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a b s t r a c t 

The proposed work describes an efficient methodology for adaptive background model- 

ing and foreground extraction from video data using the newly proposed Spatio-temporal 

region persistence (STRP) descriptor. The STRP background descriptor includes block-wise 

statistics of intensity bins and their temporal persistency. Blockwise feature extraction 

helps to consider the local changes, while intensity bins provide consistent output for a 

group of similar intensities in an intra-regional sense. In this work, we have tried to min- 

imize the effect of different video irregularities like dynamic background, ghosting effect, 

change in illuminations, video noise, etc. Additionally, adaptive threshold selection and 

regular adjustment of modeled background descriptors make the procedure robust. Two 

benchmark datasets, Changed Detection and Scene Background Modeling, and Initialization 

(SBMI) have been used to verify the efficiency of our work. The results and comparative 

studies with the related works justify the effectiveness of our proposed technique. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the introduction of web-cam and closed-circuit television, video-based applications have been snowballing com-

mendably due to the fast technological advancements in video capturing and storing devices. In the present scenario, the

enormous use of video data in plenty of applications leads to the creation of a large number of videos. On the other hand,

a video includes Spatio-temporal redundancy to improve the visual impact as well as the quality. Spatial redundancy en-

hances the clarity of information by increasing the number of pixels per unit area and temporal redundancy improves the

quality of smoothness in changing the foregrounds by escalating the frame rate. The redundancy is inversely proportional to

the entropy value of the underlying information in a video. Hence, the extraction of essential information to understand the

underlying facts of the video is extremely difficult in such cases, which is required to analyze the video contents for further

course of action in numerous video-based applications. Most of the time, applications like home, office and shopping mall

monitoring, outdoor and indoor surveillance generate a massive amount of no-informative-videos, i.e. the videos contain no

effective information, and storing or analysis of the same is wastage of time and resource. 

Video information is mostly categorized into two distinct types, specifically background or rigid part, and foreground

or moving part. A substantial component of a video is termed as background if it remains unchanged or static throughout
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the frame sequence. On the other hand, the moving or dynamic area of a video, which is the active part throughout the

scene is termed as the foreground. Therefore, the background is redundant while the foreground is informative. Hence,

the elimination of background is required to extract the foreground information for further processing and analysis. Thus,

effective background estimation is one of the crucial prerequisites for most of the video processing tasks. There can be

several kinds of environmental conditions in outdoor and indoor scenarios in the real-world environment, which creates

difficulties to model the background accurately. Some of the common challenges in background modeling, mentioned in

[1] and [2] , are described as follows: 

• Dynamic background [1] : When some parts of the background have regular ambient motions like moving tree leaves,

fountain, waves in the sea, etc., they are termed as dynamic background. 

• Ghosting effect [2] : When a part of non-background objects is estimated as a part of the modeled background, it leaves

its presence in a time of foreground extraction until the background is updated. This phenomenon is called the ghosting

effect, which happens due to slow or late moving foreground(s) while estimating background. 

• Gradual illumination changes [1] : The change in illumination due to soft deviations of light gradually. For instance, the

variation in outdoor illumination over different times of the day. 

• Sudden illumination changes [2] : An abrupt change in light like switching off/on the light in a room environment,

which is very difficult to model and it leads to false detection of foregrounds. 

• Video noise [2] : Video signal includes some noise in most of the cases. Background subtraction approaches for video

surveillance have to cope with the effects of different types of noise. 

Considering the challenging situations as described above, the estimation of a proper background in every situation is

not an easy task. These situations can catalyze all sorts of possibilities for false detection, which can disturb the entire

procedure of video analysis. 

The proposed approach includes the Spatio-temporal region persistence ( STRP ) descriptor to estimate the background for

handling challenging situations. Region persistence features provide the immobility of information throughout the frames of

a video. Each frame is spatially divided into several blocks and bin-wise statistics represent a block. The merging of bin-wise

statistical features temporally concerning a fixed block provides the STRP features. 

The key contributions of this research work can be summarized as follows: 

• Proposal of a statistical background modeling technique based on temporal persistence and occurrence probability. 

• The newly introduced Spatio-temporal Region Persistence ( STRP ) feature descriptor, which successfully estimates the oc-

currence distribution of intensity bins in a block-wise fashion. 

• Adaptive threshold selection, the decision of foreground extraction depends on the persistence measurement, and updat-

ing background at regular intervals. 

• Adaptive over time i.e. if gradual changes occur among the frames they are adapted with the current modeled back-

ground. Also, scene changes are detected when an abrupt change occurs and sustains over a specified period. The pro-

posed work re-estimates the background after tracking the change in the scene. 

• The proposed method can handle several irregularities in a video like ghosting effect, noisy conditions, bootstrapping,

camouflaged conditions. 

Although deep learning-based methods have been very popular in different scientific areas and mostly in computerized

medical image processing described in [3] , due to their efficient formulas, there are some drawbacks of these approaches. For

instance, training stages are time-consuming, parameters and batch size should be chosen carefully. Therefore, the proposed

method in this work is based on adaptive threshold selection and auto-update techniques. 

The rest of the paper is organised as follows: Section 2 provides an overview of the relevant works in the literature

followed by Section 3 which delves into the details of the propsed work. Next, Section 4 gives the result and analysis for

the proposed work. Finally, Section 5 concludes the paper. 

2. Related work 

Related literature of background modeling approaches is expanded in many directions. Some of the key approaches re-

lated to our proposed work have been included in [4] , [5] , and the curious readers are redirected to the same for the review

on the related research domain. The main work is segmentation of background and foreground information. On the other

hand, the background is the most static area of the frames throughout the scene. Thus, the modeling of the most static

areas among the frames of any scene of a video will produce the background. The static part of a video can be defined by

the redundancy in the information of any location along the temporal direction. Three broad kinds of strategies [6] are used

to estimate the background of a video in the related domain. They are: 

1. Pixel level processing: This kind of approach the approximate intensity of each of the pixels individually using tempo-

ral statistics among consecutive frames to estimate the static area among the frames of a scene and thus helps in the

modeling of the background frame. Pixel-wise modeling is very noise sensitive. These kinds of strategies apply pixel

averaging, median filtering, fuzzy-based selection, temporal histogram, the mixture of Gaussian [7] , kernel density

estimation [8] , etc. to estimate the intensity value of a pixel. 
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2. Frame level processing: Unlike pixel-level processing, these types of approaches approximate the background frame

using global features of consecutive frames in the scene. Foreground extraction is then done by comparing the fea-

tures of the current frame with that of the modeled background. These kinds of strategies apply feature extraction

techniques like global histogram [9] , optical flow [10] , etc. These strategies are effective in the estimation of global

changes, but they show poor performances in the estimation of the local changes. Although, this kind of approaches

are hardly affected by noise, yet, the local changes may be overlooked. 

3. Region level processing: These types of strategies combine region-based features to model the background of all past

frames and compare the same concerning the current frame for extracting foreground information. This is the best

strategy amongst the three, but it has high time complexity. Hence, our proposed work uses a block-level method to

estimate the background of a scene, which is less noise prone, considers local properties and does not require any

sophisticated algorithm for region segmentation. 

The proposed background modeling approach includes some key ideas to handle challenging situations. 

• Extraction of active pixels between every two consecutive frames while computing the features. Active pixels are those

which determine moving areas. 

• Block-based processing instead of pixel-based processing to reduce the effect of noise. Moreover, this kind of processing

is sensitive to local changes in the temporal direction. 

• Generally, a trivial change in intensity values of near by pixels carries the similar information. It would be more effective

to take the statistical response of a bin to estimate the features of a block instead of individual frequency. 

• A statistical measure for both active and static bins for each of the blocks, so that the removal of active pixels can be

done despite irregularities. 

• Selection of threshold dynamically according to the contrast of a video, as the change in illumination, has a direct relation

to the contrast of an image. 

• Occurrence of an object in the same location (block) in consecutive frames defines the persistence. The effectiveness of

a region is measured in terms of that persistence rather than occurrence probability. 

3. Proposed work 

The proposed methodology intends to design a feature-based background modeling and its elimination towards fore-

ground extraction. Moreover, this method is adaptive over time and detects the scene changes in the video information. The

work-flow of the whole methodology is described in Fig. 1 , which is primarily categorized into four distinguishing parts: 

• Preprocessing 

• STRP Feature extraction and background modeling 

• Background elimination and foreground extraction 

• Background checking or Scene change detection 

3.1. Preprocessing: 

The preprocessing step is used to minimize the effect of noise for efficient outcomes in the proposed system. It includes

contrast normalization to minimize the effect of illuminations and anisotropy based smoothing to reduce the intra-regional

variances. Illumination can have a large impact on the effective intensity values and the normalization, in contrast, can

reduce the minor variability of light. On the other hand, minute detailing of intra-regional information can increase the

effective cost for processing, so the anisotropy based smoothing is used which can reduce the intra-regional variability to

some extent. 
Fig. 1. Framework of the proposed approach. 
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3.1.1. Anisotropy based smoothing 

Any image contains high and low-frequency elements for defining the intra-regional and edge area respectively. General

smoothing filters smooth all areas of an image, whereas the anisotropic filter, proposed by Perona and Malik [11] using

Eqs. (1) and (2) smoothens only the low-frequency areas while stopping the operations in high-frequency edge areas. 

I t = di v (c(x, y, t) ∇I) = c(x, y, t)�I + �c. ∇I (1)

c( ‖ 

∇I ‖ 

) = 

1 

1 + ( ‖ ∇I ‖ 
k 

) 2 
(2) 

where, I(., t) : ω → R be a family of 2 D images, and ω ⊂ R denotes a subset in 2 D plane. div , �, and ∇ are the divergence,

Laplacian, and gradient operators respectively. c ( x, y, t ) is the diffusion coefficient, which is generally derived from image

gradient, at spatial coordinate ( x, y ). k is a constant that controls the sensitivity of the edges. c ( x, y, t ) = image obtained

after a diffusion time t , ‖∇I ‖ is the gradient magnitude, and c ( ‖∇⊥‖ ) is an ”edge-stopping” function. This function is used

to satisfy c ( x ) → 0 when x → ∞ so that the diffusion is ”stopped” across edges. 

Many works have been done on the edge stopping function. The interested readers are requested to follow the concepts

as described in [12] . A modification of the Perona-Malik anisotropic filter is described in [13] , which has used the concept

of directional Laplacian to reduce the stair-casing effect for low contrast images to preserve the edges. 

Time complexity of anisotropy based smoothing depends on the number of iterations. Since frames of the same scene

contain more similar information, there is no requirement for higher-order smoothing. Hence, we restrict the number of

iterations to two to save complexity. 

3.1.2. Contrast normalization 

The luminance value of black is low and it gradually increases while it is transforming towards white. Michelson

et al. [14] defined the contrast as (L MAX − L MIN ) / (L MAX + L MIN ) , where L is the luminance value L MAX is the maximum,

and L MIN is the minimum luminance value in a given image respectively. It is always found that the visibility of a given

image has a direct relation with the implicit contrast of the same as discussed in [14] . This step focuses to balance the

illumination using contrast normalization. Let, the upper and lower limit of a normalized image be ul and ll respectively;

lower and higher values of the current frame are lv and hv respectively, and P in and P out are the input and output pixel

values. The normalization is done using Eq. (3) . 

P out = (P in − lv ) 
(

ul − ll 

h v − lv 

)
+ ll (3) 

3.2. STRP feature extraction and background modeling 

STRP is a block-wise background descriptor that includes bin response vector of each block in a frame. A bin response vector

contains bin wise occurrence distribution of intensities as bin histogram in the block. The whole intensity range is divided

into many small equal-sized groups termed as intensity bin. Since pixels of the same region have similar intensity values,

bins are used to suppress trivial variations in intra-regional intensities. Background modeling is done using the following

steps: 

• Block wise spatial feature or block-wise bin histogram ( BBH ) extraction 

• Temporal merging of extracted features to generate the STRP descriptor 

• Background estimation based on BBH features and STRP descriptor. 

Every frame of a video is divided into many equal-sized squares termed as blocks. The frames, blocks and the bin de-

scriptor of each block are shown in Fig. 2 . 

Block-based processing prioritizes local features, which are mostly ignored in frame-based techniques. Besides, the pres-

ence of noise in frames can affect pixel-based processing but it is reduced effectively in block-based processing. 

3.2.1. Block wise spatial feature or BBH extraction 

Let us assume that ( l × m ) pixels is the size of a frame and it is divided into many disjoint blocks with size ( p × q ).

The number of blocks for each frame is m 1 × n 1. The size of a block and the efficiency of a method are proportional to

each other; if the block size increases, processing speed increases and vice-versa. A bigger sized block always overlooks the

local disparities whereas a tiny block is noise prone and cannot resist small or negligible changes. Here, the resolution of an

image frame of the video is considered to set the block size which is not less than 8 × 8. 

Let B ij be one of the blocks located at the i th row and the j th column in a frame. The bin histogram of the block B ij is Q i j ,

which includes the bin histogram and bin-wise weighted average. All Q i j is a two-column vector of length l , where each

row contains frequency and the weighted average of the corresponding bin. The concatenation of all the Q i j provides the

BBH descriptor of a frame ( β). Counting sort strategy is used to extract the frequency of each bin as given in Eq. (4) . BIN

is the total number of bins considered for the feature vector and BS is the size of each bin. Here, x represents an intensity
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Fig. 2. Frame, blocks and bins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value of the block under consideration and l ranges from 1 to BIN . The weighted mean of any bin for a particular block

is computed dynamically to save the computational cost using Eq. (5) , where, x i is the intensity value at index i , x̄ i −1 is

the average mean of previous i − 1 elements from the same bin observed in the same block. This simple change efficiently

reduces the complexity from O(n 2 ) to O(n ) to compute the weighted mean. 

Q (l, 1) = COUNT(x) , ∀ l ≤ (x/BIN) ≤ l + 1 (4)

x̄ i = x̄ i −1 + (x i − x̄ i −1 ) /i, where i > 1 & x̄ 1 = x 1 (5)

Fig. 3 describes the visual comparison of the general histogram and block-wise bin histogram ( BBH ) of a particular block.

Both index profiles are very similar which refers to the sustainability of fundamental property despite applying bin his-

togram. However, the size of a block descriptor is effectively small in the case of bin histogram. 

3.2.2. Temporal merging of extracted features 

The objective of this step is to estimate the temporal persistence of all β to form the STRP descriptor for the initial

background of a video. Suppose a t number of consecutive frames is considered to compute the background STRP descriptor.

Q features from the first block of all k frames are merged temporally to extract the first STRP descriptor of the background

frame. Similar temporal merging is followed in the remaining blocks to pursue the STRP descriptor of the background frame

denoted with βBAK . 

The static bin will be more responsive than the dynamic bin of any block to model the background. The spatial distribu-

tion of intensity bins is stored in β for the corresponding frame. The temporal persistence response of a bin for a particular

block is measured to define the background descriptor. The merging of features is done using the simple bin-wise averaging

of the extracted features in temporal direction using Eqs. (6) and (7) . The value of t can be tuned according to the situations,

but it will not be affected much as the background is updated according to the time. The proposed method takes the value

of t , the same as the frame rate of the video. 

βBAKi j (Q (l, 1)) = 

( 

t ∑ 

k =1 

(βi jk (l, 1)) 

) 

/t (6)

βBAKi j (Q (l, 2)) = 

( 

t ∑ 

k =1 

(βi jk (l, 2)) 

) 

/t (7)

3.2.3. Background frame modeling based on persistence checking 

The proposed approach computes the intensity value of the modeled background frame ( BAK ) using the temporal pixel

statistics for any particular location by combining it with βBAK features of the corresponding block. A temporal BBH in t

number of frames, which are in the same location and their weighted average are stored in T using Eqs. (8) and (9) . T (l, 1)

holds the temporal BBH and βBAKij ( l , 1) holds BBH of the corresponding block. The maximum value after combining these

two BBH responses sets the background value of the corresponding location as shown in Eqs. (10) and (11) . 

T (l, 1) = ( COUNT (X ) ) /t, 
{∀ X ∈ F RM i jt | l = X/BIN 

}
(8)

T (l, 2) = 

∑ 

(X ) / T (l, 1) 

{∀ X ∈ F RM i jt | l = X/BIN 

}
(9)
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Fig. 3. Normal histogram of the highlighted block and the corresponding bin descriptor of a block. 

 

 

 

 

 

 

 

 

 

 

 

 

M I = M AX 

BIN 
l=1 (T (l, 1) × βBAKi j (l, 1) (10) 

BAK xy = T (MI, 2) (11) 

A comparison between the BBH descriptor of a block in different tem poral frames is described in Fig. 4 . The background

frame is shown in the middle of the first row in Fig. 4 , on the left side same block is highlighted without foreground

(Frame-1922), and the right side includes foreground (Frame-1942) in the highlighted area. The row below in Fig. 4 is a

block descriptor wise comparison between the background frame and with those two cases respectively. Blue colored bar

signifies the block descriptor bins of the modeled background frame while yellow refers to the block descriptor bins of

frames in the video. Block descriptors are very close to each other while there is no foreground irrespective of the dynamic

background (the wave in the water). The descriptors largely disagree with the presence of the foreground. 

3.3. Foreground extraction 

The modelled background and current frame are compared with respect to a suitable threshold to extract the foreground

of any frame in the scene. The prime objective of this threshold is to estimate the temporal changes in information among

the frames. 

3.3.1. Threshold ( TH chg ) computations 

A threshold is computed based on the contrast matrices of t consecutive frames since the variability, in contrast, change

the visual impact of the image. Contrast matrix ( MAT con ) of any image contains the maximum divergence ( η) value of each

pixel in terms of the maximum difference ( MAX ( η)) among all of its neighbours using Eqs. (12) and (13) . The mean contrast

of a frame ( M ct ) is as given in Eq. (14) . The average M ct of first t consecutive frames of any scene defines the threshold TH chg ,
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Fig. 4. A comparison among BBH descriptor of a block in temporarily different frames. First row contains the frame without foreground object, mod- 

eled background frame, and the frame with foreground object. Highlighted areas are same blocks in temporarily different frames. The third row contains 

comparative study among the block descriptor of frames with respect to background frame. 

 

 

 

 

 

 

 

 

 

 

 

 

which is computed using Eq. (15) . The value of parameter t is set to the frame rate of the video. Threshold selection takes

place with the change of scene, which makes the procedure adaptive with respect to the scene elements. It is assumed that

one second is enough to sense the variable condition on the scene. This parameter can be changed for more varying condi-

tions but as we increase the value of t , the time complexity for the same is also enhanced. This computed threshold assists

us to estimate the active areas in consecutive frames and the initial foreground estimation by eliminating the background.

� I(x, y ) = | I(x, y ) − I(x + i, y + j) | (12)

where -1 ≤ i ≤ 1, and -1 ≤ j ≤ 1 

MAT con (x, y ) = MAX (� I(x, y )) (13)

M ct = 

m ∑ 

i =1 

n ∑ 

j=1 

MAT con (i, j) / (m × n ) (14)

T H chg = 

t ∑ 

i =1 

M ct (i ) /t (15)

3.3.2. Active region extraction 

The active region descriptor embraces the active areas of the current frame by eliminating the background. Difference

between current frame ( FR t ) and BAK with respect to threshold TH chg results in the background frame difference which is

termed as � computed using Eq. (16) . 

�(i, j) = 

{
1 if (| BAK(i, j) − F R t (i, j) | > T H chg ) (16)

0 otherwise 
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Fig. 5. Estimation of foreground features. Row-1: The same block of background frame and Frame-1942. Row-2: Comparison of both the features. Row-3: 

Foreground BBH. 

 

 

 

 

 

 

 

 

 

3.3.3. Foreground descriptor extraction for current frame 

BBH features of any frame FR t and ( βBAK ) are used to estimate the foreground feature descriptor φ using Eq. (17) . If both

are equivalent, then the block is static, else foreground elements are present in that block. φ determines the foreground

bins with 

′ 1 ′ , ′ 0 ′ otherwise. 

φi j (Q l ) = 

{ 

1 IF , ((βF R ti j 
(Q (l, 1) ) − βBAK i j 

(Q (l, 1) )) > T HC) 

1 IF , βF R ti j 
(Q (l, 1) ) > 0 , and βBAK i j 

(Q (l, 1) ) = 0 

0 otherwise 

(17) 

T HC = ST D 

BIN 
k =1 (βBAKi j (Q (l, 1) )) (18) 

The bins of BBH feature of any block are included in the foreground BBH if those consists of either 0 share in the back-

ground BBH or the bin share of the current frame is significantly large with respect to the background one ( Eq. (18) ). Esti-

mation of foreground BBH features by comparing the BBH features of a block of background frame and the corresponding

block of another frame where the foreground exists is shown in Fig. 5 . The bin with a yellow bar of the final figure will

contain 1 in φ since those are the foreground bins. 

3.3.4. Relative activity descriptor 

The relative activity descriptor describes the active area between a pair of consecutive frames i.e. the active regions of

a frame pair to complete the corresponding action. Pixel wise difference between two consecutive frame pairs with respect

to the corresponding changing threshold is stored in δ. δ is the relative activity descriptor and is basically a matrix of same
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Fig. 6. Foreground detection results: (a)The original frame, (b) the modeled background, (c) Ground Truth and (d) our results after eliminating background 
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size like any other frame consisting of binary value 1, when the absolute difference is greater than TH chg and 0 otherwise as

given in Eq. (19) . 

δ(i, j) = 

{
1 if (| F R t+1 (i, j) − F R t (i, j) | > T H chg ) 
0 otherwise 

(19)

3.4. Foreground extraction 

The changes among consecutive frames mainly occur due to foreground movements but there are several other conditions

as well which may lead to false foreground detection. So, the elimination of background frame from the current frame

cannot produce the foreground efficiently. Hence, the proposed approach uses φ, � and δ to extract the foreground. 

3.4.1. Binary foreground frame extraction 

The φ includes responses from foreground bins with respect to the block. If all the bins of a block are zero, no further

processing towards foreground extraction is required for that block as there is no foreground. On the other hand, if all the

bins of a block are one, then all the pixels are included in the foreground. For all the other cases, any pixel from the current

frame is tested with respect to corresponding values of φ, �, and δ. If all the comparative results are true, then that pixel

will be considered as foreground pixel and denoted with one, otherwise as 0 (background) as given in Eq. (20) . 

F RG (i, j) = 

{
1 if (�(i, j) = 1 , δ(i, j) = 1 and φi j (F R (i, j) /BIN) = 1) 
0 otherwise 

(20)

3.4.2. Noise elimination & resultant foreground output 

There are different types of noise caused by different reasons. Therefore, noise types are usually identified to apply

appropriate noise reduction method. For instance, in a computer assisted image analysis [15] , different types of images can
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be acquired and a different denoising can be applied. However, there are a few possibilities of noise in foreground of a

video. This noise removal is done using small sized object elimination and standard morphological dilation and opening

operations. Mainly 3 × 3 structuring element is used to dilate the regions to find the object more effectively. If the size of a

object is less than a specific threshold, area opening operation is used to eliminate the object. This threshold depends upon

the object size to be considered. Thus, false foreground or the noises after background elimination are reduced. 

3.5. Background checking and scene change detection 

The proposed approach keeps the track of the background information in a regular interval. The background features are

estimated locally eliminating the forground information from each of the frame. 

The locally estimated background is then compared to the modeled background and if there are changes, it is updated

accordingly. An interval of t /4 frames has been taken for considering the local checking point. The background descriptor

extraction is done in a similar way used in primary background modeling. After that, the local block-wise descriptor is

compared with the modeled one for making the procedure adaptive for trivial local changes. If more than fifty percent

of the local block descriptors disagree with the modeled background, it needs complete remodeling as that difference is

adequate towards scene change detection. Otherwise, the local feature is merged with the current background to update the

same. 

4. Result and analysis 

Two well-known datasets, ChangeDetection [4] and SBMI [16] are used to verify the outcomes of the proposed approach.

There are several influencing parameters to disturb the background modeling and foreground extraction to handle these

issues; the proposed approach uses two adaptive threshold selection procedures: 

• TH chg computation for estimating the temporal difference 

• THC computation for approximating the foreground bin of a block 

It is computed using t , which is taken as the frame rate of the video and since the frame rate may change to video, the

value of t is dynamic. Local change estimation to update the background t /4 numbers of the frame are considered. These

two can be tuned up according to the situations. 

4.1. Change detection dataset 

Receiver operating characteristic is the most used evaluation approach, especially in medical image analysis [17] since

it needs precise measurements. Therefore, in this work the traditional performance measuring techniques are used to jus-

tify the efficiency of the proposed technique based on TP (True Positive), TN (True Negative), FP (False Positive) and FN

(False Negative). These values are computed by comparing the experimental outcome and the ground truth. A brief of the

traditional parameters are described below: 

• RE (Recall) : TP / ( TP + FN ) 

• PR (Precision) : TP / ( TP + FP ) 

• SP (Specificity) : TN / ( TN + FP ) 

• FPR (False Positive Rate) : FP / ( FP + TN ) 

• FNR (False Negative Rate) : FN / ( TP + FN ) 

• PWC (Percentage of Wrong Classifications) : 100 ∗ (F N + F P ) / (T P + F N + F P + T N) 

• F-Measure : (2 ∗ P recision ∗ Recal l ) / (P recision + Recal l ) 

When the true value of experimental outcomes coincides with that of the ground truth, count of TP increases, otherwise

FP rises. On the other hand, if the false value of output and the ground truths agree, TN increases, otherwise FN does.

Hence, TP is highly desirable and FN is regrettable. FN counts the responsible pixels of false foreground. RE is the ratio of

actual versus total extracted foreground areas in a frame. FP is one of the unexpected things in any technique as it counts

the misclassified pixels which are supposed to be foreground. PR is the statistical ratio between TP and the total actual

foreground. 

The efficiency of any technique can be verified with the above mentioned statistical parameters. It is expected that

any method must have higher values of RE, SP, F-measure, PR and smaller values of FPR, FNR and PWC . The high value of

those parameters is expected because of the higher accuracy in outcomes. At the same time, a smaller value of the other

parameters is expected because it depicts the minimization of the error rate. The proposed technique focuses on effective

foreground detection using a STRP feature descriptor. Comparative results of the proposed technique with that of the other

existing techniques are shown in Table. 1 . It shows that the proposed approach produces the best results for SP, FPR, PWC ,

and F-measure . The average rank of the proposed method among all the methodologies is shown in Table. 1 . Among the

9 different methods, the average rank of the proposed method is 1.33, whereas the second average rank 3 is obtained by

GMM ( SG ) [4] . The best value of each parameter is shown in bold faces. 
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Table 1 

A comparative study based on performance metric among the proposed approach and the other state of 

the art approaches on videos of Changed Detection Datasets. 

Methods Mean Mean Mean Mean Mean Mean Mean Mean 

RE SP FPR FNR PWC FM PR Rank 

STRP (Proposed) 0.82 0.9989 0.001 0.19 0.58 0.87 0.92 1.333 

QCH [18] 0.704 0.9923 0.008 0.30 2.21 0.66 0.70 6.555 

KDE-ISTF [19] 0.75 0.9954 0.005 0.25 1.81 0.74 0.78 4.44 

GMM-RECTGAUSS [20] 0.67 0.9979 0.002 0.33 1.53 0.75 0.92 4.33 

KDE-STDC [21] 0.755 0.994 0.006 0.245 1.915 0.755 0.78 4.67 

GMM(SG) [22] 0.82 0.995 0.005 0.182 1.53 0.825 0.85 3 

pROST [23] 0.84 0.994 0.006 0.159 1.15 0.83 0.82 3.11 

Table 2 

Comparative results on six evaluation parameters of the proposed approach and the 

same of the related research work. 

Approach Average AGE Mean pCEPs Mean MS-SSIM Mean PSNR 

LRGEOMC [25] 18.07 0.31 0.93 26.05 

RMAMR [26] 18.13 0.31 0.93 26.03 

GROUSE [27] 19.17 0.31 0.92 24.37 

OR1MP [25] 20.95 0.32 0.89 23.91 

IALM [28] 21.12 0.32 0.88 22.93 

Outspace [29] 23.92 0.335 0.84 20.09 

SC-SOBS [30] 6.32 4.47 0.93 29.89 

Proposed (STRP) 3.76 0.81 0.98 33.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. SBMI Dataset 

Scene Background Initialization ( SBMI ) [24] dataset is used in this work which includes 14 image sequences and their

ground truth backgrounds. The irregularities mentioned before are adopted in this dataset. Hence, this dataset is the appro-

priate one to verify the proposed methodology. This dataset is adopted from the SBMI-2015 workshop [24] . 

4.2.1. Evaluation parameters 

The website as proposed in [24] provides the script for evaluating results for six metrics, which are used in the literature

for background estimation. GT denotes the ground truth image and CB is the estimated background of the corresponding

background modeling approach. The six metrics are used to estimate the difference between GT and CB images which are

used to evaluate the effectiveness of background modeling. 

• Average Gray-level Error ( AGE ): The absolute difference between gray-level GT and CB images. This is a global estimation

of differences and the smaller value is more appreciable. 

• Percentage of Clustered Error Pixels ( pCEPs ): This parameter is applied to ensure the number of clustered error pixels

( CEPs ) by checking the error in 4-connected neighbors of an error pixel. The lower error rate is better. 

• Multi-Scale Structural Similarity Index (MS-SSIM): This parameter is proposed by is used to estimate the perceived visual

distortion by using structural distortion and the greater value determines lesser distortion. 

• Peak-Signal-to-Noise-Ratio ( PSNR ): It is defined as PNSR =10 log − 10 (L − 1)(×2 /MSE) , where L is the maximum number

of grey levels and the MSE is the mean of squared error between GT and CB images. The value provides the superiority

of the information over the noise. Thus, a larger value is desirable. 

In this work, the results of the proposed approach have been compared with the corresponding GT of SBMI dataset.

As shown in Table 2 , the proposed approach produces the best results in terms of average AGE , average pCEPs , average

MS-SSIM and average PSNR . The results in Table. 2 include the average values of seven videos for several parameters of

the proposed and other methods of the related research. On the other hand, the results are shown in Fig. 7 illustrate the

performance of the proposed background modeling approach. AGE , cluster, structural similarity and peak signal to noise

ratio are better in case of the proposed work. The proposed approach handles the irregularities in a better way to minimize

wrong classifications due to late moved, abounded or missing articles, video noise, etc. The proposed method updates the

background at a regular interval which includes this type of the wrong area and this remains static in more frames. 

4.3. Handling irregularities 

Apart from the convincing comparative results described in the presiding part of this section, the proposed technique

can handle the following irregularities. 

• Dynamic background: Since the block-wise features can estimate the occurrence distribution of intensity bins, it can

easily prune out the small changes in low-frequency regions as shown in Fig. 4 . Besides, the persistence mechanism helps
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Fig. 7. Background detection results GT is the ground truth and BC is the estimated background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to accommodate the intensity bins, which can occur consistently or at regular intervals in background STRP descriptor.

Thus, the proposed approach is robust towards dynamic background which is visually described in Fig. 7 . 

• Ghosting effect: In our approach, this problem can occur in the initial part of foreground extraction due to slow-moving

foreground objects in lower frame consideration for background modeling. The tunable parameter for the number of

frames can be adjusted to reduce this effect. Otherwise, the adaptive capability of background estimation can easily

remove the problem later on. 

• Gradual and sudden changes in illumination: Contrast normalization are used to standardize the variable trivial lighting

changes. Hence, gradual changes can be reduced. 

On the other hand, scene change detection can be the reply towards sudden changes, since the visibility is appreciably

changed in such cases. 

• Video noise: The smoothing operation and block-based features enable the proposed work to deal with the video noise

and dynamic background. The noise or dynamism in the background may affect a single pixel but we are taking the

gross bin-wise response instead of pixel intensity of every block which can slow the procedure. Besides, the adaptive

threshold selection strategy takes care of the camouflage condition to a certain extent. 

4.4. Limitations 

Though the proposed work tries to handle many key challenges of the domain, some limitations are there, which can be

treated as future scope of the current work. 

• Shadow detection: Shadow detection is one of the key issues towards efficient foreground extraction. The inclusion of

shadow detection procedures in the future can make this approach more robust. Shadow always creates confusion to

identify an original object. A shadow detection and removal technique is an essential step to be incorporated in the

future. 

• Automatic selection of block size: The selection of block size is a crucial issue in case of any block-based approach. It

would be better to use some mathematical models to select the size of the block automatically. The automatic selection

of block size will help this work to fit in a resolution-independent approach. 

• Bootstrapping and slow-moving object: The slow-moving objects always misleading the background estimation, which 

leads to poor foreground extraction. If we incorporate a module to handle such situations in the future, the background

estimation procedure would be more efficient. 

5. Conclusions 

An adaptive background modeling technique has been presented using the newly introduced STRP descriptor, which is

used to estimate the background from the video. This modeled background is then used to extract an effective foreground.

Besides, the use of adaptive threshold selection and auto-update techniques make the work more robust in challenging
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situations like dynamic background, ghosting effect, change in illuminations, video noise, etc. Scene change detection helps

the procedure to adapt to the variable environmental conditions. Two different groups of statistical measures have been

included in this work to verify the efficiency of the current work. The first group of parameters includes precision, recall,

specificity, F-measure, false-positive rate, false-negative rate, percentage of the wrong classification. On the other hand, the

second group comprises gray level error, clustered error pixels, multi-scale structural similarity, peak signal to noise ration.

The results and comparative study of the work with that of the other related research for Changeddetection and SBMI dataset

based on those two groups of parameters justify the novelty of this work. 

The limitations like shadow detection, automatic assessment of block size, and misclassification due to bootstrapping or

slow-moving objects can be the future scope to make this work more efficient. Different techniques can be adopted for

shadow detection and elimination towards efficient foreground object extraction. like mean-shift filtering, graph cut, water-

shed segmentation, fisher linear discrimination. Deep learning is an effective tool for classification and prediction nowadays,

which will be used to increase the effectiveness of such kind of work. 
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