 

 

33% 

 

Grade 2 M-CBM Fall 

 

.41 

 

17% 

 

Grade 2 M-CBM Winter 

 

.33 

 

11% 

 

Grade 2 M-CBM Spring 

 

.59 

 

34% 

 

Grade 2 M-CBM Fall, Winter, Spring Average 

 

.49 

 

24% 

 

Note.  Nine grade 1 students had missing fall scores. 

 Mathematics Curriculum Based Measures' predictive validity correlations ranged from r 

= .25 in the fall of grade 1 to .67 in the winter of grade 1.  Grade 1 fall scores indicated a small 

correlation then jumped to a large correlation in the winter and ended with a medium correlation 



 64 

for spring scores.  The mean of the scores showed a 33% explained variance for Grade 3 

MontCAS scores.  The grade 2 scores showed medium correlations for fall and winter and a 

large correlation for grade 2 spring scores.  Based on these findings, the mean of the scores 

provide 24% of the explained variance in the grade 1 M-CBM variable for Grade 3 MontCAS 

scores.  Considering these data would require one to reject the hypothesis (H05) which states 

there is no statistical relationship between M-CBM and the grade 3 MontCAS. 

Question 6:  Which of the Test of Early Numeracy (TEN) measures explains the 

most variance on the MontCAS and M-CBM assessments? 

 According to the previous findings for questions 1 through 4, Missing Number and 

Number Identification explained the most variance on the grade 3 MontCAS assessment.  

Overall, the kindergarten assessments explained more variance than the grade 1 assessments 

especially in Oral Counting where the grade 1 scores explained an average of 1% while the 

kindergarten scores were calculated to provide 20% explained variance (see Tables 4-7).  Based 

on these findings, one would be required to reject the hypothesis (H06) that each of the Tests of 

Early Numeracy measures would equally explain variance on grade 3 MontCAS.  

 To further investigate question 6, a sequential multiple regression procedure was 

conducted using SPSS software to determine which of the TEN measures along with the 

hierarchy of tests from kindergarten through grade 3 had the greatest explained variance for the 

grade 3 MontCAS scores and also to investigate the unique contribution of each variable with the 

overlapping effects of all other variables statistically removed (Pallant, 2007).   

Four procedures were conducted; one procedure for each of the EM-CBM TEN measures 

beginning with Oral Counting and proceeding with Number Identification, Quantity 
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Discrimination, and Missing Number.  The variables that were used for the calculation for the 

sequential regression were the averages of each student’s test scores (fall, winter, and spring).   

The variables were entered sequentially into hierarchical models in the order of the 

developmental progression of early mathematics assessments conducted in the district.  Each 

procedure began with the kindergarten TEN averaged variable followed by the same grade 1 

TEN averaged variable, then grade 1 M-CBM averaged variable, and finally the grade 2 M-CBM 

averaged variable.  Each variable was entered into a new step of regression in the order that the 

students had been tested (kindergarten variables first and on through to grade 2).  Each of the 

variables was assessed in terms of what it adds to the prediction of the MontCAS (dependent 

variable) after the previous variable or score. 

Table 10 illustrates the results of the relative contribution of each of the kindergarten and 

grade 1 TEN measures along with the grade 1 and 2 M-CBM assessments in regard to the 

explained variance on the grade 3 MontCAS score. 
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Table 10 

Variance in Grade 3 MontCAS scores Explained for the Mean of Each K-2 Formative Assessment  

  Sequential percent of variance in MontCAS explained for each formative 
assessment. 

Formative Assessment 

 

Regression Equation 

K TEN 

Measure 

G1 TEN 

Measure given  

K TEN 

G1 CBM given  

K &1 TEN 

G2 CBM given 

K&1 TEN and 

G1 CBM 

 

Oral Counting (OC) 
MontCAS=.44 (K OC) + 250 

MontCAS = .93 (K OC) - .63 (G1 OC) + 310 

MontCAS = .61 (K OC) - .75 (G1 OC) +.613 (G1 MCBM) + 309 

MontCAS = .61 (K OC) -.78 (G1 OC) + .79 (G1 MCBM) - .18 (G2 MCBM) + 314 

 

 

20% 

 

 

 

36% 

 

 

 

 

55% 

 

 

 

 

 

56% 

 

Number Identification (NI) 
MontCAS=.62 (K NI) + 229 

MontCAS = .57 (K NI) + .07 (G1 NI) + 224 

MontCAS = .40 (K NI) + .07 (G1 NI) + .21 (G1 MCBM) + 223 

MontCAS = .45 (K NI) + .04 (G1 NI) + .09 (G1 MCBM) + .11 (G2 MCBM) + 224 

 

 

39% 

 

 

 

39% 
 

 

 

 

 
40% 

 

 

 

 
 

41% 

 

Quantity Discrimination (QD) 
MontCAS=.59 (K QD) + 240 

MontCAS = .49 (K QD) + .17 (G1 QD) + 236 

MontCAS = .43 (K QD) - .19 (G1 QD) +.48 (G1 MCBM) + 309 

MontCAS = .44 (K QD) -.19 (G1 QD) + .54 (G1 MCBM) - .08 (G2 MCBM) + 230 

 

 

35% 

 

 

 

37% 

 

 

 

 

44% 

 

 

 

 

 

 

44% 

 

Missing Number (MN) 
MontCAS=.36 (K MN) + 263 

MontCAS = .25 (K MN) + .27 (G1 MN) + 247 

MontCAS = -.10 (K MN) - .05 (G1 MN) +.68 (G1 MCBM) + 245 

MontCAS = -.18 (K MN) - .03 (G1 MN) +.87(G1 MCBM) -.17(G2  MCBM) + 245 

 

 

13% 

 

 

 
19% 

 

 

 
 

33% 

 

 

 
 

 

34% 

 

Note. TEN = Tests of Early Numeracy, MontCAS = Montana State Criterion-Referenced Test, K = Kindergarten, G1 = Grade 1, MCBM = 

Mathematics-Curriculum Based Measures, G2 = Grade 2. 
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According to Table 10, each test from kindergarten to grade 1 increased the predictability 

of the grade 3 MontCAS scores.  Grade 2 tests showed a plateau on the chart and a decrease 

indicated in the regression equation resulting in a 1% predictability increase from the grade 1 

scores.  The Missing Number test began at the lowest explained variance with 13% in 

kindergarten but continually rose through grade 1 and ended in Grade 2 with 34%, it also had the 

lowest predictability of the four outcomes.  The Oral Counting test began with the next lowest 

variance in kindergarten but with the relative contributions of the tests through grade 2 it ended 

with the highest explained variance of 56%, which is almost three times the variance at the 

kindergarten level.  The Number Identification and Quantity Discrimination had the most static 

results without much increase with Number Identification showing the least change indicating 

the kindergarten variance to be 39% and ending with the second grade CBM variance at 41%. 

In summary, this chapter illustrated the results of the descriptive statistics, an overview of 

the correlations among the different data collected, and sequential regressions.  The data used 

included kindergarten and first grade TEN measures, grades 1 and 2 M-CBM scores and lastly 

grade 3 MontCAS scores as the dependent variable.
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Chapter 5 

 

Discussion 

 

Introduction 

 

 Global markets and technological advances have created an urgency for improving 

mathematics instruction and performance for United States students (Boaler, 2008; Jordan et al., 

2010; Lago & DiPerna, 2010; NCTM, 2000).  Based on national reports, barely one-third of U.S. 

fourth and eighth graders score at the proficient level on standardized tests (NAEP, 2009).  These 

two facts raise concern for individual students in regard to the career choices available to them 

and for the overall society in maintaining a competitive place in the global market   

 Improving mathematics instruction is a fundamental approach to solving this problem 

and such instruction must begin with early intervention at the kindergarten and first grade level. 

Implementing formative assessment systems that track individual student progress and provide 

substance for the instructional decisions; is a crucial component of improving instruction (Clarke 

& Shinn, 2004).  In addition to tracking student growth, such an approach allows the 

identification of students at the primary level who are at-risk of struggling in mathematics and 

can positively impact their chances of decreasing the performance gap between them and their 

higher achieving peers (Gersten, Jordan, & Flogo, 2005; Kashi, 2008). 

 During the past 50 years, primary reading approaches aimed at helping struggling readers 

has been the main focus of intervention research for early education.  In doing so, critical basic 

skills of phonological awareness have been identified in this area (Thurber, Shinn, & 

Smokowski, 2002).  Recently, the same movement in research is identifying the critical 

mathematics basic skills that provide a solid foundation for mathematical understanding in 

kindergarten and first grade students.  Recent research has explored the area of number sense 
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which begins development in infancy and progresses throughout one's life; but, especially critical 

at the primary level in building a strong foundation of flexibility and fluency with numbers 

(Jordan et al., 2009; VanDerHeyden, 2010). 

 This chapter brings forth the knowledge gained from this correlational research, 

subsequent recommendations, and implications for further research.  Correlation coefficients 

were calculated between formative assessments (TEN and M-CBM) and a criterion assessment 

(MontCAS) in order to determine the existence and/or strength of relationships.  The 

determination was made by statistical calculations, which investigated whether TEN and M-

CBM scores within a certain range were related to a certain range of the grade 3 MontCAS 

scores.     

Research Questions' Interpretations of Findings 

 Do Tests of Early Numeracy (TEN) in kindergarten and grade 1 correlate with 

mathematics performance in grade 3?  TEN assessments included Oral Counting (OC), 

Number Identification (NI), Quantity Discrimination (QD), and Missing Number (MN).  M-

CBM assessed computational fluency.  The tests were conducted three times throughout each 

school year approximately 13 weeks apart in the fall, winter, and spring of kindergarten and first 

grade.    

One of the main purposes of the current study was to explore the predictive validity of 

kindergarten and grade 1 TEN scores relative to grade 3 MontCAS scores.  The outcome of this 

component was a two-part examination of the TEN by the highest predictability broken down by 

each TEN skill (OC, NI, QD, and MN) variable and secondly by grade level.   

The first analysis findings indicated that virtually all four of the TEN variables had some 

degree of predictability for educational achievement as defined by the grade 3 MontCAS.  
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Kindergarten Number Identification (NI) and Quantity Discrimination (QD) had the most 

explained variance followed by kindergarten Oral Counting (OC).   

Based on these findings, these three variables could be used to identify primary grade 

students who are not-at-risk of struggling in mathematics and/or may perform at Proficient or 

Advanced levels on the grade 3 MontCAS. 

The examination of variables by grade level indicated that the kindergarten scores had the 

highest predictability especially in NI, QD, and OC.  The first grade levels showed half as much 

of the kindergarten explained variance with grade 3 MontCAS.  Kindergarten OC indicated 

explained variance but grade 1 did not. 

The second analysis looked for the difference in predictability between kindergarten and 

grade 1 scores on the TEN skills.   Based on these findings, the kindergarten TEN measures 

showed stronger predictability for identifying students who may score at proficient or above 

levels on the grade 3 MontCAS as compared to the first grade measures.   

Table 11 

Comparison of Predictive Validity Results of TEN Longitudinal Studies 

Study n Length 

of Study 

Grade 

Level 

Independent 

Variables 

Dependent 

Variables 

Results 

Strongest to Least 

Predictive Validity 

Baglici 

(2008) 

61 2 year 

 

K-1 OC, NI, QD, MN, 

VQD 

Gr1  M-CBM, 

ODR, ACES 

MN, NI, OC, QD 

Burland 

(2011) 

29 4 year K-3 K & Gr 1: OC, NI, 

QD, MN; Gr.1 and 
2:  M-CBM 

Gr3 MontCAS NI, QD, MN, OC 

K scores were 
stronger than G1 &2 

Chard et al., 

(2005) 

168 (K) 

207 (G1) 

1 year K-1 Counting, NW, 

NI, QD, MN 

NKT MN, QD, NI, NW, 

Counting 

Clarke & 

Shinn (2004) 

52 1 year Gr 1 OC, NI, QD, MN M-CBM, WJ-

AP, NKT 

QD, MN, NI, OC 

Lembke et 

al., (2008) 

77 (K) 

30 (G1) 

1 year K-1 NI, QD, MN TR, SESAT QD, NI, MN 

Lembke & 

Foegen 

(2009) 

384 

(K&G1) 

1 year K-1 QD, QA, MN, NI TR, SESAT MN, NI, QD, QA 
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Note.  OC = Oral Counting, NI = Number Identification, QD = Quantity Discrimination, MN = 

Missing Number, VQD = Visual Quantity Discrimination, M-CBM=Mathematics Curriculum 

Based Measurement, ODR = Office Discipline Referrals, ACES = Total Mathematics Score on 

the Academic Competency Evaluation Scales, WJ-AP = Woodcock Johnson-Applied Problems, 

NKT = Number Knowledge Test, Counting = Assessments that include counting:  to 20, from 6 

and on, from 3 and on, by 10s, by 5s, by 2s; NW = Number Writing, TR = Teacher Ratings, 

SESAT = Stanford Early School Achievement Test, QA = Quantity Array. 

Clarke and Shinn (2004) studied TEN measures as independent variables with 

performance on Walcott Johnson - Applied Problems (WJ-AP) as the dependent variable and 

found QD to have the highest median correlation followed by MN then NI and finally OC.  Each 

demonstrated strong relationships; therefore, showing predictability (Clarke & Shinn, 2004). 

Charde et al. (2005) replicated the Clarke and Shinn (2004) predictive study using TEN 

measures as the independent variables and the Number Knowledge Test (NKT) as the dependent 

variable.  The predictability measures repeated the Clarke and Shinn (2004) results.  Lemke and 

Foegen (2009) also studied TEN measures and found parallel results for predictive validity for 

NI, QD, and MN tasks (they did not include OC in their study).   

 Did Mathematics-Curriculum Based Measurement in grades 1, 2, and 3 correlate 

with performance on third and fourth grade MontCAS?  Grades 1 and 2 Mathematics 

Curriculum Based Measure (M-CBM) variables were examined for explained variance of 

educational achievement as defined by grade 3 MontCAS scores.  This investigation of 

predictability was broken into two different analyses.  The first analysis was done by looking for 

the highest explained variance among the fall, winter, and spring scores. The second analysis 
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looked at the difference in the grade level scores to see which grade level indicated higher 

explained variance.  

In general, all three of the administrations of the M-CBM measures (fall, winter, and 

spring) in both grades 1 and 2 showed predictability of grade 3 MontCAS scores.  In grade 1 the 

winter score and in grade 2 the spring scores demonstrated the largest correlations.  Based solely 

on the grade 1 scores, the winter score demonstrated the highest predictability with a large 

correlation of .67 as compared to the fall score, which demonstrated the least predictability with 

a small correlation of .25.  The spring second grade scores showed a large correlation with .59 

while the other two scores were in the medium range; winter scores showed the lowest with .33 

followed by .41 in the fall.  

When comparing the first grade to the second grade correlations, first grade scores 

showed higher predictability with a large correlation of .57.  The second grade demonstrated a 

medium correlation of .49.  Based on these findings, grade 1 and 2 M-CBM scores could also be 

used as an indicator to identify primary grade students who are achieving in mathematics and/or 

who may score at the proficient level or above on the grade 3 MontCAS. 

 Which Tests of Early Numeracy (TEN) measures explained the most variance on the 

MontCAS and M-CBM assessments? 

The last investigation of the current study looked at the possibility that using multiple 

predictors would improve predictability and/or explained variance.  A sequential regression 

procedure was used to calculate the explained variance of the student assessments taken from 

kindergarten through grade 2 as defined by the grade 3 MontCAS scores.  Four procedures were 

entered each starting with an individual TEN measure and proceeding with the next grade level 

test.  The test variables used were the average of the fall, winter, and spring scores.  The analysis 
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was broken down into two analyses first by each TEN variable and a second analysis by grade 

level.   

The first analysis found that Oral Counting (OC) demonstrated the most linear growth in 

the sequential regression investigation over the three-year period of testing.  The other three TEN 

variables produced an even distribution.  The second analysis, which compared explained 

variance by grade levels indicated that the predictability from first to second grade M-CBM 

scores nearly stayed the same.  Based on these findings, using the TEN and grade 1 M-CBM 

scores as multiple predictors showed nearly 50% predictability or explained variance of the 

performance on grade 3 MontCAS.  In short, the second grade M-CBM scores did not add to the 

first and second grade sequential regression predictability of performance on the grade 3 

MontCAS; therefore did not contribute to the predictability of the criterion variable in this study.  

Still neither this research nor other similar research designs would be logically capable of 

concluding that the curriculum components that generated those scores should be discontinued 

based on these results.  This was a correlational study not a cause and effect study.   Just as a 

strong correlation does not constitute proof of causality, neither does the lack of a correlation 

mean there is no causality; to do so would commit the logical error of accepting the null 

hypothesis (Gay, Mills, & Airasian, 2009).   

Similar research by Lembke et al. (2008) was conducted using a multiple regression 

analysis.  This study applied a two-level hierarchical linear growth analysis to measure student 

progress over time for MN, NI, and QD.  Tests were given monthly (instead of 3 times each 

year) and the results indicated that both kindergarten and first grade students showed a 

significant linear growth in NI and curvilinear in QD and MN.  Lemke et al. (2008) suggested 
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that the QD and MN measures either indicate student learning happens in bursts or QD and MN 

are not good indicators. 

 Other findings.  The longitudinal outcome delineated by descriptive statistics for each 

assessment indicated plateaus or drastic decreases in the mean of the scores between spring and 

fall of adjacent years.  For example, the Oral Counting (OC) and Quantity Discrimination (QD) 

measures between kindergarten and first grade stayed the same and then continued to rise 

throughout the end of the first grade TEN assessments.  However, Number Identification (NI), 

Missing Number (MN), and Math Curriculum Based Measures (M-CBM) fall scores showed 

decreases of as much as fifty percent from previous spring scores.  Although NI and M-CBM 

scores had surpassed the fall entry score by the winter administering of the test, MN had merely 

broken even which indicates that it took nearly one-third of the school year to bring those skills 

back to the previous year's spring level.   

This is an important practical observation that research has cited as contributing to the 

patterns of educational stratification especially between children from different socioeconomic 

backgrounds (Alexander, Entwisle, & Olson, 2007).  Decreased scores from spring to fall 

indicate another reason to utilize formative testing as an RTI approach especially to students at-

risk of struggling in mathematics.  Students who enter kindergarten and first grade with a less-

developed sense of number and number relations would have a better chance of being identified 

early and given individualized assistance based on the demonstrated gaps in mathematical 

understanding.  The gap in summer learning between students from lower and higher family 

socioeconomic levels consistently widens between primary and high school and creates lifelong 

effects (Alexander, Entwisle, & Olson, 2007).   
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Implications for Practice 

 The results of this study can demonstrate ways to identify primary grade students who 

may be at-risk of struggling as they progress through grade levels.  Principals, teachers, and other 

instructional supervisors can use this information to justify the use of Response to Intervention 

(RTI) approaches that provide early intervention and prevent severe mathematics difficulties 

from developing.  Using scientifically-based researched formative assessment systems as part of 

an RTI approach can identify gaps in mathematical understanding through the longitudinal data 

produced.  This data can guide instructional decisions before students fall farther and farther 

behind (Bryant & Bryant, 2008; Stecker, Fuchs, & Fuchs, 2008). 

 When summative standardized tests such as MontCAS alone are used to assess student 

growth it is not possible to use the results to inform instruction.  The test results only tell how 

students perform at the end of the year and the results become available only after students have 

departed for the summer break.  With RTI approaches the results of the longitudinal ratio level 

data collected throughout the year allows teachers to make data-driven instructional decisions.  

One of the most effective components of the approach is the ability for teachers to track student 

growth and individualize instruction especially for primary students identified as mathematically 

at-risk as they progress (Bryant et al., 2008; Gersten et al., 2008).   

 In a practical sense, the amount of time spent administering the RTI formative 

assessments in this study amounted to about two days (one day per semester/half-a-day per 

quarter) for grades kindergarten and first grade based on a classroom of 30 students.  The TEN 

assessments are administered individually to students so the time taken is greater than the M-

CBM assessments.  Still, this may or may not be time taken away from instruction depending 

upon a teacher's organization and management of classroom activities.  Such activities may 
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include using academic stations for independent learning while a teacher administers to 

individual students.  The first and second grade M-CBM assessments take 30 minutes from the 

school year to administer.  Each test takes a maximum of 10 minutes to give to the whole class at 

one time.  Administering the M-CBM during the three 13-week periods in the fall, winter, and 

spring uses a maximum of 30 minutes throughout the school year.  Considering the small amount 

of time taken to administer an RTI system the study indicates that the information it provides for 

designing instruction is time efficient and worthwhile. 

 Analyzing the difference in predictability between grades with multiple variables in the 

sequential regression analysis, grades kindergarten and first grade scores showed higher 

predictability than the second grade scores.  In fact, when the second grade scores were included 

in the sequence, they did not add to the predictability of performance on the grade 3 MontCAS.  

This is not to say that grade 2 formative assessments are not valuable, they just indicated a lower 

correlation for grade 3 performance on the MontCAS.  This does not mean that the data 

generated from use would not inform instruction and assist in tracking student growth. 

 These findings echo research on struggling students by suggesting that there is a 

correlation between kindergarten and first grade children’s critical number sense skills and future 

mathematical achievement.  Even though this study analyzed students who performed at 

Proficient and Advanced levels on a criterion referenced test in grade 3, moderate correlation 

between the early mathematics test scores and their 3
rd

 grade performance showed the same 

strength in correlations.  With this in mind, this study concurs with other research that RTI 

services allow gaps in student learning to be identified and intervened early so that at-risk 

students may be prevented of failing to keep up with higher achieving peers (Bryant et al., 2008, 

Gersten et al., 2008). 
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Weaknesses of the Study/Missing Data Pieces 

 The limited generalizability of the study is a weakness.  This weakness is two-fold 

including the longitudinal focus and the size of the district studied.  In regard to the longitudinal 

focus, as with any study spanning time, family dynamics change in many ways from the make-

up of the family to the career and job changes that require students to leave the participating 

school district (Baglici, 2008).  In regard to size of the district, the participating school was small 

and rural so two cohorts were combined for statistical purposes.  Furthermore, with any span of 

time in a district striving to improve, changes are made in the curriculum continually.  For this 

reason, the participating school changed from M-CBM assessments in the third grade year of 

cohort 2's third grade year (year 4 of the study).  This decreased the data available and also made 

it impossible to investigate concurrent validity of the M-CBM in relation to the grade 3 

MontCAS.   

 Another weakness was that only student scores were included in the available data; there 

was no demographic information about the population.  A larger population and a database that 

included gender and socioeconomic levels may have produced more comprehensive results. 

Alexander, Entiwisle, and Olson (2007) found that socio-economic levels impact student 

mathematical achievement.  Attendance and behavioral referral data may have also been useful. 

 Solely using MontCAS scaled scores may have posed a limitation or weakness because 

they are made up of unequal intervals and have no absolute zero.  These were the only scores 

available from the district and may or may not have been less accurate when analyzing 

correlations with TEN and M-CBM.   
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Implications for further research 

 To increase the scope of this research, the following implications are offered.  Early 

mathematics research should continue to strive to learn more about indicators that predict later 

mathematics performance to improve instructional practices so that students do not fall behind 

peers and benchmark performance levels.  Such studies should include a more diverse and larger 

population to include the full spectrum of MontCAS scores.  For example, none of the students 

in this study performed at the lowest level of the MontCAS but correlations that were found in 

other studies including at-risk students showed the same strength of predictive validity.  Studying 

populations with a more diverse population that has students at every level would allow for 

another component of research based on interventions taking place and the impact on student 

learning from those interventions.   

 It would be beneficial for future correlational studies specific to Montana to use raw data 

from the MontCAS rather than only scaled scores.  In addition, it would be of interest to compare 

the results of both (raw and scaled scores) to determine which scores were more accurate for 

predictability measures.  Scaled scores statistically responded to only the middle scores on the 

MontCAS because of the uneven interval distribution with no absolute zero and a capped high 

score used for a large proportion of the scaled scores (see Table 2). 

 The ideal longitudinal correlational study would be one that would take population data 

from the whole state collected from all schools using RTI approaches and correlating them with 

the MontCAS at all grade levels.  The results could be used to provide more evidence for the use 

of TEN measures or other EM-CBM assessments as a tool for identifying students in need of 

intervention and whether the intervention is needed because of learning disabilities or inadequate 

instruction (Baglici, 2008).   
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 Finally, studies on retention approaches for avoiding students' drop in achievement 

between spring and fall of adjacent school years would be beneficial to districts that struggle to 

make AYP due to low student achievement on high stakes tests.  Future research might 

investigate the impact of RTI implementation on summer programs and whether this decreases 

the gap between low level and high level achievement of students. 

Conclusion 

 

 In conclusion, the results of this study paralleled previous studies that found that TEN 

scores demonstrate implications of use as early indicators of mathematics skills.  These studies 

also included test-retest, reliability, concurrent validity, content validity, and predictive validity 

over one and two years.  The current study looked mainly at predictive validity by extending the 

prior research longitudinally to a four-year span.  The results can be used to provide insight to 

teachers, principals, and other instructional supervisors on improving instruction through the use 

of RTI and implementing early intervention to primary grade students who are at-risk to 

struggling in mathematics.   

 As in other studies conducted, varying degrees of predictability was found for the 

Montana state level achievement test.  Some levels of predictability were strong enough to 

suggest additional research is warranted.  Should a much larger scale of research be conducted 

with acceptable levels of predictability found, then Montana educators would have a very useful 

and simple tool to predict students’ performance on standardized assessments a priori and 

provide a potentially effective opportunity to individually investigate factors that may be 

hindering achievement. 
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Appendix A 

 

List of Acronyms 

 

AYP – Adequate Yearly Progress 

DSTP – Delaware Student Testing Program  

EM – Early Mathematics 

EM-CBM – Early Mathematics Curriculum Based Measure 

ESEA – Elementary and Secondary Educational Act 

ESL – English as a Second Language 

IDEA – Individuals with Disabilities Act 

KNSB – Kindergarten Number Sense Battery 

M-CBM – Mathematics –Curriculum Based Measure 

MD – Mathematics Difficulties 

MN – Missing Number 

MontCAS – Montana Comprehensive Assessment System 

NAEP – National Assessment of Educational Progress 

NCLB – No Child Left Behind 

NCTM – National Council of Teachers of Mathematics 

NI – Number Identification 

NKT – Number Knowledge Test 

NSB – Number Sense Brief 

NST – Number Sense Test  

OC – Oral Counting 

PM-CBM – Preschool Mathematics Curriculum-Based Measurement 
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PSI – Personalized System of Instruction 

QD – Quantity Discrimination 

RTI – Response to Intervention 

SESAT – Stanford Early School Achievement Test 

SRB – Scientifically Research Based 

TEN – Test of Early Numeracy 

TEMA – Test of Early Mathematics Ability 

WJ-AP – Woodcock Johnson-Applied Problems 
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Appendix B 

 

TEN and MontCAS Scatterplots 

 

 

Figure 9.  Kindergarten Oral Counting Mean from fall, winter, and spring scores correlated with  

Grade 3 MontCAS 

 

 The kindergarten Oral Counting association with the grade 3 MontCAS score has a 

positive association in the linear form.  The r-value for the mean of the kindergarten Oral 

Counting scores is .44 (see Table 4) which is a moderate correlation.  The outliers are in the y-

direction or vertical direction showing the two students who performed in the Nearing Proficient 

Level of the MontCAS (see Figure 4).   
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Figure 10.  Kindergarten Number Identification Mean from fall, winter, and spring scores 

correlated with Grade 3 MontCAS 

 The kindergarten Number Identification association with the grade 3 MontCAS score has 

a positive association in the linear form.  The r-value for the mean of the kindergarten Oral 

Counting scores is .62 (see Table 5) which is a strong correlation.  The outliers are in the y-

direction or vertical direction.   

 

Figure 11.  Kindergarten Quantity Discrimination Mean from fall, winter, and spring scores 

correlated with Grade 3 MontCAS 

The kindergarten Quantity Discrimination association with the grade 3 MontCAS score 

has a positive association in the linear form.  The r-value for the mean of the kindergarten Oral 

Counting scores is .59 (see Table 6) which is a strong correlation.  The outliers are in the y-

direction or vertical direction showing the two students who performed in the Nearing Proficient 

Level of the MontCAS (see Figure 4).   
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Figure 12.  Kindergarten Missing Number Mean from fall, winter, and spring scores correlated 

with Grade 3 MontCAS. 

The kindergarten Missing Number association with the grade 3 MontCAS score has a 

positive association in the linear form.  The r-value for the mean of the kindergarten Oral 

Counting scores is .36 (see Table 6) which is a moderate correlation.  The outliers are in the y-

direction or vertical direction showing the two students who performed in the Nearing Proficient 

Level of the MontCAS (see Figure 4).   

 

 Figure 13.  Grade 1 Oral Counting Mean from fall, winter, and spring scores correlated with  

Grade 3 MontCAS. 



 90 

The grade 1 Oral Counting association with the grade 3 MontCAS score does not show 

an association in the linear form.  The r-value for the mean of the kindergarten Oral Counting 

scores is .09 (see Table 4) which corresponds to the linear regression line which is shows neither 

a positive nor negative correlation.  The outliers are in the y-direction or vertical direction 

showing the two students who performed in the Nearing Proficient Level of the MontCAS (see 

Figure 4).   

 

 Figure 14.  Grade 1 Number Identification Mean from fall, winter, and spring scores correlated 

with  Grade 3 MontCAS 

The Grade 1 Number Identification association with the grade 3 MontCAS score has a 

positive association in the linear form.  The r-value for the mean of the kindergarten Number 

Identification scores is .47 (see Table 5) which is a moderate correlation.  The outliers are in the 

y-direction or vertical direction showing the two students who performed in the Nearing 

Proficient Level of the MontCAS (see Figure 4).   
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Figure 15.  Grade 1 Quantity Discrimination Mean from fall, winter, and spring scores correlated 

with  Grade 3 MontCAS 

The Grade 1 Quantity Discrimination association with the grade 3 MontCAS score has a 

positive association in the linear form.  The r-value for the mean of the kindergarten Number 

Identification scores is .39 (see Table 6) which is a moderate correlation.  The outliers are in the 

y-direction or vertical direction showing the two students who performed in the Nearing 

Proficient Level of the MontCAS (see Figure 4).   
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Figure 16.  Grade 1 Missing Number Mean from fall, winter, and spring scores correlated with 

Grade 3 MontCAS 

The Grade 1 Missing Number association with the grade 3 MontCAS score has a positive 

association in the linear form.  The r-value for the mean of the kindergarten Number 

Identification scores is .37 (see Table 7) which is a moderate correlation.  The outliers are in the 

y-direction or vertical direction showing the two students who performed in the Nearing 

Proficient Level of the MontCAS (see Figure 4).   

 

 Figure 17.  Grade 1 M-CBM Mean from fall, winter, and spring scores correlated with grade 3 

MontCAS.   

  The Grade 1 M-CBM association with the grade 3 MontCAS score has a positive 

association in the linear form.  The r-value for the mean of the kindergarten Number 

Identification scores is .57 (see Table 9) which is a strong correlation.  The outlier is in the y-

direction or vertical direction showing the two students who performed in the Nearing Proficient 

Level of the MontCAS (see Figure 4). 
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Figure 18.  Grade 2 M-CBM Mean from fall, winter, and spring scores correlated with grade 3 

MontCAS. 

The Grade 2 M-CBM association with the grade 3 MontCAS score has a positive 

association in the linear form.  The r-value for the mean of the kindergarten Number 

Identification scores is .49 (see Table 9) which is a moderate correlation.  The outliers are in the 

y-direction or vertical direction showing the two students who performed in the Nearing 

Proficient Level of the MontCAS (see Figure 4).   
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