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a b s t r a c t 

It is of vast significance to assess the bone age of hand radiographs automatically in pe- 

diatric radiology and legal medicine. In the literature, many papers focus on improving 

the assessment accuracy but neglecting the existence of poor-quality X-ray images. How- 

ever, in real medical scenarios, the existence of poor-quality X-ray images is unavoidable. 

To tackle this problem, we propose a bone age assessment system for real-world X-ray 

images. Specifically, we first establish a regression model ‘BoNet + ’ based on densely con- 

nected convolutional networks. Then, to handle poor-quality X-ray images, we introduce 

three model architectures that are different in the way of improving image quality. Exper- 

iment results show that the proposed models can estimate the bone age of poor-quality 

images accurately. We also tentatively put forward that if the expressivity of CNN model 

is enough high, multiple tasks can be handled together just by a single model. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Bone age assessment (BAA) is one of the most commonly used clinical diagnosis technologies in the evaluation of chil-

dren’s skeletal maturation in pediatric radiology and legal medicine [1,2] . In medical scenarios, doctors usually compare

bone age with chronological age when diagnosing children growth, metabolic disorders, genetic disorders, etc. Roughly esti-

mated, about 76% of radiologists assess bone age via comparing X-ray images of left hand with a reference atlas for its high

speed and simplicity. However, this method is intuitive, experience-based, and prone to inter- and intra-observer variablility,

i.e., the accuracy of the BAA highly depends on the medical practitioners’ ability. 

For the above-mentioned reasons, about 30 years ago, a BAA system called HANDX [3] was proposed to replace manual

assessment by a semi-automated computer-aided diagnosis system. Since then, many other semi-automated and automated

systems [4–9] have been continuously established. However, most of them just focused on the assessment of X-ray images

of good quality while there are still many X-ray images of poor quality needing to be assessed in a real-world scenario

[4,6,10–14] . 

Specifically, in [10] , the authors found corrupted images (e.g., a rectangle label across the target bone) were rejected

by their proposed system; Reference [13] also showed the most commonly provided file format in teleconsultations was
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lossy JPEG image files with low resolution, and it solved this problem by creating new DICOM images dependent on the

existence of the caliper scale. In addition, the authors in [9,15] found their system rejected poor-quality X-ray images with

much noise. The noise in X-ray image can be regarded as Poisson noise, because the quantum fluctuations in the number of

X-rays generated follows a Poisson statistic [15] . 

If the system rejects these poor-quality X-ray images, patients will need another X-ray examination [10–14] . Unfortu-

nately, repeated X-ray examinations not only bring patients inconvenience and financial implications but also increase ra-

diation exposure. A much more serious situation is that some patients have difficulty in taking an additional examination

under special conditions (e.g., remote medical treatment) [13] . 

To tackle this problem, we build a fully automated BAA system based on convolutional neural networks (CNN) to assess

good-quality and poor-quality X-ray images together. Specifically, we first design a baseline CNN model called “BoNet + ”

based on DenseNet [16] to assess good-quality X-ray images and investigate the choice of loss function. Then, we evaluate

some factors of building a real-world BAA system, including the strategies of processing poor-quality X-ray images. Generally,

we propose a more accurate real-world BAA system based on these existing works. The key idea of this paper is to tackle

the problem of poor-quality X-ray images, and the contributions in this paper are summarized as follows: 

1. Among the existing works, we are the first to find mean absolute error (MAE) loss is much more suitable in BAA

problem than mean square error (MSE) loss, which is helpful to build a more accurate BAA system. 

2. We propose a new BAA system BoNet + and achieve a MAE of 0.76 years, which outperforms the state-of-the-art

performance [8] using the same dataset [5] . 

3. To the best of our knowledge, it is the first study on the assessment of poor-quality images. We propose a new archi-

tecture for the real-world assessment, which overcomes the limitations of the existing BAA system in the assessment

of poor-quality X-ray images. 

4. We find it possible for a single model to handle multiple kinds of poor-quality X-ray images when quality improve-

ment model is of high expressivity. 

The remainder of this paper is organized as follows: Section 2 briefly summarizes several representative BAA systems.

Section 3 describes the proposed baseline model ‘BoNet + ’, real-world BAA systems, etc. Section 4 gives the simulation results

and analyzes these results in detail, while the conclusion is given in Section 5 . 

2. Related work 

In this section,we chiefly introduce the most prominent two BAA systems, BoneXpert [6] and BoNet [8] . 

BoneXpert is the first commercial BAA system and has been applied in over 100 European hospitals. It automatically

segmented hand bones by active appearance model and then assessed bone age by the intensity, shape, and texture scores

of the 13 particular bones derived from principal component analysis [6] . Many similar works [4,17,18] have been done

over the past 20 years, all of which mainly focused on designing a more accurate segmentation algorithm, a better feature

extractor, and a better learning algorithm. Inspired by this kind BAA method, [19] proposed an automated neural network-

based pipeline including segmenting, standardizing and preprocessing input radiographs, and performing BAA. 

Essentially different from traditional machine learning-based BoneXpert, BoNet is the first to apply deep learning to

BAA problem. This model was composed of multiple neural network layers to learn representations of input X-ray images

with multiple levels of abstractions end-to-end. In other words, good BAA features were learned automatically without

domain expertise and engineering skill while classical machine learning methods highly depend on researchers’ experience.

Experiment results showed BoNet outperformed all classical machine learning solutions by a margin. 

Recently, [1] found a deep-learning BAA system could assess bone age with an accuracy much higher than classical

models and similar to expert radiologists. This result represents the great potential of deep learning and encourages other

researchers to study further in the CNN-based BAA system (e.g., [2,20] ). 

3. Real-world BAA system 

In this section, we first propose a baseline BAA model based on densely connected convolutional networks for high-

quality X-ray images and investigate the choice of loss function. Then, we introduce three different architectures for the

assessment of poor-quality X-ray images. 

To the best of our knowledge, there are no works focusing on the choice of loss function in BAA problem and the assess-

ment of poor-quality X-ray images. However, on one hand, we investigate the performance of different loss functions,e.g.,

MAE loss and MSE loss. On the other hand, we propose three different representative system architectures for real-world

X-ray images especially for poor-quality images. 

3.1. BoNet + model 

3.1.1. A baseline CNN architecture 

BAA problem can be seen as a regression problem [8] , or a classification problem [1,19] . In [21] , the authors compared the

performance of regression model and classification model in age estimation problem. Experiment results showed regression
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Table 1 

BoNet + architecture. 

Layers Output Size BoNet + 

Conv(1) 96 256 × 256 7 × 7 conv, stride 1 

Conv(2) 96 256 × 256 5 × 5 conv, stride 1 

Pooling(1) 96 128 × 128 3 × 3 max pool, stride 2 

DB(1) 160 128 × 128 3 × 3 conv, stride 1, gr 16 

TL(1) 128 128 × 128 1 × 1 conv 

128 64 × 64 3 × 3 max pool, stride 2 

DB(2) 256 64 × 64 3 × 3 conv, stride 1, gr 32 

TL(2) 128 64 × 64 1 × 1 conv 

128 32 × 32 3 × 3 max pool, stride 2 

DB(3) 256 32 × 32 3 × 3 conv, stride 1, gr 32 

TL(3) 128 32 × 32 1 × 1 conv 

128 16 × 16 3 × 3 max pool, stride 2 

DB(4) 25616 × 16 3 × 3 conv, stride 1, gr 32 

TL(4) 128 16 × 16 1 × 1 conv 

128 8 × 8 3 × 3 max pool, stride 2 

DB(5) 384 8 × 8 3 × 3 conv, stride 1, gr 64 

TL(5) 256 8 × 8 1 × 1 conv 

256 4 × 4 3 × 3 max pool, stride 2 

DB(6) 512 4 × 4 3 × 3 conv, stride 1, gr 64 

TL(6) 256 4 × 4 1 × 1 conv 

256 2 × 2 3 × 3 max pool, stride 2 

TL(7) 1024 2 × 2 1 × 1 conv 

1024 1 × 1 2 × 2 max pool, stride 2 

Conv(3) 1024 1 × 1 1 × 1 conv, stride 1 

Conv(4) 512 1 × 1 1 × 1 conv, stride 1 

OutLayer 1 × 1 1 × 1 conv, stride 1 

Note that in this table all ‘conv’ layers correspond the block BN_RELU_CONV in 

Fig. 2 , all ‘DB’ layers correspond the dense block, all ‘TL’ layers correspond the 

transition layer and parameter gr corresponds the growth rate for dense block 

[16] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model performed much better than classification model. Thus, we directly regard BAA problem as a regression problem in

this work. 

Owing to the great success achieved by DenseNet in computer vision problem, our BAA model is mainly composed of

several dense blocks. As can be seen in Fig. 3 , dense block is an iterative concatenation of previous feature maps. There-

fore, each layer is able to access all previous layers easily and the information of preceding feature maps is fully reused.

Furthermore, from the parameter usage perspective, this block is much more efficient than any other model. 

As illustrated in Fig. 4 , the input of BoNet + is a 256 × 256 normalized gray X-ray image. The first two BN_RELU_CONV

layers respectively have 96 7 × 7 filters and 96 5 × 5 filters with a stride 1, followed by a 3 × 3 max pooling layer with a

stride 2. The following parts are six dense blocks, respectively followed by a transition layer. Then, there is a BN_RELU_CONV

layer with 1024 1 × 1 filters and a stride 1, followed by a 2 × 2 max pooling layer with a stride 2. The last three layers

are three BN_RELU_CONV layers respectively with 1024, 512, and 1 1 × 1 filters with a stride 1. The details are shown in

Table 1 . 

3.1.2. BAA dataset 

Although many researches have been done on BAA problem, there are nearly no public bone age datasets, leading to the

difficulty in the comparison of different algorithms. The Digital Hand Atlas Database [5] , which contains about 1400 X-ray

left-hand images, is one of the few public datasets. 

Different from other BAA datasets, ages in this dataset range from 0 to 19 years and the race includes Asian, Black,

Caucasian, and Hispanic. The large age range and multiple kinds of the race make it a much more challenging work to

estimate the bone age of this dataset. The bone age of each X-ray image was provided by two expert radiologists and in

our experiment, we simply use the mean value of the two prediction ages as the ground truth. Some example X-ray images

in this dataset are shown in Fig. 5 . We can see that these X-ray images vary greatly in brightness, contrast, and hand

placement, dramatically increasing the difficulty of age prediction. 

To simulate the real-world X-ray images of poor-quality, we artificially add Poisson noise or black labels to the images

and decrease the resolution by 4x and the input of the network is the blurred low resolution image, as illustrated in Fig. 1 .

To prevent the labels placed at black background, we only add them on the central part (60% of the full image). To prevent

overfitting and improve the model’s performance, we conduct our experiment on this dataset via using 5-fold cross valida-

tion when compared with the state-of-the-art BAA method and data augmentation including random rotation, shift, zoom,

etc, as illustrated in Fig. 6 . 
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Fig. 1. Simulation examples of X-ray images of good or poor quality. a e: origin images. b f: images with Poisson noise. c g: corrupted images with label. 

d h: low-resolution images. 

Fig. 2. Convolutional block. 

Fig. 3. Dense block. 

 

 

 

3.1.3. Evaluation metrics 

The most commonly used evaluation metrics in regression problem are MAE and median absolute error (MdAE), which

are defined as follows: 

MAE = 

1 

N 

N ∑ 

i =1 

| y i − y i | , (1) 

Md AE = med ian | y − y | , (2) 

where N is the number of training samples, y i is the prediction bone age and y i is the ground truth of the i th sample. As

described in [8] , MAE has been employed in nearly all previous works using the above-mentioned dataset. Hence, in order

to directly compare BoNet + with previous techniques, we use MAE as our basic metric. 
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Fig. 4. Overview of BoNet + architecture. It consists of six dense blocks, multiple convolutional layers, multiple batch normalization layers, and pooling 

layers. The input is a 256 × 256 gray image and the output is a neuron which represents the predicted bone age. 

Fig. 5. Examples of X-ray images in the Digital Hand Atlas Database. AS: Asian, BL: Black, CA: Caucasian, HI: Hispanic; M: Male, F: Female. 

Fig. 6. Examples of data augmentation. a: origin image. b: random rotation. c: random shift. d: random zoom. e: augmentation combination. 

 

 

 

 

 

Although employed widely, MAE has some inevitable drawbacks. When MAE value has been quite low, a little improve-

ment can not make obvious changes. So, the authors in [21] proposed an evaluation metric called Cumulative Correct Score

(CCS). This metric is defined as the total number of the evaluated images, whose error values are under a year threshold,

which is defined as follows: 

C C S(t) = 

N ∑ 

i =1 

h (| y i − y i | − t) , (3)

h (x ) = 

{
1 x ≤ 0 

0 otherwise 
, (4)
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Fig. 7. Classification model based on VGG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where N is the total number of evaluated X-ray images, y i is the i th predicted bone age, y i is the i th ground truth bone age,

and t is the error threshold. Compared with MAE and MdAE, CCS can intuitively reflect the distribution of the error and

show very minor improvement. Thus, we use CCS as an additional evaluation metric in this study. 

3.2. Loss function 

Loss function is one of the most significant factors in deep learning, because optimization can be regarded as a process

of minimizing the target loss function. BAA problem in this study is regarded as a regression problem ( Section 3.1.1 ) and

in this kind of problems, MSE is the preferred loss function for its great mathematical properties (e.g., convexity, simplicity,

and strictly differentiable), which is defined as: 

L MSE = 

1 

N 

N ∑ 

i =1 

( y i − y i ) 
2 . (5) 

To the best of our knowledge, all of previous BAA regression models used MSE loss, a smooth function and easy to optimize.

In contrast, MAE loss is not fully smooth, leading to a great difficulty in optimization. So, there has been no research on the

BAA model with MAE loss, while it has achieved great success in age estimation [21] . Therefore, in this work, we investigate

whether MAE loss also performs well in BAA problem. 

L MAE = 

1 

N 

N ∑ 

i =1 

| y i − y i | . (6) 

3.3. Model architecture 

In this subsection, we study several ways to design a model architecture to deal with both poor-quality and high-quality

images together. The key point of BAA assessment of poor-quality images is how to improve the image quality. Generally

speaking, it is a brilliant choice to handle different kinds of poor-quality images using different ways, which very likely make

the model more accurate. In the following, we will verify whether it is correct. 

3.3.1. Classification and quality improvement model architecture 

As mentioned in Section 1 , there are mainly three kinds of poor-quality images including images with Poisson noise,

corrupted images with label, and low-resolution images. It is a natural way to process these images according to the kinds

of poor quality. Therefore, we first use a classification model based on VGG [22] to judge the kinds of the input images. As

shown in Fig. 7 , the input of the classification model is a gray X-ray image with poor quality or high quality. And a softmax

classification layer is finally applied to the last 4-D fully-connected layer with a cost function of cross entropy. 

Then, different kinds of X-ray images are sent to corresponding quality improvement network based on U-Net [23] as

shown in Fig. 8 . U-Net architecture is first applied in biomedical image segmentation and researchers find that U-Net also

has an excellent performance on image denoising, super resolution, etc. Therefore, we employ U-Net to improve the qual-

ity of X-ray images as shown in Fig. 8 . Moreover, inspired by [24] , the proposed model also adopts the residual learning

formulation as shown in Fig. 9 , where a single residual unit is employed to predict the residual images. 

The quality improvement network, as shown in Fig. 8 , is composed of a contracting path (left part) and an expansive

path (right part) [23] . On one hand, the contracting path is similar to the classical architecture of a CNN model, consist-

ing of repeated application of two 3 × 3 convolution layers, each followed by a 2 × 2 max pooling layer with stride 2.
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Fig. 8. Quality improvement network with residual U-Net architecture. 

Fig. 9. Examples of origin and residual images. a: high-quality image. b: image with Poisson noise. c: corrupted image with label. d: low-resolution image. 

e~h: corresponding residual images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, at each downsampling step, the number of feature channels are doubled. On the other hand, every step in the

expansive path is composed of an upsampling of feature maps followed by a 2 × 2 convolution (“up-convolution”) for halv-

ing the number of feature channels, a concatenation with the corresponding feature maps from the contracting path, and

two 3 × 3 convolution layers. Finally, a 1 × 1 convolution layer is applied to map the 64-component feature vector to the

desired residual gray images. In total, we use 23 convolutional layers, 5 max pooling layers, 5 up-convolution layers, and 5

concatenation layers in this network. 

After quality improvement, processed images are sent to BoNet + to assess the bone age. The whole architecture is illus-

trated in Fig. 10 (a) and we call this model architecture ‘BoNet + _CQ’ (classification and quality improvement). 

3.3.2. Direct quality improvement model architecture 

Although classification and quality improvement are a natural method, BoNet + _CQ model costs much time and needs

a lot of computational power. In clinical scenarios, these requirements are difficult to be met. Besides, the accuracy will

heavily depend on the performance of classification part. Thence, we wonder whether it is possible to only use a single

quality improvement model to handle all kinds of X-ray images as illustrated in Fig. 10 (b). In other words, whatever kinds

of quality these images have, we directly send them to a quality improvement model and then regard the output as the

input of BoNet + . We name this model architecture ‘BoNet + _DQ’ (direct quality improvement). 

3.3.3. No quality improvement model architecture 

The above two architectures (BoNet + _CQ and BoNet + _DQ) both consider the effect of poor-quality images on BAA prob-

lem. In order to show the importance of this consideration, we propose a simple model called ‘BoNet + _NQ’ (no quality
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Fig. 10. Overview of different model architectures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

improvement), not considering the problem of poor-quality images and directly using all images as the input of BoNet + as

shown in Fig. 10 (c). 

4. Experiment results and analyses 

In this section, we first describe the experiment setting details. Then, we report the experiment results of BoNet + with

different loss functions and compare the best result with the state-of-the-art result using the same dataset. Finally, we give

simulation results of real-world BAA model using different model architectures. 

4.1. Experiment settings 

The implementation of all models has been done in TensorLayer toolbox, a high-level Python library extended from

TensorFlow and on a NVIDIA GTX 1080 Ti GPU. We train all networks using the Adam optimizer by setting β1 = 0.9, β2 =
0.9999 and ε = 10 −8 from scratch similar to [8] . 

When comparing the performance of different loss functions, the batch size is set to 20 and the learning rate is set to

0.0 0 01. It takes about 30 s per epoch and the whole training process takes about 1.5 h. 

When comparing the performance of different model architectures, the batch size of classification model is set to 16 and

that of quality improvement model is set to 8. The learning rates of them are all set to 0.0 0 02. The classification model takes

about 17 s per epoch and the whole training process takes about 1 h. Each quality improvement model takes about 79 s per

epoch and the whole training process takes about 1.7 h. Additionally, we trained BoNet + _CQ and BoNet + _DQ sequentially

instead of end-to-end. 

4.2. Analyses of BoNet + using different loss functions 

To find a better loss function for BAA problem, we train BoNet + _MAE and BoNet + _MSE from the baseline architecture.

Experiment results of two models are shown in Table 2 and Fig. 11 . 

We can see that BoNet + _MAE outperforms BoNet + _MSE under all evaluation metrics. To find the reasons behind the

experiment results, we analyze the properties of MAE and MSE loss. First, since MAE is one of the evaluation metrics,
Table 2 

The results of BoNet + with different loss functions. 

Model MAE MdAE 

BoNet + _MAE 0.762 ± 0.103 0.603 ± 0.082 

BoNet + _MSE 0.872 ± 0.182 0.774 ± 0.117 
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Fig. 11. CCS of BoNet + _MAE and BoNet + _MSE. 

Table 3 

Comparison with the state-of-the-art methods over the 

Digital Hand Atlas Database. (Part of the data is from 

[8] .) 

Method Time MAE 

Hsieh et al. [4] 2007 2.57 

Gertych et al. [5] 2007 2.10 

Giordano et al. [7] 2016 1.82 

Fine-tuned GoogLeNet [8] 2017 0.82 

BoNet [8] 2017 0.79 

BoNet + _MAE 2018 0.76 ± 0.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimizing MAE loss naturally improve the performance under MAE metric as shown in Table 2 . Besides, MAE loss is not

as sensitive as MSE loss to outliers. MSE loss squares the errors before they are averaged and hence models with MSE

loss usually put more effort into reducing very big errors. However, in practice, label noises are unavoidable and hence

sometimes model with MSE loss will focus on reducing few inaccurate label errors at the expense of other accurate labels.

Therefore, as shown Fig. 11 , performance gap between BoNet + _MAE and BoNet + _MSE with a low CCS threshold is quite

large, while the one with a very high CCS threshold is very small. 

4.3. Comparison with the state-of-the-art methods for high-quality X-ray images 

In this subsection, we compare our proposed BoNet + _MAE with other BAA methods using the Digital Hand Atlas

Database in Table 3 . The first three methods were based on traditional machine learning and others were all based on

deep learning. 

BoNet + _MAE achieves the state-of-the-art accuracy, which is much higher than that of traditional methods and little

higher than that of BoNet. However, our training speed is about 30 s per epoch ( Section 4.1 ) while the training speed of

BoNet was over 240 s per epoch using a similar GPU. The training speed of BoNet + is much higher than that of BoNet.

Besides, the number of parameters in BoNet + is just less than 10 M while that of BoNet was about 40 M. These advan-

tages are crucial in clinical application for the shortage of high-performance computers in most hospitals. Compared with

traditional methods, BoNet + also has a tremendous advantage over test speed. Although it takes much time to train deep

learning-based models, these kinds of methods just take several milliseconds to assess an X-ray image while traditional

methods usually need several seconds at least [8] . 

The contrast of the X-ray images is a fundamental problem when using traditional methods. Some references show that

their system may reject the X-ray images for their poor contrast. We also notice this problem in our experiment. In the Dig-

ital Hand Atlas Database, there is an X-ray image (ID: 4185) with poor contrast as shown in Fig. 13 . During the test period,

the predicting error of this X-ray image is 0.83 years. It seems that the poor contrast does not affect the predicting accu-

racy. In [25] , the authors provided an evaluation of 4 state-of-the-art deep neural network models for image classification

under quality distortions. They considered five types of quality distortions: blur, noise, contrast, JPEG, and JPEG20 0 0 com-

pression. They also found neural networks shown resiliency with respect to contrast change while blur and noise affected

classification seriously. 

To show the generalization of our network, we use our trained network to predict the X-ray images in Chinese children’s

standard bone age map. The MAE of this test dataset is 1.017 years. When we trained our networks, we did not use any

dataset from China children. However, it still achieved a good accuracy on this dataset. This shows the good generalization

of our proposed network. 
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Table 4 

The MAE performance of different model architectures for real-world BAA problem. 

High-quality image Image with Poisson noise Corrupted image with label Low-resolution image 

BoNet + 0.762 1.124 1.065 1.215 

BoNet + _CQ 0.762 0.909 0.804 0.769 

BoNet + _DQ 0.764 0.922 0.808 0.767 

BoNet + _NQ 0.850 0.967 0.876 0.879 

Table 5 

The MdAE performance of different model architectures for real-world BAA problem. 

High-quality image Image with Poisson noise Corrupted image with label Low-resolution image 

BoNet + 0.603 0.828 0.774 1.071 

BoNet + _CQ 0.603 0.788 0.662 0.714 

BoNet + _DQ 0.627 0.774 0.663 0.692 

BoNet + _NQ 0.697 0.825 0.752 0.799 

Fig. 12. CCS of different model architectures for real-world BAA problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Analyses of real-world BoNet + using different model architectures 

Since BoNet + with MAE loss works much better than that with MSE loss, in this section, we compare the performance

with different model architectures all based on BoNet + _MAE. Tables 4 , 5 and Fig. 12 show the performance comparison of

the proposed three model architectures and BoNet + with different metrics. 

The classification accuracy was over 98%. The errors incurred for the following reason. First, there are some poor-quality

images in Digital Hand Atlas Database, and but we regarded all of them as high-quality images in classification part. In

other words, sometimes the ground truth was wrong. Second and more commonly, the poor-quality images were created by

simulation and labels were inevitably added to the black background. We regarded these images as corrupted images while

in fact, they were high-quality. 

Under all evaluation metrics, the proposed three model architectures consistently outperform single BoNet + . This un-

derlines the necessity of building a system for real-world BAA problem. Moreover, the performance of BoNet + _CQ and

BoNet + _DQ is much better than that of BoNet + _NQ, which does not improve the quality of poor-quality images. It sug-

gests the necessity of quality improvement and if the input image quality is improved, the error will be much smaller. For

the BoNet + _DQ, considering the case where all three types of poor quality are present in an image, we use X-ray images

with all three types together to train BoNet + _DQ. Experiment results show that the MAE and the MdAE of performance of

BoNet + _DQ there is 0.824 years and 0.733 years. 

Under normal circumstances, it very likely works better if different kinds of poor-quality X-ray images are handled via

different models. However, our experiment results are contrary to it and the performance of BoNet + _CQ and BoNet + _DQ is

pretty near. Thus, we then study the performance of their quality improvement models. As can be seen in Fig. 14 , the outputs

of BoNet + _CQ and BoNet + _DQ are so similar that it is hard to distinguish them with the naked eye. Similarily, [24] also

found that handling multiple denoising tasks (e.g., single image super-resolution, blind Gaussian denoising, and JPEG image

deblocking) with only a CNN model could achieve a much better result than some state-of-the-art methods. We speculate

that our proposed quality improvement model is of high expressivity for widening convolutional layers, and deepening the

network, making it possible for a single model to handle multiple poor-quality X-ray images. Furthermore, CNN model may

be more robust and of better performances because more training samples are sent to one network. The above reasons may
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Fig. 13. X-ray image(ID: 4185) from Digital Hand Atlas Database. 

Fig. 14. Examples of quality improvement model outputs. Top row: input images; middle row: outputs of CQ model; bottom row: outputs of DQ model. a: 

high-quality image; b: image with Poisson noise; c: corrupted image with label; d: low-resolution image. 
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explain this interesting result. Ultimately, considering the performance of accuracy and complexity, BoNet + _DQ model is a

better choice in real application than BoNet + _CQ model. 

5. Conclusion 

In this study, we have proposed a fully automated BAA system for real-world X-ray images. We first establish a model

based on densely connected convolutional networks for high-quality X-ray images and investigate the performance discrep-

ancy between MAE loss and MSE loss. Experiment result shows that MAE loss is more suitable in BAA problem than MSE

loss. Moreover, our model achieves a state-of-the-art performance under MAE metric. Then, starting from BoNet + _MAE, we

perform in-depth diagnosis of three model architectures for BAA of poor-quality X-ray images. The accuracy of BoNet + _DQ

is as high as that of BoNet + _CQ, and both of them exceed others by a margin. In addition, we tentatively put forward that

if the expressivity of CNN model is enough high, multiple tasks can be handled together just by a single model. 

6. Limitation and future work 

The most serious limitation of this paper is the dataset, which is fully generated via simulation. Though the generated

synthetic images can partly exhibit the characteristic of the poor-quality X-ray images, they must be different from the real

datasets. Therefore, the proposed system cannot be directly applied in real-world scenario. If this system is going to be

deployed, the parameters in the neural networks need to be updated using real datasets. Besides, we here only take three

types of poor quality into consideration, which is another major limitation of this paper. Three types of poor quality are not

enough and the realistic scenarios are more complicated. In the future, we will collect as much real data as possible and

conduct the experiment on the real data instead of simulation. 

In this paper, we mainly focus on handling the problem of poor-quality X-ray images, ignoring the assessment model,

which is fundamental to accurate bone age estimation. It is necessary to make great effort s in the bone age assessment part

and perform ablation studies. Besides, the proposed BoNet + _CQ is too complex for extra VGG classification network. It must

be a better choice to directly use features extracted by BoNet + for classification. 
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