
Computers and Electrical Engineering 81 (2020) 106541 

Contents lists available at ScienceDirect 

Computers and Electrical Engineering 

journal homepage: www.elsevier.com/locate/compeleceng 

Efficient emb e dding and retrieval of information for 

high-resolution videos coded with HEVC 

✩ 

D. Rodríguez Galiano 

a , A .A . Del Barrio 

a , ∗, G. Botella 

a , D. Cuesta 

b 

a Department of Computer Architecture and Automation, Universidad Complutense de Madrid, Madrid, Spain 
b Technical Direction, Administrador de Infraestructuras Ferroviarias, Madrid, Spain 

a r t i c l e i n f o 

Article history: 

Received 14 December 2018 

Revised 10 December 2019 

Accepted 18 December 2019 

Available online 27 December 2019 

Keywords: 

Steganography 

Steganalysis 

HEVC 

Video coding 

Real-time 

a b s t r a c t 

Steganography is the art of hiding information within a file. This work focuses on embed- 

ding such information in videos. In this scenario, it is critical to comply with the latest 

video standard, namely: the High Efficiency Video Coding (HEVC), which allows reducing 

the size of the file to be transmitted. In this paper we propose an HEVC-compliant method 

to hide and retrieve information in high-resolution videos. The procedure is based on mod- 

ifying the luminance of certain blocks, not the HEVC encoder. Nevertheless, this must be 

carefully done, as the HEVC standard is a powerful attack in itself, since it compresses 50% 

the size of the video on average and the embedded information may disappear. Results 

show that it is possible to retrieve all the information while maintaining the quality of the 

video when using intra frames. Furthermore, the proposed flow has shown to be resilient 

to state-of-the-art steganalysis attacks. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Nowadays, video and multimedia content are dominating the Internet. According to a report by Cisco [1] , by 2021, global

IP traffic will reach 3.3 ZB and online video will be responsible for 82% of this traffic. Furthermore, we are moving towards

tremendous resolutions as 4k and 8k, so efficiently employing the bandwidth is a must. 

High-Efficiency Video Coding (HEVC) is the latest video coding standard of the Joint Collaborative Team on Video Coding

(JCT-VC). HEVC noticeably improves compression performance when compared with previous standards such as H.264 and

represents a major step forward in video compression technology. However, this improvement is achieved by increasing the

complexity of the encoding process. HEVC employs a novel flexible quad-tree coding block partitioning structure [2] that

enables the use of large and multi-sized coding, prediction, and transform blocks. This system is more efficient but also

more computationally demanding. The HEVC standard is designed to achieve multiple goals: coding efficiency (in the range

of 50%-bit rate reduction for equal perceptual video quality compared with the antecessor H.264/AVC standard), transport

system integration and data loss resilience, as well as real-time implementations using parallel processing architectures [2] .

Prior to deploying hardware solutions, developers test their approaches to comply with the standard using the reference

software HM-16.2 (HEVC Test Model) [3] . This is a simulation software that is being developed by the Joint Collaborative
✩ This paper is for regular issues of CAEE. Reviews processed and recommended for publication to the Editor-in-Chief by Area Editor Dr. M. Malek. 
∗ Corresponding author. 

E-mail address: abarriog@ucm.es (A .A . Del Barrio). 

https://doi.org/10.1016/j.compeleceng.2019.106541 

0045-7906/© 2019 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.compeleceng.2019.106541
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2019.106541&domain=pdf
mailto:abarriog@ucm.es
https://doi.org/10.1016/j.compeleceng.2019.106541


2 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Team in Video Coding (JCT-VC), regrouping experts of ITU-T SG 16 and ISO/IEC SC29 WG11, and provides a basis on which

to perform coding experiments in H.265. After testing with HM-16.2, the following step is typically considering x265 [4] ,

which is an open source software able to encode in real-time, as it employs multiple threads. 

Besides optimizing the bandwidth use, another great challenge when transmitting information nowadays is ensuring the

individuals privacy, as the new General Data Protection Regulation (GDPR) in Europe indicates. Most applications generally

rely on cryptographic algorithms like AES to hide the data. Nevertheless, this is only applicable to protect the data while

transmitting, but when the content arrives at the destination and is deciphered, it is no longer secure [5] . Thereby, data

hiding techniques are able to provide shielding even when data is not ciphered. Such is the case for many multimedia

contents that requires to store some data related to authorship or intellectual property. 

Steganography is the science branch that tackles the concealing of these data. It appeared many centuries ago, but

steganography is still applied as evidence of copyright, to hide sensitive information in medical tests, to anonymize the

patients’ data or even to improve the analysis of the railroad catenary. In order to efficiently hide information within a

video, there are three key features that define the quality of a steganographic system: the attacks resilience, the capacity to

embed extra data and the amount of such data that can be recovered. 

Nonetheless, the combination of the HEVC standard with steganography is not an easy one. First of all, any coding stan-

dard is an attack by itself and, second, the HEVC achieves a high degree of compression, so there is a vast amount of

information that is removed with respect to the raw video. 

Hence, we propose a method for hiding and recovering data in high-resolution videos compressed with the HEVC stan-

dard. The main advantage with respect to prior approaches is that the standard itself is not modified for performing such

tasks. Results show that the messages are totally recovered while maintaining the quality of FullHD and 4k videos, for both

HM-16.2 and x265 encoding software. 

The rest of the paper is organized as follows: Section 2 describes some prior approaches utilizing steganographic tech-

niques in combination with coding standards; Section 3 describes some basic concepts related with video coding and the

HEVC standard itself; Sections 4 and 5 explain our proposed methods to embed and retrieve the information, respectively;

Sections 6 and 7 present the metrics and the results that verify the applicability and the robustness of the algorithm with

steganalysis tools and, lastly, Section 8 gives our final remarks and outlines our future lines of work. 

2. Related work 

Classical steganographic approaches work directly on the input frame, i.e. the spatial domain. The most widespread ex-

ample is maybe the LSB algorithm, which directly substitutes the least significant bit of the color components belonging to

certain pixels. This approach is undetectable for the human eye, but easily detectable for automated steganalysis techniques.

More robust techniques are based on integrating the data payload in the form of modified coefficients in the frequency

domain. For instance, Nakajima et al. [6] propose a method to embed data bits by modifying the coefficients located at

certain positions of some 16 ×16 blocks when employing the MPEG-1 codec. In another work, Wong et al. [7] present a

reversible technique for hiding information by modifying the quantized Discrete Cosine Transform (DCT) coefficients at the

same time that the quality of the decoded video is maintained. Similar ideas are employed in [8] . Authors in [9-10] de-

scribe a watermarking method based on introducing the information within the motions vectors in order to increase the

robustness. Xu et al. [11] hide the information by modulating the prediction modes of 4 × 4 luminance blocks; Yang et al.

[12] also leverage the intra prediction modes. 

All the aforementioned works are based on either MPEG-x or H.26x standards, which do not fit to the latest highly-

efficient HEVC standard. On the other hand, when employing HEVC there appear less articles in literature. In [5] , authors

propose a robust video steganography scheme for intra and inter frames by manipulating the AC coefficients. In [13] , authors

propose to also study the AC coefficients to embed every watermark bit in 4 × 4 intra blocks. In [14] the watermark informa-

tion is embedded within the quantized DCT coefficients as well. Chang et al. [15] employ a DCT and Discrete Sine Transform

(DST) based coefficient perturbation scheme for embedding bits in HEVC without inducing intra-frame error propagation.

Wang et al. [16] presented a large-capacity information hiding approach for HEVC Video using intra-prediction mode. Au-

thors in [17] proposed a video steganography algorithm without bit-rate increase, where information is embedded in the

stage of entropy coding by exploiting the new features of CABAC for HEVC. 

The main drawback of the presented approaches is that they all require to modify the standard, which makes it difficult

to deploy them into commercial systems. Therefore, in this paper we propose a method for hiding information in videos

that are coded with the HEVC, but without modifying the standard and with a negligible quality loss. Moreover, a method

for recovering such information is proposed as well. Several high-resolution sequences will be employed for testing the

proposed methods. 

The steganalysis tools face four extremely complex problems: determining if there is information hidden in the carrier,

estimate the size of this information, locate its exact location and, finally, extract it. For these purposes, there are several

types of steganographic technique attacks, which can be listed as visual attacks, structural attacks and statistical attacks.

The first one references to the analysis of the image and verifying the differences between the original and the manipulated

frames. The second type tries to guess the properties of the algorithms used to hide the information. Finally, the last subset

of attacks performs statistical calculations to try detecting if there is hidden information; among them we can find the

chi-square attack, developed by Westfield and Pfitzmann. These are much more efficient than the previous ones [18] . 



D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most known steganalysis tools try to find hidden messages using any of the above techniques on images. To the best

of our knowledge, there is no available tool for videos. Some of these tools focus on detecting hidden information by LSB

methods, as OpenStego, StegExpose and Xiao. Others as VSL and StegSecret cover a higher spectrum. For instance, they

also cover RS attacks, which are very efficient for detecting the presence of a message in a digital image [19] . The work in

[19] also provides tools to detect visual alterations in the frames and supplies tools to perform visual attacks and ChiSquare

attacks. 

3. HEVC preliminaries 

In this section we briefly describe some multimedia and HEVC details that will be important to understand the proposal.

Videos are composed of a sequence of images, also known as frames, which are constituted by a set of basic units called

pixels. These pixels define the color and can be represented in many formats, as RGB [2] . In this paper, the sequences

employed for testing the proposed framework are constructed using the YUV420 format. Any YUV-like representation is

built around three values: the luminance (Y) and the color tone or chrominance (U and V, aka Cb and Cr), each component

being defined by 8-bits. The value appended at the end indicates the proportion of samples associated to the format under

consideration. In our case, YUV420 means that for every luminance sample, the chrominance is subsampled by a horizontal

factor of 2 and by a vertical factor of 2 as well. These facts are illustrated in Fig. 1 . 

It should be noted that there is a direct mathematical relationship between the YUV planar format and RGB color space,

as shown in Fig. 2 . Sometimes it is needed to make conversions between formats in order to analyze certain features of the

video frames. 

The HEVC encoding process is based on Coding Tree Units (CTUs), being each CTU composed of several Coding Units

(CUs) [2] . Considering the YUV420 format, this means that every CU is composed of a coding block of luminance and two

coding blocks of chrominance subsampled as previously mentioned. Fig. 3 shows this. The maximum size of the CU is 6 4 ×6 4

pixels and the smallest is 8 × 8 pixels. The Prediction Unit (PU) is a division of the CU, containing one luminance sample

and two chrominance samples and it is used to forecast the samples of the prediction block. The maximum dimension is

the size of the associated CU and the minimum dimension is 4 × 4 pixels. 

In order to encode the video, the HEVC standard can apply two compression modes, independently or jointly. The first

one, known as intra-frame compression and of higher quality, refers to a spatial model, where each frame is compressed

separately. The second one is the inter-frame compression, which is a temporal compression, using similarities between past

and future frames. The inter-frame compression system is not random; in order to determine the relationships between past

and future frames it is necessary to specify the order in which the images are treated. This provision is defined in the Group

of Pictures (GOP). 

It should be noted that H.265 is a lossy compression process where a quantization parameter (QP) is used to compress

a range of values to a single value. Therefore, the higher the quantization, the larger the loss of quality. To correct the

distortion between the original and reconstructed samples, the Sample Adaptive Offset (SAO) filter is frequently applied. 

The result of the coding process is a HEVC bitstream that consists of an orderly sequence of syntactic elements. The key

components consist of a sequence of data units called Network Abstraction Layers (NALs). Some of these NALs contain high-

level information related to the entire encoded video sequence or to a subset of images within it (fps, size, aspect ratio). The

Slice NAL units are a subset of NALs that carry coded samples. These Slice NAL units contain data from the frames of the
Fig. 1. YUV format. 

Fig. 2. Conversion between RGB and YUV. 



4 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

Fig. 3. CU with YUV420 format. 

Fig. 4. HEVC bitstream NAL structure. 

 

 

 

 

 

 

 

 

 

 

 

 

encoded video. They can contain a complete frame or part of it and each one of them can be decoded independently; that

is, without using information from another slice. VPS (Video Parameter Set), SPS (Sequence Parameter Set) and PPS (Picture

Parameter Set) contain general video parameters. They provide a robust mechanism for carrying data that are essential in

the decoding process. Note that they can be part of the bitstream or can be stored separately. Fig. 4 shows a structural

diagram of the HEVC bitstream. 

4. Embedding information 

In this section our proposed method for hiding information is described in detail. 

As shown in Fig. 5 , our proposal consists of inserting every bit of information, either plain or ciphered, in random 4 × 4

intra-blocks. The selected block then shall be named Insertion Block (IB) hereafter. The positions of these IBs are randomly

chosen, which increases the strength to face possible attacks, and fully defined by the tuple (frame, X, Y). Thus, the number

of required tuples will be equal to the number of blocks to be encoded. It must be noted that we only need to know the

location of the leftmost and topmost pixel of each block, since the rest pixels within the block are always in a 4 × 4 region.

The X and Y coordinates at the beginning of the affected block must be a multiple of 4 to ensure that the block can be a

sub-block of a CU or coincide with a PU. 

Although luminance is more sensitive to the human eye than chrominance [20] , as shown in Fig. 3 in YUV420 format

there are four luminance samples for each color sample, so a slight change on the Y plane will be less distorting than a

change in the U or the V planes. 
Fig. 5. Hiding information flow. 



D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 5 

Fig. 6. Average recovery percentage according to the bit position (position 0 corresponds to the LSB and position 7 to the MSB). Results were obtained 

after 50 different encodings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hiding process transforms the message to be hidden into an array of bits. Each of these bits will be the second most

significant bit (MSB) of the IB located in a random frame and coordinates. The reason for selecting this bit is drawn from

the study depicted in Fig. 6 . A total of 50 different tests have been performed with a set of videos with different resolutions

from [21] . These video sequences have been normalized to YUV420 format and a bit depth of 8 bits, and are distinct from

the videos used to experimentally validate the proposed steganographic algorithm. On average we realized that modifying

a bit from positions 0 to 4 lead to being unable to recover almost anything. Bit 5 achieved 60% recovery percentage and

bit 6 > 95%. Hence, bit 6 is a good candidate for guaranteeing the recovery. The drawback is that this might cause some

undesired effects to appear if the area on which it is applied is homogeneous, as bit 6 has an important weight within an

8-bit value. Nevertheless, from the Quality of Experience (QoE) point of view this may become even imperceptible because

of the frame rate. Although the human eye does not work in terms of frames per second, a frame ratio close to 30 fps,

produces smooth motion and is similar to how we see the world. A frame ratio higher than this is used in scenes with a

lot of motion or slow motion, but under these conditions most modifications go unnoticed too because of the speed while

passing the frames. 

Hence, the current proposal needs to employ a 4 × 4 intra-block per hidden bit. Thus, as every block is composed of

16-bits, and every character occupies 8-bits, a total amount of 16 × 8x L pixels will be modified, being L the length of the

message to embed. 

One of the advantages of this method lies in the fact that the insertion of information is done in a completely random

way. But on the other hand, this implies the receiver knowing the insertion positions to recover the information. However,

the aforementioned tuples (cyphered or not) that define the positions of the IBs can be attached in a new NAL of the

bitstream that, in turn, can be transmitted separately to the bitstream containing the video itself. This NAL shall be named

Coordinate Parameter Set (CPS) and it possesses the standard FD_NUT (0 × 26) data type, which can be recognized by all

the HEVC decoders. 

In HEVC, unlike other systems, there is a protocol to align and separate NAL units. At the beginning of each NAL, a three

or four byte code (0 × 0 0 0,0 01 or 0 × 0 0,0 0 0,0 01) is added. We will add the sequence 0 × 0 0,0 0 0,0 01 to the start of our

new CPS NAL. Next, we apply the syntax for the header of a NAL unit, following the code specified in Table 1 . 

The binary value after attaching the aforementioned code is [0,100,110,0 0 0,0 0 0,0 01]b, or 0 × 4c01 in hexadecimal. Finally,

we will attach the emulation prevention bytes, whose value is 0 × 0 0,0 0 0,301. When this value is in the NAL unit, it must

be discarded during the decoding process. Thus, the complete header of our NAL unit will be: 0 × 0 0 0 0 0 0 014c010 0 0 0 0301,

with a size of 10 bytes. 

After the header, the tuples that define the location of the IBs will be included. An amount of 6 bytes is enough to define

each of them, allocating two bytes for the frame (although there could be more bytes in case the number of frames exceeds
Table 1 

NAL unit header syntax (Rec. ITU-T H.265 v4 (12/2016)). 

Code Size in bits Value 

nal_unit_header() { – –

forbidden_zero_bit 1 0 

nal_unit_type 6 100110b = 0 × 26 

nuh_layer_id 6 0 

nuh_temporal_id_plus1 3 1 

} – –



6 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

 

 

 

 

 

 

 

 

 

 

 

 

 

65,535 units), two bytes for the X coordinate and the last two bytes for the Y coordinate. The insertion has been done in

little endian, following the format in which the data is stored in Intel processors. Lastly, in order to make the extraction of

the tuples easier, a pattern with value 0xffff is appended to the CPS NAL tail. This hexadecimal value does not coincide with

any of the NAL unit type codes defined in the H.265 standard, so it can not be confused by an original Network Abstraction

Layer of the bitstream. In this way we have delimited the location of the tuples, since they are completely defined between

the header of the CPS NAL and the defined closure pattern. 

Although the results of the recovery process are positive (especially with low QP values), in some cases the recovery of

the whole message is not assured. Optionally, in order to guarantee a complete recovery, the message to be hidden can be

added by triplicate, following the algorithm shown above. This has the disadvantage of increasing by three times the size

of the CPS NAL, but empirically it has been shown that it guarantees the complete recovery of the message and decreases

the probability of an attacker extracting the information, since the number of embedded characters noticeably augments, as

will be commented in Section 7.5 . 

4.1. Illustrative example 

In Fig. 7 there is an example of the proposed technique. The term “war” is being concealed as an example, whose ASCII

representation is 0 × 776,172 or, in binary, [01,110,111 01,10 0,0 01 01,110,010]b. Then, each of these bits will become the value

of the second most significant bit within the 16 pixels of the IB. Thus, 384 pixels will be modified overall. As observed, in

this case the quality of the frames is maintained. 
Fig. 7. Hiding ‘war’ within a sequence. 



D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 7 

Fig. 8. Retrieving information flow. 

Table 2 

Triple redundancy to guarantee message integrity. 

Orginal message Encoded message Recovered message with error control 

I need a coffee! I n3ed a coffee! I need a coffee! 

I need a coffee! I need a coffe!! 

I need a coffee! I needa Coffee! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, in order to show how the NALs are constructed, let us consider a couple of IBs identified by the tuples (frame,

X, Y) with values (0 × 16d, 0 × 189, 0xd) and (0 × 1d0, 0 × 34d, 0 × 71). Then, the bytes inserted in little endian will be

0 × 6d0189010d00 and 0xd0014d037100 for the first and second tuple, respectively. 

5. Retrieving information 

In this section, the method for recovering the information is described in detail. The flow for doing this is illustrated in

Fig. 8 . 

The first thing to note is that both the video and the tuples contained in the NALs are necessary to locate the information.

Once the video is decoded, it is possible to access the proper frame and position to collect the second MSB of the 16

luminance pixels integrating the IB. After computing the mode among these 16 bits, it is possible to interpret the bit that

was inserted. In order to fully identify the ASCII code corresponding to the character previously inserted, it is necessary to

group 8 recovered bits. By repeating this process, it is possible to retrieve the whole embedded message. 

If the triple redundancy is employed to guarantee the integrity of the message, the extraction process does not change.

Simply, at the time of composing the message the algorithm has to consider the most repeated character in every position

of the message, as can be seen in Table 2 . 

5.1. Illustrative example 

In Fig. 9 there is an example of the proposed technique. Once the bitstream is received, the CPS NAL header

[0 × 0 0 0 0 0 0 014c010 0 0 0 0301] and its tail [0xffff] must be extracted. It must be reminded that each one of the NAL can

be sent as an annex to the rest of data or separately. The information must be grouped by tuples, from 6 to 6 bytes sequen-

tially [0 × 0800b5040d01; 0 × 600,045,041,500; 0xa8013502c901, …]. It is very important to keep them ordered since this

will give meaning to the recovered message. 

Each group of 6 bytes is in little endian format, being subdivided into groups of 2 bytes, which composes the tu-

ple (frame, X, Y). Next, each component in little endian is interpreted and converted to into decimal values [(0 × 0 0 08,

0 × 04b5, 0 × 010d); (0 × 0060, 0 × 0445, 0 × 0015); (0 × 01a8, 0 × 0235, 0 × 01c9), …] = [(8, 1205, 269), (96, 1093,

21), (424, 565, 457), …]. Once the tuple is composed, the recovery algorithm accesses the corresponding luminance plane of

the selected frame. The X and Y coordinates then represent the beginning of an insertion block (IB) formed by a quadrant

of 4 × 4 pixels. From each 4 × 4 block, the second most significant bit must be extracted and the value with the highest

absolute frequency will be selected. After extracting 8 bits, an ASCII character can be constructed. Lastly, in this example

only the first three bits of the character ’w’ are extracted. By repeating this process, it is possible to retrieve the original

term ‘war’, inserted in Section 4.1 . 

6. Metrics and framework 

The metrics as well as the framework employed to evaluate the proposal are presented in this section. 

The Structural Similarity Index (SSIM) is a quality metric to measure the similarity between two images. The SSIM can

be seen as a measure of the quality of one of the images being compared, provided that the other image is considered

to possess a perfect quality. Similarly, the Peak Signal-to-Noise Ratio (PSNR) measures the relationship between noise and



8 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

Fig. 9. Retrieving ‘war’ within a bitstream. 

 

 

 

 

 

 

 

signal in decibels. It is commonly used as a quality measure between the original and a compressed image; the higher PSNR

value, the better quality has the compressed image. 

A random stego-message consisting of 50 printable and non-printable characters (such as spaces and carriage returns)

has been considered for insertion. 30 different sequences with high resolutions as FullHD and 4k have been tested, utilizing

YUV 4:2:0 8-bit format, 500 frames with a refresh rate of 50 fps for 720 i/p frame dimensions (HD), 1080i/p (FullHD)

[21-22] and 300 frames with a refresh rate of 30 fps for 2160i/p (4k) [23-25] . The encoding is performed using the HM-16.2

reference software and x265, in order to test with a real-time encoder. The configuration parameters for both encoders are

shown in Table 3 . 

7. Experiments 

This section presents and comments our results referred to the bitstream sizes, the recovery capacity employing different

QP values and encoder types. Finally, a quality evaluation of the videos using both HM-16.2 and x265 will be shown. 



D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 9 

Table 3 

Configuration parameters for HM-16.2 and x265 encoders. 

Profile Main 

Bit depth 8 

Chroma subsampling 4:2:0 

Maximum CU size (width and height) 64 

Analysis of asymmetric motion partitions Enable 

Max intra period in frames Forced all-intra 

GOP size 1 (forced all-intra) 

Motion search range 64 

SAO Enabled 

Fig. 10. Average bitstream size (MB). Resolution vs. QP with HM-16.2 encoder. 

Fig. 11. Average bitstream size (MB). Resolution vs. QP with x265 encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1. Bitstream size comparison per encoder 

According to the specifications proposed and recommended by the JCT-VC, the algorithm proposed in this paper has

been validated for the quantization parameters (QP) 22, 27, 32 and 37 for the encoders HM-16.2 (single-threaded) and x265

(multi-threaded). All the videos [21-25] have been encoded for each of the following resolutions: HD (1280 × 720), FullHD

(1920 × 1080) and 4k (3840 × 2160). 

Figs. 10 and 11 confirm that the size of the bitstream resulting from the coding process has a small variation depending

on the employed encoder. A higher compression rate is perceived in HM-16.2 in comparison with x265 when using the same

configuration parameters. Nevertheless, HM-16.2 takes many hours to achieve the desired result, while x265 just requires

some minutes, which is one of its objectives to reach real time video coding and transmission. Table 4 shows the coding

time of video sequences with and without stego-message with HM-16.2 and x265 encoders. It also shows the time to hide

the message and to add the new CPS NAL, where both tasks are independent from the codification process. Table 4 also

highlights that hiding information and adding a new NAL does not affect the codification process and it is negligible in

comparison with the encoding time. 

A bitstream of smaller size considerably improves the transmission time of data in a communication network, but the

quality of the resulting video gets worse, as the coding process is an attack in itself, as will be seen in the following subsec-

tions when studying the quality achieved by both encoders. This fact directly affects the stego-message that we can include

in our video carrier, being able to suffer losses in which it is impossible to find out exactly what the original message was,

although these losses can be mitigated by utilizing triple redundancy. 



10 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

Table 4 

Time comparative between encoding process vs. the proposed steganographic method. 

HM-16.2 encoder X265 encoder 

Video 

Without 

stego-message 

With 

stego-message 

Without 

stego-message 

With 

stego-message 

Aggregation time 

(stego-message + CPS NAL) 

HD crowd_run.yuv 51 min 24s 51 min 37s 32s 31s < 2s 

ducks_take_off.yuv 51 min 56s 51 min 33s 31s 32s < 2s 

in_to_tree.yuv 53 min 32s 53 min 40s 32s 32s < 2s 

old_town_cross.yuv 52 min 27s 52 min 15s 33s 32s < 2s 

park_joy.yuv 51 min 44s 51 min 42s 32s 33s < 2s 

green_land.yuv 53 min 8s 53 min 28s 33s 33s < 2s 

promenade.yuv 53 min 54s 54 min 9s 32s 33s < 2s 

river.yuv 53 min 50s 54 min 16s 34s 33s < 2s 

street_lights.yuv 51 min 41s 51 min 52s 31s 30s < 2s 

sunny_day.yuv 51 min 57s 52 min 10s 30s 30s < 2s 

FullHD crowd_run.yuv 1 h 52 min 23s 1 h 52 min 20s 1 min 5s 1 min 6s < 2s 

ducks_take_off.yuv 1 h 54 min 48s 1 h 54 min 53s 1 min 3s 1 min 3s < 2s 

in_to_tree.yuv 1 h 53 min 9s 1 h 53 min 4s 1 min 8s 1 min 8s < 2s 

old_town_cross.yuv 1 h 54 min 37s 1 h 55min 1 min 10s 1 min 9s < 2s 

park_joy.yuv 1 h 56 min 15s 1 h 53 min 5s 1 min 2s 1 min 2s < 2s 

green_land.yuv 1 h 55 min 16s 1 h 56 min 46s 1 min 7s 1 min 7s < 2s 

promenade.yuv 1 h 55 min 23s 1 h 55 min 27s 1 min 6s 1 min 6s < 2s 

river.yuv 1 h 56 min 17s 1 h 57 min 1 min 9s 1 min 9s < 2s 

street_lights.yuv 1 h 51 min 42s 1 h 51 min 53s 1 min 2s 1 min 2s < 2s 

sunny_day.yuv 1 h 52 min 24s 1 h 53 min 26s 1 min 1s 1 min 1s < 2s 

4k bund_night_scape.yuv 4 h 27 min 14s 4 h 27 min 58s 2 min 27s 2 min 27s < 2s 

campfire_party.yuv 4 h 5 min 56s 4 h 6 min 2s 2 min 36s 2 min 35s < 2s 

rush_hour.yuv 4 h 45 min 3s 4 h 44 min 57s 2 min 22s 2 min 21s < 2s 

tall_buildings.yuv 4 h 32 min 52s 4 h 32 min 58s 2 min 13s 2 min 14s < 2s 

tree_shade.yuv 4 h 3 min 40s 4 h 3 min 30s 2 min 49s 2 min 51s < 2s 

basketball.yuv 4 h 2 min 58s 4 h 3 min 35s 2 min 12s 2 min 10s < 2s 

construction.yuv 4 h 38 min 52s 4 h 37 min 19s 2 min 36s 2 min 37s < 2s 

flowers.yuv 4 h 11 min 51s 4 h 9 min 59s 2 min 15s 2 min 15s < 2s 

lake.yuv 5 h 4 min 13s 5 h 5 min 30s 2 min 58s 2 min 56s < 2s 

park.yuv 4 h 33 min 40s 4 h 31 min 0s 2 min 31s 2 min 31s < 2s 

Fig. 12. Average recovery rate per encoder and QP. 

 

 

 

7.2. Recovery capacity per QP and encoder 

In Fig. 12 , the percentage of recovered characters is shown. It is important to warn that it is a recovery process which has

not applied any control error. That is, the analyzed result is the raw message extracted directly from the compressor. It can

be seen that the recovery capacity decreases as the quantification parameter increases. This fact happens in both encoders,

being more noticeable for HM-16.2. 



D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 11 

Fig. 13. SSIM and PSNR evaluation of FullHD sequences. Encoding performed with HM-16.2. 

Fig. 14. SSIM and PSNR evaluation of 4k sequences. Encoding performed with HM-16.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performing the compressions with QP = 22, the recovered message is optimal for both encoders (except for HM-16.2 in

4k, which retrieves slightly more than 99% of the added characters). While it is true that in the worst case in our experi-

ments (see 4k resolution, encoder HM-16.2 and QP = 37 in Fig. 12 ), the message may not be detected correctly, when the

triple redundancy is applied the message can be completely retrieved. 

7.3. Quality evaluation on HM-16.2 

In this experiment, the quality of the resulting videos has been evaluated. For this purpose, the settings shown in

Table 3 have been employed on the HM-16.2 reference software for FullHD and 4k, taking QP = 32 for FullHD and QP = 27

for 4k resolution. 

Fig. 13 contains the average SSIM and PSNR results for ten FullHD sequences, respectively. The chart on the left depicts

two subsets of results. Those labelled as SSIM Sources show the SSIM difference between the original video and the original

video after embedding the message, while those labelled as SSIM Processed represent the SSIM difference between the com-

pressed videos after decoding without and with the stego-message. As can be observed, the SSIM values of the processed

version are very close or even higher than 0.99, which demonstrates that the structural similarity is maintained after em-

bedding the message, so that it is not easy to determine whether or not there are some hidden data. The chart on the right

shows the PSNR of two subsets of results as well: on the one hand those labelled as PSNR Without show the PSNR difference

between the original video and their decoded version and, on the other hand, those labelled as PSNR With depict the PSNR

difference between the video containing the stego-message prior to encoding and after decoding. As observed, the PSNR

is almost identical between the two subsets of results for all the sequences, which confirms the aforementioned similarity

thesis. 

In order to complete the study, several 4k sequences have been encoded with HM-16.2. Fig. 14 contains an SSIM and

a PSNR comparison for the 4k videos, as in the case of FullHD. As it is shown, the similarity even increases. This fact is

logical, since a 4k frame is four times a FullHD one. In other words, hiding a message is easier since there are more pixels.

Nevertheless, it must be mentioned that the HEVC encoder becomes more aggressive on 4k frames, especially with high

values of the quantization parameter. 

7.4. Quality evaluation on x265 

In this experiment we have tested the same FullHD and 4k sequences but using x265 in order to employ a real-time

encoder. The QP value is 32 for FullHD sequences and 27 for 4k, as in the previous experiment. 

Figs. 15 and 16 show the SSIM metrics and the PSNR results for both FullHD and 4k sequences, respectively. On the left

of Fig. 15 it is possible to observe how the SSIM of the processed videos is around 0.995, while in the chart on the right the

PSNR loss is imperceptible when embedding the stego-message. When considering 4k, Fig. 16 shows a SSIM that sometimes



12 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

Fig. 15. SSIM and PSNR evaluation for FullHD sequences. Encoding is performed with x265. 

Fig. 16. SSIM and PSNR evaluation for 4k sequences. Encoding is performed with x265. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is even superior to that for FullHD. However, the PSNR remains almost equal. Finally, it is interesting to note that the quality

metrics depicted in Figs. 13–16 show how the x265 real-time encoder behaves better than HM-16.2, being able to obtain

videos with higher quality. 

7.5. Validation of the algorithm with steganalysis tools 

In this experiment we have used several representative steganalysis tools with videos that carry on stego-messages and

coded with x265: OpenStego, VSL, Xiao Steganography, StegSecret and StegExpose. Nevertheless, employing them is not

straightforward. Generally, attacks are based on particularities of images taken independently of the rest of the composition

of the video, so we have been forced to transform each frame into images in jpg, png or bmp formats, depending on the tool.

In the same way, some of these tools are only able to detect hidden information if the employed steganographic algorithm

has been the one proposed by the same tool. 

OpenStego, VSL and Xiao Steganography have been unable to find any embedded information, but StegSecret and StegEx-

pose have detected some frames containing modified pixels. Tables 5 and 6 show these results for HD, FullHD and 4k

resolutions. The column labelled as ’Modified Frames’ shows the number of frames in which the proposed algorithm has in-

cluded hidden information out of the 500 frames (for HD and FullHD) or 300 frames (for 4k) that compose each video, while

the column labelled as ‘% detected frames’ indicates, per image format (bmp, jpg and png), the percentage of false positives

(frames detected as carriers that are not), percentage of frames correctly detected but the information size is wrong, and

the percentage of frames correctly detected. The last three results have been calculated with respect to the total number of

frames that compose the video and are separated by a slash. 

False negatives are the difference between the value of the column "modified frames" and the frames correctly detected,

even if the size of the information is not adequate. 

In Table 5 , an evaluation of StegSecret is shown when employing input frames converted to bmp and jpg formats. It

should be noted that the tool efficiency using bmp is greater than employing jpg. In Table 6 , the evaluation of StegExpose

when utilizing input frames converted to bmp and png formats is displayed. In this case, the efficiency for bmp and png is

exactly the same. 

In any case, none of the aforementioned tools has been able to find the hidden information. It should be noted that,

even developing a perfect steganoanalytic tool that detects each of the insertion blocks (IB) and finds out without any type

of error the correct bit, it must be able to sort them in such a way that it could extract the desired character. If the hidden

message is composed by 50 characters (bit depth = 8), sorting the 400 bits in such a way as to ensure that the correct

message is found implies a variation without repetition of 400 elements taken in groups of 8 bits; i.e. 400!/392! different

options. Even computationally with current technology, it is unaffordable to calculate all the different options in a prudential

time. 



D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 13 

Table 5 

StegSecret steganalysis results for frames converted to bmp and jpg. 

Video with stegomessage Modified frames % detected frames (bmp) % detected frames (jpg) 

HD crowd_run.yuv 273 0/0/0 0/0/0 

ducks_take_off.yuv 271 0/0/0 0/0/0 

in_to_tree.yuv 280 0/0.2/0 0/0/0 

old_town_cross.yuv 277 0/0/0 0/0/0 

park_joy.yuv 279 0/0/0 0/0/0 

green_land.yuv 283 0/0/0 0/0/0 

promenade.yuv 270 0.2/0.8/0 0/0/0 

river.yuv 276 0/0/0 0/0/0 

street_lights.yuv 274 0/0/0 0/0/0 

sunny_day.yuv 279 0/0/0 0/0/0 

FullHD crowd_run.yuv 279 0.2/0/0 0/0/0 

ducks_take_off.yuv 275 0.8/0.4/0 0/0/0 

in_to_tree.yuv 268 0.4/0.4/0 0/0/0 

old_town_cross.yuv 280 0/0/0 0/0/0 

park_joy.yuv 271 0/0/0 0/0/0 

green_land.yuv 270 0/0/0 0/0/0 

promenade.yuv 277 0/0/0 0/0/0 

river.yuv 265 0/0/0 0/0/0 

street_lights.yuv 279 2.4/3/2000 0/0/0 

sunny_day.yuv 268 0.2/0.2/0 0/0/0 

4k bund_night_scape.yuv 216 0/0/0 0/0/0 

campfire_party.yuv 216 0/0/0 0/0/0 

rush_hour.yuv 216 0.7/0/0 0/0/0 

tall_buildings.yuv 222 0/0/0 0/0/0 

tree_shade.yuv 225 0/0/0 0/0/0 

basketball.yuv 220 0/0/0 0/0/0 

construction.yuv 231 0/0/0 0/0/0 

flowers.yuv 227 0/0.3//0 0/0/0 

lake.yuv 219 0/0/0 0/0/0 

park.yuv 214 1/2.3/0 0/0/0 

Table 6 

StegExpose steganalysis results for frames converted to bmp and png. 

Video with stegomessage Modified frames % detected frames (bmp) % detected frames (jpg) 

HD crowd_run.yuv 273 0/0/0 0/0/0 

ducks_take_off.yuv 271 0/0/0 0/0/0 

in_to_tree.yuv 280 0/0/0 0/0/0 

old_town_cross.yuv 277 0/0/0 0/0/0 

park_joy.yuv 279 0/0/0 0/0/0 

green_land.yuv 283 0/0/0 0/0/0 

promenade.yuv 270 0/0/0 0/0/0 

river.yuv 276 0/0/0 0/0/0 

street_lights.yuv 274 0/0/0 0/0/0 

sunny_day.yuv 279 0/0/0 0/0/0 

FullHD crowd_run.yuv 279 0/0/0 0/0/0 

ducks_take_off.yuv 275 0/0/0 0/0/0 

in_to_tree.yuv 268 0/0/0 0/0/0 

old_town_cross.yuv 280 0/0/0 0/0/0 

park_joy.yuv 271 0/0/0 0/0/0 

green_land.yuv 270 0/0/0 0/0/0 

promenade.yuv 277 0/0/0 0/0/0 

river.yuv 265 0/0/0 0/0/0 

street_lights.yuv 279 0/0/0 0/0/0 

sunny_day.yuv 268 0/0/0 0/0/0 

4k bund_night_scape.yuv 216 0/0/0 0/0/0 

campfire_party.yuv 216 0.3/2.3/0 0.3/2.3/0 

rush_hour.yuv 216 0/0/0 0/0/0 

tall_buildings.yuv 222 0/0/0 0/0/0 

tree_shade.yuv 225 0/0/0 0/0/0 

basketball.yuv 220 0/0/0 0/0/0 

construction.yuv 231 0/0/0 0/0/0 

flowers.yuv 227 0/0/0 0/0/0 

lake.yuv 219 0/0/0 0/0/0 

park.yuv 214 0/0/0 0/0/0 



14 D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusions 

In this work we have presented a methodology to embed and retrieve a stego-message in high-resolution videos as

FullHD and 4k, employing the latest video standard, namely: HEVC. In order to do this, there is no need to modify the

standard, in comparison with other approaches in literature. 

The encoding of several testing sequences with the HM-16.2 reference software and the x265 real-time encoder allows

to conclude that the modification of the 2nd most significant bit in 4 × 4 luminance intra-blocks enables hiding information

without losing quality in the video. 

According to the obtained results, the implemented algorithm meets the expectations of security requirements, such as

robustness against attacks, the ability to hide information and the low perceptibility of hidden data. 

In the future, these techniques must be extended to allow the use of the inter-mode compression. 

Declaration of Competing Interests 

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper. 

Acknowledgement 

This paper has been supported by the EU (FEDER) and the Spanish MINECO under grant TIN 2015-65277-R and by Banco

Santander under grant PR26/16-20B-1. 

David Rodríguez is the main author of the paper and has implemented the framework to apply the embedding and

retrieval methods. He has carried out the experiments to verify that the proposed techniques work properly and also he has

written the draft version of the paper. 

Alberto A. Del Barrio, Guillermo Botella and David Cuesta have advised on the design of the algorithms, selection of the

related work and contributed to the paper organization and writing. 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.compeleceng.

2019.106541 . 

References 

[1] Cisco. 2017. “Cisco visual networking index: forecast and methodology, 2016–2021”. Document ID:1465272001663118. Cisco VNI. 

[2] Sullivan G , Ohm J , Han W-J , Wiegand T . Overview of the High Efficiency Video Coding (HEVC) standard. IEEE Trans Circuit Syst Video Technol Dec
2012;22(12):1649–68 . 

[3] Fraunhofer Heinrich Hertz Institute, 2017. “HEVC test model (HM)”. https://hevc.hhi.fraunhofer.de/HM-doc/ . Accessed Nov. 05, 2016. 
[4] x265 project. http://x265.org/. GNU GPL 2 license, source code available at: https://bitbucket.org/multicoreware/x265/wiki/Home , 2016. 

[5] Idbeaa T , Abdul Samad S , Husain H . A secure and robust compressed domain video steganography for Intra- and inter-frames using Embedding-Based
Byte Differencing (EBBD) scheme. PLoS ONE 2016;11(3) . 

[6] Nakajima K , Tanaka K , Matsuoka T , Nakajima Y . Rewritable data embedding on MPEG coded data domain. IEEE Int. Conf. Multimedia Expo 2005:682–5

2005 . 
[7] Wong K , Tanaka K , Takagi K , Nakajima Y . Complete video quality-preserving data hiding. IEEE Trans Circuit Syst Video Technol Oct.

2009;19(10):1499–512 . 
[8] Ma X , Li Z , Tu H , Zhang B . A data hiding algorithm for H.264/AVC video streams without intra-frame distortion drift. IEEE Trans Circuit Syst Video

Technol 2010;20(10):1320–30 . 
[9] Wang P , Zheng Z , Ying J . A novel video watermark technique in motion vectors. Int Conf Audio Lang Image Process 2008:1555–9 2008 . 

[10] Wang R , Hu L , Xu D . A watermarking algorithm based on the CABAC entropy coding for H.264/AVC. J Comput Inf Syst 2011;7:2132–41 . 

[11] Xu D , Wang R , Wang J . Prediction mode modulated data-hiding algorithm for H.264/AVC. J Real-Time Image Process 2010;7(4):205–14 . 
[12] Yang G , Li J , He Y , Kang Z . An information hiding algorithm based on intra-prediction modes and matrix coding for H.264/AVC video stream. AEU -

Int J Electron Commun 2011;65(4):331–7 . 
[13] Dutta T , Gupta HP . A robust watermarking framework for High Efficiency Video Coding (HEVC) - Encoded video with blind extraction process. J Vis

Comun Image Represent 2016;38:29–44 C (July 2016) . 
[14] Swati S , Hayat K , Shahid Z . A watermarking scheme for High Efficiency Video Coding (HEVC). PLoS ONE 2014;9(8) . 

[15] Chang P , Chung K , Chen J , Lin C , Lin T . An error propagation free data hiding algorithm in HEVC intra-coded frames. 2013 Asia-Pacific Signal and

Information Processing Association. Annual Summit and Conference; 2013 . 
[16] Wang J , Wang R , Li W , Xu D , Huang M . A large-capacity information hiding method for HEVC video. In: Proceedings of the 3rd International Conference

on Computer Science and Service System; 2014 . 
[17] Jiang B , Yang G , Chen W . A cabac based HEVCc video steganography algorithm without bitrate increase. J Comput Inf Syst 2015;11:2121–30 . 

[18] Ferreira AM . An overview on hiding and detecting stego-data in video streams. System & Network Engineering. University of Amsterdam; 2015 . 
[19] Marçal ARS , Pereira PR . A steganographic method for digital images robust to RS steganalysis. Universidade do Porto; 2005 . 

[20] Fairchild M . Color appearance models. 3rd Edition. John Wiley & Sons; 2013 . 

[21] Xiph.org Foundation. 2017. Derf’s test media collection. https://media.xiph.org/video/derf/ . Accessed Oct. 27, 2017. 
[22] Elecard. 2019. Video compression Guru. https://www.elecard.com/videos . Accessed Jun. 29, 2019. 

[23] Shanghai Jiao Tong University. 2018. SJTU Media Lab. http://medialab.sjtu.edu.cn/web4k/index.html . Accessed Jan. 31, 2018. 
[24] Tampere University of Technology. 2018. Ultra Video Group. http://ultravideo.cs.tut.fi/#testsequences . Accessed Jul. 15, 2018. 

[25] Yonsei University. 2019. Multimedia Computing and Machine Learning Group. http://mcml.yonsei.ac.kr/downloads/4kuhdvideoquality . Accessed Jun. 
29, 2019. 

https://doi.org/10.1016/j.compeleceng.2019.106541
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0001
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0001
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0001
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0001
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0001
https://hevc.hhi.fraunhofer.de/HM-doc/
https://bitbucket.org/multicoreware/x265/wiki/Home
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0015
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0015
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)33299-3/sbref0017
https://media.xiph.org/video/derf/
https://www.elecard.com/videos
http://medialab.sjtu.edu.cn/web4k/index.html
http://ultravideo.cs.tut.fi/#testsequences
http://mcml.yonsei.ac.kr/downloads/4kuhdvideoquality


D. Rodríguez Galiano, A .A . Del Barrio and G. Botella et al. / Computers and Electrical Engineering 81 (2020) 106541 15 

 

 

 

 

 

 

 

 

D. Rodríguez Galiano received the B. Sc . degree in Computer Engineering from the Autonomous University of Madrid (Madrid, Spain), in 2009 and the M.
Sc . degree in Computer Science Security from the International University of La Rioja (La Rioja, Spain), in 2016. He is PhD student at Complutense University

of Madrid (Madrid, Spain). His-current research interests include steganography, watermarking and security on video. 

A .A . Del Barrio received the Ph.D. degree in Computer Science from the Complutense University of Madrid (UCM), Madrid, Spain, in 2011. Since 2017, he

has been an Interim Associate Professor of computer science with the Department of Computer Architecture and System Engineering, UCM. His-research
interests include Design Automation, Arithmetic as well as Video Coding Optimizations. include applied probability and military operations research. 

G. Botella received the Ph.D. degree in Computer Science from the University of Granada, Spain, in 2007. He was a research fellow funded by EU working

at University College London, UK. Currently he is an Associate Professor at the Department of Computer Architecture and Automation of Complutense
University, Madrid, Spain. His-research interests include Digital Signal Processing for FPGAs, GPUs and HPC. 

D. Cuesta received the Ph.D. degree in Computer Science from the Complutense University of Madrid in 2013. Since 2010 he has been working for the

railway sector, in charge of international IT projects, developing Passenger Information Systems and Signalling and Controlling Systems. He also received

his Electronic engineering and Physics degree in 2008. His-current research are video coding and railways applications. 


	Efficient embedding and retrieval of information for high-resolution videos coded with HEVC
	1 Introduction
	2 Related work
	3 HEVC preliminaries
	4 Embedding information
	4.1 Illustrative example

	5 Retrieving information
	5.1 Illustrative example

	6 Metrics and framework
	7 Experiments
	7.1 Bitstream size comparison per encoder
	7.2 Recovery capacity per QP and encoder
	7.3 Quality evaluation on HM-16.2
	7.4 Quality evaluation on x265
	7.5 Validation of the algorithm with steganalysis tools

	8 Conclusions
	Declaration of Competing Interests
	Acknowledgement
	Supplementary materials
	References


