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Abstract 
Hill, Aaron, M.S., Spring 2007      Biology 
 
Sedimentary legacy of sockeye salmon (Oncorhynchus nerka) and climate change in 
an ultra-oligotrophic, glacially-turbid British Columbia nursery lake 
 
Chairperson:  Jack A. Stanford  
 
  Anadromous Pacific salmon (Oncorhynchus spp.) populations are strongly regulated by 
climatic regimes and human activities across numerous spatial and temporal scales. The 
carcasses of adults returning to spawn provide important marine derived nutrients (MDN) 
to freshwater and terrestrial ecosystems through multiple trophic pathways. Sockeye 
salmon (O. nerka) rear extensively in lakes and recent studies of sockeye nursery lake 
sediments in Alaska have used indicators of spawner density (δ15N) and algal production 
(fossil pigments and diatoms) to show that lake trophic status is often regulated by 
climate and harvest via MDN from adult spawners. However, the strength of these 
controls and the utility of the paleolimnological techniques for measuring them are not 
well understood for sockeye nursery lakes in coastal British Columbia (BC). We 
examined relationships between climate, harvest, sockeye population dynamics, and lake 
trophic status from 1958 to 2005 using δ15N, δ13C, C:N, and fossil carotenoids in a 
radioisotope-dated sediment core from Kitlope Lake, BC. This ultra-oligotrophic, 
glacially-turbid nursery lake has a large (~872 km2) pristine catchment and historically 
high, but currently depressed, sockeye returns. Climate and fisheries data supplemented 
with local and traditional knowledge (LTEK) indicated that sockeye escapements were 
regulated by both harvest and climate over the period of record. The sedimentary record 
of Kitlope Lake indicated extremely high sedimentation rates, significant inputs of 
terrestrial organic matter and periphytic diatoms from the main tributary, and the lowest 
δ15N yet measured in a sockeye nursery lake. Nevertheless, sedimentary δ15N, C/N, and 
fossil pigments were coherent with order-of-magnitude changes in sockeye populations 
prior to the mid-1970s, after which time escapements fell below management targets 
while air temperature remained significantly correlated with sedimentary proxies of lake 
trophic status. Proxy-inferred algal production fluctuated but generally increased 
throughout the sediment core, likely due to an increased growing season caused by a 
warming climate, especially in the past decade. Despite potentially elevated productivity 
due to climate warming, Kitlope Lake remains nutrient limited with a depressed sockeye 
salmon population. A substantial increase in annual sockeye escapement is required to 
alleviate nutrient limitation in this system and ensure that the abundant rearing habitat is 
fully utilized. 
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Introduction 
Dynamic controls on Pacific salmon populations 

The effects of climate change and anthropogenic disturbance on aquatic 

ecosystems have become a major focus in fisheries ecology over the past decade or so. In 

the North Pacific region of North America there have been variations in oceanic and 

atmospheric climatic patterns over interannual to interdecadal time scales (reviewed and 

synthesized in Francis et al. 1998; Mantua and Hare 2002). These regime shifts have 

been linked with changes in land air temperature and precipitation, streamflow patterns, 

and biological productivity in terrestrial, marine, and freshwater ecosystems as far back 

as 1600 A.D. (Beamish et al. 1999; Mantua and Hare 2002). Salmon populations in the 

Northeast Pacific have exhibited corresponding basin-wide interdecadal population 

fluctuations, primarily in association with the Aleutian Low pressure system and coastal 

sea surface temperatures (Beamish and Bouillon 1993; Mantua et al. 1997). Pacific 

salmon have been of profound economic and cultural importance for millenia (Glavin 

2000; Ames 2003; Butler and O'Connor 2004) and the effects of these multi-scale 

climatic changes have had important social and economic consequences. Over the last 

century or so, salmon populations have declined or disappeared over much of their 

spawning range in North America (Gresh et al. 2000; Schoonmaker et al. 2003; Riddell 

2004). In addition to the climatic trends listed above, the reasons for these declines 

include degradation and isolation of freshwater habitats and over-harvest coupled with 

ill-conceived hatchery supplementations (Nehlsen et al. 1991).  

Pacific salmon accumulate over 95% of their biomass during the marine phase of 

their life cycles (Groot and Margolis 1991) and therefore transfer nutrients and energy 

from marine to freshwater and terrestrial ecosystems through multiple pathways when 

they return to their natal streams to spawn and die (Gende et al. 2002). The C:N:P ratio of 

salmon-borne nutrients is much lower than the Redfield ratio, making them particularly 

important in the many salmon systems where P and/or N are limiting (Naiman et al. 

2002). Numerous researchers have used stable isotope ratios (15N/ 14N and 13C/ 12C) to 

document the vast influences that these marine derived nutrients (MDN) have on 

freshwater and riparian foodwebs (reviewed in Cederholm et al. 1999; Gende et al. 2002; 
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Naiman et al. 2002; Schindler et al. 2003). These studies have generally demonstrated 

that the maintenance of the productivity, richness, and diversity of freshwater and 

terrestrial ecosystems, including the productivity of salmon populations themselves, are 

dependent on annual pulses of MDN to lakes and rivers via spawning salmon.  

In the case of sockeye salmon (Oncorhynchus nerka), lacustrine environments are 

particularly important as juvenile sockeye typically spend 1-3 years in lakes feeding 

primarily on pelagic zooplankton before going to sea (Burgner 1991; Quinn 2005). 

Temperate oligotrophic lakes are usually phosphorus limited or co-limited by phosphorus 

and nitrogen (Wetzel 2001) and mass balance studies have shown MDN to be a major net 

nutrient source for sockeye salmon nursery lakes (e.g. Donaldson 1967; Moore and 

Schindler 2004).  Many ecologists have hypothesized that juvenile sockeye salmon 

production is therefore dependent on the seasonal MDN pulse to these lakes, and juvenile 

sockeye production has been hampered by reduced MDN inputs due to various 

combinations of habitat loss, overharvest, and unfavourable ocean conditions (Schmidt et 

al. 1998; Stockner 2003). In fact, the idea that sockeye nursery lakes are abnormally 

nutrient-limited due to the depensatory effects of overharvest and poor ocean survivals of 

adult spawners has been the justification for decades of artificial fertilization in these 

lakes and streams (Hyatt and Stockner 1985; Stockner and MacIsaac 1996; Shortreed et 

al. 2001; Stockner 2003). 

 

Productivity of sockeye populations and their nursery lakes 

Until recently it has been difficult, if not impossible, for researchers to rigorously 

estimate changes in individual salmon population sizes and the corresponding trophic 

status of sockeye nursery lakes prior to the introduction of commercial fisheries. Recent 

advances in paleolimnology have allowed researchers to reconstruct the past productivity 

of salmon populations and their nursery lakes using geochemical and biological proxies 

in radioisotope-dated lake sediments. Numerous studies in Alaska have recently 

demonstrated significant correlations between sockeye salmon spawner densities (fish per 

unit lake area) and δ15N in zooplankton, sockeye smolts, and lake surface sediments 

(Finney et al. 2000; Barto 2004; Gregory-Eaves et al. 2004; Schindler et al. 2005a; 

Schindler et al. 2006; Brock et al. in press). In lakes where time-series sediments were 
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examined, these same researchers found that sockeye spawner densities were 

significantly correlated with δ15N, fossil pigment and cladoceran concentrations, and 

relative abundance of diatom indicator species. 

The strong correlations demonstrated between known spawner densities and 

sedimentary indicators of MDN and primary and secondary production have enabled the 

use of isotopic mixing models to extend sockeye salmon escapement estimates back 

several hundred years beyond the earliest quantitative catch and escapement records 

(Finney et al. 2000; Finney et al. 2002; Schindler et al. 2005a; Schindler et al. 2006). 

Finney et al. (2000 & 2002) found remarkable coherence between their mixing model-

based estimates of past salmon abundance and other proxy estimates of historic climate 

trends, corroborating the strong links between salmon and climate found among more 

recent data sets. They suggested that the ability of sockeye populations to rebound from 

periodic climate-forced depressions was hampered in the 20th century when the nutrient 

feedback cycle was interrupted by aggressive commercial harvest. Schindler et al. 

(2005a) found through their Lake Nerka, AK mixing model that although lowered 

escapements due to commercial harvest had substantially reduced lake primary 

productivity, overall returns (commercial catch + escapement) were not affected, 

suggesting other factors besides lake productivity were limiting to sockeye production. In 

other Alaskan lakes however, it was demonstrated that although MDN and sedimentary 

proxy-inferred aquatic primary productivity are generally correlated, the degree to which 

MDN flux controls primary productivity in a single lake can change over time with little 

coherence in trends between nearby lakes (Brock et al. in press). 

Paleolimnological studies have vastly improved our understanding of the complex 

relationships between climate, harvest, lake trophic status, and sockeye salmon 

production. However, these studies were mostly conducted on large Alaskan sockeye 

nursery lakes with low flushing rates and relatively high spawner densities (Finney et al. 

2000). Furthermore, all of the lakes included in time series studies so far were clear 

(transparent), except for one dystrophic lake (Packers Lake, AK: Gregory-Eaves et al. 

2004) and none were glacially turbid. In contrast most coastal sockeye nursery lakes in 

British Columbia (BC) are oligotrophic or ultra-oligotrophic owing to very low inputs of 

N and P from their catchments, due to local geology, and may not retain nutrients as 
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readily as interior lakes, due to higher flushing rates from greater annual precipitation 

(Stockner 1987). In a study of three nursery lakes with high flushing rates and a range of 

spawner densities, Holtham et al. (2004) found very little correlation between sockeye 

escapements and time-series sedimentary δ15N but found slight shifts in diatom 

assemblages that were associated with climatic changes and a lake fertilization program.  

Of the three main categories of sockeye nursery lakes that have been described for 

the British Columbia coast – clear, dystrophic, and glacially turbid – only clear and 

dystrophic nursery lakes have had extensive limnological study (Stockner et al. 1993 and 

references therein). Regional time-series paleolimnological studies of all three lake types 

are also sparse. In a survey of surface sediments from 11 BC sockeye nursery lakes δ15N 

and chitin-inferred algal δ15N were significantly correlated with sockeye escapements 

(Brahney et al. 2006). However, of the 14 lakes in the above two studies, only one 

(Meziadin Lake: Brahney et al. 2006) could be considered glacially turbid.  

Despite the fact that most glacially turbid sockeye nursery lakes have cold thermal 

regimes, shallow euphotic zones, and low plankton productivity, many of them have 

historically had large returns of adult spawners (Shortreed et al. 2001; Riddell 2004) and 

supported intensive commercial fisheries for over a century (Lyons 1969; Argue and 

Shepard 2005). Sockeye populations in these lakes over the last few decades have 

suffered declines ranging from moderate (e.g. Kitlope Lake) to precipitous (e.g. Owikeno 

Lake) (Harvey and MacDuffee 2002; Riddell 2004). Despite these declines they continue 

to be exploited through mixed stock fisheries. At the same time the federal Department of 

Fisheries and Oceans (DFO) has very few reliable historic escapement records for many 

of them (Riddell 2004). Cursory surveys used to estimate returns on some systems have 

been cut back or suspended in recent years, despite the fact that the majority of these 

have not been receiving target escapements and harvest of the stocks is ongoing (Harvey 

and MacDuffee 2002; Riddell 2004). Paleolimnological studies estimating historic 

sockeye escapements and attendant lake trophic status would therefore be of great benefit 

on such lakes where historic records are spotty and do not extend far, and where sockeye 

populations are not achieving target escapements. 
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Watershed-scale considerations for north coastal British Columbia salmon rivers 

The consideration of spatial and temporal scales is fundamental in studies of 

ecological processes and crucial for successful ecosystem-based management (Levin 

1992; Stanford and Poole 1996). While oceanic and atmospheric climatic regime shifts 

have been shown to affect Pacific salmon abundance at basin-wide spatial scales and 

decadal to centennial time scales (Mantua et al. 1997; Beamish et al. 1999; Finney et al. 

2002), other basin-wide analyses covering the past few decades demonstrated stronger 

coherence among multi-stock survival rates and environmental variables at smaller 

spatial and temporal scales (Peterman et al. 1998; Mueter et al. 2005; Pyper et al. 2005).  

Basin-wide studies of climate change impacts on salmon habitat quality have been 

far more inclusive of time-series data sets from large commercially important systems 

than from smaller systems of moderate commercial importance. This is in part due to the 

fact (mentioned above) that high-quality catch and escapement data are often lacking for 

such systems, making it difficult to construct statistical models with a reasonable measure 

of confidence. Unfortunately this is a common paradox in ecology. Relatively intact 

ecosystems often make the best candidates for long-term studies of processes and 

responses but long-term data sets are harder to obtain for the more pristine, less impacted 

ecosystems, precisely because they are more pristine and less populated by humans, and 

therefore less convenient to monitor. Occasionally it becomes necessary to sacrifice some 

quantitative certainty to take advantage of the inherent value of a remote study location. 

On the mainland coast of British Columbia, salmon stocks from the Skeena and 

Fraser systems receive the vast majority of research and management attention. Between 

these two systems however, lies a vast expanse of primary watersheds. Those mainland 

watersheds north of Vancouver Island account for the largest concentration of 

unimpounded primary watersheds in the Pacific Rim and support over 2500 individual 

salmon runs (Harvey and MacDuffee 2002). Many of these rivers are heavily influenced 

by glacial melt during the late summer and fall spawning seasons yet studies of climate 

change impacts on glacially-driven rivers and associated lakes and salmon populations in 

the mid-latitude coastal temperate zone are virtually nonexistent in the literature (Melack 

et al. 1997; Schindler 2001; Tyedmers and Ward 2001). As climate warming progresses 

and glaciers retreat in the mountainous headwaters of glacially-mediated temperate rivers 
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we are seeing corresponding changes in both hydrological and ecological regimes that are 

expected to continue (Hauer et al. 1997; Melack et al. 1997; Moore and Demuth 2001; 

Hall and Fagre 2003; Clague et al. 2004). However, the ways in which we can expect 

specific watersheds to change are difficult to predict due to high regional variability 

among myriad predictor and response variables (Melack et al. 1997).  

Climatic changes are affecting temperate lakes through increasing interannual 

variability in freeze-up and break-up dates with a general trend towards longer ice-free 

periods and increased thermal stratification during the growing season (Magnuson et al. 

2000; Schindler 2001). As discussed above, and not surprisingly, this trend has been 

shown to increase the forage base for juvenile sockeye salmon in some lakes (Schindler 

et al. 2005b). However, the effects of climate warming on the trophic status of sockeye 

nursery lakes dominated by glacial meltwater have received little study in north and 

central BC coastal watersheds.  

 

Study purpose  

Given the above considerations, we had three primary objectives in this study. 

The first objective was to examine the influence of oceanic and local climatic patterns 

and commercial harvest trends on sockeye salmon dynamics in a glacially-mediated north 

coastal BC watershed. Second, we examined the extent to which climate and sockeye-

derived MDN regulate primary productivity in this glacially turbid sockeye nursery lake. 

And the third objective was to determine whether the paleoecological methods recently 

used to reconstruct past productivity of sockeye salmon populations and nursery lakes in 

Alaska would be applicable to ultra-oligotrophic, glacially-turbid sockeye nursery lakes 

in coastal British Columbia.  We pursued these objectives using time-series sedimentary 

proxies of lake trophic status (total carbon, total nitrogen, C/N ratio, δ13C, fossil 

pigments) and MDN (δ15N), along with sockeye escapement estimates and climate 

records supplemented by local and traditional ecological knowledge and archival 

information. For our study site we chose ultra-oligotrophic, glacially-turbid Kitlope Lake, 

BC, located within a large (2750 km2), pristine watershed with historically high but 

currently depressed sockeye salmon returns.  
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Methods 

Site description 

Catchment 

The glacially-fed, high-gradient (5.89 m km-1) Kitlope watershed empties into 

Gardner Canal – a long (30 km), narrow fjord on the north coast of British Columbia 

(BC) at 53°15’N, 127°55’W (Figure 1).  It is the largest catchment within the largest 

contiguous area of undeveloped coastal temperate rainforest watersheds on Earth. At 

approximately 2750 km2, the Greater Kitlope watershed is thought to be the largest 

undeveloped coastal temperate rainforest watershed in the world (Travers 1991).  The 

entire watershed was protected from any industrial development in 1994 as a ‘Class A’ 

Provincial park – the highest level of protection that can be given to Crown land in 

British Columbia.  The Kitlope Heritage Conservancy is adjacent to the Fjordlands 

Recreation Area to the west and Tweedsmuir Provincial Park to the east, forming a larger 

contiguous protected area of over one million hectares. Its size, remoteness, protected 

status, and relative lack of proximate anthropogenic disturbance make the Kitlope an 

ideal location to carry out long-term baseline studies of ecological processes and 

responses. As such the watershed has been a study site for the Salmonid Rivers 

Observatory Network, a research program of the Flathead Lake Biological Station, since 

2004. 

The entire catchment is within the traditional territory of the Haisla First Nation, 

who manage the protected area in partnership with the BC Provincial Government 

through the Kitlope Management Committee. While there are no longer any permanent 

settlements in the Kitlope watershed, it was the ancestral home to the Henaaksiala people, 

who amalgamated with the Haisla to the north after their numbers were severely reduced 

by post-contact epidemics (Pritchard 1977; Barbetti 2005; Appendix A). 

The climate in the Kitlope watershed is controlled by the moderating influence of 

the Pacific Ocean as well as the colder continental climate of the interior coast mountains 

from which it originates (Stockner et al. 1993).  The topography is extremely steep, with 

several permanent glaciers at the headwaters (Figure 1). Daily temperature and 

precipitation data have been collected by Environment Canada since 1951 in the Kemano 
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watershed at a point located 46 km from Kitlope Lake (UTM 09U, 570670 m E, 

5933986m N, elevation 87 m) and daily streamflow data have been collected for the 

Kemano River since 1971. These data are typically used as proxy measures for the 

Kitlope watershed, for which there are no long-term climate or stream flow data. Based 

on these data, mean monthly temperatures from 1951-2002 range between -12.6 and 21.4 

°C. Average annual precipitation for the Kitlope watershed is estimated at approximately 

190 cm, with a recorded 24-hour maximum value of 12.6 cm, and a yearly maximum of 

244 cm (Environment Canada). River levels are highly variable, and changes of > 1 m 

within a 24-hour period are common during and after high-runoff events (A. Hill pers. 

obs.) 

Kitlope Lake 

Kitlope Lake is 10 km upstream of the Kitlope estuary, approx. 3-5 km above the 

furthest extent of tidewater, at an elevation of 13 m. The lake has a surface area of 11.9 

km2, a mean depth of 86 m, and a maximum depth of 140 m in the centre (Figure 1). The 

glacially-fed Tezwa River is the lake’s main tributary and drains a catchment of ~ 872 

km2.  

The lake is cold, weakly stratified, glacially turbid, mildly acidic, poorly buffered, 

becomes covered in ice most winters, and appears to be phosphorus-limited during most 

of the growing season every year (Table 1) (Stockner et al. 1993; Shortreed et al. 2001). 

The mean residence time of the lake is 0.49 year and the daily flushing rate of the surface 

layer is 15-250 % (Stockner et al. 1993). Lake levels can fluctuate > 2 m in 24 hours 

during and after high-runoff events. The phytoplankton, zooplankton, and bacterial 

communities of Kitlope Lake all exhibit extremely low densities, low biomass, and low 

species diversity compared with other BC and Alaska sockeye nursery lakes (Stockner et 

al. 1993). Chlorophyll concentration, primary production (Table 1) and juvenile sockeye 

size and density in Kitlope Lake are among the lowest measured for any large sockeye 

nursery lake in British Columbia (Simpson et al. 1981; Shortreed et al. 2001). Three-

spine stickleback (Gasterosteus aculeatus), typically a major competitor of juvenile 

sockeye, have also been found to be small and sparse here compared with most other 

sockeye nursery lakes (Simpson et al. 1981).  
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Figure 1.  Kitlope Lake study area:  (A) north (downstream) facing view of Kitlope Lake showing the 
inlet of the Tezwa R., the lake’s primary tributary (photo by Myron Kozak);  (B) Landsat image 
showing glacially coloured (bluish) Gardner Canal (centre), with Kitlope Lake (1), Kitlope estuary 
(2), Price Creek (3), Chief Matthews Bay (4), Kemano townsite and weather station (5), Kemano 
Beach (6), Brim R. (7), Crab R. (8), and Butedale (9) (image courtesy of Natural Resources Canada);  
(C) reference map; and (D) bathymetric map of Kitlope Lake (depths in metres), with the coring 
location marked by an “X” (Stockner et al. 1993 – map courtesy of Fisheries and Oceans Canada).  
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In order to boost sockeye production the federal Department of Fisheries and 

Oceans (DFO) fertilized the southern half of Kitlope Lake with aqueous ammonium 

nitrate and ammonium phosphate on a weekly basis for 18 weeks per year during the 

growing season from 1979-1983 and 1985 (1979-82: 7.67 mg P m-2 wk-1, 50 mg N m-2 

wk-1; 1983 and 1985: 4 mg P m-2 wk-1, 25 mg N m-2 wk-1) (Stockner et al. 1993; 

Shortreed et al. 2001; Ken Shortreed, DFO, pers. comm.). A recent review of 60 BC 

sockeye nursery lakes by DFO limnologists identified Kitlope Lake as a good candidate 

for renewed fertilization regiments (Shortreed et al. 2001). 

 
Table 1. General limnological information for Kitlope Lake. The 1978-80 data were based on weekly 
sampling through the growing season (Stockner et al. 1993); our 2005 data were collected on four 
sampling events (7/05, 8/02, 8/23, 9/26) for N and P and two additional sampling events (5/30, 6/18) 
for all other variables. 
 

 1978 
(Unfert.)  

1979-80 
(Fertilized)  2005 

Total nitrogen (µg N L-1): -- -- 121.4 
Nitrate (µg N L-1):    
     Spring overturn 64 66 -- 
     Mean epilimnetic 19 18 48 

     Seasonal minimum 6.1 8.0 -- 

Total phosphorus (µg P L-1):    
     spring – summer  1.5 -- 
     late summer – fall  8.0 -- 7.1 

Soluble reactive phosphorus (µg P L-1) < 1 < 1 2.0 
Chlorophyll (µg L-1) 0.56 0.60 – 1.10 0.96 
Total alkalinity (mg CaCO3 L-1) 1.6 1.5 -- 
Daily photosynthetic rate (mg C m-2) 54 65 -- 
Zooplankton biomass (mg dry wt m-2) 53 88 -- 
Euphotic zone (m) 7.6 8.6 9.7 
Secchi disk depth (m) 1 – 6 m 1.3 – 4.2 m 
Turbidity (NTU) -- -- 2.18 
Seasonal average surface temp. (°C) 10.5  15.3 
pH 6.22 6.10 6.46 
Specific conductance (μS) -- -- 8.21 
    

Drainage basin area: 872 km2 
Lake area: 11.9 km2 

Estimated average residence time: 0.49 years 
Estimated daily surface layer flushing: 15 – 250 % 
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Salmon populations 

The greater Kitlope watershed is inhabited by all 5 species of Pacific salmon; 

however, only sockeye, coho (O. kisutch), and chinook (O. tshawytscha), spawn in 

appreciable numbers upstream of Kitlope Lake in the Tezwa watershed, including Kalitan 

Creek (Rosberg et al. 1982; Cecil Paul Jr., Na Na Kila Inst., pers. comm.). Sockeye 

spawn in spring and mainstem channels in the river upstream from the lake, in the lake 

outlet river, and on several colluvial fans in the lake. The major interceptor of Kitlope-

bound sockeye is the mixed-stock commercial fishery in DFO statistical area 6 near the 

mouth of Douglas Channel. Subsistence fishers from the Haisla First Nation take several 

hundred annually, and a large (~100) population of harbour seals (Phoca vitulina) prey 

on salmon throughout the watershed, estuary, and fjord during the migration and 

spawning seasons (Rosberg et al. 1982; Stockner et al. 1993; A.Hill pers. obs.; DFO 

unpubl.). 

 

Data collection 

Salmon escapements 

Observations of sockeye run sizes in Kitlope Lake and its main tributary, the 

Tezwa River, have been recorded by DFO since 1921 based on boat and aerial surveys. 

Spawner escapement estimates from 1921-33 were made as simple qualitative rankings 

(i.e. light, medium, heavy). From 1934-84 estimates were made using pre-set categorical 

ranges of the total estimated number of spawners, as follows:   
     A. 1-50    B. 50-100    C. 100-300  . . .  L. 20000-50000    M. 50000-100000    N. > 100000 
From 1951-72 theses ranges were occasionally accompanied by specific estimates, and 

from 1973-83 all annual reports gave specific estimates. From 1984-present all reports 

have contained specific estimates only. Sockeye escapement estimates for 1950-2005 

were obtained from the DFO BC16 database and from fishery officer reports from 1934-

49 (Brian Spilsted, DFO, pers. comm.). For years where only categorical estimates were 

available median values were used for the analyses in this study.   

Estimates of chinook and coho run sizes have only been made on occasional 

years, and these numbers are part of an aggregate escapement estimate for the entire 

Kitlope watershed, therefore it was not possible for the purposes of this study to derive 
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yearly escapement estimates for the portion of the Kitlope watershed upstream of Kitlope 

Lake. However, we can be reasonably certain that in most years sockeye comprised  

> 50 % of the salmon spawning biomass in and upstream of Kitlope Lake, based on the 

many years in which estimates were made of the coho and chinook escapement as well as 

Rosberg et al. (1982) and observations by field personnel over the past decade (A.Hill 

pers.obs.; Cecil Paul Jr., Na Na Kila Inst., pers.comm.).  

Additional qualitative information regarding historic salmon abundance and 

harvest in the Kitlope system was gathered from several sources: cannery pack records 

from the Price & Co. cannery which was located near the Kitlope estuary from 1890-

1893) (Lyons 1969); other archival sources (Lyons 1969; Newell 1989; Argue and 

Shepard 2005); and through local and traditional ecological knowledge (LTEK) from 

semi-directed interviews (Huntington 2000) with Haisla elders and others (Appendix A), 

and previously recorded Haisla traditional knowledge (Pritchard 1977; Barbetti 2005; 

unpublished Haisla archival notes).  

Climate data 

Daily and monthly temperature data from Kemano, BC 1951-2004 were 

downloaded from Environment Canada’s website (http://climate.weatheroffice.ec.gc.ca/) 

and more recent data not available for download (2004-2006) were purchased from 

Environment Canada. Mean annual temperatures were calculated from mean monthly 

temperatures, and years with missing monthly values (1951, 1959, 1972, 1985, 1989-90, 

and 1993-94) were excluded or replaced with interpolated (5-point average) values for 

analyses. LTEK provided additional perspective on local climate change over 

approximately the past century (Appendix A).  

Daily mean air temperatures from the Kemano weather station (Jan. 2004 – Jan. 

2007) were graphically and statistically compared to daily averages of hourly air (July 

2005 – Oct. 2006) and surface water (May 2004 – Oct. 2006) temperatures measured at 

the Kitlope Lake outflow using Vemco Minilog-T temperature loggers (UTMair 09U, 

581793m E, 5891274m N; UTMwater 09U, 582177, 5890940). 

Pacific Decadal Oscillation (PDO) index values were downloaded from the 

University of Washington Joint Institute for the Atmosphere and Oceans (JISAO) website 
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(http://jisao.washington.edu/pdo/PDO.latest) for comparison with the Kemano 

temperature data, sockeye escapement estimates, and sedimentary proxies of lake trophic 

status. 

Sediment collection 

Sediment cores were collected by boat from Kitlope Lake on June 25-26, 2005. 

Three cores were taken from approximately the same mid-lake location (120 m depth; 

UTM 09U, 581530 m E, 5885879 m N; Figure 1D) after preliminary sonar readings from 

around the lake suggested that the lake’s abyssal plain was large and flat enough to yield 

usable cores despite the high relief of the lake basin. A recent 74-core survey of Nerka 

Lake, Alaska demonstrated that a core from a single location should accurately record 

whole-lake nutrient flux and trophic dynamics (Brock et al. 2006). 

Three sediment cores were collected by boat using a portable percussion coring 

device (Gilbert and Glew 1985) with 7.6 cm (3.0 in.) inside diameter Lexan® tubes 

(length: 2.0 m, fitted with brass shimstock core catchers (Reddering and Pinter 1985). 

The coring tube extended approx. 15 cm below the bottom of its aluminium struts so that 

it penetrated the substrate before the bulk of the coring device hit the lake bottom thus 

minimizing disturbance of the mud-water interface inside the core. The coring device was 

driven using a 22.7 kg (50 lb) hammer, and was suspended by a Kevlar® rope to 

facilitate a direct transfer of lift. The cores were extracted on a calm day in minimal wind 

(< 5 km/hr) with the boat nearly stationary so that the angle at which the device was 

driven into the substrate was near 90°. The cores were transported in an upright position 

to a field station approximately 10 km downstream from the collection site where they 

were immediately sectioned at 2.5 mm intervals using a vertical extruder (Glew 1988). 

Sample handling and preparation 

Samples were placed in Whirlpak® bags and immediately put on ice and in the 

dark inside a cooler, which was transported to the Flathead Lake Biological Station 

(University of Montana) in Polson, Montana. Each sample was then flushed with N2 gas, 

resealed, and stored in vacuum-sealed bags in the dark at 4°C until processing.  

The best of the three cores retrieved from Kitlope Lake was chosen for all 

analyses described henceforth except for diatom counts. This core (KI-C1, ~ 80 cm) was 
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chosen for its length, apparent lack of sediment mixing during extraction, and lack of 

gassing prior to extrusion compared to the other two cores. Whole sections were 

sequentially weighed, homogenized, and then partitioned for the various analyses 

described below.  All subsample partitioning was done under minimal lighting to 

minimize photo-oxidation of fossil pigments. Subsamples for fossil pigments analysis 

were weighed into individual dark containers (black 35 mm film canisters), flushed with 

N2 gas, sealed with black electrician’s tape, and shipped frozen to the University of 

Regina Limnology Laboratory for analysis. Sediments for radioisotope and stable isotope 

analyses, as well as organic matter and bulk density measurements, were oven-dried at 

60°C and stored in a desiccator until analysis. Random subsamples of the dried sediments 

were treated with concentrated hydrochloric acid (HCl) to test for the presence of 

inorganic carbon. No gas evolved from any samples upon HCl treatment and given the 

extremely low alkalinity values reported for Kitlope Lake (Stockner et al. 1993; Table 1) 

we assumed that sedimentary inorganic carbon concentrations were negligible. Given the 

low probability of carbonate presence and the fact that acid-washing has been shown to 

affect stable isotope ratios in young sediments (Meyers and Teranes 2001), we did not 

treat any samples with HCl prior to analyses, except for samples from core KI-C2 for 

diatom counts.  

Sediment chronology 

Sediment deposition dates were estimated by Flett Research Ltd. (Winnipeg, 

Manitoba, Canada) from down-core declines in 210Pb activity using the constant rate of 

supply (CRS) model (Appleby and Oldfield 1978).  210Pb activities were measured (via 
210Po) on 13 sections based on the methodology of Eakins and Morrison (1978) using an 

Ortec ‘Octet’ alpha spectrometer. All counting times were 60,000 seconds. Background 
210Po was estimated by measuring 226Ra using 222Rn emanation (Mathieu et al. 1988) on 3 

deeper sections where 210Po appeared to be above background levels. 

Carbon and Nitrogen analyses 

Samples for N and C analysis were placed in a random order and gently hand-

ground with a mortar and pestle to break apart caked sediments but minimize breakdown 

of any terrestrial macrofossils that may be present. They were then dry-sieved at 250 μm 
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to remove terrestrial macrofossils which could confound the analysis, and weighed into 

foil capsules on a Sartorius M2P microbalance (precision 0.001 mg). Analysis was 

carried out on every section from 0 – 20 cm core depth, and every second section from 20 

– 75 cm. Sample weights were large ( x = 51.528 mg ± 1.00 mg std. dev.) to ensure 

elemental and isotopic measurements would be above detection limits. Stable isotope 

ratios of carbon and nitrogen were measured by continuous flow isotope ratio mass 

spectrometry at the University of California Davis Stable Isotope Facility (Davis, 

California, USA) using a 20-20 mass spectrometer (PDZ Europa, Northwich, UK) after 

sample combustion to CO2 and N2 at 1000°C in an on-line elemental analyzer (PDZ 

Europa ANCA-GSL). The gases were separated on a Carbosieve G column (Supelco, 

Bellefonte, PA, USA) before introduction to the Isotope Ratio Mass Spectrometer 

(IRMS). Sample isotope ratios were compared to those of standard gases injected directly 

into the IRMS before and after the sample peaks and δ15N (atmospheric N2) and δ13C 

(Pee-Dee Belemnite limestone) values calculated. Final isotope values were adjusted to 

bring the mean values of standard samples distributed at intervals in each analytical run 

to the correct values of the working standards. The working standards are periodically 

calibrated against international isotope standards. Stable nitrogen and carbon isotope 

ratios were respectively expressed as: 

δ15N = [(Rsample/Rstandard) – 1] × 1000; R = 15N/14N 

δ13C = [(Rsample/Rstandard) – 1] × 1000; R = 13C/12C 

Coefficients of variation for checks (N = 37) done on the working standards for N, δ15N, 

C, and δ13C were 1.22%, 11.87%, 1.70%, and 0.14%, respectively. 

Organic carbon and nitrogen values were calculated as a percentage by weight 

and organic carbon to nitrogen ratios (C/N) were calculated as weight (not atomic) ratios. 

Fossil pigments and sediment organic matter 

Sediment organic matter content was estimated from percentage weight loss on 

ignition (LOI) for subsamples of each section. Oven-dried sediments were cooled in a 

desiccator, weighed, placed in a muffle furnace at 500°C for 2 hours, again cooled in a 

desiccator, and then re-weighed. 
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Analysis of fossil pigments was carried out on every section from 0 – 15 cm core 

depth, and every second section from 15 – 75 cm. Samples were freeze-dried, 

homogenized, and extracted (50–150 mg dry mass) in a mixture of 

acetone:methanol:water (80:15:5). Extracts were dried completely under a pure N2 

atmosphere, re-dissolved in injection solvent containing Sudan II dye as an internal 

standard (Sigma Chemical Corporation, Saint Louis, Missouri, USA) (Leavitt and 

Findlay 1994), and stored at -80°C until analysis by high-performance liquid 

chromatography (HPLC) following Leavitt and Hodgson (2001).  

Carotenoid, chlorophyll, and derivative-compound concentrations were quantified 

with an Aligent (Hewlett Packard) model 1100 fitted with a 10 cm C18 column 

(Microsorb, 3 μm particle size). Pigment concentrations were expressed as nanomoles per 

gram of organic matter (based on LOI measurements described above). Pigment 

identifications were based on comparisons of chromatographic position, and spectral 

characteristics were compared with those of authentic standards (Leavitt and Hodgson 

2001). Analysis was restricted to chlorophylls a, b, a', phaeophytins a and b, and the 

following carotenoids: alloxanthin (indicator of cryptophytes), diatoxanthin (mainly 

diatoms), fucoxanthin (silaceous algae and some dinoflagellates), lutein + zeaxanthin 

(chlorophytes and cyanobacteria), and β-carotene (all algae) (Leavitt and Hodgson 2001).  

Preservation of the fossil pigments appeared good, while overall concentrations of 

individual pigments were extremely low. An abrupt decline in pigment concentrations 

below 25 cm core depth combined with a change in the physical appearance of the core 

(discontinuation of varves) suggested that a slump or similar catastrophic event had taken 

place. Therefore, sediments below 25 cm depth were excluded from any further analyses. 

A visual inspection of the pigment data suggested that all pigments were highly 

correlated with each other throughout the upper 25 cm of the core. In order to simplify 

the analysis the carotenoids were summed to form a single fossil pigments time series, 

and the more labile chlorophylls and phaeophytins were excluded from the general 

analysis. 
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Diatoms 

An initial investigation of siliceous diatom fossil concentrations was carried out 

on 10 subsamples of one of the other 2 cores collected (KI-C2). Permanent Naphrax® 

mounts of acid cleaned material from each subsample were prepared, a slide was scanned 

from each level, and a short count of 100 valves (50 cells) was conducted on a slide 

representing the uppermost section that we subsampled (2.50-2.75 cm).  

 

Data analysis 

The high sedimentation rate in Kitlope Lake, combined with the high temporal 

resolution at which we sectioned the sediment core, resulted in the majority of years 

sampled being covered by 2-3 core sections. This resulted in an excessive amount of 

seasonal variation in the N and C data, and to compensate for this variation each section 

was assigned a median decimal year (e.g. 1965.2) based on the modeled 210Pb dates, and 

all sedimentary data were grouped into one-year bins to allow for direct comparisons 

between all time series. Due to the aforementioned apparent discontinuity in the core at 

approximately 25 cm depth, only the top 25 cm (c.1958-2005) could be analyzed for this 

study. Prior to calculating correlation coefficients between sedimentary and other data, 

the sedimentary data grouped into one-year bins were further grouped into three-year 

bins. This helped to compensate for any error in the 210Pb-inferred dates as well as for 

brood year effects of the sockeye population, so that long term trends in the various time 

series would be apparent despite the potentially confounding effects of natural inter-

cohort variability. Annual data for all time series (i.e. one-year bins for sedimentary data) 

were smoothed with a three-year running average for graphical representation, with the 

exception of δ13C which did not appear to exhibit seasonal variation.  

Relationships among time series were examined using SPSS v.12 software (SPSS 

Inc.). Time series were visually and statistically assessed for normality and were 

generally considered to be normally distributed if the Shapiro-Wilks statistic was not 

significant at the 0.05 level. Sockeye escapement estimates were not normally distributed 

and were therefore log10-transformed. Time series were then visually and statistically 

assessed for temporal autocorrelation at n/4 lags (Box and Jenkins 1970), and serial 

dependency was considered to be present if the probability of the Box-Ljung statistic was 
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> 0.05. Total nitrogen (TN), total organic carbon (TOC), organic matter loss-on-ignition 

(LOI), δ13C, and PDO all exhibited significant autocorrelation. All time series were 1st-

difference transformed. TN and TOC values were divided by their corresponding LOI 

values to reduce the possibility of the confounding effects of early diagenesis (e.g. Hodell 

and Schelske 1998) and to make them comparable to the fossil pigment concentrations 

which were expressed as nanomoles per gram organic matter (LOI). This conversion had 

the added effect of significantly reducing serial correlation in the TN and TOC time 

series. 

Daily mean temperatures from Kemano (air) and the Kitlope Lake outflow (air 

and water) were 1st-difference transformed to remove temporal autocorrelation and 

examined for significant cross-correlations at multiple lags.  Pearson correlation 

coefficients were calculated for both raw and 1st-differenced time series of the following 

variables (in 3-year bins): TN (% N and %N/%LOI), δ15N, TOC (%C and %C/%LOI), 

δ13C, C/N, LOI, total carotenoids, sockeye escapements, mean annual temperature, mean 

annual precipitation, and mean annual PDO index values. For these calculations, the most 

recent 6 years (~ 3 cm) of data were excluded to help ensure that correlations were not 

skewed by early diagenesis of sediment organic matter. Therefore the final data set for 

calculation of correlation coefficients consisted of 14 data points. Additional calculations 

of Pearson coefficients were performed on other time series, including 1st-difference 

transformed mean annual temperature and PDO values (not grouped into 3-year bins), 

cross-correlations between PDO, temperature, and sockeye escapements at multiple year 

lags, as well as alternative treatments of 3-year binned series listed above. Correlation 

coefficients were not calculated between raw and differenced time series. 
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Results 
Historic abundance and harvest of Kitlope Lake sockeye salmon 

The methods and results of the LTEK and archival research are summarized in 

detail in Appendix A. Briefly, all qualitative accounts from interviews with Haisla elders, 

combined with cannery pack records and early qualitative observations by fisheries 

officers (1921-33) consistently suggested or reported that average annual returns of 

sockeye salmon to Kitlope Lake were substantially higher from year to year from the late 

1800s until the late 1940s than they were after about 1950, with the exception of the high 

returns in the early-mid 1960s. Trends in annual enumerations of sockeye escapement to 

Kitlope Lake since 1934 were in agreement with the oral record, and estimates ranged 

from 3500-175 000 (~300-14600 fish km-2 lake area) (Figure 2).  

Both the LTEK information (Appendix A) and Area 6 Salmon Catch History 

reports showed that commercial harvest has exerted considerable control over Kitlope 

Lake sockeye population dynamics. For example, sustained fishing pressure in (gillnet) 

and near (seine) Gardner Canal in the first half of the 20th century led to declines of 

multiple stocks which in turn led to a moratorium on fishing in those sub-areas in 1956 

that has never been lifted. The sockeye escapements rebounded substantially after the 

1956 moratorium (Figure 2). The record high escapement in 1961 followed a brief shift 

in the PDO from a brief warming phase to a cooling phase (Mantua et al. 1997; Figure 5), 

and there was an unusually long commercial fishers’ strike that year that lasted for 3 

weeks (July 13 – Aug. 4) during the sockeye migration. Also, the Butedale (Figure 1B–9) 

cannery was partially shut down for maintenance purposes that year, leaving the boats 

that remained fishing to dress and ice their own catch, as the next closest cannery 

(Klemtu) was running at full capacity, thus curtailing fishing efficiency (DFO 

unpublished Area History Reports).  

DFO’s Management Target Escapement (MTE) for Kitlope sockeye is 22 000 fish 

(Shortreed et al. 2001) and is based on the photosynthetic rate model described in 

Shortreed et al. (2000). Despite an abundance of pristine spawning and rearing habitat 

(Salmonid Rivers Observatory Network, Flathead Lake Biological Station, unpublished 

data), estimated annual returns of sockeye salmon to Kitlope Lake have averaged  
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< 10 000 over the last decade, and have not consistently exceeded the MTE since the late 

1960s (Figure 2; DFO annual stream escapement reports). 
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Figure 2. Three-year running averages of estimated numbers of adult sockeye salmon returning to 
Kitlope Lake (1934-2005) and commercial sockeye catches (all gear types) in DFO statistical Area 6 
(1947-2005). Sources: Escapement data from DFO annual stream escapement reports (BC16s – Brian 
Spilsted, DFO, pers. comm.); catch data from sales slips (Dave Peacock, DFO, pers. comm.). Dashed 
vertical lines indicate PDO phase shifts (Mantua et al. 1997); note logarithmic scale on y-axis. 
 

Climate dynamics 

 Comparisons among the Kemano daily air temperature data and hourly air and 

water temperature measurements from temperature loggers placed at the Kitlope Lake 

outflow showed that LTEK observations from the Kemano area and daily air temperature 

records from the Kemano weather station (1951-2007) were an excellent proxy for air 

and surface water temperatures of Kitlope Lake (Figure 3). 1st-difference residuals of 

Kemano mean daily air temperatures and Kitlope Lake mean daily surface water 

temperatures were significantly correlated with a 2-day lag (r = 0.25, P < 0.001, N = 849) 

and all 3 time series were significantly correlated with each other at several lags from 0-2 

days over the July 2005 – Oct. 2006 period of data overlap (Figure 4).  
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Figure 3. Daily average air temperature from the Kemano weather station (UTM 09U, 570670 m E, 
5933986 m N,  elev. 87 m; Environment Canada) and daily average water and air temperature 
measured at the Kitlope Lake outflow (based on hourly measurements from temperature loggers; 
UTMair 09U, 581793 m E, 5891274m N; UTMwater 09U, 582177, 5890940). 
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Figure 4. Cross-correlations between 1st-difference residuals of mean daily air temperatures 
measured at the Kemano weather station and mean daily air and water temperature measured at the 
Kitlope Lake outflow over the period of data overlap (July 2005 – Oct. 2006; N = 453). Dashed lines 
denote upper and lower confidence limits (2 standard errors). 
 

Mean annual temperatures in Kemano from 1952 to 2006 ranged from 5.01 to 

8.46 °C ( x = 6.86 ± 0.86 °C std. dev.). While there was considerable variation in 

temperature over the period of record, there was also a clear warming trend, especially 

from c.1972-2007 (Figure 5). LTEK gathered from Haisla elders and two local non-

Haisla individuals contained strong beliefs that climate warming has decreased the 
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duration, frequency, and extent of ice-cover in Gardner Canal during the winter months 

(Appendix A). The sum of the narratives and observations shared by the interviewees and 

gleaned from previous accounts showed that in the early-mid 20th century the fresh water 

lens on Gardner Canal tended to freeze over at some point during most winters from the 

Kitlope estuary past Kemano (Figure 1B), whereas this phenomenon became less and less 

frequent over the second half of the 20th century, with solid persistent ice not forming in 

several decades, and solid ephemeral ice not forming in the past 6 years (Appendix A).  

1940 1950 1960 1970 1980 1990 2000

-2

0

2

4

6

8

10

R2  = 0.19

PDO Index

temperature (°C)

P
D

O
 In

de
x

M
ean annual tem

perature (°C
)

1940 1950 1960 1970 1980 1990 2000

-2

0

2

4

6

8

10

4

6

8

10

R2  = 0.19

PDO Index

temperature (°C)

PDO Index

temperature (°C)

P
D

O
 In

de
x

M
ean annual tem

perature (°C
)

 
Figure 5. Mean annual air temperature from 1952 to 2006 based on daily readings at Kemano, BC 
(UTM 09U, 570670 m E, 5933986m N, elevation 87 m), approximately 46 km from Kitlope Lake 
(Souce: Environment Canada); and mean annual Pacific Decadal Oscillation (PDO) index values 
(Source: University of Washington Joint Institute for the Atmosphere and Oceans). First-difference 
residuals of the two variables are significantly correlated (r = 0.48, P < 0.001, missing temp. values 
interpolated).  
 

The PDO index 1st-difference residuals were correlated with mean annual air 

temperature residuals at lag 0 (1952-2006 with missing temp. values interpolated; r = 

0.48, P < 0.001; Figure 5) and correlations at all other lags were not significant. Cross-

correlations between residuals for sockeye escapements and temperature (1952-2005) 

were significant at lag 0 (r = 0.28, P < 0.05) and lag -5 (r = 0.39, P < 0.01), and no others, 

and no cross-correlations were significant between PDO and sockeye escapements. Mean 

annual precipitation was not significantly correlated with PDO, temperature, or sockeye 

escapements, nor was it correlated with any of the sedimentary proxies (Table 3). 
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Taken together, the quantitative and qualitative climatic data sets strongly 

suggested that the annual ice-free period on Kitlope Lake increased over the lifetimes of 

the interviewees (approx. 60 – 75 years) along with average air temperatures, and these 

changes were coherent with basin-wide ocean-atmosphere climatic regimes.  

 

Sediment chronology 

We documented an approximate exponential decrease in 210Pb activity as a 

function of depth in core KI-C1 (Figure 6) showing that the core could be aged 

accurately. Indeed, the surface total activity was ~15 times the lowest 210Pb level of ~0.80 

disintegrations per minute (DPM) g-1 at 65.5-65.75 cm depth, and 226Ra was measured at 

0.86, 0.92 and 2.28 DPM g-1 in the depths of 55.5 - 55.75 cm, 65.5 - 65.75 cm, and 75.25 

- 75.5 cm, respectively, likely confirming that the lowest 210Pb activity was the 

background level. The 210Pb activity increased to about 3.22 DPM g-1 in the deepest 

section and it is believed that this was due to increased 226Ra in this section.  

An obvious discontinuity occurred in the core at about 25 cm depth: semi-

sequential varving was visible above but not below 25 cm depth and fossil pigment 

concentrations declined steeply below this depth. A slump with subsequent sediment 

mixing was the most likely explanation for the observed changes.  However, the 

sedimentary unconformity was not indicated by the 210Pb decay curve (Figure 6). This 

may have been a coincidental result of the sample depths of systematically selected 

sections for 210Pb analysis in relation to the unconformity. Nevertheless, the 210Pb and 
226Ra data showed that background 210Pb levels were likely reached, thus satisfying the 

basic premise of the constant-rate-of-supply (CRS) model used to date this core. That is, 

the age of sediments at a given core depth can be calculated by comparing the cumulative 

excess 210Po activity (DPM cm-2) of sediments below that depth with the total excess 
210Po in the core (Appleby and Oldfield 1978). As such, we concluded that the modeled 

dates for the core above the unconformity were accurate. Moreover, the conservative 

numerical approach we used to test relationships between sedimentary and other time 

series (i.e. grouping data into 3-year bins) ensured that our calculations of Pearson 

correlation coefficients would likely be robust to dating error. Strong consistency 
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between some sedimentary – non-sedimentary time series pairs (e.g. δ15N – air 

temperature; see below) provided further indication that our date estimates were accurate.  

Based on the CRS model, the portion of the core unaffected by the apparent 

slump (0 – 25.0 cm) covered approx. 48 years, yielding an average sediment 

accumulation rate in the upper 25 cm of the core (c.1957-2005) of approx. 4.7 mm year-1. 

The extremely high sedimentation rate confirms the high prevalence of glacial silt in 

Kitlope Lake measured by others (Stockner et al. 1993). 

 

 
Figure 6. Depth profile of 210Pb activity measurements for Kitlope Lake sediment core C1. The three 
226Ra measurements confirm that the increased 210Pb activity in the deepest measurement is likely 
due to increased 226Ra. 
 
 
Carbon and nitrogen storage and isotope ratios in Kitlope Lake sediments 

Average values for total N and organic C (TN and TOC; Table 2) were extremely 

low in Kitlope Lake sediments, but fluctuated throughout the upper 25 cm of the core, 

and generally decreased with depth. Sedimentary δ15N and organic C/N exhibited 

substantial fluctuations through the core (± 2.07 ‰ and ± 3.55, respectively), which 

along with the TN and TOC fluctuations, indicated that substantial changes in organic 
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matter source occurred over the period covered by the core (Table 2; Figure 9). The high 

organic mass C/N ratio ( x = 16.77 ± 1.44 std.dev.) indicated that a substantial but not 

overwhelming portion of the sedimentary organic matter was likely of terrestrial origin 

(Meyers and Teranes 2001). TN, TOC, and δ15N all increased sharply in the most recent 

~5 years. 

Sedimentary δ13C also fluctuated, although to a much lesser extent than the above 

variables, and generally increased with depth (Figure 9). Seasonal variations (i.e. between 

adjacent core sections – not shown) were not discernable in the sedimentary δ13C, 

demonstrating that it is robust to seasonal changes in organic matter concentration (LOI, 

see below), as well as to changes in C/N and δ15N, all of which did exhibit substantial 

seasonal variations (note that δ13C is the only sedimentary time series shown in Figure 9 

that is not smoothed with a running average). 

The relationship between %N and %C was linear with a negative %N intercept 

(%N = 0.07(%C) - 0.016; Figure 7), thus demonstrating that concentrations of 

inorganically-bound nitrogen were negligible, as nitrogen was not present in excess of 

that associated with organic matter (i.e. carbon). We therefore inferred that measured 

δ15N values were generally indicative of the isotopic composition of sediment organic 

matter rather than clay-adsorbed ammonium (Talbot 2001).  

 
Figure 7. Linear relationship between total nitrogen and carbon (% mass) for all samples obtained 
from core KI-C1 (r = 0.89, P < 0.001 for 1st-difference residuals). 
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Recall that we excluded data for the most recent 6 years (upper ~3 cm) (see 

Methods – Data analysis for rationale) for determination of correlations between time 

series variables.  First-differenced sediment organic matter concentrations from 1958 – 

1999 were significantly correlated with total carbon (r = 0.79, P = 0.001) and total 

nitrogen (r = 0.73, P = 0.002), and 1st-difference residuals of C and N were significantly 

correlated with each other (r = 0.89, P < 0.001, raw values shown in Figure 7), thus 

providing further indication that the bulk of sedimentary C and N was associated with 

organic matter. Organic C/N was negatively correlated with LOI-corrected TN (r = -0.78, 

P = 0.001) but not with LOI-corrected TOC (r = -0.28, P = 0.33) (Table 3), implying that 

although TOC and TN both decreased with depth (Figure 9), the increase in the C/N ratio 

with depth was a result of a proportionately greater decrease in total N. Further, the 

strong negative correlation between δ15N and C/N (raw: r = -0.50, P = 0.07; differenced: r 

= -0.85, P < 0.001) shows that when the organic C/N ratio was lower due to an increased 

sedimentary N concentration, the N was also isotopically enriched.  

The highest δ15N values in the core coincided with the highest sockeye 

escapements on record, with an offset of approximately 1.5 years that could easily be 

attributable to dating error (Figure 9) but, due to the 3-year bins we used, the correlation 

coefficients should not have been affected by this offset. δ15N tracked sockeye 

escapements closely from 1958-1975 (r = 0.89, P = 0.02 for 1st-difference residuals) but 

the association between the two variables was more tenuous after that. Sedimentary δ15N 

was not significantly correlated with sockeye escapements from 1958-1999 (r = 0.39, P = 

0.17) unless a 5-point running average was applied to the raw δ15N time series prior to 

consolidation into 3-year bins (r = 0.59, P < 0.03). δ15N was significantly correlated with 

mean annual air temperature (r = 0.57, P = 0.34), and the two variables appear to track 

closely throughout the core (Figure 9). The organic C/N ratio inversely tracked δ15N in 

the lower and upper portions of the core, and to a lesser extent through the rest of the core 

(Figure 9). The inclusion of the upper sections in the analysis increased both the strength 

and significance of the negative correlation (upper layers excluded: r = -0.50, P = 0.07; 

whole core: r = -0.57, P = 0.02). Differenced, but not raw, C/N and sockeye time series 

were negatively correlated (r = -0.53, P < 0.1; Table 3). On the whole these results show 

that in addition to sockeye-derived MDN, other factors have likely influenced the 
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isotopic composition of sedimentary N, with climate being of particular importance, 

especially after about 1975 (Figure 9).   

 
Table 2. Minimum, maximum, and mean values with standard deviations for various analyses of all 
samples obtained from core KI-C1; these data summarize the period 1956-2005. 
 

 Minimum Maximum Mean Std. deviation

Total nitrogen (%) 0.04 0.12 0.07 0.02

δ15N (‰) -2.61 1.53 -0.33 0.82

Total carbon (%) 0.78 1.86 1.16 0.25

δ13C (‰) -27.74 -25.88 -26.71 0.37

C/N (by weight) 14.25 21.35 16.77 1.44

Organic matter (%) 2.90 5.35 3.75 0.56

Carotenoids  
(nmol g-1 org. matter) 

2.80 23.48 8.61 3.52

 
 
Fossil pigments and sediment organic matter 

Sediment organic matter content was very low, between 2.9 – 5.4 % (mean 3.75 ± 

0.56 %; Table 2), as expected given the lake’s low primary and secondary productivity  

and high inputs of glacial sediment from the Tezwa drainage (Table 1; Stockner et al. 

1993). Organic matter concentrations were generally stable over the past 48 years with 

two exceptions: a spike from about 1987-1989, and a steady increase in the most recent 5 

years, both of which were apparent in the TN and TOC curves (Figure 9). The spike 

c.1987-1989 was likely due to residual terrestrial organic matter, as small terrestrial 

macrofossils were removed from these sections (9.5-10.5 cm depth) during sieving and a 

flood of record is known to have occurred in September 1988.  

Concentrations of organic-matter-specific sedimentary fossil carotenoids were 

very low and fluctuated substantially over the past 48 years ( x = 8.61 nmol g-1 org. ± 

3.52 std.dev.). In general, they increased over time reaching their highest concentrations 

c.2003, and appear to have declined during most of the 6-year fertilization period (Figure 

9). Ratios of chlorophyll-a to phaeophytin-a were low and, with the exception of the 

upper 1.5 cm (~ 3.5 years), were relatively stable over the top 25 cm of the core (range 

0.25 – 0.54; mean 0.38 ± 0.05 std. dev.; Figure 8), suggesting substantial pre-burial 
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degradation followed by good post-burial preservation. The excursions in the 

chlorophyll-a to phaeophytin-a ratio in the most recent ~ 3.5 years suggested that fossil 

carotenoids for those sections may not be comparable to those from the rest of the core. 
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Figure 8. Downcore ratio of chlorophyll-a to phaeophytin-a in Kitlope Lake core C1. 
 

 

Fossil carotenoids were highly correlated with LOI-corrected TN (r = 0.70, P = 

0.005) and LOI-corrected TOC (r = 0.79, P = 0.001; Table 3), suggesting (along with 

above correlations among LOI, TN, and TOC) that sedimentary organic matter was 

largely derived from detrital materials containing photosynthetic pigments. 1st-difference 

residuals of fossil carotenoids and δ13C were negatively correlated (r = -0.66, P < 0.01; 

Table 3), which due to the relative stability of δ13C over time (Hodell and Schelske 

1998), confirmed that trends in the more labile compounds (i.e. carotenoids, TN, TOC) 

were likely of ecologically significance.  

Fossil carotenoids were not correlated with sockeye escapements (r = -0.22, P = 

0.45), but the highest carotenoid concentrations from c.1960-1970 coincided with the 

1963 record high sockeye escapement (Figure 9), implying that at lower spawner 

densities salmon-derived MDN does not significantly influence aquatic primary 

productivity in Kitlope Lake. Although TN and TOC were correlated with both C/N and 

fossil pigments, organic C/N was negatively correlated with organic-matter-specific fossil 

carotenoids only if the upper layers were included (r = -0.55, P = 0.03), providing further 

evidence that dominant inputs of organic matter to the lake sediments have likely 

fluctuated between algal and terrestrial sources over the past 48 years. 
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Diatoms 

We determined that diatoms were too sparse at all core depths for counts. 

Moreover, the utility of diatom analyses as indicators of lake water quality would have 

been questionable as periphytic forms were predominant in all 10 subsamples. The 

uppermost level (2.50-2.75 cm) described below was generally representative of the other 

9 subsamples.  Tabellaria sp. was the only true planktonic diatom present and it 

represented only 2% of the diatom assemblage. We did not find any centrics (e.g., 

Cyclotella, Stephanodiscus) and the remaining taxa were benthic forms.  Among them 

were 8 species of Eunotia, a genus that is associated with the epiphyton and metaphyton 

of oligotrophic waters (Round et al. 1990). The Tezwa River watershed was determined 

to be the most likely source of these periphytic forms.  
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Figure 9. Comparison of 210Pb-dated sedimentary time series from Kitlope Lake with sockeye salmon escapement estimates (note logarithmic 
scale) and mean air temperatures.  All time series except δ13C were smoothed with a 3-year running average. C/N is the ratio of organic carbon 
to nitrogen by weight. Carotenoids are the sum total nanomoles of alloxanthin, diatoxanthin, fucoxanthin, lutein + zeaxanthin, and β-carotene 
per gram of organic matter. The grey shading marks the period of artificial fertilization and the vertical dashed line marks the management 
target sockeye escapement of 22 000 fish. 
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Table 3. Pearson correlation matrix for sedimentary, climate, and sockeye escapement time series data (raw and 1st-differenced) for samples 
describing the period 1958-1999.  Italicized coefficients indicate the presence of  significant temporal autocorrelation in at least one of the two 
time series. Sockeye escapements were log10-transformed to normalize data distribution.  Raw (but not differenced) TN and TOC values were 
divided by % organic matter to reduce serial correlation and facilitate comparison with organic-matter-specific carotenoid concentrations.   
 

P < 0.01 

TN (%) δ15N 
δ15N 

smooth 
TOC 
(%) δ13C 

C/N 
ratio LOI (%) 

Carot-
enoids 

sock. 
esc. temp. precip. 

P < 0.05 
P < 0.10 

TN (%)   .23 .31 .80 -.44 -.78 .29 .70 -.09 .05 .04 .22 
δ15N .39   .92 -.07 .18 -.50 .07 -.09 .39 .57 .16 .02 
δ15N smooth .47 .92   .10 .23 -.43 -.02 -.02 .59 .47 .19 -.06 
TOC (%) .89 .04 .13   -.28 -.28 .02 .79 -.08 -.28 .14 -.02 
δ13C -.40 .02 .02 -.38   .30 -.48 -.70 .31 -.07 .01 -.15 
C/N ratio -.39 -.85 -.84 .05 .13   -.34 -.29 .02 -.28 .13 -.31 
LOI (%) .73 -.03 -.11 .79 -.37 .07   .29 -.45 .52 .18 .62 
Carotenoids .68 .08 .22 .74 -.66 -.09 .38   -.22 -.16 -.01 .05 
sock. esc. -.11 .40 .56 -.34 .05 -.53 -.61 -.02   .16 .24 -.40 
temp. -.09 .54 .37 -.21 .33 -.23 -.13 -.26 .28   .37 .57 
precip. -.13 -.06 -.12 .09 .16 .37 -.06 .05 .06 .36   -.11 
PDO -.56 -.20 -.35 -.39 .53 .45 -.15 -.53 -.22 .49 .20   

PDO 

1st-difference residuals 

raw time series
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Discussion 
Controls on sockeye dynamics and habitat: climate and harvest 

In the absence of substantial habitat alterations and complications arising from 

hatchery supplementation (e.g. Waples 1991), climate and harvest are key drivers of  

Pacific salmon populations (e.g. Finney et al. 2000). A substantial decreasing trend in 

sockeye escapements to Kitlope Lake over the past century was demonstrated through 

government escapement estimates and local and traditional ecological knowledge 

(LTEK; Appendix A). Similar stock declines have occurred in most other systems on the 

north and central coasts of BC (Harvey and MacDuffee 2002), and Kitlope sockeye are 

certainly not noteworthy in this regard. However, the abundance of excellent spawning 

habitat (Rosberg et al. 1982; SaRON unpublished data) and perpetual absence of 

anthropogenic disturbance and hatchery-related impacts within the watershed1 allow us to 

narrow our focus when considering the causes of these declines in the Kitlope.  

Mean annual air temperatures from the Kemano weather station were significantly 

and positively correlated with mean annual Pacific Decadal Oscillation (PDO) values 

demonstrating that the PDO is a reliable indicator of general climatic conditions in the 

region, and that regional climatic trends are significantly tied to basin-wide ocean-

atmosphere climatic trends. The fact that several of the sedimentary proxies were 

correlated with either PDO or temperature, but not both, reminds us that while 

temperature and PDO are strongly correlated they are measures of overlapping but 

ultimately different parameters.  

The lack of correlation between mean annual precipitation and any other variable 

in our analysis was quite surprising given the strong influence that hydrology exerts on 

aquatic primary productivity and delivery of terrestrial materials to Kitlope Lake 

(Stockner et al. 1993). The most likely explanation for this apparent disconnect is that 

mean annual precipitation (rain + snow) is too crude of a measure, and some other metric 

of precipitation and/or associated stream discharge may better reflect the hydrologic 

                                                 
1 The nearest hatchery is on the Kitimat River, ~ 140 km (by water) from the Kitlope Estuary, and hatches 
coho (Oncorhynchus kisutch), chinook (O. Tshawytscha), chum (O. keta), cutthroat (O. clarkii), and 
steelhead (O. mykiss), but not sockeye. 
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processes that control aquatic primary production and delivery of terrestrial N and 

organic matter to Kitlope Lake. 

Mean annual air temperature was significantly and positively correlated with 

sockeye escapements from 1951 – 2005 only at the -5 lag and 0 lag, and the majority of 

Kitlope sockeye are on a 52 life cycle with 42 being nearly as common (Rosberg et al. 

1982), indicating that climate may have exerted considerable control over the Kitlope 

sockeye population. Moreover, this indicated that there was likely a significant brood-

year (i.e. lag -5) effect despite the confounding effects of the commercial fishery. The 

brood-year effect could be a reflection of climatic effects on migrating adults both before 

and after entering fresh water, or it could be a reflection of climate-related factors 

affecting spawning success and egg survival, or any combination of these and other 

factors. The significant positive correlation at lag 0 may reflect an effect of temperature-

mediated ocean productivity on sockeye survival during the spawning migration. Without 

substantiating fry survival and/or smolt outmigration data, stock composition data for the 

commercial catch, and more sophisticated analysis than we provide here, we can only 

speculate as to the extent that climatic factors were more critically limiting at one 

location or life history stage or another. Moreover, the potential for error in the 

escapement estimates ultimately prevents us from making definitive conclusions based on 

estimates from individual years, as opposed to averages across multiple years. 

We found no significant correlation between either the 1st-differenced or raw 

PDO and sockeye escapement time series at any lag between -5 and 5. However, strong 

relationships between sockeye population dynamics and large-scale climate regimes have 

been demonstrated in many systems to the north (southwest Alaska) and south (Fraser 

and Columbia) of the Kitlope (Beamish et al. 1997; Mantua et al. 1997; Finney et al. 

2000) and we found that local air temperatures were significantly correlated with 

escapements at 2 ecologically meaningful lags. This discrepancy suggests that, while the 

local climate was closely regulated by ocean atmosphere climate regimes, survival rates 

for Kitlope Lake sockeye were more closely associated with climatic conditions at the 

regional scale (e.g. Gardner Canal and its coastal approach waters) than at the scale of the 

North Pacific Ocean. This interpretation is supported by a study that demonstrated 

stronger coherence in production within regions than among regions for B.C. and Alaska 
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sockeye stocks (Peterman et al. 1998), and another study showing that environmental 

processes exert more control on sockeye survival at local and regional (< 500 km) scales, 

than at oceanic scales (Pyper et al. 2005).  

Historic and recent impacts of the area 6 commercial catch on Kitlope sockeye 

spawning populations and subsequent recruitment were difficult to quantify. The mixed-

stock fishery has largely been conducted in the coastal approach waters to Douglas 

Channel, over 120 km by water from the mouth of the Kitlope River, and has tended to 

target chum and pink salmon produced at the Kitimat River hatchery since large-scale 

production began there in 1983. The stock composition of the sockeye catch is generally 

unknown (Dave Peacock, DFO, pers.comm.) exacerbating otherwise surmountable 

uncertainties presented by changes in fishing fleet behaviour over time. This is a common 

problem in most mixed-stock fisheries on the BC coast, and is not unique to Kitlope 

River and other Area 6 stocks.  

Despite the paucity of stock composition information for the commercial fishery, 

we were able to qualitatively assess the relationship between fishing pressure and 

escapement of sockeye to Kitlope Lake over approximately the past century using a 

combination of LTEK and DFO Area History of Salmon Catch reports (1947-1983). It is 

clear from salmon cannery pack records and LTEK that Kitlope sockeye supported 

substantial subsistence fisheries for large pre-smallpox communities of Henaaksiala and 

Haisla people, and substantial commercial fisheries over the past 120 years. Not 

surprisingly, historical information collected from various sources also indicated that 

continued fishing pressure exerted strong controls on Kitlope sockeye escapements over 

the years. This suggested that high harvest levels were at least partly responsible for 

reduced catches and escapement over the past two decades or so, in which sockeye 

escapements consistently did not meet their target escapement. While the lack of accurate 

catch composition data precluded an accurate quantification of the relative controls that 

climate and harvest exert on Kitlope sockeye returns, our interpretation of the available 

information was that both factors were important to some degree. 

Another problem presented by the lack of reliable catch estimates for Kitlope 

sockeye relates to the lake fertilization program (1979-83, 1985). The average mass of 

sockeye fry in the lake increased from 2.1g in the year prior to the beginning of the 
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fertilization program, to 5.2 g in the following two fertilized years (Hyatt and Stockner 

1985) and sockeye escapements apparently increased in subsequent brood years (Figure 

2). However, the best metric of success for the fertilization program would be the number 

of recruits per spawner and/or smolt in fertilized vs. unfertilized years which, in the 

absence of smolt outmigration and stock-specific commercial catch estimates, is 

impossible to calculate. 

 

Interpretation of productivity proxies in lake sediments 

General overview and comparisons with other sockeye nursery lakes 

The 1958-2005 sedimentary record in Kitlope Lake was characterized by low 

total nitrogen (TN) and organic carbon (TOC), and low organic-specific fossil carotenoid 

concentrations, confirming Kitlope Lake’s position on the bottom of the trophic spectrum 

of sockeye nursery lakes in British Columbia (Shortreed et al. 2001). Total sedimentary 

nitrogen and organic carbon concentrations are rarely reported in other paleolimnological 

studies of sockeye nursery lakes, but the concentrations we found in Kitlope Lake were 

extremely low compared to other literature values (e.g. Hu et al. 2001; Talbot 2001). This 

was most likely a combined effect of extremely high sediment loading dominated by 

glacial flour from the watershed combined with the extremely low trophic status of the 

system (Stockner et al. 1993). The fact that both variables were strongly correlated with 

sediment organic matter (LOI), as well as with each other, supported our previous 

conclusions that concentrations of inorganic forms of both elements in the sediments 

were negligible. Sedimentary mass C/N ratios (14.25 – 21.35 overall and 15.34 for the 

upper 2 cm) were within the normal range compared to other sockeye nursery lakes in 

British Columbia (7.9 - 23.3; Brahney et al. 2006) and other large temperate oligotrophic 

lakes worldwide (Meyers and Teranes 2001).  

The mean sedimentary δ15N values we found in Kitlope Lake (-0.33 ‰ for the 25 

cm core and 0.09 ‰ for surface sediments (upper 2 cm)) appear to be the lowest yet 

reported for a sockeye salmon nursery lake (Finney et al. 2000; Barto 2004; Gregory-

Eaves et al. 2004; Holtham et al. 2004; Schindler et al. 2005a; Brahney et al. 2006; 

Schindler et al. 2006; Brock et al. in press) and are low even compared to non-sockeye 
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reference lakes used in those same studies. The sedimentary δ13C record of Kitlope Lake 

is discussed below.  

The extremely low concentrations of fossil carotenoids, as with total N and 

organic C, were attributed to high sediment loading from the watershed, and extreme 

nutrient limitation resulting in a small phytoplankton standing crop (Stockner et al. 

1993). The significant correlations between TN, TOC, and fossil carotenoids supported 

each others’ validity as measures of changes in the lake’s trophic status over time. A 

comparison of fossil pigment concentrations among sockeye nursery lakes would not be 

particularly meaningful as various pigments are analyzed in a variety of ways among 

different lakes. For example, we report only total carotenoid concentrations here, and we 

do so using units of nmol g-1 organic matter (based on our LOI measurements) – a 

common practice, the justification for which is explained below. However, many others 

report fossil pigment concentrations in units of nmol g-1 total sediment dry weight. 

Our diatom findings agreed with analyses of mid-lake epilimnetic phytoplankton 

assemblages conducted by Stockner et al. (1993). They found that diatoms were very few 

relative to the other plankton taxa present, and that except for Cyclotella spp., most of the 

diatoms they found were associated with periphytic habitats. We did not find any 

Cyclotella spp. in the sediments. However, we agree with Stockner et al. (1993) that the 

most likely source of the benthic forms was the Tezwa River, as Kitlope Lake does not 

have a well-defined littoral zone in any area of the lake that could have delivered 

substantial numbers of diatoms to a mid-lake core or epilimnetic sampling location. 

Nutrients and productivity in relation to salmon escapements to Kitlope Lake 

Strong coherence among δ15N, fossil carotenoids, and sockeye escapements were 

apparent in the core up until the mid 1970s but after that the relationships were more 

tenuous. In sockeye nursery lakes that are not N-limited but rather P-limited (or co-

limited), such as Kitlope Lake (Stockner et al. 1993; Table 1), we can expect an 

approximately linear relationship between sockeye escapements and sedimentary δ15N 

(Brahney et al. 2006). Our results show that the order-of-magnitude fluctuations in 

sockeye escapements from c.1958-1975 likely had a significant effect on the trophic 
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status of Kitlope Lake, despite its high flushing rate and significant terrestrial inputs as 

shown by the organic C/N ratio ( x = 16.77 ± 1.44 std.dev.).  

These findings were somewhat different than those of Holtham et al. (2004), who 

found that sockeye nursery lakes with high flushing rates and substantial terrestrial inputs 

were not strongly influenced by MDN flux. This discrepancy could be explained by the 

fact that the lakes in their study drained much smaller watersheds (41 – 90 km2) and had 

much smaller lake/catchment area ratios (~ 0.03 – 0.09) than Kitlope Lake (872 km2 and 

~ 0.01, respectively). The majority of Kitlope Lake sockeye spawn in the Tezwa River 

and Kalitan Creek, as much as 20 km upstream of Kitlope Lake (Rosberg et al. 1982; 

Stan Hutchins, DFO, pers.comm.). Fall floods are frequent in the Kitlope watershed 

(Figure 10c) and so a substantial proportion of spawned-out carcasses are likely to be 

flushed downstream to decompose in Kitlope Lake (Gende et al. 2004). However, a 

similar proportion of the sockeye biomass is likely retained and cycled upstream through 

predation (Reimchen 2000; Helfield and Naiman 2006) and entrainment in woody debris 

(Cederholm et al. 1989). The bulk of the MDN from the retained carcasses would then be 

cycled downstream through the riparian, rheic, and hyporheic foodwebs over time scales 

that range from days to months (O'Keefe and Edwards 2003). The extremely high daily 

flushing rate of Kitlope Lake’s surface layer suggests that if MDN were to be 

bioavailable for limnetic primary production in ecologically significant concentrations, 

most of the cycling would have to take place upstream of the lake. Salmon-derived MDN 

have been shown to significantly increase autochthonous production in streams in BC 

(Johnston et al. 2004) and Alaska (Chaloner et al. 2007). Therefore the predominance of 

periphytic diatoms over planktonic species in both water (Stockner et al. 1993) and 

sediment samples from Kitlope Lake supports the notion that upstream autochthonous 

production was an important factor in the sedimentary legacy of salmon abundance and 

the trophic status of Kitlope Lake.  

Fossil carotenoid concentrations appeared to steadily decline during the first 5 out 

of the 6 years that the lake was artificially fertilized (1979-83, 1985; Figure 9). This 

observation appears to further underscore the importance of upstream nutrient cycling in 

this fast-flushing but expansive watershed. Nutrient additions to the lake’s fast-flushing 

surface layer would have been rapidly flushed compared to slowly-cycled nutrients from 
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salmon carcasses and terrestrial sources in the tributary. Furthermore, the doubling of 

chlorophyll and zooplankton concentrations after the first year of fertilization (Stockner 

et al. 1993; Table 1) may have been related to a longer-term increase in algal production 

that appeared to begin in the late 1960s according to the sedimentary fossil carotenoid 

data (Figure 9). Limnological surveys were only conducted during the first two years of 

the fertilization program, so we do not know if the apparent decline in algal production 

during the fertilization program inferred from fossil carotenoids was reflected in limnetic 

chlorophyll and zooplankton concentrations. 

Organic matter source, nutrient limitation, and diagenesis 

  Organic C/N ratios are widely used in paleolimnology to indicate the relative 

contributions of autochthonous (aquatic) and allochthonous (terrestrial) production to 

bulk sediments. Terrestrial primary producers, especially cellulose-rich vascular plants, 

have much higher organic C/N  (> ~20) than do protein-rich lake algae (< ~10) (Meyers 

and Teranes 2001). The average sedimentary C/N in Kitlope Lake therefore indicates 

similar historical contributions of both terrestrial and aquatic organic matter, with the 

general decline over time indicating an increasing algal contribution. Organic C/N was 

negatively correlated with total N, δ15N, and sockeye escapements, especially in the 

lower portion of the core. We generally interpret this result as an indication of the 

influence that sockeye-derived MDN had on lake trophic status up until about 1975.  

Brahney et al. (2006) hypothesized that in large sockeye nursery lakes terrestrial 

contributions to sediment organic matter are likely to be insignificant compared to 

aquatic contributions, and that sedimentary C/N ratios are more likely to reflect changes 

in the availability of dissolved organic nitrogen to lake algae. We agree with the 

conclusions in their study, and concur that they are likely applicable to larger N-limited 

sockeye nursery lakes in British Columbia where terrestrial inputs are negligible. 

However, we doubt that they apply here as Kitlope Lake is likely P-limited based on 

molar N:P ratios derived from the water chemistry data summarized in Table 1 (N:Ptotal = 

43; N:Pdissolved = 53; n = 4). Furthermore, Kitlope Lake has a high catchment to lake area 

ratio; the complex alluvial floodplains of Kalitan Creek and the upper Tezwa River 

provide extensive but frequently-flushed off-channel habitats where leaf litter dominated 
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by N-rich red alder leaves accumulates (Figure 10a,b); frequent and flashy flooding of 

these tributaries moves substantial amounts of terrestrial debris into the lake (Figure 10c); 

and terrestrial macrofossils were extracted from sediment samples during sieving prior to 

C and N analyses.  

 

 
Figure 10.  Representative photographs of: (A) riparian red alder (Alnus rubra) pole stand 
characteristic of the Tezwa River floodplain upstream from Kitlope Lake; (B) Kitlope watershed 
springbrook habitat in flood channels with alder-dominated canopy (note abundant leaf litter); (C) 
large trees in transport during bankfull flows in the lower Kitlope River. 
 

Caution must be used when interpreting the ecological significance of the 

paleoecological trends in the more recent sediments due to the confounding effects of 

early diagenesis of sediment organic matter. In sediments heavily influenced by terrestrial 

organic matter the organic C/N ratio will likely decrease over time with the degradation 

of carbon-rich compounds (Meyers et al. 1995), while the C/N of algae-dominated 

sediments will likely increase over time with the degradation of labile N-rich compounds 

such as proteins and lipids (Talbot 2001).  

Fossil pigment concentrations are also likely to be affected by diagenesis during 

sinking and after burial (Leavitt 1993). The excursions in chlorophyll-a to pheophytin-a 

ratios in the most recent ~ 3.5 years of our core suggested that changes observed in the 

fossil carotenoids during that same period were due to diagenetic factors. Morever, the 

general decrease in the magnitude and variability of the chlorophyll-a / pheophytin-a 

ratio with depth in our 25 cm core suggested that some progressive degradation of fossil 

pigments occurred. However, the values were low suggesting that significant degradation 

had already occurred (e.g. during sinking), and the downcore changes were minor 

compared to the changes in the actual fossil pigment concentrations. Furthermore, we 

considered only organic-matter-specific pigment concentrations in our analysis (nmol g-1 

organic matter) – a measure which can compensate for diagenetic losses where fossil 
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pigments co-vary with organic matter (Leavitt 1993). And finally, the exclusion of the 

more labile chlorophylls and pheophytins from our analysis was a further safeguard 

against the possibility that the observed recent increases in fossil carotenoid 

concentrations in our core were due only to pigment degradation.  

The lack of discernable seasonal variation in the sedimentary δ13C of Kitlope 

Lake suggested that this measure was robust to seasonal changes in organic matter 

concentration, as well as to changes in C/N and δ15N, both of which exhibited 

considerable seasonal variation. Indeed, sedimentary organic 13C/12C ratios have been 

shown to be far less prone to changes over time than organic C/N and 15N/14N ratios, 

even if substantial proportions of the associated organic matter are lost through 

diagenesis (Hodell and Schelske 1998). The lack of seasonal variation in δ13C therefore 

suggests that photosynthetic CO2 demands during past growing seasons were likely not 

sufficient to lead to season-dependent discrimination of the heavier isotope by primary 

producers, a common phenomenon in more productive and stratified lakes (Meyers and 

Teranes 2001 and references therein). Obviously we would not expect CO2 limitation to 

occur in Kitlope Lake given its extremely low trophic status and weak thermal 

stratification. Therefore, the sedimentary δ13C measured in this study was likely 

indicative of organic matter source (i.e. algal versus terrestrial) rather than seasonal CO2 

limitation. Indeed, lake algae have been shown to have significantly lower δ13C values 

than terrestrial particulate organic matter in arctic lakes (Kling et al. 1992) and in the 

upper Kitlope River where the δ13C of perphytic algae ( x = -32.70 ‰ ± 5.08 std.dev.) is 

substantially lower than the foliar δ13C of the dominant riparian deciduous trees and 

shrubs ( x = -28.97 ‰ ± 1.71 std.dev.) (SaRON unpublished data). Moreover, this would 

explain why Kitlope Lake sedimentary δ13C was negatively correlated with fossil 

carotenoids. The decreasing trend in δ13C over time, coupled with the decreasing organic 

C/N and increasing TN and TOC, is therefore indicative of increasing aquatic organic 

matter and/or decreasing terrestrial organic matter contributions to sediments in Kitlope 

Lake. 
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Possible explanations for observed trends: climate warming, terrestrial N cycling and 

export 

Concentrations of TN, TOC, δ15N, and fossil pigments increased sharply near the 

top of the core despite some of the lowest sockeye returns on record. In addition to being 

enriched by salmon-derived MDN, many other factors could have caused the recent 

increases in these proxies. As described above, incomplete degradation of sediment 

organic matter is a likely possibility (Leavitt 1993; Hodell and Schelske 1998; Talbot 

2001). Another possibility is an undocumented increase in coho and/or chinook 

escapements to the Tezwa watershed. However, it is be difficult to evaluate this 

possibility due to the lack of reliable escapement estimates for those species compared to 

sockeye. Escapement estimates for chinook in the lower Kitlope River have led to 

conservation concerns in the past few years (Dave Peacock, DFO, pers.comm.) so it is 

unlikely that spawning populations of chinook in the Tezwa River, just a few kilometres 

upstream, have increased in recent years. Coho escapements on the other hand have 

increased in several north coast systems after reaching record low numbers in the late 

1990s (Riddell 2004), and anecdotal accounts suggest that Kitlope coho escapements 

have also increased somewhat since the late 1990s (A. Hill pers. obs.). However, even 

with the recent increases, the numbers of coho spawning upstream of Kitlope Lake have 

not outnumbered sockeye, which have been at near-record lows. It is therefore unlikely 

that increased numbers of spawning coho would have provided high enough 

concentrations of MDN to Kitlope Lake to cause the recent observed increases in the 

productivity proxies. 

In the case of δ15N, increased N cycling generally leads to elevated δ15N through 

the influence of N-limitation and isotopic fractionation. Algae discriminate strongly 

against the heavier isotope when N is not limiting, but as 14N is preferentially removed 

from the dissolved inorganic nitrogen (DIN) pool the δ15N of settling algae will 

eventually approach the δ15N of the bulk DIN as N-limitation increases (Teranes and 

Bernasconi 2000). Additional fractionation and organismal 15N enrichment occurs at 

successive trophic transfers as the weaker-bonding 14N is preferentially excreted by 

consumers through metabolic deamination (Talbot 2001). In the case of Kitlope Lake 

sediments it is unlikely that N-limitation was responsible for recently elevated δ15N, 
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based on the high aquatic molar N:P ratios we measured in 2005 (given above). 

Moreover, the extremely low average sedimentary δ15N underscores the likelihood of 

chronic P-limitation in Kitlope Lake. 

We established that average daily water and air temperatures in Kitlope Lake 

were significantly correlated with average daily air temperature measurements at the 

Environment Canada weather station in Kemano where daily temperature and 

precipitation measurements have been recorded since 1951. Mean annual air 

temperatures showed a clear warming trend over the period of record that was 

significantly correlated with the PDO, and the warming trend was particularly apparent 

from c.1972-2006.  

Interviews with local Haisla and non-Haisla people provided compelling 

testimony indicating that freezing of the freshwater lens in Gardner Canal has become 

much less frequent in recent years, with sustained whole-Canal freeze-ups not occurring 

since the 1970s, and freeze-ups of smaller patches around Kemano not occurring in the 

past 6 years. We inferred from these findings that there has likely been an increasing 

trend in the annual ice-free period for Kitlope Lake, as well as increased aquatic and 

terrestrial primary production due to longer and warmer growing seasons. An increase in 

2005 average chlorophyll-a concentrations over most values measured in weekly 

sampling during the first two years of the lake enrichment program (1979-80; Table 1) 

supports this idea.  

Climate indicators (air temperature and/or PDO) and most of the sedimentary 

proxies (TN, δ15N, δ13C, and/or carotenoids) were significantly correlated, with the 

coherence between mean annual air temperature and δ15N being particularly consistent 

over the period of record. These relationships demonstrate that climate has likely exerted 

significant control over the trophic status of Kitlope Lake from year to year and could 

partially explain why the δ15N and salmon escapement trends decoupled in the early-mid 

1970s, when the warming phase began and sockeye escapements were declining. The fact 

that δ15N was increasing in the absence of N-limitation is explained by the fact that δ15N 

is enriched by up to 4 ‰ in organisms at successive trophic transfers (DeNiro and 

Epstein 1981) which were likely increasing with climate-forced trophic status in Kitlope 
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Lake. This line of reasoning addresses the increasing trends in TN, δ15N and carotenoids 

as well as the strong correlation between temperature and δ15N. 

The trends observed in sedimentary proxies from Kitlope Lake are generally 

consistent with trends observed in other systems that were correlated with pollen-inferred 

climate-induced range expansion of alder (Alnus spp.) in the late Holocene. Through a 

symbiotic relationship with root-bound Actinomycetes (filamentous bacteria), pure stands 

of red alder (Alnus rubra) can fix atmospheric nitrogen at rates of up to 200 kg N ha-1 

year-1 (Binkley et al. 1994). The presence of alder can greatly increase primary 

productivity and N cycling in forest soils (Binkley et al. 1992) and nitrate leaching from 

red alder stands can exert strong controls on N export in coastal temperate watersheds 

(Compton et al. 2003).  

Paleolimnological studies using in situ pollen grains have shown significant range 

expansion by Alnus spp. in the late Holocene in Alaska in response to climate change 

(e.g. Hu et al. 1995). The Kitlope Lake catchment has abundant nitrogen-fixing red alder 

(Alnus rubra) that likely supply several tonnes of nitrate to Kitlope Lake annually (Figure 

10). Studies examining recent trends in alder growth in relation to climate change are rare 

for coastal British Columbia; however, Holtham et al. (2004) found a pronounced and 

sustained increase in the relative abundance of Alnus pollen grains in lake sediments 

beginning in the mid-1960s at Hobiton Lake on Vancouver Island, BC. Hu et al. (2001) 

found that pollen-inferred alder colonization of a lake catchment in southwestern Alaska 

8000 years ago was associated with strong increases in both aquatic primary productivity 

inferred from biogenic silica and N-cycling inferred from a strong increase in δ15N. They 

also found that increased primary productivity was consistent with increased TN and 

TOC, decreased organic C/N, and decreased δ13C – the same trends we observed in the 

Kitlope Lake core, albeit over a much shorter time scale. The recent increases in average 

annual temperatures in the Kitlope watershed have likely led to increased N-fixation and 

subsequent DIN export to Kitlope Lake from the abundant alder in its expansive drainage 

basin. However, further studies, such as time-series analyses of remotely sensed imagery 

or sedimentary pollen, would be necessary to ascertain the extent to which this has 

occurred. 
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Rain contains substantial amounts of DIN, and atmospheric nitrogen deposition 

may have contributed to the increases in sedimentary TN and δ15N observed in this study. 

It is widely recognized that human activities such as fossil fuel burning have led to 

continually increasing inputs of nitrogen to the land, water, and air globally (Vitousek et 

al. 1997). In western North America, studies of both populated and pristine watersheds in 

the U.S. Rocky Mountains have demonstrated significant increasing trends in 

atmospheric deposition of inorganic nitrogen (Lehmann et al. 2005; Ellis 2006). 

However, extensive surveys of Scandinavian lakes have demonstrated that the intensity 

of atmospheric N deposition is strongly tied to distance from sources of emission with 

pristine areas showing little effect (Bergström et al. 2005). Extensive paleolimnologic 

studies of Svalbard lakes found no evidence that atmospheric N deposition was 

responsible for recent proxy-inferred increases in primary production, and suggested that 

the most likely culprit was changes to hydrologic and chemical processes through climate 

change (summarized in Birks et al. 2004).  

We are not aware of any recent studies in central or north coastal British 

Columbia that have analyzed trends in atmospheric N deposition or that have estimated 

the fraction of bulk lake DIN that would be contributed by atmospheric sources. Analyses 

of the δ15N of atmospheric DIN are few and geographically irrelevant for the purposes of 

this study. The possible range of values is quite high (-18 – +4 ‰) but averages from 

sites in close proximity to one another are typically negative (Talbot 2001 and references 

therein). Given the existing data and the remote location of the watershed, it is likely that 

atmospheric N inputs to the Kitlope have increased in recent years, but are not likely to 

be a dominant factor in the recent changes observed in Kitlope Lake. However, the 

paucity of locally-relevant research on this subject and the possible implications of even 

small increasing trends make it a priority for further study.  
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Summary, conclusions, and recommendations  
Salmon in the Kitlope watershed were an important food source for the Haisla and 

Henaaksiala people for centuries and have supported commercial fisheries since the late 

1800s. Average sockeye escapements to the Kitlope watershed prior to about 1950 were 

consistently about an order of magnitude higher than they have been in recent years. 

Kitlope sockeye have not met target escapements with any consistency for over 3 

decades, and have been declining every brood year cycle since c.1986.  

Over the period of record covered by this core Kitlope Lake sockeye dynamics 

were controlled by both climate and harvest. Local climate records were significantly 

correlated with large scale climatic trends in the North Pacific Ocean (i.e. PDO) and 

Kitlope sockeye escapements were significantly correlated with local temperature trends. 

Historically the commercial fishery intercepted substantial quantities of Kitlope sockeye 

and, although recent catches have declined along with escapements, an undetermined 

proportion of the Kitlope sockeye run is still intercepted every year in the mixed-stock 

harvest.   

The paleolimnology of Kitlope Lake was dominated by its main tributary, the 

glacially turbid Tezwa River, as indicated by the extremely high sedimentation rate, 

substantial contributions of terrestrial organic material, and the dominance of periphytic 

algae. However, sedimentary δ15N, organic C/N, and fossil carotenoids all indicated that 

order-of-magnitude fluctuations in sockeye spawner densities significantly altered the 

trophic status of Kitlope Lake since c.1958. This was especially the case prior to c.1975, 

when sockeye escapements reached near-record lows and the PDO shifted (~ 1976) from 

a warming phase to a cooling phase. Around this time the trends in sedimentary δ15N, 

organic C/N, and fossil carotenoids decoupled from sockeye escapements while climate 

remained significantly correlated with proxy-inferred lake trophic status. 

A distinct warming trend in the area over the 1952-2007 period of record was 

inferred from LTEK to be associated with an increased growing season and increasing 

ice-free period on Kitlope Lake since the mid-1970s PDO shift, and especially in the past 

6 years. Recent increases in productivity proxies were likely partly due to diagenetic 

effects. However, the strong correlation between 1st-differenced δ13C and carotenoids and 
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the sharp increase in recent temperatures suggested that recent increases in TN, TOC, 

δ15N, and carotenoids, and decreased organic C/N and δ13C, were partly due to increased 

algal production. This was likely due to increased nutrient cycling caused by a longer 

growing season and/or increased non-salmon N inputs to the watershed. Comparisons 

with paleolimnological studies from other systems suggested that increased nitrate 

leaching from upstream N-fixing alder stands due to increased air temperatures may have 

also been partially responsible for the proxy-inferred increasing algal productivity in 

Kitlope Lake. Atmospheric N deposition from anthropogenic sources may have also 

contributed to observed sedimentary N increases; however, we are not aware of any 

region-specific analyses of atmospheric N sources that we could use to refute or 

substantiate this suggestion. This should therefore be a priority for future research along 

with paleoecological studies of nitrogen fixation and export by alders in relation to recent 

climatic change. 

Although lake productivity and sockeye smolt sizes increased precisely at the 

time the lake fertilization program began, the response also appeared to be concomitant 

with the warming trend and increasing lake trophic status inferred from the lake core. The 

prevalence of periphytic diatoms in Kitlope Lake, presumably washed in from the Tezwa 

River, underscores the importance of watershed-wide nutrient cycling processes to the 

ecology of downstream nursery lakes in fast-flushing ultra-oligotrophic systems. 

Superficial nutrient applications may underestimate this importance. 

This study demonstrated that lake coring may be a useful method to estimate past 

salmon escapements in fast-flushing ultra-oligotrophic glacial sockeye nursery lakes. 

Differences in lake area to catchment area ratios and related upstream MDN cycling may 

explain why correlations were not found between sockeye escapements and δ15N in other 

fast-flushing sockeye nursery lakes in BC and Alaska. In any case, multi-proxy 

approaches are required to tease out the salmon signal from terrestrial and climate 

signals. To this end, isotopic and quantitative analyses of terrestrial, atmospheric, and 

internal N sources, along with remote sensing and paleolimnological analyses of 

watershed vegetation and glacier dynamics, could be of great value in future studies of 

sockeye nursery lakes. 
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Our results support previous assertions by others that salmon are generally 

underescaped in the Kitlope watershed, and show that escapements have been reduced to 

the extent that lake trophic status has likely come to be regulated by climate-related 

factors other than salmon-derived MDN. However, while climate warming may be 

partially mitigating productivity loss due to reduced MDN inputs from salmon, the 

system remains ultra-oligotrophic and apparently P-limited, and sockeye escapements to 

Kitlope Lake have declined to near-record lows in recent years. A substantial increase in 

annual sockeye escapement is required in this system in order to alleviate nutrient 

limitation and fully utilize the abundant rearing habitat. 
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Appendix A: Local trends in salmon abundance and 
harvest and climatic conditions from LTEK and archival 
sources 
 

Introduction and methods 

This appendix is a synopsis of local and traditional ecological knowledge (LTEK) 

and anthropological discourse pertinent to the core study. Summaries fall into two broad 

categories: those from semi-directed interviews (Huntington 2000) conducted by A. Hill 

between December 2005 and March 2007 and those from previously published accounts 

and archival sources. All of the Haisla interviewees have extensive first-hand and 

hereditary (traditional) knowledge of the Kitlope and Gardner Canal area, as well as first-

hand experience in the commercial fishing industry. With the exception of Glen Smith, 

all of them return to the Kitlope watershed every summer for subsistence fishing and 

other activities.  

The interviews were broad in scope. Participants were asked questions regarding 

their memories around fisheries and population dynamics of salmon (Oncorhynchus spp.) 

and oolichan (Thaleichthys pacificus), and to a lesser extent Pacific herring (Clupea 

pallasii) within Haisla traditional territory. Interviewees were particularly encouraged to 

share their knowledge regarding sockeye fishing in Gardner Canal, population dynamics 

of Kitlope sockeye, climate dynamics and effects of ice cover, historic (pre-contact) 

Haisla demographics, the story of the Price and Co. salmon cannery (Kitlope estuary 

1890-1893), opinions regarding resource management, and general Haisla lore and nuyem 

(traditional oral law). A wealth of fisheries-related narratives and observations and other 

traditional ecological knowledge was shared by the interviewees. However, for the sake 

of brevity only information deemed pertinent to the present study is included in this 

synopsis. Two non-Haisla individuals were also interviewed owing to their relevant first-

hand observations of climate-related trends in the area.  

The reader should note that several epidemics since the time of European contact 

decimated the Haisla (Kitamaat) and Henaaksiala (Kitlope) populations (described in 

more detail below). The epidemics, coupled with Henaaksiala emigration from the 

Kitlope to Kitamaat, eventually lead to the amalgamation of the two nations as Haisla in 
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1949 (Pritchard 1977). As such, the terms Haisla and Henaaksiala should be considered 

to be interchangeable only after the amalgamation. 

 

Interviewees 

JW: John Wilson (Chief Sunahead – Haisla elder), Kitamaat Village, BC 

BW: Beatrice Wilson (Haisla elder), Kitamaat Village, BC 

KH: Ken Hall (Chief  C’ekwikas – Haisla elder) , Kitamaat Village, BC 

CP: Cecil Paul Sr. (Wahxed – Haisla elder), Kitamaat Village, BC 

GA: Gerald Amos (Ga Gaum Guist – Haisla elder), Kitamaat Village, BC 

GS: Glen Smith (Haisla elder), Kitamaat Village, BC 

 

DN: Dave Newman (Helicopter pilot, Canadian Helicopters, approx. 35 years  

experience flying helicopters in the Gardner Canal area year-round), Terrace, BC 

GK: Graham Kerr (Ferry captain, Alcan Inc., 11 years experience making weekly boat  

trips between Kitimat and Kemano, BC), Terrace, BC 

 

Henaaksiala demographics before and after European contact 

Prior to the arrival of Europeans, the Northwest Coast of North America was one 

of the most densely populated non-agricultural regions in the world. Within a hundred 

years after European contact, smallpox and a host of other diseases reduced the 

Northwest Coast population from appox. 200 000 in 1774 to less than 40 000 by 1874 

(Boyd 1990). Stable isotope analyses (δ13C) of human remains from multiple sites on the 

BC coast show that appox. 90 % of protein in pre-historic diets was of marine origin (this 

includes anadromous salmon and oolichan)(Chisolm et al. 1983), and archaeological 

surveys of ancient village sites show that salmon were often a primary food source (Ames 

2003), with the oil-rich sockeye and chinook being particularly favoured (Yang et al. 

2004; Speller et al. 2005). Coastal First Nations employed a variety of highly efficient 

capture and preservation techniques and in many cases exploitation rates were believed to 

rival those of modern industrial fisheries (Glavin 2000 and references therein).  

The Haisla and Henaaksiala oral histories denote a strong and ancient dependence 

on salmon resources and salmon figure prominently in their mythologies (Barbetti 2005; 
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JW; unpublished Haisla arvhival notes). They employed numerous capture techniques 

including stone tidal pounds in the salt water and traps and weirs in rivers (Hamori-Torok 

1990). The following summary of Henaaksiala and Haisla population demographics is 

presented to add some context for speculation on historic human exploitation of Kitlope 

Lake sockeye salmon. 

The first confirmed European contact was by George Vancouver’s expedition in 

June 1793. However, Jacinto Caamaño may have preceded Vancouver by about a year 

(Hamori-Torok 1990; BW). Estimates of pre-contact Henaaksiala populations for the 

Gardner Canal area range widely from < 800 (Boyd 1990) to > 3000 (KH, GA). A 

smallpox epidemic some time in the 1770s is known to have caused widespread mortality 

throughout the coastal First Nations. Conservative estimates put the coast-wide death toll 

at 30 % but the mortality occurred unwitnessed by Europeans, and the actual death toll 

could have been much higher (Boyd 1990). The Haisla and Henaaksiala appear to have 

been spared from the 1862-1863 smallpox epidemic that ravaged the rest of the north and 

central coast First Nations (Boyd 1990), but they were hit hard by numerous other 

epidemics including other smallpox epidemics, tuberculosis, and the influenza epidemic 

of 1917-18. Bureau of Indian Affairs census reports show the Henaaksiala population 

falling from 97 people in 1892 to 70 people in 1907, and the decline is generally 

attributed to tuberculosis and a low birth rate. Regarding the flu epidemic, one well-

known narrative, recorded in unpublished Haisla archival notes, is particularly chilling: 

“During the flu epidemic of 1917-18 they’d ring the firehall bell every time 
someone would die. That bell never stopped ringing toward the end. The grave 
diggers were falling down tired. There was a lineup of people waiting to ring the 
bell.” 
 
The Kitlope people originally occupied several seasonal clan villages around 

Kitlope Lake and throughout the lower Kitlope River, and a few permanent villages 

including one near the Kitlope Lake outflow (BW) and Miskusa, at the estuary. However, 

as mentioned above the Henaaksiala people were eventually so few that they merged with 

the Haisla in 1949, and no longer took permanent residence in the Kitlope watershed.  

The above human population estimates suggest that the Kitlope sockeye population 

supported annual harvest levels of several thousand fish annually. For example, a 

conservative estimate of 1000 people consuming 10-15 sockeye each annually would put 
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harvest levels within the range of those from commercial fisheries in the past decade, but 

lower than harvest levels from earlier in the 20th century (Figure 2). 

 

Salmon population and fishery dynamics 

There is general agreement among the Haisla interviewees that salmon abundance 

in the Gardner Canal area has generally declined over their lifetimes, although there are 

mixed beliefs regarding the cause(s) of the declines. When asked specifically about 

trends in Kitlope sockeye, CP described recent returns as being “almost down to zero” 

compared to those in his youth, and GS stated that these runs had become “a lot 

smaller…a lot” over his lifetime with the most recent years being the worst. CP described 

the Kitlope River one year when he was a young man as being “so plugged up with 

sockeye you could walk across it”. GA relayed observations from others describing the 

shores of Kitlope Lake as “solid red” with spawning sockeye in earlier decades. In 

contrast, lake-wide shore spawner counts from 2004-2006 did not exceed mean values of 

~100 fish per linear km (A. Hill pers. obs.).  

The Price and Co. cannery at Wakasu (a.k.a. Price Creek – near the Kitlope 

estuary) operated from 1890-1893 with annual packs averaging 422935 lbs, with most or 

all of it likely being sockeye (Lyons 1969; Pritchard 1977; Argue and Shepard 2005; 

unpublished Haisla archival notes).  The fact that the cannery only operated for four years 

initially led us to suspect that the cannery may have over-exploited the sockeye run, 

leading to poor returns after the first full sockeye brood cycle.  However, it appears that 

other factors led to the demise of the cannery. In describing the short-lived Price and Co. 

cannery at Wakasu, KH stated that “they tried canning there for a while, but then they 

backed out. There was a lot of fish there, for a start…lots…but it wasn’t the commercial 

fishing that killed it.” This claim is substantiated by other authoritative Haisla elders in 

unpublished Haisla archival notes and by industry insiders in Newell (1989): the cannery 

was severely damaged on two occasions from the catastrophic draining of an ice-dammed 

lake in Price Creek above the cannery, and when a barge carrying materials to rebuild the 

cannery capsized on the coast near Klemtu it was finally abandoned.  

Additional knowledge of Kitlope salmon populations and fishery dynamics is 

sparse, especially from the period prior to the flu epidemic of 1918. However there is no 
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doubt that Kitlope sockeye were a key food item for the Henaaksiala prior to European 

contact. A former settlement on the lower Kitlope River near the mouth of Kitlope Lake 

had the name Xwelxweltilalis, meaning ‘fire-on-the-ground place’, for the red glow the 

gravel bar had from a distance when it would be covered in racks of red sockeye flesh 

drying in the sun (unpublished Haisla archival notes). 

 
Table A1. Pack records from the Price and Co. cannery which operated near the Kitlope Estuary 
from 1890-1893 (Lyons 1969). Estimated equivalent fish numbers are based on industry standard 
conversion factors and an assumption that sockeye comprised 90 – 100 % of the pack (Argue and 
Shepard 2005; unpublished Haisla archival notes). 
 

Year Cases 
(48 x 1 lb. cans) 

Lbs. Equivalent green 
landed weight (GLW) 

(lbs. * 1.75) 

Approx. no. sockeye 
(GLW / ~8 lbs.) 

1890 3719 178512 312396 39000 
1891 3876 186048 325584 41000 
1892 6156 295488 517104 65000 
1893 6484 311232 544656 68000 

 
Until 1955 targeted commercial fisheries were conducted at the mouth of Gardner 

Canal (seine) and in the Canal itself (gillnet). Conservation concerns for numerous local 

stocks, including Kitlope sockeye, lead to a moratorium on these fisheries in 1955 that 

has never been lifted (CP; GA; JW; DFO Area History reports). Since then, the fishery 

has been conducted primarily in the coastal approach waters to Douglas Channel and 

Gardner Canal (i.e. W and NW of Butedale in Figure 1B).  

Narratives from about the 1920s and on describe heavy harvest levels of Kitlope-

bound sockeye in the commercial fishery. The earliest accounts were relayed by GA. His 

uncle noted from reading log books at the Butedale cannery in the 1920s and 30s that 

seiners would catch up to 20 000 sockeye in single sets near Crab River at the entrance to 

Gardner Canal (Figure 1), deliver the fish to the cannery, and return for another 

equivalent set in the same day. A more recent account from the early 1980s described the 

effect of a commercial fishing closure on subsistence fishing success. GA and his fishing 

partner Cyril Grant observed a ~ 1 km2 school of sockeye near Collins Bay (~ 5 km south 

of Crab River) from which they instantaneously caught 400 fish using 35 fathoms (64 m) 

of gillnet. GA described the water as being “solid black with sockeye” and stated that it 

was the largest school of sockeye either of them had ever seen. The reason for this 
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commercial fishery closure, its exact year, and its duration are unclear. In any case, 

Kitlope sockeye run is typically 1-2 orders of magnitude larger than any other sockeye 

run in the region, so the fish caught in the above narratives were most likely Kitlope-

bound. 

 

Climate dynamics 

There was a common belief among the interviewees, supported by first-hand 

observations, that there has been a warming trend in the area over their lifetimes. Direct 

observations of the duration of ice cover on Kitlope Lake were not available, as Kitlope 

Lake was generally not inhabited during the winter months when families would reside at 

Miskusa (Kitlope estuary) and Kemano Beach. However, the fresh water lens on Gardner 

Canal regularly freezes during winter cold snaps and is known to have frozen over solid 

many winters as far out as Brim River (JW; CP; KH; GS; GA; GK; DN; unpublished 

Haisla archival notes; Figure 1B). Observations on the frequency and duration of these 

winter freeze ups are a suitable proxy for ice cover on Kitlope Lake due to its close 

proximity and shared weather patterns with Gardner Canal (Figure 3, Figure 4). For 

example, KH remembers trapping with his father around Kitlope Lake as a boy and 

having to suddenly flee the watershed when a heavy snowfall began freezing on the lake 

surface and nearly immobilized their outboard-powered canoe. Once past the estuary, 

they encountered similar conditions in Gardner Canal, and took nearly 4 hours to motor 

25 km to Chief Matthews Bay breaking their way through the slush-ice with paddles. 

Sometime in the 1920s the water froze from Kitlope Lake, down the lower Kitlope River, 

and out to Brim River and the late Gordon Robertson fashioned a sled out of a canoe with 

yellow cedar runners and a mast and sail to make the voyage while a steamship waited 

for him at the edge of the ice for 3 days (unpublished Haisla archival notes). The Alcan 

corporation has used tugboats and dynamite on several occasions to break the ice for their 

other vessels not designed to withstand ice-breaking (GK; CP). 

In making regular helicopter trips to Kemano since the early 1970s DN has 

observed Gardner Canal frozen over on several occasions, but has not seen a solid freeze-

over out to Brim River since the 1970s. In making weekly boat trips to and from Kemano 
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over the past 11 years GK has seen Gardner Canal frozen over approx. 1 in. (2.5 cm) 

thick “about a half dozen times” but has generally seen much less ice in the past 6 years. 

CP stated that the last time he had heard of Gardner Canal freezing over completely was 

around 1939 (JW witnessed it in the early 1940s frozen solid out to Brim River), and that 

since then portions of the Canal have frozen over “but not the whole thing”. CP, who was 

born and raised in the Kitlope watershed, recalled traveling as a boy with his father 

upriver to one of the glaciers that feeds the mainstem Kitlope River. In a recent helicopter 

overflight he noted that the same glacier was about half the size that it had been when he 

saw it as a boy.  

Consolidated snow pack in slide chutes near the Kitlope estuary and sometimes 

along the shores of Kitlope Lake provide a convenient source of ice in the summer 

months, and sometimes year-round (Figure A1). In recent years this ice has been less 

abundant and has retreated earlier making it difficult to access, especially during the 

sockeye subsistence fishing season (August) when it is coveted for preserving catches 

(CP; GA). Related, JW noted that when he was a child there would regularly be shore ice 

in front of Kitamaat Village (brackish water) during the winter, but this is a rare 

occurrence nowadays. Regarding the record snowpack delivered to the BC northern coast 

mountains during the winter of 2007, CP remarked that “there’s lots of snow this year, 

but it’s all up high, there’s none down at the water line”, which would have been 

expected in previous decades. 
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Figure A1.  Collecting ice (consolidated snow) from a slide chute in Gardner Canal approx. 5 km 
from the Kitlope estuary on June 20, 2005.  Photograph was taken from a boat at sea level. 
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