
Computers and Electrical Engineering 81 (2020) 106531 

Contents lists available at ScienceDirect 

Computers and Electrical Engineering 

journal homepage: www.elsevier.com/locate/compeleceng 

Application of deep learning for autonomous detection and 

localization of colorectal polyps in wireless colon capsule 

endoscopy 

� 

Esmaeil S. Nadimi a , ∗, Maria M. Buijs b , c , Jurgen Herp 

a , Rasmus Kroijer b , c , 
Morten Kobaek-Larsen 

b , c , Emilie Nielsen 

d , Claus D. Pedersen 

d , 
Victoria Blanes-Vidal a , Gunnar Baatrup 

b , c 

a Group of Applied AI and Data Science, Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark 
b Department of Surgery, Odense University Hospital, Odense, Denmark 
c Department of Clinical Research, University of Southern Denmark, Odense, Denmark 
d Center for Innovative Medical Technology, Odense University Hospital, Odense, Denmark 

a r t i c l e i n f o 

Article history: 

Received 12 November 2018 

Revised 16 September 2019 

Accepted 26 November 2019 

Available online 20 December 2019 

Keywords: 

Colorectal polyps 

Colon capsule endoscopy (CCE) 

Deep learning 

Machine learning 

Convolutional neural networks 

a b s t r a c t 

Recent advances in deep learning have prompted a surge of interest in analysis of medical 

images. In this study, we developed a convolutional neural network (CNN) for autonomous 

detection of colorectal polyps, in images captured during wireless colon capsule endoscopy, 

with risk of malignant evolution to colorectal cancer. Our CNN is an improved version of 

ZF-Net which uses a combination of transfer learning, pre-processing and data augmenta- 

tion. We further deployed our CNN as the basis for a Faster R-CNN to localize regions of 

images containing colorectal polyps. We created an image database of 11,300 capsule en- 

doscopy images from a screening population, including colorectal polyps (any size or mor- 

phology, N = 4800) and normal mucosa (N = 6500). Our CNN scored an accuracy of 98.0%, 

a sensitivity of 98.1% and a specificity of 96.3%. Our network outperforms all state-of-the- 

art results in autonomous detection of colorectal polyps and shows high interpretability in 

terms of sensitive regions. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

1.1. Setting the stage 

Colorectal cancer (CRC) is one of the most preventable forms of cancer, if colorectal polyps are detected and removed.

Several studies have shown that during screening program, adenocarcinomas have been detected in between 3% and 4.6% of

those who underwent colonoscopy following a positive immunological fecal occult blood test (iFOBT) result [1] . As a result,

there has been a significant increase in the number of referrals for colonoscopy to detect and treat colorectal polyps and

early stage adenocarcinoma. Nationwide CRC screening is offered in many developed countries, but according to the statistics

reported in [2] , only 60% of people at risk participate in screening, most likely because iFOBT and Optical Colonoscopy (OC)
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Fig. 1. Colorectal polyps in different stages of neoplasia and different grades of bowel cleanliness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

suffer from shortcomings in sensitivity, specificity, and patient acceptance due to pain and discomfort. Unlike OC, Colon Cap-

sule Endoscopy (CCE) allows performing diagnosis using a non-invasive untethered monitoring device (also known as cam-

era pill) carried through the GI tract via peristalsis. The camera pill is a vitamin size ingestible robot of size 31 mm × 11 mm

equipped with a processor, illumanting lights, power supply, radio communication systems and two cameras, capturing im-

ages of the inner lining of the Gastrointestinal (GI) tract. 

The probability of high-grade neoplasia and of carcinomatous transformation increases with polyp size, especially when

they are larger than 10 mm [1] . To improve the quality of the national screening program in Denmark in terms of 1)

diagnostic accuracy, 2) polyp detection rate and 3) per-patient sensitivity for polyps only larger than 10 mm, we conducted

several clinical trials in which individuals who had positive iFOBT results during screening underwent investigator blinded

CCE and OC. Participants underwent repeated endoscopy if significant lesions were detected by CCE, and were considered

missed by OC [2] . We refer the interested reader for a detail description of the study and the comparison between the

performance of CCE and OC to our recent publications [2] and [3] . 

The results of our studies have indicated that in general, CCE is better than OC for polyp detection, both when comparing

the total number of polyps, and when performing a paired comparison of the number of polyps detected per patient which

could be contributing to OC false-negatives rather than to CCE false-positives [3] . However, the task of manually reviewing

the vast number of images produced by CCE examinations (approximately 50,0 0 0 images per patient), and looking for the

few images containing lesions is a laboursome task. To tackle this major drawback, several research units have suggested

innovative schemes for autonomously discriminating endoscopic images based on the existence of polyps. 

1.2. Previous work 

Extraction of discriminative features from low-resolution medical images is one of the most challenging tasks in object

recognition. Determining optimal features for a specific task at hand, based on the attributes of objects to be recognized is

hard, mainly due to the ambiguity and lack of general task-independent rules for optimal feature selection. Polyp detection

in CCE videos is a perfect example of such a task where tens of thousands of low-resolution images are generated [4] . The

task at hand is then to detect colorectal polyps, which typically do not have common morphology, size, texture and color

features ( Fig 1 ), from a single patients video [3] . In addition, variable lighting and infrequent occurrence of polyps in a given

CCE video create immense difficulties in devising a robust and data-driven method for reliable detection and segmentation

process. 
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Although a rich body of literature surronds polyp detection in colonoscopy videos, a major study addressing similar

challenges in images retrieved from CCE does not exist. Images obtained from CCE procedure are significantly lower in

resolution compared to those of OC. In addition, publicly available databases such as Kvasir (A Multi-Class Image Dataset for

Computer Aided Gastrointestinal Disease Detection) had a significant imapct on the progress of polyp detection in images

retrieved from OC. However, a similar database featuring colorectal polyps retrieved from CCE does not exist. Examples of

modern polyp detection algorithms in colonoscopy videos are [5] , [6] , [7] , [8] and [9] . 

One of the earliest publications in automatic polyp detection is the work of [10] , who utilized texture spectrum with

adaptive neuro-fuzzy-based classifier. The authors reported 97% sensitivity on 140 images with 70 polyp frames. Another

highly relevant publication is [11] where two different shape descriptor features were compared to discriminate polyps from

polyp-free colorectal regions. The algorithm was tested on 300 images out of which 150 contained polyps and accuracy of

86% was reported. In the study conducted by [12] , the authors used geometrical features via ellipse fitting and multi scale

rotation invariant local binary patterns and histogram of oriented Gaussian texture features. The reported 64.8% true positive

rate in a total number of 27,984 frames with 12,984 polyp frames makes this study the largest in number of images, so far.

The large number of polyp frames was obtained by perturbing original 541 polyp frames to obtain 12,443 extra samples

for training. In a pilot study, we derived a novel algorithm based on random matrix theory for texture classification of

uncalibrated images to find universality classes corresponding to the empirical spectral density of the covariance matrix of

image intensity matrix [13] . Our dataset contained 344 images of the inner lining of the large bowel with at least one polyp

present in the image. Classification accuracy of our algorithm was approximately 98%. Last but not least, [14] utilized a new

texture feature to characterize the images by integrating advantages of wavelet transform and uniform local binary pattern

with support vector machines as classifier. Their dataset contained a total of 120 0 images (60 0 images of polyps and 600 of

polyp-free tissue) and an accuracy of 91.6% was achieved. For a complete list of publications, we refer the interested reader

to the excellent review paper [4] . 

The major drawbacks of all the reported algorithms are three fold: 1) Overfitting, since the proposed methods were tuned

to obtain the best possible detection accuracy results for their corresponding datasets; 2) small sample size, since 70%-80%

of the images were used for training the algorithm while the reported accuracies were obtained on the remaining 20%-30%

of the images and 3) lack of algorithm validation on full CCE videos featuring various grading scales of colon cleanliness.

In this study, we addressed these shortcomings and developed a deep learning algorithm based on convolutional neural

networks (CNN) for autonomous detection and localization of colorectal polyps of any size or morphology. The important

advantages of our study are: 1) large testing dataset as 1695 images unseen by the network were allocated to the test

set, 2) during the training process, the network self-determined the optimal set of features from the data, 3) using data

augmentation, our algorithm is both rotation and translation invariant and 4) we tested the performance of our network

on 3 full CCE videos (each featuring approximately 50,0 0 0 images) that were not seen by the network during training,

validation or testing process. 

The organization of the paper is as follows: Section 2 presents the methods deployed in this study, including design and

the development of network architecture and construction of the database. Section 3 presents results and discussions while

conclusions of the study and future works are provided in Section 4 . 

2. Methods 

2.1. CNN architecture 

The LeCun paper [15] on the recognition of hand-written digits based on a pioneering 7-level convolutional network

(LeNet-5) is both remarkable and precocious. Inspired by that, we evaluated five network architectures: an AlexNet / ZF-Net

[16] , a GoogLeNet [17] , a ResNet50 [18] , a VGG16 [19] and a VGG19 [19] . These networks construct a hierarchical represen-

tation of input images where deeper layers contain higher-level features constructed using the lower-level features of earlier

layers. These publicly available networks are trained on 10 0 0 objects and therefore have learned rich feature representa-

tions for a wide range of images. However, none of the objects look like colorectal polyps and in light of that, training a

network from scratch would be the most reliable strategy. However, a dataset of insufficient size is the limiting factor for

this approach and instead, the pre-trained CNNs were used either as an initialization for a fixed feature extractor or transfer

learning, for the task at hand. 

In this study, we conducted a preliminary experiment where we allocated 10% of the database for testing the perfor-

mance of different networks. We observed that in terms of sensitivity and specificity, pre-trained ZF-Net generally out-

performed the other five networks ( Table 1 ) and therefore, we presented this network architecture in greater detail. The

network comprises of 25 layers where 8 of them contain learnable weights featuring 5 convolutional and 3 fully connected

layers. Each convolutional layer contains 96 to 384 kernels of variable size 3 × 3 to 11 × 11 with a depth of 3 up to 256.

To build robustness to intra-class deformations and to avoid overfitting, Max-Pooling kernels of size 3 × 3, Rectified Linear

Unit (ReLU) nonlinear activation function and dropout of 50% were used. The last fully-connected (FC) layer was replaced to

output two classes, namely Polyps and No Polyps. For more details, we refer the interested reader to [16] and [20] . 

To solve a new classification problem and depending on the use of feature extraction scheme or transfer learning, net-

works last layer or last three layers, respectively, must be fine-tuned. In this study, applying feature extraction scheme re-
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Table 1 

Performance of different networks on test dataset. 

Network Accuracy% Sensitivity% Specificity% 

Our modified Network 98.0 98.1 96.3 

AlexNet 74.1 92.3 82 

GoogleNet 51.2 13.2 99.4 

ResNet50 69.7 80.7 99.3 

VGG16 63.5 42.4 85.6 

VGG19 82.7 68.8 90.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sulted in detection and classification accuracy of 54%, performing as poorly as a random classifier. A significant improvement

in networks performance was observed when transfer learning was used ( Table 1 ). 

To improve networks performance, we further optimized networks architecture and used transfer learning. We modified

the network and deployed stochastic gradient descent with momentum (SGDM) as the optimization algorithm. The learning

rate was initially set to 1e-4, but adaptively modified during the training process until the validation criteria were met.

The epoch size for training process was limited to max of 6, leading to 787 iterations per epoch. Validation frequency and

patience were set to 3 and infinity, respectively. The dataset containing images of both the mucosa of the large bowel

without polyps and those containing colorectal polyps was augmented by rotating them randomly. To achieve both rotation

and translation invariance, the images were randomly rotated (4 angles) and translated (by a vector [ u, v ], 1 ≤ u, v ≤ 3,

8 directions) using data augmentation without affecting the contents or the size of the images. To enhance the contents

around polyps in the images, proportional padding was used. Finally, to overcome the generalization gap while keeping the

limited GPU memory in mind, mini-batch size of 10 was selected. 

2.2. Study design 

This research is a sub-study of a double blinded longitudinal trial including 255 patients that were FIT-positive (national

screening program in Denmark) during a period of one year (2015–2016). The participants underwent both CCE and OC in

two consecutive days. Prior to the day of undergoing OC, the participants were investigated by a second-generation camera

pill capsule endoscopy (PillCam COLON 2 Medtronic, Minnesota, USA). Throughout both CCE and OC investigations, polyp

size, morphology and location were identified but the observers were blinded for the results of the other examination. The

study was approved by the Local Ethics Committee (S20140141) and registered at clinicaltrials.gov (NCT02303756). For a

more detailed study design, the interested readers are referred to our previous publications on this study listed through

[2] and [3] . 

2.3. Image acquisition and database formation 

The images used in this study were obtained from CCE videos that contained at least one colorectal polyp of any size or

morphology. The videos were read in RAPID reader software (Given Imaging, Israel) and analyzed frame-by-frame by trained

nurses and gastroenterologists, who identified existing polyps. The length of videos varied among patients, ranging from

40 min to 4 hours. The study resulted in an original database (before augmentation) of 1200 distinct images of colorectal

polyps and 1625 images of normal mucosa. 

Using data augmentation, we created a database containing 11,300 CCE images of dimension 576 × 576 × 3 (RGB) with

different grades of colon cleanliness, of which 4800 of them contain colorectal polyps of various sizes and morphologies.

Images of normal mucosa featured different degrees of cleanliness and air bubbles. To regularize the network, reduce over-

fitting, ensure that it is rotation and translation invariant and help remedy the scarcity of data, we augmented the images

by random rotation in four directions. We used rotation, cropping, and mirroring transformations to increase the effective

size of our dataset. For each training image, we performed four random rotations (in addition to the original database) and

sampled one random crop per rotation offline; effectively increasing the size of the training set by a factor of 5. We also per-

formed random mirroring at training time. The augmented images containing polyps were all checked for contents, ensuring

that polyps were not mistakenly cropped out. These augmentations are justified since masses have no inherent orientation

and their diagnosis is invariant to these transformations. 

We split the images randomly by patient into training, validation and testing sets (70%, 15% and 15% of the full dataset,

respectively), constraining the validation and test sets to be balanced. 

2.4. Region-CNN (R-CNN) network architecture 

Object detection networks depend on region proposal algorithms to hypothesize object locations. The main difference

between these networks is the process of selecting the regions and how they are classified. R-CNN and Fast R-CNN use a

region proposal network (RPN) algorithm as a pre-processing step before running the CNN. The proposal algorithms such

as EdgeBoxes [21] or Selective Search [22] are independent of the CNN and they become the processing bottleneck com-

pared to running the CNN. Faster R-CNN addresses this issue by implementing the region proposal mechanism using the
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Fig. 2. Faster R-CNN detector using Region Proposal Networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CNN and thereby making region proposal a part of CNN training and prediction steps. For that reason, we developed a

Faster R-CNN that benefits from sharing convolutional features with our developed CNN by altering the optimization pro-

cess ( Fig 2 ) [23] . The main task of this network was to localize colorectal polyps and suggest a bounding box around them.

To develop our Faster R-CNN, we only selected a portion of our image database (1130 images equivalent to 10% of the

database). These images were manually labeled and bounding boxes were created around each polyp that appeared in the

image. We further split the images to 70% for training, 15% for validation and 15% (i.e., 170 images) for testing our Faster

R-CNN network. This was due to the tedious task of labelling, drawing ground truth bounding boxes and finally creating the

database for our RPNs. Each image contained bounding boxes surrounding colorectal polyps. Each bounding box was in the

format [ x, y, width, height ]. The format specified the upper-left corner location and size of the object in the corresponding

image. 

The Faster R-CNN was trained in four steps, namely: Step1) Training an RPN, Step2) Training a Fast R-CNN Network

using the RPN from Step1, Step3) Re-training RPN using weight sharing with Fast R-CNN, Step4) Re-training Fast R-CNN

using updated RPN. The first two steps trained the region proposal and detection networks, while the final two steps

combined the networks from the first two steps such that a single network was created for detection. We deployed the

CNN developed in this study (series network). We further transformed the CNN into a Faster R-CNN network by adding

an RPN, a Region of Interest (ROI) max pooling layer, and new classification and regression layers to support object

detection. 

The learning rate for the first two steps was set to 1e-3 while that of the last two steps was 1e-4. The mini-batch size

was set to 1, which processed multiple image regions from one training image every iteration. The number of image regions

per image were controlled by two distinct parameters, namely, Positive and Negative training samples. These two values

were set to overlap with the ground truth boxes by a factor of [0.6-1.0] and [0-0.3], respectively. To consider a bounding

box as a true positive containing a polyp, we selected a threshold value of 0.7 for the Intersection of Union (IoU) measure,

which is a good threshold for computing Intersection over Unions for various bounding boxes. 

In this study, confidence (precision) was defined as the ratio of true positive instances to all positive instances of objects

in the detector, based on the ground truth, referring to the strongest detection scores. A higher score indicated higher

confidence in the detection, and that the bounding box was more likely to contain a polyp. 

3. Results and discussions 

Empirical analyses and quantitative results of all five CNNs are presented in Table 1 . We further visualized saliency maps

to provide interpretability of the model to show the regions of an image that the network is sensitive to, when making

predictions ( Fig 3 ). The performance of our trained Faster R-CNN is also presented in Fig 4 . The processing was carried out

using NVIDIA P60 0 0 Quadro GPUs, and MATLAB R2018a was used as the analysis software. 

3.1. Empirical analysis and performance 

The performance of different networks is presented in Table 1 , showing the superiority of our modified network in terms

of accuracy, sensitivity and specificity. Our modified ZF-Net outperformed the other four networks by a remarkable margin.

A high sensitivity is of great importance, since the cost of false negatives (i.e. missed polyps) is much higher than false

positives. Fig 5 presents some examples of misclassified images where either a polyp was missed (false negative or type

II error) or the normal mucosa was recognized as a polyp (false positive or type I error). We observed two scenarios that

frequently lead to type II error. The first group of missed polyps shared the common property of being very small in size
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Fig. 3. Saliency map of the network for some polyps, where brighter regions indicate higher contribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Fig 5 : top-left and bottom-right). This would be of less concern since small polyps, i.e. those smaller than 6mm in size are

less likely to harbor advanced neoplasia and are often missed by OC [24] and [25] . The second group of missed polyps shared

the feature of being so large (larger than 10 mm) in the image, that they caused perspective distortion ( Fig 5 : bottom-left). 

Although this type II error could raise concerns over the performance of the network in detecting very large polyps,

these polyps were also detected in previous frames where they looked smaller, which mitigate the consequences of the

obstruction of cameras field of view. 

We further tested the performance of our CNN on 3 full CCE videos (each featuring approximately 50,0 0 0 images) that

were not seen by the network during training, validation or testing phase. Each video contained at least one polyp which

were successfully picked by our CNN. However, we observed that the network, in multiple occasions, classified the normal

mucosa as colorectal polyps (specificity of 86% over the 3 videos), which could be due to the specificity measure of the

detection network (96.3%). 

3.2. Interpretability, saliency maps and Faster R-CNN 

To visualize the saliency maps of our network and interpret its outcome, we computed the gradient of the image with

respect to the unnormalized class scores. Fig 3 represents the activation map in which regions with larger gradient (brighter

in the image), indicate higher contribution to the prediction. The network learnt to attend to the edges of the polyps, which

is a high-signal criterion for diagnosis, while also paying attention to the context. The performance of our Faster R-CNN

network in terms of accuracy, sensitivity and specificity over 170 annotated test images not previously seen by the network

was 94.6%, 95.3% and 92.8%, respectively. Examples of detected and localized polyps using our developed Faster R-CNN are

presented in Fig 4 . 
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Fig. 4. Colorectal polyp localization using Faster R-CNN. 

Fig. 5. Misclassification examples, left: false negatives, right: false positives. 

 

 

 

 

4. Conclusions and future works 

In this study, we proposed a novel and an autonomous end-to-end deep learning model to detect colorectal polyps of

any size and morphology in CCE videos. We showed that our network architecture benefitting from the combination of data

augmentation and transfer learning, overcame the ambiguity and lack of general task-independent rules for optimal feature

selection common to medical computer vision tasks. Consequently, our approach outperformed all other state-of-the-art

results in polyp detection by a wide margin. 
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Additionally, our method gave more interpretability to network predictions by studying saliency maps where the con-

tribution of polyps in terms of activation was significant. The saliency map could assist the medical staff to interpret and

detect the regions of the image, which due to a high contribution, have been marked as polyp. This is especially of high

importance when an image is misclassified (type I or type II error). The interpretability enables a smooth adoption of this

method in clinical settings, paving the road for the deployment of this network. This is because currently, highly experi-

enced nurses manually perform detailed pre-reading and analysis of CCE images. This process is tedious, as up to 50,0 0 0

CCE retrieved images of each patient need to be thoroughly investigated. Our detection, localization and characterization

algorithm mostly automatize this process and therefore significantly reduces the burden on medical staff. 

Future work includes exploring architectures such as Capsule Networks based on ensemble learning, and integration of

attention mechanisms, which are more difficult to train, but could provide even more concrete interpretability. Our goal is

to use a CNN to encode the image, characterize the size, morphology and location of the polyps, and a Recurrent Neural

Network with attention mechanisms to generate a description of histological features. This will be achieved by performing

semantic segmentation at pixel-level using handcrafted feature-based approaches. 
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