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Chairperson:  Dr. Creagh Breuner 
 
In this body of work, I examine how testosterone (T) physiology mediates the life-
history trade-off between mating effort and parental care in the White-throated 
Sparrow.  This species exhibits a behavioral polymorphism that occurs in both 
sexes.  White-striped (WS) morphs are more territorially aggressive, sing more 
frequently and seek more extra-pair copulations.  Tan-striped (TS) morphs 
provision nestlings more frequently.  Thus this species roughly illustrates the 
trade-off between mating effort and parental care.   
 
I examine T physiology on three levels: plasma titres, binding globulins and 
response to the social environment.  I ask whether levels of T correlate with 
morph-specific behavior and does this relationship change with stage in the 
nesting cycle.  I found that WS males have significantly higher plasma levels of T 
than TS males. This difference is small, but it persisted through the parental 
stage of the nesting cycle. This suggests that T may mediate differences in 
mating effort and parental behavior in males, but is likely not the only factor.  
Female morphs did not differ in plasma T, thus T does not appear to play a 
similar role in females.   
 
Next I ask how corticosterone binding globulin (CBG) modulates T action.  I 
found that CBG binds over 90% of T and is an important modulator of T action in 
this species.  However CBG capacity did not differ between morphs, nor did 
morphs differ in baseline levels of corticosterone (CORT, a stress hormone that 
competes with T for binding sites on CBG.)  Therefore interactions with CBG and 
CORT do not affect T action differently in the morphs, and patterns of free T (T 
not bound to CBG) mirror patterns of total T. 
 
Finally I investigated how T physiology responds to a change in the social 
environment- the establishment of a dominance relationship. WS males exhibited 
aggression more frequently and tended to dominate TS males.  Levels of total T, 
CBG, CORT and free T were not predictive of future dominance status.  Nor did 
these measures show persistent changes once the dominance relationship was 
established.  The response of T physiology to the formation of a dominance 
relationship did not differ between morphs. 
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INTRODUCTION 
 
 

Understanding life history trade-offs is a major objective in current biological 

research; in the last two decades researchers investigating the mechanisms and 

evolution of life histories have become increasingly interested in hormones.  A 

key question is:  how does hormone physiology mediate life history trade-

offs?  Hormones are chemical signals that circulate in the bloodstream and have 

effects throughout the body.  They act as coordinators, influencing life history 

traits across physiology, behavior and morphology so that each is appropriate to 

the life history stage.  Because hormones affect multiple systems in the body 

simultaneously, they are said to have pleiotropic effects(Ketterson and Nolan Jr., 

1999), much as genes do.  This pleiotropy has important consequences for the 

evolution of traits.  If two traits are both promoted by the same hormone, their 

expression may be linked.  An advantageous increase in one trait, if achieved via 

elevation of the hormone, may lead to an increase in the linked trait, which may 

or may not increase fitness.  Thus hormones not only mediate transitions 

between life history stages, but may also constrain the independent evolution of 

life-history traits.   

 

Commonly, a hormone may cause an increase in one trait while causing a 

second trait to decrease.  These instances of antagonistic pleiotropy often 

parallel life-history trade-offs and suggest that hormonal mechanisms may 

underlie these trade-offs.  Studies in a broad range of taxa have implicated 
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hormones as mediators of life-history trade-offs.  For instance, the trade-off 

between reproduction and survival may be hormonally mediated in both 

vertebrates and invertebrates.  In burying beetles, juvenile hormone increases 

the number of eggs produced by females, but decreases their ability to survive 

starvation (Trumbo and Robinson, 2004).  Glucocorticoids, the vertebrate stress 

hormones, promote behaviors that increase survival, such as foraging behavior 

(Angelier et al., 2007; Kitaysky et al., 2001), while decreasing investment in 

reproduction (Moore and Jessop, 2003; Silverin, 1998).  For the most part, 

studies of the relationship between hormones and life-history traits have relied 

solely on measurements of hormone levels in the blood.  But hormone systems 

have multiple components, and plasma titres represent just one element in the 

physiological system. A true understanding of the hormone-life history 

relationship requires a more comprehensive analysis of hormonal systems.   

 

Hormone action is modulated at multiple levels in the body and each of these 

levels in turn may be responsive to changes in the environment.   Clearly, 

hormone action will be highly dependent on the amount of hormone in the blood 

or plasma.  But hormones do not have effects until they bind with receptors, and 

so the number of receptors can also have profound effects on hormone action.  

In addition, the receptor for a given hormone may exist in several forms each 

with its own effects on hormone action(Riddiford et al., 1999).  The ability of 

hormones to access receptors may be modified by binding globulins, proteins in 
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the blood that bind to many hormones and prevent them from crossing capillary 

walls and leaving the bloodstream.   

 

Hormonal systems are not static but rather highly responsive to the environment.  

It is well known that plasma hormone levels respond to environmental stimuli 

(Deviche et al., 2006; Hahn et al., 2004; Moshkin et al., 2002; Trumbo and 

Robinson, 2004), but hormone receptor number and binding globulins also 

respond to changes in both the abiotic and biotic environments (Bradley and 

Stoddart, 1992; Breuner and Orchinik, 2001; Damassa et al., 1995; Deviche et 

al., 2001; Perret, 1986; Pyter et al., 2007; Shaw et al., 2007).   Understanding 

hormone action requires consideration of plasma hormone level, binding 

globulins, and receptors, which collectively I will refer to as “hormone 

physiology.”   

 

In this body of work, I take this more comprehensive approach to examine how 

hormone physiology mediates a life history trade-off. The trade-off I consider 

here is that between mating effort and parental care.  In many biparental species, 

individuals face a choice between investing in the offspring they have with their 

current mate, or spending time and energy in pursuit of additional matings.  This 

trade-off has been well studied, particularly in birds, where many species exhibit 

biparental care.  In birds and other vertebrates, many of the behaviors associated 

with mating effort are promoted by testosterone (T).  These behaviors include 

courtship display (Salek et al., 2001), pursuit of extra-pair matings (Reed et al., 



  4 

2006) and territorial behaviors (Wingfield et al., 1987).  In contrast, parental care 

behaviors, such as offspring defense, and incubation or feeding of offspring, 

frequently show a negative association with T(Stoehr and Hill, 2000; Van Roo, 

2004).  Thus, in many species, T appears to be an important mediator of the 

trade-off between mating effort and parental care.   

 

The paradigm that T increases mating effort while decreasing parental care is not 

without exceptions.  In species where male parental care is essential to 

reproductive success, elevations of plasma T do not lead to reductions in 

parental care (Hunt et al., 1999; Lynn et al., 2005; Steiger et al., 2006).  Unlike 

most temperate bird species, many tropical species exhibit breeding behavior 

and territoriality with little elevation in T (Wingfield et al., 1991).  It is 

hypothesized that the ability to express reproductive behaviors, territoriality etc. 

in the absence of high T allows these species to avoid the costs of prolonged 

elevations of T (Wingfield et al., 2001).  Clearly, the role of T in the mating effort- 

parental care trade-off is more complex then initially thought.   

 

Most studies of the relationship between T, mating effort and parental care have 

measured only plasma levels of T (but see (Landys et al., 2007; Lynn et al., 

2007)); however T physiology, particularly in birds, is more complex.  This 

complexity may or may not explain exceptions to the paradigm that T increases 

mating effort while decreasing parental effort.  It most certainly must be taken 

into consideration when looking for relationships between T and behavior.  Like 
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many steroids, T binds to a binding globulin in the plasma.  In mammals, T is 

bound by a sex-steroid specific binding globulin, binding only androgens and 

estrogens.  Birds, in contrast, have no sex steroid binding globulin and instead T 

is bound by corticosterone binding globulin (CBG)(Breuner et al., 2006; Deviche 

et al., 2001; Klukowski et al., 1997; Landys et al., 2007).  Testosterone must 

compete with another hormone, corticosterone (CORT), for binding sites on 

CBG.  Therefore the amount of T bound to CBG will be determined not only by 

the amount of CBG present (number of binding sites), but also the amount of 

CORT (number of competing molecules).  Corticosterone is a glucocorticoid that 

functions in metabolism and the response to stressors.  So CBG not only 

regulates the action of T at the plasma level, it also represents a major point of 

interaction between the stress hormone axis (CORT) and T.  Add to this the fact 

that both T and CORT are immediately responsive to changes in the biotic and 

abiotic environment (Canoine and Gwinner, 2005; Deviche et al., 2006; Romero 

et al., 2006; Wingfield et al., 1990), and a very complex picture of T physiology 

emerges.  Here I examine how T physiology mediates the trade-off between 

mating effort and parental care.  In the following studies I consider the 

effects of plasma hormone level, binding globulins, and changes in the 

social environment. 

 

Like most complex biological interactions, the relationship between a hormone 

and a behavior is typically noisy. A variety of research approaches have been 

used to aid in detecting potential associations. Relationships are most detectable 
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when comparing hormone measures between individuals with extreme values of 

the behavioral trait. But behavior and other traits are usually normally distributed, 

making individuals with extreme trait values rare and hard to sample.  One way 

to circumvent this is to compare hormone measures between species that vary in 

the behavior of interest.  Other studies compare hormone levels between males 

and females and correlate these differences with a difference in behavior 

between the sexes.  While inter-species and inter-sex comparisons have been 

informative, confounding factors are inherent to these approaches and may 

complicate interpretation of the results of these studies.  A third approach is to 

experimentally manipulate hormone levels and measure effects on behavior and 

other traits.  This approach, called phenotypic engineering (Ketterson et al., 

1996), has proven very productive, but is not without its own drawbacks.  For 

instance, some aspects of hormone physiology, such as CBG or receptor 

number, may be impossible to manipulate directly with currently available 

pharmaceutical tools. 

 

Here I use yet another approach and examine the relationship between T 

physiology and the mating effort/parental care trade-off by taking advantage of a 

behaviorally polymorphic species.  In these species, there is exaggerated 

behavioral variation within a sex leading to a bimodal (or in some species 

trimodal) distribution of a behavioral trait within a sex.  This allows for powerful 

comparisons between individuals that exhibit distinct behavioral phenotypes but 

are still members of the same species and sex.  Behaviorally polymorphic 
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species allow us to avoid introducing many confounding factors and exploit a 

“natural” phenotypic engineering experiment.   

 

Behaviorally polymorphic species have been used profitably to explore the 

hormonal mechanisms of male alternative reproductive strategies. Most of these 

species exhibit a polymorphism only within the male sex. Morphs often take the 

form of a territorial morph that performs more sexual displays and exhibits male 

secondary sex characteristics, and a sneaker or satellite male who displays less 

and may mimic female morphology(Bass and Andersen, 1991; Sinervo and 

Lively, 1996; Thompson and Moore, 1992).  However, most endocrine studies of 

behaviorally polymorphic species measure only hormone levels in the plasma 

and do not consider other aspects of hormone physiology.  A recent review by 

Knapp(Knapp, 2004), highlights more recent investigations that consider the role 

of binding globulins and other factors that may modulate hormone action.   

Knapp also emphasizes the need to consider interactions between different 

hormone axes, as well as the axes’ interactions with the environment in future 

studies of behaviorally polymorphic species.  These recommendations are in 

agreement with the more comprehensive analysis of hormone physiology that I 

advocate above.   

 

In the following three chapters, I investigate hormone physiology in a behaviorally 

polymorphic species that is uniquely suited for studying the trade-off between 

mating effort and parental care.  The white-throated sparrow is a migratory 
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songbird that breeds in the northeastern United States and across the Canadian 

shield, and winters in the southeastern U.S.  These sparrows are typically 

socially monogamous and exhibit biparental care with males assisting with the 

feeding of nestlings and fledglings (Falls and Kopachena, 1994).  Unlike other 

polymorphic species described above, white-throated sparrow morphs can be 

roughly classified as “more aggressive” and “more parental.”  Birds with white-

stripes on their crown (WS) respond more aggressively to territorial intrusions 

(Kopachena and Falls, 1993a), sing more frequently (Falls and Kopachena, 

1994) and may pursue more extra-pair copulations (Tuttle, 2003).  Tan-striped 

birds (TS), in contrast, provision nestlings at a higher rate (Kopachena and Falls, 

1993).  This species is also advantageous for the present study because each 

morph occurs in both sexes.  Morph-type is determined by a chromosomal 

inversion on the second somatic chromosome (Thorneycroft, 1967; Thorneycroft, 

1975) and is not-sex linked.  WS females provision nestlings less than TS 

females(Kopachena and Falls, 1993), solicit copulations more frequently(Tuttle, 

2003) and respond more aggressively to territorial intrusions(Kopachena and 

Falls, 1993a).  In the white-throated sparrow, morph-types illustrate the mating-

effort/parental care trade-off providing us with an ideal opportunity to study 

hormonal mediation of this trade-off in both sexes. 

 

This dissertation addresses how T physiology may mediate the trade-off between 

mating effort and parental care in the White-throated Sparrow.  Specifically, 

does T physiology mediate morph-specific patterns in territorial aggression 
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and parental care in this species?  First, I ask whether plasma levels of T 

correlate with morph-specific behavior during the breeding season and how this 

relationship might change with stage in the nesting cycle.  Second, I examine 

how T action is modulated by CBG, as well as how interactions between T, CBG 

and CORT may differ between the morphs.   Finally, I examine how all of these 

parameters respond to a change in the social environment.  These studies 

represent a comprehensive analysis of the hormonal mediation of a life history 

trade-off.  Understanding the relationship between hormone physiology and life 

history helps us understand not only the mechanisms of life history traits, but 

informs our understanding of life histories at all levels of analysis.    
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Abstract 

 

The White-throated Sparrow (Zonotrichia albicollis) exhibits a genetic 

polymorphism that affects plumage and behavior in both sexes.  Birds belonging 

to the white-striped morph are more territorially aggressive while tan-striped 

morphs provision nestlings at a higher rate. We investigated testosterone 

physiology in this species in an effort to understand hormonal mechanisms for 

differences in aggression and parental care observed between the morphs. 

 

1.  We found small but significant differences in plasma testosterone between 

white-striped and tan-striped males over the course of the breeding season. This 

difference correlates with previously observed differences in aggressive behavior 

and suggests that testosterone may play a part in mediating these differences.  

Testosterone remained higher in white-striped males relative to tan striped males 

while males were provisioning nestlings and fledglings.  Thus, testosterone may 

also be contributing to the relatively reduced levels of parental care exhibited by 

white-striped males.    

 

2.  We found no difference in plasma testosterone between white-striped and 

tan-striped females, suggesting that testosterone does not mediate differences in 

aggression between female morphs. 
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3.  Injection with exogenous gonadotropin releasing hormone led to greater 

testosterone secretion in both males and females, but did not differ by morph.  

Therefore we conclude that differences in plasma testosterone between the 

morphs are due to differences in testosterone regulation upstream of the 

pituitary.   

 

Introduction 

 

The relationship between hormones and behavior, like most biological 

relationships, is noisy. Correlations between a hormone and a behavior will be 

most easily detected when comparing individuals with extreme values of a 

behavioral trait.  However, within a species or sex, behavioral traits are typically 

normally distributed and thus these “extreme” individuals will be rare.  In order to 

compare distinct behavioral phenotypes, researchers often compare individuals 

of different species.  This approach has been informative, but involves many 

confounding factors such as differences in species ecology.  Another approach 

that has proved successful is phenotypic engineering (Reed et al., 2006)  in 

which treatment with exogenous hormones is used to exaggerate differences 

between endocrine phenotypes within a natural range. 

 

Behaviorally polymorphic species offer a natural case of phenotypic engineering 

providing exaggerated, often bimodal distributions of a behavior trait within a 

single population.  This allows us to compare individuals that exhibit distinct 
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behavioral phenotypes, and makes relationships between hormones and 

behavior easier to detect.  Thus, behaviorally polymorphic species are a powerful 

tool for studying the endocrine bases of behavior.  Many species across a variety 

of taxa exhibit two or more behavioral morphs within a sex.  In most cases, the 

polymorphism is only exhibited by the male sex and these male morphs exhibit 

alternative reproductive strategies.  Commonly one morph will be a territorial, 

aggressive phenotype, while the other morph is less aggressive and employs a 

“sneaker” or a “satellite” strategy (Brantley et al., 1993; Lank et al., 1995; Sinervo 

and Lively, 1996).  These species have been used very successfully to study the 

hormonal and neural mechanisms of courtship behaviors and territorial 

aggression. 

 

The White-throated Sparrow (Zonotrichia albicollis) exhibits a very different 

behavioral polymorphism that is distinguished by two important features.  First, 

morph types may be roughly classified as a territorially “aggressive” morph that 

expends more effort in pursuit of extra-pair matings and a “parental” morph. 

White-striped (WS) birds are more aggressive in response to simulated territorial 

intrusion (Kopachena and Falls, 1993b), they are estimated to have higher rates 

of extra-pair copulation (based on rates of intrusion into neighboring territories 

(Tuttle, 2003) and they sing more frequently than do tan-striped (TS) birds (Falls 

and Kopachena, 1994b).  Tan-striped birds, the “parental” morph, provision 

nestlings at a higher rate than their WS counterparts (Kopachena and Falls, 

1993). The “aggressive” and “parental” morphs represent a very different 
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dichotomy than the more common “territorial” morphs and “sneaker” morphs. 

Morph types in this sparrow illustrate what is thought to be a fundamental trade-

off between mating effort and parental care (Trivers, 1972). Thus, this species 

presents us with an ideal opportunity to study hormonal mechanisms of this 

putative trade-off.  Second, morph type is determined by a pericentric inversion 

on the second somatic chromosome, and is not sex-linked(Thorneycroft, 1966; 

Thorneycroft, 1975).  Thus, females exhibit both morph-types, in contrast to most 

other polymorphic species in which only males exhibit the polymorphism. This 

presents a unique opportunity to study endocrine bases of aggressive and 

parental behavior in females, as well as males.   

 

Data from many taxa suggest that testosterone (T) may mediate the trade-off 

between mating effort and parental care that is illustrated by the morphs (Fleming 

et al., 2002; Reburn and Wynne-Edwards, 1999; Wingfield et al., 1990b; Young 

et al., 2005).  Testosterone and other androgen levels are positively associated 

with the breeding season aggressive and sexual behaviors that are more 

pronounced in the WS morph (Balthazart, 1983; Schwabl, 1991; Wingfield et al., 

1987a).   In contrast, experimentally elevated T often leads to a reduction in 

parental care behavior (Schoech et al., 1998; Schwagmeyer et al., 2005; Van 

Roo, 2004) and males that provide parental care usually show reduced T levels 

when they enter the parental stage of the nesting cycle (Wingfield et al., 1987b).  

Thus WS birds, both male and female, would have higher levels of plasma T 

relative to TS birds.  If T is also mediating differences in parental care, we expect 
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that the difference in T levels will persist into the parental stage of the nesting 

cycle.  In addition to comparing plasma T levels, we also investigated how 

differences in T between the morphs might be generated.  We compared the 

sensitivity of the hypothalamic-pituitary-gonadal axis (which regulates the 

secretion of T) between the morphs.  We expected that higher levels of plasma T 

would be associated with differences in testosterone regulation at the level of the 

pituitary or gonad.  

 

Materials and Methods 

 

Study Species 

The White-throated sparrow is a migratory songbird the breeds in the 

northeastern United States and Canada and winters in the southeast U.S.   This 

species is primarily socially monogamous though rarely males (usually WS) will 

attempt polygamy.  Males assist with feeding of nestlings and fledglings but do 

not incubate (Falls and Kopachena, 1994a).  Sparrows in our study population 

may rear two broods per season and will renest 3 or more times if nests are 

depredated (personal observation.)  

 

Collection of Field Samples 

Breeding sparrows were observed and captured on forested property owned 

and/or managed by the Northwoods Stewardship Center in East Charleston, 

Orleans County, Vermont.  Samples were collected between 22 May and 29 July 
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2003, 2 May and 23 July 2004, and 21 April and 10 July 2005.  A total of 53 

males (20 TS and 33 WS) and 37 females (13 WS and 24 TS) were sampled.  

Sparrows were captured in seed-baited Potter traps or mist-nets.  Mist-nets were 

either placed near the nest, or birds were attracted to the net using playbacks of 

conspecific songs.  Blood samples were collected by venipuncture of the alar 

vein and blood was drawn into a heparinized microhematocrit tube via capillary 

action.  Samples used to measure T were collected within 10 minutes of the bird 

contacting the net or the fieldworker approaching the potter trap (3 out of 139 

were collected within 15 minutes) so as to minimize the effect of stress on T 

levels(Lance et al., 2004; Moore et al., 2000). All birds were banded with a U.S. 

Fish and Wildlife numbered band as well as a unique combination of colored 

plastic leg bands allowing birds to be identified visually at a distance. Nests were 

located and monitored for as many individuals as possible in order to determine 

the stage in the nesting cycle at which each sample was taken. 

Blood samples were kept on ice while in the field (up to four hours.)  Each 

sample was then centrifuged and plasma drawn off using a Hamilton syringe.  

Plasma was kept frozen at approximately -20 oC until it could be assayed. 

GnRH Challenge 

Lab:  Wintering sparrows were captured in Travis County, Texas in seed-

baited Potter traps or seed-baited mist nets.  Birds were housed in individual 13” 

x 15” x 17” cages in captivity and were photo-stimulated (14L:10D) for 3 weeks to 

bring birds into pseudo-breeding condition prior to the start of the experiment. 
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We followed a GnRH challenge protocol previously used in dark-eyed juncos, a 

closely related and similarly sized species(Jawor et al., 2006).  A blood sample 

was taken from each individual via venipuncture of the alar vein.  Birds were then 

given an intramuscular injection in the pectoralis muscle of either 50µL GnRH 

diluted in saline (25ng/µL) or 50µL saline as a control.  They were then held in a 

cloth bag for 30 minutes at which point a second blood sample was taken.  One 

week later the experiment was repeated as described except that individuals that 

had received the GnRH treatment now received a control injection and vice 

versa. 

Field:  The GnRH challenge experiment was repeated using free-living 

breeding birds, but was limited to males only.  Male sparrows were caught at the 

field site in Orleans County, VT and were bled, injected and bled again as 

described above except that separate sets of birds received the GnRH and saline 

treatments.  All birds included in this experiment were caught between May 10 

and May 27, 2005, prior to the first egg of the season. This early in the breeding 

season, most of the birds are relatively synchronized in their nesting attempts 

and we expected reduced variation in baseline T levels between males. 

 

Statistical Analyses:  Values of plasma testosterone in all experiments 

(except the field GnRH trial) were not normally distributed (positively skewed) 

and were log transformed (log (T+1) or ln T) to correct for this.  During the course 

of the field study 53 males (33 WS, 20 TS) and 37 females (13 WS, 24 TS) were 

sampled.  Some individuals were sampled more than once over the course of the 
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field study, but no individual was bled more than once in any 7 day period to 

minimize the physiological effects of sampling.  A total of 94 samples were 

collected from males with a mean of 1.8 samples per individual (range 1-7).  43 

female samples were collected with a mean of 1.4 samples per female (range 1-

3).  Field samples obtained from males and females were analyzed separately.  

T levels were compared between morphs using mixed-effects models 

constructed in SPSS 15.0 (SPSS Inc.) or SAS (PROC MIXED, SAS 9.1.2, SAS 

Institute 1994.)  Models were constructed using a backward elimination strategy 

and individual was entered as a random effect.  

 

Our analysis also considered the effects of phenology.  Date was converted to 

“corrected day”:  the julian date on which the sample was taken corrected for the 

date that the first egg of that year was found in the study site.  Using the 

“corrected day” value allowed us to standardize our date variable between the 

three years of the study.  This is advantageous because in 2004, breeding 

started approximately 9 days earlier than in either 2003 or 2005.   

 

We performed a second analysis on the subset of birds whose nests we had 

located and monitored in order to examine the effect of stage in nesting cycle on 

differences in T between morphs. Due to sample size limitations we grouped 

birds that were sampled during pre-nesting, nest building and laying into a stage 

called “defense.”  During the defense stage, birds may be either setting up 

territories, defending a fertile mate, or seeking extra-pair copulations activities 
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during which they exhibit aggressive behaviors.  Females captured during 

incubation, nestling feeding and fledgling feeding were grouped into a stage 

called “parental.”  In contrast, males captured during incubation were categorized 

as being in the defense stage. Males of this species do not incubate and have 

not been observed to feed incubating females, and are therefore not engaged in 

parental activities.  Males were only classified as “parental” when they were 

feeding nestlings or fledglings.  Males (n=46 individuals, 74 samples) and 

females (n=31 individuals, 38 samples) were analyzed separately.  Testosterone 

levels were analyzed using a mixed-effects model with morph and stage as fixed 

factors and individual as a random effect.  

 

Results of the laboratory GnRH challenge experiments were analyzed using 

repeated measures ANOVAs in the statistical software package, JMP 5.0.1.  

Data from the GnRH challenge performed in the field was analyzed using a two-

tailed t-test (GraphPad Prism 4.00.) 

 

Enzyme Immunoassay:  White-throated Sparrow plasma testosterone 

levels were measured using an enzyme immunoassay kit from Assay Designs 

Inc. (catalog no. 900-065).  These kits use raw plasma, which is added directly to 

the well.  Steroid binding globulins, which may interfere with assay reactions, can 

be degraded by adding a steroid displacement buffer (SDB).  Because these kits 

are designed to be used with a variety of biological fluids, plasma dilution and 

concentration of SDB must be optimized.  Optimization for T was performed in a 
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similar manner to the optimization for corticosterone, as detailed in Wada et al. 

(Wada et al., 2007).   Briefly, A sample of pooled white-throated plasma was 

stripped of endogenous testosterone by incubating plasma with a charcoal 

solution (1% norit A Charcoal and 0.1% dextran in assay buffer).  This stripped 

plasma was then spiked with a known concentration of testosterone (500 pg/mL).  

Spiked, stripped plasma was assayed at four different dilutions (1:5, 1:10, 1:20, 

1:30, diluted with assay buffer) with three different concentrations of SDB (0%, 

1%, 2%) and compared to a standard curve on the same plate.  Hence, each 

sample should read at 500 pg/ml T, unless there is interference from the plasma.  

For testosterone, a plasma dilution of 1:20 with no SDB added removed the 

interference of plasma compounds in the assay.  

 

Individual plasma samples were thawed, picofuged, vortexed and diluted with 

assay buffer to a 1:20 concentration.  Samples were aliquotted into separate 

wells in triplicate.  The six-point standard curve (2,000 pg/mL to 8.2 pg/mL) and a 

separate external standard were also run in triplicate on each plate.  Enzyme-

labeled testosterone and antibody were added and the plate was incubated at 

26°C on a shaker for 2 hours.  Wells were then emptied and rinsed with wash 

buffer and enzyme substrate was added.  The plate was incubated for one hour, 

again at 26°C, but without shaking.  Stop solution was added after this final 

incubation and the plate was immediately read using a Multiskan Ascent 

microplate reader at 405 nm corrected at 595 nm.  The lower limit of detectability 

for these assays was 1.6 pg per well, and all non-detectable samples were 
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assigned this value.  External standards were used to calculate inter-plate 

variability (11.6 %), and intra-assay coefficients of variation were calculated using 

sample replicates (9.4 %). 

Results 

 

Testosterone 

 

Effect of corrected day:  Females:  We found no significant difference in T 

between WS and TS females sampled in 2003 and 2004 . The linear mixed-

effect model (Table 1) revealed no significant effect of the fixed factor morph 

(p=0.44).  Testosterone declined with day in both morphs, however this trend 

was not significant (p=0.07.)  

 

Males:  The linear mixed-effects model revealed a significant effect of the fixed 

factors morph (p=0.02) and date (p=0.004; Table 2).  White-striped males had 

higher T than TS males and levels declined over the season in both morphs. 

 

Effect of stage in nesting cycle:  We found no interaction between morph 

and stage in either males or females.  There was a significant effect of morph in 

males, with WS males having higher T levels than TS males in both stages 

(p=0.023) (Table 4 and Fig. 1). Males tended to have higher T in the defense 

stage, though this effect was not significant (p=0.12; Table 4.)  There was no 

effect of morph or stage in females (Table 3 and Fig. 2).   
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 Playback:  Social interactions may increase plasma T in some species 

(Wingfield and Hahn, 1994; Wingfield et al., 1990a).  As such, longer song-

playbacks (a simulated social interaction) may influence T level.  However, our 

use of playback to capture birds did not increase T in male WTSP (length of 

playback defined as time from start of playback to capture in the net).  A linear 

regression revealed a loose but significant negative relationship between length 

of playback and plasma T levels (adjusted r2= 0.06, p=0.04, b= -0.13.) The 

negative slope of the correlation suggests that birds with higher T levels to begin 

with may have responded to playback and been captured more quickly than 

those with lower T; i.e., that T is influencing time to capture, not that length of 

playback is influencing T within our sampling timeframe.  This effect should not 

bias our results because there was no difference in the length of playback 

needed to capture birds of the two morphs (N=51, F= 1.18, p=0.3). 

 

GnRH Challenge 

 

Lab:  Both males (n= 21; 14 WS, 7 TS)  (Fig. 3) and females (n= 10; 5 

WS, 5 TS) (Fig. 4) showed elevated T in response to GnRH injection compared 

to those injected with saline  (p< 0.001 and p= 0.003 respectively). However 

there was no difference between morphs in either sex (males, p=0.99; females, 

p=0.48).  
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Field:  We tested response to GnRH in free-living, breeding male WTSP 

(n=13; 7 WS, 6 TS) to ensure that the lack of morph difference observed in the 

lab was not due to a lack of environmental cues.  As in the lab, we found no 

difference between morphs in response to GnRH injection (Fig. 5 p=0.4, t=0.88, 

df=11). 

 

Discussion 

 

Testosterone 

 

Contrary to our prediction, we found no difference in T between WS and TS 

females.  Thus T does not appear to mediate the difference in aggression 

between female morphs.  Mechanisms of female aggression are poorly 

understood and many studies have found no relationship between T and 

aggression in females (Elekonich and Wingfield, 2000; Goymann and Wingfield, 

2004).  However, in the dunnock (Prunella modularis), females involved in 

repeated aggressive interactions in competition for mates exhibited higher 

testosterones levels (Langmore, Cockrem & Candy, 2002).  It is possible that 

differences in aggression between WS and TS females may result from 

differences in other hormones such as estrogen or progesterone, as suggested 

by work in reptiles and mammals (Woodley, Matt and Moore, 2000; Woodley and 

Moore 1999 (Sceloporus jarrovi); Kapusta, 1998 (Clethrionomys glareolus)).  Or 

aggression may even be influenced by the ratio between two hormones such as 
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testosterone and progesterone as (e.g. in the mouse, Peromyscus californicus; 

(Davis and Marler, 2003).) 

 

This study demonstrates a significant difference in plasma T levels between WS 

and TS males and shows that this difference persist across both the defense and 

parental stages of the nesting cycle.  These differences in plasma T are 

consistent with morph-specific differences in aggression, suggesting that T may 

mediate this difference in male behavior.   It is noteworthy that WS males also 

had higher T during the parental stage.  Given the effects of T on parental 

behavior in other species (Schoech et al., 1998; Schwagmeyer et al., 2005; Van 

Roo, 2004), it is possible that T may also influence differences in parental 

behavior between male morphs.   

 

It must be emphasized that the magnitude of the difference in plasma T between 

morphs is small.  In all analyses of male morphs, models indicated that the 

difference between morphs was between 0.5 and 0.6 ng/mL.  The biological 

relevance of such a small amount of T is unclear, as there have been very few 

studies evaluating the dose-response effect of T on behavior.  One factor that 

may be reducing the magnitude of the difference that we detect is individual 

variation. Variation between individuals, and thus within morphs, is to be 

expected because an individual’s “testosterone phenotype” results from an 

interaction between its genotype and the environment.  In this specie, there is a 

demonstrated genetic component to the phenotype (morph-type is determined by 
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a peri-centric chromosomal inversion (Thorneycroft, 1966).)  However, factors in 

both the developmental and immediate social environment may modify the 

testosterone phenotype (Wingfield 1985).  These factors are not expected to vary 

systematically with morph type (but see (Formica et al., 2004)) and therefore will 

add noise to any morph-specific pattern in testosterone. 

 

Despite potential individual differences in developmental history and social 

environment, we still detect a consistent difference between male morphs.  In a 

similar study, Spinney et al. (Spinney et al., 2006) also found similar (small) 

differences in T between free-living male morphs captured in May.  Taken 

together our results suggest that differential regulation of T may play a part in 

mediating differences in behavior between male morphs.  We also suspect that 

other hormonal or neural systems are playing an important role.  For example, 

Maney et al (2005) recently demonstrated that the WS morph has more 

vasotocin innervation in brain areas associated with agonistic behavior.  

Vasotocin is a neuropeptide hormone that has been associated with aggressive 

behavior in some species (Goodson et al., 2004; Maney et al., 1997). 

 

The difference in T between WS and TS males is consistent with results in other 

behaviorally polymorphic species, in which the more aggressive morph has 

higher levels of androgens. In side-blotched lizards, orange territorial males have 

significantly higher levels of T than do the less aggressive blue males, or yellow 

sneaker males (Sinervo et al., 2000).  Similarly in the midshipman fish, territorial 
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males have higher levels of 11-ketotestosterone than do sneaker morphs 

(Oliveira et al., 2002).  In contrast, previous studies of the white-throated sparrow 

failed to show a difference in testosterone levels between WS and TS individuals 

(DeVoogd et al., 1995; Schlinger, 1987; Schwabl et al., 1988).  Two of these 

studies were conducted using non-breeding, captive birds in which we would 

expect T levels to be low and therefore differences would difficult to detect.  

DeVoogd et al (1995) measured plasma T in during the breeding season when it 

should have been elevated and found no differences between morphs.  However, 

given the small effect sizes and large inter-individual variation, it is not surprising 

that other studies did not detect a difference between morphs. 

 

GnRH Challenge 

 

Male morphs differ in plasma T levels, but what is the physiological difference 

between the morphs leads to this difference in T?  The GnRH challenge 

experiment helps us localize the mechanism that leads to differences in T 

secretion.  In this experiment, the pituitary is stimulated with an exogenous dose 

of GnRH, thus activating the pituitary-gonadal axis to secrete T.  Because 

individuals are given equal doses of GnRH, any differences in T secretion can be 

interpreted as differences in the ability of either the pituitary or gonad to respond 

to the secretagogue.  
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We found no difference between morphs in response to GnRH injection. The lack 

of difference in this study suggests the morph-difference in plasma T stems from 

a difference in testosterone regulation at the hypothalamus or higher brain 

regions, rather than a difference in the pituitary or gonad.  This is consistent with 

Spinney et al (2006) who found no differences between morphs in LH levels 

following GnRH injection.  Interestingly, their study did report a greater elevation 

of T in response to GnRH in WS males.  Thus, it is not entirely clear at which 

level in the hypothalamic-pituitary-gonadal axis differences in T are generated.  

Potential factors at the level of the hypothalamus include differences in the 

number of GnRH secreting neurons, or the number of testosterone receptors 

involved in negative feedback. 

 

This study demonstrates a difference in plasma testosterone that correlates with 

the observed differences in aggression between male white-throated sparrow 

morphs, and shows that this difference persists during both the aggressive and 

parental phases of the nesting cycle.  Furthermore, it suggests that the 

mechanism responsible for this difference in plasma T may lie at or above the 

hypothalamus. It remains to be seen what mechanisms, hormonal or otherwise, 

underlie differences in aggression between female morphs.  Our findings 

comprise an essential first step in the investigation of the endocrine mechanisms 

responsible for generating a behavioral polymorphism in the white-throated 

sparrow.  This species is an interesting case study in and of itself, but it is our 
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hope that it will also provide a useful model system in which to compare and 

contrast distinct behavioral phenotypes within populations. 
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Table 1.  Female Testosterone in Relation to Morph and Corrected Day 
Linear Mixed-Effects Model 

 
 
 
 
 
 
 

Table 2. Male Testosterone in Relation to Morph and Corrected Day 
 
Linear mixed-effects model 
 
Fixed Effect Standard Estimate Error F df P-value 

Intercept 0.874 0.056 - - - 
Morph -0.202 5.705 5.88 40 0.019 
Corrected Day -0.013 9.065 9.46 40 0.003 

 
 
Table 3. Female Testosterone in Relation to Morph and Nesting Stage 
 
Mixed Repeated Measures Model-Females 

 
 
 
 
 
 

Table 4.  Male Testosterone in Relation to Morph and Nesting Stage 
 
Mixed Model- Males 
 

Fixed Effect Numerator  
df 

Denominator 
df 

F P-value 

Morph 1 37 5.622 0.023 
Stage 1 68 2.495 0.119 

 
 
 
 

Fixed Effects Standard Estimate Error F  df P-value 

Intercept 0.3105 0.06048 - - - 

Morph 0.05109 0.06408 0.64 11 0.44 

Corrected day -0.00243 0.001191 4.15 11 0.066 

Fixed Effects Numerator  
df 

Denominator 
df 

F P-value 

Morph 1 27 0.44 0.51 

Stage 1 1 5.25 0.262 
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Figure 1:  Plasma testosterone in males during defense and parental stages of 

nesting cycle. Gray bars represent mean T in TS males, White bars 
represent mean T in WS males.  Error bars represent SEM.  Sample sizes 
are indicated inside the bars.  Bars that do not share a lettered superscript 
are significantly different according to the linear mixed-effects model.  T 
tends to be higher during the defense stage in both morphs.  WS males 
had significantly higher T than TS males in both the defense and parental 
stages. 
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Figure 2: Plasma testosterone in females during defense and parental stages of 

nesting cycle. Gray bars represent mean T in TS females, White bars 
represent mean T in WS females.  Error bars represent SEM.  Sample 
sizes are indicated inside the bars.  Bars that do not share a lettered 
superscript are significantly different according to the linear mixed-effects 
model.  T is signficantly higher during the defense stage in both morphs, 
however there was no significant difference between morphs.   
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Figure 3:  Response of captive WS (gray squares, n = 14) and TS (open circles, 
n = 7) males to GnRH (solid lines) or saline (dashed lines) injections.  Data are 
plotted as mean ± SEM.  GnRH significantly increases T levels, but does so 
equally in both morphs. 
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Figure 4:  Response of captive WS (gray squares, n = 5) and TS (white circles, n 
= 5) females to GnRH (solid lines) or saline (dashed lines) injections.  Data are 
plotted as mean ± SEM.  GnRH significantly increases T levels, but does so 
equally in both morphs.   
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Figure 5:  Increase in plasma T in free-living males injected with exogenous 
GnRH.  Bars indicate mean + SEM and sample size is indicated within bar.  
There was no significant difference between morphs (white bar= WS males; tan 
bar=TS males.)  Power analysis indicates that a sample size of 92 individuals per 
morph would be needed to detect a difference in response between morphs with 

β= .10.    
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Abstract 

 

According to the “Free Hormone Hypothesis”, hormone molecules bound to a 

binding globulin protein cannot cross membranes and are restricted from 

entering tissues. Only unbound, “free” hormone, which enters tissues, is 

biologically active. Mammals have both sex hormone binding globulin (SHBG, 

binding both testosterone and estrogen) and corticosteroid binding globulin 

(CBG, binding primarily glucocorticoids and progesterone). Birds, in contrast, 

have no detectable SHBG, leading to the early conclusion that birds have no 

plasma regulation of testosterone or estrogen. CBG, however, can bind 

androgens with relatively high affinity. In birds, therefore, the control of 

androgenic effects may be tightly regulated by glucocorticoid physiology because 

glucocorticoids compete with androgens for CBG binding sites. In order to fully 

understand testosterone physiology, one must determine what portion of T is 

bound to CBG and what portion is free (unbound). Here we report plasma levels 

of total T, total CORT, and CBG in both captive and free-living White-throated 

Sparrows. From these data we then calculate levels of free T. The White-

throated Sparrow is a behaviorally polymorphic species in which morphs differ in 

their expression of territorial aggression. A comprehensive evaluation of T, 

CORT and CBG interactions is essential to understanding the potential hormonal 

mechanisms of morph behavioral phenotypes. We found no significant 

differences in levels of CORT or CBG between the morphs or sexes. While CBG 

has a higher binding affinity for CORT than for T, we estimated approximately 
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96% of T was bound to CBG. In free-living birds we found that the more 

aggressive white-striped males had higher levels of total T than did tan-striped 

males, however no difference existed between female morphs. In captivity, we 

saw no morph-specific differences in total T in either males or females (although 

trends matched patterns in free-living animals). Despite the substantial binding 

between T and CBG, the lack of significant morph or sex-specific differences in 

CORT or CBG capacity cause patterns of free T to mirror those of total T. While 

CBG has the potential to greatly influence T availability to tissues, in this species 

the interaction of T, CBG and CORT does not appear to alter general patterns of 

T availability. 

 

 

Introduction 

 

Binding globulins are glycoproteins that bind steroid hormones in the plasma with 

high affinity.  According to the free hormone hypothesis, hormone molecules 

bound to binding globulins are unable to enter tissues and thus are considered 

biologically inactive (Mendel, 1989). “Free” or unbound hormone is therefore 

thought to be the biologically relevant portion of the total amount of hormone in 

the plasma; thus, binding globulins appear to be a significant regulator of 

hormone activity at the plasma level.  Mammalian and biomedical endocrine 

studies commonly distinguish between total and free hormone (D'Agostino et al., 

1982; Leeper et al., 1988; McDonald and Taitt, 1982; Osuna et al., 2006; Perret, 
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1986; Yeap et al., 2007).  And while the majority of endocrine studies in non-

model organisms simply measure total hormone, an increasing number of 

comparative studies are considering binding globulins (Landys et al., 2007; Love 

et al., 2004; Lynn et al., 2007; Zysling et al., 2006). Several of these studies 

suggest a significant role for binding globulins in mediating the effects of steroid 

hormones (Jennings et al., 2000; Lynn et al., 2003; Wada et al., 2007). 

  

Mammals have separate binding globulins for sex steroids and glucocorticoids.  

Sex hormone binding globulin (SHBG) binds testosterone and estradiol while 

corticosteroid binding globulin (CBG) binds cortisol and corticosterone.   Birds, 

however, lack SHBG; and until recently, physiologists believed that avian sex 

steroids were not regulated by binding globulins at the plasma level.  However 

more recent studies show that in birds, CBG binds androgens with high affinity.  

In several avian species, CBG binds testosterone (T) with 10-fold lower affinity 

than glucocorticoids (Deviche et al., 2001; Wingfield et al., 1984); in spite of this 

decreased affinity, CBG apparently binds >90% of circulating T; this study). 

 

Hence, in birds, both glucocorticoids and testosterone compete for CBG.  This 

presents the possibility for an intriguing interaction between the reproductive and 

stress-reactive systems at the plasma level.  As glucocorticoid levels change 

(due to either diel cycles or stress-related events), the amount of CBG available 

to bind T will change.  For example, as plasma CORT increases up to 10-fold 

with stress, T will be displaced from CBG; this could result in a spike of free T 
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available to tissues, as well as a more rapid clearance of the T present.  

Alternatively, effects could be seen at non-stress levels; if sexes or morphs have 

varied levels of CBG or CORT, then more or less T could be bound in the 

plasma. Thus the actions and metabolism of T will be affected by both CBG and 

CORT and a thorough examination of T physiology must consider these 

interactions.  

 

Researchers interested in the effects of testosterone on behavior often look to 

behaviorally polymorphic species.  These species are of particular interest when 

studying hormonal mechanisms of behavior because they allow researchers to 

make more powerful comparisons.  While most behavioral phenotypes are 

continuously distributed, behaviorally polymorphic species present a bimodal 

distribution of phenotypes. Typically when researchers want to compare distinct 

behavioral phenotypes, they must compare individuals of different species, 

unavoidably introducing confounding factors such as differences in ecology or 

phylogeny. By using polymorphic species, researchers can find substantial 

differences in behavior between individuals of the same species.  

 

The goal of this study is to determine the influences of both CBG and CORT on 

testosterone physiology in the White-throated sparrow.  This species exhibits a 

unique behavioral polymorphism that is manifested in both sexes.  Morphs differ 

in both aggressive and parental behavior.  White-striped morphs respond more 

aggressively to simulated territorial intrusion (Kopachena and Falls, 1993a) and 
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tan-striped morphs provision nestlings at a higher rate (Kopachena and Falls, 

1993b).  Testosterone has effects on both territorial aggression and nestling 

provisioning behavior in many temperate species of birds (Schwagmeyer et al., 

2005; Van Roo, 2004).  Previous studies (Spinney et al., 2006; Swett and 

Breuner, 2004) Swett and Breuner, submitted) have shown a difference in total T 

between male morphs, but the effects of CBG and CORT on testosterone 

physiology have not previously been considered. 

 

Methods 

 

Study Species 

 

The white-throated sparrow (WTSP) is a migratory songbird that breeds in the 

northern U.S. and Canada and winters primarily in the southeastern U.S. (Falls 

and Kopachena, 1994). Breeding sparrows were observed and captured on 

forested property owned or managed by the Northwoods Stewardship Center in 

East Charleston, Orleans County, Vermont.  Samples were collected between 22 

May and 29 July 2003, 2 May and 23 July 2004 and 21 April and 10 July 2005.  

Sparrows were captured in seed-baited Potter traps or mist-nets. Blood samples 

were collected by venipuncture of the alar vein and blood was drawn into a 

heparinized microhematocrit tube via capillary action.  Blood used to measure 

baseline CORT was collected within 3 minutes of the bird contacting the net or 

the fieldworker approaching the potter trap.  Samples used to measure T and 
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CBG were collected within 10 minutes of the onset of capture stress so as to 

minimize the effect of stress on T levels.  

 

Blood samples were kept on ice while in the field (up to four hours.)  As soon as 

possible the sample was centrifuged and plasma drawn off using a Hamilton 

syringe.  Plasma was kept frozen at approximately -20oC until it could be 

assayed. 

 

Lab birds:  Wintering sparrows were captured in Travis County, Texas in 

seed-baited Potter traps or seed-baited mist nets.  Birds were housed in 

individual cages 33 cm x 38 cm x 43 cm in captivity and were subjected to a 

long-day (14 light:10 dark) photoperiod for 3 weeks prior to the start of sampling.  

This photoperiod induced birds to come into a pseudo-breeding condition 

indicated by an increase in singing.  All blood samples used to measure CORT 

were collected within 3 minutes of the experimenters entering the room.  

Samples used to measure T and CBG were collected within 10 minutes. 

 

 

Enzyme Immunoassay 

 

White-throated Sparrow plasma testosterone levels were measured using an 

enzyme immunoassay kit from Assay Designs (cat # 901-065).  These kits are 

designed to use raw plasma, which is added directly to the well.  A steroid 
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displacement buffer (SDB) can be used to degrade steroid binding globulins that 

may interfere with the assay.  Plasma dilution and concentration of SDB must be 

optimized prior to the measurement of samples. A sample of pooled white-

throated plasma was stripped of endogenous testosterone by incubating plasma 

with a charcoal solution (1% norit A Charcoal and 0.1% dextran in assay buffer).  

This stripped plasma was then spiked with a known concentration of testosterone 

(500 pg/mL).  Spiked, stripped plasma was assayed at four different dilutions 

(1:5, 1:10, 1:20, 1:30) with three different concentrations of SDB (0%, 1%, 2%) 

and compared to a standard curve on the same plate.  A plasma dilution of 1:20 

with no SDB added minimized the interference of plasma compounds in the 

assay.  

 

Individual plasma samples were thawed, picofuged, vortexed and diluted with 

assay buffer to a 1:20 concentration.  Samples were aliquotted into separate 

wells (100µL per well, each in triplicate.)  The standard curve, including 6 

standards ranging from 2,000 pg/mL to 8.2 pg/mL, and a separate external 

standard were also run in triplicate on each plate.  Conjugate and antibody were 

added and the plate was incubated at 26°C on a shaker for 2 hours.  Wells were 

then emptied and rinsed with wash buffer and a second substrate was added.  

The plate was incubated for one hour, again at 26°C but without shaking.  

Following the second incubation, stop solution was added to each well and the 

plate was immediately read using a Multiskan Ascent microplate reader at 405 

nm corrected at 595 nm. The lower limit of detectability ranged from 0.8 to 3 
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pg/well.  Morphs and sexes were randomly distributed across assays and across 

plates within an assay.   

 

 

Plasma CORT was also measured using an Assay Designs corticosterone 

enzyme immunoassay kit (cat # 901-097) following a similar protocol optimized 

for use in the congeneric White-crowned sparrow and checked for accuracy in 

this species (for detailed description of protocol and optimization see Wada et al, 

2007).  Plasma was diluted 1:40 with assay buffer and a 1% concentration of 

SDB solution was used.  The lower limit of detectability in this assay ranged 

between 1.58 pg/well and 3 pg/well.  Again, individuals were distributed randomly 

across and within assays. 

 

Corticosterone Binding Globulin characterization and assay. 

 

 

Plasma Preparation:  Plasma was stripped of endogenous CORT via 

incubation with dextran-coated charcoal solution (0.1% dextran, 1%norit A 

charcoal in 50mMTris) for 30 minutes at room temperature.  Samples were 

centrifuged and supernatant removed.  Plasma samples were assayed at a final 

dilution of 1:1089. 
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Equilibrium Saturation Binding Analysis:  An equilibrium saturation binding 

analysis was performed using pooled plasma.  Plasma was incubated at 4 °C for 

2 hours with different concentrations of [H3] CORT ranging from 0.23 nM to 12 

nM in the presence or absence of unlabelled CORT.  Immediately following 

incubation, plasma solutions were passed via rapid vacuum filtration over PEI 

(0.3%) soaked Whatman GF/B paper filters. Filters were rinsed three times with 3 

mL ice cold 25nM Tris.    

 

Radioactivity bound to filters was quantified via standard liquid scintillation 

spectroscopy.  Briefly, filters were allowed to dry, placed in scintillation vials, 100 

µL isopropyl alcohol and 5 mL scintillation fluid were added (Scint Safe 50%, 

Fisher or Perkin Elmer Ultima Gold.)  Radioactivity was measured in a Beckman-

Coulter LS 6500 Multi-purpose Scintillation counter or a Perkin Elmer TriCarb 

2900TR scintillation counter. 

 

Relative affinity of CBG for Testosterone and Corticosterone:  The relative 

affinity of CBG for corticosterone versus testosterone was determined with a 

competition curve experiment in which radiolabeled CORT competes with either 

unlabeled CORT or unlabeled testosterone for CBG binding sites.  Briefly, 

plasma was stripped as described above and incubated for 2 hours on ice with 

2nM [H3] CORT and unlabeled competitor (either CORT or T) ranging in dilution 

from 1 µM to 0.1 nM.   
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Point Sample Analysis:  CBG in all field and lab samples was assayed 

with a point sample analysis at 4 °C.  Morphs and sexes were distributed 

randomly across assays and across filters within an assay.  Plasma samples 

were prepared as described above.  Samples were then incubated on ice for 2 

hours with 20 nM [H3] CORT and 1 µM unlabeled CORT as a competitor. This 

concentration of radio-labeled ligand was estimated by the equilibrium saturation 

binding analysis to occupy approximately 91% of binding sites.  Radioactivity 

bound to filters was quantified via liquid scintillation spectroscopy as described 

above.  Inter-assay variability was 17.5% (field samples).  

 

Results 

 

CBG characterization 

 

The equilibrium saturation binding analysis (Fig. 1) indicated that white-throated 

sparrow CBG binds CORT with high affinity (EC50= 4.17 nM). The Scatchard-

Rosenthal replot of the data (Fig.1 inset) demonstrates that there is a single 

binding site for CORT on CBG.  A competition curve experiment (Fig. 2) shows 

that while CBG binds CORT with higher affinity it also binds T with relatively high 

affinity (EC 50= 28.18 nM). 

 

CBG Binding Capacity 
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Among the captive birds, we found no significant differences in CBG binding 

capacity between morphs or sexes (ANOVA p= 0.08; Fig. 3a).  However females 

tended to have a higher binding capacity.  This trend was reversed in the free-

living sparrows with males tending to have higher CBG binding capacity, though 

there were no significant differences between morphs or sexes (ANOVA 

p=0.055; Fig 3b). 

 

Baseline Corticosterone 

 

We found no significant differences between morphs or sexes in total plasma 

corticosterone in either captive (ANOVA p=0.46; Fig. 4a) or free-living (ANOVA 

p=0.3; Fig. 4b) sparrows.  Total Plasma CORT tended to be higher in free-living 

birds (ANOVA p=0.0002). 

 

Total Testosterone 

 

Total plasma testosterone tended to be higher in captive WS males compared to 

captive TS males, however this difference was not significant (ANOVA p=0.34; 

Fig. 5a).   Among free-living sparrows this difference between male morphs was 

robust (ANOVA p< 0.0001; Tukey-Kramer HSD q=2.66, p<0.05; Fig. 5b).   

Surprisingly, total plasma T levels in TS males were similar to those of TS 

females.  Overall, T was significantly higher in free-living birds than in captive 

birds (ANOVA p<0.0001.) 
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Free Testosterone 

 

Patterns of free T mirrored those of total T with WS males having significantly 

higher levels than TS males or females in the free-living populations (ANOVA p= 

0.0085, Tukey-Kramer HSD, q=2.66, p<0.05; Fig. 6B).  A similar pattern was 

seen in the captive birds, but it was not significant (ANOVA p=0.61; Fig. 6a). 

 

Power Analyses 

 

Individual variation in hormone and CBG measures was high. Post-hoc power 

analyses (β=0.10 and p=0.05) indicated that we would need to sample 17 

individuals of each morph-sex group in order to detect a significant difference in 

total T among captive birds.   Detecting differences in CBG capacity would 

require samples of 15 individuals (lab) or 21 (free-living) per morph-sex group.  

Total CORT was highly variable and a sample of 42 (lab) or 80 (free-living) 

individuals per morph-sex group would be required to detect a significant 

difference.  Samples sizes this large are not usually feasible in a study of this 

type.  Because it is derived from the other measures, our power to detect 

differences in free-T is limited by the variability of total CORT. 
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Discussion 

 

Binding between CBG and T has been calculated in three species of passerines, 

and in each it is estimated that over 90% of testosterone is bound to CBG (96% 

this study, 93.6% Deviche et al, 2001, 98% calculated from Lynn et al, 2007).  

Thus, CBG has the potential to significantly modify the actions of testosterone 

once it has been secreted.  Differences in CBG binding capacity between two 

individuals with identical levels of total testosterone could lead to significant 

differences in free testosterone, which may be the most biologically relevant 

fraction. 

 

In this study, we found that free-living male morphs differed in total testosterone 

levels such that more aggressive WS morph had higher total T than did the TS 

morph.  This is in agreement with our previous findings and those of Spinney et 

al (2006). However, while free-living WS males had significantly higher levels of 

CBG than did females, they were not significantly higher than those of TS males.  

Neither CBG nor CORT differed substantially between the morphs or sexes.   

Therefore, morph specific patterns in free-T resembled those of total T.  Thus, we 

conclude that the interactions between CBG, T and CORT probably do not 

contribute to the observed differences in aggression between the morphs. 

 

To our knowledge, only one other study has examined the role of binding 

globulins in a behaviorally polymorphic species.  In 2000, Jennings et al. 
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documented a difference in androgen-glucocorticoid binding globulin (AGBG) 

binding capacity between territorial and non-territorial morphs of the tree lizard 

(Urosaurus ornatus).  Like CBG, AGBG binds both testosterone and 

corticosterone.  They hypothesized that this lower binding capacity in non-

territorial males leads to a greater increase in free CORT during stress events in 

these males compared to territorial males.  This greater free CORT could have 

an inhibitory effect on T, and lead to the stress induced reduction in T in non-

territorial morphs observed by Knapp and Moore (Knapp and Moore, 1997)  

 

Our study considered only baseline CORT levels.  Stress induces rapid 

increases in plasma CORT levels.  The increase in CORT during acute stress 

could lead to transient increases in free T as rising CORT titers push more T off 

of CBG.  For instance, Lynn et al. suggested that the decreases in T following 

territorial intrusion observed by Van Duyse et al (Van Duyse et al., 2004) could 

have been due to the fact that stress of the encounter lead to an increase in 

CORT, which in turn lead to an increase in the proportion of T that was free.  

Free T would be available for clearance by the liver and hence total plasma T 

would decrease.  If WTSP morphs differ in the amount of CORT they secrete in 

response to acute stress, this could lead to transient differences in free T levels.  

Our preliminary evaluation of the stress response in photo-stimulated, captive 

WTSP found no difference in stressed levels of CORT between morphs.  

However, Schwabl (1995) found that photo-stimulated, captive WS males 

secreted greater amounts of CORT in response to stress (capture and 60 
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minutes of restraint) than did TS males.  This pattern was reversed in males held 

on short-day photoperiods, when TS males secreted more CORT.   

 

Many possible factors could also affect free T levels; one of these is 

progesterone.  Avian CBG binds the sex steroid progesterone (P4) with equal or 

greater affinity than corticosterone.  Thus P4 will also compete with T for binding 

sites on CBG. Patterns of P4 secretion during the breeding season vary between 

bird species (Dawson, 1983; Heath et al., 2003; Schoech et al., 1991) and have 

not been evaluated in white-throated sparrows.  If WS and TS morphs differ in 

their levels of plasma progesterone, such a difference could lead to a difference 

in availability of CBG and hence free testosterone.  However, P4 levels are often 

quite low (~15 nM) in breeding birds, and CBG capacity varies between 100 and 

300nM in this study.  Hence, the impact is most likely small.    

 

CBG is a relevant modifier of T action in the white-throated sparrow.  However, 

morphs do not differ in either CBG levels or baseline CORT levels and so morph-

specific patterns of free-T mirror patterns of total T.  This study represents one of 

a growing number of studies in the comparative literature that addresses the role 

of binding globulins in regulating steroid action.   While debate remains as to 

whether free steroid, rather than total or bound hormone, is truly the most 

biologically relevant measure, it is clear that binding globulins will affect the route 

of steroid uptake by cells.  A thorough understanding of steroid action requires 

that the actions of binding globulins be considered. 
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Figure 1.  Saturation binding curve and Scatchard-Rosenthal replot (inset) for 
3H-Corticosterone binding to CBG in White-throated Sparrow Plasma.  (A 
saturation binding curve must be done to characterize CBG affinity in each 
species.  The Scatchard-Rosenthal replot is included to visualize whether or not 
the receptor (CBG) has one binding site or two.  In this case, the linear 
relationship indicates that there is a single binding site.)  
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Figure 2.  Competition binding of T and CORT to CBG in the White-throated 
Sparrow.  CORT binds CBG with higher affinity (left arrow), however T (right 
arrow) also binds CBG with relatively high affinity. 
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Figure 3: Bars indicate means + SEM. a.  Lab- Though females tended to have 
higher levels of CBG, there were no substantial or significant differences 
between the morphs or sexes.  (WS males= white bar, N=8; TS males= grey bar, 
N=9; WS females = striped white bar, N=6; TS females= striped black bar, N=5.)  
b.  Free-living-  In the field, the trend was reversed with males having higher 
levels of CBG, though only WS males were significantly higher than females.  
Sample sizes for free-living birds:  WS males=14, TS males=13, WS females= 
10, TS females=15. 
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Figure 4: Bars indicate means + SEM.  Bars that do not share a lettered 
superscript indicate that means are significantly different (p<0.05). a-  Total 
plasma CORT in photostimulated, captive birds.  There were no significant 
differences between morphs or sexes. .  (WS males= white bar, N=8; TS males= 
grey bar, N=9; WS females = striped white bar, N=6; TS females= striped black 
bar, N=5.)  b-  As in captive birds, there were no significant differences in levels 
of total plasma CORT in free-living birds. 
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Figure 5: Bars indicate means + SEM.  Bars that do not share a lettered 
superscript indicate that means are significantly different (p<0.05).  a-  Patterns 
of Total T in photo-stimulated birds kept in the lab were similar to those in the 
field.  WS males tended to have higher total T however this difference was not 
significant. .  (WS males= white bar, N=8; TS males= grey bar, N=9; WS females 
= striped white bar, N=6; TS females= striped black bar, N=5.)  b- Total plasma T 
levels in free-living White-throated Sparrows.  WS males had significantly higher 
testosterone than TS males, WS females and TS females.
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Figure 6:Bars indicate means + SEM.  Bars that do not share a lettered 
superscript indicate that means are significantly different (p<0.05).  In both 
captive (a.) and free-living birds (b.), patterns of free T mirrored those of total T 
because there were no significant or substantial differences in either CORT or 
CBG between the morphs or sexes. (WS males= white bar; TS males= grey bar; 
WS females = striped white bar; TS females= striped black bar.) (Sample sizes 
as in Fig. 5.) 
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Abstract 

 

Social instability is known to affect levels of circulating steroids.  In many studies, 

androgen levels change during the unstable period but return to prior levels once 

hierarchies have been established.  A recent study in Anolis lizards, however, 

indicates that free testosterone levels remain elevated in dominant males for an 

extended period of time.  Here we examined behavioral and endocrine correlates 

of dominance relationships in captive male White-throated Sparrows, a 

polymorphic species in which morphs differ in their levels of aggression.  Photo-

stimulated males, one white-striped (WS) and one tan-striped (TS), were housed 

together sharing a single food dish.  Blood samples were taken just prior to and 4 

days following pairing for measurement of total plasma levels of testosterone (T), 

corticosterone (CORT) and corticosterone binding globulin (CBG) as well as 

estimates of free T (T that was not bound to CBG and therefore less available to 

tissues).  We characterized the behavioral interactions involved in dominance 

establishment and determined which male became dominant.  In this study, 

intense aggressive interactions (attacks and threats) were infrequent and only 

WS males engaged in these behaviors (except for a single TS male who 

displayed threat behavior).  Displacements were the most common behavioral 

interaction and WS males displaced TS males significantly more frequently than 

vice versa.  There was no difference between morphs in frequency of song. 

Using these and other measures to determine dominance, WS males became 

dominant in 6 of 8 pairs.  While WS males tended to dominate TS males in this 



  68 

study, this trend was not significant.  Neither total, or free T was predictive of 

future social status, nor did we observe persistent changes in T, CORT or CBG 

after the social hierarchy was established. Contrary to the recent findings in 

Anolis, we found no difference in free T following hierarchy establishment. We 

conclude that WS males engage in more intense and frequent aggressive 

interactions than do TS males, however this difference is not reflected in their 

testosterone physiology either before or four days after pairing.  In this study, the 

behavioral interactions involved in dominance establishment did not result in 

changes in either total or free T.  

 

 

Introduction 

 

The social environment of an individual has profound effects on its hormone 

physiology.  For instance, the presence of a mate or offspring can affect levels of 

sex steroids and prolactin respectively (Fleming et al., 2002; Silverin and Westin, 

1995).  One of the most common social interactions is a dominance relationship.  

Dominance relationships occur in a range of species from highly social animals 

to animals that are only temporarily gregarious, such as flocking winter birds. 

Even territoriality can be considered a form of dominance relationship in which 

status is determined by spatial location (Francis, 1988).    
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Many studies have investigated changes in hormones, especially glucocorticoids 

and androgens, associated with these dominance interactions. The 

establishment of a new dominance relationship is characterized by frequent 

agonistic interactions or “social instability”. The socially unstable period is often 

marked by elevations of androgens (typically testosterone) and glucocorticoid 

(GC) levels in one or both members of the dyad. (Blanchard et al., 2002; 

Bronson, 1973; Overli et al., 2004).  

 

These acute elevations of testosterone (T) and GCs during establishment are 

transient, but individuals may show persistent changes in their T and GC 

physiology post-establishment.  While T levels may be similar in dominants and 

subordinates once social instability has ended, in some species, continuing 

social stress can lead to decreases in T in subordinates (D.C. Blanchard et al 

1993; Sachser and Prove 1986).  Similarly, relative levels of GCs between 

dominants and subordinates depend on the costs of attaining and maintaining a 

given social status (Goymann and Wingfield, 2004).  If dominant animals are 

frequently challenged by subordinates, dominants may exhibit higher levels of 

GCs.  In contrast, subordinates may exhibit relatively higher levels of GCs if they 

are frequently threatened by dominants, or if they must compete with dominants 

for resources. 

 

Dominance status may also have persistent effects on levels of steroid binding 

globulins (Alexander and Irvine, 1998; Hattori et al., 2005; McKittrick, 1996; 
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Perret, 1986; Spencer et al., 1996).  Binding globulins are proteins that bind to 

steroids in the plasma and are thought to prevent hormone diffusion through the 

capillaries and into tissues. Binding globulins will therefore affect both the action 

of steroids at tissue (through bioavailability) and their clearance rates. Despite 

the potential effect of binding globulins on steroid action, only a few studies have 

examined their role in the hormonal dynamics of dominance relationships. Many 

of these studies suggest that binding globulins may mediate differences in 

hormone action between dominants and subordinates that are otherwise 

undetectable when only plasma hormone levels are considered. Alexander and 

Irvine (1998) documented declines in CBG in subordinate horses.  Though these 

subordinate horses showed no persistent elevation of cortisol, lower levels of 

CBG cause increased proportion of cortisol to be free, potentially enhancing its 

action. Recently, Hattori et al (2005) showed that dominant and subordinate male 

tree lizards (Anolis) do not differ in levels of total plasma testosterone, however 

dominant males had significantly higher levels of free (unbound) testosterone.  In 

the lesser mouse lemur, levels of testosterone-binding globulin increase in 

subordinate males who do not breed (Perret, 1986).  This leads to lower levels of 

free testosterone and may contribute to the subordinate’s reproductive 

quiescence.  

 

Differences in binding globulin capacity may also alter how the gondal and stress 

hormones axes interact in dominant versus subordinate animals. A particularly 

interesting study by Jennings et al (2000) in the polymorphic lizard, Urosaurus 
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ornatus, identified a binding globulin that binds both T and corticosterone 

(CORT).  Territorial male morphs have greater AGBG capacity than do non-

territorial males.  The authors hypothesize that with more CORT binding to 

AGBG, territorial males are less sensitive to stress-induced elevations of CORT.  

Thus the negative feedback of CORT on T is reduced and territorial males are 

able to maintain higher T levels in the face of stress.  This difference in binding 

globulin capacity may contribute to the difference in the morphs ability to 

“dominate” a territory. 

 

Binding globulins are also of particular interest in birds because, as in Urosaurus, 

they are a major point of interaction between T and GCs.  In birds, both T and the 

GC corticosterone (CORT) bind to corticosterone binding globulin (CBG) 

(Deviche et al., 2001).  While CBG has a much higher affinity for CORT there 

appears to be enough CBG present for more than 90% of T to be bound 

(Deviche et al., 2001; Lynn et al., 2007; Swett and Breuner, submitted). Thus, 

CBG is a biologically relevant regulator of plasma T.   Testosterone and CORT 

compete for CBG binding sites such that CORT levels will in part determine how 

much T is bound or free (unbound) and thus affect the action and clearance of T.  

Therefore CBG is a major point of interaction between T and CORT, and may be 

involved in the interaction of these hormone systems both during and following 

the establishment of a dominance relationship. 
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In this study, we examine whether the establishment of a dominance relationship 

leads to persistent changes in hormones and CBG capacity in the behaviorally 

polymorphic white-throated sparrow.  These sparrows exhibit a morph-specific 

difference in aggression during the breeding season and studies suggest that 

male morphs differ in their level of testosterone (Spinney et al., 2006; Swett and 

Breuner, submitted). Here we ask the following questions: do morphs differ in 

their ability to become dominant?  Are steroid or binding globulin levels prior to 

pairing predictive of the future dominance status?   Are there persistent changes 

in testosterone, corticosterone or CBG following the establishment of a 

dominance relationship in this species?  And finally, do changes in CORT or 

CBG following dominance establishment alter the proportion of T that is free? 

 

 

Methods 

 

Study animals 

 

The white-throated sparrow is a migratory songbird that breeds in the 

northeastern United States and Canada and winters in the southeastern U.S.  

These sparrows exhibit a unique genetic polymorphism that occurs in both sexes 

and is determined by the presence of a chromosomal inversion (Thorneycroft, 

1967; Thorneycroft, 1975).  Birds that bear a copy of this inversion have brighter 

white-stripes on the crown (WS) and are more territorially aggressive during the 
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breeding season (Kopachena and Falls, 1993a).  Birds lacking the inversion have 

tan stripes on their crown and display less territorial aggression.    

 

Wintering sparrows were captured in Travis County, Texas using seed-baited 

Potter traps or mist-nets.  Birds were housed individually in 33 cm x  38 cm x 43 

cm wire cages in an indoor aviary.  Cages were separated by fabric dividers such 

that birds could hear, but not see each other.  Birds were photo-stimulated by 

subjecting them to long-day photoperiods (14 light: 10 dark) for 3 weeks prior to 

the start of the experiment.  This photoperiod mimics day lengths in the northern 

temperate zone during the breeding season and brings the birds into a pseudo-

breeding condition.  Sex was determined using a microsatellite marker on the sex 

chromosomes (Griffiths et al, 1998).  Two observers independently determined 

the morph-type of each individual using plumage coloration and agreed in all 

cases.  The proportion of white to tan in the superciliary and median crown 

stripes, as well as the proportion of black to brown in the lateral crown stripes 

were considered.  This protocol is roughly based on the method of Piper and 

Wiley (1989).   

 

Experimental procedure 

 

Prior to pairing, one bird in each pair was marked with a black-plastic leg band 

for easy identification during behavioral observations.  We alternated which 

morph (WS or TS) was marked in each pair.  Birds were bled either three days 
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prior to pairing (2 pairs in 2002), or immediately prior to pairing (6 pairs in 2003). 

100 µL of blood was drawn via venipuncture of the alar vein.  Blood was 

collected in a heparinized microhematocrit tube via capillary action.  Birds were 

bled within 3 minutes of the experimenters entering the room in which birds were 

housed.   

 

Eight pairs were formed, each consisting of one WS male and one TS male.  

Pairs were housed in a 33 cm x  38 cm x 43 cm cage, and cages were separated 

from each other by fabric dividers.  Thus pairs were visually isolated from other 

birds in the room (these included other paired males, singly housed males and 

females.)  Each cage contained a single covered food dish (which allowed only 

one bird to feed at a time) and two water dishes.  Food was given ad libitum, so 

while food amount was not limited, access to food could be controlled by the 

dominant bird.  Following pairing (on day 1) birds were videotaped for 20-30 

minutes on days 1, 2 and 3 (two pairs in 2002) or on days 2, 3 and 4 (six pairs in 

2003.) 

 

One of the experimenters or an independent observer watched the videos and 

scored the following behaviors:  displacement, chasing, attack, threat and 

singing.  Additional behaviors were scored in the 6 pairs recorded in 2003; these 

included:  feeding, drinking, bill wiping, crown raising, body feather puffing, tail 

waging, preening and bathing.  Observers were essentially blind to the morph of 

the bird as plumage details were difficult to see in the video footage.  For a 
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description of behaviors see Table 1.  We chose four of the most clearly 

aggressive behaviors: attacks, threats, trills and displacements, to calculate a 

dominance score.  Each time a bird exhibited one of these behaviors it received 

one point.  Points for each bird were summed and the sum was corrected for the 

number of minutes of observation.  The bird in each pair who earned the highest 

score was designated the dominant bird.   

 

Four days following pairing, birds were bled again following the procedure 

described above.  All blood samples (pre- and post-pairing) were centrifuged and 

plasma was drawn off using a Hamilton syringe.  Plasma was then frozen at 

approximately -20oC until it could be assayed. 

 

Hormone and Binding Globulin Assays 

 

Testosterone:  White-throated Sparrow plasma testosterone levels were 

measured using an enzyme immunoassay kit from Assay Designs (cat # 901-

065).  The assay protocol was optimized for this species as described in Swett 

and Breuner (submitted.)  Individual plasma samples were thawed, picofuged, 

vortexed and diluted with assay buffer to a 1:20 concentration.  Samples were 

run in triplicate.  The standard curve (6 standards ranging from 2,000 pg/mL to 

8.2 pg/mL) and a separate external standard were also run in triplicate on each 

plate.  Conjugate-bound T and antibody were added and the plate was incubated 

at 26°C on a shaker for 2 hours.  Wells were then emptied and rinsed with wash 
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buffer and enzyme substrate was added.  The plate was incubated for one hour, 

again at 26°C but without shaking.  Following the second incubation, stop 

solution was added to each well and the plate was immediately read using a 

Multiskan Ascent microplate reader at 405 nm corrected at 595 nm. The lower 

limit of detectability ranged from 0.8 to 2.9 pg/well. Samples from each morph 

and time point were randomly distributed across plates.  

 

Corticosterone:  Plasma CORT was also measured using an Assay 

Designs corticosterone enzyme immunoassay kit (cat # 901-097) following a 

similar protocol optimized for use in the congeneric White-crowned sparrow and 

then checked for accuracy in the white-throated sparrow (for detailed description 

of protocol and optimization see Wada et al, 2007).  Plasma was diluted 1:40 

with assay buffer and a 1% concentration of steroid displacement buffer was 

used.  Again, morphs and pre- vs. post-interaction samples were randomized 

across plates.  

 

CBG :  Previous work characterized the binding affinity and specifity for 

CBG in white-throated sparrows (described in Swett and Breuner , submitted.) 

White-throated sparrow plasma CBG binds both CORT and T at a single binding 

site, but with 7-fold difference in affinity (CORT EC50 = 4.17 + 0.30 nM; T EC50 

= 2.82 + 0.24 nM).  
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Individual CBG capacity in all samples was assayed with a point sample analysis 

using one near-saturating concentration of CORT, allowing for estimation of total 

capacity based on the percent bound equation:  % bound= 

[ligand]/[ligand[+[dissociation constant].  First, plasma was stripped of 

endogenous CORT via incubation with dextran-coated charcoal solution (0.1% 

dextran, 1%norit A charcoal in 50mMTris) for 30 minutes at room temperature.  

Samples were centrifuged and supernatant removed.  Each sample was 

incubated on ice at a final dilution of 1:1089 for 2 hours with 20 nM [H3] CORT 

and 1 µM unlabeled CORT to determine non-specific binding. This concentration 

of radio-labeled ligand was to occupy approximately 91% of binding sites (based 

on a disassociation constant of 1.595 Swett and Breuner, submitted).  

Immediately following incubation, plasma solutions were passed via rapid 

vacuum filtration over PEI (0.3%) soaked Whatman GF/B paper filters. Filters 

were rinsed three times with 3 mL ice cold 25nM Tris.    

 

Radioactivity bound to filters was quantified via standard liquid scintillation 

spectroscopy.  Briefly, filters were allowed to dry, placed in scintillation vials, 100 

µL isopropyl alcohol and 5 mL scintillation fluid were added (Scint Safe 50%, 

Fisher or Perkin Elmer Ultima Gold.)  Radioactivity was measured in a Beckman-

Coulter LS 6500 Multi-purpose Scintillation counter or a Perkin Elmer Tri-Carb 

2900TR scintillation counter.  
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Free testosterone:  Free testosterone was calculated as in Lynn et al, 

(2007), Zysling et al. (2006) and Deviche et al (2000).  First the amount of CBG 

occupied by CORT was determined and subtracted from the total capacity (CBG 

has a 7-fold greater affinity for CORT than T, and so will preferentially bind 

CORT).  The remaining CBG was then used to figure free T levels based on the 

equation in Barsano and Baumann (1989).  There is currently no mathematical 

equation describing the binding of two hormones to a globulin at once; 

additionally, the free levels of T are so low it is nearly impossible to measure with 

a direct assay in such a small animal (<30 grams).  As such, these methods are 

the best available way to estimate unbound testosterone.  

 

Statistical Analyses 

Data was log or ln transformed where appropriate to normalize sample 

distribution. Pairs run in both years (2003 and 2004) were analyzed together.  

Though the dominant birds in 2002 had significantly higher dominance scores, 

we are analyzing the relationship between endocrine measures and the 

categorical variable “status”, not the numerical dominance score.  Therefore this 

difference between years is not relevant.  Total T, total CORT, CBG and free T 

data were analyzed using repeated measures ANOVA with individual as the 

random effect. These analyses were performed using JMP 5.0.1a.  

 

Results 
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Dominance Behavior 

 

According to behavioral scoring, WS males dominated TS males in 6 of 8 pairs 

(Fisher’s exact test, 2-tail, p=0.13).  Means and SE of all observed behaviors are 

given in Table 2.  Morphs differed significantly only in number of displacements.  

WS males displaced TS males significantly more often than vice versa (Fig 3:  

F=9.3, p=0.009.)  Only one TS male performed threat displays compared to 5 out 

of 8 WS males, however the mean number of threat displays per 60 minutes did 

not differ between morphs.  Attacks were rare and only observed 3 times in 9 

hours of observation making it difficult to detect an effect of morph statistically.  

However, both birds that performed attacks were WS males.  Morphs did not 

differ in song rate (F=0.37, p=0.55.)  

 

Effect of Social Status on T, CORT, CBG and free T 

 

Dominant and subordinate males did not differ in levels of total T, total CORT, 

CBG or free T prior to pairing thus these measures were not predictive of future 

status (Fig. 1).  Nor did dominants and subordinates show persistent alterations 

in hormone levels in response to the change in social environment.  Social status 

had no significant effect on post-pairing measures of total T, total CORT, CBG or 

free T (total T:  F=0.98, p=0.51; total CORT:  F=0.86, p=0.61; CBG:  F=0.62, 

p=0.82; and free T:  F=0.22, p=0.99.)   
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Effect of Morph on T, CORT, CBG and free T 

 

Morphs did not differ in plasma levels of total T (F=0.97, p=0.52), total CORT 

(F=0.86, p=0.61), CBG (F=0.62, p=0.82) or free T (F=0.21, p=0.99) either before 

or after pairing, nor did they differ in response to pairing.  

 

 

Discussion 

 

 

Difference in dominance ability between morphs 

 

WS males tended to dominate TS males (6 out of 8 pairs), however this trend 

was not significant.  Given that WS males exhibit greater territorial aggression, 

we had predicted that they would dominate TS males. Previous studies of 

dominance in this species have shown that morphs do not differ in social status 

when birds are held under a short-day photoperiod.  However this photoperiod 

mimics the non-breeding season when birds associate in flocks. Dominance 

relationships may differ during the breeding season, when birds are territorial and 

males exhibit relatively higher levels of aggression.  Only one other study has 

evaluated the relative dominance ability of morphs under a long-day photoperiod.  

Houtman and Falls (1994), using round-robin tournament style competition trials, 

found that although TS birds occasionally dominated WS birds, WS birds were 
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significantly more likely to be dominant.  We suspect that a lack of power 

prevented us from detecting a statistically significant difference in dominance 

ability between the morphs.  Had our sample size been 16 pairs, rather than 8, 

and the same proportion of WS males had become dominant, we would have 

reached a significance level of p=0.01 (Fisher’s Exact Test.) 

 

 

Difference in behavior between morphs 

 

Displacement was the most common dominance behavior.  Across pairs, WS 

males displaced TS males significantly more frequently than the reverse.  More 

intense aggressive behaviors such as attacks and threats were less frequent and 

only WS males performed these behaviors save for a single TS male who 

displayed threats.  Interestingly, there was no difference between morphs in the 

frequency of song, though WS males tend to sing more than TS males during the 

breeding season (Falls and Kopachena, 1994).  Previous studies of captive, 

short-day photoperiod sparrows have observed no differences in song frequency 

between the morphs.  It is possible that captive birds lack the appropriate 

environmental cues to elicit a song rate similar to that of free-living birds.  Song 

was markedly less frequent among our captives compared to birds observed in 

the field (personal observation).  Overall, we conclude that WS males exhibit 

more frequent and intense aggression.  This behavior likely contributes to their 

tendency to acquire dominant status. 
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Relationships between Social Status and T, CORT, CBG and free T 

 

Pre-pairing T, CORT, CBG or free T did not differ between males who would 

become dominant in their dyad versus those that would become subordinate.  

Thus, none of these parameters were predictive of dominance ability.  The lack 

of relationship between pre-pairing T and future rank is consistent with the 

findings of Schwabl et al’s (1988) study on captive winter flocks of white-throated 

sparrows.  Schlinger (1987) did find a nonsignificant (p=0.10, N=10) correlation 

between autumn androgen levels and aggression observed over the winter. 

 

Neither total T, or total CORT showed persistent differences between dominants 

and subordinates.  In addition there were no substantial changes in levels of 

CBG following dominance establishment, and so free T levels mirrored those of 

total T and were not significantly different between dominants and subordinates 

post-pairing.  Once a dominance relationship or social hierarchy is stable, levels 

of aggression typically decline and dominants and subordinates may have similar 

levels of T (Stelkis, 1986; Schwabl et al., 1988).  Intense aggressive behaviors 

such as attack or threat displays were infrequent in this study.  Aggressive 

conflict between males may have been more intense had potential mates been 

available.  Females were housed in the same room as males both prior to and 

following pairing, however males were visually isolated from females at all times.   
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The fact that we do not see an elevation of CORT in subordinates relative to 

dominants post-pairing suggests that these birds did not perceive their social 

subordination as stressful.  Goymann and Wingfield (2004) argue that the costs 

of being subordinate (or dominant) will determine the allostatic load associated 

with that status and that this load determines whether glucocorticoids will be 

elevated.  According to the criteria laid out in their paper, we would expect our 

subordinate sparrows to have a higher allostatic load and higher levels of CORT 

than dominants.  Subordinates in our study were regularly subjected to low-level 

aggression (displacement), and were observed to pant more frequently which 

may be an indicator of stress.  Subordinates had no means of avoiding dominant 

birds, and had to share a food dish (resource) with them.  Perhaps the sparrows 

did not perceive this as competition for food as the dish was refilled ad libitum.  

Also subordinates may not have felt sufficient threat due to the infrequency of 

intense aggression (i.e. threats or fights). 

 

Unlike the studies in horses (Alexander and Irvine, 1998) and rats  (McKittrick, 

1996; Spencer et al., 1996), we did not see a decline in CBG in subordinate 

sparrows.  In both rats and horses, the aggression displayed by dominants was 

intense, thus the social stress of subordination may have more severe than in our 

study.  It is possible that social stress in our experiment was not severe enough 

to lead to persistent changes in CBG.  Our results suggest that in the white-
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throated sparrow, the effect of social status on T and CORT may not be modified 

by binding globulins. 

 

 

Effect of Morph on T, CORT, CBG and free T 

 

We observed no difference between male morphs in pre-pairing levels of T, 

CORT, CBG or free T.  Nor did we see any difference between morphs in how 

these parameters changed following dominance establishment.   

 

The lack of difference between morphs in pre-pairing total T levels is contrary to 

recent findings in wild-caught sparrows (Spinney et al., 2006; Swett and Breuner, 

submitted).  Though we subjected our males to long-day photoperiods that mimic 

what they experience in the wild, there are many other environmental cues that 

were absent from our aviary; these cues may be necessary for eliciting full 

activation of the reproductive axis.  As we have previously observed in wild-

caught breeding sparrows, baseline CORT and CBG did not differ significantly 

between morphs, hence there was also no significant difference in free T.   

Neither morph showed significant changes in CBG, CORT, T or free T in relation 

to its social status.   Thus the morphs do not differ in their endocrine response to 

the social interaction.  The tendency for WS males to dominate TS males in our 

experimental scenario cannot be attributed to any persistent endocrine response 

to social challenge.  Morphs may differ in their short-term, transient endocrine 
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responses to social challenge and it would be useful to evaluate this possibility 

both in captivity and in the field.   

 

 

Conclusions 

 

WS males exhibited a greater frequency and intensity of aggression and this lead 

to their tendency to dominate TS males in captivity.  Morphs did not differ in 

either their pre-interaction levels of total T, free T, CORT or CBG, nor did they 

show persistent changes in these endocrine measures once a dominance 

relationship was established.  In addition, we found no evidence of prolonged 

changes in total T, free T, CORT or CBG when sparrows assumed either a 

dominant or subordinate social status.  We conclude that, if they occur, changes 

in these endocrine measures would be confined to the brief period of social 

instability during dominance establishment. In this study, once the dominance 

relationship was stable, the social stress associated with being subordinate was 

likely minimal.  
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Endocrine Measures in Relation to Morph 
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Figure 1.  Total T (a), total CORT (b), CBG (c) and free T (d) in WS (white
bars) and TS (gray bars) males both before and after establishment of a
dominance relationship.  Sample sizes are indicated in the bars. There were
no significant differences between morphs either before or after pairing;  nor
did morphs differ in their response to the establishment of a dominance
relationship. Total  T (F=0.97, p=0.52), total CORT (F=0.86, p=0.61), CBG
(F=0.62, p=0.82), or free T (F=0.21, p=0.99.)
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Endocrine Measures in Relation to Social Status 
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Figure 2.  Total T (a), Total CORT (b), CBG (c) and free T (d) in dominant (black
bars) and subordinate (hatched bars) males before and after establishment of a
dominance realtionship.  Sample sizes are indicated in bars.  These endocrine
measures did not differ significantly between dominants and subordinates either
before or after pairing; nor did dominants and subordinates differ in their response
to the establishment of the dominance relationship.  Total T (F=0.98; p=0.51); total
CORT (F=0.86, p=0.61); CBG (F=0.62, p=0.82) and free T (F=0.22, p=0.99.)
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Figure 3.  Mean displacements performed by WS (white bar) and
TS males (gray bar) in 60 minutes.  WS males displaced TS males
significantly more often (F=9.3, p=0.009, N= 8 WS and 8 TS)
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Figure 4.  Mean number of songs given in 60 minutes by WS
(white bar) and TS (gray bar) males.  There was no signficant
difference between morphs (F=0.37, p=0.55, N= 8 WS and 8 TS).

Morph

 
 
 
 
 



  1 

Table 1.   Descriptions of Behaviors 

Behavior 
Description 

Displacement 

Criteria: 
1.  “Displacer” initiates movement before the “displacee” moves.  
2.  “Displacer” assumes location that is within one body length of “displacee’s” original location. 
3.  Interaction involves only one change of position by the “displacer”.   

Threat behavior in 
Zebra Finches 

Criteria: 
1.  “Chaser” intiates chase by either moving first or indicating intention to move by body                      
position. 
2.  “Chaser” ends chase by being the first to stop flying. 
3.  Chase involves more than one change of location and the interval between one change of 
location and the next is essentially immediate.  

Threat 

Criteria: 
1.  The bird that is threatening points its body towards the threatened bird and tracks that bird’s 
movements with its head. 
2.  Bird that is threatening MAY vocalize a trill or flutter its wings, however the trill and flutter are 
not necessary for the behavior to be considered a threat. 
3.  The threatening bird indicates aggression to the threatened bird through body posture without 
necessarily moving towards or otherwise actively disturbing the threatened bird 
Our definition of threat behavior is based on the head-forward D1 display ((Senar, 1990)) and 
threat behavior in Taeniopygia guttata (Figueredo et al., 1992). 

Singing Count of complete songs 

Feeding Count of number of seeds picked up and hulled 

Drinking Count of number of times bill dipped into water dish 

Panting Count of panting bouts; bouts separated by 30 pause or change of activity 

Bill wiping Count of wiping bouts; bird must pause and lift head between bouts 

Preening Count of preening bouts with a pause of 30 seconds or change of location between bouts. 

Crown raise Feathers on crown erected 

Puff Body Erection of body coverts 

Tail wag Side to side movement of tail. 
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Table 2.  Summary statistics for all behaviors observed during study 
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WS  
Mean + SE 

 

50.75 
+ 

14.27 

12.63 
+ 

5.95 

1.67 
+ 

1.67 

3.54 
+ 

1.74 

0.33 
+ 

0.33 

41.5 
+ 

17.9 

7.33 
+ 0 

28.5 
+ 7.9 

10.83 
+ 4.98 

0.291 
+ 

1.93 

48.17 
+ 

16.24 

11.33 
+ 

3.52 

0.67 
+ 

0.49 
TS  

Mean + SE 
 

5.46 
+ 2 

4.38 
+ 

4.38 

1.83 
+ 

0.87 

4.41 
+ 

4.23 

1.5 
+ 1.5 

37 
+ 

14.35 

15.17 
+ 

8.74 

19.67 
+ 

8.79 

4.33 
+ 3.74 

0 
+ 0 

23.33 
+ 

9.17 

6.33 
+ 

2.51 

0.5 
+ 

0.34 

F, p-value* 
7.21, 
0.02 

1.25, 
0.28 

2.55, 
0.2 

0.08, 
0.80 

0.57, 
0.47 

0.68, 
0.43 

0.33, 
0.59 

0.91, 
0.36 

2.78, 
0.15 

2.27, 
0.15 

1.07, 
0.34 

0.07, 
0.8 

0.1, 
0.78 

Total # of 
observations 

 
449.67 136 21 63.67 11 471 135 289 91 2.33 429 106 7 

*Data were log transformed where appropriate prior to ANOVA testing. 
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