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ABSTRACT 

Mullen, Lindy, M.S., Spring 2009 Division of Biological Sciences

SCALE DEPENDENT GENETIC STRUCTURE OF IDAHO GIANT 
SALAMANDERS (DICAMPTODON ATERRIMUS) IN STREAM NETWORKS

Co-Chairperson:  Dr. Winsor H. Lowe

Co-Chairperson:  Dr. H. Arthur Woods

Stream network structure constrains population processes of freshwater organisms, with 
individual, population and community level consequences.  This consistent structure 
provides a framework in which examination of life-history influences on population 
genetic structure may provide general insight.  I examined how stream network structure 
affects gene flow and genetic structure of the facultatively paedomorphic Idaho Giant 
salamander, Dicamptodon aterrimus in Idaho and Montana, USA.  I used microsatellite 
data to test population structure models by (i) examining hierarchical partitioning of 
genetic variation in stream networks and (ii) testing for genetic isolation by distance 
along stream corridors versus overland pathways.  Replicated sampling of streams within 
catchments within three river basins revealed that stream hierarchical scales had strong 
effects on gene flow and genetic structure. AMOVA identified significant structure 
among all hierarchical levels (among streams, among catchments, among basins), and 
divergence among catchments had the greatest structural influence.  Isolation by distance 
was detected within catchments, and in-stream distance was a strong predictor of genetic 
divergence. Patterns of genetic divergence suggest that differentiation among streams 
within catchments was driven by limited migration according to the stream hierarchy 
model, but divergence among catchments and among basins was due to genetic drift, 
consistent with the death valley model of population structure (Meffe and Vrijenhoek 
1988).  These results show the strong influence of stream networks on population 
structure and genetic divergence of a salamander with contrasting effects at different 
hierarchical scales.  
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Introduction

Many species occur in spatially structured sub-populations linked by dispersal and 

gene flow (Wright 1951, Hanski and Gilpin 1997).  While dispersal has important 

ecological and evolutionary consequences for populations (Hanski and Gilpin 1997, 

Dieckmann et al. 1999), direct measurements capturing both short and long distance 

dispersal are difficult to obtain.  However, dispersal is closely related to gene flow 

(Bohonak 1999), which is a primary force that influences genetic differentiation among 

natural populations (Wright 1951).  This genetic structure of populations can be assessed 

with molecular methods (Bohonak 1999) and used to infer the relative importance of 

dispersal and gene flow.  Much interest has focused on measuring how landscape barriers 

affect dispersal and gene flow (Manel et al. 2003) .  However, results of these studies are 

often species and system-specific (Hitchings and Beebee 1997, Keyghobadi et al. 1999, 

Funk et al. 2005, Cushman et al. 2006, Wang et al. 2009).  General insight on what 

controls gene flow and genetic differentiation may best be gained in systems that impose 

consistent structure across spatial scales, such as dendritic systems of rivers and streams 

(Grant et al. 2007).

 Streams and rivers occur in hierarchical networks where smaller stream channels 

join to form larger ones in a dendritic pattern that resembles branches on a tree.  Rivers 

and streams also have a fractal-like structure that is highly consistent across scales 

(Horton 1945).  This consistent network architecture of rivers and streams can constrain 

evolutionary, demographic, and ecological processes, making dendritic ecological 

networks useful for understanding spatial processes (Lowe et al. 2006a, Grant et al. 

2007).  
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Recent studies show that stream network architecture interacts with physiology, 

dispersal, and life-history to influence patterns of gene flow and genetic structure in 

freshwater organisms (Castric et al. 2001, Heath et al. 2001, Costello et al. 2003, 

Whiteley et al. 2004, Cook et al. 2007). The genetic structure of freshwater organisms has 

been described by four models (Figure 1; Finn et al. 2007; Meffe and Vrijenhoek 1988). 

i) Organisms with strictly aquatic life-histories may be characterized by Meffe and 

Vrijenhoek’s (1988) stream hierarchy model of genetic structure (SHM).  This model 

predicts genetic variation to be partitioned by drainage structure, with in-stream dispersal 

explaining patterns of genetic variation (Meffe and Vrijenhoek 1988).  ii) Other strictly 

aquatic organisms that are isolated in the headwaters by ecological barriers may be 

characterized by Meffe and Vrijenhoek’s (1988) death valley model of genetic structure 

(DVM).  The DVM predicts that populations of habitat specialists will show strong 

genetic differentiation with no relationship to landscape structure and no isolation by 

distance—IBD (Meffe and Vrijenhoek 1988, Preziosi and Fairbairn 1992, Finn et al. 

2006).  iii) Organisms that do not disperse in streams but only overland are characterized 

by the headwater model of genetic structure (HM), which predicts genetic variation is 

partitioned in headwater islands (Finn et al. 2007).  iv) Lastly, organisms with high gene 

flow among localities are characterized by the null model which predicts no divergence 

among sites (Steele et al. 2009). 

While useful for characterizing population structure in stream networks, these 

models do not address an equally important aspect of genetic structure: how patterns of 

population divergence change with hierarchical scale (Hutchison and Templeton 1999). 

Stream networks themselves are fractal in structure, with self-similarity across spatial 
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a) b) c) d)

Figure 1.  Diagrams of conceptual models for patterns of movement and genetic structure 
in headwater streams organisms; where a) is the Null Model, b) the Death Valley Model, 
c) the Stream Hierarchy Model, and d) the Headwater Model. Grey areas show pathways 
of dispersal in each model.  Open, closed, and patterned circles indicate the genetic 
similarity of localities (Finn et al. 2007; Meffe and Vrijenhoek 1988).
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scales.  Therefore, population structure may also be scale-specific.  To understand how 

patterns of gene flow and population structure can change across hierarchical scales, 

sampling must allow for analysis at multiple scales (Fausch et al. 2002, Lowe et al. 

2006b). A lack of systematic hierarchical sampling has limited the ability of previous 

studies to address both the effect of network structure on population structure and the 

scaling of this effect.  By applying a consistent sampling design that encompassed three 

stream hierarchical scales (streams, catchments, basins; Figure 2), my goal was to explore 

the effect of network structure on population structure.  I used the Idaho Giant 

salamander, Dicamptodon aterrimus, to measure how stream network structure, life-

history, and dispersal interact to influence genetic population structure across river 

network scales.  

I examined genetic variation of microsatellite loci to investigate the genetic 

population structure of D. aterrimus in river networks of Idaho and Montana. Using 

microsatellite data, I tested Meffe and Vrijenhoek’s (1988) and Finn et al.’s (2007) 

models of population structure by: (i) examining hierarchical partitioning of genetic 

variation at multiple spatial scales in stream networks, and (ii) testing for isolation by 

distance (along stream corridors and overland) to examine the relative influence of 

within-stream and overland gene flow on population structure.  My results suggest both 

that stream network structure strongly affects population structure of D. aterrimus, and 

that population processes differ depending on hierarchical scale.  
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Figure 2.  Sampling design showing hierarchical scales; streams nested within 
catchments within basins.  Three streams were sampled within each catchment, survey 
reaches of streams are indicated by rectangles. 



6

Materials and Methods

Species and Site

The Idaho Giant salamander, Dicamptodon aterrimus occurs in mesic forests of 

northern Idaho and western Montana, USA.  This species was isolated from other 

Dicamptodon between 2-5 million years ago due to the xerification of the Columbia basin 

following the orogeny of the Cascade Mountains (Carstens et al. 2005a).  Mitochondrial 

DNA analysis supports a single refugial population in the south fork of the Salmon River 

of Idaho during the last glacial maximum (Carstens et al. 2005b), with range expansion 

and colonization of habitats most likely occurring northward as glaciers receded.  The 

current distribution extends from the south fork of the Salmon River in Idaho to the 

northernmost peripheral populations in the St. Regis drainage of Montana.  While its 

current distribution is patchy (Carstens et al. 2005b), we know occurrence of D. 

atterrimus is influenced by landscape scale factors including roads, stream isolation, and 

old growth forest density, and abundance is positively related to the proportion of fine 

substrate (Sepulveda and Lowe 2009).   

D. aterrimus is facultatively paedomorphic: larvae develop in streams and reach 

maturation after several years as either terrestrial or aquatic forms (Nussbaum et al. 

1983).  While no empirical data on overland dispersal exists for D. aterrimus, Richardson 

and Neill (1998) showed that its facultatively paedomorphic sister species, D. tenebrosus, 

can move several hundred meters overland in a few days. Direct measures of in-stream 

dispersal by D. aterrimus show that short-distance movement of D. aterrimus (5-50m) 

within streams is common, but movements > 100m are rare (Sepulveda and Lowe, in 

prep).  However, we lack information on the frequency and scale of dispersal beyond 
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individual streams, and on the relative importance of movements along the stream 

corridor versus overland pathways.  

Sampling Design

To examine the spatial extent of gene flow and population structure in D. 

aterrimus, I applied a consistent sampling design that encompassed three hierarchical 

levels: streams, catchments, and basins.  I sampled individuals in 1st-order streams which 

were nested within catchments of confluent streams draining into a mainstem river 

(Figure 2).  Catchments were nested within basins of three major rivers: the Lochsa (four 

catchments), St. Joe (two catchments) and St. Regis (two catchments).  I collected 15 D. 

aterrimus from three 1st-order streams within each catchment (Appendix A, Figure 3). 

Catchments were selected in basins so that they were separated by a common ridge 

running approximately perpendicular to the mainstem river.  This orientation allowed me 

to test for in-stream and overland gene flow within and among adjacent catchments.  

In each stream, I used an LR-20 backpack electrofisher (Smith-Root Inc., 

Vancouver, WA) to collect salamanders from stream reaches beginning at least 25 m 

upstream of the confluence with a higher-order stream.  Survey reaches ranged from 125-

391 m in length (mean survey length± 1 SD: 220 m ± 72.7).  Longer survey reaches were 

required to capture the minimum number of individuals used for analyses. In two streams 

(LWWF and LPEF; Appendix A), I sampled three 30 m reaches separated by 

approximately 15 m.  I clipped a small section of tail tissue from captured salamanders 

and stored it in 95% ethanol.  Both juveniles and adult salamanders were sampled.  



8

Figure 3.  Location of streams sampled for D. aterrimus in the Lochsa and St. Joe basins of Idaho and the St. Regis basin of Montana, 
USA.  Stream labels correspond to Appendix A.  A) Regional map showing river connections among basins. B) Streams sampled in 
the St. Regis and St. Joe basins.  In the St. Regis basin, Big Cr. catchment is highlighted in dark blue, and Deer Cr. network is 
highlighted in light blue.  In the St. Joe basin, Quartz Cr. network is highlighted in dark grey and Gold Cr. network in light grey C) 
Streams sampled in the Lochsa basin.  Squaw Cr. network is red, Badger is orange, Wendover is yellow, and Papoose Cr. network is 
in green.

A B

C
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Snout-vent lengths of sampled animals ranged from 22mm-160mm and weights ranged 

from <1g to 130 g.  All sampling took place in July – October of 2008, except for five 

samples from one stream that were collected in July of 2007 (LSSP; Appendix A).

Microsatellite amplification and scoring

Fifteen salamanders from each stream were genotyped at 14 microsatellite loci 

(Appendix B) developed for Dicamptodon tenebrosus and D. copei (Curtis and Taylor 

2000, Steele et al. 2008).  To extract DNA, I digested tissues with protease in a detergent 

based cell lysis buffer, then precipitated proteins with an ammonium acetate solution and 

DNA with isopropyl alcohol.  Isolated DNA was re-suspended in 100μl TE buffer and 

diluted 1:10 for polymerase chain reaction (PCR) amplification in a PTC-100 

thermocycler (MJ Research Inc., Waltham, MA) with a total volume of 10μL.  Multiplex 

reactions were setup with QIAGEN multimix, following the QIAGEN microsatellite 

protocol (QIAGEN Inc., Valencia, CA). I used a single PCR touchdown profile for 

multiplexed markers, primer annealing started at 67°C and dropped 0.5°C for 20 cycles, 

followed by 25 cycles with a 57°C annealing temperature.  Microsatellite markers Dte5, 

D04, D24, and D18 were PCR amplified individually following QIAGEN microsatellite 

protocols with separate PCR annealing temperatures (Appendix B).  Following individual 

PCR, these markers were pooled with multiplexed markers for fragment analysis.  PCR 

products were visualized on an ABI3130xl Genetic Analyzer (Applied Biosystems Inc., 

Foster City, CA) in the Murdock DNA Sequencing Facility at the University of Montana, 

Missoula, USA.  Allele sizes were determined using the ABI GS600LIZ ladder (Applied 
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Biosystems Inc.) and allele sizes were called with GeneMapper version 3.7 (Applied 

Biosystems Inc.).  

Genetic Analyses

I tested for significant departures from Hardy-Weinberg proportions and for non-

random association of pairs of loci across populations (linkage disequilibrium) using 

exact tests implemented in GENEPOP version 4.0 (Raymond and Rousset 1995).  Loci 

that deviated from HW proportions in each population were removed from further 

analyses.  After removal of a single locus (Dte11) that deviated from HW proportions in 

all populations where it was not fixed for a particular allele, I calculated genetic diversity 

within-streams and examined subdivision among hierarchical levels.  

Genetic diversity within streams was calculated as allelic richness (AS), the 

number of alleles observed in populations (NA), and expected and observed 

heterozygosity (HE, HO).  I then tested for differentiation among streams and the extent of 

gene flow with pairwise FST, a measure of genetic divergence based on the number of 

different alleles, calculated in Arlequin version 3.1 (Excoffier et al. 2005).  The 

inbreeding coefficient, FIS,  was calculated for every locus in each stream to detect 

significant heterozygote deficit or excess in streams (GENEPOP; Raymond and Rousset 

1995). 

I examined pairwise FST values to assess levels of divergence occurring among 

streams.  Then I used a hierarchical analysis of genetic variation (AMOVA implemented 

in the hierfstat package in R v 2.8.1, Goudet, 2005) to partition genetic variance within 

and among hierarchical scales.  Initially I used the entire data set to assess patterns of 

genetic variance throughout the entire sampling area (Figure 3).  Specifically, I tested for 
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structure at four levels: among-basins, among catchments within basins, among streams 

within catchments, and within streams.  To test for influence of local genetic structure on 

overall patterns, I performed two additional AMOVAs: (i) within the Lochsa basin, and 

(ii) within and among the St. Joe and St. Regis basins.  The AMOVAs generated 

hierarchical F-statistics (Yang 1998) in which FBT was divergence among basins, FCB was 

divergence among catchments within basins, FSC was divergence among streams within 

catchments, FIS was the inbreeding coefficient of streams, and FST was the global 

divergence among streams. 

Genetic structure was also visually interpreted using principal components 

analysis (PCA) which reduces dimensions in a multivariate dataset such that the first 

principal component (PC1) explains as much of the variance in allele frequencies as 

possible (Reich et al. 2008).  To maintain quasi-independence of the data set, I removed 

the highest frequency allele of each microsatellite locus and performed the PCA on 

remaining allele frequencies (Leary et al. 1993).  Plots of PC1 against PC2 and of PC1 

against PC3 were examined to assess the similarity of allele frequencies among streams 

within catchments, among catchments within basins and among basins.

I used partial Bayesian individual assignment tests (Rannala and Mountain 1997) 

to classify individuals to populations based on the expected frequency of an individual’s 

multilocus genotype in each population (basins, catchments, and streams; 

GENECLASS2; Piry et al. 2004). Those individuals most likely to originate from a 

population other than their sampling origin were examined with a partial Bayesian 

exclustion test for a measure of confidence associated with assignment. Individuals with 

lower than 95% probability of originating in the sampled population were also tested with 
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exclusion methods.  Leaving the individual to be assigned out, distributions of genotypic 

likelihoods that would occur in sampled populations were approximated with 10,000 

Monte Carlo simulations.  The likelihoods calculated for genotypes of sampled 

individuals were compared to that distribution, and if the genotype likelihood was below 

the α = 0.01 threshold, the population was excluded as an origin (Cornuet et al. 1999, 

Paetkau et al. 2004, Piry et al. 2004). Assignments of individuals to populations other 

than their collection location were interpreted as migration events when genotypes were 

unlikely to occur from a random combination of alleles (p ≥ 0.95).  This method can 

accurately identify migrants especially when genetic differentiation is substantial and 

many loci are used (Berry et al. 2004, Paetkau et al. 2004).  I performed three assignment 

tests with the above standards: (i) assignment of individuals to basins with basins as 

reference populations, (ii) assignment of individuals to catchments with catchments as 

reference populations, and (iii) assignment of individuals to streams with streams as 

reference populations.  

To understand the role of gene flow by in-stream versus overland pathways, I 

tested alternative hypotheses of D. aterrimus gene flow resulting in isolation by distance 

(IBD).  IBD is detected by testing for correlations among matrices of genetic distance 

(FST) and geographic distance with Mantel tests that correct non-independence of 

pairwise points (Mantel 1967).  I used two measures of pairwise distance between 

midpoints of survey reaches to test alternate pathways of gene flow with FSTAT version 

2.9.3.2 (Goudet 1995).  

To test the hypothesis that D. aterrimus gene flow occurs primarily along stream 

corridors (isolation by stream distance IBSD), I estimated the correlation between FST and 
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stream distance in each basin. Stream distance was the shortest pathway along streams 

connecting two points (ArcMap 9.2, ESRI, Redlands, CA). Second, I tested the 

hypothesis that gene flow in D. aterrimus occurs primarily overland (isolation by 

Euclidean distance IBED) by estimating the correlation between FST and surface distance 

in each basin. Surface distance was the Euclidean distance connecting two points that 

corrects for changes in elevation along the path (ArcMap 9.2, ESRI, Redlands, CA). 

Significance of correlations in all Mantel tests were assessed with 10,000 matrix 

randomizations. Basins were tested separately for IBSD and IBED to detect regional 

differences in the scale and strength of IBD due to in-stream versus overland gene flow. 

Pairwise stream and surface distances were significantly correlated (r = 0.88, p < 0.001). 

Therefore, the strength of correlations of genetic distance with stream distance versus 

surface distance were used to assess the relative importance of in-stream versus overland 

gene flow. 

Results

361 individuals from 24 streams (Appendix B, Figure 3) were genotyped at 14 

microsatellite loci.  Four microsatellite loci were monomorphic and were therefore 

discarded (Appendix B).  Another locus, Dte11, deviated significantly from HW 

proportions in 3 of the 6 streams exhibiting polymorphism before correction for multiple 

significance tests.  Moreover, the inbreeding coefficient for Dte11 indicated a deficit of 

heterozygotes and suggested the presence of a null allele.  Because Dte11 was not highly 

polymorphic and did not conform to HW expectations it was removed from further 

analyses. No other locus had significant departures from HW proportions in more than 
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three streams after correcting for multiple significance tests with sequential Bonferroni 

corrections (Rice 1989).  Two of 24 streams deviated from HW proportions with only a 

single locus out of HW proportions (Appendix C).  After sequential Bonferroni 

correction, no populations deviated significantly from HW proportions.  Of the 707 tests 

for linkage disequilibrium, 5.1% were significant (p < 0.05), just slightly more than 

expected by chance with multiple tests.  No pairs of loci were non-randomly associated in 

more than four of 24 streams, and no comparisons were significant after sequential 

Bonferroni correction for multiple testing (Rice 1989).  

Overall, genetic variation was low and in most streams at least one locus was 

fixed for a particular allele (Appendix C).  Six FIS values were significantly different from 

zero before correcting for multiple tests, none were significant after sequential Bonferroni 

correction (Rice 1989), and no population had more than two loci showing either 

heterozygote excess or deficit.  Pairwise genetic distances (FST) among streams exhibited 

a wide range of values with the lowest divergence between streams within catchments. 

Overall, divergence among streams tended to be high (median FST = 0.39; Appendix D). 

Five pairwise FST values were not significantly different from zero and all non significant 

tests corresponded to pairs of streams in the same catchment.

The global AMOVA indicated significant structure at all levels (Table 1).  Most 

genetic variation occurred among individuals within streams, and the greatest proportion 

of structural genetic variation was due to differences among catchments within basins. 

While there was significant variation due to differences among streams within 

catchments, this level explained a small proportion of variation in the data (<10%).  The 

within-Lochsa basin AMOVA resulted in the same patterns as the global AMOVA.  
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Table 1. Results of hierarchical analysis of molecular variance, A. Global AMOVA, B. 
Within Lochsa AMOVA, C. St. Joe - St. Regis AMOVA.  Significant P values are 
bolded.

Source of Variation df
Variance

components
Percentage
of variation F statistics p

A Among basins 1 0.725 13.0 FBT = 0.130 0.0022
Among catchments
  within basins

2 1.285 23.1 FCB = 0.266 <0.001

Among streams
  within catchments

5 0.310 5.6 FSC = 0.087 <0.001

Within streams 353 3.236 58.2 FIS = -0.024

Total 361 5.556 FST = 0.418

B Among catchments
  within basins

1 1.117 24.3 FCB = 0.243 <0.001

Among streams
  within catchments

3 0.335 7.3 FSC = 0.096 <0.001

Within streams 176 3.147 68.4 FIS = -0.012

Total 180 4.599 FST = 0.316

C Among basins 1 0.044 0.8 FBT = 0.009 0.1685

Among catchments
  within basins

1 1.533 29.6 FCB = 0.298 0.0039

Among streams
  within catchments

2 0.285 5.5 FSC = 0.079 <0.001

Within streams 177 3.324 64.1 FIS = -0.035

Total 181 5.187 FST = 0.359
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Figure 4. Plots of the first three principal component scores of allele frequencies of 9 
microsatellite loci among streams sampled from basins and catchments in Idaho and 
Montana.  Points corresponding to streams within catchments are circled, catchments are 
labeled.  Streams sampled in the Lochsa basin are red, streams from the St. Joe basin are 
blue, streams from the St. Regis basin are orange.
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Conversely, the St. Joe-St. Regis basins AMOVA indicated that variation due to 

differences among basins was not significant, accounting for less than 1% of the total 

genetic variation.  However, variation among catchments in the St. Joe / St. Regis 

complex was highly significant, accounting for 29.5% of the total genetic variation 

(Table 1).

Principal components analysis showed concordant patterns of genetic divergence 

across hierarchical river network scales.  The first principal component (PC1), which 

accounted for 30% of the variance in allele frequencies, separated catchments into three 

groups consisting of (i) St. Regis and St. Joe catchments, (ii) Papoose Cr. and Wendover 

Cr. catchments in the Lochsa, and (iii) Badger Cr. and Squaw Cr. catchments in the 

Lochsa (Figure 4).  The second principal component (PC2), which accounted for an 

additional 18% of the variation, and the third principal component (PC3), which 

accounted for an additional 14% of the variation, separated catchments in the St. Regis 

and St. Joe basins but did not group catchments from basins together.  

Individual assignment tests (Rannala and Mountain 1997) supported patterns of 

genetic structure shown in AMOVA and PCA.  The majority of individuals were 

assigned to the basin (99.4%) and catchment (98.9%) where they were sampled. 

However assignment of individuals to the stream where they were sampled was much 

lower (67.1%).  Individuals most likely to originate from a population other than their 

sampling origin (n = 119) and those assigned to their sampling origin with p < 0.95 (n = 

147) were evaluated with exclusion methods for a measure of confidence associated with 

assignment (Paetkau et al. 2004).  
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The partially Bayesian exclusion test identified no potential migrants among 

basins, one potential migrant among catchments in the Lochsa, and five potential 

migrants among streams within catchments in the Lochsa and St. Regis basins. 

Exclusion tests identified 156 individuals that had the highest likelihood of occurring in 

another stream.  Two of those were assigned to an unsampled stream (p < 0.01).  Six had 

the highest likelihood or originating in a stream from a neighboring catchment in the 

Lochsa basin (2 individuals p > 0.90, 4 individuals p < 0.7).  The remaining 148 

individuals had the highest likelihood of occurring in another stream within the 

catchment.  Although only 5 were considered potential migrants (p ≥ 0.95), 67 

individuals had a high likelihood of originating from another stream within the catchment 

(p > 0.7).  These individuals may be descendants of immigrants from several generations 

back.  Collectively, individual assignments identified more migrants among streams 

within catchments than among catchments or among basins.  

The hierarchical analysis of genetic variation (AMOVA) identified subdivision 

due to restricted gene flow across catchment boundaries.  This pattern suggests that 

genetic exchange is more frequent within than between catchments.  Therefore, if gene 

flow is limited by geographic distance, this should be manifested as isolation by distance 

within catchments.  Plots of pairwise genetic and geographic distances in basins show a 

positive relationship between FST and stream distance among pairs of streams within 

catchments (Figure 5).  However no relationship was apparent for pairs of streams that 

were not in the same catchment.  The change in the relationship between FST and 

geographic distance suggests a major shift in the relative influences of gene flow and drift 

that occurred in my data according to catchment boundaries.  As streams became more 
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Figure 5. Scatter plot of FST and stream distance for pairs of streams within the same 
basin.  Pairs in the St. Joe basin are black, in the St. Regis basin are blue, in the Lochsa 
basin are red.  Pairs of streams that are located within the same catchment are 
distinguished from those that are not within the same catchment.



20

geographically distant, genetic distance (FST) increased, suggesting IBD within 

catchments.  However, pairs of streams that were separated by catchment boundaries, 

showed no indication of IBD. 

Using pairwise genetic distances between streams, there was a significant, 

positive correlation between stream distance and FST (IBSD) in the Lochsa basin (Mantel; 

r = 0.63, p < 0.001), in the St. Regis basin (r = 0.93, p < 0.001), and in the St. Joe basin (r 

= 0.83, p < 0.001).  There were significant but weaker positive correlations between 

surface distance and FST (IBED) in the Lochsa basin (r = 0.42, p < 0.001), in the St. Regis 

basin (r = 0.80, p < 0.001), and in the St. Joe basin (r = 0.72, p < 0.01).  All Mantel tests 

were significant after sequential Bonferroni adjustment. Because of the limited number of 

streams sampled within catchments, I could not test correlations within individual 

catchments. In sum, correlations of FST and geographic distance were higher for stream 

distance than surface distance, and analyses of IBD within basins reveal that there is IBD 

among streams within catchments.  

Discussion

Evolution in stream networks

My microsatellite data show that hierarchical scale is important for 

microevolution of freshwater organisms in stream networks.  Consistent sampling across 

three hierarchical scales (streams, catchments, basins) provided a framework to test for 

the influence of stream network structure on genetic structure.  Although differences 

among streams, among catchments, and among basins all contributed to genetic structure, 

structure was clearly dominated by two patterns: isolation and high divergence between 
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adjacent catchments but low divergence among streams within catchments.  These data 

suggest that among-catchment structure is driven by genetic drift, which is consistent 

with the death valley model of population structure (Meffe and Vrijenhoek 1988).  They 

also suggest that within-catchment structure is driven by gene flow among streams, 

consistent with the stream hierarchy model (Meffe and Vrijenhoek 1988).  These results 

show that dispersal patterns at small and intermediate spatial scales were very different 

than dispersal patterns on a larger spatial scale.    

Divergence among catchments due to genetic drift had a large effect on D. 

aterrimus population structure (global FCB = 0.27).  There was also evidence for 

significant divergence among streams (global FSC = 0.09), but to a much lower degree 

than among catchments.  While gene flow can explain the moderate divergence among 

streams, distinguishing between contemporary and historical gene flow is difficult 

(Peakall et al. 2003).  Two lines of evidence point to contemporary gene flow as the 

cause of this pattern, including observations in the field that suggest small population 

sizes and the identification of potential migrants with individual assignment tests.   

Although I did not estimate population sizes directly, my field surveys suggest 

that streams were occupied by a small number of individuals: significant effort was 

required to collect just 15 individuals from many sites (up to 2 hours shock time). 

Because effective population sizes (Ne), are often only 10% of census population sizes 

(NC) in wildlife populations (Frankham 1995), and estimates of Ne are generally lower 

than NC for salamanders (Gill 1978, Jehle et al. 2005), my field surveys suggest Ne of D. 

aterrimus was small.  Since divergence among populations is a function of Ne and time 

(t) according to the equation: [FST = 1-(1-1/2(Ne))t], FST rapidly increases over short 
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periods of time when Ne is small (Wright 1969, Nei and Chakravarti 1977).  Genetic 

divergence would also be elevated by variable Ne among streams (Whitlock 1992). 

Therefore, it appears likely that migration was important in minimizing divergence 

among streams. Individual assignment tests provide further support for contemporary 

migration among streams, identifying few potential migrants among basins and 

catchments, but many among streams within catchments.

During the most recent glacial maximum (18,000 ybp), the Cordilleran ice sheet 

extended into northern Idaho (Richmond et al. 1965), forcing organisms into southern 

refugia that provided climatic insulation (Daubenmire 1975). Genetic data have identified 

the locations of refugia for codistributed amphibians: the Coeur d’ Alene salamander 

(Plethodon idahoensis) in the Clearwater drainage of Idaho (Carstens et al. 2004), and the 

Rocky Mountain tailed frog (Ascaphus montanus) in the Clearwater drainage as well as 

the South Fork of the Salmon River in Idaho (Nielson et al. 2001, Nielson et al. 2006). 

Results of Carstens et al.’s (2005a) coalescent simulations suggests that a single refugial 

population of D. aterrimus subsisted in the South Fork Salmon River, Idaho during the 

most recent glacial maximum.  

This putative refuge is situated at the southern end of D. aterrimus’ current range, 

suggesting that the population expanded northward as glaciers receded.  Northward 

expansion appears to have left a signature in my genetic data as well; PC1 identified 

more divergence in allele frequencies among catchments in the Lochsa basin compared to 

the St. Joe and the St. Regis basins.  According to David A. Good’s model in Slatkin 

(1993), a gradual stepwise range expansion from a single refugial population would result 

in greater genetic divergence among earlier founded populations than among more 
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recently founded ones regardless of geographic distance among them.  Assuming a 

similar scenario of range expansion from the South Fork Salmon River northward, my 

results suggest that streams in the Lochsa basin were founded earlier than streams in the 

St. Joe or St. Regis basins.  

This pattern of historical range expansion was also apparent in AMOVA. 

Divergence among basins was significant in the global test (among St. Regis, St. Joe, and 

Lochsa basins), but not between the St. Regis and St. Joe basins.  Because the Lochsa 

basin was likely colonized first, greater genetic divergence has accumulated between the 

Lochsa basin and the St. Regis and St. Joe basins.  Conversely, basins separated by 

minimal distances (i.e., St. Regis and St. Joe), with shorter divergence time, were not 

structured at the among basin level. Rather, in the St. Regis and St. Joe basins, the 

structure imposed by differences among catchments was so strong that the relative effect 

of basin structure was minimal.  

Pathways of gene flow 

Among pairs of streams in each basin, genetic divergence (FST) and in-stream 

distance were strongly correlated, consistent with an increased likelihood of genetic 

exchange among nearby populations compared to distant populations (Wright 1945). 

Hutchison and Templeton (1999) described how patterns of isolation by distance (IBD) 

can change with spatial scale due to the shifting influences of gene flow and drift with 

distance.  My results were consistent with what they described as localized dispersal 

between nearby populations, and divergence between more distant populations due to 

drift (Hutchison and Templeton 1999).  However, my results suggest that the major shift 
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in relative influences of gene flow and drift was not due to geographical distance, rather, 

it occurred because of hierarchical catchment boundaries.  IBD was apparent only at 

some spatial scales – in particular, among streams within catchments, signifying limited 

dispersal extent within catchments and strong dispersal barriers among catchments.  

Studies with other species of Dicamptodon in Washington state suggest that 

genetic structure is strongly affected by life history (Steele et al. 2009).  D. copei has a 

primarily aquatic life-history (non-metamorphosing) and a pattern of IBSD, whereas D. 

tenebrosus is a facultative paedomorph (metamorphosing) with no apparent IBSD or 

IBED among sites separated by a maximum of 20km.  Steele (2009) concluded that 

overland dispersal by terrestrial D. tenebrosus adults was an important influence on 

genetic structure.  My results with D. aterrimus, however, indicated that genetic structure 

was more consistent with gene flow along stream corridors than by overland gene flow of 

metamorphosing D. aterrimus.  FST was more strongly correlated with stream distance 

than with surface distance. However, because the two measures of distance were 

themselves correlated, I was unable to definitively rule out the influence of overland gene 

flow based solely on IBD.  High divergence between adjacent catchments, however, 

provided further indication of the limited influence of overland gene flow on population 

structure.  

Steele’s (2009) measures of overall genetic divergence in D. copei (θ = 0.079) 

and D. tenebrosus (θ = 0.031) were much lower than my results of D. aterrimus within 

basins (Lochsa θ = 0.28, St. Regis θ = 0.26, St. Joe θ = 0.27).  Although D. aterrimus and 

D. tenebrosus are both facultative paedomorphs, ecological differences, differences in 

abundance, and/or differences in the intervening habitat of these species have resulted in 
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dissimilar patterns of genetic structure and evolution.  Therefore, the use of empirical 

data and results collected with D. tenebrosus may not be valid for use in conservation of 

D. aterrimus. Predictions of the stream hierarchy model (Meffe and Vrijenhoek 1988), 

which appears to explain D. aterrimus population structure within catchments, suggest 

that D. aterrimus are not ecologically isolated headwater specialists (Nussbaum and 

Clothier 1973).  Rather, they appear to use catchment mainstems as corridors for 

dispersal and potentially for habitat as well.

This study highlights the importance of stream network structure on population 

processes of freshwater organisms.  Ecological differences between D. aterrimus and 

other Dicamptodon species have contributed to much higher genetic divergence among 

populations of inland salamanders. While populations of D. aterrimus are structured by 

dispersal along stream channels within catchments, at larger spatial scales, catchments 

are isolated from one another resulting in strong lineage divergence over small 

geographic scales.  Long-term persistence of D. aterrimus will depend in part on the 

maintenance of genetic variation within catchments via dispersal among streams, 

enabling adaptation in response to shifting environmental conditions.  
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Appendix A

Dicamptodon aterrimus sampling reaches.  Map datum WGS84 was used for GPS 
coordinates.  15 individuals were collected from throughout the length of the survey 
reach, with the exception of RBU1 with 16. Sampling streams are mapped in Figure 3. 

Sub-basin Network Stream Length (m) Elevation (m) N
St. Joe Gold JGPR 360 47.2012 -115.3636 1198 15

JGU1 224 47.2370 -115.3669 1442 15
JGU2 201 47.2332 -115.3623 1334 15

Quartz JQU1 230 47.2213 -115.5013 1062 15
JQU3 179 47.2415 -115.4784 1205 15
JQUE 391 47.2452 -115.4935 1249 15

Lochsa Badger LBU1 148 46.5168 -114.8278 1085 15
LBU2 343 46.5307 -114.8356 1170 15
LBU3 167 46.5397 -114.8315 1233 15

Papoose LPEF 171 46.5549 -114.7430 1246 15
LPTE 195 46.5477 -114.7509 1222 15
LPTW 185 46.5445 -114.7688 1127 15

Squaw LSDO 281 46.5356 -114.9155 1351 15
LSSP 170 46.5467 -114.8890 1294 15
LSU1 163 46.5419 -114.8646 1203 15

Wendover LWEF 210 46.5227 -114.7860 1102 15
LWU1 316 46.5317 -114.8029 1237 15
LWWF 125 46.5306 -114.8056 1207 15

St. Regis Big RBMC 161 47.3422 -115.4327 1070 15
RBU1 200 47.3312 -115.4392 1161 16
RBU2 190 47.3269 -115.4431 1201 15

Deer RDTU 204 47.3483 -115.3676 1111 15
RDU1 302 47.3106 -115.4070 1277 15
RDUU 160 47.3305 -115.3599 1431 15

Coordinates



32

Appendix B

Microsatellite loci used to genotype Dicamptodon aterrimus (Steele et al. 2008; Curtis 
and Taylor 2000).  Primer sequences are given with fluorescent marker applied to 
forward primers, including additional base pairs added as “pig tails” where required 
(Brownstein et al. 1996).  Repeat units of microsatellites are listed, NA is the number of 
alleles per locus, Length refers to the size range of products, TA is the annealing 
temperature used for PCR amplification, temperature ranges are given for touchdown 
profiles used to amplify multiplexes or single PCRs.

Locus Prim er Sequence  (5'–3') Repeat Unit NA Length TA 

F: (HEX)GAAACTATTTTATCAAAAGCATGC
R: GTGTCTTTCTAAATATGTGTATGGGTGTATAAG(tail)
F: (6FAM)GACAAATGGATAGCTGCATAGC
R: GCCTTCTGAATTGGGTGAAG
F: (PET)TGTGCACGGACTACACTTTAGG
R: GTGTCTTCCAAGATGCCTCTTTTGGTG(tail)
F: (NED)CAGGGCAATATGACCTAGTCG
R: GTGTCTTTGGGGGTAACCTGCAACAG(tail)
F: (HEX)TGCTTCTGAGCAATTATTGTGG
R: AGATTGGTGTGTAGGTGGTTG
F: (NED)GTGTGTCTGAAGTGGCAAGG
R: AGCCCACTGATTCTACGAGAG
F: (PET)AAGGCTGGAAGGTTTTATGC
R: GTGTCTTTGCTAACCGCTCAGATTCAC(tail)
F: (6FAM)CAACATAATACTGATGGTGTTTGC
R: GTGTCTTAGAATAAATGGCCGTTTTGG(tail)
F: (6FAM)TGCTTCTGCCACCATAGCC
R: AGAGCCAGCCTTTGTTGCG
F: (HEX)GGAGGAGTTTTTGAAGTTG
R: ATTCTCCAAACATTCTCCC
F: (NED)GGTAGTCATGGTGATGCTG
R: GTGTCTTCACTCCCCTATTCTCCCTAC(tail)
F: (PET)CTGCATACATTGCATCTCCG
R: GTGTCTTCCGCAAGGTCATCTTCACTAAC(tail)
F: (6FAM)ACACATGGTTGCTCACTC
R: GTGTCTTTAGTGTGTGGCATTAAGGG(tail)
F: (PET)AGGAGTGAGACAGGGTGAGC
R: CACCTCTCCTCCTCTTCCAG

D04 (TATC)18(TGTC)14

D06
(GATA)2GACA(GATA)3

GACA(GATA)9

D08 (TATC)16

D14

544

67-578

154-166

199-227

67-576

D13 (CTAT)11 67-577

124-144

114-138

(CTAT)17 67-577 173-197

D15
(CTAT)13CTGT(CTAT)5

CTAC(CTAT)2
67-578 178-206

D18 (CTAT)15 526 168-188

1 56.5215

67-571 159

543 154-162D24 (CTAT)24

Dte4
GT(GC)3(GT)3(GCGT)2GTGG
(GCGT)GC(GCGT)2(GT)8

183-195

161

4

1

118-126

125

7

1

67-57

67-57

67-57

67-57Dte14

(AG)3CG(AG)4AA(AG)17

CACTA(CA)18

(CT)16

(GT)3(CA)6CG(CA)4
CG(CA)5(CT)3

(GA)17

Dte5

Dte6

Dte8

Dte11
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Appendix C

Genetic diversity of each stream where AS is allelic richness, NA is the total number of alleles observed in the stream, HO is 
observed heterozygosity, HE is expected heterozygosity, and FIS is provided for all 9 loci when polymorphic.  FIS values that are 
significantly different from zero are bolded, as well as the two streams with significant departures from HW.  After correcting 
for multiple tests, however, none of the FIS values were significantly different from zero, and no populations had significant 
deviations from HW proportions however.  Fifteen individuals were genotyped in each stream with the exception of RBU1 
with 16 individuals.

D14 D18 Dte6 D06 D15 D13 D04 D24 D08
JGPR 2.89 26 0.4889 0.4779 -0.222 -0.084 -- 0.364 0.24 -0.073 -0.167 -0.12 -0.156
JGU1 2.56 23 0.4074 0.4015 0.306 0.271 -0.189 -0.077 -0.128 -0.032 -0.2 -0.167 --
JGU2 2.44 22 0.3778 0.3295 -0.328 -0.037 -- -0.217 -0.258 -0.114 0.213 -0.12 --
JQU1 3.44 31 0.5333 0.5083 -0.033 -0.08 -0.037 -0.037 -0.155 -0.116 0.2 -0.037 -0.072
JQU3 2.11 19 0.3185 0.3034 -0.023 -0.125 -- -0.167 -0.308 -0.273 0.548 -- --
JQUE 2.56 23 0.4741 0.4148 0.219 -0.011 -- -0.077 -0.235 -0.26 -0.359 -0.037 -0.387
LBU1 2.78 25 0.3481 0.3632 -0.167 -0.067 0.325 0.65 0.364 -0.363 -0.162 -0.037 -0.05
LBU2 2.44 22 0.3407 0.3213 -0.225 -0.050 -0.280 -0.077 0.352 -0.172 -0.069 -- --
LBU3 2.56 23 0.3926 0.3663 0.012 -0.191 0.080 -0.037 -0.474 -0.111 0.155 -- -0.120
LPEF 2.78 25 0.4148 0.3499 -0.363 -0.023 -0.037 -0.077 -0.241 -0.400 -0.037 -- -0.134
LPTE 2.44 22 0.3185 0.3479 0.200 0.051 0.200 0.092 0.333 -- -0.114 -- -0.011
LPTW 2.67 24 0.3556 0.3451 -0.315 0.133 -0.185 -- 0.122 0.103 -0.037 -- -0.077
LSDO 3.11 28 0.5111 0.4994 0.000 -0.176 -0.340 -0.081 -0.050 -0.188 0.011 -0.077 0.531
LSSP 2.89 26 0.3556 0.4059 0.104 0.011 0.228 0.467 0.154 0.491 0.157 -- -0.407
LSU1 2.22 20 0.3111 0.3257 -0.278 0.031 -- 0.084 -0.077 0.104 -0.077 -- 0.479
LWEF 2.11 19 0.237 0.248 0.247 -0.191 -- -- 0.228 -0.077 -- -- --
LWU1 2.11 19 0.3481 0.2978 -0.179 -0.081 -- -0.167 -0.162 -0.308 -- -- --
LWWF 2.78 25 0.3111 0.3267 -0.037 0.053 0.650 -0.018 0.214 -0.407 0.317 -- --
RBMC 2.67 24 0.4222 0.4079 -0.233 -0.037 -- 0.092 -0.217 0.034 0.187 -0.037 -0.167
RBU1 2.56 23 0.375 0.4178 -0.034 0.097 -0.200 0.057 0.306 0.016 0.159 0.455 0.153
RBU2 2.56 23 0.4074 0.4483 0.364 -0.141 -0.333 -0.043 -0.077 -0.037 0.314 0.349 0.352
RDTU 2.11 19 0.2 0.187 -0.151 -0.018 -- -0.273 -- 0.192 -- -0.037 -0.037
RDU1 2.22 20 0.4074 0.3144 -0.468 -0.260 -0.167 -0.389 -- -0.273 -0.167 -- --
RDUU 2.11 19 0.1778 0.2235 0.517 -0.023 -- 0.211 -- 0.102 -- -- --
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Appendix D

Pairwise FST among all streams.  Values that are not significantly different from zero are bold italicized, pairs of streams within the 
same catchment are highlighted in grey.  Significance testing of FST was based on 10,000 permutations. 

JGPR JGU1 JGU2 JQU1 JQU3 JQUE LBU1 LBU2 LBU3 LPEF LPTE LPTW LSDO LSSP LSU1 LWEF LWU1 LWWF RBMC RBU1 RBU2 RDTU RDU1 RDUU
JGPR 0.00
JGU1 0.19 0.00
JGU2 0.16 0.10 0.00
JQU1 0.15 0.32 0.34 0.00
JQU3 0.29 0.47 0.49 0.11 0.00
JQUE 0.21 0.40 0.42 0.03 0.04 0.00
LBU1 0.38 0.47 0.46 0.35 0.45 0.42 0.00
LBU2 0.38 0.48 0.46 0.35 0.44 0.42 -0.02 0.00
LBU3 0.37 0.47 0.46 0.34 0.44 0.39 0.01 0.03 0.00
LPEF 0.38 0.41 0.44 0.42 0.53 0.49 0.34 0.37 0.33 0.00
LPTE 0.40 0.42 0.45 0.42 0.54 0.49 0.32 0.35 0.31 0.03 0.00

LPTW 0.39 0.45 0.49 0.39 0.49 0.44 0.32 0.34 0.28 0.07 0.11 0.00
LSDO 0.33 0.40 0.38 0.29 0.41 0.36 0.15 0.18 0.18 0.30 0.26 0.32 0.00
LSSP 0.31 0.44 0.42 0.23 0.34 0.29 0.28 0.28 0.26 0.32 0.31 0.25 0.24 0.00
LSU1 0.36 0.48 0.45 0.32 0.42 0.37 0.32 0.33 0.32 0.33 0.31 0.32 0.15 0.16 0.00

LWEF 0.48 0.55 0.60 0.45 0.57 0.52 0.40 0.42 0.37 0.25 0.31 0.22 0.40 0.38 0.43 0.00
LWU1 0.46 0.52 0.58 0.39 0.51 0.46 0.41 0.43 0.38 0.24 0.27 0.19 0.39 0.29 0.39 0.07 0.00

LWWF 0.43 0.49 0.54 0.37 0.48 0.44 0.34 0.35 0.30 0.24 0.28 0.18 0.37 0.26 0.37 0.05 0.07 0.00
RBMC 0.22 0.38 0.34 0.19 0.34 0.26 0.38 0.39 0.39 0.44 0.43 0.45 0.28 0.31 0.31 0.53 0.50 0.45 0.00
RBU1 0.26 0.40 0.37 0.22 0.33 0.27 0.36 0.36 0.36 0.44 0.41 0.43 0.28 0.30 0.33 0.52 0.49 0.44 0.02 0.00
RBU2 0.25 0.39 0.35 0.23 0.36 0.30 0.35 0.36 0.35 0.42 0.40 0.42 0.26 0.30 0.32 0.51 0.48 0.43 0.03 -0.01 0.00
RDTU 0.39 0.52 0.48 0.37 0.49 0.46 0.47 0.47 0.47 0.53 0.53 0.54 0.41 0.45 0.45 0.60 0.59 0.53 0.36 0.38 0.36 0.00
RDU1 0.34 0.41 0.41 0.29 0.38 0.38 0.39 0.38 0.40 0.46 0.46 0.45 0.34 0.36 0.37 0.53 0.50 0.45 0.33 0.33 0.33 0.10 0.00
RDUU 0.39 0.49 0.46 0.35 0.46 0.44 0.45 0.44 0.45 0.51 0.51 0.50 0.39 0.40 0.40 0.57 0.55 0.49 0.37 0.39 0.39 0.09 0.07 0.00
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