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O’Neal, Sarah Louise, M.S., May 2008  Organismal Biology and Ecology 
 
Lessons to learn from all out invasion: life history of brown trout (Salmo trutta) in a 
Patagonian River 
 
Chairperson:  Jack A. Stanford 
 

ABSTRACT 
 
  Brown trout (Salmo trutta) are widely introduced throughout Patagonia, though their 
distribution and impact in the region remain poorly documented.  Life history flexibility, 
and particularly partial migration play a major role in the ability of this species to adapt to 
Patagonian rivers.  Consequently, this study explored habitat, distribution and life history 
of a partially migratory population of brown trout in the Rio Grande in Tierra del Fuego, 
Argentina.  It described what is known of the history of the invasion.  Physical, chemical, 
and biological habitat data were collected for comparison between sites supporting 
resident fish with those supporting anadromous fish.  Additionally, brown trout and 
native fish distribution and abundance was described using a combination of local 
knowledge, angling, electrofishing, and netting.   
  Results indicate that brown trout developed an anadromous life history form several 
decades subsequent to their initial introduction, possibly after near extirpation of native 
galaxiid fish and reduction of invertebrate biomass.  Sites supporting resident fish were 
narrower, and exhibited higher levels of specific conductance and soluble reactive 
phosphorous than those supporting both resident and anadromous fish.  Resident sites 
additionally exhibited vastly higher invertebrate biomass.  Significantly larger scale radii, 
suggesting faster juvenile growth was documented for fish in sites supporting resident 
fish versus those supporting anadromous fish, suggesting that food availability indeed 
may influence the individual ‘decision’ to migrate.  The adult population proved to be 
exceptionally abundant and exhibited various life history traits which suggest that the Rio 
Grande supports one of the strongest remaining populations of anadromous brown trout 
worldwide. 
 
Key words:  sea trout, Salmo trutta, invasion, partial migration, Patagonia 
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INTRODUCTION 
 

Brown trout (Salmo trutta L.) are the second most widely distributed non-native 

fish introduced to Patagonia (Pascual et al. 2002), where documentation on the impacts 

that salmonids have on native communities is scarce and largely inconclusive.  Because 

current distribution of native fish remains undocumented for most Patagonian rivers 

(Pascual et al. 2002), a call for research indicates that the most useful studies will 

examine native and nonnative fish distributional patterns which can contribute to an 

understanding of the nature and extent of invasions in the region (Habit et al. 2004).  

Macchi et al. state that while it is impossible to reconstruct the pre-salmonid fauna, it is 

possible to assess the probable impact of salmonids on native ecosystems.  And Habit et 

al. (2004) add that because of the extent, complexity, and urgency of the situation of 

introduced salmonids in Patagonia, the most useful studies will contribute to theory on 

invasions and their impacts over several levels, from individual organisms to ecosystem 

processes such as trophic dynamics. 

Biological invasions are a leading cause of species loss worldwide (Simberloff 

2001), and there is a growing need to understand the invasion process because of the 

increasing number of aquatic ecosystems threatened by invasive species (Moyle and 

Light 1996).  Invasions of non-native fishes can have far-reaching effects which may 

impact all levels of the foodweb (Townsend 1996).  Indeed in New Zealand, where trout 

introductions have been extensively studied, researchers have documented significant 

declines in native galaxiid fish communities, as well as invertebrate communities 

subsequent to establishment of trout populations (Huryn 1996, Flecker and Townsend 

1994, McDowall 1996, Townsend 1996).  Life history plasticity has often been noted as a 

key characteristic of successful invaders (Moyle and Light 1996; Townsend 1996; 

Alcarez, Vila-Gispert, Garcia-Berthou 1996).  However, few studies specifically address 

its role in the invasion process (but see Bohn et al. 2004; Bonsall and Mangel, 2004; and 

Vila-Gispert, Alcaraz, and Garcia-Berthou  2005). 

The occurrence of partial migration is one expression of life history plasticity 

which remains poorly understood even outside the context of invasion.  Partial migration, 

the phenomenon of populations consisting of both migratory and resident individuals 
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(Jonsson and Jonsson 1993), is documented in animal taxa ranging from insects to higher 

vertebrates (Baker 1978), and is common among fish within freshwater and marine 

habitats (Jonsson and Jonsson 1993), as well as across the freshwater-saltwater boundary 

(McDowall 1997).  Life history theory indicates that in order for individuals to migrate, 

the fitness benefits of migration (such as increased reproductive output) must outweigh 

the fitness costs (such as increased mortality) (Gross, 1987).   

The role of environmental factors versus genetics on the ‘decision’ to migrate is 

still unknown.  While genetics likely play an underlying role in the development of 

partially migratory populations, previous studies of fish species fail to differentiate 

genetically between resident and migratory individuals within a population, and in fact 

indicate that interbreeding often occurs between the migratory and resident individuals 

(Hindar et al. 1991, Jonsson and Jonsson 1993, Klemetsen et al. 2003).  It thus follows 

that environmental factors contribute considerably to the decision by individuals to 

migrate.  Environmental factors commonly associated with migration include avoidance 

of adverse ambient conditions such as extreme temperatures, as well as pursuit of 

preferable reproductive and feeding habitat (Nikolskii 1963).  

Gross, Coleman, and McDowall (1988) argue that diadromous migrations evolved 

according to aquatic productivity.  Their argument, known as the ‘food availability 

hypothesis,’ is supported by global patterns of diadromy whereby anadromous fish 

(which feed at sea but spawn in freshwater) occur most frequently at higher latitudes 

where marine productivity exceeds freshwater productivity and catadromous fish (which 

feed in freshwater but spawn at sea) occur most frequently at lower latitudes where 

freshwater productivity exceeds marine productivity.     

The food availability hypothesis has been corroborated experimentally in 

salmonid species by inducing migration via food deprivation (Olsson et al. 2006 and 

others) and vice-versa, inducing residency by increasing food resources.  Body size 

(Bohlin, Dellefors, and Farmeo 1996) and growth rate (Jonsson 1985), are mechanisms 

that have additionally been postulated as drivers for migration, though studies regarding 

those mechanisms are often contradictory.   

An assessment of the food availability hypothesis as it relates to an introduced 

partially migratory population may contribute not only to life history theory in general, 
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but also allow for inferences regarding the course of invasion.  Indeed, if the food 

availability hypothesis appears to apply in the introduced range of a species, the evolution 

of diadromy during the course of an invasion implies a change in the food base, 

compelling some fish to migrate to an adjacent habitat exhibiting higher productivity.  

This implies potentially far-reaching impacts of the invader on the native foodweb.  

Certainly, the impact of introduced fishes on every trophic level of native ecosystems has 

been widely documented (Knapp and Matthews 2000; Schindler, Knapp, and Leavitt  

2001; Townsend 2003).  However, this effect has rarely been explored with respect to life 

history flexibility, and has never been evaluated in rivers on the south American 

continent. 

Brown trout have been introduced into at least 24 countries outside their native 

European range (Elliott 1994).  They proliferate throughout their introduced range, often 

forming sea-run migratory (sea trout) populations in the southern hemisphere (Frost and 

Brown 1967).  Ironically, sea trout stocks in their native European range are in significant 

decline, largely due to overfishing, aquaculture activities, and river regulation (Harris and 

Milner 2006).  The declines have instigated a proliferation of literature regarding habitat, 

life history characteristics, and population dynamics of native sea trout.  Consequently, a 

more thorough understanding of the role of life history and environment in a successfully 

invading population may shed light on this growing conservation conundrum. 

The overarching purpose of this study was to determine the distribution, 

abundance, and life history variation of an introduced brown trout population in the Rio 

Grande of Tierra del Fuego.  In doing so, impacts of the invader were inferred and the 

following hypotheses were tested:  the resident life history type dominates only where 1) 

sufficient instream food resources exist, and 2) juvenile growth rates are higher.  

Additionally, the adult sea run population was described in order to shed light on life 

history differences between declining native European populations and a successfully 

established introduced population. 
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STUDY AREA 
 

The study was conducted from December 2005 to March 2008 on the Argentine 

side of the Rio Grande (57° 47’ S; 67° 41’ W), the largest watershed on Isla Grande of 

Tierra del Fuego (Fig. 1) with average annual discharge of about 40 m3/s (Iturraspe, 

Gaviño,and Urciuolo 1998).  The Rio Grande is a middle order, meandering river 

(Lorang and Hauer, 2006), originating from a headwater lake, as well as a spring fed 

Andean stream on the Chilean side of the border.  It flows approximately 120 km to the 

South Atlantic.  Major tributaries flowing into the Rio Grande include the Radman (or 

Rasmussen) and Menendez rivers.  Smaller tributaries include the MacLennan (or Ona), 

Herminita (or Herminia), Moneta, and Candelaria Rivers (Fig. 1).  The hydrograph 

exhibits a pluvial flow regime, dominated largely by rainfall.  The floodplain within the 

study reach is low elevation (ranging from approximately 75m to sea level); low gradient 

(approximately 1%); and small shrub, grass, and forb dominated.   

 

 
Figure 1.  The Rio Grande watershed in southern Patagonia.  Sites sampled for juvenile, resident, 
and habitat metrics are indicated by dark circles with an ‘A’ in locations where anadromous and 
resident fish are documented, and an ‘R’ in locations where only resident fish are documented (no 
anadromous fish were present). 
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Due to the relative lack of human disturbance in the floodplain with respect to 

flow regulation, point source pollution, road development, or flood protection structures, 

the orthofluvial and parafluvial catena (sensu Stanford, Lorang and Hauer 2005), and 

presumably natural hyporheic flows are undisturbed.  Oxbows and abandoned channels 

occur throughout the floodplain, but maintain hyporheic connectivity to the river, thereby 

often forming orthofluvial springbrooks.  However, extensive grazing by sheep and cattle 

occurs throughout the island.  The river substratum varies in size from fine organics to 

bedrock, but is dominated by large gravel to small cobble. 

Historically, the river contained native perch (Percichthys sp.), and galaxiid 

species including small puyen (Galaxias maculates J.), large puyen (Galaxias platei S.), 

and peladilla (Aplochiton sp.) (McDowall 1971).  As this study shows, the vast majority 

of native fish have been eliminated from the river. Resident rainbow trout are still found 

at low densities.  Brown trout now clearly dominate the system.  Migrating sea-run brown 

trout dominate the mainstem Rio Grande as well as the tributaries, the Menendez and 

MacLennan Rivers, though resident fish occur in those rivers as well.  Sea-run fish do not 

reside in or use either the Herminita or the Candelaria Rivers, however, which are both 

dominated by resident brown trout. 

 

HISTORY OF BROWN TROUT IN RIO GRANDE 
 Precise records describing the earliest introductions of brown trout to Tierra del 

Fuego as well as mainland Argentina are unavailable (C. Riva Rossi, personal 

communication).  The first documented attempt at introduction of the species into 

Argentina occurred in 1906 when 6000 eggs were reportedly shipped, but died in 

transport, probably from the United Kingdom to the Santa Cruz Hatchery in mainland 

Patagonia (Marini and Mastrarrigo 1963).  In 1927, brown trout stocking took place on 

the Chilean side of Tierra del Fuego in several rivers which may have included 

headwaters to the Rio Grande drainage (Basulto del Campo 2003).  Those fish are of 

unknown European origin, but possibly from Hamburg, Germany and were marked 

“Meersforelle,” meaning “sea trout,” though the source population was not identified 

(Joyner 1980; R. Behnke, personal communication).  Recent genetic studies regarding 
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parental stocks of southern Chilean brown trout suggest that the brown trout in southern 

Chile are of Atlantic as opposed to Mediterranean drainages (Colihueque, Vergara, and 

Parraguez 2003; Faundez et al. 1997).   

From 1935 to 1937, English settler John Goodall received and reared brown trout 

ova from Puerto Montt, Chile before releasing them into the Candelaria, Herminita, 

MacLennan, and Menendez Rivers (Bruno Videla 1978).  Potential sources of those ova 

include Hamburg, Germany or other locations in Europe (Valiente et al. 2007).  Rainbow 

trout (Onchoryncus mykiss W.) and Atlantic salmon (Salmo salar L.) were stocked during 

the same period throughout tributaries to the Rio Grande.  Stocking of brown trout in the 

watershed resumed in 1976 (Bruno Videla 1978), and with the exception of 1979-1981, 

continued annually through at least 2000 (S. Lesta, personal communication). 

 The first recorded catch of resident brown trout in the river appears in Goodall’s 

records in 1937.  Records from 1948 document catches of all three introduced species 

(resident brown trout, resident rainbow trout, and Atlantic salmon) in the mainstem Rio 

Grande.  Evidently brown trout remained in the stream as a resident population for 

decades, until local anglers report the emergence of ‘large, silver,’ apparently sea run fish 

in the mid- to late-1950s (A. Menendez Behety, personal communication).  Local net and 

rod fishing, with a loosely enforced bag limit of five sea trout per fisherman per day, 

developed later in the century until catch-and-release angling tourism started in 1986 

(Solomon and Czerwinski 2006).  As angling tourism grew, public access to the river 

diminished.  Currently, less than 10 stream kilometers are open to angling only by local 

anglers with an enforced bag limit of one fish per fisherman per day.  There is additional 

access to the river for the general public one day per week.  Access to the vast majority of 

the Argentine section of the river, however, is controlled by private landowners who lead 

primarily foreign anglers on a daily basis for strictly catch-and-release fishing during the 

summer and early fall.  

 

METHODS 

FRESHWATER HABITAT CHARACTERIZATION 
In order to characterize freshwater habitat, several habitat variables were collected 

throughout the watershed.  Habitat variables were additionally used to evaluate factors 
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limiting juvenile growth and thus to test the food availability hypothesis.  They included 

physical (temperature, average depth, width, and velocity), chemical (specific 

conductance, pH, total persulfate nitrogen, nitrate-nitrite, ammonia, total phosphorus, and 

soluble reactive phosphorus), and biological (chlorophyll a, ash-free dry mass, and 

invertebrate density and biomass) variables, and were measured three times during the 

season at twelve sites (Figure 1).  Sites were selected to encompass as much of the 

Argentine portion of the basin as possible.  Duplicate sites within tributaries were located 

as far as possible from one another in order to minimize spatial correlation, though 

accessibility was a major factor in site selection as well.  Four sites were located in 

tributaries known by local anglers and landowners to support resident fish only 

(Candelaria and Herminita Rivers).  Eight additional sites were located in tributaries 

(Menendez and MacLennan Rivers) and the mainstem Rio Grande known to support both 

low densities of resident fish as well as migrating and spawning anadromous fish (Figure 

1).  Measurements were taken within ten days of one another across the floodplain in late 

December (hereon referred to as spring), late February (hereon referred to as summer), 

and mid-April (hereon referred to as fall) of 2007.   

Average particle size of the river bottom was determined using the Wolman 

(1954) method in riffles where algae and invertebrate samples were additionally 

collected.  During each habitat sampling event, an approximate discharge measurement 

was collected.  Cross-sectional area was determined across three transects in which depth 

and width were measured to the nearest centimeter.  Approximate velocity between 

transects was measured using a neutrally buoyant object.   

All water chemistry sampling equipment was acid-washed between sites and 

subsequently rinsed with sample water prior to grab sample collection.  Dissolved 

nutrient samples were filtered through 0.45µm mesh membrane filters.  Samples were 

frozen until analysis of primary plant growth nutrients, nitrogen and phosphorus.   This 

was performed using an autoanalyzer according to routine protocol (APHA 1998).  

Specific conductance and pH were additionally measured using an Oakton model 10 

meter (Vernon Hills, IL, US) that was calibrated with standard solutions before and after 

each sampling period. 
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Algal biomass was quantified using both ash-free dry mass (AFDM) methodology 

as well as analysis for the pigment Chlorophyll a.  Prior to AFDM sample collection, 

glass fiber filters were pre-ashed and weighed.   Three replicate samples for both 

parameters were collected from randomly selected rocks (for a total of six rocks per site) 

within riffles, using a 4-cm2 sampling template.  Algal material was scraped from the 

sampling area and placed onto a glass fiber filter (pre-ashed and weighed for AFDM 

only).  Water was extracted using a Nalgene (Rochester, NY, US) hand vacuum pump.  

Filters with samples were subsequently placed into vials, wrapped in aluminum foil to 

prevent penetration of light, and frozen until analysis.  All AFDM samples were dried to 

a constant weight at 105°C and weighed to the nearest 0.1 milligram (mg), oxidized at 

500°C, rewetted and re-dried to a constant weight at 105°C, and finally re-weighed to the 

nearest 0.1 mg.  Dry mass was calculated as the weight of dried material plus filter 

weight minus the original filter weight, divided by the area of the sampled rocks (4-cm2).  

AFDM was calculated as the weight of the dry mass minus the residual ash, divided by 

the area of the sampled rocks, according to Steinman and Lamberti (1996).  All 

Chlorophyll a samples were analyzed within ninety days of sample collection.  

Chlorophyll a was measured using the fluorometric method described in APHA et al. 

(1998). 

Benthic macroinvertebrate samples were collected in triplicate from a riffle within 

each sampling site using a Surber sampler with 500 µm mesh.  For each sample, river 

bottom substrate was cleaned and organisms were kicked from a 0.3 m2 area into the 

sampling net.  The sample was subsequently decanted in a bucket, filtered through a 250 

µm sieve, transferred to a sampling jar, and preserved using ethanol diluted to 

approximately 70% (Hauer and Resh 1996).  Samples were later identified to the lowest 

taxonomic level possible, and enumerated using a dissecting microscope.  Assistance 

with identification was provided by local experts from the Laboratory of Ecological 

Investigations and Animal Systematics at the National University of Patagonia in Esquel, 

Argentina.  After identification, samples were dried in pre-weighed aluminum cups at 60° 

C for 48 hours before re-weighing.  Weights were determined to the nearest mg.  Scud 

(Hyalella araucana G.) specimens were weighed separately due to their apparent 
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importance in trout diets as revealed by preliminary data.  All other invertebrate taxa 

were pooled. 

Additionally, temperature was collected every ninety minutes using iButton 

temperature data loggers (Maxim Integrated Products, Inc., Sunnyvale, CA, US).  

Loggers were pre- and post-calibrated using controlled temperature baths to correct for 

any systematic bias or error.  Temperatures were averaged on a daily basis for the 

purposes of this paper. 

JUVENILE DISTRIBUTION, GROWTH, AND DIET 
Three-pass electrofishing, using a Smith Root LR-24 (Vancouver, WA, US) 

backpack unit, was conducted twice during the season to determine juvenile densities and 

growth rates at the twelve sites shown in Figure 1.  Block nets (5 mm mesh) were used 

whenever possible.  All fish were weighed to the nearest 0.1 g and measured to the 

nearest mm.  Fish over 90 mm were sampled for stomach contents and scales.  Using a 

syringe and wide diameter plastic tubing with sufficient length to reach the stomach, 

water was flushed into the stomach cavity to force evacuation of its contents.  Scales 

were removed 5 - 10 rows above the lateral line between the adipose and dorsal fins.  All 

scale samples were dried and preserved.  Population densities were determined using the 

Zippin (1958) estimation method divided by the unit area of each reach. 

In addition to electrofishing, investigative fyke netting was conducted to shed 

light on juvenile freshwater migration patterns between tributaries and the mainstem.  

Fyke nets (6.3-mm mesh) were installed facing both up and downstream, and attached to 

each other and the river bank in all tributaries for a minimum of 48 hours during the 

summer and the fall.  Nets were monitored twice daily, and migrants were sampled as 

described above for electrofishing. 

DISTRIBUTION AND ABUNDANCE OF ADULT TROUT 
 Adult resident and anadromous brown trout were collected by hook and line from 

January through April of 2006 through 2008 by tourism anglers as well as scientists.  

Adult fish were collected from throughout the Argentine section of the mainstem Rio 

Grande and samples were taken by both scientists and trained guides.  Additional angling 

took place on accessible tributaries.  Floy T-bar anchor tags were inserted underneath the 
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dorsal fin of fish >30 cm due to the size of the tag.  Fork length and girth anterior to the 

dorsal fin were measured to the nearest five centimeters for all fish, and scale samples 

were taken from between the dorsal and adipose fins, above the lateral line.  Adipose fins 

were clipped during the 2006 season for genetic analysis as well as a measure of tag 

retention.  Because fish were not killed, sex was generally determined by morphology.  

Males exhibit a slight kype or a precursory kype while females do not.  In order to 

evaluate freshwater feeding habits of returning migratory fish, some of the tagged fish 

were additionally analyzed for stomach contents as described above for juvenile 

sampling. 

AGE AND GROWTH OF ADULT TROUT 
 Scale samples were cleaned and acetate impressions were made using a heated 

hydraulic press.  Impressions were subsequently magnified under a dissecting microscope 

and digital images were taken for later analysis using Spot software (Diagnostic 

Instruments, Sterling Heights, MI, US).  ImageJ image analysis software 

(http://rsb.info.nih.gov/ij) was used to inspect each scale sample.  Annuli were counted, 

and their radii measured along the anterior-posterior axis of the scale.  Ages at spawning 

events were inferred by the degree of scarring on the annuli (Figure 2).  The absence of 

spawning marks, however, does not confirm the absence of spawning behavior (Elliott 

and Chambers 1996) such that reported numbers of spawning events serve as a minimum 

estimate.  Resident and anadromous brown trout were distinguished both by morphology 

as well as scale growth patterns.  Resident brown trout are generally smaller, darker 

colored with a more densely spotted pattern, and exhibited a fusiform body shape relative 

to that of sea trout.   Additionally, circuli spacing on scales is wider during the post-smolt 

phase due to higher growth rates in the marine vs. freshwater environment (Figure 2). 
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Figure 2.  Scale samples from anadromous (left) and resident (right) brown trout from the Rio 
Grande (images are not to scale).  Circuli spacing is notably wider in the marine environment, and 
resorption due to spawning is evident in the third and fourth marine annuli of the anadromous fish. 

 

Back-calculated length at age was determined using the Fraser-Lee method 

(Fraser 1916, Lee 1920).  The biological intercept (c in the equation below) of 3.83 cm 

(r=0.81, d.f.=201, p<0.05) was determined using linear least-squares regression.  The 

Fraser-Lee model back-calculates individual body length as: 

 
Li = c + (Lc – c)(Si/Sc); 

 
Li = back-calculated fish length at annulus i; 
Lc = fish length at capture; 
Si = scale radius to annulus i; 
Sc = total scale radius to annulus i; 
c = the Fraser-Lee correction factor (the intercept point at 
the y-axis). 
 

 Significant differences between growth rates of male and female sea trout were 

not found, and thus samples were pooled.  Blind verification of aging techniques was 

performed on 75 scale samples by the LFI laboratory at the University of Oslo, Norway.  

Eighty-five percent of determined ages agreed between datasets.  Those that did not agree 
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were for old fish (> 8 years) and did not indicate consistent bias in over- or 

underestimation. 

STATISTICAL ANALYSES 
In order to test the food availability hypothesis, binomial logistic regression was 

initially used.  Binomial logistic regression was chosen due to the categorical nature of 

the of the response variable (i.e., the presence or absence of anadromy).  This analysis 

was first conducted using the variable ‘season’ as a factor, as habitat variables were 

collected three times during the year.  However, because the model revealed no 

significant effect of season (p values ranging from 0.316 to 0.988), values from each 

season were treated as replicates for subsequent analyses.  In the logistic regression 

model, the explanatory habitat data exhibited both quasicomplete and complete 

separation, precluding the development of maximum likelihood estimates.  

Quasicomplete and complete separation occur when there is respectively little to no 

overlap (i.e., a large difference without commonality) between explanatory data points of 

the categories of the response variable (Hosmer and Lemeshow 2000).  Consequently, a 

fully parameterized model could not be developed and differences between site types 

were subsequently analyzed using nonparametric Mann-Whitney exact U tests.  The 

Mann-Whitney test was selected due to small sample sizes as well as nonnormal 

distribution of data (Landau and Everitt 2000).   

Additional comparisons were made between resident and anadromous individuals 

using univariate analysis of variance (ANOVA).  Subsequent multiple comparisons were 

performed using post hoc Tukey pairwise procedures (Landau and Everitt 2004).  

Mark-recapture data was analyzed using a Schnable (1938) estimator.  This 

estimator is used for multiple marking and recapture samples over a short period of time 

and assumes no immigration, emigration, recruitment, or mortality.  While the 

assumption of no immigration was clearly violated by this migratory population, a third 

year of data is required for a more appropriate, robust design model.  The goal of the 

analysis was to generate an estimate of the order of magnitude of sea trout in the Rio 

Grande. 
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Linear regression was used to determine the biological intercept for the Fraser-

Lee back-calculation equation.  The assumption of homogeneity of variances was met, 

and the linearity of the relationship between scale radius and total length confirmed. 

All statistical calculations were carried out using SPSS 16.0 GP (SPSS Inc., 

Chicago, IL, US).  A rejection level of 0.05 was used in all tests.   

 

RESULTS 
 

FRESHWATER HABITAT CHARACTERIZATION 
Physical variables including stream width, average depth, current velocity, river 

bottom particle size, and stream temperature were compared between sites used by 

resident and anadromous fish and sites used only by resident fish.  Only stream width 

significantly differed between resident and anadromous sites.  Streams supporting only 

resident fish were narrower on average than those supporting resident and anadromous 

fish (Mann-Whitney U test, z = -3.2, p = 0.001, Figure 3). 

Nutrient concentrations were low, at levels characteristic of unpolluted streams 

(Wetzel 2001).  Only SRP was significantly different between sites supporting solely 

resident vs. sites supporting both resident and anadromous fish (Mann-Whitney U test, z 

= -4.0, p < 0.001), with higher values in resident sites (Figure 3).  While pH values did 

not differ significantly between site types, specific conductance was also higher in 

streams supporting only reisdent trout (Mann-Whitney U test, z = -3.4, p < 0.001, Figure 

3).  



22 
 

 
Figure 3.  Boxplots of habitat variables exhibiting significant differences between sites supporting 
solely resident fish (Resident only, gray) vs. sites supporting both anadromous and resident fish 
(Anadromy present, white).  Boxes indicate first and third quartiles, while bars indicate maximum 
and minimum values.  Outliers are shown separately. 
 

Measures of primary productivity, AFDM and chlorophyll a, were highly 

variable, and did not exhibit statistical significance with respect to the presence or 

absence of anadromy.  Separate analyses conducted for scuds and for all other 

invertebrates indicated that scud density (Mann-Whitney U test, z = -3.7, p < 0.001), scud 

dry mass (Mann-Whitney U test, z = -2.4, p < 0.001), and other invertebrate biomass 

(Mann-Whitney U test, z = -2.92, p = 0.003) were significantly different between site 

types, with sites supporting only resident trout exhibiting higher levels of scud and 

invertebrate biomass (Figure 4), as well as scud density.    Habitat data is summarized 

according to site and season in Appendix A.   
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Figure 4.  Scud (a) and other invertebrate (b) biomass (mg/m2) in sites supporting resident fish only 
vs. sites supporting both resident and anadromous fish. 
 
 

JUVENILE DISTRIBUTION, GROWTH, AND DIET 

 Juvenile population density assessed throughout the watershed at sites indicated in 

Figure 1 ranged from 0 to 0.71 fish/m2 in the spring, and 0 to 1.88 fish/m2 in the fall 

(Figure 5).  Tributaries supporting only resident fish exhibited significantly higher 

juvenile densities than those supporting both resident and anadromous fish (2.107, df = 

22, p < 0.05).  Specific growth rate for both young-of-the-year (YOY) and parr did not 

significantly differ between resident and anadromous sites.  Fulton’s condition factor (K), 

however, was higher in sites supporting resident fish than in those supporting resident 

and anadromous fish with a difference approaching statistical significance (t = 1.730, df = 

22, p = 0.098). 

 

a b
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Figure 5.  Density of juvenile brown trout in electrofished sites during summer (February) and fall 
(April) + 1 SE.  Anadromous indicates sites which support both resident and anadromous adult fish 
(Grande, MacLennan and Menndez Rivers), while resident indicates sites which support resident fish 
only (Candelaria and Herminita Rivers). 
 
 Fyke netting for juveniles in freshwater suggested very low levels of summer 

migration between the mainstem Rio Grande and its tributaries, at zero to two 1+ fish per 

day or less moving upstream into tributaries supporting resident fish.  During fall fyke 

netting, however, 0+ (96%) and 1+ (4%) fish were documented migrating upstream into 

tributaries supporting solely resident fish (Herminita (N = 18) and Candelaria (N = 7)  

Rivers).   

 Adult residents residing in resident streams exhibited significantly wider annuli 

spacing during the first year in freshwater versus adult anadromous fish during the first 

year in freshwater (ANOVA followed by Tukey’s test, F(2, 202) = 6.349, p < 0.05), 

suggesting higher juvenile growth of residents in those streams.  Interestingly, adult 

residents residing in anadromous streams exhibited narrower annuli spacing than 

residents in resident streams, though differences were not statistically significant (Figure 

6). 
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Figure 6.  Scale radius for the first and second annuli of adult residents residing in resident streams 
(black bars), adult residents residing in anadromous streams (gray bars), and anadromous adults 
(white bars) + 1 SE.  Results indicate significantly higher growth of juvenile residents residing in 
resident streams than anadromous fish during the first year (p < 0.05). 
 

 Stomachs of 185 juvenile (0+ and 1+) trout were evacuated, 73 from sites 

supporting resident and anadromous fish and 112 from sites supporting only resident fish.  

Most common diet items found in stomachs included scuds (Hyalella araucana G.); 

various chironimid (Chironimidae) taxa; snails (Chilina patagonica S.), Ephemoptera-

Trichopter-Plecoptera (EPT) taxa (Andesiops sp., cailloma sp., Limnoperla jaffueli N., 

Limnoperla sp., Meridialaris chiloeensis D., Neatopsyche sp., Rheochorema sp., and 

Verger sp.); terrestrial invertebrates, and juvenile brown trout (Salmo trutta L.).  Juvenile 

fish in sites supporting both resident and anadromous fish were more frequently found to 

have empty stomachs and to have terrestrial invertebrates within stomach contents 

(Figure 6).  Cannibalism was documented only in sites supporting solely resident fish.  

Stastically significant differences were found between sites supporting anadromous and 

resident fish vs. those supporting only resident fish for the proportion of juveniles with 

scuds in their stomachs (ANOVA F(1, 17) = 10.589,  p <0.01); and for the proportion of 

juveniles with snails in their stomachs (ANOVA F(1, 17)=8.358, p < 0.05), as shown in 

Figure 6.  
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Figure 7.  Proportion of juvenile trout with various diet items found in stomach contents between 
sites supporting both resident and anadromous vs. sites supporting only resident adult fish +1 SE.  
Most common diet items include scuds (Hyalella araucana G.); various chironimid (Chironimidae) 
taxa; snails (Chilina patagonica S.), Ephemoptera-Trichoptera-Plecoptera (EPT) taxa (Andesiops sp., 
cailloma sp., Linoperla jaffueli N., Limnoperla sp., Meridialaris chiloeensis D., Neatopsyche sp., 
Rheochorema sp., and Verger sp.); terrestrial invertebrates, and brown trout (Salmo trutta L.).  ** 
indicates a a highly significant (p > 0.005) difference, and * indicates a significant differenct at the p 
> 0.05 level. 
 

In addition to brown trout, rainbow trout, and two native galaxid species 

(Galaxias maculatus J. and Galaxius platei S.) were documented in very low densities in 

electrofishing sites.  Galaxiids were present only in sites in the lower mainstem Rio 

Grande, and the lower Candelaria River at densites varying from 0.04 - 0.05 fish/m2, an 

order of magnitude lower than brown trout densities. 

 

DISTRIBUTION AND ABUNDANCE OF ADULT TROUT 
 During the summer of 2006, 1043 adult trout were tagged, and adipose fins 

removed.  Of those, twenty (1.9%) were recaptured.  During the summer of 2007, 2933 

adult trout were tagged.  Of those, 66 (2.3%) were recaptured.  Tag loss based on 2007 

recaptures of fish tagged in 2006 was determined to be minimal (<3%).  Because the 

closed-population assumption of the Schnabel estimate was violated, the estimate should 

serve as an underestimation of the true population size (Table 1).  About 72% of 
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returning anadromous fish were female, while the percentage of female resident fish 

varied between 25-40% in tributaries where adult residents were collected.  The majority 

of anadromous fish examined for stomach contents (N=89) were not feeding in 

freshwater as determined by the lack of food in their stomachs or a clean digestive tract.  

Three notable exceptions, which had small numbers of freshwater macroinvertebrates in 

their stomachs, were all on their first return to freshwater. 

 
Table 1.  Summary of Floy tagged fish collected during January through April of 2006 and 2007 
from the mainstem Rio Grande, including associated Schnable (1938) population estimate and 
associated 95% confidence intervals. 

Year N 
% 

recaptured 
% 

anadromous 
Female: male 
(anadromous) 

Female: 
male 

(resident) 

Anadromous 
population 
estimate 

95% 
Confidence 

interval 
2006 1043 20 (2.5%) 98.7% 1:0.3 1:3 37,803 24,808 – 

79,389 
2007 2933 66 (1.9%) 98.1% 1:0.3 1:1.5 55,058 44,784 – 

71,448 
 

AGE AND GROWTH OF ADULT TROUT 
Scales of both resident and anadromous brown trout were analyzed for freshwater 

age, marine age (in anadromous fish), spawning marks, and growth rates.  Resident fish 

sampled were predominantly male (63%, N = 74, Table 2) and ranged in age from 2+ to 

11 years (Table 3).  Spawning marks on resident scale samples ranged in frequency from 

0 to 4.  Anadromous fish sampled were predominantly female (72% N = 129, Table 2) 

and ranged in total age from 2+ to 12 years.  Spawning marks ranged in frequency from 0 

to 6.  Fish migrated to sea at two and three years in similar proportions (45.7% and 

40.3%, respectively), though seaward migration varied from age 1+ to 4 years.  Between 

rivers, annual growth rates of residents were significantly lower in the Candelaria River 

than in the Herminita and Menendez Rivers (ANOVA followed by Tukey’s test, F(4,73) 

= 3.56, p < 0.05).  No significant differences were found between growth rates of 

anadromous fish between rivers where they were captured.   
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Table 2.  Life history variables of resident and migrant brown trout in tributaries to as well as the 
mainstem Rio Grande including 95% confidence limits.  Average number of spawning marks 
includes only fish exhibiting one or more mark. 

    N 

Ratio 
females: 

males 

Average 
length  
(cm) 

Average 
age 

 (years) 

Average 
smolt age 

(years) 

Average 
sea age 
(years) 

Average no. 
spawning 

marks 
Candelaria River 

Resident 19 0.2 23.6 ± 2.3 4.4 ± 0.4 
Herminita River               
  Resident 16 0.3 39.2 ± 5.7 6.2 ± 1.0       
MacLennan River 

Resident 16 0.2 29.8 ± 5.7 5.3 ± 2.1 
Anadromous 4 3.0 63.8 ± 17.0 7.4 ± 0.6 2.9 ± 0.7 4.5 ± 1.8 2.8  ± 1.2 

Menendez River               
Resident 5 0.5 40.6 ± 15.5 5.7 ± 1.4 

  Anadromous 9 2.0 57.1 ± 8.9 6.1 ± 1.1 2.8 ± 0.3 3.5 ± 0.9 1.4 ± 0.3 
Grande River               

Resident 31 0.7 42.2 ± 2.7 6.8 ± 0.4 2.7  ± 0.4 
  Anadromous 104 3.6 59.4 ± 3.2 7.0 ± 0.9 2.6 ± 0.1 4.6 ± 0.5 2.6  ± 0.3 

 
Back-calculated growth indicated that amongst anadromous trout, larger parr 

migrated to sea earlier (ANOVA followed by Tukey’s test F(3,113) = 18.3, p<0.001).  

Average growth rates for the first year at sea varied from 17.8 cm for 2 year old smolts to 

21.7 cm for 1+ year old smolts (Table 4).   

  
Figure 8.  Mean back-calculated growth rates of anadromous and resident brown trout in the Rio 
Grande basin.  Error bars represent ±1 SE. 
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Table 3.  Back-calculated growth (mean fork length, cm) and SE for anadromous and resident brown 
trout from scale measurements. 
  Anadromous Resident 

ANNULUS N 

Mean back-
calculated 

length (cm) 
Range 
(cm) N 

Mean back-
calculated 

length (cm) 
Range 
(cm) 

1 117 7.2 4.7-12.7 88 7.4 5.3-13.3 
2 117 15.7 6.4-36.3 88 14.7 80.8-24.6 
3 116 29.0 79.2-53.4 87 23.0 10.5-40.1 
4 114 44.1 17.6-73.3 75 30.6 12.0-54.2 
5 101 54.0 23.0-85.0 55 38.1 14.4-65.0 
6 70 60.2 26.0-86.1 35 43.0 26.0-61.0 
7 50 65.8 38.0-89.1 23 45.6 33.0-50.0 
8 34 70.4 42.7-91.6 9 46.5 35.1-50.9 
9 23 74.2 43.9-94.7 5 47.1 36.0-52.6 
10 14 74.9 45.0-96.0 4 51.1 48.3-54.0 
11 8 75.8 50.0-86.0 2 52.0 49.0-55.0 
12 3 78.8 72.0-84.5       

 

DISCUSSION 
 

Life history plasticity appears to have played a particularly crucial role in the 

successful establishment and spread of brown trout in the Rio Grande.  The fact that this 

population consisted for decades of solely resident brown trout before shifting to the 

marine environment suggests a change in the food base in the freshwater environment.  In 

New Zealand rivers where brown trout are also introduced, they are known to feed 

directly on native galaxiids, as well as significantly deplete invertebrate communities 

(Townsend 2003, Waters 1988).   While the original freshwater foodweb of the Rio 

Grande is undocumented, it can be inferred that there was a sufficient food base to 

support the formerly resident population.  The paucity of native fish remaining in the 

system combined with local accounts of much higher densities of galaxiids in the past (A. 

Matias, personal communication) suggests that indeed brown trout likely caused the near 

extirpation of the native fish through both competition and direct predation.    

Further, significantly lower invertebrate biomass in sites supporting anadromous 

vs. resident brown trout, combined with the higher incidence of terrestrial invertebrates in 

the diets of juvenile fish as well as the more frequent occurrence of empty stomachs in 

those sites implies that the food base may indeed be limiting brown trout in sites 
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supporting anadromous fish.  Huryn (1996) determined that introduced brown trout may 

consume more than 80% of benthic prey production in New Zealand rivers.  Thus it 

appears possible, if not likely, that the formerly resident Rio Grande brown trout 

population subsisted on substantially higher densities of both native galaxiid fish as well 

as invertebrates, and may have began seaward migration after depleting those resources. 

In other partially migratory salmonid populations where the food availability 

hypothesis has been tested, growth data suggest that fish which grow more during their 

first years of life in freshwater residualize in streams as residents, while those that grow 

less tend to migrate (Olsson and Greenberg 2004, Thériault and Dodson 2003).  Indeed, 

analysis of freshwater annuli spacing of adult resident trout in resident streams was 

higher than that of adult resident trout in anadromous streams, and significantly higher 

than that of adult anadromous trout during the first year of life suggesting higher growth.  

Additionally, in the Rio Grande, higher fall juvenile densities in resident streams as well 

as fyke netting data suggest that some fish which residualize, largely males, likely 

migrate into tributaries with higher invertebrate and juvenile trout densities which can 

sustain them.  It is probable that these resident fish descend tributaries and spawn with 

returning anadromous trout (Klemetsen et al. 2003).   It is unknown whether the Rio 

Grande brown trout population has reached a relatively stable state, or if it will continue 

to shift toward higher levels of anadromy.  Higher conductivity and SRP levels in 

tributaries supporting resident fish indeed suggest generally higher fertility of those 

locations (Wetzel 2001).   

Regardless of the mechanisms leading to the occurrence of seaward migration in 

Rio Grande brown trout, comparison of the population with those from Europe clearly 

indicate that it is amongst the strongest anadromous populations in the world (Table 5).  

Mark-recapture data collected from the adult sea trout population of the Rio Grande 

revealed its exceptional size.  The closed-population assumption of the Schnabel estimate 

is violated by this migratory population.  However, based on catch records and other 

observations, immigration into the study reach exceeds both emigration and mortality.  
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Table 4.  Comparison of various life history traits of sea trout in their native range with those from the Rio Grande. 
 
 
 

Location 

 
 
 

Sources 

 
Parr 

Density 
(no./m2) 

 
Freshwater 

growth 
(year 2, cm) 

Mean 
Smolt 
Age 

(years) 

Saltwater 
growth 

(first year 
at sea, cm) 

 
Repeat 

spawners 
(%) 

 
 

Maximum age 
(years) 

Maximum 
length 

reported 
(cm) 

Average 
annual 

declared 
catch 

England Davidson et al. 2006, Fahy 1978, 
Harris 2006, Mann et al. 1989,  
Nall 1930 

0.10 – 0.80 3.7 – 6.8 2.0 – 3.4 4.4 - 12.5 12.5 - 39.6 8 62.4 1181 (416 
– 5692) 

Germany Roche 1992 n/a n/a n/a n/a 26  n/a n/a  

Ireland Fahy 1978, Gargan et al. 2006, 
Nall 1930 

n/a n/a 2.1 – 2.8 n/a n/a 8 n/a 320 (37 – 
1175) 

Norway Berg and Jonsson 1990, Jonsson 
1985, L’Abée-Lund et al. 1989, 
L’Abée-Lund et al. 1991 

0.11 3.6 – 7.5 1.2 - 5.6 7.9 – 20.4 5 – 69 11 69 n/a 

Scotland Butler and Walker 2006, 
Egglishaw and Shackley 1977, 
Nall 1930 

n/a n/a 2.1 – 3.4 n/a 16.5 - 65.1b 11 (up to 1980) 

5  (1997-2001) 

n/a n/a 

Spain Caballero et al. 2006 n/a n/a 2.2 – 2.4 n/a n/a n/a 71.0 n/a 

Sweden Rubin et al. 2005 n/a n/a n/a n/a n/a 8 89.0 n/a 

The Netherlands Leeuw 2007 n/a n/a n/a n/a 21 n/a n/a n/a 

Turkey Okumuş et al 2006 n/a 6.5  - 19.5 n/a n/a n/a n/a n/a n/a 

Wales Fahy 1978, Nall 1930 n/a n/a 2.1 – 2.5 n/a n/a 8 n/a n/a 

Kerguelen Islandsa Davaine and Beall 1992 n/a 4 – 10 n/a 5 – 20  n/a n/a n/a n/a 

Rio Grandea This study 0.02 – 1.8 8.5 2.47 17.8 – 21.7 62.9 12 116.0 >>5455c 
a The Kerguelen Islands and the Rio Grande are southern hemisphere locations where sea trout have been introduced 
b The highest repeat spawning rate in Scotland occurred prior to 1980 
c This value accounts for only 80% of the rods on the river and thus is considered an understimate
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Catch rates in upper reaches of the study area are low, and the occurrence of sea 

trout on the Chilean side of the border is rare (G. Pacho., personal communication).  

Immigration causes underestimation of true population size (Williams, Nichols, and 

Conroy 2002).  It is thus apparent that the Rio Grande supports tens of thousands of adult 

anadromous brown trout.   Reasons for the large population are likely to include strict 

harvest limits and inaccessibility of the estuary to commercial fishing as well as few 

natural predators in the freshwater environment.   

Few published population estimates of sea trout in European rivers exist, though 

rod catch statistics for studied rivers in Ireland, where average annual catch equals 320 

sea trout (Gargan et al. 2006, Table 5), England and Wales, where declared catch 

averages 1181 (Harris 2006, Table 5), and France where run estimates do not exceed 

3000 (Euzenat, Fournel, and Fagard 2006) indeed suggest much smaller populations than 

that in the Rio Grande.  Catch records for only 80% of the anglers on the river during the 

course of the study indicate and average annual catch in the river of well over 5500 sea 

trout.   

Not only do data indicate a surprisingly large population size, various other life 

history traits of this population suggest the Rio Grande and adjacent marine environment 

may indeed support one of the strongest existing sea trout populations in the world.  

While Rio Grande juvenile trout exhibit freshwater growth rates comparable to those in 

the southern portion of their European range  (Mann, Blackburn, and Beaumont 1989; Le 

Cren 1985; L’Abée-Lund et al. 1989; Table 5), growth rate at sea is more than twice as 

high as that in English rivers (Davidson, Cove, and Hazlewood 2006; Fahy 1978; Harris 

2006; Mann et al. 1989;  Nall 1930; Table 5), and on the high end of the range of marine 

growth rates for Norwegian sea trout (Jonsson and Jonsson 2006, Table 5).  Back-

calculated growth rates indicated a 17.8 to 21.7 cm increment (Table 5) during the first 

year at sea,  amongst the highest documented rates in the literature from The Netherlands, 

France (de Leeuw, ter Hofstede, and Winter 2007), and Germany (Roche 1992).  Total 

length of fish collected from the Rio Grande similarly exceeds that of documented 

European fish.  The largest male and female in the Rio Grande dataset were 120 cm and 

99 cm in fork length, respectively.  The highest values for body length located in the 

literature were in the 85-90 cm range (LeCren 1985, L’Abée-Lund et al. 1989, de Leeuw 
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et al. 2007), which are similar to values calculated for the asymptotic length of sea trout 

based on historical data of intact Scottish populations (Butler and Walker 2006).  Sea 

trout of the sizes attained in Rio Grande are reported only for the Baltic sea trout 

elsewhere in the world (R. Behnke, personal communication). 

Additionally, repeat spawning rates and longevity of Rio Grande sea trout exceed 

those of many European populations (Table 5).  Southern European populations tend to 

live fewer (3-5) years, but spawn more times, with a repeat spawning rate of up to 60%; 

and northern populations tend to live longer (up to 8 years), but spawn fewer times with a 

repeat spawning rate of about 30%  (Jonsson and L’Abée-Lund 1993).  In contrast, Rio 

Grande sea trout exhibit both a high degree of iteroparity (64%) as well as remarkable 

longevity (living up to at least twelve years). 

Reasons behind the great success of the Rio Grande fishery remain to be explored.  

It is likely due to a combination of both hereditary and environmental factors.  The 

estuary at the mouth of the Rio Grande may be one of the most important environmental 

factors in their success.  It is large and shallow, providing the benefits of both high 

productivity and shelter from large commercial fishing boats.  The estuary is adjacent to 

the highly productive South Patagonian Shelf Ecosystem (Ciancio et al. 2008; Rivas, 

Dogliotti, and Gagliardinia  2006) where sea trout feed largely on sprats (Sprattus 

fuegensis, Ciancio et al. 2008).  Additionally, as opposed to other anadromous salmonids, 

sea trout do not generally travel far from coastal areas (Klemetsen et al. 2003), a behavior 

corroborated by their reported lack of appearance in offshore fishing nets in the area (A. 

Matias, personal communication).  The absence of significant aquaculture activities, and 

the relative lack of human induced disturbance also likely contribute to the robust nature 

of the fishery.  Further, a strict no kill policy imposed on the vast majority of the river 

since the mid-1980s appears to have resulted in increased catch rates, average size, and 

longevity of fish (Solomon and Czerwinski 2006).   

This study is the first rigorous analysis of anadromous sea trout on the south 

American continent clearly documenting their distribution as well as what little remains 

of the distribution of native galaxiid fish.  It implies far-reaching impacts of brown trout 

in the Rio Grande system, suggesting that severe depletion of native galaxiid and 

invertebrate communities compelled a shift toward a migratory life history.  Juvenile 
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growth rates, as inferred from scale data supports the food availability hypothesis as seen 

in other studies of partially migratory brown trout populations.  Indeed, the individual 

‘decision’ to migrate to sea appears to be associated with lower growth rates and fewer 

available instream food resources.  Regardless of the mechanisms compelling migration, 

the combination of fresh and saltwater habitat available to the Rio Grande population 

appears to support what may indeed be one of the strongest anadromous populations of 

the species remaining in the world. 
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APPENDIX A 
 
Average (minimum, maximum) values for water chemistry, primary productivity, and secondary productivity related variables by river and season.  

    
Total phosphorus 

(µg/L) 

Soluble 
reactive 

phosphorus 
(µg/L) 

Total persulfate 
nitrogen  
(µg/L) 

Nitrate-nitrite 
(µg/L) 

Ammonium  
(µg/L) 

Chlorophyll a 
(µg/cm2) 

Ash-free dry mass 
(mg/cm2) 

Invertebrate 
density  
(no./m2) 

Candelaria (resident only)               

Spring 13.5 (12.4-14.5) 5.0 (4.0-6.0) 505.3 (448.5-562.0) 4.5 (3.1-5.6) 126.6 (59.0-194.1) 0.52 (0.03-2.77) 1.08 (0.00-2.03) 8.6 (2.1-13.2) 

Summer 10.7 (9.2-12.2) 3.2 (2.8-3.6) 396.1 (364.9-427.3) 1.4 (0.9-1.8) 39.4 (35.2-43.6) 0.81 (0.00-3.65) 11.33 (0.42-60.07) 8.3 (2.2-16.1) 

  Fall   13.7 (10.3-17.0) 1.8 (1.4-2.2) 607.7 (391.3-824.1) 1.9 (1.4-2.4) 30.6 (28.8-32.4) 0.12 (0.00-0.19) 1.50 (0.65-3.60) 15.2 (8.5-29.3) 

Herminita (resident only)               

Spring 13.3 (11.7-14.8) 2.9 (2.5-3.2) 357.0 (318.3-395.7) 8.9 (2.0-15.8) 55.5 (30.2-80.8) 0.29 (0.06-0.82) 5.64 (0.00-33.00) 36.4 (8.6-66.6) 

Summer 14.6 (12.4-16.8) 4.4 (4.2-4.6) 628.9 (439.3-818.5) 5.9 (1.6-10.2) 34.7 (32.6-36.7) 0.78 (0.03-3.35) 0.47 (0.00-2.85) 29.4 (12.9-50.6) 

  Fall   18.5 (17.9-19.6) 6.6 (5.9-7.3) 552.5 (545.0-560.0) 12.2 (1.0-13.5) 52.7 (40.1-65.4) 0.08 (0.00-0.25) 1.25 (0.00-3.20) 20.0 (3.2-33.7) 

MacLennan (resident and anadromous)             

Spring 6.7 (n/a) 2.0 (n/a) 282.8 (274.4-291.2) 2.4 (n/a) 36.5 (n/a) 0.78 (0.32-1.60) 2.40 (0.03-5.60) 9.2 (4.4-20.2) 

Summer 6.7 (6.3-7.2) 0.7 (0.7-0.8) 224.9 (205.0-244.8) 3.6 (2.3-4.9) 44.1 (43.2-45.0) 1.36 (0.00- 3.35) 10.12 (1.48-45.93) 12.1 (10.4-13.8) 

  Fall   6.6 (6.1-7.2) 0.3 (n/a) 409.6 (364.1-455.1) 1.6 (0.8-2.3) 51.0 (30.9-71.1) 0.09 (0.00-0.03) 1.15 (0.05-3.93) 27.0 (16.5-37.6) 

Menendez (resident and anadromous)             

Spring 7.0 (n/a) 1.4 (1.3-1.4) 282.8 (274.4-291.2) 3.3 (2.1-4.4) 44.4 (24.9-63.9) 0.12 (0.03-0.20) 10.26 (0.10-57.13) 5.6 (22.2-28.7) 

Summer 5.4 (4.6-6.2) 1.0 (1.0-1.1) 224.9 (205.0-244.8) 1.1 (1.0-1.2) 51.7 (43.4-60.0) 0.41 (0.06-0.73) 1.50 (0.00-4.63) 22.2 (10.3-34.1) 

  Fall   32.9 (8.3-57.5) 0.9 (0.5-1.3) 409.6 (364.1-455.1) 3.1 (2.8-3.4) 50.3 (47.6-53.0) 0.01 (0.00-0.05) 1.38 (0.65-3.25) 28.7 (15.8-41.6) 

Grande (resident and anadromous)               

Spring 7.0 (6.2-8.0) 2.1 (1.7-2.6) 496.6 (349.4-752.5) 8.9 (3.6-20.6) 49.4 (25.7-91.7) 0.21 (0.03-0.64) 1.16 (0.18-4.05) 13.4 (5.0-21.6) 

Summer 10.7 (9.2-12.2) 2.5 (1.6-4.0) 347.3 (266.5-464.5) 5.8 (0.7-17.2) 47.7 (36.6-72.8) 0.58 (0.00-2.04) 7.79 (0.00-62.42) 12.6 (10.7-14.0) 

  Fall   13.7 (10.3-17.0) 1.9 (1.4-2.3) 559.3 (371.9-842.3) 9.2 (3.8-18.6) 37.2 (34.0-40.4) 0.03 (0.00-0.08) 4.16 (0.00-45.15) 12.3 (4.0-31.3) 
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