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Prolonged dormancy is a stage in which mature plants fail to resprout during the growing 

season and instead remain alive belowground.  Though it is relatively common, the causes and 

consequences of this intriguing stage have remained elusive.  In this dissertation, I investigate the 

causes and consequences of prolonged dormancy in a long lived perennial herb, Astragalus 

scaphoides.   

First, I use a combination of demography and ecophysiology to study the proximate 

mechanisms associated with prolonged dormancy.  Analysis of a long-term demographic dataset 

indicates that both endogenous factors (e.g. age, condition, and history) and exogenous factors 

(e.g. climate and spatial variation) are associated with dormancy.  I then investigate the 

association between stored resources and dormancy.  My results indicate that individual plants 

with low levels of stored available carbon are more likely to enter prolonged dormancy.  

Surprisingly, individuals increased their mobile carbon concentrations while dormant, 

presumably by remobilizing structural carbon into mobile forms.  Since stored resources 

integrate past conditions and performance with current state, these results can explain why some 

individuals remain belowground while others emerge to grow and reproduce.   

I used matrix models to examine the ultimate causes and consequences of prolonged 

dormancy.  I found evidence that prolonged dormancy acts as a conservative strategy that allows 

plants to avoid the risk of a variable environment.  Further, my results demonstrate that 

intermediate levels of dormancy result in the highest fitness advantage.  Finally, I measured the 

trade-offs associated with emerging during times of environmental stress.  Although plants 

showed remarkable physiological tolerance to stress, stress led to demographic costs.  Therefore, 

prolonged dormancy is shown to be a beneficial strategy in a variable environment.   

Together, my research identifies both the proximate causes of prolonged dormancy, as 

well as the ultimate consequences of remaining belowground during the growing season.  

Therefore, my research not only identifies why some plants go dormant while others emerge, but 

also explains the prevalence of this intriguing life stage in the life histories of so many perennial 

plants.     
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GENERAL INTRODUCTION AND OVERVIEW 

 

Life history delays have long fascinated evolutionary ecologists, because organisms 

postpone fitness-enhancing activities such as growth and reproduction.   All else being equal, 

individuals that grow and reproduce now will have higher fitness than individuals that delay 

these activities.  These delays, then, can have major impacts on fitness.  However, life history 

delays are fairly common (Tuljapurkar 1990, Koons et al. 2008).  Indeed, research over the last 

half century has revealed that life history delays may be adaptive depending on the ecological 

context in which they occur.  In a classic paper, Cole (1954) asked why it is common for species 

to spread reproduction over time (iteroparity), when species that reproduce once (semelparity) 

could achieve the same fitness by increasing reproduction by one offspring.  Charnov and 

Schaffer (1973) solved this apparent paradox by incorporating variable survival of different life 

stages, particularly adults versus juveniles.   Cohen’s pioneering work (1966, 1967) 

demonstrated that delayed germination can be adaptive in a variable environment, but would be 

costly in a constant environment.   Since then, ecologists have explored the adaptive significance 

of life history delays, and how the environment mediates the relationship between life history 

and fitness.  Their work has shown that understanding the evolutionary significance of life 

history strategies requires a comprehensive understanding of the ecological context in which it 

operates.  In this dissertation, I explore both the proximate and ultimate causes and consequences 

for a particularly interesting, and poorly understood, life history strategy seen in herbaceous 

perennial plants, known as prolonged dormancy (Lesica and Steele 1994).    

 Prolonged dormancy is a stage in which individuals fail to re-sprout for one or more 

years, and instead remain alive below ground (Lesica and Steele 1994).  Prolonged dormancy 
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was initially discovered as a nuisance parameter for long-term monitoring studies (Shefferson 

2009).  Since then, prolonged dormancy has been observed in 64 species and 14 plant families 

(Shefferson 2009, Reintal et al. 2010), but has remained poorly understood because of the 

challenges of studying such a cryptic life stage.  Not only are dormant plants hidden 

belowground, but dormancy seems to be particularly common in long lived species (Hutchings 

1987; Lesica and Steele 1994; Shefferson 2001; Shefferson 2003; Lesica and Crone 2007; 

Shefferson 2009), making lab and greenhouse studies challenging.  However, combining short-

term ecophysiological studies and experiments with long term demographic monitoring can 

allow for inference between mechanisms driving dormancy and the long-term consequences of 

remaining below ground while other plants emerge to grow and reproduce.   

At first glance, prolonged dormancy seems costly, since plants not only delay growth and 

reproduction, but also must maintain mature plant parts while they are belowground (Lesica and 

Steele 1994).  These costs could have large impacts on fitness.  However, like other life history 

delays, prolonged dormancy may be an adaptation to increase fitness in a variable environment.  

If so, then plants could be trading off current reproduction and growth for increased survival, 

leading speculation that prolonged dormancy may act as a bet hedging strategy (Miller et al. 

2004, Shefferson et al. 2005, Shefferson 2009, Childs et al. 2010).  Though there is empirical 

evidence that prolonged dormancy may buffer plants from stress above ground (Morrow and 

Olfelt 2003, Shefferson et al. 2005), my dissertation is the first to test whether prolonged 

dormancy indeed functions as a bet hedging strategy.   In order to do so, prolonged dormancy 

must occur at a cost to average fitness and must reduce variance in fitness. By doing so, it should 

increase geometric mean fitness (Seger and Brockman 1987).  Thus, prolonged dormancy should 

be costly in a constant environment and advantageous in a variable one.  
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 In Chapter 3, I test the predictions of bet hedging theory in a long-lived native perennial, 

Astragalus scaphoides using a long term demographic dataset.  I use matrix models to compare 

average fitness, the variance in fitness, and geometric mean fitness between dormancy 

phenotypes.  First, I compared fitness between individuals with the average dormancy phenotype 

for the population with a hypothetical phenotype in which I removed dormancy.  This 

comparison met all of the predictions of bet hedging.  Hypothetical plants without dormancy had 

lower average fitness, less variance in fitness, and higher stochastic fitness.  I then compared 

fitness among observed dormancy phenotypes in the population.  In this comparison, individuals 

with intermediate levels of dormancy had the highest fitness, and both average and geometric 

mean fitness were highest for this phenotype.  Analysis of lifetime reproductive success 

confirmed this relationship.  Therefore, low levels of dormancy clearly increase fitness in my 

system, but no cost to average fitness was detected for these phenotypes.  This result is not 

entirely consistent with bet hedging, and suggests that some other mechanism may be at work in 

my system.   

 Throughout the rest of my dissertation, I investigate the mechanisms associated with 

prolonged dormancy.  In Chapter 1, I use the long term demographic data to explore the 

proximate causes and consequences of dormancy for A. scaphoides.  Results from this study 

indicate that rates of prolonged dormancy vary among individuals in the population, and are 

associated with differences in individual histories.  Correlations between weather variables and 

dormancy suggest that dormancy is more common in years with warm, dry springs.  Together, 

these results suggest that the benefits of dormancy depend both on individual state as well as 

ecological context.  I further explore these patterns in subsequent chapters, by studying how 
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stored resource dynamics and environmental conditions relate to the costs and benefits of 

remaining belowground during the growing season.   

 In plants, stored resources integrate the effects of previous history and past environmental 

conditions with current state (Chapin et al. 1990, Wyka 1999, Crone et al. 2009).  Further, stored 

resources are not only an important metric for individual condition, but can also be an indication 

of future performance (Chapin et al. 1990).  Therefore, I investigated whether stored resources 

were associated with the entry into prolonged dormancy, and whether dormancy was costly in 

terms of stored resources.  My results show that low levels of stored available carbon 

(nonstructural carbohydrates, NSC) are associated with entering dormancy, and that dormant 

individuals increase concentrations of NSC throughout the growing season, presumably by 

remobilizing structural carbon.  Therefore, in the short term, prolonged dormancy does not seem 

costly in terms of resources.  More importantly, these results explain why some individuals 

remain dormant while others do not, but also provide a mechanism for their return.  Therefore, 

stored resources, particularly carbon, may act as a proximate cue to remain belowground.  

However, the consequence of remaining belowground should depend on environmental 

conditions above ground.   

 Finally, in Chapter 4, I investigate the costs and benefits of prolonged dormancy within 

an environmental context.  So far, my research has indicated that the benefits of dormancy 

depend on individual state (Ch. 1 and Ch.2), and that dormancy may allow plants to avoid risks 

in an unpredictable environment (Ch.3).  If dormancy allows plants to avoid risky conditions 

above ground, then I expected to see costs for emerging during unfavorable conditions.  First, I 

measured performance of emergent plants during an exceptionally hot and dry year.  Despite 

stressful conditions, emergent plants were able to maintain physiological performance during the 
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season and only marginal costs to demographic performance were detected (in terms of future 

flowering).  I then measured performance of emergent plants in response to defoliation.  In terms 

of stored resources, I did not detect a large cost to emerging and experiencing defoliation.  

However, defoliation resulted in significant costs to future survival and flowering.  These results 

suggest that dormancy may allow plants to avoid risk, but episodic risk (such as defoliation) may 

be more costly than emerging during hot and dry conditions.   

 Understanding the evolution of life history strategies requires a comprehensive 

investigation of the associated trade-offs.  Therefore, the study of life history strategies requires 

incorporation of plant physiology, population ecology, and life history evolution (Obeso, 2002).  

By using this integrative approach, my research has uncovered both proximate mechanisms 

influencing prolonged dormancy, as well as the fitness consequences of remaining belowground 

while other plants emerge.  In the proximate sense, stored resources seem to act as a cue that 

integrates past environmental conditions, previous history, and current condition to determine 

whether a plant goes dormant or not.   Then, the consequences of remaining dormant depend on 

environmental context.  During unfavorable conditions, risking emergence can result in 

decreased flowering probabilities and even death.  These results suggest that prolonged 

dormancy may be beneficial at times.  Finally, my analyses of the lifetime fitness consequences 

of prolonged dormancy clearly demonstrate that intermediate levels of prolonged dormancy 

increase fitness.   Overall, the significant benefits I have shown explain the prevalence of this 

stage in the life histories of perennial plants.  Further, the combination of ecophysiology and 

demography, allows for an understanding of the ecological factors driving this life history stage.  

Such approaches can provide powerful tools to address a multitude of ecological questions, and 

can result in a comprehensive understanding of the patterns we see in nature.   
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CHAPTER 1 

 Patterns of prolonged dormancy in Astragalus scaphoides: Inference from long term 

monitoring 

 

Introduction 

 Prolonged dormancy is a stage in herbaceous perennial plants in which individuals fail to 

re-sprout for one or more years, and instead remain alive, below ground (also known as 

vegetative dormancy and adult whole plant dormancy; Gill 1989; Lesica and Steele 1994;  

Shefferson 2009).  Prolonged dormancy is relatively common and has been seen in many 

distantly or unrelated species (Lesica and Steele 1994; Shefferson 2009 and references therein), 

but the causes and consequences of this behavior remain unclear.  One reason that prolonged 

dormancy remains mysterious is that this cryptic life stage can be difficult to study (Shefferson et 

al. 2001; Shefferson et al. 2003; Kery and Gregg 2003).   Since it is impossible to observe plants 

below ground, distinguishing between dormancy and death is difficult.  Further, excavating 

plants to directly observe them would be likely to have a large effect on plant performance.  

Finally, prolonged dormancy is most common in long lived perennials (Hutchings 1987; Lesica 

and Steele 1994; Shefferson 2001; Shefferson 2003; Lesica and Crone 2007; Shefferson 2009), 

making laboratory or greenhouse studies of prolonged dormancy unrealistic and, in some cases, 

impossible.   

 One proposed solution to the problem of understanding what happens below ground is to 

analyze fates of dormant plants using capture-recapture models (where detection of plants above 

ground is analogous to “captures” in plant populations; Alexander et al. 1997).  Alexander et al. 
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(1997) used these capture-recapture models to account for prolonged dormancy in estimates of 

plant population size.  Shefferson et al. (2001) then estimated survival and population size of 

dormancy-prone orchids using standard capture-recapture models that assume all individuals 

have the same survival probability.  While these methods were statistically robust, the biological 

assumption that all plants, regardless of age or size, have the same survival probability is 

probably incorrect for many plant populations.  Shefferson et al. (2003) later proposed using 

multistate capture-recapture models to estimate stage-dependent survival and transitions between 

life stages.  Unfortunately, mathematical analysis showed that many of the parameters in these 

multistate models are not mathematically estimable, including survival of dormant plants (Kery 

and Gregg 2005).  In addition, a recent paper evaluating multistate capture-recapture models for 

animals with unobservable life stages suggests that, even when parameters are algebraically 

separable, they may not be estimable for many demographic datasets (Bailey et al. 2010).  

Therefore, although capture-recapture studies are useful for studying some aspects of prolonged 

dormancy, available methods do not seem suitable to address many of the interesting ecological 

and life-history consequences of prolonged dormancy.   

 Another possible solution to studying prolonged dormancy is to work with very long term 

data sets.  By using long term data, prolonged dormancy can be distinguished from death by 

detecting whether plants re-emerge in later years.  This approach uses a different definition of 

dormancy than capture-recapture studies, because dormancy is only identified when plants re-

emerge.  However, the advantage of this approach is that dormancy events are less ambiguous, 

and it is more straightforward to distinguish dormancy from recruitment and death.  

Unfortunately, many studies do not have this option because they are short relative to the length 

of bouts of dormancy, and/or the lifespan of the species being studied (Shefferson et al. 2001; 
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Shefferson et al. 2003; Shefferson et al. 2005; Shefferson et al. 2006; Miller et al. 2007).  

However, this approach has been used successfully for longer term studies (Primack and Stacy 

1998; Shefferson and Tali 2007; Hutchings 2010), and, with long-term data, can lead to similar 

conclusions as capture-recapture models (when the two approaches are used to ask the same 

kinds of questions; Lesica and Crone 2007).   

 Here, I use a 23-year dataset to explore the causes and consequences of prolonged 

dormancy in a long lived native perennial, Astragalus scaphoides.  Through observing plants 

over long time periods, I have sufficient data to analyze factors associated with prolonged 

dormancy in this population, as well as the consequences of dormancy over the lifetime of 

individuals.  Specifically I ask:  1) How long do bouts of dormancy last, and is the probability of 

emergence constant?  2) Does the probability of dormancy vary among individuals?  3)  Does the 

probability of dormancy vary in space?  4)  What climatic factors are associated with prolonged 

dormancy? 5) How does dormancy relate to age?  6)  Does previous history affect dormancy 

transitions?  and finally, 7)  How does dormancy affect longevity and lifetime reproductive 

success?  I discuss each of these issues in relation to previous research on dormancy, which 

comes largely from shorter studies, and in relation to the body of my dissertation research. 

 

Field Methods 

Study species 

Astragalus scaphoides (Fabaceae) is an iteroparous legume with a long, narrow taproot, 

found on south-facing slopes in high-elevation sagebrush steppe communities in western 

Montana and eastern Idaho, USA.    Median age to first reproduction is 3 years (Lesica 1995).  
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Plants flower approximately in alternate years (Lesica 1995; Crone and Lesica 2004; Crone et al. 

2005).  Plants that do not flower may produce leaves and be vegetative, or remain dormant 

during the growing season.  Astragalus scaphoides emerges above ground in late April, flowers 

from late May to mid-June, and seeds usually dehisce by mid-July. 

 

Demographic data collection 

Demographic data collection follows the protocol developed by Lesica and Steele (1997).  

Two monitoring transects were installed by Peter Lesica in 1986 at Sheep Corral Gulch located 

in Beaverhead County, Montana (45
o
06’55” N, 113

o
02’58” W).  Monitoring was conducted by 

P. Lesica from 1986-1998, by P. Lesica and E. Crone from 1999-2005, and by E. Crone and I 

from 2006 to the present.  Data from 1986 to 2008 are analyzed in this chapter, though 

monitoring continues for this species.  Established transects are 1 meter wide belt transects 

consisting of approximately 50 adjacent 1 m
2
 plots.  Surveys are conducted in early July of each 

year, during fruit maturation.  Within plots, plants are mapped to the nearest decimeter, and 

classified into 3 vegetative stages (small, medium and large vegetative), and a flowering stage.  

The small stage is defined as plants that have less than 6 leaves, medium have more than 6 leaves 

but no above ground branching, large have more than 6 leaves and branching, and flowering 

plants have inflorescences.  Transitions to and from all of these stages are possible once plants 

are established (Fig.1).  Reproductive plants are also surveyed for number of intact, predated, or 

aborted inflorescences as well as the number of fruits produced.  I ensure detection of all 

emergent plants by referencing a map of plants known from each plot (i.e., by searching 

carefully for senesced of small plants in locations where plants have been in the past).  Individual 

plants are identified by overlaying maps through time. 
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Detecting dormancy 

Unambiguous dormancy episodes can be determined by observing plants both before and 

after a year in which it was not detected above ground (Lesica and Steele 1994; Kery and Gregg, 

2004; Lesica and Crone, 2007).  For example, consider two five-year histories of plant fates.  

The first, abbreviated “MF0FM”, indicates that in year one the plant was a medium vegetative, it 

flowered in year two, was not detected above ground in year three, flowered again in year four, 

and was a medium vegetative in year five.  This plant was clearly dormant in year three.  In 

contrast, a different plant history may be “MF0000.”  In this case, the first two years are the 

same, but then the plant is not detected above ground.  From these data, I cannot determine 

whether this plant has gone into dormancy in year three and remains undetected, or whether the 

mortality occurred between years 2 and 3.  However, most bouts of dormancy in A. scaphoides 

last less than three years (see below).  Therefore, I did not analyze transition rates from the first 

and last three years of data.  In this way, I can separate dormancy from recruitment at the 

beginning of the study, and mortality at the end of the study (Lesica 1995).  By this definition, 

dormant plants always emerge and thus have perfect survival.  The middle 18 years of data from 

the 23-year monitoring study include individual histories for over 350 plants. 

 

Analyses and results 

Length of dormancy and the probability of emergence over time 

Life history analyses for plants are often analyzed using Markov models, which mean 

that the performance of plants depends on their current stage class, but not on previous states 

(Nichols 1992).  In other words, for dormant plants, the probability of emergence would be the 
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same after one year below ground as after two or more years below ground.  If emergence 

probability is constant, then the length of bouts of dormancy would follow an exponential 

distribution, which has a defined relationship between the mean and the variance.  (It is defined 

by rate parameter λ, and has mean = 1/ λ, and variance = 1/(λ2
); Hilborn and Mangel 1997).  

However, if the variance is less than expected based on the mean, then the length of dormancy 

bouts is more uniform distribution than random (bouts tend to be closer than the average length), 

and if the variance is more than the expected, then dormancy bouts are more clustered than 

random (very short or very long bouts of dormancy, but fewer than expected near the mean).    

To test this hypothesis, I compiled each dormancy event by length and compared the 

observed values with those from an exponential distribution using a χ2
 test.  In this population, 

the majority of dormancy events last one year (67%, Fig. 5) and the probability of emergence 

differs significantly from an exponential distribution (χ2
=99.822, P<0.001).   Further, the mean 

length of bouts of dormancy (1.56 years → λ=0.64) implies greater variance  (1/λ2
 = 2.4) than 

the observed variance (1.06), which suggesting that dormancy tends to be more uniform than 

expected by random chance.   

 

Dormancy and previous history 

Lack of constant emergence from dormancy suggests that the probability of dormancy 

depends on previous life stage.  Although Markov models are most common, other studies have 

also shown that, in perennial plants, current condition and previous history may interact to affect 

vital rates (van Noordwijk and de Jong 1986; Ehrlen 2000; Horvitz et al. 2002).  To investigate 

whether historical effects influence the transition into dormancy in A. scaphoides, I tested for the 



15 

 

direct effect of stage in the previous year (t-1), the lagged effect of stage two years previous (t-

2), and the interaction of the two using logistic mixed models (function lmer in R, R Foundation 

for Statistical Computing, 2009), with individual plant as a random effect.  I constructed models 

that nested these independent variables (previous and lagged stage class), and used likelihood 

ratio tests to assess whether individual history affected dormancy probability, and what aspects 

of history best explained that variation.   

My analyses provide evidence for effects of plant history since both direct and lagged 

effects of previous stage were significant as well as the interaction of the two (likelihood ratio 

tests:  direct χ2
=  57.852 P<0.001; lagged χ2

=  306.41,  P<0.001; interaction: χ2
=  34.121 

P=0.005).  Plants that had been dormant for two years were most likely to remain dormant (Table 

2).  Besides dormant plants, young plants were most likely to transition to dormancy the year 

after recruitment.  Medium and, especially, large vegetative plants were least likely to transition 

to dormancy (Table 2). 

 

Variation in dormancy among individuals  

In prolonged dormancy, usually only a fraction of a population remains dormant, while 

the rest emerge above ground.  This pattern suggests that factors acting at the individual level 

may be important in this life history stage.  Therefore, I tested for variation in dormancy rates 

among individual plants.  If rates of dormancy do not differ among individuals then the 

probability of dormancy should follow a binomial model, in which the variance is determined by 

the mean.  If rates of dormancy vary by individual, then the probability of dormancy should 
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follow a beta-binomial distribution, in which dormancy is a binomial process, but the probability 

of dormancy differs among individual plants.     

Therefore, to test whether dormancy varied across individuals, I compared the fit of a 

beta-binomial model to a binomial model.  I fit the beta-binomial model using the “Kendall” 

function in the popbio package in R (Stubben and Milligan 2007, R Foundation for Statistical 

Computing, 2009; see Kendall 1998 and Appendix 1 of this dissertation for more details).  Since 

these models are nested, I used likelihood ratios to test for the model that provided a better fit to 

the data.   

Average A. scaphoides plants in this population spend almost a quarter of their time 

dormant (maximum likelihood estimate, MLE, mean = 0.240, 95% CI [0.206, 0.278], see Figure 

6).  Additionally, the probability of dormancy differs significantly among individuals, since the 

beta-binomial model provided a better fit (MLE variance = 0.030, 95% CI [0.020, 0.043], 

likelihood ratio: χ2
= 147.636, P<0.001).   

 

 

Spatial patterns of dormancy 

One possible explanation for variation in the probability of dormancy among individuals 

is spatial variation, such as differences in microsite conditions.  Thus, I tested for spatial 

variation in dormancy using logistic regression.  As measures of location, I included both 

transect and plot as well as the interaction of the two in these analyses.  First, I analyzed the 

probability of dormancy as a function of plot (1-m
2
 sampling quadrats; location in the East-West 

dimension) and transect (two parallel transect lines, location in the North-South dimension), in 
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an analysis where both were treated as categorical factors.  Dormancy differed as a function of 

plot and transect (Transect: P1=0.150; Plot44: P<0.001, Plot*Transect1: P=0.007).   

To further explore this pattern, I fit polynomial logistic models to the probability of 

dormancy, using plot as a continuous variable, and testing for interactions between location and 

transect (still fit as a categorical variable, since there were only two transects).  Using stepwise 

regression (stepAIC function in R, R Foundation for Statistical Computing, 2009) I identified the 

polynomial terms that best fit the relationship between probability of dormancy and location.  

This model indicated that dormancy has a non-linear relationship with location in this population 

(Fig.3). Plants at the western end of the transect were more likely to be dormant than those on the 

eastern end, and plants were more likely to be dormant in the south transect than in the north 

transect.   

 

Dormancy and climate 

Previous studies suggest that climate factors may be associated with prolonged 

dormancy, particularly temperature and precipitation (Epling and Lewis 1952; Boeken 1991; 

Lesica and Steele 1994; Vaughton and Ramsey 2001; Miller et al. 2004; Shefferson et al. 2001, 

Lesica and Crone 2007).  I analyzed the relationship between climatic variables and prolonged 

dormancy using hierarchical partitioning methods.  Climate variables are often correlated with 

each other, making it difficult to determine the relative importance of any one factor.  Therefore, 

I used hierarchical partitioning to calculate the independent effects of climate variables on the 

proportion of dormant plants seen each year (Murray and Conner, 2009).  For this analysis, I 

used climate data for 1989-2005 from the University of Montana Western station (NCDC 2010), 

which is approximately 25 miles from my study site.  I tested the effect of monthly climate 
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variables, as well as the accumulated effect of growing year precipitation.  Here, I define the 

growing year as July of the previous year to June of the current year (Crone and Lesica, 2006).  I 

used an arcsine-square root transformation to normalize the proportion of plants dormant for 

each year, and removed variables that had low zero order correlations before the final analysis 

(Murray and Conner 2009).   

The proportion of dormant plants was positively associated with warm, dry weather 

during the growing season (Fig.2).  Climate variables with the highest independent effects were 

average May temperature, average June temperature, precipitation in June, and total growing 

season precipitation (Table 1).  Generally, dormancy was positively associated with these 

temperature variables, and negatively correlated with precipitation. 

 

Dormancy and age 

In plants, size is much more often used as a metric to predict future performance than age 

(Menges 2000; Ehrlen and Lehtila 2002), so most studies on prolonged dormancy have focused 

on the relationship between above-ground size and dormancy.  However, other studies have 

suggested that relationships may exist between prolonged dormancy and age (Shefferson et al. 

2006; Shefferson and Tali 2007; Shefferson 2009).  Therefore, I investigated the relationship 

between age and dormancy for A. scaphoides, using only data for plants that recruited during the 

study period.  By doing so, I could unambiguously assign ages to these plants.   

I used quadratic logistic regression to test for relationships with age.  Prolonged 

dormancy initially declined with age, but then increased as plants get older (Fig. 4).  Both the 

linear and quadratic effects of time were statistically significant (Linear effect:  z=-4.292, 
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P<0.001; quadratic: z= 3.840 P<0.001), creating a u-shaped relationship between dormancy and 

age.    

 

Relationship of dormancy with lifespan and reproductive success 

Prolonged dormancy may be a way in which plants avoid stress (Shefferson 2009), but 

the delay of growth and reproduction that occurs during prolonged dormancy could have large 

effects on plant fitness (Tuljapurkar 1990; Shefferson 2009).  Therefore, I explored how 

dormancy relates to longevity and lifetime reproductive success.  To test these relationships, I 

used data for those individuals that completed their life cycle during the study.  By using only 

those individuals that recruited and died during the study, I could analyze the total lifetime 

impact of dormancy on fitness components.  Lifespan, then, was simply the number of years 

these individuals were present in the study.  Lifetime reproductive success was calculated as the 

total number of fruits produced per individual.  I tested for both linear and non-linear 

associations using a negative binomial distribution for both lifespan and reproductive success.   

Prolonged dormancy had a significant non-linear relationship with reproductive success 

(Fig. 7; linear effect: z=2.01, P=0.044; quadratic effect: z=-3.375, P<0.001).  Reproductive 

success increased with dormancy at low dormancy rates, declined once plants begin to spend 

more than 20% of their time in dormancy.   The overall relationship between lifespan and 

dormancy was negative (Fig. 7), but not significantly so (z = -1.612, P=0.107).   
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Discussion 

 My analysis of a long term dataset reveals some causes and consequences of prolonged 

dormancy that could be inferred from short term studies, but many that are only possible to 

observe through long term monitoring.  For example, the rate of emergence from prolonged 

dormancy seems to depend on how long plants have been dormant.  In shorter term datasets, this 

would be difficult to detect.  Further, it shows that the assumption of many demographic models, 

that dormant plants all have the same transition rates, does not hold.  This assumption is central 

to analysis of prolonged dormancy with capture-recapture models, emphasizing that these 

models would not be appropriate for this species.  Therefore, throughout this dissertation, I 

continue to define prolonged dormancy as a phenomenon in which plants remain alive below 

ground and later re-emerge. 

My results indicate that the probability of dormancy differs among individual plants, and 

that previous history had significant effects on the probability of dormancy.  These results are 

consistent with findings in Chapter 2 of this dissertation (Gremer et al. 2010), which indicates 

that plants that go dormant are a non-random subset of individuals that have low levels of stored 

resources, particularly stored available carbon (nonstructural carbohydrates, NSC).  Therefore, 

individual variation that leads to differences in stored resources may be an important driver in 

this life history stage.  Furthermore, Chapter 2 suggests that dormant plants increased 

concentrations of NSC while dormant, presumably by remobilizing structural carbon into 

available forms.   If this remobilization takes approximately one growing season to occur, then it 

makes sense for most bouts of dormancy to last one year.  Alternatively, it could be that 

dormancy bouts lasting more than one year are more costly than shorter bouts.  Dormant plants 

must maintain metabolic costs to remain alive while belowground, and these costs may become 
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increasing difficult to offset if plants spend more than one year without emerging above ground.  

Therefore, it may be less likely for plants to emerge if they need to remain below ground for 

more than one year.   

 Analysis of the long-term dataset also shows that variance in the amount of dormancy 

among individual plants is related to differences in fitness.  In A. scaphoides, reproductive 

success initially increased with amount of time spent dormant, but eventually declined.  This 

pattern suggests that intermediate levels of dormancy maximize fitness.  Other studies on 

prolonged dormancy have found both negative relationships (Shefferson et al. 2003) and positive 

relationships (Lesica and Crone 2007) with reproduction, usually defined as fruit set or 

probability of flowering, rather than lifetime reproductive success.  I explore relationships 

between dormancy and fitness further in Chapter 3 of this dissertation, using stochastic 

demography.  Results from Chapter 3 also indicate that intermediate levels of dormancy had the 

highest fitness benefit, since plants that spent approximately 20% of their time dormant had the 

highest total fitness.  Thus, it seems that some level of dormancy is beneficial for A. scaphoides.  

However, at high levels of dormancy, the demographic cost of missing multiple seasons of 

growth and reproduction may outweigh those benefits.  Therefore, intermediate levels of 

dormancy may confer the highest fitness advantage, and may represent the point at which the 

benefits of remaining belowground outweigh the cost of missing seasons of growth and 

reproduction.     

A third result in this study is more consistent with other studies of prolonged dormancy.  

I found that dormancy was positively related to warm and dry temperatures during the growing 

season.  Many other studies have found similar results (Epling and Lewis 1952; Boeken 1991; 

Lesica and Steele 1994; Vaughton and Ramsey 2001), though some others did not (Miller et al. 
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2004; Shefferson et al. 2001).  For instance, Shefferson et al. (2001) found that low temperatures 

in the spring increased dormancy, and Miller et al. (2004) observed higher dormancy fractions in 

wetter years.  If prolonged dormancy is a strategy to avoid environmental stress (Lesica and 

Steele 1994; Miller et al. 2004; Shefferson et al. 2005; Lesica and Crone 2007; Shefferson 2009; 

Gremer et al. in prep, Chapter 3 of this dissertation) then plants that remain below ground during 

unfavorable conditions should perform better than those that emerge.  In Chapter 4 of this 

dissertation, I investigate this possibility by comparing the physiological and demographic 

performance of dormant and emergent plants during times of stress.   My results support this 

hypothesis that dormancy is a mechanism for stress avoidance, since plants that emerged during 

unfavorable conditions suffered higher mortality following extreme stress.   

My analysis of long-term demography also revealed two patterns that I do not address 

further in this dissertation.  First, variation in prolonged dormancy among individuals was at 

least partly spatially correlated within monitoring transects.  This pattern of dormancy may 

reflect differences in environmental conditions within the study site.  However, if dispersal 

distances of A. scaphoides seeds are low, then individuals in closer proximity to each other may 

be more closely related.  If so, then the spatial gradient in dormancy could reflect relatedness 

among individuals that are more prone to dormancy.  Vaughton and Ramsey (2001) showed a 

genetic basis for non-emergence in Burchardia umbellata, but the genetic basis for prolonged 

dormancy in Astragalus scaphoides is not known.  Distinguishing between genetic and 

environmental drivers for this spatial gradient is beyond the scope of this dissertation, but it 

could be an interesting area for future research.  Second, I found a significant non-linear 

relationship between dormancy and plant age.  In A. scaphoides, prolonged dormancy initially 

declines with age, but then increases as plants get older.   Jakalaniemi et al. (in revision) 



23 

 

observed a similar pattern in a northern orchid, and Shefferson (2009) suggested that dormancy 

should be common when plants are young, become less frequent as plants mature, and eventually 

become more likely as plants age and reach senescence.  Studies comparing dormancy in long 

and short lived species suggest that age may be an important factor in shaping patterns of 

dormancy in natural populations (Shefferson 2006;  Shefferson and Tali 2007; Shefferson 2009).  

The relationship between dormancy and age could also partly explain the relationship between 

dormancy and lifetime reproductive success.  If young plants are most likely to become dormant, 

then plants that die before reaching reproductive maturity would have high dormancy.  Further 

study and experimentation may lend insight into the causal relationships among dormancy, age, 

and lifetime reproductive success. 

Together, these results suggest that the benefits of dormancy are context dependent, and 

are caused by both individual and environmental variation.  Further, my analyses indicate that 

both endogenous factors (such as age, previous history, and stage) and exogenous factors (such 

as climate and spatial variation) may interact to determine patterns of prolonged dormancy.  

Therefore, understanding the causes and consequences of this cryptic life stage requires 

consideration of both individual and environmental variation.  Additionally, these analyses 

highlight both the strengths and limitations of inference from long term studies.  In other 

chapters of this dissertation, I complement this demographic dataset with physiological and 

experimental studies.  By doing so, I can gain a more comprehensive understanding of the role of 

this puzzling stage in the life histories of perennial plants.  This type of integrative approach can 

lend insight into both the proximate and ultimate mechanisms leading to the patterns seen in 

nature, yet this approach is rarely used to address questions in ecology and evolution.  Thus, I 

hope my research will not only inform the causes and consequences of prolonged dormancy per 



24 

 

se, but also to contribute to a framework for integrating mechanistic experiments focused on 

individual performance with long-term population and evolutionary dynamics..   
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Table 1.  The relative importance of climate variables in explaining variation in prolonged 

dormancy.  The first two columns give the results of a hierarchical partitioning analysis that 

quantifies the independent effect of variables after accounting for correlations between variables 

(see Methods).  The final two columns give the results from linear regressions, including the 

coefficient of determination (R
2
)  and p values.  Variables that had zero-order correlations near 

zero were removed from the final analysis (Murray and Conner, 2009).  Variables are listed in 

order of relative importance. 

Independent 

effect 

Independent 

Percent r R
2
 p 

May Temperature 0.186 41.9% 0.520 0.270 0.027 

June Temperature 0.125 28.3% 0.473 0.224 0.048 

May Precipitation 0.075 17.0% -0.363 0.168 0.139 

Growing Year 

Precipitation 0.057 12.8% -0.410 0.132 0.091 
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Table 2.  The probability of dormancy as a function of previous stage.   The first column is the 

state two years previous (t-2) and the second column is the stage in the previous year (t-1).  I 

used 3 vegetative classes (S= small, M= medium, and L= large), a flowering stage class (F), and 

a dormant stage (D).   Dormancy probability was estimated using generalized linear mixed 

models (see Methods).  Stage class histories are listed in order of dormancy probability.    

Statet-2 Statet-1 Probability of dormancy Std. Error 

Dormant Dormant 0.596 0.541 

Recruit Flowering 0.514 0.809 

Recruit Small 0.372 0.542 

Recruit Medium 0.345 0.591 

Small Dormant 0.313 0.551 

Recruit Large 0.304 0.778 

Large Small 0.286 0.645 

Large Dormant 0.279 0.596 

Flowering Flowering 0.274 0.599 

Medium Dormant 0.249 0.573 

Flowering Dormant 0.235 0.603 

Small Large 0.230 0.608 

Medium Large 0.196 0.585 

Small Medium 0.181 0.562 

Medium Flowering 0.178 0.563 

Dormant Large 0.167 0.624 

Medium Small 0.161 0.580 

Small Small 0.156 0.552 

Dormant Small 0.148 0.581 

Large Large 0.139 0.621 

Small Flowering 0.136 0.603 

Dormant Medium 0.135 0.587 

Flowering Small 0.117 0.633 

Dormant Flowering 0.112 0.620 

Large Medium 0.104 0.632 

Large Flowering 0.103 0.595 

Flowering Large 0.099 0.609 

Medium Medium 0.089 0.585 

Flowering Medium 0.064 0.617 
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Figure Legends 

Figure 1.  Annual life cycle diagram for Astragalus scaphoides. I used 3 vegetative classes (S= 

small, M= medium, and L=Large), a flowering stage class (F), and a dormant stage (D).  

Magnitude of transitions are indicated by thickness of arrows.  Recruitment is indicated by 

dashed line from F to S (line not to scale).   

Figure 2.  Distribution of dormancy bouts by length.  Bars represent the observed lengths of 

dormancy bouts in the long term dataset.  The dashed line represents values predicted under the 

exponential distribution.  Most dormancy events last 1 year, and the probability of emergence 

varies with how long plants have been belowground.   

Figure 3.  Histogram of proportion of time spent dormant.  Solid bars represent observed 

values, while the dashed line represents values expected under a binomial distribution.  The 

majority of plants spend 24% of their time in dormancy, but varied significantly among 

individuals. 

Figure 4.  Spatial variation of prolonged dormancy by transect at Sheep Corral Gulch, MT.  

Lines represent the best fit models from stepwise regression.  Dashed line indicates the 

probability of dormancy by plot on the upper transect while the solid line represents the lower 

transect.   

Figure 5.  Prolonged dormancy in relation to climate variables.  The proportions of dormant 

plants were arcsine square-root transformed to normalize the data.  Correlation coefficients (r) 

and p-values are indicated on each graph.  Dormancy is positively associated with temperature 

and negatively associated with precipitation.   
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Figure 6.  Prolonged dormancy as a function of age in Astragalus scaphoides.  Dots represent 

the observed data while the solid line represents the predicted probability of dormancy by age 

from logistic regression.  Younger and older plants are more likely to enter dormancy. 

Figure 7.  Fitness metrics in relation to prolonged dormancy.   A) Lifespan as a function of 

prolonged dormancy and B) Total reproductive success, in terms of fruits produced, as a 

function of dormancy.  Points represent observed data, solid lines represent regression lines.  

Dormancy is negatively associated with lifespan and reproductive success, but maximum values 

occur at intermediate levels of dormancy.   
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CHAPTER 2                                                                                                              

Disappearing plants:  Why they hide and how they return. 

Abstract 

Prolonged dormancy is a life history stage in which mature plants fail to resprout for one 

or more growing seasons and instead remain alive belowground.  Prolonged dormancy is 

relatively common, but the proximate causes and consequences of this intriguing strategy have 

remained elusive.  In this study, I tested whether stored resources are associated with remaining 

belowground, and investigated the resource costs of remaining belowground during the growing 

season.  I measured stored resources at the beginning and end of the growing season in 

Astragalus scaphoides, an herbaceous perennial in Southwest Montana.  At the beginning of the 

growing season, dormant plants had lower concentrations of stored mobile carbon (nonstructural 

carbohydrates, NSC) than emergent plants.  Surprisingly, during the growing season, dormant 

plants gained as much NSC as photosynthetically active plants, an increase most likely due to 

remobilization of structural carbon.  Thus, low levels of stored NSC were associated with 

remaining below ground, and remobilization of structural carbon may allow for dormant plants 

to emerge in later seasons.  The dynamics of NSC in relation to dormancy highlights the ability 

of plants to change their own resource status somewhat independently of resource assimilation, 

and the importance of considering stored resources in understanding plant responses to the 

environment. 
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Introduction 

Prolonged dormancy is a relatively common stage in herbaceous perennial plants in 

which mature plants remain belowground during one or more entire growing seasons instead of 

emerging to grow and acquire resources (Lesica and Steele, 1994).  Prolonged dormancy has 

been most frequently observed in the Orchid family, but it has been reported in over 10 plant 

families and 52 species of plants, suggesting that it is a strategy that has evolved many times 

(Shefferson, 2009; Lesica and Steele, 1994).    Despite the fact that prolonged dormancy is 

relatively common, the causes and consequences for this behavior remain unclear.  Why do some 

plants forego the opportunity to grow and reproduce, while others resume seasonal activity?  

Here I investigate the proximate causes and consequences of prolonged dormancy in a long-lived 

native perennial, Astragalus scaphoides.   

Prolonged dormancy (also known as vegetative dormancy, see Lesica and Steele, 1994 

and Shefferson, 2009) is different from other, more extensively studied types of plant dormancy.  

The metabolic costs of maintaining mature plant parts below ground during prolonged dormancy 

are likely higher than costs of seed dormancy.  Further, in contrast to seasonal dormancy, where 

all individuals go dormant, prolonged dormancy often involves only a fraction of individuals in 

any given year.  The lack of photosynthesis and reproduction by individuals undergoing 

prolonged dormancy could have large negative fitness impacts.  However, the prevalence of this 

strategy suggests either neutral or even positive effects.  For instance, prolonged dormancy may 

allow individuals to avoid large resource demands or risks (e.g. biotic or abiotic stress) 

associated with growing above ground tissues (Shefferson, 2009).  To date, little is known what 

causes certain individuals to remain belowground while others are able to grow and reproduce 

above ground, or about the costs and benefits of doing so. 
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Two leading hypotheses have been proposed to explain prolonged dormancy:  a) it occurs 

in response to external cues, such as herbivory or drought (Morrow and Olfelt, 2003; Shefferson 

et al., 2003; Miller et al., 2004; Shefferson et al., 2005a; Lesica and Crone, 2007), and b) plants 

remain below ground because they lack resources to build leaves (Shefferson et al., 2005; 

Shefferson et al., 2006).  If prolonged dormancy occurs in response to some critical limiting 

resource, then plants must gain this resource while dormant so they can emerge in later years.  

However, plants typically lose stored resources during the non-growing season due to metabolic 

demands and lack of photosynthesis (Wyka, 1999).  Prolonged dormancy could incur a similar or 

even greater resource cost.  Plants that are dormant during the summer miss a season of carbon 

gain through photosynthesis, and likely lose even more carbon to respiration in summer than in 

winter due to higher soil temperatures (Amthor, 2000).  If so, prolonged dormancy would be a 

costly life stage because plants need remaining stored resources to survive another winter, as 

well as to initiate seasonal growth and reproduction. Such resource costs could have significant 

impacts on future performance and, ultimately, fitness.  It is possible that metabolism during 

prolonged dormancy may fundamentally differ from dormancy during winter and drought, or 

that individuals that remain dormant during the growing season may gain resources through 

belowground processes.  To date, no one has tested these alternatives by directly measuring the 

dynamics of stored resources in dormant plants.  

I investigated the causes and consequences of prolonged dormancy by measuring stored 

resources in individual plants at different life history stages for a long-lived perennial 

wildflower, Astragalus scaphoides.  I emphasized stored resources not only because they are a 

component of one of the leading hypotheses for prolonged dormancy but also because they 

reflect current condition as well as integrate past performance such as resource capture and 
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allocation to various life history functions (Chapin et al., 1990, Crone et al. 2009).  Stored 

resources are critical for numerous plant functions, including  plant growth following winter 

dormancy, reproduction,  recovery from herbivory, and survival (Mooney and Hays, 1973; Ho 

and Rees, 1976; Chapin et al., 1990; Boyce and Volenec, 1992; Zimmerman and Whigham 1992, 

Van der Heyden and Stock, 1996; Kobe, 1997; Wyka, 1999).  Furthermore, stored resources play 

critical roles in signaling pathways that control plant growth and development (Halford and Paul 

2003, Rolland et al., 2006; Lee et al., 2007).   Here, I asked: 1) are stored resources associated 

with the entry into prolonged dormancy? and 2) what are the resource consequences of 

remaining belowground during otherwise favorable conditions?   If prolonged dormancy is 

associated with stored resources, I expect that dormant plants will be lacking in one or more 

stored resources at the beginning of the growing season.   If prolonged dormancy is similar to 

other types of dormancy, such as winter dormancy, I expect dormant plants to deplete stored 

resources over the growing season.  However, if prolonged dormancy differs fundamentally from 

other types of dormancy, dormant plants may be able to conserve or acquire stored resources 

during the growing season.   

 

Methods 

Study species 

Astragalus scaphoides (Fabaceae) is an iteroparous legume with a long, narrow taproot, 

found on south-facing slopes in high-elevation sagebrush steppe communities (Lesica, 1995).  It 

has an estimated life span of 21 years (Ehrlen and Lehtila, 2002), and does not reproduce 

vegetatively (Lesica, 1995).  On average, 20% of the individuals in this population are dormant 

in any given year (Crone and Lesica, 2004)
 
and dormancy events typically last one year.  
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Dormancy is weakly correlated (0.2 < r < 0.3) with warm, dry weather in the spring (J. Gremer, 

unpublished analyses).  However, even in years of high dormancy, only a portion of individuals 

remain dormant while the rest emerge as vegetative or reproductive plants.  Plants flower 

approximately in alternate years (Lesica, 1995; Crone et al., 2005), and this strategy is driven by 

fluctuations in stored resources rather than changes in climate (Crone et al., 2005; Crone et al 

2009).  Plants that do not flower may produce leaves and be vegetative, or remain dormant 

during the growing season.   

If plants emerge aboveground, they initiate growth in April, and biomass senesces back 

to perennating roots in early July.   Mature dormant plants can be located by dried flowering 

stalks that persist above ground for 2-3 years.  Evidence of previous flowering events can be 

seen on root crowns, because the flowering stalks leave scars that are apparent even after several 

years.   

 

Harvests 

Sampling took place from 2006 – 2008 at Sheep Corral Ridge, located in Beaverhead 

County in southwestern Montana (45
o
06’55” N, 113

o
02’58” W).  The climate is semi-arid; mean 

annual precipitation is 250 mm, with peak rainfall in May (Crone and Lesica, 2006).  The 10 

upper cm of taproot (closest to the soil surface) from randomly selected dormant, vegetative, and 

reproductive plants (n= between 5 and 7 per life stage) were destructively harvested in early May 

each year, as soon as the three stages could be clearly distinguished.  In 2007 and 2008, roots 

were also harvested at the end of the growing season in July, after aboveground biomass of 

emergent plants had senesced.  While I could not control for the age of dormant plants, I 

harvested only reproductively mature individuals (as evidenced on root crown, see Study 
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Species). Because it is not possible to sample these narrow tap roots non-destructively, the fate of 

harvested plants could not be followed through time. 

Astragalus scaphoides plants emerge over several weeks in April.  Dormant, vegetative, 

and reproductive plants can be clearly distinguished from each other in early May, when any 

plants that have not initiated growth will remain dormant.  Since stored resource dynamics may 

not only vary in dormant plants, but are also expected to vary depending on whether plants are 

reproductive or vegetative, I conducted harvests in early May to compare stored resources among 

the three life stages.  However, by early May, plants have already grown a bit and may have 

assimilated carbohydrates through photosynthesis.  To account for potential changes in stored 

carbon from the time of early emergence to the time when reproductive plants start to develop 

flower buds, I conducted a “pre-season” harvest of plants starting to emerge in April of 2007 

(hereafter, emergents).  All samples were stored on ice for transport to the laboratory. Roots were 

analyzed for non-structural carbohydrates (NSC), nitrogen (N), and phosphorus (P).  In 2007 and 

2008, dormant roots were analyzed for total carbon, which includes both structural and mobile 

carbon compounds.  Root tissue was analyzed for total carbon in 2008.     

 Immediately upon arrival in the laboratory, samples were heated in a microwave oven at 

600 W for 60 seconds to denature enzymes.  Samples were then oven dried to constant mass at 

75ºC, ground to a fine powder and stored at 4ºC. Total nonstructural carbohydrates (NSC) 

analyses were performed, following methods described in Hoch et al. (2002).  In brief, a 

subsample of extract from boiled and centrifuged ground material is treated with isomerase and 

invertase to convert sucrose and fructose into glucose. The total amount of glucose (total free 

sugars) is then determined photometrically in a 96 well plate reader, after enzymatic conversion 

to gluconate-6-P.  The remainder extract is incubated with a dialysed crude fungal amylase to 
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break down starch to glucose.  Glucose is then determined as above. Starch is the difference of 

NSC minus free sugars.   Ground, dried roots were sent to the Stable Isotope Laboratory, 

University of California Davis, USA for analyses of N concentrations. There, samples were 

combusted at 1020°C in a reactor and nitrogen and carbon were determined by a continuous flow 

isotope ratio mass spectrometer (IRMS, Winooski, VT USA).  The 2007 samples were sent to 

the Colorado State University Soil Plant and Water Testing Laboratory, Fort Collins, CO USA, 

where a nitric acid/perchloric acid digest was conducted to analyze P concentrations (Miller and 

Kotuby-Amacher, 1996).  Because P did not appear to have any major role (see results) samples 

from 2008 were not sent for P analysis.   

Since A. scaphoides has long narrow taproots (<1cm in diameter and >1 m deep), 

sampling the entire root system is excessively destructive, so I harvested only the top 10 cm of 

root.  I tested whether this sample was a good indicator of stored resources in the entire root 

system by conducting a limited number of full root harvests.  In 2007, I conducted two harvests 

(n=5, each) and excavated all root tissue.  These samples were analyzed for NSC, N, and P.  

Total resource pools and concentration values for the top 10 cm of the root were highly 

correlated with those for the rest of the root tissue (R
2
= 0.98 or higher).  Further, root diameter 

was highly correlated with total biomass (R
2
 = .982, p=.003) and I saw no significant differences 

among life stages in size at the beginning (ANOVA:  F2,23=1.195, p=0.32), or the end (ANOVA: 

F3,30=2.08, p=0.14) of the season.   Therefore, these harvests were representative of stored 

resources throughout the root, and not biased by plant size.  These relationships allowed for 

calculation of total resource pools.  Total resource pool data followed the same trends as 

concentration data and, for simplicity, are not presented here.   
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Statistical Analyses 

All statistical analyses were conducted using R Statistical Software (R Foundation for 

Statistical Computing 2008).  I used analyses of variance with year and stage as factors and their 

interaction to compare stored resources among life stages at the beginning of the season.  I 

conducted the same analysis to compare stored resources at the end of the season.  Tukey’s 

honest significant difference (HSD) test was used as a post hoc comparison of mean resources 

between life stages at a given time.  I then used general linear models with stage and time as 

independent variables to estimate the change in resource concentrations throughout the growing 

season for each life stage (normal distribution with identity link). Inspection of residuals 

confirmed that assumptions of general linear models were met.    

 

Results 

Nonstructural Carbohydrates  

Dormant plants began the season with lower concentrations of NSC, but ended the season 

with NSC levels comparable to emergent plants.  At the beginning of the season (in May), 

dormant plants had significantly lower concentrations of NSC, relative to vegetative and 

reproductive plants (Fig. 1A; ANOVA: Stage F2,16 = 22.78 p<0.001).  NSC concentrations did 

not differ among years (ANOVA: Year F2,16= 1.49, p=0.24).  Lower NSC in dormant plants was 

not attributable to photosynthetic carbon gain by reproductive and vegetative plants from early 

emergence to May; NSC concentrations in emergent plants in April were not significantly 

different from those of reproductive or vegetative plants in May (Tukey’s HSD, p=0.84 and p= 

0.18 respectively).  However, they were significantly higher than those of dormant plants in May 

(Tukey’s HSD, p=0.001).   
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Over the growing season, NSC concentrations increased for all life stages (reproductive, 

vegetative and dormant) (Fig. 1A).  Dormant plants gained an average 8.0% (95% CI [5.48- 

10.52]) an increase that was greater than vegetative and reproductive plants, although differences 

were not statistically significant (vegetative p=0.08, reproductive p=0.42).  The increase of NSC 

in dormant plants was not associated with an increase in total carbon concentration (Fig. 2A), 

which did not significantly change over the season for any life stages (dormant: 95% CI [-0.92- 

2.73]; vegetative: 95% CI [-3.91- 0.95]; reproductive: 95% CI [-1.65-2.94]).  There were no 

differences in total carbon concentrations among life stages (ANOVA: Stage: F2,26=1.933, 

p=0.17;  Time F1,27=2.616, p=0.12; Time*Stage F2,26=2.374, p=0.12).  Increases in NSC were 

driven by sucrose concentrations, the main transport sugar in plants (Fig. 2B, average gain = 

6.9%, 95% CI [4.13- 9.66]).  At the end of the season, NSC concentrations did not differ among 

life stages (ANOVA:  Stage F 2,35 = 2.54, p = 0.10).       

Nitrogen and Phosphorus 

 Dormant plants were not depleted in either nitrogen or phosphorus at the beginning of the 

season, and they did not gain mineral nutrients during the growing season.  Dormant plants had 

higher N content than both reproductive and vegetative plants at the beginning of the season 

(Fig. 1B, ANOVA: Stage F2,16 = 7.72 P <.001).  However, they did not gain N during the season 

(95% CI [-0.301, 0.300]) while reproductive and vegetative plants did (reproductive 95% CI 

[0.27, 0.82], vegetative 95% CI [0.43, 0.98]).  These patterns were not affected by year 

(ANOVA: Year F 1,16 = .005, p = 0.94).  There were no differences in P content among life 

stages at the beginning of the season (ANOVA:  Stage F2,16 = 1.011, p=0.37) and plants did not 

significantly gain P over the growing season (ANOVA:  Stage F1,55 = 1.364, p = 0.25).  No 

significant differences were detected among stages at the end of the growing season for either N 
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or P (N ANOVA: Stage F 2,34 = 1.923, p = 0.18, Year F 1,34 = 1.99, p = 0.17; P ANOVA:  Stage F 

2,18 = 0.016, p = 0.98).   

 

Discussion 

My results indicate that stored nonstructural carbohydrates are associated with prolonged 

dormancy of mature plants.  Although plants that remain dormant during the growing season do 

not have lower stored mineral resources (N and P) relative to plants that emerge above-ground, 

they do have lower nonstructural carbohydrates (NSC). Further, dormant plants do not gain or 

lose nitrogen or phosphorus while belowground.  Surprisingly, despite being entirely 

belowground, dormant plants increase NSC concentrations during the growing season, and end 

with comparable concentrations to plants that had emerged.  My results are consistent with the 

hypothesis that plants enter prolonged dormancy due to a lack of stored resources (Shefferson et 

al., 2005; Shefferson et al., 2006).  In this case, dormant plants may remain belowground 

because they simply lack sufficient mobile carbon to construct leaves. Alternatively, low sugar 

concentrations may interrupt developmental pathways for above-ground growth.  Recent work 

with model systems amenable to laboratory and greenhouse study has highlighted the pivotal 

role of carbon compounds in signaling pathways for growth and development (Halford and Paul 

2003, Rolland et al., 2006; Lee et al., 2007).  Thus, the shortage of NSC in dormant plants may 

reflect a shortage of the raw material to build tissue, or an interruption in signaling pathways that 

allow plants to emerge above ground.       

In the past, the hypothesis that plants entered prolonged dormancy due to low resource 

stores seemed puzzling.  If a plant lacks the resources to emerge above ground, how would it 

gain those necessary resources by merely staying belowground?   In A. scaphoides, total carbon 
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concentrations remained constant, while the proportion of available carbon increased.  I suggest 

that dormant plants remobilized cell wall compounds (e.g., hemicelluloses) into available forms, 

as suggested by Hoch (2007).  In other systems, carbon starvation in tissues has been 

demonstrated to stimulate the degradation of cell wall compounds (Lee et al., 2007).  Dormant 

plants begin the season with low NSC values, do not photosynthesize, and likely incur metabolic 

costs during the summer due to higher temperatures.  These conditions are likely to lead to 

carbon starvation, which could then trigger cell wall degradation, and the subsequent release of 

sugars from cell wall materials.  Further research in this area could provide more insight on the 

role of carbon metabolism, and not just assimilation, in the life history strategies of wild plants in 

the field.         

I suspect that plants may enter dormancy because they lack key resources that they gain 

through remobilization.  An alternative would be that plants gain resources from symbionts.  In 

mycotrophic species such as orchids, plants may gain resources from mycorrhizal partners or 

other symbionts while they remain belowground (Gill, 1989; Shefferson et al., 2005b; Shefferson 

et al., 2007).   Astragalus scaphoides does not have strong associations with mycorrhizal or 

rhizobial partners (E. Crone ,H. Addy and M. Rillig, unpubl. data), so it is not likely to be 

gaining carbon from below-ground symbionts.  However, the potential for resource transfer in 

other species increases the plausibility of the idea that plants gain resources during prolonged 

dormancy.  In mycorrhizal species, soluble carbon may be transferred either to mycorrhizae or 

from them (Gill, 1989; Lesica and Steele, 1994; Lesica and Crone, 2007; Shefferson, 2009 and 

references therein).   Orchids have particular mycorrhizal associations that usually result in a net 

gain of carbon for the plant, even while dormant (Gill, 1989; Shefferson et al., 2005b; Shefferson 

et al., 2007; Shefferson, 2009).  However, species with arbuscular mycorrhizal (AM) 
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associations (such as Silene spaldingii, see Lesica and Crone, 2007), typically allocate carbon to 

mycorrhizae in return for mineral nutrients.  Such allocation could lead to low NSC and 

dormancy, if low NSC causes prolonged dormancy.  Alternatively, if mineral nutrients, rather 

than NSC, limit emergence for AM plants, they may be able to gain those resources through 

mycorrhizal symbionts while dormant.  The resource dynamics associated with dormancy for 

species with these symbiotic relationships deserve additional research.         

My results strongly point to a causal link between NSC and prolonged dormancy.  

However, as with any observational study, the link between NSC and dormancy could be due to 

a spurious correlation with other driving factors.  For example, both NSC and the tendency to 

remain dormant could be associated with plant age; however, dormancy in A. scaphoides 

declines very weakly with age (r = -0.048), whereas younger plants tend to have higher NSC 

concentrations (J. Gremer, unpubl. data).  Alternatively, local low resource availability around 

sampled plants could reduce NSC and also stimulate dormancy.  However, dormancy in A. 

scaphoides is not strongly associated with environmental resource availability.  Previous work in 

this system has attempted to alter plant performance by adding supplemental water over three 

years (Crone and Lesica, 2006) and supplemental nitrogen and phosphorus in 2007 (E.E. Crone 

unpublished); neither affected the probability of prolonged dormancy (J.R. Gremer, unpublished 

analysis).  As a third possibility, Morrow and Olfelt (2003) showed that Solidago missouriensis 

plants were most likely to be dormant after years of high herbivory, and it is plausible that 

herbivory would also affect NSC stores.  At my field site, ~ 1% of plants are defoliated in any 

given year (J. Gremer pers. obs.) and other consumers are rare, but ~ 20% of plants go dormant 

in any given year.  Therefore, I doubt that herbivory alone is the primary cause of prolonged 

dormancy in this species.  Finally, I have no reason to suspect that some individual plants are 
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inherently more likely to remain dormant than others; most bouts of dormancy last only one year 

in this species (Lesica 1995), and most plants in this 25-year monitoring study have gone 

dormant at least once (E. Crone & J. Gremer, unpubl.).  Furthermore, I harvested dormant plants 

with visible flowering stalks from previous years, indicating that these plants had flowered in the 

recent past.  Overall, these results do not appear to be confounded by specific environmental 

factors or plant age.  However, stored carbon resources reflect the integrated effect of plant 

performance over time, including NSC depletion after flowering (Crone et al. 2009) and 

combined responses to environmental factors (Chapin et al., 1990; Wyka, 1999; Crone et al., 

2009). These results suggest that low NSC reflects this integrated effect rather than the effect of 

any single external environmental factor.  Further research is needed to investigate the link 

between environmental factors, NSC stores, and prolonged dormancy.   

Overall, I did not detect a large short term cost of dormancy in terms of stored resources; 

I suspect dormant plants remobilize existing resources.  However, this remobilization of 

structural carbon could carry a long term cost.  Studies that have investigated the demographic 

costs and benefits of prolonged dormancy have sometimes, but not always, reported long-term 

costs.  For some species, prolonged dormancy decreased survival probability compared to plants 

that did not remain belowground (Hutchings 1987, Shefferson et al., 2003; but see 

counterexamples in Shefferson et al., 2005a; Shefferson, 2006; and Lesica and Crone 2007).   

Similarly, Shefferson et al. (2003) found that dormant Cypripedium calceolus plants were less 

likely to reproduce in the year following dormancy, while Lesica and Crone (2007) showed 

dormant Silene spaldingii were more likely than vegetative or flowering plants to reproduce the 

following year.  It may be that, in some cases, remobilization of resources during dormancy 

carries a long-term cost in terms of future survival or reproduction, even if this remobilization is 
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better than death.  Alternatively, prolonged dormancy may have different metabolic 

consequences in different plant species.    

My results suggest that carbon storage may help explain why some individuals disappear 

belowground for one or more years, and provide the mechanism for their return. Low levels of 

mobile carbon are associated with remaining belowground, while remobilization of structural 

carbon during dormancy could be a mechanism that allows plants to come back up again. This 

suggests that the prolonged dormancy may not be exclusively under environmental control but it 

is also under strong internal control.  Further work, such as experiments that include 

manipulation of carbon stores, is necessary to fully understand the relationship between stored 

carbon and dormancy.   It may be that individual variation in carbon gain, allocation and 

metabolism can explain why some plants go dormant while others do not.  Because the 

availability of mobile carbon compounds depends on environmental effects on carbon 

acquisition (e.g. drought or herbivory) as well as on internal carbon metabolism and subsequent 

effects on developmental pathways, my results can reconcile the two leading hypotheses for 

prolonged dormancy because carbon resources belowground may be under both external and 

internal control.  To my knowledge, I document for the first time that carbon metabolism may be 

associated with life history strategies in a long-lived perennial plant in the wild.  Because these 

strategies have important implications for population dynamics, my results may open exciting 

lines of research spanning from plant molecular biology to population ecology and evolution.  

 

Literature Cited 

Amthor, J. S. 2000. The McCree-deWit-Penning de Vries-Thornley respiration paradigms: 30 

years later. Annals of Botany 86: 1–20. 



54 

 

Boyce, P. J., and J. J. Volenec. 1992. Taproot Carbohydrate Concentrations and Stress Tolerance 

of Contrasting Alfalfa Genotypes. Crop Science 32:757-761. 

Chapin III, F. S., E. Schultze, and H. A. Mooney. 1990. The ecology and economics of storage in 

plants. Annual Review of Ecology and Systematics 21:423-447. 

Crone, E. E., and P. Lesica. 2004. Causes of synchronous flowering in Astragalus scaphoides, an 

iteroparous perennial plant. Ecology 85:1944-1954. 

Crone, E. E., L. Polansky, and P. Lesica. 2005. Empirical models of pollen limitation, resource 

acquisition, and mast seeding by a bee-pollinated wildflower. American Naturalist 

166:396-408. 

Crone, E. E., and P. Lesica. 2006. Pollen and water limitation in Astragalus scaphoides, a plant 

that flowers in alternate years. Oecologia 150:40-49. 

Crone, E. E., E. Miller, and A. Sala.  2009.  How do plants know when other plants are 

flowering? Resource depletion, pollen limitation and mast-seeding in a perennial 

wildflower.  Ecology Letters 12: 1119-1126. 

Gill, D. E. 1989.  Fruiting failure, pollinator inefficiency, and speciation in orchids.  Speciation 

and Its Consequences (eds. D. Otte & J. A. Endler), pp. 458-481.  Sinauer Associates 

Inc., Sunderland, MA, USA.   

Ehrlen, J., and K. Lehtila. 2002. How perennial are perennial plants? Oikos 98:308-322. 

Halford, N. G., and M. J. Paul. 2003. Carbon metabolite sensing and signalling. Plant 

Biotechnology Journal 1:381-398. 

Ho, L. C., and  A. R. Reese. 1976. Re-mobilization and redistribution of reserves in the tulip 

bulb in relation to new growth until anthesis. New Phytologist 76:59-68. 



55 

 

Hoch, G., M. Popp, and C. Korner. 2002. Altitudinal increase of mobile carbon pools in Pinus 

cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374. 

Hoch, G. 2007. Cell wall hemicelluloses as mobile carbon stores in non-reproductive plant 

tissues. Functional Ecology 21:823-834. 

Hutchings, M. J. 1987. The population biology of the early spider orchid, Ophrys sphegodes Mill 

II, temporal patterns in behaviour. Journal of  Ecology 75:729-742. 

Kobe, R. K. 1997. Carbohydrate allocation to storage as a basis of interspecific variation in 

sapling survivorship and growth. Oikos 80:226-233. 

Lee, E. J., Y. Matsumura, K. Soga, T. Hoson, and N. Koizumi. 2007. Glycosyl hydrolases of cell 

walls are induced by sugar starvation in Arabidopsis. Plant and Cell Physiology 48:405-

413. 

Lesica, P., and B. M. Steele. 1994. Prolonged Dormancy in Vascular Plants and Implications for 

Monitoring Studies. Natural Areas Journal 14:209-212. 

Lesica, P. 1995. Demography of Astragalus scaphoides and effects of herbivory on population 

growth. Great Basin Naturalist 55:142-150. 

Lesica, P., and E. E. Crone. 2007. Causes and consequences of prolonged dormancy for an 

iteroparous geophyte, Silene spaldingii. Journal of Ecology 95:1360-1369. 

Miller, R. O., and J. Kotuby-Amacher.  1996.  Western States Laboratory Proficiency Testing 

Program Soil and Plant Analytical Methods. Version 3.00.  Utah State University, UT  

USA.  

Miller, M. T., G. A. Allen, and J. A. Antos. 2004. Dormancy and flowering in two mariposa 

lilies (Calochortus) with contrasting distribution patterns. Canadian Journal of Botany 

82:1790-1799. 



56 

 

Mooney, H. A., and R. I. Hays. 1973. Carbohydrate Storage Cycles in 2 Californian 

Mediterranean Climate Trees. Flora (Jena) 162:295-304. 

Morrow, P. A., and J. P. Olfelt. 2003. Phoenix clones: recovery after long-term defoliation-

induced dormancy. Ecology Letters 6:119-125. 

Rolland, F., E. Baena-Gonzalez, and J. Sheen. 2006. Sugar sensing and signaling in plants: 

Conserved and novel mechanisms. Annual Review of Plant Biology 57:675-709. 

Shefferson, R. P., J. Proper, S. R. Beissinger, and E. L. Simms. 2003. Life history trade-offs in a 

rare orchid:  The costs of flowering, dormancy, and sprouting. Ecology 84:1199-1206. 

Shefferson, R. P., T. Kull, and K. Tali. 2005. Adult whole-plant dormancy induced by stress in 

long-lived orchids. Ecology 86:3099-3104. 

Shefferson, R. P., M. Weiß, T. Kull, and Taylor, D. L. (2005b) High specificity 

generally characterizes mycorrhizal association in rare lady’s slipper orchids, 

genus Cypripedium. Molecular Ecology, 14, 613–626. 

Shefferson, R.P. 2006. Survival costs of adult dormancy and the confounding influence of size in 

lady's slipper orchids, genus Cypripedium. Oikos 115:253-262. 

Shefferson, R. P., T. Kull, and K. Tali. 2006. Demographic response to shading and defoliation 

in two woodland orchids. Folia Geobotanica 41:95-106. 

Shefferson, R. P., D. L. Taylor, M. Weiß, S. Garnica, M. K.  McCormick, and 

S. Adams, et al. 2007. The evolutionary history of mycorrhizal specificity 

among lady’s slipper orchids. Evolution, 61, 1380–1390. 

Shefferson, R.P.  2009.  The evolutionary ecology of vegetative dormancy in 

mature herbaceous perennial plants.  Journal of Ecology 97: 1000-1009.   



57 

 

Van der Heyden, F., and W. D. Stock. 1996. Regrowth of a semiarid shrub following simulated 

browsing: The role of reserve carbon. Functional Ecology 10:647-653. 

Wyka, T. 1999. Carbohydrate storage and use in an alpine population of the perennial herb, 

Oxytropis sericea. Oecologia 120:198-208. 

Zimmerman, J. K., and D.F. Whigham. 1992. Ecological functions of carbohydrates stored in 

corms of Tipularia discolor (Orchidaceae). Functional Ecology 6:575-581. 



58 

 

Figure Legends 

Figure 1. A)  Dynamics of stored nonstructural carbohydrates (NSC) for emergent (����), 

reproductive (�), dormant (�), and vegetative (�) plants (averages from 2006-2008).  Dormant 

plants begin the season with low NSC concentrations and increase concentrations over the 

growing season.  Error bars represent one standard error.  B)  Nitrogen (N) dynamics for all life 

stages (emergent (����), reproductive (�), dormant (�), and vegetative (�) plants), averaged from 

2006-2008 data.  Dormant plants had higher N concentrations at the beginning of the season, but 

did not gain N through the season.   Error bars represent one standard error.   

 

Figure 2.  A) Change in nonstructural carbohydrate concentrations (NSC) in relation to total 

carbon concentrations for dormant plants.  Averages of 2007 and 2008 seasons shown.  Total 

carbon concentrations remained relatively constant as the proportion of carbon as soluble sugars 

(NSC) increased.  Error bars represent one standard error.  B)  Nonstructural carbohydrate (NSC) 

dynamics by fraction for dormant plants.  Averages of 2007 and 2008 seasons shown.  Sucrose, 

the major transport sugar throughout plants, is the only fraction that significantly increased.      
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CHAPTER 3                                                                                                                             

Are dormant plants hedging their bets?                                                      

Demographic consequences of prolonged dormancy in variable environments 

Abstract 

 Prolonged dormancy is a stage in which some individuals in a population of herbaceous 

perennial plants remain belowground during the growing season, while the rest emerge to grow 

and reproduce.  At first glance, prolonged dormancy (PD) may seem maladaptive, because plants 

remain below ground and delay growth and reproduction.  However, PD may offer the benefit of 

safety while belowground, which could balance out the costs of missing a season of 

reproduction.  This has led to the hypothesis that PD may be a conservative bet hedging strategy, 

in which mean fitness is sacrificed to reduce the variance in fitness.    Here, I evaluated whether 

PD could function as a bet hedging strategy using a 23-year demographic study of Astragalus 

scaphoides.  First, I compared fitness of plants with mean vital rates for this population to 

hypothetical plants without dormancy.  This comparison showed all the signs of classical bet-

hedging; relative to hypothetical phenotypes without PD, plants with observed phenotypes had 

lower deterministic growth rate (λ), higher stochastic λ, and lower variance in λ.  I also 

compared fitness based on vital rates of three groups of plants, plants that never were dormant, 

plants that spent < 1/5 years in the dormant stage class, and plants that spent ≥ 1/5 years in the 

dormancy.  In this case, dormancy reduced variance, but intermediate levels of dormancy led to 

increased fitness in constant and stochastic environments.  Empirical patterns of lifetime 

reproductive success confirmed this relationship.  My results suggest that dormancy could 
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function as a bet hedging strategy in principle, but that dormancy is also associated with 

variation in individual quality, and so may reflect plasticity, rather than classic bet hedging.   

 

Introduction 

Prolonged dormancy is a life history phenomenon in which some individuals in a 

population fail to re-sprout for one or more growing seasons and, instead, remain alive below 

ground (Lesica and Steele 1994; also known as vegetative dormancy sensu Shefferson 2009).  

Prolonged dormancy has been reported in at least 10 plant families, and over 52 species (Lesica 

and Steele 1994; Shefferson 2009) suggesting that this life history stage may have evolutionary 

significance.  At first glance, prolonged dormancy seems maladaptive: Why stay belowground 

while others are growing and reproducing?  The obvious cost of prolonged dormancy is that the 

individual foregoes photosynthesis and reproduction for one or more years.  Delaying these 

activities incurs demographic costs, which, in turn can have large effects on individual fitness.  

However, it has been suggested that prolonged dormancy may allow plants to avoid stress, 

predation, or mortality above ground (Lesica and Steele 1994; Shefferson et al. 2005; Miller et 

al. 2004; Lesica and Crone 2007; Shefferson 2009).  If so, plants in prolonged dormancy may be 

trading off current growth and reproduction in return for increased survival.  This has led to 

speculation that prolonged dormancy may function as a bet hedging strategy (Miller et al. 2004; 

Shefferson et al. 2005; Shefferson 2009).  In this study, I test the predictions of bet hedging 

theory for a long-lived native perennial in southwest Montana, Astragalus scaphoides.  

In bet hedging, average fitness is sacrificed for a reduction in the variance of fitness, and 

this should maximize geometric mean fitness (Slatkin 1974; Seger and Brockman 1987; Philipi 



62 

 

and Seger 1989; Stearns 1992; Roff 2002; Evans et al. 2007).  Therefore, three criteria must be 

met for prolonged dormancy to be bet hedging:  the strategy must entail a cost to arithmetic 

mean fitness, reduce variance in fitness, and increase geometric mean fitness.  Costs in terms of 

mean fitness are likely because, in addition to missing a year of photosynthesis, delaying growth 

and reproduction would also reduce fitness in most circumstances (Tuljapurkar 1990).  Previous 

work on prolonged dormancy suggests that it can buffer plants from the negative effects of 

stochasticity (Morrow and Olfelt 2003; Miller et al. 2004; Miller 2004), suggesting that it may 

reduce variance in fitness.  However, even if prolonged dormancy decreases variance in fitness, 

it is not clear whether this decrease is large enough to increase geometric mean fitness in 

stochastic environments.  Here, I investigate these relationships quantitatively, to evaluate 

whether prolonged dormancy in A. scaphoides fits the three central criteria to function as a bet 

hedging strategy.       

Bet hedging theory has a rich history in evolutionary ecology, because it seems to explain 

behaviors that at first seem maladaptive (Cohen 1966; Slatkin 1974; Stearns 1992; Roff 1992; 

Venable 2007; Evans et al. 2007).  However, empirical demonstrations of bet hedging strategies 

are somewhat rare (Clauss and Venable 2000; Menu and Desouhant 2002).  Many, if not most, 

well documented examples of bet hedging are of the “eggs in a basket” type, where fitness is 

maximized in a variable environment due to the outcome of collective events (Seger and 

Brockman 1987; Evans and Dennehy 2005).  For example, clutch size and seed dormancy have 

been shown to reduce arithmetic mean fitness, as well as reduce variance in fitness, leading to 

higher fitness in variable environments (Oloffson et al. 2009; Crump 1981; McGinley et al. 

1987; Einum and Fleming 2007; Menu and Debouzie 1993; Philippi and Seger 1989; Ellner 

1985; Clauss and Venable 2000; Venable 2007; Evans et al. 2007).   In seed dormancy, an 
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individual plant can produce seeds of variable dormant phenotypes, and can thus spread the risk 

of temporal variance in success over multiple years (Cohen 1966; Seger and Brockman 1987; 

Venable and Brown 1988; Clauss and Venable, 2000).  However, it comes at an opportunity 

cost, because germination would result in higher fitness in good years (Seger and Brockman 

1987; Pake and Venable 1996).   Thus, seed dormancy can be seen as a “don’t put all of your 

eggs in one basket” type of bet hedging (sensu Seger and Brockman 1987), where the success of 

such a strategy is averaged over multiple “baskets,” or seed types.  These types of bet hedging 

may lend themselves more directly to experimental perturbation, where clutch size or dormancy 

ratios can be manipulated and then observed.   

In addition, bet-hedging can occur through a “bird in the hand” strategy (sensu Seger and 

Brockman 1987), where risk is avoided at the individual level.  The saying that “a bird in the 

hand is worth two in the bush” implies that the probability of capturing two birds is uncertain, 

and one must release the bird already caught in order to pursue any more birds.  Thus, the 

conservative strategy is to keep the bird already in hand if the benefit of catching two birds does 

not outweigh the disadvantage of ending up with none (Seger and Brockman 1987).  This type of 

bet-hedging can be thought of as low yield (only one bird was captured) but also low risk (at 

least one bird was caught).   Prolonged dormancy in plants could be an example of this kind of 

bet-hedging, where remaining below ground in many years is lower-yield but also lower-risk 

than emerging above ground.  Though previous studies have demonstrated conservative bet 

hedging in semelparous plants (Rees et al. 2004; Rees et al. 2006, Simons and Johnston 2003), 

there are few, if any, examples of bet hedging strategies for plants with complex life cycles, such 

as long, lived iteroparous perennials (Childs et al. 2010).   



64 

 

Here, I analyze the fitness consequences of prolonged dormancy by comparing plants that 

spend different proportions of their life below ground.  I compare plants in the population that do 

not exhibit prolonged dormancy with those that have intermediate and high levels of dormancy.  

I also use matrix models to conduct an experiment that is not possible in nature, namely, forcing 

dormant plants to emerge in order to determine whether prolonged dormancy meets the criteria 

for bet hedging.  Though many matrix models include dormancy as a life stage, few have used 

these models to explore the fitness consequences associated with it (exceptions include 

Shefferson et al. 2003; Nicolé et al. 2005; Lesica and Crone 2007).  Matrix models allow me to 

calculate the asymptotic rate of increase (λ) as a measure of individual fitness that integrates 

trade-offs between survival, growth, and reproduction throughout an individual’s lifetime 

(McGraw and Caswell 1996; Roff 2002).  Specifically, I use matrix models to ask: 1) How does 

the fitness of plants in this population compare to hypothetical plants that never go dormant?  2) 

For observed phenotypes, how does the time spent below ground affect fitness?     Though many 

demographic studies of perennial plants include dormancy as a life stage, few have used these 

models to explore the fitness consequences associated with it (exceptions include Shefferson et 

al. 2003; Nicolé et al. 2005; Lesica and Crone 2007).   

 

Methods 

Study Species 

Astragalus scaphoides (Fabaceae) is an iteroparous legume with a long, narrow taproot, 

found on south-facing slopes in high-elevation sagebrush steppe communities in western North 

America.  It has an estimated life span of 21 years (Ehrlen and Lehtila 2002), and does not 
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reproduce vegetatively (Lesica 1995).  Median age to first reproduction is three years (Lesica 

1995).  On average, 20% of the individuals in this population are dormant in any given year 

(Crone and Lesica 2004)
 
and approximately 67% of dormancy events last one year (Gremer in 

prep., Chapter 1 of this dissertation).  Astragalus scaphoides emerges above ground in late 

April, flowers from late May to mid-June, and seeds usually dehisce by mid-July.       

 

Field sampling 

Monitoring transects were installed by Peter Lesica in 1986 at Sheep Corral Gulch, 

located in Beaverhead County, Montana (45
o
06’55” N, 113

o
02’58” W).    Methods for 

demographic data collection followed protocol developed by Lesica and Steele (1997). Transects 

are 1 meter wide belt transects consisting of approximately 50 adjacent 1 m
2
 plots.  Two 

monitoring transects are located at this site.  Surveys were conducted in early July of each year 

from 1986 to 2008, during fruit maturation. Within plots, plants that emerged above ground were 

mapped to the nearest 0.1 cm and classified into flowering (F), or one of three vegetative stage 

classes: small (S), medium (M), and large (L).  Small plants had less than 6 leaves; medium 

plants had 6 or more leaves; large plants had evidence of above ground branching (Lesica 1995).  

Number of inflorescences and fruits were recorded for flowering plants.  Dormant plants were 

defined as those that disappear below ground for one or more years and re-emerge later (Lesica 

1995).  Transitions to and from all of these stages are possible once plants are established (Figure 

1).  Since most dormancy normally lasts three years or less, the first and last three years of data 

have been removed from this analysis.  This allows me to separate dormancy from recruitment at 

the beginning of the study, and mortality at the end of the study (Lesica 1995).  Therefore, I used 
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the middle 17 years of data to build matrix models.  For the 23 years of this study, I collected 

data on individual histories for over 350 plants.   

 

Transition Matrices   

 Vital rates were calculated for all stage classes (dormant, small, medium, large, and 

flowering) for 17 years of the study.  Number of recruits was associated with  the  number of 

flowering plants in the previous year (t1) and the number of flowering plants two years prior (t2; 

linear model with quasipoisson error: t-1, coefficient, β1=0.228, P=0.101; t-2, coefficient, 

β2=0.426, P=0.026).  Therefore, I updated Lesica’s (1995) transition matrix for this species by 

adding a seedbank class to the transition matrices (b), which allows seeds to either enter the 

seedbank (transition from f to b) or germinate the next year (fg) (but see Appendix 1 for details 

on how recruitment was modeled for simulations).    These relationships lead to the following 

transition matrix (subscripts correspond to abbreviations for life stages seen in Figure 1):  

� �
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Transition probabilities sum to 1 and are thus negatively correlated (de Kroon et al. 

1986).   Therefore, the correlations between vital rates in a matrix model are a result of both 

mathematical restraints and the actual relationship between matrix elements (Morris and Doak 

2002).  Therefore, I transformed multinomial transition probabilities (i.e. transitions in which 
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there is more than one possible outcome) into binomial ones (with only one outcome; conditional 

vital rates sensu Morris and Doak 2002).  By using conditional vital rates, I can separate these 

mathematical constraints from biological correlations (Morris and Doak 2002; Lesica and Crone 

2007; Burns et al. 2010).   I defined conditional vital rates as survival, emergence conditioned on 

survival, and growth conditioned on both survival and emergence as illustrated in Table 1 (for 

details see Appendix 1).   

  I calculated the means and variances for all of these conditional probabilities using a 

beta-binomial distribution (Kendall 1998; implemented as the “Kendall” function in the popbio 

package in R; Stubben & Milligan 2007,  R Foundation for Statistical Computing, 2009).  This 

procedure separates annual variation in mean vital rates from demographic stochasticity (Kendall 

1998; Morris and Doak 2002).  I estimated correlations between vital rates as well as 

autocorrelations and cross correlations among vital rates (hereafter, serial correlations, 

Tuljapurkar 1990; White et al. 1996; Halley and Kunin  1999; Ruokolainen et al. 2009;  Morris 

and Doak 2002; see Crone & Gremer in prep, Appendix 1 of this dissertation).  These 

correlations and serial correlations were multiplied by corrected variance estimates to calculate 

corrected variances and serial covariances (see Morris and Doak 2002, Ch. 8; Crone and Gremer 

in prep).  Fecundity was calculated as described in Appendix 1 (Crone and Gremer in prep).  

Briefly, fecundity was decomposed into three terms:  seed pods per flowering plant, the 

proportion that go into the seedbank, and the proportion that immediately recruit into the small 

vegetative stage class.  Fecundity was then modeled as a function of these three terms using a 

negative binomial for seed pods per flowering plant and quasi-poisson distribution for annual 

variation in germination.  Distributions were chosen to fit mean-variance relationships (see Hoef 

and Boveng 2007 & Appendix 1.)   
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Estimating fitness  

Using these vital rates that were estimated from long term demographic data, I calculated 

deterministic lambda (λd), stochastic lambda (λs) and reproductive values. Reproductive value 

can be interpreted as conditional fitness, since it is defined as the expected lifetime reproduction 

of individuals of a stage class, based on probabilities of survival and reproduction, as well as 

generation time and population growth rate (Fiedler et al, 1998), and are found in the dominant 

left eigenvector of the average transition matrix (Morris and Doak 2002).   Reproductive values 

are relative measures; here I scaled them to the small vegetative stage class.  λd can be 

interpreted as fitness in a constant environment, and is the dominant eigenvalue of the average 

transition matrix; in this case I used the transition matrix calculated from mean vital rate 

estimates.   λs, then, is fitness when variability is taken into account, and is calculated using 

stochastic simulations.  For these stochastic simulations, I used methods as described in Crone 

and Gremer, in prep (see Appendix 1).  Briefly, I generated vital rates using Kendall’s method 

(Kendall 1998 as implemented by Morris and Doak 2002) and the full correlation/serial 

correlation structure (using methods as proposed by Morris and Doak 2002, their box 8.10).  

Kendall’s method allows for separation of sampling error from variance that can be attributed to 

environmental stochasticity.   In this way, I could explicitly model the effects of environmental 

variation in stochastic simulations.  These estimated vital rates were input into matrix models 

using element selection, and I simulated growth of these phenotypes over several time steps (50 

years) using matrix models.  Stochastic lambda values were calculated as the geometric mean 

growth over these 50 times steps and simulations were replicated 1,000 times.  These values of 
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λs represent the fitness of individuals with the phenotype described by their corrected means, 

variances, and serial covariances in a variable environment.   

 

Testing the predictions of bet hedging 

In order to function as a bet-hedging strategy, dormant phenotypes should have lower λd, 

but higher λs and lower variance in λ than non-dormant phenotypes.  I compared the fitness of 

dormant and non-dormant phenotypes using five different scenarios.  First, I used all individuals 

in the dataset to estimate the average phenotype of the population (average dormancy 

phenotype).  I also grouped individuals in the demographic dataset by dormancy rates.  To 

account for biasing estimates due to seedlings (plants that are younger than three years) or 

detection for dormancy (it takes at least three years of data to detect dormancy bouts), I used 

only those plants for which I had more than three years of data for these fitness comparisons.  

Within the long term data, I separated individuals into three groups:  individuals that never went 

dormant in the study (hereafter never dormant, n=44), plants that spent less than 20% of their 

time in dormancy (low dormancy phenotypes, n=90);  and plants that spent more than 20% of 

time in dormancy (high dormancy phenotypes, n=70). I then calculated vital rates for each of 

these phenotypes using the long term dataset.   I also used a hypothetical phenotype (hypothetical 

non-dormants) in which I removed dormancy.   

A classical problem in observational studies of life histories is that observed phenotypes 

may be confounded by other features of the environment or individual state.  In this case, time 

spent dormant can be confounded with differences in microsite (for instance, soil moisture or 

nutrients) or individual differences (e.g. maternal effects, individual state).  Therefore, I used this 
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hypothetical phenotype to account for these possibilities.  To create this phenotype, I used the 

vital rates for the average dormant phenotype described above, except that I set the conditional 

probability of emergence (pEx) to one.  In this way, I could redistribute the transitions into 

dormancy among other stages without changing other vital rates, such as survival. Thus, for this 

hypothetical phenotype, I test how plants would perform if they could simply avoid the dormant 

stage and transition into other stages without penalty.  I then calculated λd, λs, the variation in λs, 

and reproductive values for these 5 phenotypes in order to determine the fitness consequences of 

dormancy in a constant versus variable environment.   

 

Results 

Transition matrices 

 Not surprisingly, transitions to dormancy differed among the dormant phenotype classes 

(Table 2).  Survival of medium plants differed significantly among dormancy groups, with the 

highest value for the low dormancy group and the lowest value for the plants that never went 

dormant.  Other vital rates and vital rate variances varied among groups, but were not 

statistically different.  The low dormancy phenotype was more likely to remain dormant than the 

average phenotype.  The reproductive values for each phenotype indicate that the relative 

contribution to fitness for each stage varied by dormancy level (Table 2).  As expected, the data 

show that the flowering stage had the highest reproductive value of all stages for all phenotypes, 

but was relatively higher for those without prolonged dormancy (hypothetical and never 

dormants).  The dormant stage contributed more to fitness for average phenotypes than for low 

and high dormancy phenotypes.    
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Testing the predictions of bet hedging theory 

 Overall, phenotypes that exhibited dormancy had lower variance in fitness (λ) than plants 

without dormancy (Figure 3, Coefficient of variation for never =1.516; low= 1.507; high= 1.450; 

average =1.497; hypothetical = 1.517).  In comparison to hypothetical plants without dormancy, 

the average dormancy phenotype had higher deterministic λ (average: λd= 1.006, hypothetical: 

λd=1.015).  Estimates of λd are properties of the transition matrix, and therefore do not have 

associated error terms.  However, in long lived organisms, small changes in growth rate can have 

large biological significance (Silvertown et al. 1993).  Variance in λ was higher for hypothetical 

plants without dormancy, compared to the average dormancy phenotype.  Accordingly, λs was 

higher for the average dormancy phenotype than the hypothetical phenotype without dormancy 

(average λs= 1.018, while hypothetical λs=1.009), and confidence intervals for these values did 

not overlap.   For the observed dormancy phenotypes, high dormancy phenotypes had the lowest 

coefficient of variation, with never dormants having the highest variation.  However, variance in 

fitness was not sufficient to make up for differences in mean fitness.  Plants that had intermediate 

levels of dormancy had the highest λ values, both deterministic and stochastic (1.069 and 1.037 

respectively), plants that never went dormant had the lowest values for both deterministic and 

stochastic λ (0.851 and 0.858 respectively), and high dormancy phenotypes had intermediate λd 

and λs (1.003 and 1.001).  
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Discussion 

Our results indicate that prolonged dormancy would function as a bet hedging strategy if 

dormant plants could avoid the dormant stage and perform like emergent plants.  Hypothetical 

non-dormants had higher deterministic λ, higher variance in λ, and lower stochastic λ than the 

average dormancy phenotype in our population.  These results display the classic traits of bet 

hedging:  prolonged dormancy came at a cost to average fitness, but resulted in a decrease in the 

variance of fitness that translated into higher stochastic fitness.  Therefore, it is clear that low 

levels of dormancy increase fitness of plants in this system.  In the past, dormancy was 

considered to be maladaptive (Hutchings 1987; Shefferson et al. 2003), but our results are 

consistent with the hypothesis that dormancy is beneficial in a variable environment (Miller et al. 

2007; Shefferson 2009).  However, differences among observed dormancy phenotypes in our 

long term dataset are not entirely consistent with bet hedging since no cost to average fitness was 

detected for low dormancy phenotypes. 

A related study in this system (Gremer et al. 2010, see Chapter 2 of this dissertation) 

suggests that A. scaphoides individuals may be constrained to dormancy by low levels of stored 

available carbon (nonstructural carbohydrates, NSC).  Plants recover NSC while dormant 

presumably by remobilizing structural carbon into nonstructural carbon.  If so, then prolonged 

dormancy may represent a plastic response to low NSC stores.  While plasticity is not strictly bet 

hedging (Seger and Brockman 1987), it is possible that both bet hedging and plasticity may 

occur within a system (Evans et al. 2007; Evans and Dennehy 2005; Cohen 1967).  For example, 

if conditions at emergence are not predictive of growing conditions later in the season, then 

variation in emergence as a result of plasticity could still lead to bet hedging (Evans and 

Dennehy 2005).  Further, since environmental conditions may have aspects that are more or less 
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predictable, it may be possible to see both bet hedging and plasticity occurring (Evans and 

Dennehy 2005; Evans et al. 2007; Cohen 1967).  Evidence for both plasticity and bet hedging 

has been found for other systems.  For example, a study of seed dormancy by Clauss and 

Venable (2000) demonstrated that germination fractions of Plantago insularis in the field were 

consistent with bet hedging predictions.  However, when they conducted experimental studies of 

germination for P. insularis, they found evidence for phenotypic plasticity in response to water 

availability.  Similarly, Evans et al. (2007) found evidence for both bet hedging and phenotypic 

plasticity in annual and perennial Oenothera populations.    In these examples, as in my system, 

it may be that some level of plasticity can confer the benefits of bet hedging, though the 

mechanisms in which it is achieved are not strictly probabilistic in nature.  Further research in 

this area could investigate the degree to which plasticity overlaps with bet hedging, and whether 

both mechanisms commonly occur in natural populations.    

For this analysis, I defined prolonged dormancy as plants that disappear for one or more 

years and later emerge.  Reduced variation in fitness of plants that spend more time below 

ground is due in part to the fact that, by this definition, dormant plants must survive (since by 

definition, they re-emerge), and there is no variance in the survival of dormant plants. Variance 

in other vital rates did not differ among dormancy groups (Table 3).  Therefore, the benefit of 

prolonged dormancy as a bet hedging strategy is likely due to safer conditions (and, hence, 

higher survival) belowground (Lesica and Steele 1994; Miller et al. 2004; Lesica and Crone 

2007; Miller et al. 2007; Shefferson 2009).   Recently, researchers have attempted to estimate 

survival of plants that remain alive below ground for one or more years but eventually die 

without emerging, using capture-recapture models (Shefferson et al. 2003; Shefferson et al. 

2005; Kery and Gregg 2004; Kery et al. 2005).  By this definition, dormant plants have an 
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associated probability of mortality.  More recent studies suggest that survival estimates for 

unobservable plants are usually not statistically robust (Kery et al. 2005; Link et al. 2010).  

Mortality during prolonged dormancy could affect the balance between the costs and benefits of 

this life stage.  Lalonde and Roitberg (2006) found that changing survival rates of dormant seeds 

affected the range of dormancy phenotypes that were maintained in populations, though some 

level of dormancy was still favored.  Similar processes could function for prolonged dormancy, 

though obvious differences between these two types of dormancy exist.  Conversely, Lesica and 

Crone (2007) found minimal differences in the consequences of dormancy between analyses 

with perfect and imperfect survival of dormant plants.   

Though it has been suggested that prolonged dormancy is a conservative bet hedging 

strategy (Lesica and Steele 1994; Shefferson et al. 2005; Miller et al. 2004; Lesica and Crone 

2007; Shefferson 2009), this study is the first to directly test this hypothesis.  Other studies of 

prolonged dormancy have investigated the fitness consequences of prolonged dormancy, but 

most have looked at fitness components such as survival and reproduction, instead of total fitness 

(Hutchings 1987; Shefferson et al. 2003; Miller et al. 2004; Shefferson et al. 2005; Shefferson 

2006; Lesica and Crone 2007; but see Miller et al. 2007; Jakalaniemi et al. in revision.).  For 

some species, growing season dormancy may decrease survival relative to plants that did not 

remain belowground (Hutchings 1987, Shefferson et al. 2003, Shefferson et al. 2005), while 

other studies have not detected a significant cost to dormancy in terms of survival (Lesica and 

Crone 2007; Shefferson et al. 2005; Shefferson 2006).  Similarly, Shefferson et al. (2003) found 

that dormant Cypripedium calceolus plants were less likely to reproduce in the year following 

dormancy, while Lesica and Crone (2007) showed dormant Silene spaldingii were more likely 

than emergent plants to reproduce the following year.  Ultimately, fitness relies on both survival 
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and reproduction, as well as other growth and transition rates within an individual’s lifetime.  

This is particularly relevant in long lived species that trade-off the costs and benefits of survival 

and reproduction over many seasons.  Therefore, using λ as my fitness metric provides a 

measure that integrates trade-offs that occur throughout the whole life cycle (McGraw and 

Caswell 1996) to understand long term fitness consequences of prolonged dormancy.  Further, 

current performance and ability to respond to environmental conditions is likely to be a product 

of current state as well as past environmental conditions and  the previous history of the 

individual (Ehrlen 2000; Doak et al. 2005).  Here, I included serial correlations, allowing for 

incorporation of these historical effects into this analysis.  I suggest that this life cycle approach, 

that accounts for historical effects, may reconcile the results of previous studies and provide a 

better understanding of how prolonged dormancy functions in the life histories of perennial 

plants.   

 Prolonged dormancy is, at first glance, a puzzling life stage because individuals remain 

belowground while neighboring plants emerge to grow and reproduce.  These results suggest that 

prolonged dormancy has the essential elements to function as a bet hedging strategy, although 

some degree of individual variation is also at work in this system.  Further, my results suggest 

that spending some proportion of time in prolonged dormancy is associated with fitness 

advantages in a variable environment.   Precisely how individual quality, environmental 

variation, and prolonged dormancy interact to affect fitness deserves further study.  Nonetheless, 

this study indicates that foregoing one or more seasons of growth and reproduction in favor of 

remaining in prolonged dormancy can confer fitness advantages in a variable environment.   
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Table 1.  Matrix of conditional probabilities for Astragalus scaphoides. sj= the probability of survival for stage j; pE,j= probability of 

emergence for stage class j, conditioned on survival; pFij= the probability of flowering for stage class j, conditioned on emergence; 

pMij= the probability of transitioning to the large stage class for stage class j, conditioned on emergence and not flowering; pSij= the 

probability of transitioning to the small stage class for stage class j, conditioned on emergence, not flowering, and not being in the 

large class; pods= seed pods, fruits produced by flowering plants; g= probability of germinating the following year.  B1= recruitment 

from seed pods the previous year, B2= recruitment from seed pods two years previous.  For clarity, only the first two and last columns 

are shown.   
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Table 2.  Conditional vital rate estimates for the average phenotype, hypothetical non-dormants, and three dormancy levels calculated 

using Kendall’s method and serial correlations.  95% confidence limits are in parentheses.  Rates that differed significantly among 

groups (as inferred from 95% confidence intervals) are indicated by letters and bold text.  Note that survival of dormant plants is 1 

because dormancy is defined as plants that re-emerge after some years below ground. 

Means Variances 

Vital Rate 

Average 

dormancy Never dormant Low dormancy High dormancy 

Average 

dormancy Never dormant Low dormancy High dormancy 

F Survival 0.903 0.806 0.941 0.869 0.002 0.000 0.002 0.003 

[0.838,0.95] [0.661,0.914] [0.854,0.981] [0.719,0.963] [0,0.019] [0,0.066] [0,0.037] [0,0.085] 

M Survival 0.908
a
 0.768

b
 0.972

c
 0.912

a,c
 0.000 0.002 0.000 0.000 

[0.873,0.939] [0.652,0.862] [0.939,0.99] [0.84,0.959] [0,0.005] [0,0.047] [0,0.003] [0,0.016] 

S Survival 0.814 0.567 0.942 0.896 0.007 0.019 0.007 0.009 

[0.74,0.868] [0.438,0.683] [0.816,0.98] [0.785,0.954] [0.001,0.025] [0,0.07] [0,0.078] [0,0.06] 

L Survival 0.953 0.923 0.965 0.979 0.002 0.029 0.000 0.000 

[0.877,0.983] [0.713,0.992] [0.915,0.99] [0.805,0.999] [0,0.031] [0,0.166] [0,0.01] [0,0.137] 

FtoD 0.143
a
 0

b
 0.148

a
 0.298

a
 0.013 0.010 0.011 0.037 

[0.069,0.271] [0.01,0.228] [0.069,0.296] [0.124,0.524] [0.002,0.063] [0,0.186] [0,0.074] [0,0.14] 

MtoD 0.134
a
 0

b
 0.109

a
 0.285

c
 0.006 0.010 0.014 0.021 

[0.081,0.21] [0.01,0.162] [0.047,0.234] [0.169,0.436] [0.001,0.028] [0,0.143] [0.002,0.077] [0,0.079] 

StoD 0.217
a,b

 0
c
 0.168

a,c
 0.423

b
 0.016 0.010 0.008 0.022 

[0.144,0.321] [0.01,0.17] [0.1,0.264] [0.296,0.555] [0.005,0.049] [0,0.149] [0,0.038] [0,0.073] 

DtoD 0.500
a
 n/a 0.188

b
 0.600

a
 0.025 n/a 0.034 0.006 

[0.392,0.621] [0.082,0.392] [0.513,0.691] [0.005,0.069] [0.001,0.137] [0,0.041] 

LtoD 0.159
a
 0

a
 0.125

a
 0.384

b
 0.010 0.010 0.017 0.000 

[0.088,0.272] [0.01,0.188] [0.05,0.277] [0.224,0.566] [0,0.052] [0,0.162] [0,0.097] [0,0.075] 

FtoF 0.434 0.246 0.310 0.146 0.153 0.080 0.124 0.018 

[0.199,0.709] [0.077,0.551] [0.11,0.619] [0.034,0.471] [0.048,0.212] [0,0.212] [0.02,0.212] [0,0.212] 

MtoF 0.264 0.238 0.308 0.206 0.073 0.063 0.086 0.040 

[0.136,0.447] [0.098,0.434] [0.158,0.507] [0.084,0.393] [0.031,0.147] [0.016,0.153] [0.036,0.165] [0.006,0.135] 
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Means Variances 

Vital Rate 

Average 

dormancy Never dormant Low dormancy High dormancy 

Average 

dormancy Never dormant Low dormancy High dormancy 

StoF 0.108 0.086 0.112 0.110 0.020 0.013 0.023 0.021 

[0.045,0.244] [0.025,0.23] [0.041,0.257] [0.034,0.305] [0.005,0.093] [0,0.099] [0.005,0.105] [0,0.147] 

DtoF 0.162 n/a 0.198 0.144 0.028 n/a 0.036 0.012 

[0.071,0.31] [0.077,0.377] [0.065,0.28] [0.007,0.1] [0.006,0.124] [0,0.074] 

LtoF 0.323 0.436 0.321 0.388 0.131 0.133 0.140 0.154 

[0.144,0.548] [0.192,0.697] [0.134,0.559] [0.138,0.691] [0.066,0.201] [0.007,0.212] [0.067,0.212] [0.013,0.212] 

FtoL 0.331 0.387 0.340 0.298 0.009 0.022 0.005 0.004 

[0.205,0.453] [0.19,0.626] [0.203,0.461] [0.103,0.522] [0,0.062] [0,0.14] [0,0.061] [0,0.133] 

JtoL 0.244 0.202 0.282 0.222 0.040 0.033 0.064 0.028 

[0.136,0.402] [0.081,0.396] [0.141,0.488] [0.097,0.408] [0.013,0.105] [0,0.132] [0.015,0.153] [0,0.116] 

StoL 0.089 0.065 0.108 0.074 0.002 0.000 0.000 0.008 

[0.051,0.154] [0.023,0.14] [0.059,0.184] [0.018,0.221] [0,0.021] [0,0.019] [0,0.025] [0,0.102] 

DtoL 0.156 n/a 0.190 0.131 0.001 n/a 0.000 0.003 

[0.095,0.247] [0.097,0.31] [0.063,0.268] [0,0.025] [0,0.041] [0,0.061] 

MtoL 0.403 0.457 0.408 0.389 0.016 0.072 0.030 0.000 

[0.265,0.569] [0.181,0.79] [0.241,0.611] [0.124,0.671] [0,0.086] [0,0.212] [0,0.114] [0,0.16] 

FtoS 0.370 0.366 0.413 0.223 0.029 0.007 0.031 0.021 

[0.217,0.553] [0.132,0.615] [0.242,0.608] [0.057,0.534] [0.004,0.098] [0,0.149] [0.001,0.105] [0,0.195] 

MtoS 0.419 0.447 0.362 0.439 0.020 0.005 0.060 0.006 

[0.3,0.55] [0.236,0.621] [0.188,0.562] [0.267,0.621] [0,0.07] [0,0.143] [0.007,0.15] [0,0.101] 

StoS 0.631 0.629 0.630 0.620 0.043 0.026 0.054 0.034 

[0.487,0.758] [0.449,0.769] [0.463,0.778] [0.418,0.774] [0.015,0.098] [0,0.113] [0.016,0.121] [0,0.119] 

DtoS 0.565 n/a 0.529 0.579 0.010 n/a 0.000 0.036 

[0.45,0.687] [0.383,0.673] [0.404,0.739] [0,0.053] [0,0.041] [0,0.111] 

LtoS 0.367 0.273 0.451 0.125 0.030 0.000 0.049 0.116 

[0.196,0.591] [0.05,0.679] [0.226,0.698] [0.01,0.511] [0,0.147] [0,0.212] [0,0.183] [0,0.212] 
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Table 3.  Reproductive values for average phenotype, hypothetical phenotype without dormancy, 

and three dormancy levels (no dormancy, low=<1/5 years dormant, high= >1/5 years dormant).  

Vital rates were estimated from 1989-2005 data using Kendall’s method and incorporating serial 

correlations.  Reproductive values are the left eigenvector of the transition matrix, and can be 

interpreted as conditional fitness.  Reproductive values are scaled to the small stage, hence 

reproductive value of the small stage=1.     

Stage 

Average 

Dormancy  

Hypothetical Non-

Dormants 

Never 

Dormant 

Low 

Dormancy 

High 

Dormancy 

Dormant 1.283 n/a n/a 1.114 1.132 

Small 1 1 1 1 1 

Medium 1.273 1.315 1.766 1.16 1.074 

Large 1.395 1.46 2.616 1.154 1.226 

Flowering 2.02 2.078 2.902 1.693 1.656 
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Figure Legends 

Figure 1.  Life cycle diagram for Astragalus scaphoides and transition matrices for 5 dormancy 

phenotypes.  A) Mean annual life cycle diagram for Astragalus scaphoides. I used 3 vegetative 

classes (S= small, M= medium, and L= large), a flowering stage class (F), a seedbank stage (b) 

and a dormant stage (D).  Magnitude of transitions are indicated by thickness of arrows.  

Recruitment is indicated by dashed lines from F to S and b to S (lines not to scale).  Average 

transition matrices for the average dormancy phenotype (B), hypothetical non-dormants (C), 

never dormant (D), low dormancy (E), and high dormancy phenotypes (F).  See Methods for 

description of phenotypes.  Vital rates were calculated using Kendall’s method and incorporating 

correlations and serial correlations from 1989-2005 demographic data. 

Figure 2.  Deterministic λ (λd) for the average phenotype, hypothetical phenotype without 

dormancy, and three dormancy levels.    Values for λd are the dominant eigenvalue of the 

average matrix for each phenotype.   

Figure 3.  Stochastic λ (λs) for the average phenotype, hypothetical phenotype without 

dormancy, and three dormancy levels.      Averages of λs were calculated from 1,000 replicate 

simulations.   95% confidence intervals of the mean are enclosed by the variable markers and do 

not overlap.  Dashed error bars represent prediction intervals.  

Figure 4.  Coefficient of variation for λ (CVλ) for the average phenotype, hypothetical 

phenotype without dormancy, and three dormancy levels.  Solid error bars represent 95% 

confidence intervals of the mean, dashed error bars represent prediction intervals.  
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CHAPTER 4                                                                                                                                    

It is risky out there:  The risks of emergence and the benefits of prolonged dormancy. 

Abstract 

 Prolonged dormancy is a stage in herbaceous perennial plants in which some individuals 

in a population fail to resprout for one or more growing seasons and instead remain alive, below 

ground.  Prolonged dormancy is puzzling, because foregoing one or more seasons of growth and 

reproduction seems costly.  However, it has been suggested that prolonged dormancy may 

benefit plants by allowing them to avoid risk above ground.  If so, then the benefits of dormancy 

depend on the performance of above ground stages.  Here, I measured physiological and 

demographic consequences of emerging during times of stress.  Specifically, I asked:  1) How do 

emergent plants respond to stress imposed by high temperatures and low soil moisture?  2) What 

are the consequences for losing above ground tissue to defoliation? and 3) Do the risks of 

emergence outweigh the benefits during times of stress?  Plants showed remarkable tolerance to 

stress in the short term, as high temperatures and low moisture did not have a strong effect on 

physiological performance and defoliation did not significantly impact stored resource dynamics.  

However, environmental stress did result in demographic costs.  In particular, defoliation 

significantly increased mortality rates for emergent plants.  These patterns suggest that the costs 

of emerging during times of stress may outweigh the benefits, but only during extreme stress.  

Further, my results suggest that prolonged dormancy is a beneficial stage, allowing plants to 

avoid the negative effects of a variable environment. 
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Introduction 

In both plant and animal taxa, dormancy is a stage in which growth stops, metabolism 

slows, and the organism enters a state that is more resistant to environmental hazards (Harper 

1977; Campbell and Reece 2005).  Dormancy is very common in plants and animals during 

predictable stressful conditions, such as extreme temperatures or drought during the winter or 

summer when success at growth or reproduction is unlikely.  In these cases, dormancy provides 

safety under extreme stress (high benefit) at the cost of maintaining basal metabolism to ensure 

survival (low cost).  The expected net benefit of this strategy explains why all individuals opt to 

remain dormant at those times.  In plants, a much more intriguing type of dormancy is prolonged 

dormancy, in which some individuals in a population fail to resprout during the growing season 

and instead remain belowground while others emerge to grow and reproduce (Lesica and Steele 

1994).  Though prolonged dormancy is quite common (Lesica and Steele 1994; Shefferson 

2009), the costs and benefits of this type of dormancy are not well understood.   

At first glance, prolonged dormancy seems costly.   Usually only a fraction of plants 

remain below ground while others emerge to grow and reproduce (Lesica and Steele 1994; 

Shefferson 2009).  Therefore, conditions appear to be suitable for photosynthesis and 

reproduction.  Further, prolonged dormancy differs from seed dormancy in that metabolic costs 

of maintaining mature plant parts below ground are likely higher than costs of surviving as seeds 

below ground.   Thus, prolonged dormancy entails demographic costs of missed resource gain 

and reproduction, as well as physiological costs of maintaining metabolism below ground.  

Given these costs, the prevalence of prolonged dormancy in many unrelated species 

(Lesica and Steele 1991; Shefferson 2009) indicates that it also provides some benefits.  Most 

obviously, prolonged dormancy may allow individuals to avoid unfavorable conditions above 
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ground (Lesica and Steele 1994; Miller et al. 2004; Shefferson et al. 2005; Lesica and Crone 

2007; Shefferson 2009; Gremer et al. in prep., Chap. 3 of this dissertation).  In a study on 

Solidago clones, Morrow and Olfelt (2003) found that prolonged dormancy allowed plants to 

escape future herbivore attack.  Shefferson et al. (2005) simulated stress in the form of herbivory 

and shading for two orchid species, and found that prolonged dormancy seemed to buffer 

individuals from the risks of mortality.   Other studies have shown that prolonged dormancy may 

buffer individuals and populations from the negative effects of environmental stochasticity 

(Miller et al. 2007; Gremer et al. in prep. Chap. 3 of this dissertation).   Together, these studies 

suggest that prolonged dormancy may allow plants to avoid risk above ground, thereby providing 

the benefit of safety.  If so, the benefits of dormancy depend on the degree to which encountering 

stress above ground results in negative consequences.   

Here, I combine long term demographic data with comparative physiology and field 

experiments to measure performance of dormant and emergent plants during times of stress in 

Astragalus scaphoides, a perennial herbaceous plant.  By doing so, I can understand the risks that 

plants face if they come above ground instead of remaining dormant below ground , and evaluate 

whether those risks may favor prolonged dormancy, and the safety that it provides.  

Environmental conditions such as high temperatures and low water availability can interfere with 

resource capture as well as result in decreased performance and mortality (Larcher 2001).  

Although plant responses to herbivory in nature can be complex (Quentin et al. 2010), tissue loss 

through actual and simulated herbivory has been shown to alter plant performance leading to 

physiological and demographic costs (Tiffin 2000; Ehrlen 2002; Ehrlen 2003; Knight 2004; 

Leimu and Lehtila 2006; Shefferson et al. 2006).  Therefore, I evaluated the physiological and 

demographic responses of emergent plants to stress (heat, drought, and defoliation), and 
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determined the extent to which stress in emergent plants influences stored resource dynamics 

relative to dormant plants.   Specifically I asked: 1) What are the physiological and demographic 

consequences for emerging during an extremely hot and dry season?  2) How do stored resource 

dynamics compare between dormant and emergent plants during times of environmental stress?, 

and  3) How does defoliation of emergent plants influence future performance?  If prolonged 

dormancy is a strategy to avoid unfavorable conditions, then I expect to detect physiological or 

demographic costs for emerging during times of environmental stress.   

 

Methods 

 

Study species and long term monitoring 

Astragalus scaphoides (Fabaceae) is a long lived, iteroparous legume with a long, narrow 

taproot, found on south-facing slopes in high-elevation sagebrush steppe communities (Lesica 

1995).  It does not reproduce vegetatively (Lesica 1995).  Plants flower approximately in 

alternate years (Lesica 1995; Crone et al. 2004; Crone et al. 2005; Crone and Lesica 2006).  

Plants that do not flower may produce leaves and be vegetative, or remain dormant during the 

growing season.  If plants emerge aboveground, they initiate growth in April, and biomass 

senesces back to perennating roots in early July.   Evidence of previous flowering can be seen on 

root crowns, because the flowering stalks leave scars that are apparent even after several years.  

Mature dormant plants can be located by dried flowering stalks that persist above ground for 2-3 

years.   

On average, 24% of the individuals in this population are dormant in any given year and 

dormancy events typically last one year (Gremer, in prep., Chap 1 of this dissertation).  
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Dormancy is correlated (0.3 < r < 0.5) with warm, dry weather in the spring (Gremer, in prep., 

Chap 1 of this dissertation).  However, even in years of high dormancy, only a portion of 

individuals remain dormant while the rest emerge as vegetative or reproductive plants (Gremer, 

in prep. Ch 1 of this dissertation).  Dormancy in A. scaphoides does not seem to be strongly 

associated with resource availability.  Two previous studies attempted to alter plant performance 

by adding supplemental water over three years (Crone and Lesica, 2006), and adding 

supplemental nitrogen and phosphorus in 2005 (E. Crone unpublished).  I also added 

supplemental nitrogen in 2007 (Gremer, unpublished), but none of these treatments affected the 

probability of dormancy (Gremer, unpublished analysis).   

Long term demographic data on A. scaphoides were collected along monitoring transects 

from 1986 to 2010.  See Gremer (in prep., Chap. 1 of this dissertation) for details on data 

collection.  For the 23 years of this study, data on individual histories for over 350 plants were 

collected.  This demographic data includes information for 3 vegetative stage classes, a 

flowering stage, and a dormant stage.  However, for this study, I combined the vegetative classes 

for simplicity and because differences in physiological performance among vegetative classes 

were not detected (J. Gremer unpublished analyses), resulting in 3 stages:  vegetative, 

reproductive (flowering plants), and dormant.  Dormant plants were defined as those that 

disappear below ground for one or more years and re-emerge (Lesica 1995).  Since most 

dormancy bouts last three years or less (Gremer in prep., Chap. 1 of this dissertation), transitions 

were not estimated for the first and last three years of data.  This allows for separation dormancy 

from recruitment at the beginning of the study, and mortality at the end of the study (Lesica 

1995).  Therefore, the middle 17 years of data were used to estimate average survival and 

transition rates for each of the 24 years.   
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Response to heat and drought stress 

 Response to stress in the field was measured under natural conditions as plants developed 

during an exceptionally hot year (National Climatic Data Center, hereafter NCDC, 2010; see 

Results).  Conditions in the sagebrush steppe range from cool and moist early in the growing 

season to hot and dry later as the season progresses.  In 2007, I measured the physiological 

performance of emergent plants as conditions changed during the season by measuring 

photosynthesis, water potential, and chlorophyll fluorescence.  Seasonal changes in temperature 

and moisture were measured by using dataloggers and by sampling soil moisture.  Hobo 

dataloggers (Hobo 4-Channel External datalogger, Onset Computer Corporation, Bourne, MA 

USA) recorded temperatures 6 cm below the soil surface every two hours throughout the 

growing season.  Soil moisture was sampled using a soil moisture probe (Hydrosense Soil Water 

measurement system, Campbell Scientific, Logan UT USA) every 7 to 10 days.  Because 

performance was expected to vary according to life stage (Crone et al. 2009; Gremer et al. in 

press, Chapter 2 of this dissertation), physiological measurements were conducted on both 

vegetative and reproductive plants.   

 

Physiological Measurements 

Leaf area based photosynthesis was measured on both vegetative and reproductive plants 

(n=between 8-10 for each life stage)  every 7 to 10 days throughout the growing season 2007 

using a Li-Cor 6400 Photosynthesis System (Li-Cor Biosciences, Lincoln, Nebraska  USA).   For 

all photosynthesis measurements, temperature and relative humidity in the leaf chamber were set 

to match ambient conditions.  Photosynthetically active radiation (PAR: 400-700 nm) in the 

chamber was supplied by an internal light source.  PAR was above saturation (J. Gremer, 
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unpublished analysis) and was set to reflect at ambient conditions on the day of measurement 

(from 1000 to 1800 µmol m
-2 

s
-1

).  Carbon dioxide concentration was kept at 400 µmol mol
-1

 and 

relative humidity in the leaf chamber was kept near ambient.  Leaf area in the cuvette (A. 

scaphoides leaves are composite) was measured using an image analysis system (Leaf Area 

Measurement version 1.3, University of Sheffield 2003) and these areas were used to calculate 

leaf area based gas exchange values.   

Conditions such as high light and high temperatures may damage photosynthetic 

apparatus (Larcher 2001; Maxwell and Johnson 2000; Germino and Smith 2000).  Therefore 

chlorophyll fluorescence measurements were conducted throughout the growing season in 2007.   

Dark adapted fluorescence measurements indicate the functioning of photosystem II (PSII), 

which can give an estimate of photosynthetic performance (Maxwell and Johnson 2000).  

Perhaps more importantly, PSII is often the first point of damage in a leaf, so fluorescence 

measurements can indicate if stress has impaired the photosynthetic function of a leaf (Larcher 

2001; Maxwell and Johnson 2000).  Variable to maximum fluorescence (Fv/Fm) was measured 

on 2 leaves per plant (n= 6 to 10 for each life stage).  Measurements followed protocol in 

Germino and Smith (2000), using a modulated fluorometer (Opti-Sciences, Inc., Hudson NH  

USA, Model OS-100).  Leaves were dark-adapted using leaf clips for at least 1 hour before 

measurement.  Both pre-dawn and mid-day measurements were conducted using the same 

leaves.  For most plant species, optimal values for Fv/Fm are around 0.83 (Johnson et al. 1993; 

Maxwell and Johnson 2000).  Measurements below that value indicate reduced photosynthetic 

capacity, and photoinhibition. Comparisons between mid-day and pre-dawn values can indicate 

whether photoinhibition is occurring, whereas comparisons of Fv/Fm values throughout the 

season allows distinction between dynamic (during the day only) and chronic (entailing damage 
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and lack of recovery through time) photoinhibition.  Low xylem pressure potentials (XPP) may 

indicate water stress (Larcher 2001), predawn XPP measurements were conducted four times 

throughout the season to investigate water status of emergent plants.  XPP measurements were 

conducted for both reproductive and vegetative plants(n=6 to 10 per life stage).  Two leaves were 

cut from each plant, and were immediately sealed in a plastic bag and transported in a portable 

cooler to a work station for measurement within 15 minutes.  XPP was measured using a 

pressure chamber (PMS instruments, Corvallis, OR).   

I used generalized linear mixed models to compare physiology data (leaf area based 

photosynthesis, fluorescence, and XPP) between life stages and through time.  Stage and time in 

the growing season were included as fixed factors, as well as the interaction between the two.   

Individual was included as a random factor, since measurements were repeated on the same 

individuals throughout the season.  Association between photosynthesis rates and available soil 

moisture were analyzed using Pearson’s product moment correlation coefficient. 

 

Stored resources 

To determine whether the degree of heat and drought stress influences stored resource 

levels in emergent plants relative to dormant plants, I harvested dormant, vegetative, and 

reproductive plants at the beginning and end of the growing season in 2007 (an unusually hot, 

dry year) and 2008 (a typical year; n= between 5 and 7 for each life stage at each harvest time in 

each year).  The first harvest was conducted early in the growing season, and was timed such that 

all life stages could be identified.  This timing does not affect conclusions about stored resource 

dynamics (see Gremer et al. in press, Chap. 2 of this dissertation).  The late season harvest 

occurred at the end of the season after aboveground biomass of plants had senesced.  Plants were 

randomly selected for harvest and the 10 upper cm of taproot (closest to the soil surface) was 
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destructively harvested.  All samples were stored on ice for transport to the laboratory.  Roots 

were analyzed for non-structural carbohydrates (NSC) and nitrogen (N), since these two 

nutrients because they are important in other life history transitions for A. scaphoides (Crone et 

al. 2009; Gremer et al. 2010, Chapter 2 of this dissertation).  See Gremer et al. (2010, Chapter 2 

of this dissertation) for details on NSC and N analyses. 

I used analyses of variance with time and stage as factors and their interaction to compare 

stored resources between life stages at the beginning of the season.  The same analysis was 

conducted to compare stored resources at the end of the season.  Tukey’s honest significant 

difference (HSD) test was used as a post hoc comparison of mean resources between life stages 

at a given time.  General linear models with stage and time as independent variables were used to 

estimate the change in resource concentrations throughout the growing season for each life stage 

(normal distribution with identity link, R Foundation for Statistical Computing 2009). Inspection 

of residuals confirmed that assumptions of general linear models were met.    

 

Demographic response to heat and drought stress 

The long term monitoring dataset described above was used to compare whether vital 

rates after the 2007 season differed significantly from the long term average, specifically, 

survival and flowering probabilities in the subsequent season (2008).  Logistic regression (R 

Foundation for Statistical Computing 2009) was used to determine whether survival or flowering 

after the 2007 season significantly differed from other years, and if there were differences 

between stage classes.  Because Astragalus scaphoides tends to flower in alternate years (Crone 

and Lesica 2004; Crone et al. 2005; Crone and Lesica 2006; Crone et al. 2009), I used 

generalized linear models with fruits in the previous year and stage in the previous year as main 
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factors as well as year and individual as random factors (family = binomial, link=logit, R 

Foundation for Statistical Computing 2009).   

 

Response to defoliation 

 In this population, individuals may experience complete defoliation by insect or 

mammalian herbivores (J. Gremer, pers. obs).  This type of herbivory seems to affect a small 

proportion of plants (~2%, J. Gremer, pers. obs), but may constitute a large risk for those 

individuals that lose all above ground tissue to herbivory.  Further, loss of leaf tissue through 

herbivory directly interferes with one of the benefits of emergence:  resource gain through 

photosynthesis.  Therefore, herbivory was simulated using two treatments:  1) A worst-case 

scenario in all leaf tissue was repeatedly removed right after full leaf expansion and upon any 

subsequent regrowth, so that the plant pays the full construction cost of leaves without the 

benefit of resource gain through photosynthesis(hereafter press plants), and 2) a typical-

herbivory treatment in which all leaf tissue was removed only once in the season, simulating a 

more common situation in which an herbivore defoliates a plant only once (hereafter pulse 

plants).  These treatments were implemented for both reproductive and vegetative stage classes, 

and were compared to a control group.   

In May of the growing season 2008, vegetative and reproductive plants were marked in 

the field and randomly assigned to one of two treatment groups, or a control group (n=50 for 

each treatment group and life stage).  For the severe herbivory treatment (hereafter, press plants), 

all above ground tissue was removed using small scissors approximately every 10 days 

throughout the growing season.  The more typical herbivory treatment (hereafter, pulse plants) 

was implemented by removing all of the above ground tissue once in the season (on May 31, 

2008).  
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Stored resource dynamics   

 In order to determine the consequences of defoliation, I compared stored resource 

dynamics between treatment, control, and dormant plants.  A subset of treatment and control 

plants for each stage was harvested (n= between 5 and 7 per life stage and treatment), as well as 

dormant plants at two times during the growing season (n=3 at beginning of season, n=5 at end).    

The first harvest was conducted early in the growing season, before treatment, and again at the 

end of the season after aboveground biomass of plants had senesced.  Plants were randomly 

selected for harvest.  See Stored Resources above for more information on these harvests and 

analyses.   

I used analyses of variance with treatment, time, and stage as factors and their interaction 

to compare stored resources between life stages at the beginning of the season.  The same 

analysis was conducted to compare stored resources at the end of the season.  Tukey’s honest 

significant difference (HSD) test was used as a post hoc comparison of mean resources between 

life stages at a given time and general linear models were used to estimate the change in resource 

concentrations throughout the growing season for each life stage (normal distribution with 

identity link, R Foundation for Statistical Computing 2009).   

 

Demographic consequences of herbivory 

In order to quantify the demographic consequences of defoliation, the fates of treatment 

and control plants were followed for two seasons after treatment (2009 and 2010).  Plant stage 

(flowering, or small, medium, or large vegetative) as well as fruit set for those plants that 

flowered were recorded.  No treatment plants (press or pulse) had successful inflorescences in 
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2009 (no fruit set), so these data were not included in analyses.   In addition, because plants that 

were not seen aboveground could be either dead or dormant, individuals were excavated to 

distinguish between dormancy and mortality events.  Fortunately, dormant plants are easily 

distinguishable from dead plants, since plants lose turgor and color upon mortality.  Chi squared 

tests were used to determine whether treatments resulted in differences in mortality rates and 

flowering (conditioned on survival) and then used logistic regression to estimate differences 

between each treatment group (R Foundation for Statistical Computing 2009).  Tests were 

performed separately for vegetative and reproductive plants.   

 

Results 

Response to drought stress 

Physiological performance 

 2007 was the 10
th

 warmest year on record for the United States (since 1895) and the 47
th

 

driest (NCDC 2010).  Montana was hotter and drier than average and July 2007 was the warmest 

on record.  In addition, 2007 was a record year for days with temperatures above 37
 o 

C (100
 o 

F) 

in Montana.  Soil temperatures were above 26
o
C for the second half of the growing season (Fig 

1).  Soil moisture declined throughout the season, ranging from 24% early in the season to 9% 

towards the end of the season (Fig. 2).   

Predawn pressure potentials decreased throughout the growing season (χ2 
=50.449, 

P<0.001), indicating reduced water availability to (Fig. 2), but did not differ between above-

ground life stages (Stage: χ2 
=2.065, P=0.151; Time*Stage: χ2 

=1.1223, P=0.772).   I detected 

marginally significant differences in photosynthetic rates over time (Time: χ2
=16.013, P=0.099), 

and photosynthetic rates were correlated with soil moisture (Pearson’s correlation coefficient 
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=0.29, P=0.013).  Photosynthesis did not differ significantly between above-ground stages (Fig. 

3; Stage: χ2 
= 6.1897, P=0.402; Time*Stage: χ2 

= 6.153, P=0.292).  Midday Fv/Fm differed 

among sampling dates, but did not consistently decrease (Fig. 4; Date: χ2 
= 8.983, P=0.030).   

Predawn Fv/Fm values increased over the growing season (Fig. 4; χ2 
= 74.583, P<0.001).  

Neither differed between above-ground life stages (midday: Stage: χ2 
= 1.347, P=0.246; 

Time*Stage: χ2 
= 0.569, P=0.451); predawn: Stage: χ2 

= 0.883, P=0.643; Time* Stage: χ2 
= 

0.558, P=0.455).  However, mid-day Fv/Fm values were lower than those at predawn suggesting 

dynamic photoinhibition (Time of day: χ2 
= 80.855, P<0.001; Date: χ2 

= 29.549, P<0.001; Time* 

Date: χ2 
= 7.285, P=0.063).   

 

Stored Resources 

 All plants gained NSC during the growing season 2007 (Table 1; ANOVA: Season: 

F1,82=78.680, P<0.001; Stage*Season: F2,32=1.290, P=0.289), but NSC gain did not differ 

between years (ANOVA: Season*Year: F1,73=1.086, P=0.343).  Nitrogen dynamics varied by life 

stage (Table 1; ANOVA: Stage*Season: F2,32=2.548, P=0.093).   Dormants did not gain N during 

the season (95% CI [-0.301- 0.300]) while reproductive and vegetative plants did (reproductive 

95% CI [0.27- 0.82], vegetative 95% CI [0.43- 0.98]).  Surprisingly, above ground stages gained 

less nitrogen in 2008 than in the hot, dry year of 2007 (ANOVA: Season* Year: F1,73=4.833, 

P=0.031).   

 

Demographic consequences of drought stress 

The hot and dry conditions in 2007 did not have strong effects on survival or flowering 

(Fig. 5).  Survival was not significantly lower than expected from long-term dynamics (z=0.139, 
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P=0.889), so the hot and dry conditions did not increase mortality.  Flowering probability was 

slightly lower than expected in 2008 (following hot dry conditions in 2007), but this effect was 

only marginally significant (reduced flowering rates by 0.165 (logit scale), CI of change [0.025-

0.606], z=-1.547, P=0.122).   

 

Response to defoliation 

Leaf removal 

For the initial treatment, approximately 8 leaves per plant for vegetative plants (pulse 

treatment mean = 7.7 leaves, press mean = 8.7) and 19 leaves per plant for reproductive plants 

(pulse mean = 18.6, press mean = 19.4) were removed.  Pulse plants regrew leaves, at an average 

of 3 leaves per plant (mean of reproductive pulse= 3, vegetative pulse = 2.8).  Reproductive press 

plants regrew an average of 5.9 leaves per plant, while vegetative press plants regrew an average 

of 4.3 leaves.  (Note that all of the regrowth leaves were removed from press plants.)  In contrast, 

reproductive control plants had a mean of 22.2 leaves per plant and vegetative controls averaged 

9.8 leaves per plant.   

 

Stored resources 

Defoliation treatments did not significantly affect NSC concentrations at the end of the 

growing season (Fig. 6; reproductive plants: ANOVA2,24: F=1.548 P=0.233; vegetative plants: 

ANOVA2,21: F=1.564 P=0.233). In vegetative plants, NSC tended to increase during the growing 

season (change in % NSC from early to late harvest: control:  6.796, t=2.397, P=0.04; pulse: 

12.17, t=4.292, P=0.001; press: 6.788, t=2.271, P=0.0343) but did not differ significantly among 

treatments (control 95% CI [0.652-12.939]; pulse 95% CI [6.03-18.314]; press 95% CI [0.930- 

12.646].  Reproductive plants in control and pulse treatments increased NSC (change in % NSC 
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from early to late harvest: control: 5.247 P=0.04; pulse: 5.545 P=0.04) but reproductive plants in 

press treatments did not (press: 0.402, P=0.18).  At the beginning of the season, dormant plants 

had lower NSC concentrations than reproductive plants (ANOVA: Stage2,12:  F=6.818, P=0.016; 

Tukey’s HSD between reproductive and dormant P=0.013), and somewhat lower NSC 

concentrations than vegetative plants, though this difference was not statistically significant 

(Tukey’s HSD between reproductive and vegetative P=0.220).    At the end of the growing 

season, NSC concentrations did not differ between stages (ANOVA2,14: F=1.285 P=0.307).  

Although NSC concentrations were lower in dormant plants at the beginning of the season, the 

seasonal increase in dormants was not statistically different from any other treatments (95% CI: 

0.306,14.643).  In summary, all plants increased NSC concentrations throughout the season, 

except for reproductive plants that received the press treatment.   

Defoliation treatments also did not affect N concentrations (Fig 6).  Vegetative plants 

began the season with the lowest nitrogen concentrations, while dormant plants had the highest 

N concentrations (Stage2,12:  F=15.586, P=0.001).   However, all life stages ended the season 

with similar N concentrations (Stage2,14:  F=0.053, P=0.949).  Reproductive plants did not gain 

nitrogen (Control: 0.208%, P=0.262; pulse: 0.0545%, P=0.779; press: 0.125%, P=0.720), but 

vegetative plants did (Control: 0.599%, P=0.021; pulse: 0.7%, P=0.008; press: 0.726%, 

P=0.009), regardless of treatment.  Dormant plants seemed to lose N throughout the season 

(0.421%, p=0.072).   

 

Demographic consequences of defoliation 

 Defoliation treatments increased the likelihood of mortality for both vegetative and 

reproductive plants (Fig. 7).  Control plants had low mortality (vegetative: 0.12 and reproductive: 
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0.08) while treatment plants had significantly higher mortality (Veg: pulse mortality= 0.35 press 

mortality = 0.43, χ2
 = 7.922  P=0.005; Reproductive: pulse mortality = 0.28, press mortality = 

0.36, χ2
 = 8.051  P=0.005).  For both vegetative and reproductive plants, the press treatment had 

a stronger effect (vegetative: z=2.441, P=0.015; reproductive: z=2.456, P=0.014) than the pulse 

treatment (Vegetative: z=1.791, P=0.073; Reproductive: z=1.896, P=0.058).  Neither defoliation 

treatment affected flowering probability in 2009 (Fig. 7; Veg: χ2
 = 0.974  P=0.324; Repro: χ2

 = 

1.943,  P=0.584).  No plants in this experiment successfully set fruit in 2009.  Defoliation 

treatments in 2008 did not affect survival from 2009-2010 (Veg: χ2
 = 3.319, n=44, P=0.344; 

Repro χ2
 = 4.046, n=59, P=0.257) or flowering in 2010 (Veg: χ2

 = 1.797,P=0.616; Repro χ2
 = 

1.429, P=0.699).   

 

Discussion 

Prolonged dormancy may provide the benefit of safety below ground, but this benefit 

depends on the performance of plants that emerge.  If prolonged dormancy functions to buffer 

plants from risky conditions above ground, then there should be costs to emerging during times 

of environmental stress.  In this study, plants did not suffer large physiological costs in response 

to stress, yet the demographic costs were significant.  Here, I found marginal effects of hot and 

dry conditions, as evidenced by slightly lower flowering probabilities in the following season.  

More importantly, my results show large consequences of defoliation on future survival.  

Considering that population persistence in A. scaphoides is strongly associated with survival 

(Lesica 1995), this constitutes a significant risk for emergent plants.  Therefore, these costs of 
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emerging during times of stress may be enough to favor the dormant stage, in which plants can 

avoid these types of risk by remaining belowground.   

My results suggest that, in the short term, A. scaphoides is quite robust to extreme 

temperatures and reduced moisture availability.  Soil moisture was significantly correlated with 

photosynthetic rates but, with the exception of reproductive plants, photosynthetic rates did not 

seem to drastically decline as the season progressed.  It may be that this correlation was driven 

by the June peak in photosynthesis, which coincided with high soil moistures.  This is consistent 

with the fluorescence results, since Fv/Fm values remained stable throughout the season.  Either 

way, the hot and dry conditions of 2007 did not seem to have significant impacts on the short 

term physiological performance of emergent plants.   Astragalus scaphoides inhabits sagebrush 

steppe communities which exhibit high variability in rainfall and temperatures (Paruelo and 

Lauenroth 1998), and my physiological measurements suggest that this species is remarkably 

well adapted to the system.  However, instantaneous physiological measurements, such as 

photosynthesis, may be poor indicators of overall plant status (Arntz et al. 1998).  For instance, 

in a study on a semi-arid perennial, Casper et al. (2006) found that drought depressed gas 

exchange and leaf water potentials, but changes in leaf level physiology did not translate into 

differences in growth.  This may be particularly true in long lived species that can use stored 

resources to buffer the effects of short term changes in resource assimilation.   

In this study, neither drought nor defoliation influenced stored carbon concentrations at 

the end of the season.  Emergent plants were able to increase concentrations of stored available 

carbon (NSC) despite slight decreases in photosynthesis with drought and leaf removal.  This is 

surprising, since plants use stored resources to replace leaf tissue (Ho and Rees 1976; Chapin et 

al. 1990; Zimmerman and Whigham 1992; Van der Heyden and Stock 1996; Wyka 1999), and 
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press treatments would prevent further photosynthesis.  In a previous study (Gremer et al. in 

press, Chap. 2 of this dissertation), it was shown that dormant plants were able to increase 

concentrations of NSC while completely belowground, presumably by remobilizing structural 

carbon into available forms.  It may be that this remobilization occurs in response to low carbon 

stores, or reduced carbon input from photosynthesis.  If so, then the physiological costs of 

defoliation may be initially masked by internal resource allocation.  However, this internal 

reallocation of resources may carry a long term cost that is manifest demographically.  In the 

case of drought, demographic costs were marginal, with only a marginal reduction in flowering 

probability, but for defoliation they were large.  Future studies that explore the mechanisms and 

consequences of internal resource allocation and remobilization in plants may lead to a better 

understanding of plant response to environmental stress.    

For A. scaphoides, prolonged dormancy has been shown to buffer individuals from the 

negative effects of environmental stochasticity (Gremer et al., in prep., Chap 3 of this 

dissertation), suggesting that the benefits of prolonged dormancy depend on environmental 

conditions.  Here, I show that stressful conditions, particularly defoliation, can carry 

demographic costs, even when those conditions are episodic (i.e. occurring in one season).  

These negative impacts could be much larger if such conditions are either more extreme, or 

occur over longer time periods.   For instance, in a study on a perennial woodland herb, 

Gustafsson (2004) demonstrated that only extreme defoliation treatments (complete and repeated 

leaf removal treatments) affected reproduction.  Similarly, Whigham (1990) showed that only 

extreme defoliation treatments effectively decreased flowering rates.  These studies suggest that 

there may be threshold response to stress, such that extreme stress or continued stress may be 

necessary to elicit responses in some herbs.  If so, then it may take an accumulation of stressful 
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conditions or events to affect plant performance.  Nonetheless, my study shows that episodic 

events can have large demographic costs.   

Prolonged dormancy may not only provide a stage in which plants can avoid stress; it 

may also be a response to stress.  Previous studies have shown dormancy rates to increase after 

defoliation (Morrow and Olfelt 2003; Shefferson et al. 2005; Ehrlen 2003) and drought (Epling 

and Lewis 1952; Boeken 1991; Lesica and Steele 1994; Vaughton and Ramsey 2001).   

Shefferson et al. (2005) speculated that dormancy reduced mortality rates following defoliation 

in an orchid species.  In a study of Solidago clones, Morrow and Olfelt (2003) suggested that 

dormancy allowed plants to escape the risk of future herbivore attack.  In this case, the herbivore 

in question (a leaf beetle) laid larvae in Solidago clones, and defoliation in one year increases the 

risk of defoliation in later years.  Thus, plants could avoid further damage by remaining dormant.  

If stress in one year is a good indication that stress will occur in adjacent years, then dormancy 

may be both a response to stress and a strategy to avoid future stress.  In the present study, press 

plants had significantly higher rates of dormancy than controls (Reproductive: χ2
=4.59, P=0.03; 

Vegetative: χ2
=7.57, P=0.006).  Press plants also had significantly higher risks of mortality in 

the following year.  Here, I cannot say definitively whether prolonged dormancy may have 

buffered these individuals from the risk of death, and mortality rates may have been higher 

without dormancy.  However, if prolonged dormancy does reduce mortality rates following 

environmental stress, it may buffer populations from extinction risk due to environmental 

stochasticity as suggested by previous work (Gremer et al. in prep., Chap 3 of this dissertation).   

Throughout their lifetime, plants may suffer damage from a variety of sources, including 

heat, drought, and defoliation (Nilsson et al. 1996).  However, in prolonged dormancy, plants 

may benefit from avoiding those risks (Lesica and Steele 1994; Miller et al. 2004; Shefferson et 
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al. 2005; Lesica and Crone 2007; Shefferson 2009; Gremer et al. in prep., Chapter 3 of this 

dissertation).  If so, then the benefits of this cryptic life stage depend on the consequences of 

encountering stressful conditions above ground.  Here, plants showed remarkable physiological 

tolerance to short term stress.  However, environmental stress, in particular defoliation, resulted 

in significant demographic costs, since defoliated plants had much higher risks of mortality. 

Thus, remaining dormant may be safer than coming up above ground during defoliation events. 

It is noteworthy that defoliation, but not drought and heat stress, caused such large demographic 

costs. In A. scaphoides’ steppe habitats, risks of herbivory and subsequent defoliation are much 

more stochastic than risks of drought, which is a much more predictable form of stress. The large 

costs of such unpredictable events are consistent with previous studies (Gremer et al., in prep 

Chap 3 of this dissertation; Shefferson et al. 2005; Miller et al. 2007), suggesting that prolonged 

dormancy can buffer plants from the risks of environmental stochasticity. Overall, results here 

and elsewhere help explain the prevalence of this stage in the life histories of perennial plants.       
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Table 1.  The change in resource concentrations over the growing season for 2007 and 2008.  

Values are differences in resource concentrations from the changes in resource concentrations, in 

parentheses are percent changes in resource concentrations (calculated as the change in the 
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concentration of the resource, divided by the initial concentration).  No differences in 

nonstructural carbohydrate (NSC) dynamics were detected across years, but plants gained more 

nitrogen (N) in 2007 than 2008.   

 

  Nonstructural Carbohydrates (NSC) Nitrogen (N) 

Stage 2007 2008 2007 2008 

 

Reproductive 6.33 5.25 0.64 0.21 

 (0.92) (0.64) (0.29) (0.09) 

 

Dormant 9.15 8.89 0.17 -0.42 
 (4.67) (5.22) (0.073) (-0.15) 

 

Vegetative 4.96 6.80 0.79 0.60 

  (1.75) (1.29) (0.41) (0.32) 

 

 

 

 

 

 

 

 

 

 

 

Figure Legends 

 



117 

 

Figure 1.  Soil temperature throughout the growing season in 2007.  Temperatures are 6 cm 

below the soil surface.  The solid line represents daily averages while the dashed line with circles 

represents daily maximum temperatures. 

 

Figure 2.  Volumetric soil moisture and predawn xylem pressure potentials throughout the 

growing season in 2007.  Top panel is soil moisture, where points represent averages of values 

collected using a soil moisture probe (n=20).    Bottom panel is xylem pressure potentials (XPPs) 

for reproductive (open diamonds) and vegetative plants (solid squares) throughout the season.  

XPPs declined throughout the season, but no significant difference between stages were detected.  

Error bars represent +/- 1 standard error of the mean.   

 

Figure 3.  Leaf area based photosynthesis measurements for reproductive and vegetative plants 

throughout the growing season in 2007.  Dashed lines with open triangles represent reproductive 

plants; while the filled circles with solid lines represent vegetative plants.  Error bars represent 

one standard error.   

 

Figure 4.   Variable to maximum fluorescence (Fv/Fm) for vegetative and reproductive plants 

throughout the growing season in 2007.  Predawn measurements (AM) are shown on the left, 

afternoon (PM) measurements on the right.  Error bars represent one standard error.   

 

Figure 5.    Number of flowering plants and fruit set for 1986-2009.   The solid lines with filled 

circles represent number of flowering plants, the dashed lines with open diamond represent total 

number of fruits.   
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Figure 6.  Stored resource dynamics for defoliation treatments and control plants in 2008. NSC 

(A) and N (B) dynamics for vegetative plants, NSC (C) and N (D) dynamics for reproductive 

plants.  Data are average concentrations (n = 5-7 per treatment). Tissue was removed several 

times through the season for press plants (open squares, dashed lines), while pulse plants (gray 

diamonds, dashed lines) were defoliated only once.  Dormants are solid lines with black triangles 

(no treatment).  

 

Figure 7.    Mortality and flowering probabilities for treatment and control plants for the 

defoliation experiment.  Flowering probabilities were conditioned on survival.  Data for 

reproductive plants are represented by open bars; solid black bars represent data for vegetative 

plants.  Press plants were defoliated several times; pulse plants were defoliated only once. Error 

bars represent 95% confidence limits.  
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APPENDIX : Matrix model construction and simulation 

 

 To estimate growth of a phenotype using matrix models, it is critical to know the mean 

values for vital rates, the variability of each vital rate, and the covariance and correlations for 

each of those vital rates (Morris and Doak 2002).  I directly estimated survival and transition 

rates from the demographic data spanning 1989 to 2005.  As stated above, all transitions between 

the four visible stages (small, medium, and large vegetatives and the flowering stage) and the 

dormant stage are possible.  This means that each vital rate is multinomial.  For instance, small 

plants can grow to the medium stage, or they can go dormant, flower, or skip the medium stage 

and grow to the large vegetative stage.  Thus, if they survive, there are 4 possible fates for these 

plants, making it more difficult to use matrix models that explicitly incorporate different sources 

of variation (Morris and Doak 2002).  These rates are also mathematically constrained, since 

matrix elements sum to unity.  Therefore, I transformed these vital rates into functions of 

binomial rates, also called conditional vital rates.  I calculated vital rates from matrix elements as 

a sequence of conditional binomial probabilities, defined in the same way for all stage classes as 

shown in Table 1.  Using "X" to represent the stage class in year t, these are: (1) sx – survival; (2) 

pEx - probability of emergence, conditioned on survival; (3) pFx - probability of dormancy, 

conditioned on emergence; (4) pLx - probability of being a large vegetative next year, 

conditioned on being  in some vegetative stage class; (5) pSx  - probability of being a small 

vegetatiave next year, conditioned on being M or L.    

The variation in the data is a product of both true variation in survival and growth rates as 

well as variation from sampling error.  Kendall (1998) developed a method to estimate and 

remove sampling error from these estimates of variance, as well as to correct for bias due to 

unequal sample sizes or sampling variation (Morris and Doak 2002).  In essence, this method 
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estimates probabilities for binary rates using a beta binomial model, and separates the variability 

due to sampling from that due to true environmental stochasticity.  Therefore, I estimated 

environmental stochasticity using Kendall’s method (Kendall 1998; implemented as the 

“Kendall” function in the popbio package in R; Stubben & Milligan 2007, R Foundation for 

Statistical Computing, 2009).  Autocorrelations reflect the sequential relationships within vital 

rates across years and cross correlations are those relationships between different vital rates 

across time steps (Morris and Doak, 2002).  I estimated correlations and serial correlations from 

the raw vital rate estimates (acf and cor functions in R), then converted these to corrected 

covariances and serial covariances by multiplying them by the corrected variances (see Morris 

and Doak 2002, their Ch. 8).   

I used generalized linear models to estimate recruits in year t as a function of seed pods 

(pods) produced in years t-1 and t-2.  In both cases, I used identity link functions, so that 

coefficients would relate naturally to per capita rates in density-independent matrix models.  

Initially, I tried both negative binomial and quasipoisson models.  The negative binomial model 

vastly overestimated recruitment after years of high seed production (Figure 1).  Presumably, this 

effect occurs because variance increases as a function of the square of the expected value in a 

negative binomial model (Ver Hoef and Boveng 2007), which means observations with high 

expected values have relatively little influence on the likelihood.  Therefore, I chose the 

quasipoisson model, which produced less biased predictions. 
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Figure A1.  Expected versus observed values for the negative binomial and quaisi-poisson 

models of fecundity.   

Within the quasipoisson error structure, I compared two models for recruitment: 

Recruitment only from seed pods in the previous year (E[recruits[t]] = B1×pods[t-1]), and 

recruitment from the previous year, plus a one-year seed bank (E[recruits[t]] = B1×pods[t-1] + 

×B2× pods[t-2]).  There was one year in which I observed recruitment even though there were no 

seed pods produced in the previous year.  Therefore, I modified the no-seed-bank model to:  

E[recruits[t]] = B1×(pods[t-1]+0.5).  I compared these models using Analysis of Deviance, which 

adjusts the likelihood ratio using the estimated overdispersion factor, θ, from the quasipoisson 

model:   

Coefficients: 

           Estimate Std. Error t value Pr(>|t|) 

fruits_tm1  0.02870    0.03050   0.941    0.361 
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fruits_tm2  0.05439    0.04154   1.309    0.209 

 

(Dispersion parameter for quasipoisson family taken to be 86.77735) 

 

Analysis of Deviance Table 

Model 1: recruits_t ~ -1 + I(fruits_tm1 + 0.5) 

Model 2: recruits_t ~ -1 + fruits_tm1 + fruits_tm2 

  Resid. Df Resid. Dev Df Deviance      F   Pr(>F)    

1        17    1785.41                                

2        16     592.98  1   1192.4 13.741 0.001914 ** 

 

Note that, although the quasipoisson/seedbank model is the best of the models I explored, it does 

not provide a particularly good fit to the data, suggesting that further investigation, possibly 

including empirical studies, into mechanisms of recruitment would be warranted.  At the same 

time, this model seems sensible in that it is biologically motivated (unlike constant recruitment, 

i.e., recruits[t] = B0), and at least captured the average number of recruits across the data set. 

 

For a quasipoisson model: 

,- � ./ � .�012345671 � 0-234567-  

 

Therefore, I modeled stochastic variation in recruitment as: 

89:8;<=56~?3<553@(A6� 012345671 � 0-234567- ) 

A6~B3AC38DEF�/ � 1, ,- � .  
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I calculated estimates of recruitment from pods[t-1] and pods[t-2] in each year (for analyses of 

correlations and autocorrelations), using coefficients from the fitted regression model and  as 

follows: 

A6 � 89:8;<=56
�012345671 � 0-234567-  

  

After conducting these analyses described above, I had estimates of mean vital rates, 

including fecundity, as well as estimates of the variance in those vital rates.  I used these 

estimates to assemble matrices for each of the 5 dormancy phenotypes (average, hypothetical 

non-dormants, never dormants, low, and high dormancy types) as shown in Figure 1.  These 

matrices are the average transition matrices, since they include the mean values for all vital rates, 

and were used to calculate deterministic lambda and reproductive values.  Deterministic lambda 

can be interpreted as fitness in a constant environment, and is the dominant eigenvalue of the 

average matrix.  Reproductive values can be found in the dominant left eigenvector of the 

average transition matrix, and were scaled to the value in that vector for the small stage.  I used 

the function eigen.analysis in R to calculate these values.   

 Using the corrected vital rates and serial covariances, I simulated population dynamics 

for 50 years, starting with the mean proportion of plants observed in each stage class from 1988-

2007, with the seed bank set to the value from the stable stage distribution.  Results were nearly 

identical from a range of starting values (E. Crone, unpubl. analysis.)  I generated correlated and 

serially correlated vital rates using the methods proposed by Morris and Doak (2002, their Box 

8.10), with beta-distributed survival and transition rates, and log-normal variance in fecundity 

(seed pods per plant) and gt (recruits per seed pods).  Log-normal distributions approximate 
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gamma-distributed vital rates from negative binomial models; and are more easily implemented 

using Morris and Doak’s algorithm.  Consistent with statistical estimation models, realized plant 

fates were generated from annual vital rates using binomial distributions for survival and growth 

transition rates and Poisson distributions for fecundity.   
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Table 1.  Matrix of conditional probabilities for Astragalus scaphoides. sj= the probability of 

survival for stage j; pE,j= probability of emergence for stage class j, conditioned on survival; 

pFij= the probability of flowering for stage class j, conditioned on emergence; pMij= the 

probability of transitioning to the large stage class for stage class j, conditioned on emergence 

and not flowering; pSij= the probability of transitioning to the small stage class for stage class j, 

conditioned on emergence, not flowering, and not being in the large class; pods= seed pods, 

fruits produced by flowering plants; g= probability of germinating the following year.  B1= 

recruitment from seed pods the previous year, B2= recruitment from seed pods two years 

previous.  For clarity, only the first two and last columns are shown.   
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