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Lennon, Christopher, M.S., July 2007     Biochemistry 
 
Probing Isoforms of the Prion Protein through Tyrosine Nitration 
 
Chairperson:  Dr. Michele A. McGuirl 
 
The prion protein (PrP) has multiple stable isoforms.  When PrP misfolds, it aggregates 

and causes neurological disease and death in mammals.  The structure of the non-
pathogenic isoform has been determined while the structures of the disease related 
isoforms are unknown.  The nitration labeling patterns of three PrP isoforms with 
peroxynitrite and tetranitromethane, as detected by mass spectrometry, are reported.  Two 
conserved tyrosine residues (tyrosines 149 and 150) are not labeled by either reagent in 
the normal cellular form of the prion protein but these residues become reactive after the 
protein has been converted to one of two aggregated isoforms.  Another difference 
observed is that two other conserved tyrosine residues, 225 and 226, are much less 
reactive in both aggregated isoforms, while all other tyrosine residues show virtually no 
isoform specific-labeling.  Thus, two regions been identified in which Tyr residues 
undergo a change in solvent accessibility, which may be due to a conformational change 
in that region or to inter-subunit packing 
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CHAPTER 1: BACKGROUND 

 AND SIGNIFICANCE 
 

Prion diseases are a class of fatal neurodegenerative disorders.  A 

number of different prion diseases occur in animals including, but not 

limited to, Creutzfeldt-Jacob disease in humans, mad cow disease in 

bovines, chronic wasting disease in deer and elk, and scrapie in sheep.  

Interestingly, prion disorders may be inherited, sporadic or transmissible, a 

characteristic in nature held only by prion diseases [1].    

Prion diseases also belong to the larger category of amyloidoses, 

which include Alzheimer's, Parkinson's, Huntington's and Amyotrophic 

Lateral Sclerosis (ALS) diseases.  In amyloidoses, misfolded proteins form 

ordered aggregates in the central nervous system that are associated with 

characteristic plaque formation and neurodegeneration [2].   

The "protein-only" hypothesis of prion replication postulates that an 

infectious, misfolded oligomeric prion protein particle (the “prion”) causes 

the normal, non-infectious cellular form of the prion protein (PrPC) to 

undergo a conformational change.  This conversion event leads to the 

incorporation of PrPC monomers into the infectious particle, referred to as 

PrPSc [3].   

Currently, the protein-only hypothesis has not been proven.  The 

key missing proof is the generation of infectious prions entirely in vitro [4].    
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However, based upon the available data, the idea has generally been 

accepted and three studies in particular have provided compelling support 

of the protein-only hypothesis. 

BÜeler and co-workers showed that knockout mice who do not 

express PrPC appear to develop normally and are much less susceptible 

to PrPSc infection than wild-type mice [5].  These data strongly suggest 

that PrPC is needed to propagate the PrPSc infection.  Furthermore, the 

study found that heterozygous strains expressing less PrPC than usual 

displayed significant resistance over wild-type mice to disease as well.   

Legname and colleagues [6] injected recombinant amyloid fibrils 

(PrPF) generated from murine PrP (residues 89-230) into transgenic mice 

overexpressing PrPC of the same sequence and found the formation of 

prion-like disease.  Fibrils isolated from these mice were then able to 

infect wild-type mice.   

Unfortunately, the exact implications of the Legname study are 

unknown because of problems in the experimental design and results [7].  

Most striking is that the strain of mice used overexpress PrPC in such high 

levels that they are able to develop the disease spontaneously.  Also, the 

infectivity of the recombinant fibrils was much less than that of normal 

PrPSc.     

Castilla et al. [8] have likely provided the most convincing data in 

support of the protein-only hypothesis through a process called “protein 

misfolding cyclic amplification” (PMCA), which attempts to mimic normal 
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PrPSc propagation in vitro.  Using a small amount of PrPSc purified from 

hamster as a template, the authors generated infectious fibers in vitro from 

PrPC purified from healthy hamster brain homogenate.  In order to ensure 

(as much as possible) that only in vitro fibrils were present, serial dilutions 

were performed.  Further supporting the claims of this study, a control 

group which was inoculated with non-converted PrPC did not develop 

disease. 

The reason that the Castilla et al. study does not entirely prove the 

protein-only hypothesis is that the PrPC from the brain homogenate of 

healthy hamsters was used.  Because this is the case, there is no way to 

ensure that only PrPC was present for the template PrPSc to associate 

with.  In other words, there could be some necessary unknown factor, say 

a virus, present in the brain homogenate.       

Inherent in the protein-only hypothesis is that no bacteria or virus is 

required for infection.  More specifically, no DNA or RNA is required to 

sustain the infection, just a supply of PrPC monomers.  This lack of nucleic 

acid appears to be unique to prion disorders among infectious diseases.  

However, a recent study suggests that other amyloid protein deposits 

have the potential to be infectious as well [9].  Mice over-expressing the 

human Amyloid Precursor Protein became infected with an Alzheimer’s 

like disease following intercranial inoculation with β-amyloid that was 

isolated from humans with Alzheimer’s.  In fact, all amyloid diseases 

appear to share common structural characteristics and are capable of in 



 4

vitro self propagation (like prions) [10].  Therefore, it is possible that if 

given the opportunity, other amyloid plaque diseases would be infectious.      

To explain the protein-only hypothesis, two models describing how 

the correctly folded PrPC misfolds to form the pathogenic PrPSc have been 

proposed.  These two models are known as the refolding model and the 

seeding model (figure 1-1) [11].  

 

 

a) Refolding Model
PrP c

PrP
Sc

b) Seeding Model

Very Slow Rapid

PrP C PrP
Sc

  

Figure 1-1.  Models explaining the protein-only hypothesis (figure adapted 

from reference 11). 

  

The refolding model states that the conversion of PrPC monomers 

to PrPSc is governed by a large activation energy barrier and does not 

occur at detectable levels.  However, upon interaction of PrPC with PrPSc, 
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either from an exogenous (transmitted) or endogenous (inherited or 

sporadic) source, PrPC partially unfolds and refolds through association 

with PrPSc.  Somehow through this unfolding and refolding process, the 

thermodynamic barrier is able to be overcome.   

The seeding model states that PrPC and an oligomeric precursor of 

PrPSc are in an equilibrium with one another that highly favors the PrPC 

isoform.  Only when multiple PrPSc molecules are given a chance to 

interact with one another is the pathogenic conformation stabilized and the 

so called seed is able to form.  In the case of infection by PrPSc particles, 

the seed is what is transmitted.  After the seed has been generated, the 

addition of PrPC monomers to the PrPSc multimer is rapid.       

PrPC is a soluble monomer dominated by α-helical structure while 

PrPSc is an isoform enriched in β-sheet that forms insoluble fibrils and is 

associated with infectivity [1].  PrPF are the recombinant PrP fibers 

associated with much lower levels of infectivity [4].  Remarkably, no 

covalent modifications occur during the conversion of PrPC monomers to 

PrPSc fibrils; the difference between PrPC and PrPSc is purely 

conformational [12].  Furthermore, the prion protein has the ability to form 

at least one other distinct stable isoform.  This third conformer, known as 

the β-oligomer, is a soluble oligomer of 8-12 subunits that has a similar 

secondary structure to PrPSc [13]. 

High resolution structures of PrPC from numerous mammals have 

been determined by both NMR (figure 1-2) [14-22] and X-ray 
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crystallography [23, 24].  In stark contrast, the tendency of all amyloid 

fibers, including the infectious PrPSc, to form large heterogeneous 

aggregates has hampered the elucidation of structural details.  Figure 1-3 

shows the gross structure and the fibrillar nature of PrPF.  No NMR or 

crystal structures of the β-oligomer currently exist either.     

 

 

Amino Terminus

Helix 1

Helix 2

Helix 3

  

Figure 1-2. Structure of Syrian hamster PrPC amino acids 125-228 from 

PDB 1B10 #4 [20], modified to include a representation of the intrinsically 

unstructured amino terminus (amino acids 23-124).  Secondary structure 

is labeled by color (Red = α-helix, Blue = β-sheet, Grey = random coil and 

turns) 
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Figure 1-3.  Electron micrograph of recombinant fibers made from Syrian 

hamster PrP 90-232 (PrPF).  Image was taken by the Rocky Mountain 

Laboratories Electron Microscopy facility under the direction of Dr. Roger 

Moore (Bar = 100 nm). 

 

Although low resolution structural information of PrPSc has been 
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gathered and many models of possible structures have been generated 

(covered in detail in Chapter 5), crucial pieces of this puzzle are still 

missing.  Determining the structure of the infectious protein unit remains 

one of the central mysteries in prion biochemistry.  This is not only for 

academic reasons, such as the light it could shed on the protein-only 

hypothesis, but for practical reasons as well.  Most importantly, this 

knowledge could allow for the rational design of both prophylactics to 

protect against initial infection, and treatments to halt or reverse the 

neurodegeneration and certain death associated with prion diseases.  But 

even beyond the realm of prion disorders, because of the common 

protofilament nature of amyloid deposits, a structure of PrPSc could 

provide clues that lead to the prevention and treatment of all amyloid 

plaque diseases.   

Through our research, we seek to elucidate structural differences 

between the recombinant PrPC, β-oligomer, and PrPSc of truncated Syrian 

hamster PrP (residues 90 -232).  We accomplished this task through the 

selective nitration of some of the ten tyrosine (Tyr) residues found in this 

domain and the determination of the modification sites using mass 

spectrometry.  Specifically, we first sought to determine the reactivity of 

the Tyr residues in the recombinant soluble isoforms (PrPC and the β-

oligomer) of the prion protein using the nitrating reagents peroxynitrite 

(PN) and tetranitromethane (TNM).  Next, we sought to determine the 

reactivity of the Tyr residues in the insoluble, recombinant fibrillar isoform 



 9

(PrPF) of the prion protein with PN. 

The rationale behind monitoring conformational changes through 

the nitration of tyrosine residues is basically three-fold (expanded upon in 

Chapter 6).  First, nitration with PN and TNM is largely tyrosine-specific.  

Next, nitration is dependent on the degree to which each tyrosine residue 

is solvent exposed.  Finally, Cashman and colleagues have detected an 

increase in tyrosine solvent exposure and the emergence of a Tyr-Tyr-Arg 

specific epitope upon PrPC conversion to PrPSc  [25]. Therefore, we 

hypothesize that structural differences among the three prion protein 

isoforms will be detectable by the selective nitration of tyrosine residues 

by PN and/or TNM.  Furthermore, we hypothesize that more of the 10 Tyr 

residues present will become nitrated upon conversion from PrPC to the β-

oligomer or PrPSc.  By detecting these differences in nitration patterns, we 

seek to provide crucial information about the structural differences that 

take place as the innocuous PrPC converts to forms that resemble 

infectious PrPSc.   
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CHAPTER 2 

MATERIALS AND METHODS 

The overall experimental design is summarized as follows: 

 

Refold/Convert and Verify Isoform Structure

Treat with Peroxynitrite or Tetranitromethane

Determine the Nitration Patterns by Mass Spectrometry

Perform Comparative Data Analysis of Isoforms

Verify that theIsoform Structural Integrity is Maintained

Express and Purify PrP90-232 

 

 

Express and Purify PrP90-232 WT:  The gene encoding truncated 

WT Syrian Hamster PrP (residues 90-232, PrP90) was subcloned from the 

pHaPrP plasmid [24] into the pET24a+ vector.  The resulting new plasmid, 

pET24PrP90, was transformed into E. coli BL21(DE3)-Rosetta cells 

(Novagen, Inc.).  The expressed protein did not contain most of the 

unstructured amino-terminus, the GPI anchor, and was unglycosylated.  

This work was performed by Sam J. Chelmo.   

The antibiotics kanamycin (50 μg/mL) and chloramphenicol (34 
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μg/mL) were added to select for transformed cells which were grown in 

liquid culture at 37°C in 2xYT media.  Growth was measured by optical 

density at 600nm (OD600) and cell cultures were grown until the OD600 

reached 1.0.  At this point, the lactose analog isopropyl-β-D-

thiogalactoside (IPTG) was added in order to induce expression.  For each 

liter of culture, 1 mL of 0.5M IPTG solution was added (to a final 

concentration 0.5 mM).  Expression levels were typically above 15 mg/L.  

Following induction, cells were grown for 4 h, centrifuged, and frozen at -

20°C overnight.   

PrP90 was purified using modifications to a published procedure 

[26].  This process began with lysis of the frozen cells by resuspension in 

50 mM TrisHCl at pH 7.5 with 100 μg/mL lysozyme and 10 μg/mL DNase I 

(lysis buffer).  For every liter of cell culture originally grown, 50 mL of lysis 

buffer was used.  The suspension was shaken at 37°C until the 

consistency was homogenous (~1.5 h) and the solution was then 

centrifuged. 

PrP90 is expressed as inclusion bodies.  To purify the inclusion 

bodies, the lysed cell pellet was resuspended in 50 mM TrisCl at pH 7.5 

with 1% Triton X-100.  After resuspension, the homogenate was placed on 

ice for 20 min., and then centrifuged.  This step was repeated 3-5 times 

until the resulting pellet was a consistent white color. 

Purified inclusion bodies were solubilized in buffer A (8 M urea, 0.1 

M KPO4, pH 8.0 with100 μg/mL protease inhibitor cocktail from Sigma).  
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The solution was once again centrifuged but in this case, the supernatant 

contained PrP90.  This supernatant was then mixed with a Ni(II)-Chelating 

Sepharose resin (GE Healthcare) for 30 min. at room temperature to bind 

the PrP90.  For every liter of cell culture, 50 mL of resin was used.  The 

mixture of resin and PrP90 in buffer A was poured into a 5 cm diameter 

column and washed with buffer A.  Periodically, the absorbance at 280 nm 

of effluent from the wash was measured and once the absorbance 

dropped below 0.03, the washing was stopped.  Next, a 1 L linear gradient 

was set up to run from 100% buffer A to 100% buffer B (0.1 M KPO4, pH 

8.0), which served to refold the PrP on the column.  After completion of 

the gradient, the column was washed with 100 mL of buffer B.  Following 

this, the refolded PrP90 (PrPC) was eluted from the column using buffer B 

containing 60 mM imidazole.  

If contaminating proteins were present, samples were subjected to 

further purification using hydrophobic interaction chromatography (HIC) 

using a HiPrep Phenyl Sepharose 16/10 column (GE Healthcare).  Protein 

was loaded onto the column in 6 M guanidine-HCl, 1 M NH4SO4, 10 mM 

KPO4 at pH 8.  To elute, a gradient from 1 M to 0 M NH4SO4 was run in the 

presence of 4 M urea, 25 mM TrisCl at pH 8.0.                     

Purity, as well as possible protease digestion of PrP90 during 

purification, were assessed after elution from the Ni(II)-chelating 

Sepharose column by SDS/PAGE (and again if the HIC step was 

necessary).  Samples were mixed with TrisHCl pH 8 buffer containing 
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SDS and the reducing agent dithiothreitol (DTT) and boiled at 95°C for 5 

min.  Following this treatment, samples were run on 8-25% polyacrylamide 

gels using the Pharmacia PhastSystem (GE Healthcare).  Coomassie blue 

staining was also completed using the Pharmacia PhastSystem.  The 

BioRad broad range standards were used for mass determination.  As 

determined by SDS/PAGE, the purity level of protein used for all nitration 

experiments was very high (figure 2-1.)  

     

PrP 90 
monomer

6.5

14.4

21.5

31

45

66.2

97.4 kDa

likely protease
cleaved PrP90

     

Figure 2-1.  SDS/PAGE gel displaying the typical purity level of protein 

used for reaction.    

 

Refold/Convert and Verify Isoform Structure:  Purified PrP90 was 

either refolded to PrPC or converted to the β-oligomer or to the fibrillar 
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form.  To form PrPC, the PrP90 was dialyzed into 10 mM ammonium 

acetate (NH4OAc) buffer at pH 5.5.     

The β-oligomer was formed by the dilution of 120 μM protein 

(initially in 6 M guanidine-HCl, 10 mM KPO4 at pH 8) to 20 μM with 

conversion buffer (3.6 M urea, 160 mM NaCl, 60 mM NaOAc, pH 3.7) and 

incubation overnight at 37°C.  Following incubation, the β-oligomer was 

dialyzed into 10 mM NH4OAc at pH 5.5. 

Recombinant fibrils (PrPF) used were made by Dr. Roger Moore 

from the laboratory of Dr. Sue Priola at Rocky Mountain Laboratories by 

modifying a published procedure [13].  The PrPF was analyzed at RML 

using electron microscopy and Fourier transform infrared spectroscopy 

(FT-IR).  PrPF used in these experiments was provided by Mr. Xu Qi and 

Dr. Scott Hennelly. 

Before and after reaction with PN or TNM, the conformation of PrPC 

or the β-oligomer was verified by circular dichroism (CD) spectroscopy 

using a Jasco 810 spectrophotometer and Asymmetric Flow Field Flow 

Fractionation (AF4) using a Focus AF2000 with an in-line UV-visible 

electronic absorbance  detector (PostNova, Inc.).    CD is a technique that 

distinguishes secondary structural characteristics and AF4 is a technique 

that resolves particles into distinct peaks based on shape and mass.  

The β-sheet and α-helix have distinct CD spectroscopic signatures 

[27, 28].  In the case of β-sheet secondary structure, a single minimum is 

observed at about 214 nm.  As for α-helix secondary structure, two 
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pronounced minima are observed at 222 nm and 209 nm.  

When conducting an AF4 run, at least 400 pmol of sample were 

injected and a 25 mM NaOAc, 3 M urea buffer at pH 5.0 was used 

throughout the procedure.  The focusing step took place on a 4 kDa 

molecular weight cut off polyethersulfone membrane for 35 sec with 

crossflow of 3 mL/min and a channel flow 1 mL/min.  The peak resolution 

step used a crossflow of 2 mL/min and a channel flow 1 mL/min.     

Prior to nitration, PrPC and β-oligomer protein concentration was 

determined by measuring the absorbance at 280 nm using an HP 8453A 

photodiode array spectrophotometer, and the calculated extinction 

coefficient of 26,025 M-1 cm-1 [29].  The Bio-Rad protein dye assay was 

used after nitration due to the interference of nitrotyrosine absorbance 

(figure 2-2).  A protein standard curve was established vs. bovine serum 

albumin (BSA) using unlabeled PrP, from which a correction factor of 0.93 

was calculated.  Following this, BSA was used as the standard reference 

to determine PrP concentration.  The structures of tyrosine and 

nitrotyrosine are shown in figure 2-3. 
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Figure 2-2. UV-visible electronic absorbance spectra showing an increase 

in absorbance at 280 nm and 360 nm of tyrosine residues upon nitration.  

Measurements were taken in 10 mM NH4OAc, pH 5.5 and normalized to 

the concentration of the unmodified PrP90 sample at 27 μM.  

 

a

b

 

Figure 2-3.  The structures of tyrosine (a) and nitrotyrosine (b). 
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The concentration of PrPF was determined after denaturation in 6 M 

guanidine-HCl, 10 mM KPO4 at pH 8 using the method of Pace et al [29].  

PrPF concentration was not determined following nitration because CD 

and AF4 could not be performed.  Instead, the samples were used "as is" 

for further work.   

The percentage of common secondary structure motifs was 

determined for PrPC and the β-oligomer by deconvolution of their CD 

spectra.  Measurements were taken from 185-240 nm at 20°C and 25 

scans were averaged.  Cuvettes of 0.1 or 0.2 mm path length and protein 

concentrations from 7-14 μM of each isoform were used. Employing 

reference set #3 of the CDSSTR program of the online DICHROWEB 

server [27, 28], the percentages of secondary structures were calculated.  

Reference sets are groups of proteins with known structures and CD 

spectra used by DICHROWEB during deconvolution.  Reference set #3 

was used because it gave the result most consistent with the known 

secondary structure of Syrian hamster PrPC [20]. 

For PrPC, solvent exposure and secondary structure levels were 

assessed using MOLMOL software [30].  An average of the 25 best NMR 

solution structures (PDB 1B10, reference 20) of recombinant Syrian 

hamster PrPC was used in calculations.  

The thermal denaturation of untreated, 100-fold peroxynitrite, and 

1000-fold treated PrPC was measured using CD spectroscopy.  Spectra 
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were taken in the range of 190-300 nm at 2°C intervals from 25-85°C.   

 

Treat with Peroxynitrite or Tetranitromethane:  The nitrating 

reagents peroxynitrite (PN) and tetranitromethane (TNM) were used to 

label reactive Tyr residues in the different PrP isoforms.  PN was 

synthesized following a published procedure [31].  In this procedure, 20 

mL of 0.6 M NaNO2, 0.9 M H2O2 was added to 10 mL HCl.  Five to six 

seconds later, 10 mL of 1.2 M KOH, and 400 μM 

diethylenetriaminepentaacetic acid (DTPA) was added.  To improve the 

yield of potassium peroxynitrite, Dr. Scott Hennelly operated a SFM400 

Biologic four-syringe quench flow system to mix the reagents (kindly 

provided by Dr. Walt Hill).  Typical concentrations of potassium 

peroxynitrite obtained were 120 mM.  After generation, the PN was stored 

at -70°C.  TNM was purchased from Sigma-Aldrich and stored at -70°C.  

Special precautions were followed when using TNM (detailed below) due 

to its extreme toxicity.  Both PN and TNM were used in this study because 

each reagent follows a different reaction mechanism (described in detail in 

Chapter 6) and thus their reactivites can be influenced by different factors. 

To check the concentration of PN, the reagent was first diluted 100-

fold in 1 M KOH and the UV-visible electronic absorbance spectrum was 

measured.  The PN concentration was checked periodically by measuring 

the absorbance at 302 nm (extinction coefficient of 1670 M-1 cm-1) and no 

detectable reduction in concentration occurred, even after 6 months. 
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Several concentrations of each reagent were tested to ensure 

effective nitration without secondary structure disruption and or significant 

amounts of cross-linking, which is a side reaction of tyrosine nitration.  

Mass spectrometry was performed on PrPC after treatment with 100-fold 

PN, 150-fold PN, 250-fold PN, 100-fold TNM and 1000-fold TNM.  For the 

β-oligomer, samples treated with 100-fold and 250-fold excess of each 

reagent were also analyzed by mass spectrometry.  In the case of the 

PrPF, samples reacted with 100-fold excess of PN were analyzed by mass 

spectrometry.   

All reactions were done in at least triplicate.  The PrP90 soluble 

isoforms were reacted at ~12 μM monomer protein concentration at pH 

5.5 (the β-oligomer is unstable above pH 5.5).  Treatments with PN used 

200 mM 10 mM NH4OAc, 10 μM DTPA, pH 5.5.  Samples were allowed to 

react with PN for five minutes at room temperature.   

The PrPF PN reaction buffer was 150 mM NH4OAc, 50 mM 

NH4HCO3 at either pH 5.5 or pH 7.5 (3 reactions done at each pH). Prior 

to reaction, the insoluble fibers were resuspended into a homogenous 

solution at a final concentration of ~120 μM.  As an added precaution, 

reactions were performed under a biosafety laminar flow hood. 

In the case of TNM, 50 mM NH4OAc, pH 5.5 buffer was used.  PrPC 

was reacted overnight while the β-oligomer was reacted for 2 hours at 

room temperature.  TNM was not reacted with PrPF due to time 

constraints.  Anaerobic conditions were employed during the TNM 
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treatments and reactions took place under a standard chemical fume 

hood.   

Reactions intended to induce covalent cross-links were conducted 

in the same buffer as nitration reactions.  The excess of PN or TNM used 

ranged from 250-fold to 1000-fold. 

Following reaction of PrPC or the β-oligomer with PN or TNM, 

byproducts were removed by dialyzing the samples into 10 mM NH4OAc, 

pH 5.5.  After PN reaction, PrPF was centrifuged and the pellet collected.  

The sample was then denatured by resuspension in 8 M urea, 0.1 M 

KPO4, pH 8.0 overnight at room temperature.        

 

Verify Isoform Structural Integrity Maintained:  Following PN or 

TNM treatment and purification from reagents via dialysis, the soluble 

isoforms were analyzed a second time by CD and AF4.  In the case of 

PrPF, the conformation was verified at RML using electron microscopy 

prior to denaturation.  These measurements were conducted to ensure 

that no gross structural changes occurred as a result of the reaction.     

 

Mass Spectrometry:  In preparation for mass spectrometry, a 10% 

trichloroacetic acid (TCA) precipitation was used to concentrate the PrPC 

or the β-oligomer nitrated samples.  In the case of PrPF, 30% TCA was 

used following a 20-fold dilution of the denatured PrPF (the urea 

concentration must be lowered for TCA precipitation to be successful).  
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Protein pellets were washed with 1:1 ethanol:ether solution before being 

re-suspended in 50 mM NH4HCO3 buffer at pH 8 and digested with trypsin 

(1:7.5 trypsin to protein ratio suggested by Dr. Holly Cox).  Tryptic 

peptides expected are shown in table 2-1.  Samples were digested 

overnight at 37°C, reduced with DTT for one hour at 56°C and finally dried 

under vacuum.  Following this, samples were suspended in 80% ethanol 

and dried under vacuum again. 
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Tryptic Peptides of PrP90 

Tyrosine-
Containing? 

Mass 
(Da) Residues Peptide Sequence 

P4 (Y169) 2475 165-185 PVDQYNNQNNFVHDCVNITIK 

P1 (Y128) 2363 111-136 HMAGAAAAGAVVGGLGGYMLG
SAMSR 

Internal Standard (IS) 1534 137-148 PMMHFGNDWEDR 

P5 (Y218) 1457 209-220 VVEQMCTTQYQK 

No 1283 90-101 GQGGGTHNQWNK 

No 1153 195-204 GENFTETDIK 

P3 (Y157, Y162, Y163) 1102 157-164 YPNQVYYR 

P6 (Y225, Y226) 1088 221-229 ESQAYYDGR 

No 1016 186-194 QHTVTTTTK 

No 663 152-156 ENMNR 

No 548 205-208 IMER 

P2 (Y149, Y150) 501 149-151 YYR 

No 493 107-110 TNMK 

No 331 102-104 PSK 

No 244 105-106 PK 

No 193 230-231 SS 

No 175 232 R 

Table 2-1.  Peptides generated from PrP90 digest with trypsin ordered by 

decreasing mass.  Peptides containing tyrosine residues (P1-P6) are in 

bold, as well as the peptide used as an internal standard (IS).  This table 

was generated using the PeptideCutter program[ 32]. 

 

Reduced peptides were re-suspended in 50% acetonitrile, 0.1% 

trifluoroacetic acid and mixed in equal parts with the matrix α-cyano-4-
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hydroxycinnamic acid (CHCA) containing Bruker peptide standards I (table 

2-2).  Peptides were analyzed by Matrix Assisted Laser Desorption 

Ionization-Time of Flight mass spectrometry (MALDI-TOF MS) using the 

Applied Biosystems Voyager MALDI-TOF mass spectrometer.  All mass 

spectrometry was performed at the University of Montana Mass 

Spectrometry and Proteomics Core Facility).  Dr. Holly Cox performed 

most of the MALDI-TOF mass spectrometry on the PrPC and the β-

oligomer isoforms. 

  

  

 

 

 

 

 

 

Table 2-2.  External protein standards used for calibration during MALDI- 

TOF MS (Bruker). 

 

To assess the efficiency of the tryptic digests, a number of different 

factors were analyzed.  MALDI-TOF MS showed that most of the signal 

arose from fragments smaller than 3000 amu, and there were no peaks in 

the range of undigested PrP.  Furthermore, between the range of 450-

5000 amu, well over 90% of the predicted tryptic peptides were identified. 

Protein Standard Mass (Da) 

ACT clip 18-39 2465 

ACT clip 1-27 2093 

Bombesin 1619 

Substance P 1347 

Angiotensin I 1296 

Angiotensin II 1046 
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In most samples, no missed cleavages were seen, even in the case where 

trypsin is less likely to cleave (when proline immediately follows lysine or 

arginine).  

The peptide composed of amino acids 209-220 containing Y218 

was difficult to detect using MALDI-TOF MS.  Therefore, a greater range 

of error should be assumed for this peptide.   

Prior to assessing the degree of nitration, raw spectra were 

modified using the Data Explorer program (Applied Biosciences).  

Employing the basic options of Data Explorer, the data were baseline 

corrected, noise-filter smoothed, de-isotoped, and mass calibrated using 

the Bruker standards. 

The level of nitration for each Tyr-containing peptide was 

determined as the percentage of all the nitrated species of a peptide 

compared with all identified forms of the peptide.  MALDI-TOF MS often 

results in the loss of one or two oxygen atoms from the nitrotyrosine group 

via photodecomposition [33].  Thus, the peak intensities of the un-nitrated 

peptide, nitro peptide, nitro – 1 oxygen peptide, nitro – 2 oxygen peptide, 

as well as possible methionine oxidized peptides were determined. (If 

methionine is present, oxidation can occur, which adds an additional 

oxygen to the peptide mass.)  Once all forms of a peptide were identified 

(see Appendix), the areas of the peaks derived from nitrated tyrosine 

species were summed and then divided by the sum of all the peak 

intensities.   
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For this method of determining the level of nitration to be valid, 

nitrotyrosine containing peptides must desorb from the matrix in the same 

way as the corresponding unmodified and methionine-oxidized peptides.  

To determine if this was true, a non-tyrosine containing prion peptide 

(amino acids 137-148) was used as an internal standard.  The total peak 

intensity for each tyrosine-containing peptide, both in nitrated and 

unnitrated samples, was compared with the intensity of the internal 

standard.  This analysis showed that there was no nitration-dependent 

trends in matrix desorption. 

 

Sequencing Electrospray Tandem Mass Spectrometry:  To confirm 

the site(s) of nitration on tryptic peptides containing more than one 

tyrosine, sequence information was obtained by electrospray ionization 

(ESI) tandem mass spectrometry (MS/MS) analysis using a QTOF micro 

(Waters, Milford, MA).  As the tryptic YYR peptide (residues 149-151) was 

too small for ESI analysis, a cyanogen bromide digestion (table 2-3) was 

performed instead.  TCA precipitated protein pellets (15 μg) were mixed 

with CNBr in 70% TFA at room temperature for 24 hours.  The digestion 

solution was removed under vacuum.  Peptides from both trypsin and 

cyanogen bromide digestion were resuspended in 2% acetonitrile, 0.1% 

formic acid and separated by capillary liquid chromatography using a 

CapLC XE (Waters) coupled to the ESI source of the QTOF micro. The 

peptides were concentrated and desalted with an in-line C18 PepMap™ 
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Nano-Precolumn, 5 mm x 300 μm, 5 μm particle size (Dionex) followed by 

reversed phase separation on a Waters C18 capillary column (15 cm x 75 

μm i.d., 3 μm particle size).  Peptides were eluted from the column with a 

70-minute linear gradient of acetonitrile from 10-40% in 0.1% formic acid. 

The voltages were set at 3800 V for the capillary, 38 V for the sample 

cone and 3.0 V for the extraction cone. Mass spectra were acquired 

between the range of 200-1500 m/z followed by data-dependent selection 

of ions for MS/MS. To enhance the selection of low abundance 

nitropeptides for MS/MS, only ions with m/z values that corresponded to 

nitropeptide masses with a 2+ or 3+ charge state were selected for 

collision induced dissociation fragmentation.  Ions with m/z values 

corresponding to the unmodified peptides were not selected for MS/MS. 

Collision voltages were dependent upon the m/z and charge state of the 

parent ion.  MS/MS spectra were analyzed using Mascot Daemon (Matrix 

Science) to search a database containing the hamster PrP90 sequence.   

Methionine oxidation and nitrotyrosine were selected as variable 

modifications.  Mass accuracy was set to 50 ppm for peptide tolerance 

and 0.2 Da for MS/MS tolerance.  All ESI-MS/MS and CNBr digests were 

performed by Dr. Holly Cox. 
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        CNBr Peptides 

Mass 
(Da) Residues Peptide Sequence 

6156 155-206 
NRYPNQVYYRPVDQYNNQNN 
FVHDCVNITIKQHTVTTTTKGENFTET
DIKIM  

2271 214-232 CTTQYQKESQAYYDGRRSS  

2119 90-109 GQGGGTHNQWNKPSKPKTNM  

1983 
(P2b) 140-154 HFGNDWEDRYYRENM  

1344 113-129 AGAAAAGAVVGGLGGYM  

842 207-213 ERVVEQM  

442 135-138 SRPM  

430 130-134 LGSAM 

367 110-112 KHM  

102 139 M  

 

Table 2-3.  Peptides generated from PrP90 digest with CNBr ordered by 

decreasing mass.  P2b contains tyrosines 149 and 150.   
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CHAPTER 3: PrPC
  

 
Adapted from Lennon et al., Biochemistry, 46, 4850-60, 2007. 

 
Introduction 

PrPC is a soluble monomer dominated by three α-helices, with two 

short β-strands (see figure 1-2).  PrPC contains a long intrinsically 

unstructured amino-terminal domain comprised of amino acids 23 to ~108.  

The protein normally resides on the external surface of cells, is mainly 

neuronal, and contains a transitory signal peptide (amino acids 1-22) that 

directs its delivery.  It is attached to the plasma membrane by a 

glycosylphoshatidylinositol (GPI) anchor, coded by amino acids 233-254 

which are removed as part of the GPI processing [34]. 

Remarkably, the function of PrPC is not yet known.  Further adding 

to the mysterious nature of this highly conserved and abundant (in some 

tissues) protein is that knockout mice not expressing any PrPC appear to 

develop and behave normally [5], although their susceptibility to oxidative 

stress may be higher than wild type mice [35]. 

Some basic facts are known about PrPC that are likely related to 

function, two of which are best supported.  First, the intrinsically 

unstructured amino- terminus has the ability to bind copper (II) and thus 

may serve some role in copper homeostasis [35].  Second, PrPC has 

some protective function against oxidative stress and may serve to protect 

the cell in that capacity [35]. 

Certain variations, germline and spontaneous mutations in the PrPC 
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gene can lead to the formation of PrPSc and eventual death [36].  Germline 

and sporadic mutations are also involved in the formation of other amyloid 

diseases as well [37].  The most common human prion allelic variation is 

at residue 129, which can be a methionine or valine. The presence of 

valine at 129 appears to accelerate the misfolding of PrPC [38].  To review 

some of the most frequent germline or sporadic mutations that result in 

disease, we will consider three of these prion diseases; Fatal Familial 

Insomnia (FFI), Creutzfeldt-Jakob disease (CJD) and Gerstmann-

Sträussler-Scheinker syndrome (GSS). When D178 is mutated to an 

asparagine residue, FFI results [39].  If the M129V allele is present along 

with the D178N mutation, then Creutzfeldt-Jakob disease develops.  

Finally, when proline 102 is mutated to leucine, then GSS results .   

 

Materials and Methods 

A detailed description of the materials and methods used is 

provided in Chapter 2.  Briefly, PrPC was treated with varying levels of 

peroxynitrite (PN) and tetranitromethane (TNM).  Samples treated with 

100-fold and 250-fold PN and TNM were analyzed by circular dichroism 

(CD) and asymmetric flow field flow fractionation (AF4) to assess whether 

structural changes had occurred.  Matrix Assisted Laser 

Desorption/Ionization mass spectrometry (MALDI-TOF MS) was 

performed on the 100-fold PN and TNM treated samples to determine the 

tryptic peptides that became nitrated.  Sequencing of the peptides was 
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done using Electrospray Ionization tandem mass spectrometry (ESI/MS-

MS) to determine which tyrosine residue was nitrated on peptides with 

multiple tyrosines.  Samples treated with up to 100-fold or 250-fold PN 

were analyzed by SDS/PAGE to determine if any covalent cross-links 

between PrP monomers were present. CD deconvolution was performed 

to determine the secondary structure of PrPC using the DICHROWEB 

online server. Solvent accessible surface area was performed using the 

MOLMOL program.    

Results 

PrPC sensitivity to PN and TNM:  PrPC is more sensitive to 

treatment with PN than TNM.  Analysis of the CD spectrum of PrPC fits 

very well with the known structure and is consistent with previous 

measurements.   CD analysis shows a loss in α-helical secondary 

structure with PN treatment above 100-fold, detected by a loss of negative 

signal at 222 nm (figure 3-1).  The formation of covalently linked higher 

order aggregates is also observed with AF4 as the increase in absorbance 

at higher retention times (figure 3-2) in PrPC treated with PN.   
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 Figure 3-1.  CD spectrum of PN treated PrPC.   
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Figure 3-2.  AF4 trace of PN treated PrPC.     
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In contrast, PrPC treated with 1000-fold TNM maintains its 

secondary structure as measured by CD (figure 3-3).  Furthermore, higher 

order aggregates are not observed by AF4 (figure 3-4). 
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Figure 3-3.  CD spectrum of TNM treated PrPC.  
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Figure 3-4.  AF4 trace of TNM treated PrPC.     

  

 

Covalent cross-linking:  The AF4 elution traces for 100 and 250-fold 

PN treated PrPC show the formation of higher mass species (figure 3-2).  

In the case of TNM treated PrPC, no higher mass species are observed, 

even with 1000-fold treatment (figure 3-4).  To test whether these higher 

order aggregates were covalently cross-linked, SDS-PAGE was 

performed.  The results show that these higher mass species detected 

after PN treatment are aggregates of covalently cross-linked, non-

reducible PrPC monomers (figure 3-5). 
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Figure 3-5. SDS/PAGE of PrPC.  Lanes: BioRad SDS broad range protein 

standard (1), Untreated PrPC (2), 250X PN treated PrPC (3), 250X TNM 

treated PrPC (4), 1000X TNM treated PrPC (5).  

 

PrPC nitration pattern with PN and TNM:  PrPC labeling patterns 

with 100-fold PN, 100-fold TNM and 1000-fold TNM are summarized in 

Table 3-1.  The level of nitration reported is an average of three separate 

nitration experiments. 
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Tryptic Peptide   
Sequence 
 

100x 
PN 

 
PrPC 

100x 
TNM 
 
PrPC 

1000x 
TNM 
 
PrPC 

P1 (residues 111-136) 
HMAGAAAAGAVVGGLGGY128MLGSAMSR 
 

+ - - 
Mono-nitration - - - P2 (residues 149-151) 

Y149Y150R    
 Di-nitration - - - 

Mono-nitration + - + 
Di-nitration - - - 

P3 (residues 157-164) 
Y157PNQVY162Y163R 
 

Tri-nitration - - - 
P4 (residues 165-185) 
PVDQY169NNQNNFVHDCVNITIK 
 

- - ++ 
P5 (residues 209-220) 
VVEQMCTTQY218QK 
 +++ - +++ 

Mono-nitration ++++ + ++++ P6 (residues 221-229) 
ESQAY225Y226DGR 
 Di-nitration ++ - ++ 

 

Table 3-1. MALDI/TOF analysis of Tyr-containing PrP peptides produced 

by trypsin digestion. Nitration Key:  -, 0 to  5% nitration; +, 6 to 20% 

nitration; ++, 21 to 45% nitration; +++, 46-70%, ++++,  71 to 100% 

nitration.  

 

The nitration pattern of PrPC with 100-fold PN treatment (figure 3-6) 

includes Y128, mono-nitration at either Y162 or Y163 on the 157-164 

peptide, Y218, Y225 and Y226.  Highest labeling occurs at the carboxy-

terminus of the protein, on the peptide containing Y225 and Y226.  With 

100-fold TNM treatment, little nitration was observed.  Only a small 

amount of mono-nitration on the 221-229 peptide containing two tyrosines 

was detected.  When PrPC was subjected to 1000-fold TNM treatment, a 
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nitration pattern similar to 100-fold PN treatment was detected with two 

exceptions.  The 100-fold PN treatment led to nitration at Tyr128, without 

nitration at Tyr169, while the 1000-fold TNM treatment led to nitration at 

Tyr169, without nitration at Tyr128.    

  

Figure 3-6. Structure of hamster PrPC [20] indicating the locations and 

relative reactivities of the 10 Tyr residues after treatment with 100x PN. 

    

A MALDI-TOF spectrum of peptides from the tryptic digest of PrPC, 

after reaction with 100X PN (figure 3-7) as well as a portion of this 

spectrum enlarged to show the nitration levels of the 157-164 and 221-229 
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peptides (figure 3-8) is provided. The data for reaction with 1000X TNM 

are similarly reported in figures 3-9 and 3-9. A mass table showing all of 

the possible peptides of interest is provided in the appendix.  
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Figure 3-7.  A partial MALDI-TOF spectrum of peptides from the tryptic 

digest of PrPC, after reaction with 100x PN. P2-P6 = tyrosine containing 

tryptic peptides (P1 observed in different MALDI-TOF mode), IS = internal 

standard, ES = Bruker external protein standards (listed in table 2-2). 
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Figure 3-8.  The partial MALDI-TOF spectrum in figure 3-7 showing the 

peptides observed from loss of one or both oxygens from the nitro-group 

as well as the levels of nitration for P3 and P6. P2-P6 = tyrosine 

containing tryptic peptides (P1 observed in different MALDI-TOF mode), 

IS = internal standard, ES = Bruker external protein standards (listed in 

table 2-2). 
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Figure 3-9.  A partial MALDI-TOF spectrum of peptides from the tryptic 

digest of PrPC, after reaction with 1000x TNM. P2-P6 = tyrosine containing 

tryptic peptides (P1 observed in different MALDI-TOF mode), IS = internal 

standard, ES = Bruker external protein standards (listed in table 2-2). 
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Figure 3-10.  The partial MALDI-TOF spectrum in figure 3-9 showing the 

loss of one or both oxygens from the nitro-group as well as the levels of 

nitration for P3 and P6. P2-P6 = tyrosine containing tryptic peptides (P1 

observed in different MALDI-TOF mode), IS = internal standard, ES = 

Bruker external protein standards (listed in table 2-2). 

 

 

Electro Spray Ionization Tandem Mass Spectrometry:  Protein 

sequencing using ESI/MS-MS was performed by Dr. Holly Cox for the 
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peptides containing more than one tyrosine.  Sequencing results indicate 

that the 157-164 peptide could be labeled at Y162 or Y163, but no 

nitration was observed at Y157.  For the 221-229 peptide, nitration was 

detected at both Y225 and Y226.    

    

PrPC Solvent accessibility predictions by MOLMOL: Solvent 

accessibility calculations were performed using MOLMOL software for the 

PrPC Syrian hamster NMR structure PDB 1B10 [20], averaging the results 

of all NMR structures.  The labeling patterns with 100-fold PN and 1000-

fold TNM follows solvent accessibility predictions for most tyrosine 

residues, with exception to Y218. The results of these calculations are 

summarized in Table 3-2. 

 

Tyrosine  
residue 

128 149 150 157 162 163 169 218 225 226 

Nitration  
Level 
100X PN 

+ - - - + + - +++ ++++ ++++ 

Nitration  
Level 
1000X 
TNM 

- - - - + + ++ +++ ++++ ++++ 

Solvent 
accessible 
surface 
area (%) 

5.6 13.7 2.8 2 11.7 3.3 16.4 5.6 39 59 

  

Table 3-2:  The Solvent Accessible Surface Area (SASA), as calculated 

using the MOLMOL program for the average value for all NMR solution 

structures from PDB #1B10 [20], is shown, along with the nitration levels 
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for each tyrosine residue. 

 

 

Thermal Stability:  The thermal stabilities of wild-type, 100-fold PN 

treated, and 1000-fold TNM treated PrPC were determined using CD.  

While the untreated and 1000-fold TNM treated PrPC displayed similar 

midpoint temperatures of unfolding of 68°C and near two-state behavior, 

the 100-fold PN- treated sample unfolded at 58°C and deviated 

significantly from two-state behavior (figure 3-11).  As indicated earlier, the 

level and pattern of nitration were similar between the 100-fold PN and 

1000-fold TNM treated samples, except in relation to Y128 and Y169.    

Also, some differences in the degree of methionine oxidation were 

observed between the two samples.  These results showed a higher level 

of methionine oxidation in the PN treated sample.   
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Figure 3-11.  Thermal denaturation of PrPc before and after treatment with 

100x PN or 1000x TNM, as followed by the loss in CD signal at 222 nm 

(loss of α-helicity).   

 

 

CD Deconvolution:  The deconvolution of PrPc was performed and 

the results are summarized in table 4-2.  The amount of β-sheet 

secondary structure was overestimated when compared to the NMR 

structure, but otherwise the results were consistent.  
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Discussion 

In the case of PrPC, the availability of NMR structures provides a 

structural framework to interpret the nitration results.  By examining the 

nitration patterns of PrPC in comparison with structural analysis, we can 

draw conclusions about the factors influencing reactivity of the nitrating 

reagents (PN and TNM mechanistic details described in Chapter 6). 

Solvent accessibility as calculated by MOLMOL for the 1B10 NMR 

structures of PrPC do not follow nitration patterns exactly, and therefore 

should not be used to predict sites of nitration using PN or TNM.  For 

example, MOLMOL predicts that Y225 and Y226 are most solvent 

accessible in PrPC, which is consistent with our results.  Therefore, with 

both PN and TNM, the most surface exposed residues in PrPC (Y225 and 

Y226) are by far the most highly reactive.  However, Y218 displays high 

levels of reactivity and MOLMOL predicts that this residue is virtually 

buried.  One possible explanation for the reactivity of Y218 is that nitration 

of Y225 and/or Y226 leads to a conformational change of Y218, 

increasing its solvent accessibility. 

When comparing the reactivity of PrPC toward PN and TNM, an 

interesting result is found.  PrPC is much less reactive toward TNM than 

PN.  Only low levels of mono-nitration are detected on the 221-230 

peptide with 100-fold TNM in PrPC.  Strikingly, a 1000-fold molar excess of 

TNM is required to achieve a similar amount of nitration as detected with 

100-fold PN.  Initially, this result was not surprising due to the low pH of 
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the reactions, which does not favor TNM reactivity.  However, as 

described in Chapter 4, 100-fold TNM nitrates the β-oligomer as efficiently 

as 100-fold PN.  Therefore, it is likely that pH is not influencing the 

reactivity of TNM. The reason for this difference in TNM reactivity is 

unknown, although one possible explanation is that the PrPC experiments 

were performed early on, when inaccuracies in technique are more likely 

to occur.  

Unexpectedly, evidence has also been gathered suggesting that a 

single tyrosine residue may play an important role in the stability of PrPC. 

One important difference in the nitration patterns of PrPC with PN and 

TNM is noted at Y128.  Low levels of nitration at this tyrosine are detected 

with 100-fold PN treatment, while no nitration at Y128 occurs even after 

1000-fold TNM treatment.  Temperature denaturation of wild type, 100-fold 

PN, or 1000-fold TNM treated PrPC (figure 3-11) shows that the stability of 

100-fold PN treated sample decreases considerably, while the 1000-fold 

TNM treated sample does not change compared with the untreated 

sample.  Upon treatment of PrPC with >150-fold PN, a considerable loss in 

α-helicity is measured by CD, which corresponds to an increase in 

nitration at Y128.  Possibly, a subset of the sample representing the 

portion that is nitrated at Y128 unfoldd at lower temperatures, leading to 

an overall decrease in α-helicity.   

This result is not surprising, considering the wealth of data gathered 

on the importance of methionine 129 in prion biology [38, 39].  M129 is 
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adjacent to Y128, which forms a hydrogen bond with aspartate 178.  If 

nitration were to occur at Y128, it is possible that this could disrupt the 

Y128/D178 hydrogen bond, leading to a decrease in overall protein 

stability.  It has been postulated that the D178N mutation in FFI 

destabilizes PrPC for the same reason [40], further supporting this 

conclusion.  However, this claim cannot be definitively made because a 

higher amount of methionine oxidation was also present in the PN-treated 

samples (data not shown), and it is possible that increased oxidation of 

the protein overall or at M129 caused the decrease in PrPC stability. 

Chemical cross-links are observed by SDS/PAGE at high PN 

concentrations. The CD spectra of these samples indicate that the protein 

monomer is largely unfolded under these conditions. Therefore, the cross-

links are attributed to reactivity between Tyr residues of unfolded 

monomers, as dityrosine formation has previously been observed as a 

side reaction of nitration [41]. When the structure of PrPC is maintained, 

cross-links between monomers do not form. 
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CHAPTER 4: β-Oligomer 

Adapted from Lennon et al., Biochemistry, 46, 4850-60, 2007. 

Introduction 

The β-oligomer is a soluble aggregated isoform (8-12 subunits) of 

PrP rich in β-sheet secondary structure [13, 42, 43].  β-oligomers may be 

formed from recombinant full length PrP lacking the GPI anchor [42], while 

in other cases, such as ours,  recombinant truncated lacking the GPI 

anchor [13, 43].  The β-oligomer forms at low pH in denaturing conditions 

(see Chapter 2).  Following our procedure (modified from reference 13 by 

Dr. Scott Hennelly), an octomer is formed (as determined by AF4 by Dr. 

Scott Hennelly), which is consistent with previous studies [13, 43].  

The β-oligomer shares secondary structural characteristics with 

PrPSc, most notably a large increase in the amount of β-sheet character 

upon conversion from PrPC [13, 43].  It should be noted that although the 

β-oligomer is not believed to be on the kinetic pathway leading from PrPC 

to PrPSc (i.e., not an intermediate) [13], it is however an aggregated form 

of PrPC that is an intriguing model of PrPSc for a number of reasons.  

Beyond the mere secondary structure similarity, the β-oligomer has been 

shown to be toxic to neuronal cells [42], but is not infectious as with PrPSc.  

The β-oligomer has also been shown to assemble into fibrils upon 

prolonged incubation [43].  Furthermore, similarly sized particles (14-28 

subunits) made from physical disruption and separation of PrPSc fibrils 

were found to be more infectious than the large fibrils, per protein subunit 
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[44].   

As noted previously, detailed structures of PrPSc and the β-oligomer 

have not been solved.  Therefore, it cannot be stated that the β-oligomer 

has a similar overall structure as PrPSc.  However, we believe that the data 

suggest that the β-oligomer may represent an important model for 

studying the structure of PrPSc and, due to its superior tractability, is 

worthy of biophysical investigation.  

 

Materials and Methods 

A detailed description of the materials and methods used is 

provided in Chapter 2.  Briefly, the β-oligomer was treated with varying 

levels of peroxynitrite (PN) and tetranitromethane (TNM).  Samples 

treated with 100-fold and 250-fold PN and TNM were analyzed by circular 

dichroism (CD) and asymmetric flow field flow fractionation (AF4) to 

assess whether structural changes had occurred.  Matrix Assisted Laser 

Desorption/Ionization Mass Spectrometry (MALDI-TOF MS) was 

performed on 100-fold PN and TNM treated samples to determine which 

tryptic peptides became nitrated.  Sequencing of the peptides was done 

using Electrospray Ionization tandem mass spectrometry (ESI/MS-MS) to 

determine which tyrosine residue was nitrated on peptides with multiple 

tyrosines.  Samples treated with up to 100-fold or 250-fold PN were 

analyzed by SDS/PAGE to determine if any covalent cross-links between 

PrP monomers were present. CD deconvolution was performed to 
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determine the secondary structure of the β-oligomer using the 

DICHROWEB online server.  
 

Results 

 The β−oligomer does not show varying sensitivity levels to PN and 

TNM:  The β-oligomer does not display differing levels of sensitivity to 

treatment with PN compared with TNM. Additionally, analysis of the CD 

spectra does not indicated any significant protein unfolding with PN (figure 

4-1), although some higher order aggregates were observed in the AF4 

traces (figure 4-2. Similar results were obtained for TNM treatment at 

either 100-fold or 250-fold molar excess (figure 4-3, figure 4-4).  
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 Figure 4-1. CD spectrum of PN treated β−oligomer. 
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Figure 4-2. AF4 trace of PN treated β−oligomer. 
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Figure 4-3. CD spectra of TNM treated β−oligomer. 
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Figure 4-4. AF4 trace of TNM treated β−oligomer. 

 

 Covalent cross-linking:  The AF4 elution traces for 100 and 250-fold 

PN or TNM treated β−oligomer show the formation of higher mass 

species.  SDS-PAGE on the 250X samples shows that these higher mass 

species are aggregates of covalently cross-linked PrP (figure 4-5).  In the 

case of the β−oligomer, it was possible to determine whether covalently 

cross-links were occurring within a single β−oligomer molecule.  The AF4 

peak at the elution time corresponding to the single β−oligomer subunit 

was purified and subjected to SDS-PAGE.  This analysis showed that 

cross-links were forming within a single β−oligomer molecule (figure 4-5),  
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         1     2             3         4 

monomer

dimer

trimer

tetramer

6.5

14.4
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97.4 kDa

 
 
 
Figure 4-5. SDS/PAGE of the β-oligomer.  Lanes: BioRad SDS broad 

range standard (1), Untreated β-oligomer (2), 100X PN treated β-oligomer 

(3), 100X TNM treated AF4 purified β-oligomer (4). 

 

The β−oligomer labeling pattern with PN and TNM:  The β−oligomer 

nitration patterns for 100-fold PN and 100-fold TNM treatment are 

summarized in table 4-1.  The results represent an average of three 

separate nitration +experiments. 
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Table 4-1. MALDI/TOF analysis of Tyr-containing PrP peptides produced 

by trypsin digestion. Nitration Key:  -, 0 to  5% nitration; +, 6 to 20% 

nitration; ++, 21 to 45% nitration; +++, 46-70%, ++++,  71 to 100% 

nitration. 

 

With 100-fold PN treatment, labeling occurred at Y128, mono-

Tryptic Peptide   
Sequence 

100x  
PN 

 

β-oligomer 

100x 
TNM 

 
β-oligomer 

P1 (residues 111-136) 
HMAGAAAAGAVVGGLGGY128M
LGSAMSR 
 

+ - 

Mono-nitration +++ +++ P2 (residues 
149-151) 
Y149Y150R    
 

Di-nitration - - 
Mono-nitration + ++ 

Di-nitration - - 
P3 (residues 
157-164) 
Y157PNQVY162 
Y163R 
 Tri-nitration - - 
P4 (residues 165-185) 
PVDQY169NNQNNFVHDCVNITIK 
 

+ + 
P5 (residues 209-220) 
VVEQMCTTQY218QK ++ ++ 

Mono-nitration ++ ++ P6 (residues 
221-229) 
ESQAY225Y226
DGR 
 

Di-nitration
- - 
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nitration on the 149-151 peptide containing two tyrosines, mono-nitration 

on the 157-164 peptide containing three tyrosines, Y169, Y218, and 

mono-nitration on the 221-229 peptide containing two tyrosines.  At 100-

fold TNM treatment, the β−oligomer follows the same labeling pattern with 

the exception of Y128, which was not labeled by TNM.    

With both treatments, the highest levels of nitration occurred on 

149-151 peptide, followed next by the 221-229 peptide.  A MALDI-TOF 

spectrum of peptides from the tryptic digest of the β−oligomer, after 

reaction with 100X PN (figure 4-6) as well as a portion of this spectrum 

enlarged showing the nitration levels of the 157-164 and 221-229 peptides 

(figure 4-7) is provided. Figures 4-8 and 4-9 show the MALDI_TOF 

spectra after reaction with 100X TNM.  
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Figure 4-6.  A partial MALDI-TOF spectrum of peptides from the tryptic 

digest of the β−oligomer, after reaction with 100x PN. P2-P6 = tyrosine 

containing tryptic peptides (P1 observed in different MALDI-TOF mode), 

IS = internal standard, ES = Bruker external protein standards (listed in 

table 2-2). 
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Figure 4-7.  The partial MALDI-TOF spectrum showing the loss of one or 

both oxygens from the nitro-group for P6 as well as the overall levels of 

nitration for P3 and P6. P2-P6 = tyrosine containing tryptic peptides (P1 

observed in different MALDI-TOF mode), IS = internal standard, ES = 

Bruker external protein standards (listed in table 2-2). 
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Figure 4-8.  A partial MALDI-TOF spectrum of peptides from the tryptic 

digest of β−oligomer, after reaction with 100X TNM. P2-P6 = tyrosine 

containing tryptic peptides (P1 observed in different MALDI-TOF mode), 

IS = internal standard, ES = Bruker external protein standards (listed in 

table 2-2). 
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Figure 4-9. Portion of the partial MALDI-TOF spectrum in figure 4-8 to 

show the loss of one or both oxygens from the nitro-group as well as the 

levels of nitration for P3 and P6. P2-P6 = tyrosine containing tryptic 

peptides (P1 observed in different MALDI-TOF mode), IS = internal 

standard, ES = Bruker external protein standards (listed in table 2-2). 

 

Electro Spray Ionization Tandem Mass Spectrometry:  Protein 

sequencing tandem MS-MS (ESI-MS/MS) was performed by Dr. Holly Cox 

for the β-oligomer for peptides containing more than one tyrosine residue.  

Sequencing results indicate that the 157-164 peptide labels at Y162 and 
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Y163, with no nitration observed at Y157 (figure 4-10).  Nitration is seen at 

both Y225 and Y226 of the 221-229 peptide.  In the case of Y149 and 

Y150, both were reactive as well.     

 

 

Figure 4-10.  A sample ESI-MS/MS spectrum of one mono-nitrated P3 

peptide (identified as nitroY162) from the 100-fold PN treated β-oligomer 

sample.  Inset: the masses of the M+H y ions expected from each of the 

three potential sites of mono-nitration. (*) the loss of ammonia (-17) from R 

or Q; (++) doubly charged ions. 

 

CD Deconvolution:  The deconvolution of the β-oligomer was 

performed and the results are summarized in table 4-2.  Because no 

crystal or NMR structures are known for the β-oligomer, the precision of 
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this deconvolution is unknown.  However, it is clear that the amount of α-

helix secondary structure was low and β-sheet secondary structure was 

high.    

 

 PrPC β-oligomer

Secondary 
Structure 

Type 
 

From NMR From CD From CD 

Helix 45% 36% 8% 

β-sheet 6% 20% 33% 

Turn 15% 19% 25% 

Coil 34% 25% 34% 

 

Table 4-2.  Deconvolution analysis of the CD spectra of PrPC and the β-

oligomer using the online server DICHROWEB.    

 
 
 

Discussion 
  

Considering that low pH is predicted to inhibit the reactivity of TNM, 

it is surprising that the β-oligomer reacts as efficiently with TNM as with 



 61

PN at 100-fold excess. This is especially surprising because such high 

levels of TNM were required to label PrPC.  Furthermore, TNM causes 

cross-linking in the β-oligomer (unlike PrPC) to a similar degree as with 

PN.  The β-oligomer is also able to withstand treatments of 250-fold PN 

and TNM without any significant loss in secondary structure.  These 

results suggest that the β-oligomer is able to withstand higher levels of 

nitration without unfolding when compared to PrPC.      

As expected, the nitration pattern of the β-oligomer is different than 

PrPC.  Two areas in particular show a significant change upon 

oligomerization.  First, high levels of nitration are observed on the 149-151 

peptide (containing the first YYR motif) which showed no reactivity in 

PrPC.  Next, much lower levels of nitration seen were seen at the three 

carboxy-terminal tyrosine residues (Y225 and Y226).  The implications of 

these differences to PrPSc structure, as well as an in-depth comparison of 

all the isoforms, is the subject of Chapter 6.   

CD deconvolution shows that there is a large reduction in α-helix 

and a large increase β-sheet secondary structure when PrPC converts to 

form the β-oligomer (table 4-2).  The predictions of secondary structure 

derived from the deconvolution of the CD spectrum do not exactly match 

NMR solution structure, although the α-helical content agrees well.  

Clearly, a large decrease in α-helix occurs along with an increase β-sheet 

secondary structure.  

Remarkably, the FT-IR spectra of the β-oligomer and PrPF are 
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nearly identical [43].  However, the amount of α-helix estimated by FT-IR 

is much higher than that determined by deconvolution of the CD spectrum 

of the β-oligomer.   A possible explanation for this difference is that CD 

spectroscopy more accurately estimates α-helix content while FT-IR 

spectroscopy more accurately estimates β-sheet character [45]. 

The conclusion made in Chapter 3 that highly solvent exposed 

tyrosine residues will likely become nitrated is important for interpreting 

data for the β-oligomer and PrPF.  In Chapter 6 where all the isoforms are 

compared, the implications will be further discussed.          
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CHAPTER 5: PrPF 

 

Introduction 

PrPSc is a isoform enriched in β-sheet secondary structure that 

forms insoluble fibrils associated with infectivity [1].   As described earlier, 

no NMR or crystal structures exist for PrPSc.  PrPF is the recombinant form 

of PrPSc fibers associated with much lower levels of infectivity [6].   

Structural details of the PrPSc isoform as a whole have not yet been 

determined, although regions have been determined to ~7 Ǻ [46].  As 

described in Chapter 1, PrPSc forms large heterogeneous aggregates, and 

so traditional methods such as NMR and X-ray crystallography have been 

unsuccessful.  A detailed structure of the PrPSc fiber subunits is of utmost 

importance to the treatment and prevention of not only prion diseases, but 

all amyloid plaque disorders in general.  In this current study, we seek to 

describe molecular level details of PrPF through nitration with peroxynitrite 

(PN) coupled to mass spectrometry.       

 In the absence of a precise structure for PrPSc, many studies have 

focused on elucidating gross PrPSc structural characteristics [47-60].  

Atomic force microscopy and X-ray diffraction studies have revealed that a 

common morphology exists for all amyloid fibrils [47, 48].  So called 

“protofilaments”, with diameters ranging from 1.2-3.8 nm, intertwine with 

one another to form the larger fibril structure.  Regardless of the precursor 

protein studied, these protofilaments appear to be the building blocks of all 
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amyloid fibrils.  

Using proteinase K, a non-specific serine protease that cleaves on 

the carboxylic sides of aliphatic, aromatic or hydrophobic residues, it has 

been shown that PrPC and PrPSc fibrils display differential digestion 

profiles [48,49].  Specifically, while PrPC remains sensitive to complete 

proteolysis, PrPSc fibrils are only subject to amino-terminal proteolysis and 

form a resistant core from amino acids ~90-232.  This finding as well as 

amino-terminal deletion studies have led to the determination that amino-

terminal region of the prion protein is not necessary to form PrPSc [53-55], 

although it does influence the process [53-56].   

Antibody studies have identified selective epitopes that are 

exposed only in PrPSc [25, 57, 58].  In one antibody study carried out by 

Cashman and colleagues [25], the investigators identified a YYR motif as 

a PrPSc specific epitope.  In the primary structure of PrP 90-232, two YYR 

motifs are present at amino acids 149-151 and 162-164.  Although the 

study did not determine which motif became exposed upon conversion to 

PrPSc, or if both YYR motifs were antigenic, the authors did favor 

assignment to the second YYR (residues 162-164).  In this same study, 

using fluorescence spectroscopy, the authors suggest that upon 

conversion from PrPC to PrPSc, more tyrosine residues become surface 

exposed.   

In another more recent study [58] using a number of different 

antibody fragments and antibodies, it was shown that the region 
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encompassing amino acids 132-156 was more immunogenic than regions 

159-174 or 224-230 in PrPSc.  These results suggest, contrary to 

Cashmann and colleagues assessment, that the first and not the second 

YYR motif is antigenic in PrPSc.       

Fourier transform infrared spectroscopy (FT-IR) has indicated that a 

large increase in β-sheet and a slight decrease in α-helix and random coil 

secondary structure occurs in the transition from PrPC to PrPSc [59, 

60].  As stated in Chapter 4, CD spectroscopy more accurately estimates 

α-helix content while FT-IR spectroscopy more accurately estimates β-

sheet character [45].  Therefore, the amount of α-helix secondary structure 

present in PrPSc may be much lower than FT-IR measurements suggest 

and may be much closer to the β-oligomer.           

Solid state NMR studies of the murine PrP89-113 peptide 

confirmed that this region is entirely β-sheet when in the fibrillar form [46].  

Low resolution 2-D electron crystallography has also been used to probe 

PrPSc and found that the fibrils are consistent with parallel β-helices [60].   

From data gathered in these studies and others, a number of 

models have been proposed as the structure of the PrPSc subunits [61-68].  

Although each of these models differs in the particular residues studied 

and data used, every model proposes that interacting β-strands between 

misfolded subunits serves as the mechanism of aggregation.  Two of the 

leading subunit models in the field are the β-spiral model [62] and the β-

helix model [63].  Both models omit much of the protease sensitive amino-
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terminus and focus on the resistant core (residues 109-219 for the β-spiral 

model and 90-228 for the β-helix model).  Each predicts that the increased 

β-sheet character occurs in amino-terminus of PrPC, leaving much of the 

carboxy-terminal α-helical character unchanged.  Figure 5-1 displays the 

two different models. 

  

Figure 5-1. The β-spiral model [61] and the β-helix model [62] for the PrPSc 

fibril subunit.  Figure is taken directly from reference 67(used with 

permission). 

  

The β-spiral model was generated by using molecular dynamics 

simulations conducted under the cellular conditions, namely low pH, in 

which the misfolding and aggregation of PrPC is thought to take place. The 

β-spiral subunit consists of three α-helices and four β-strands. Three of 
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the four β-strands form a small β-sheet, whereas the fourth β-strand is 

located on a different face of the monomer. Interactions between the three 

β-strands of one monomer and the lone β-strand from another monomer 

form the subunit interface. Each subunit stacks on top of the next, growing 

in a chain, to form a spiral reminiscent of a winding staircase.  

The β-helix model was constructed after threading the prion 

sequence onto several known β-sheet folds and choosing the fold that 

best fit the available data.  A fold known as the left-handed β-helix was 

selected.  The β-helix model predicts that the amino-terminus up to the 

second α-helix (residues 90-175 in model) is essentially converted to a 

left-handed β-helix (see figure 5-1).  Three monomers come together such 

that the left-handed β-helices form a core. Other trimers are proposed to 

stack directly upon another to propagate the chain.  It should be noted that 

the energetics of this model have been called into question [68] because 

of the lack of plausible interactions to hold the trimer subunits together, 

and to stack them on top of one another.   

The β-spiral model and β-helix model were compared recently by 

Daggett and colleagues [68].  Although this comparison was objective, it 

should be noted that the β-spiral model was constructed by DeMarco and 

Daggett.  In the assessment, the authors examined all of the experimental 

data available and came to the conclusion that while the β-spiral model 

was consistent with all, the β-helix model could not account for some of 

the experimental data.  
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For the same reason that it can’t be stated that the β-oligomer has 

a similar overall structure as PrPSc, we must accept that is also true when 

comparing PrPSc and PrPF.  Again, no high resolution (within a 1.5-3 Ǻ) 

molecular structures have been solved for PrPF.  However, because PrPSc 

and PrPF share more physical characteristics than PrPSc and the β-

oligomer and PrPF has been associated with infectivity [7], it is likely that 

PrPF represents a better model of PrPSc.  

   

Materials and Methods 

A detailed description of the materials and methods used is 

provided in Chapter 2.  Briefly, PrPF was treated with varying levels of PN.  

Samples treated with 100-fold PN were analyzed by electron microscopy 

to ensure no structural changes had occurred and MALDI-TOF mass 

spectrometry to determine which tryptic peptides became nitrated.  

Samples treated with up to 1000-fold PN were analyzed by SDS/PAGE to 

determine if any covalent cross-links between PrP monomers were 

present.    

 

Results 

PrPF sensitivity to treatment with 100-fold PN :  Following treatment 

with 100-fold PN, electron micrographs were taken of PrPF.  After 

treatment, no change was detected in the structure of the fibrils according 

to EM (figure 5-2).   
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a b

 

Figure 5-2.  Electron micrographs of (a) untreated and (b) 100-fold 

peroxynitrite treated (b) PrPF.  Images were taken at the Rocky Mountain 

Laboratories Electron Microscopy facility under the direction of Dr. Roger 

Moore (Bar = 100 nm). 

 

 

Covalent cross-linking:  Covalent Cross-linked PrP monomers were 

detected by SDS/PAGE following PrPF treatment with1000-fold PN at pH 

7.5.  1000-fold PN was used to maximize the cross-linking reaction. No 

mass spectrometry was performed on this sample. 

 

 

 

             1   2     3 
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Figure 5-3. SDS/PAGE of PrPF.  Lanes: 1000X PN treated PrPF (1), 

Untreated PrPF (2), BioRad SDS broad range standard (3) 

 

The PrPF labeling pattern with PN:  The PrPF nitration patterns for 

100-fold PN treatment is summarized in table 5-1.  The levels indicated 

represent an average for three separate experiments 

 

 
 

Tryptic Peptide   
Sequence 

100x  
PN 

pH 5.5 
 

100x 
PN 

pH 7.5 
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Table 5-1. MALDI/TOF analysis of Tyr-containing PrP peptides produced 

by trypsin digestion. Nitration Key:  -, 0 to  5% nitration; +, 6 to 20% 

nitration; ++, 21 to 45% nitration; +++, 46-70%, ++++,  71 to 100% 

nitration. 

 
 

 

PrPF PrPF 

P1 (residues 111-136) 
HMAGAAAAGAVVGGLGGY128M
LGSAMSR 
 

++ ++ 

Mono-nitration ++ +++ P2 (residues 
149-151) 
Y149Y150R    
 

Di-nitration - - 
Mono-nitration + + 

Di-nitration - - 
P3 (residues 
157-164) 
Y157PNQVY162 
Y163R 
 Tri-nitration - - 
P4 (residues 165-185) 
PVDQY169NNQNNFVHDCVNITIK 
 

- - 
P5 (residues 209-220) 
VVEQMCTTQY218QK +++ +++ 

Mono-nitration ++ ++ P6 (residues 
221-229) 
ESQAY225Y226
DGR 
 

Di-nitration
- - 
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With 100-fold PN treatment at both pH 5.5 and pH 7.5, labeling 

occurred at Y128, mononitration on the 149-151 peptide containing two 

tyrosines, mononitration on the 157-164 peptide containing three 

tyrosines, Y218, and mononitration on the 221-229 peptide containing two 

tyrosines.  The nitration pattern was the same at pH 5.5 and pH 7.5.  

Sequencing of peptides containing multiple tyrosine residues has not been 

performed for PrPF.    

The highest levels of nitration occurred on the 149-151 peptide, 

followed next by 111-136 and the 221-229 peptide.  A partial MALDI-TOF 

spectrum of peptides from the tryptic digest of the PrPF, after reaction with 

100x PN, is provided for reference (figure 5-4).  A portion of this spectrum 

showing the nitration levels of the 157-164 and 221-229 peptides is also 

provided (figure 5-5).   
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Figure 5-4.  A partial MALDI-TOF spectrum of peptides from the tryptic 

digest of PrPF, after reaction with 100x PN.  P2-P6 = tyrosine containing 

tryptic peptides (P1 observed in different MALDI-TOF mode), IS = internal 

standard, ES = Bruker external protein standards (listed in table 2-2). 
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Figure 5-5. Portion of the partial MALDI-TOF spectrum in figure 5-4 to 

show the loss of one or both oxygens from the nitro-group as well as the 

levels of nitration for P3 and P6. P2-P6 = tyrosine containing tryptic 

peptides (P1 observed in different MALDI-TOF mode), IS = internal 

standard, ES = Bruker external protein standards (listed in table 2-2).  
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Discussion 

As expected, the nitration pattern of the PrPF is very different than 

PrPC.  Remarkably, PrPF and the β-oligomer have an almost identical 

nitration pattern according to MALDI-TOF MS (without having sequencing 

results to confirm).  This provides strong evidence that the β-oligomer is a 

good structural model of PrPF, and possibly PrPSc.  The implications of 

these isoform-dependent nitration patterns to prion biophysics, as well as 

an in-depth comparison of all the isoforms, are the subject of Chapter 6.   

The most important similarity between PrPF and the β-oligomer is 

the high levels of nitration seen on the 149-151 peptide (containing the 

first YYR motif) and the low levels of nitration seen on the 157-164 peptide 

(containing the second YYR motif).   The conclusion that the first, and not 

the second YYR motif is the PrPSc specific epitope that was suggested by 

the nitration pattern of the β-oligomer is now a much stronger claim.  This 

evidence is significant because, if extended to the structure of PrPSc, it 

provides molecular level details of the aggregated isoform. 

The labeling pattern of PrPF does not significantly change at the 

two pH levels tested.  This result is convenient because it allows us to 

compare PrPF to the other isoforms (nitration done at pH 5.5) while still 

conducting reactions at the physiological pH 7.5.  Most importantly 

reactions at pH 7.5 allow us to extend our comparisons to include PrPSc.      

The electron micrographs of untreated and 100-fold PN treated 

PrPF are not different.  This is an important structural check to ensure that  
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the PN treatment did not cause inter-fibril cross-links, which would appear 

as clumping, or global unfolding of the fibrils, which would have appear as 

the loss of fibrils.       
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CHAPTER 6: COMPARING THE  

DIFFERENT ISOFORMS  

AND FUTURE DIRECTIONS 

 

Comparing PrPC, the β-oligomer and PrPF 

The normal prion protein cellular isoform (PrPC) and the disease 

associated β-oligomer and PrPF isoforms were labeled at tyrosine 

residues with peroxynitrite (PN) and tetranitromethane (TNM).  These 

experiments were done in an attempt to identify structural differences 

among the three isoforms.  From the results, two regions have been 

identified that undergo substantial changes in the local chemical 

environment upon the oligomerization of PrPC.  These changes could be a 

result of conformational changes between the isoforms, or conversely, 

these changes could be due to the packing of PrP polypeptides in the  

aggregated isoforms.  Remarkably, these changes occur both when PrPC 

aggregates to form either the soluble β-oligomer or fibrillar PrPF. Table 6-1 

reports the nitration patterns of PrPC, the β-oligomer and PrPF following 

treatment with 100-fold PN.   
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Tryptic Peptide   
Sequence 
 

100x 
PN 

 
PrPC 

100x 
PN 
β-

oligomer 

100x PN 
 

PrPF 

pH 7.5 
P1 (residues 111-136) 
HMAGAAAAGAVVGGLGGY128MLGSAMSR 
 

+ + ++ 

Mono-nitration - +++ +++ P2 (residues 149-151) 
Y149Y150R    
 Di-nitration - - - 

Mono-nitration + + + 

Di-nitration - - - 
P3 (residues 157-164) 
Y157PNQVY162Y163R 
 

Tri-nitration - - - 
P4 (residues 165-185) 
PVDQY169NNQNNFVHDCVNITIK 
 

- + - 

P5 (residues 209-220) 
VVEQMCTTQY218QK 
 +++ ++ +++ 

Mono-nitration 
++++ ++ ++ P6 (residues 221-229) 

ESQAY225Y226DGR 
 Di-nitration ++ - - 

 

Table 6-1. MALDI/TOF analysis of Tyr-containing PrP peptides produced 

by trypsin digestion. Nitration Key:  -, 0 to  5% nitration; +, 6 to 20% 

nitration; ++, 21 to 45% nitration; +++, 46-70%, ++++,  71 to 100% 

nitration.  

    

Within the PrP primary sequence, two YYR (149-151, 162-164) and 

one YYD (225-227) motifs are present.  A previous study using 

monoclonal antibodies identified a YYR epitope exposed in PrPSc that is 

buried in PrPC [25].  The most striking difference in nitration patterns 

between PrPC and both the β-oligomer and PrPF is in the first YYR.  Our 

current work clearly shows that Y149 and Y150 only become reactive 

toward nitration upon PrPC conversion to the β-oligomer or PrPF.  In the 

case of PrPF, it is not yet known which (or both) of the tyrosine residues 
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becomes nitrated.  

This finding is in contrast to the conclusions made by Paramithiotis 

et al. [25], who contend that it is likely residues 162-164 that represent the 

PrPSc exposed epitope.  Our results show a similar, very low level of 

mono-nitration at either Y162 or Y163 between PrPC and the β-oligomer 

with 100-fold PN, 100-fold TNM (β-oligomer), and 1000-fold TNM (PrPC).  

This same low level of mono-nitration is also detected on the 157-164 

peptide of PN-treated PrPF (TNM was not tested).  Nitration patterns 

clearly suggest that the first YYR motif undergoes a dramatic change in 

chemical environment upon aggregation while the second YYR does not.  

The result could be due to conformational differences within a polypeptide, 

packing between polypeptides of a protofibril, or packing between 

protofibrils.    

The nitration patterns of PrPC, the β-oligomer and PrPF point to 

another region where significant structural change occurs - the carboxy-

terminus.  Upon oligomerization, a reduction in reactivity occurs at Y225 

and Y226 with both nitrating agents in the β-oligomer and PN with PrPF.  

Reactivity is highest in PrPC at the 221-230 peptide (including large 

amounts of dinitration), followed by Y218.  In all isoforms, Y218 was 

efficiently nitrated. 

The patterns of nitration after 100-fold PN treatment are similar for 

the β-oligomer and PrPF.  Although it was expected that nitration patterns 

would resemble one another, the nearly identical patterns suggest that 
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common structural changes occur when PrPC converts to either of the β-

oligomer or PrPF isoforms.  This result also argues against the notion that 

the changes observed are simply due to subunit packing, rather than 

conformational differences, as the packing is expected to be quite different 

between the β-oligomer and PrPF.  

From these results, we can confidently suggest that the β-oligomer 

serves a valid model for studying PrPF and PrPSc.  Further support of this 

conclusion comes from the fact that FT-IR spectroscopy does not predict 

α-helix secondary structure as well as CD spectroscopy [45].  Because the 

FT-IR spectra of the β-oligomer and PrPF are nearly identical [43], it is 

quite possible that the α-helical content of PrPSc is less than previously 

reported 17-30% [59-60] and much closer to the 8% measured by CD 

reported in Chapter 4.  

The reactivity of PN or TNM toward a given tyrosine is dependent 

on a number of factors [69].  Potassium peroxynitrite (K+ ONO2
-) is stable 

only at high pH.  Upon exposure to an acidic environment, the protonation 

of ONO2
- induces the formation of NO2

. and HO..  The presence of these 

radicals in the mixture can lead to hydrogen abstraction from a tyrosine 

residue.  Following the radicalization of tyrosine, reaction can occur 

between Tyr. and NO2
. at the meta positions of the tyrosyl group (or a 

cross-link between two Tyr radicals).  Factors positively influencing the 

reaction at a particular Tyr are solvent exposure, presence in a loop and 

proximity to a negative charge or hydrophobic environment.  Cysteines 
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near the tyrosine will reduce the likelihood of nitration.  A number of other 

amino acids react with PN, including:  oxidation of cysteine and 

methionine residues, nitration of tryptophan, hydroxylation of 

phenlyalanine and possible modification of histidine.  Of these, only Met 

oxidation was observed. When appropriate to determining sites of 

nitration, the possible oxidation of methionine was accounted for.          

TNM (C(NO2)4) nitrates tyrosine residues using a different 

mechanism than that described for PN [70-71].  In the case of TNM, the 

entire molecule encounters a tyrosine and a charge transfer complex 

forms.  Electrophilic attack leads to the formation of nitrotyrosine. As with 

PN, protein cross-links can occur via the meeting of two tyrosine radicals.  

Because this mechanism requires the initial abstraction of a proton from 

the hydroxyl group of a tyrosine, the nitration rate increases as the pKa of 

the Tyr residue decreases.  This mechanism also suggests that the 

reactivity of a Tyr should increase if it is involved in a hydrogen bond or is 

proximal to a positive charge.  Predicting the reactivity of a Tyr with TNM 

is not cut and dry; the microenvironment of each residue must be 

considered.  One study found that the rate of reaction with TNM appears 

to increase with surface exposure and decrease when the 

microenvironment is negatively charged or hydrophobic [72].  However, 

authors of an earlier study contend that the microenvironment drives TNM 

reactivity independent of solvent exposure [70].  

  The complete absence of reactivity in PrPC at Y149 and Y150 
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strongly suggests that an overall structural change must occur to make 

both the β-oligomer and PrPF reactive at one or both of these residues.  

When taken together with previous antibody work, Y149 and Y150 likely 

represent a region of PrPC that undergoes significant structural change 

during misfolding and oligomerization.  The reduction in reactivity of the 

carboxy-terminal tyrosines at positions 225 and 226 is also indicative of a 

region in which a large structural change likely occurs upon 

oligomerization or packing.  Recent evidence using recombinant fibrils 

suggests that the 224-230 epitope is buried under native conditions [58].   

Residues 149-151 are located on helix 1 of the PrPC, a region that 

is predicted to undergo complete transformation in the β-helix model [63].  

Y149 and Y150 are predicted to be highly surface exposed in the β-helix 

model as well.  On the other hand, Y225 and Y226 are also highly surface 

exposed in the β-helix model, which is not consistent with our results 

(figure 6-1).  Table 6-2 shows the predicted solvent accessible surface 

area (SASA) for PrPC and the β-helix model.  
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Figure 6-1.  The β-helix model [61] with tyrosines 149 and 150 yellow 

colored in and tyrosines 218, 225 and 226 colored in blue. 

 

 
Tyrosine 
residue 

128 149 150 157 162 163 169 218 225 226 

PrPC 

SASA% 

5.6 13.7 2.8 2 11.7 3.3 16.4 5.6 39 59 

β-Helix 

SASA% 

1.1 42 40.2 44.3 12.3 43.9 31.5 38.5 59.6 58.6 
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Table 6-2. Solvent accessible surface area (SASA) for PrPC, β-spiral 

model, and the β-helix model.  SASA calculations were generated by the 

MOLMOL program using PDB coordinates from PrPC [20] and the β-helix 

model [63].   

 

To summarize our most important findings, we have identified two 

regions of PrPC that undergo considerable conformational change in the 

aggregation process.  In both the aggregated isoforms studied, the β-

oligomer and PrPF, the chemical environments of the first YYR motif and 

the carboxy-terminus are dramatically different from PrPC. 

 

Future Studies 

A number of future studies branching directly from these nitration 

experiments will provide important structural details about PrPSc.  This 

information could be very useful in the construction of models of the 

infectious PrPSc fibrils and thus give crucial information about the 

formation of infectious prions. 

First and foremost, sequencing mass spectrometry should be 

performed on the 100-fold PN treated PrPF.  Although this is more 

completion of existing work than a future study, it is the needed step prior 

to publishing the PrPF data and is currently being conducted in the McGuirl 

laboratory.  This data will show specifically which of the tyrosine residues 

that are becoming nitrated in PrPF, as well as provide a better 
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understanding of how closely related the β-oligomer is to PrPF.   

 Next, the nitration pattern of PrPSc should be characterized using 

the same techniques described for PrPC, the β-oligomer and PrPF.  This 

will be more technically difficult, as PrPSc isolated from brain homogenate 

is glycosylated, which could interfere with the nitration reagents.  If quality 

data could be gathered, then the information would provide molecular 

level details of PrPSc and would be invaluable in assessing models of the 

structure of PrPSc.    

Another important set of experiments is to determine the cross-

linking sites of the β-oligomer, PrPF, and possibly PrPSc.  By exploiting this 

side reaction as a stand-alone technique, the physical constraints of these 

aggregated isoforms can be partially defined.  The main problem 

associated with this approach is that cross-linking is a side reaction and 

obtaining enough sample to perform mass spectrometry may be difficult.  

Even with enough sample, there are a large number of potential cross-link 

sites (i.e., many masses to look for) that will complicate matters even 

further.   

Finally, antibodies should be used probe PrPC, the β-oligomer, PrPF 

and PrPSc before and after nitration.  By the disruption of binding at 

selective epitopes, solvent accessibility can be more or less directly 

correlated to nitration by PN and TNM.  Although this approach appears 

relatively straight-forward, the precise epitope to which an antibody binds 

may not be clear, leaving the possibility for incorrect results.  



 86

APPENDIX 

Masses of Tyr-Containing PrP peptides and Respective 

Nitration and Oxidized Methionine Derivatives 

P1:  111-HMAGAAAAGAVVGGLGGYMLGSAMSR-
136   

 peptide 

+1 
Oxidized 
Met 

+ 2 
Oxidized 
Met 

+ 3 
Oxidized 
Met  

No 
nitration 2364 2380 2396 2412  
Nitro 2409 2425 2441 2457  
Nitro 
-1 Ox 2393 2409 2425 2441  
Nitro 
-2 Ox 2377 2393 2409 2425  
      
      
P2: 149-YYR-151  P3: 157-YPNQVYYR-164  
 peptide   Peptide  
No 
nitration 501  

No 
nitration 1103  

Nitro 546  Nitro 1148  
Nitro 
-1 Ox 530  

Nitro 
-1 Ox 1132  

Nitro 
-2 Ox 514  

Nitro 
-2 Ox 1116  

Di-nitro 591  Di-nitro 1193  
Di-nitro 
-1 Ox 575  

Di-nitro 
-1 Ox 1177  

Di-nitro 
-2 Ox 559  

Di-nitro 
-2 Ox 1161  

   Tri-nitro 1238  

   
Tri-nitro 
-1 Ox 1222  

   
Tri-nitro 
-2 Ox 1206  

      
P4: 165-
PVDQYNNQNNFVHDCVNITI-185    
 peptide     
No 
nitration 2476   

P6: 221-ESQAYYDGR-
229 

Nitro 2521    Peptide 
Nitro 
-1 Ox 2505   

No 
nitration 1088 

Nitro 
-2 Ox 2489   Nitro 1133 

    
Nitro 
-1 Ox 1117 
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P5: 209-VVEQMCTTQYQK-220  nitro-2ox 1101 
 peptide 1metox  Di-nitro 1178 
No 
nitration 1458 1474  

Di-nitro 
-1 Ox 1162 

Nitro 1503 1519  
Di-nitro 
-2 Ox 1146 

Nitro 
-1 Ox 1487 1503    
Nitro 
-2 Ox 1471 1487    
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