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Abstract 

Trillo, Paula Alejandra, August 2008   Organismal Biology and Ecology 
 
Pre- and Post-Copulatory Sexual Selection in the Tortoise Beetle Acromis sparsa 
(Coleoptera: Chrysomelidae) 
 
Chairperson: Douglas J. Emlen 
 
   
  Females in nearly all sexually reproducing taxa mate with multiple males. In these 
species, male fitness is dependent on traits used during both the pre-copulatory processes 
influencing mate acquisition, as well as the post-copulatory processes influencing 
fertilization. However, few studies have simultaneously examined pre- and post-
copulatory sexual selection within a particular species, and we therefore have little 
understanding of how these processes interact to determine male reproductive success. 
  The objective of my study was to gain a more comprehensive understanding of the 
evolution of sexually selected traits by examining the interactions between pre- and post-
copulatory processes in the tortoise beetle Acromis sparsa. 
  I examined the relationship between traits involved in pre-copulatory strategies, such as 
secondary sexual characters, and traits involved in post-copulatory strategies, such as 
primary sexual characters and copulatory courtship. Primary and secondary sexual 
characters in A. sparsa were not correlated, indicating that males may be able to acquire 
and develop these traits independently of each other. On the other hand, copulatory 
courtship behaviors were negatively correlated with secondary sexual characters, 
suggesting that small males use courtship as a mechanism to compensate for decreased 
attractiveness to females, or to compensate for decreased access to females as a result of 
inferior fighting abilities. Thus, males may modulate the quality or intensity of their 
behaviors based on their pre-copulatory attributes.  
  I also examined the relative importance of primary and secondary sexual characters as 
well as copulatory courtship on the reproductive success of A. sparsa males using natural 
insectary experiments, double mating experiments, and paternity analyses. I found that, in 
natural settings, males with larger testes mated with and fertilized more and larger 
females, and sired more offspring overall. In double mating experiments, testes mass and 
copulatory courtship influenced male reproductive success. However, the effects of 
copulatory courtship were dependent on mating order. Thus, even in species with 
exaggerated secondary sexual traits, such as A. sparsa, under certain conditions, it is 
post-copulatory sexual traits that make the largest contributions to male fitness. 
Moreover, the degree to which these traits contribute to reproductive success can vary 
with mating context. 
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CHAPTER 1: 

INTRODUCTION 

Male competition for access to females is ubiquitous in nature (Andersson, 1994). 

When females mate more than once, male competition continues inside the female 

reproductive tract. As a result, male reproductive success becomes a function of both the 

pre- and post-copulatory processes of sexual selection. 

 The vast majority of studies in sexual selection have focused on pre-copulatory 

processes. Here, sexual traits operate prior to copulation to determine the number of 

mates a male will have access to during his lifetime (Andersson, 1994; Shuster & Wade, 

2003). Examples of traits involved in pre-copulatory processes include elaborate 

secondary sexual characters such as the long tails in birds of paradise, antlers in 

ungulates, and horns in beetles. These characters increase the reproductive success of 

males through two principle mechanisms: female choice of attractive males (Kirkpatrick 

& Ryan, 1991; Andersson, 1982; Kirkpatrick, 1982; Moller, 1988), and/or increased 

fighting success in male-male competitions over females or mating sites (Clutton-Brock 

et al., 1979; Eberhard, 1982). 

 A new but intensive program of research suggests that post-copulatory processes 

can also be major drivers in the evolution of sexual traits (Arnqvist et al., 1997; 

Danielsson & Askenmo, 1999; House & Simmons, 2002; Simmons, 2003; Simmons & 

Achmann, 2000; Simmons et al., 1999; Tallamy et al., 2002; Edvardsson & Anqvist, 

2000; Hosken & Stockley, 2004; Eberhard, 1985). Here, sexual traits operate during or 

after copulation, and determine the fertilization success of a male once he has attained a 

mate. Examples of traits involved in post-copulatory processes include primary sexual 



 

  

2

characters such as genitalia and testes, as well as copulatory courtship behaviors. 

Selection on these traits results from three major non-exclusive mechanisms. First, 

cryptic female choice includes female processes inside her reproductive tract that affect 

male fertilization success after the coupling of male and female genitalia (Eberhard, 

1996). Second, sperm competition involves the competition among male ejaculates that 

arises after insemination of a female by more than one male (Parker, 1998; Simmons, 

2001a). Finally, sexual conflict models explain the evolution of post-copulatory sexual 

traits through an antagonistic coevolution, or arms race, between females and males for 

the control of fertilizations (Arnqvist & Rowe, 2002; Holland & Rice, 1998; Parker, 

1979).  

  With a few exceptions, most studies of pre- and post-copulatory processes have 

proceeded largely independently of each other. In many species, however, these 

processes are likely to act concurrently to determine male reproductive success. This is 

because a males’ overall reproductive success depends on both the number of mates he 

has access to, as well as the number of ova he fertilizes per mate. Studies that 

simultaneously examine the relative importance of traits used in both pre- and post-

copulatory processes within a particular species are needed to gain a more comprehensive 

understanding of the evolution of sexually selected traits and a broader appreciation of 

sexual selection as an evolutionary process that acts on whole organisms (Simmons, 

2001a; Andersson & Simmons, 2006). 

 The main objective of my research is to determine the interactions between pre- 

and post-copulatory sexual processes by simultaneously examining the relative 
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importance of primary sexual characters, secondary sexual characters, and copulatory 

behavior on the reproductive success of the neotropical tortoise beetle Acromis sparsa. 

 Acromis sparsa are especially well-suited for this type of comprehensive analysis. 

Males congregate around host-plant patches and compete for access to females. Females 

regularly mate with more than one male and can store sperm for weeks, providing ample 

opportunities for male competition to continue inside their reproductive tracts. Males of 

this species are remarkable in that they present multiple exaggerated primary and 

secondary sexual characters as well as highly stereotyped copulatory behaviors. Their 

secondary sexual characters are rigid elytral and pronotal projections used in male-male 

combat for females (Windsor, 1987). Their primary sexual characters include a hardened 

intromitent organ called the aedeagus, a genitalic whip, or flagellum, that can be longer 

than the entire body, and testes that occupy roughly 10-15% of the internal cavity (pers. 

obs.). Finally, males perform stereotyped courtship behaviors during copula, such as 

palpi vibrations, antennal stroking and foot tapping, that have been shown to influence 

reproductive success in other insect species (Edvardsson & Anqvist, 2000; Sirot et al., 

2007; Tallamy et al., 2002). 

  

 Below are the specific objectives I address in my research with Acromis sparsa 

and a brief summary of my findings: 

 

The relationship between morphological traits involved in pre and post-copulatory 

processes and the relative importance of these traits for male reproductive success: 

 Knowledge of genetic correlations between traits is necessary to make inferences 

about the evolutionary trajectories of such traits. If traits are genetically uncorrelated, 
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they will likely respond to different selective pressures independently of each other. If 

they are positively correlated, an increase in the size of one trait through selection will 

positively affect the correlated trait. If they are negatively correlated, an increase in the 

size of one trait through selection will negatively impact the other (Lande & Arnold, 

1983; Arnold, 1983). Thus, the evolutionary outcome of selection on these traits will vary 

depending on the relationships between them and the type of selection they are subjected 

to.  Though measurements of phenotypic correlations may, in some cases mask, genetic 

correlations, they can still give us information on how different traits relate to each other 

in nature, and provide some insights into the mechanisms by which these traits evolve 

(Emlen, 2001; Roff, 1992). One objective of the study presented in Chapter 2 was to 

determine the general variability and phenotypic correlations between primary and 

secondary sexual characters as a first attempt to understand the relationships between 

morphological traits involved in pre- and post-copulatory processes. A quantitative 

genetic study is currently underway to compare these phenotypic correlations to genetic 

correlations for the same traits. The results of this study showed that most of the primary 

and secondary sexual characters measured were not phenotypically correlated with each 

other. Only aedeagus length showed a positive correlation with weapon size. Thus, males 

of A. sparsa may be able to acquire and develop primary and secondary sexual characters 

independently of each other. 

 To understand sexual selection on species that rely on both pre and post-

copulatory reproductive strategies, it is important to examine the relative importance of 

sexual traits used during both mate acquisition and offspring production (Andersson & 

Simmons, 2006). Thus, a second objective of the study presented in Chapter 2 was to 
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determine the relative importance of primary and secondary sexual characters for male 

fertilization success in A. sparsa, using surveys of natural populations in combination 

with a natural insectary experiment and paternity analyses. I first developed five species-

specific microsatellite markers with high repeatability, high allelic variation, and strong 

discriminatory power to assign paternity and determine fertilization success in this 

species. Using these markers, I found that, of all the pre and post-copulatory sexual 

morphologies measured, testes mass had the largest effect on male reproductive success. 

Males with larger testes mated with and fertilized more and larger females, as well as 

sired more offspring overall. This result is interesting because it shows that even in 

species with exaggerated secondary sexual characters, under some conditions, primary 

sexual characters can make the largest contributions to male fitness. 

 

The relationship between behavioral traits involved in post-copulatory processes and 

morphological traits involved in pre-copulatory processes 

Copulatory courtship behaviors have been found in at least 81% of the species 

investigated (Eberhard, 1994). These behaviors can play an important role on the success 

of males during post-copulatory sexual selection. The expression of behavioral traits 

under post-copulatory sexual selection, such as copulatory courtship, may interact with, 

and be influenced by traits under pre-copulatory sexual selection. Thus, determining 

whether individuals base the quality or intensity of their behaviors on their pre-copulatory 

attributes will help us understand the interactions between pre and post-copulatory 

processes and the evolution of male reproductive strategies. The objective of the study 

presented in Chapter 3 was to examine the effects of pre-copulatory traits on the 

expression of copulatory courtship behavior in A. sparsa males. We found that the 
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intensity of copulatory courtship behavior in A. sparsa decreased significantly with both 

body and weapon size. Thus, small males may use copulatory courtship behaviors as a 

mechanism to compensate for decreased attractiveness to females, or to compensate for 

decreased access to females as a result of inferior fighting abilities. 

 

Mechanisms of post-copulatory sexual selection in Acromis sparsa 

 The natural setting of the insectary experiment presented in Chapter 2 provided an 

opportunity to test the overall consequences that variation in primary and secondary 

sexual characters have on male reproductive success. However, in species with multiply 

mating females, post-copulatory sexual selection will favor males with traits that can 

enhance fertilization success with already mated females (male offensive ability), and 

traits that reduce the fertilization success of males subsequently mating or attempting to 

mate with the same female (male defensive ability). Genitalia, testes and copulatory 

courtship may be more relevant for either defensive or offensive mechanisms of 

fertilization. Thus, a detailed assessment of the effects of these traits across offensive 

versus defensive roles will provide critical insights about the contexts in which these 

post-copulatory traits affect male reproductive success. The objective of the study 

presented in Chapter 4 was to determine the patterns of sperm precedence in A. sparsa, 

and to determine the effects of genitalia, testes and copulatory courtship on fertilization 

success of first male (defensive role) versus second male (offensive role) strategies. We 

found that, although there is second male sperm precedence in A. sparsa, there was a 

large amount of variation within first males and second males in the degree to which they 

successfully fertilized females. High rates of copulatory courtship and large testes mass 

relative to first males significantly increased the fertilization success of second males. 
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However, first males did not benefit from high courtship rates. Thus, these findings show 

that the degree to which some post-copulatory sexual traits contribute to fertilization 

success in A. sparsa is context-dependent and can change across offensive and defensive 

mating roles. 

 



CHAPTER 2: 

BIGGER WEAPONS OR LARGER TESTES?: THE IMPORTANCE 

OF PRIMARY AND SECONDARY SEXUAL CHARACTERS FOR 

THE REPRODUCTIVE SUCCESS OF THE TORTOISE BEETLE 

ACROMIS SPARSA 

 

 

 

 

P. A. TRILLO*†, L. FISHMAN† & D.J. EMLEN† 

†Division of Biological Sciences, University of Montana 

*Smithsonian Tropical Research Institute, Panam
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2.1 ABSTRACT 

 Sexual selection has generated incredibly diverse and exaggerated morphologies. 

Elaborated plumage in birds and large horns in beetles are well known examples of 

exaggerated secondary sexual morphologies (traits not directly related to reproduction), 

whereas bizarre-looking genitalia in insects are remarkable examples of exaggerated 

primary sexual morphologies (traits directly related to reproduction). Most work in sexual 

selection has focused exclusively on either primary or secondary sexual characters. This 

approach may be inadequate to describe how sexual selection operates in many species 

because a male’s overall reproductive success depends on both the number of mates he 

has access to (through secondary sexual traits during pre-copulatory processes), as well 

as the number of ova he fertilizes per mate (through primary sexual traits during post-

copulatory processes). We measured allometries of and phenotypic correlations between 

primary and secondary sexual characters of Acromis sparsa, a neotropical tortoise beetle 

with exaggerated weapons and testes. We then used behavioral and paternity analyses in 

an insectary population of A. sparsa to simultaneously examine the relative importance of 

primary and secondary sexual traits for the reproductive success of males. Weapons had 

the highest positive allometric slope, testes mass had an intermediate positive slope, and 

genitalic structures had negative slopes. In addition, weapon size and aedeagus length 

were positively correlated. Testes mass, a primary sexual trait, had the largest effects on 

male reproductive success. Males with larger testes mated with and fertilized more and 

larger females, and sired more offspring overall. Thus, our results demonstrate that even 

in species with exaggerated secondary sexual traits, under some conditions, primary 

sexual traits can make the largest contributions to male fitness.
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2.2  INTRODUCTION 

 Sexual selection has generated an incredible diversity of specialized and 

exaggerated morphologies (Darwin, 1871; West-Eberhard, 1992; Andersson, 1994). 

Secondary sexual characters (sexual traits not directly related to reproduction) include 

familiar examples of extravagant morphologies such as the long tails in birds of paradise, 

antlers in ungulates and horns in beetles. These characters are thought to increase the 

reproductive success of males through two principle mechanisms: female choice of 

attractive, highly ornamented males (Kirkpatrick & Ryan, 1991; Andersson, 1994) and/or 

increased fighting success in male-male competitions over females or mating sites 

(Clutton-Brock et al., 1979; Eberhard, 1982).  These mechanisms of sexual selection 

usually operate prior to copulation, and determine the number of mates a male will have 

access to during his lifetime (Andersson, 1994; Shuster & Wade, 2003). 

  Primary sexual characters (sexual traits directly related to reproduction) are also 

diverse and can reach exaggerated proportions (Eberhard, 1985). An intensive program of 

research suggests that sexual selection can also be a major driver in the evolution of these 

characters (Arnqvist et al., 1997; Danielsson & Askenmo, 1999; House & Simmons, 

2002; Simmons, 2003; Simmons & Achmann, 2000; Simmons et al., 1999; Tallamy et 

al., 2002; Edvardsson & Anqvist, 2000; Hosken & Stockley, 2004). Selection on primary 

sexual characters can result from three main non-exclusive mechanisms: First, cryptic 

female choice includes female processes inside her reproductive tract that affect male 

fertilization success after the coupling of male and female genitalia (Eberhard, 1996). 

Second, sperm competition involves the competition among male ejaculates that arises 

after insemination of a female by more than one male (Parker, 1998; Simmons, 2001a). 
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Finally, sexual conflict models explain the evolution of primary sexual characters through 

an antagonistic coevolution, or arms race, between females and males for the control of 

fertilizations (Arnqvist & Rowe, 2002; Holland & Rice, 1998; Parker, 1979). These 

mechanisms involved in the evolution of primary sexual characters are thought to operate 

during or after copulation, and determine the fertilization success of a male once he has 

attained a mate. 

 With a few exceptions, most studies of primary and secondary sexual characters 

have proceeded largely independently of each other, and have followed different 

trajectories. In many species however, primary and secondary sexual characters are likely 

to interact with each other. At the developmental level, investment in one sexual 

character may trade-off with investment on the other (Simmons & Emlen, 2006; Moczek, 

2004). At the functional level, we expect to see interactions because a males’ overall 

reproductive success depends on both the number of mates he has access to (pre-

copulatory processes), as well as the number of ova he fertilizes per mate (post-

copulatory processes) (Danielsson, 2001; Preston et al., 2003). How, then, do interactions 

between primary and secondary sexual characters influence reproductive success in 

species that commonly rely on both pre and post-copulatory reproductive strategies?  

 One possibility is that pre and post-copulatory processes supplement each other to 

increase the overall reproductive success of males (Simmons, 2001a; Andersson & 

Simmons, 2006). This could happen when primary and secondary sexual characters are 

associated with each other, and males that accrue the most females are also the males that 

fertilize the most ova per female. Alternatively, primary and secondary sexual characters 

may interact antagonistically, in cases where acquisition of mates and fertilization of ova 
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are independent from each other. In these circumstances, the success of some males 

accrued by pre-copulatory processes may be countered by the success of different males 

in the post-copulatory processes (Danielsson, 2001; Andersson & Simmons, 2006).  

Thus, to understand sexual selection on species that rely on both pre and post-copulatory 

reproductive strategies, it is important to examine the relative importance of primary and 

secondary sexual characters during both mating acquisition and offspring production 

(Andersson & Simmons, 2006). This explicit consideration of the fitness consequences of 

simultaneous variation in primary and secondary sexual traits is important because it can 

provide us with a broader appreciation of sexual selection as an evolutionary process that 

acts on whole organisms (Simmons, 2001a).  

 In this study, we used a natural insectary experiment in combination with surveys 

of natural populations of Acromis sparsa, a chrysomelid beetle with exaggerated primary 

and secondary sexual structures, to quantify the relative importance of these characters 

for male reproductive success. A. sparsa males are remarkable in that they produce 

multiple exaggerated characters. Their primary sexual characters include a hardened 

intromitent organ called the aedeagus, a genitalic whip or flagellum that can be longer 

than the entire body, and testes that occupy roughly 10-15% of the internal cavity (pers. 

obs.). Their secondary sexual characters are rigid elytral and pronotal projections used in 

male-male combat (Windsor, 1987). Males vary extensively in the size of the elytral 

projections, and the smallest individuals resemble females in shape (Chaboo, 2001; 

Chaboo, 2007). Males engage in aggressive contests over access to females and guard 

them after mating (Windsor, 1987). Fighting males use their projections as claspers, to 

lock opponents between the pronotum and elytra. The contests include stereotyped 
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escalating displays that can terminate in one male clasping another male, flipping it up on 

its side, and then throwing it off the leaf (Windsor 1987; pers. obs.). An analysis of the 

scaling relationship between weapon length and measures of body size suggests that 

males in this species have a weapon dimorphism (see Chapter 3)  

 A. sparsa males may also compete at an internal level, within the reproductive 

tract of females. Females regularly mate with more than one male and can store sperm for 

weeks, providing ample opportunities for male competition inside their reproductive tract 

(pers. obs.). Internal post-copulatory processes have been studied in the related species 

Chelymorpha alternans. In this species, sperm transfer involves sperm migration along 

the genital flagellum, which is threaded into the spermathecal duct of the female 

(Rodriguez, 1993; Rodriguez, 1995).  Rodriguez (1995) found that males with longer 

flagella transferred more sperm to the female and he suggested that especially large 

flagella might be able to transfer sperm directly into the spermathecae. He also found that 

females copulating with males with longer flagella ejected less sperm from their 

reproductive tract than when they copulated with males with shorter flagella. In a 

comparative study, Rodriguez et. al. (2003) found that the size of male and female 

genitalia were tightly correlated across 57 species of Cassidinae beetles. All these results 

indicate that the length of the flagellum in tortoise beetles may play an important role in 

male fertilization success. Finally, testes mass is also correlated with male fertilization 

success in many insects with multiply mating females (Simmons, 2001a). Thus, the 

extreme size of testes in A. sparsa suggests similar implications for males in this species.  
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 This study simultaneously characterizes the processes of sexual selection on 

primary and secondary sexual characters in the leaf beetle A. sparsa and measures the 

relative importance of these characters for overall male reproductive success. 

 

2.3 METHODS 

2.3.1 Study Site and Subjects 

  A. sparsa is a neotropical leaf beetle (Chrysomelidae: Cassidinae) that ranges 

from Mexico to Peru (Blackwelder, 1982; Chaboo, 2007). A. sparsa is highly abundant in 

Panama, Central America, and individuals are easy to find because they feed, mate and 

oviposit on a single hostplant, Merremia umbellata (Convolvulaceae). We studied wild 

populations of A. sparsa from 2003 to 2006 at the Soberania National Park and in the 

vicinity of Gamboa, Colon Province, Republic of Panamá (9°06' N, 79°41' W). All 

laboratory and insectary experiments were conducted at the Smithsonian Tropical 

Research Institute facilities in Gamboa. 

2.3.2 Field Observations of Mating Behavior: 

 A. sparsa males and females congregate around small patches of the hostplant to 

feed, mate and lay eggs. Within a patch, females synchronize their oviposition and 

subsequently exhibit extensive maternal care of their brood from the egg phase to the 

adult emergence. This female synchronicity makes mating aggregations within a patch 

short, episodic events that last 3-4 weeks from when females are receptive to when 

females have already mated and are caring for eggs. To assess the nature of these mating 

aggregations, we observed wild populations of A. sparsa and noted any fighting and 

mating behavior. We also determined, the average patch size, the ratio of large to small 
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males per patch and the operational sex ratio of these aggregations. We then used these 

field observations to set up a mesocosm experiment mimicking a natural mating 

aggregation where all individuals were marked and male behavior and paternity was fully 

monitored. 

 A. sparsa mating aggregations were usually distributed in small patches of 

hostplant that ranged from 2 m2 to 72 m2  (Average=18m2, SD±24.71, N=10) and held an 

average of 11.9 ± 5.11 males and 5.87 ± 2.22 active females (females without brood) per 

m2. The operational sex ratio of these aggregations was approximately 65:35 (males to 

females) and the large to small male ratio was approximately 75:25. In field observations 

of male fights, winners had significantly larger weapons than losers (Wilcoxon Signed 

Rank Z = -2.389, P = 0.017, N = 8). 

2.3.3 Mesocosm Mating Experiment 

 To assess the effects of primary and secondary sexual characters on male 

reproductive success, we included males and virgin females in a mesocosm enclosure. 

Virgin females of Acromis sparsa were obtained for this study by collecting first instar 

larvae during the months of May and June 2006 and rearing them in an outdoor 

laboratory. Larvae were separated by family and reared under equivalent conditions in 

small 20x12cm plastic containers until pupation. We obtained fresh M. umbellata leaves 

daily from different vine patches in the area, mixed them and then distributed them 

randomly to the larval family groups in order to avoid individual plant variation in 

nutrients. After adult emergence, a single female from each family group was randomly 

chosen to be used in the experiment. Experimental females were placed in all-female 

containers for 25-45 days and fed fresh leaves daily, to allow them to become 
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reproductively active. Each virgin female was individually marked with a small insect tag 

on her pronotum (Insect Marking Kit, BioQuip, Rancho Domingo, CA). Males were 

collected from patches of M. umbellata in the vicinity of Gamboa. These males were 

marked in the same manner as the females and then placed in individual containers with 

fresh leaves for two to three days before the experiment started.   

 A total of 115 males and females (56 large males, 18 small males, and 41 

females) were released into an outdoor insectary mimicking a small hostplant patch (6.25 

m2 footprint x 2.5 m height). The insectary was filled with abundant potted hostplant and 

placed in an area that had maintained a natural beetle population the year before. We used 

similar large to small male and male to female ratios as the ones found in the field 

observations. Beetles started mating soon after their release into the enclosure and they 

followed a similar mating sequence to that of the natural mating populations previously 

surveyed. This mesocosm mating aggregation was allowed to run its course for two 

weeks after the first clutch of eggs was laid (24 days total). 

 We monitored the mating and reproductive behaviors of males and females in the 

enclosure daily with scan sampling techniques (Martin & Bateson, 1986). Over the entire 

experiment, a single observer recorded:  the total number matings per male, the number 

of female mates per male and the number of male mates per female. We also noted any 

fights, fight winners and other anecdotal observations of the mating behavior of A. 

sparsa.  

2.3.4 Morphological Measurements 

 At the end of the experiment, males, females and their larvae were collected and 

preserved in 95% ethanol and DMSO for later use in DNA extractions, genotyping and 
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paternity analyses as well as morphological analyses. Before preserving males, we 

dissected them to extract and weight their testes. For morphological analyses, we used 

elytral projection length and pronotum width as indicators of male weapon size and head 

width and femur length as indicators of male body size (see Figures 2-1 and 2-2 for 

measurement location). We also measured aedeagus length, flagellum length and testes 

mass as indicators of male genitalia size. We measured head width and pronotum length 

as measurements of female body size. Males’ body size and weapon size measurements, 

as well as females’ measurements were taken by lining up single individuals at the same 

angle in graphing paper and taking the measurements with a Mitutoyo digital caliper 

(nearest 0.01mm).  Male genitalia pictures were taken with a digital Hitachi KP-D50 

stereoscope camera attached to a Leica MZ6 stereoscope. Scion Image (NIH) software 

was used to conduct measurements of aedeagus and flagellum length. Testes were 

weighted to an accuracy of 0.01mg in an A&D Scale (model ER-182A). 

2.3.5 Microsatellite Development 

 Five microsatellites markers were specifically developed for A. sparsa in order to 

assess male paternity. Enriched microsatellite libraries were developed from 30 field 

collected A. sparsa adults by the Genetic Information Services Company  (Chatsworth, 

California) and 68 microsatellites regions were sequenced. Primers for 42 of these 

microsatellite regions were designed. I tested the primers pairs for 40 of these 

microsatellite regions on a subset of experimental males to locate highly variable, 

repeatable and amplifiable markers. Of these 40 microsatellites, I found five primer pairs 

that produced amplifiable markers with high allelic variation and strong discriminatory 

power (complete primer sequences for these five primer pairs are in Table 2-1). To 



 

 

18

determine the observed heterozygosity for these markers and whether they were in 

Hardy-Weinberg equilibrium, I combined all experimental adults of this study with those 

of Chapter 4 and analyzed their allele frequencies (N=184). Analysis was done using the 

software program Cervus (v.3.0.3, Marshall et al., 1998). Expected heterozygosity ranged 

from 0.747 to 0.904 and the polymorphic information content  (PIC) ranged from 0.634 

to 0.894 (Table 2-1). This analysis also showed that one of the five markers (D3) was 

found to be out of Hardy-Weinberg, which indicated a possibility for null alleles (X2 = 

63.081, df = 6, P <0.001, N = 180). I subsequently confirmed a high incidence of a null 

allele for D3 during the double mating experiment analysis by assessing mismatches 

between mothers and their larvae. Mothers with null alleles produced a clear signal were 

a large percentage of larvae from a homozygous mother would be homozygous for a 

different allele which was also found in one or both of the two candidate fathers. This 

same method also allowed me to identify a lower frequency null allele for marker A118, 

even though this marker was not out of Hardy-Weinberg in the general analysis.  

2.3.6 Genetic Analysis 

 Tissue samples were taken from 100 adult beetles and 932 larvae. Gonads and 

legs were used for adult DNA extraction whereas the entire larva was used for larval 

DNA extraction. Before extraction, the tissue was powdered using a 96-well bead mill 

homogenizer (2000 Geno/Grinder, SPEX CertiPrep, NJ, USA) in conjunction with 2-mm 

high density zirconium oxide beads (Glen Mills, Clifton, NJ, USA) (Allender et al., 

2004). Genomic DNA was extracted following a Phenol-Chloroform extraction protocol 

(Sambrook et al., 1989) modified for tissue powdering. DNA concentrations were 

determined by spot-checking the samples with Hoechst 33258 fluorescent dye and a UV 
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fluorometer (Turner Biosystems TBS-380) and samples were diluted to a standard 

concentration.  

 Because A. sparsa exhibits maternal care, maternity for all larvae was known with 

certainty, based on collection of female-larval groups. Three of the microsatellites 

markers developed allowed for multiplex amplification whereas two were amplified 

individually.  HEX and FAM dyes (Invitrogen Corporation) as well as NED dye (Applied 

Biosystems) were used to label the primers. The PCR amplification reaction included the 

following ingredients: 2.0ul 5x GoTAQ Flexi buffer (Promega Corporation), 0.80ul 

25mM MgCl2, 0.80ul 2.5mM dNTPs, 0.2ul 10x BSA, 0.2ul of each 10uM labeled primer, 

0.15ul GoTAQ Flexi (Promega Corporation), and sterile distilled water to a final volume 

of 10ul. The amplification was completed using the following program: 3 minutes at 

94°C, 10 cycles of [30 seconds at 94°C, 30 seconds at 59°C (reduced by 1°C each cycle), 

45 seconds at 72°C], 30 cycles of [30 seconds at 94°C, 30 seconds at 49°C, and 45 

seconds at 72°C], followed by a final extension for 10 minutes at 72°C. For visualization, 

1ul of the PCR product was run through an ABI 3130xl Genetic Analyzer capillary 

electrophoresis machine (Applied Biosystems, Foster City, California, USA) with 

Genescan 500 ROX size standard (Applied Biosystems). 

 We used the Genemapper software package (Applied Biosystems, Forster City, 

California) to generate genetic profiles of each parent and individual larvae at the five 

microsatellite loci. These profiles were verified individually by eye and only those 

samples showing strong and unambiguous peak profiles were used in the final analysis. 

Error rates were determined by assessing mismatches between mothers and larvae. 

Paternity was first assigned individually by determining the offsprings’ unique paternal 
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allele combinations and then using a “minimum number of fathers” criterion for each 

brood. In this criterion, knowledge of the sibling structure was used to assign the 

minimum number of fathers that had matching alleles at all loci and that could have sired 

offspring within a family group. Because two of the microsatellite loci we used had null 

alleles, we modified our exclusion criterion at these markers. In these cases, for every 

offspring that was homozygous for a maternal allele, we considered as candidate fathers, 

males that carried the offspring’s matching allele as well as all males that were 

homozygous at that locus, because they could be potentially carrying a null allele. These 

males could not be excluded unless they had allele mismatches at other loci. Our 

paternity assignment was confirmed by using the paternity inference software Cervus 

3.0.3 (Marshall et al., 1998), at the 80% confidence level (Pemberton et al., 1999).  For 

all the families that were suspected of carrying null alleles, we run separate analyses in 

Cervus excluding the loci with null alleles and we used these results to confirm our 

paternity assignment.  For 89% of the paternity assignments we made, the same male we 

assigned paternity with our criterion was also assigned paternity in Cervus. For all other 

assignments, the male we assigned as the father was found as one of the three most likely 

candidate fathers in Cervus. 

2.3.7 Statistical Analysis 

 To investigate the extent of female promiscuity in the experiment, we obtained 

the total number of male partners for each female during the entire course of the 

experiment. We also determined the relationship between female size and degree of 

promiscuity (total number of mates) with a non-parametric correlation.  
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 To examine allometric relationships between weapon, genitalia, testes size and 

body size we performed simple regressions using the log-transformed values of each 

measurement. We also determined the relationship between weapons, genitalia and testes 

size using pair-wise correlations. All analyses using head width and femur length as 

measurements of body size showed similar results; therefore only the relationships with 

head width are reported in this study. We used, elytral projection length and pronotum 

length as measurements of weapon size and aedeagus length, flagellum length and testes 

mass as measurements of genitalia size.  

 To assess the relative importance of primary and secondary sexual characters for 

male mating success, we examined the relationship between a male’s probability of being 

observed mating (number of matings / total number of observations) and our 

measurements of weapon, body, testes and genitalia sizes. We first conducted univariate 

analyses to get familiarized with the effect of each single trait on mating success. We 

then simultaneously analyzed primary and secondary sexual characters by including all 

variables in a single analysis. We used generalized linear models with a log link function 

(poisson distribution) for both univariate and multivariate analyses. All statistical 

analyses in this study were performed with the software program JMP (SAS, Cary, North 

Carolina). 

 To assess the relative importance of primary and secondary sexual characters for 

male fertilization success and overall fitness, we examined the relationship between the 

total number of offspring sired and measurements of weapon, body, testes and genitalia 

sizes. We first conducted simple regressions to get familiarized with the effect of each 

trait on fertilization success. We then analyzed all variables simultaneously in a multiple 
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regression model. Dependent and independent variables were standardized for the 

multiple regression following Lande and Arnold (1983). Both univariate and multivariate 

analyses included linear and quadratic terms to test for directional and non-directional 

selection. To further explore males’ fertilization abilities, we analyzed the effects of 

primary and secondary sexual characters on the total number of females fertilized per 

male with a generalized linear model that included a log link function (poisson 

distribution). This model also included linear and quadratic terms to test for non-linear 

relationships. All analyses using pronotum and elytral projection length as the correlated 

measurements of weapon size showed similar results; therefore, in order to minimize the 

number of variables, we only included elytral projection length in the multivariate 

analyses. 

 Finally, to evaluate any type of assortative mating and assortative fertilization 

occurring during the experiment, we determined whether there were any correlations 

between female body size and measurements of male weapon, body, testes and genitalia 

size for all male-female mating pairs and for all fertilization events. 

 

2.4 RESULTS 

 A total of 66 out of 74 males and 34 out of 41 females were recovered from the 

enclosure at the end of the experiment and used in the morphological and genetic 

analyses. Of the 15 individuals that were not retrieved, only one male and one female 

appeared in the daily scans of mating behavior. This suggests that 13 individuals either 

died or escaped the enclosure relatively early in the experiment and are unlikely to be 

biasing estimates of fertilization success. Because these un-retrieved individuals were 
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random with respect to body size and a 65:35 male to female ratio was maintained, we 

expect that the initial conditions set up on at the beginning continued throughout the 

experiment.  

2.4.1 Female Promiscuity 

 Acromis sparsa, females mated multiple times before laying eggs in our 

mesocosm experiment (Average number of partners= 1.74, SD = ± 1.44; range = 0-6). A 

total of 47% of the females in the experiment were observed mating with more than one 

male, thus the level of sperm competition risk q = 0.47 was moderate to high (Wedell et 

al., 2002). Of the 34 females collected, 4 never laid eggs (11%) and 6 were never seen 

copulating (17.6%).  We found a significantly positive relationship between female body 

size and number of partners, so that promiscuity was more evident on larger females 

(Spearman ρ = 0.453, P < 0.05, N=30).  However, this increase in number of partners did 

not translate into a larger number of fathers per brood, or a larger number of offspring 

produced.  

2.4.2 Morphological Relationships 

 Both measurements of weapon size (elytral projection length and pronotal length) 

and only one measurement of genitalia size (aedeagus size) were significantly dependent 

on body size (Table 2-2). These three morphological measurements were also 

significantly correlated with each other (Table 2-3). Both elytral projection length and 

pronotal length showed highly positive allometries (Table 2-2). Aedeagus on the other 

hand, showed an allometric slope lower than one (Table 2-2). Flagellum length also 

showed a negative allometry (slope less than one), and although it was not dependent on 

body size, it was significantly correlated with aedeagus size (Table 2-3). Finally, we 
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found a non-significant trend for a positive allometry of testes mass, with a slope higher 

than one (Table 2-3). 

2.4.3 Mating success 

 Although males could mate with multiple females (average = 0.91 mates, SD= ± 

0.94, range 0-3 partners), a high percentage of males did not achieve copulations during 

our observations (43.9%).  Univariate analyses showed no relationship between either of 

the weapon measurements (elytral projection length and pronotum length) and the 

probability of observing a male mating (Figure 2-3A and B). Body size (head width), on 

the other hand, had a marginally significant positive effect on male mating success 

(Effect = 3.006, SE = 1.637, P = 0.055, N = 64; Figure 2-3C).  In terms of primary sexual 

characters, aedeagus and flagellum length showed no effect on male mating success 

(Figures 2-3D and E), but males with larger testes were significantly more likely to be 

observed mating (Effect = 0.873, SE = 0.349, X2 = 6.512, P = 0.01, N=57, Figure 3F). 

The multivariate model showed no relationship between the probability of being 

observed mating and pronotum, elytral projection, aedeagus or flagellum length. 

Moreover, the marginal effect of body size was not maintained in this analysis. Only 

testes mass retained its significant positive effect on mating success and was kept in the 

minimal relevant model.  

2.4.4 Fertilization Success 

 Males can also fertilize multiple females, but the average number of female 

partners decreased slightly from mate acquisition to offspring production (average 

number of females fertilized = 0.66, SD= ± 0.848, range 0-4 partners). A total of 48.5 % 

of the males had less than 0.25 probability of having sired one single larva from one 
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single female. Univariate analyses showed no linear or quadratic relationship between 

elytral projection, pronotum length or head width and the total number of offspring sired 

(Figure 2-4A,B, and C). In terms of primary sexual characters, we found no linear effect 

of aedeagus length, flagellum length (Figures 2-4D and E) or testes mass. However, there 

was a significant negative quadratic relationship between testes mass and total offspring 

sired (testes mass2: γ = -0.468, SE = 0.219, P < 0.05, N = 57).  This effect was maintained 

in the multiple regression and testes mass2 was the only significant term in the model 

(Table 2-4). It is important to note, however, that body size had a marginally significant 

positive quadratic term in the multiple regression (Table 2-4), although this was not seen 

in the simple regression. Finally, because the quadratic relationship for testes mass and 

fertilization success did not seem to increase and decrease symmetrically and because 

there was a visual linear trend as well, we performed a cubic spline analysis to better 

assess the shape of this fitness relationship (Schluter, 1988). This cubic spline showed 

that the total number of offspring sired increased with testes mass at the smaller range of 

testes values but it then leveled off at larger values (Figure 2-4F). Thus, male fitness 

increased with larger testes, especially for those males at the lower values. 

 We also found a significant linear and negative quadratic relationship between 

testes mass and the total number of females fertilized (Testes mass: Effect = 0.571, SE = 

0.294, X2 = 4.57, P < 0.05; for Testes mass2: Effect = -0.721, SE = 0.259, X2= 11.84, P < 

0.001, N = 57). Similarly to the number of offspring sired, a cubic spline analysis for this 

relationship showed that males’ ability to fertilize females increased with larger testes, 

especially for those males at the lower values of testes (Figure 2-5). No other physical 
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attribute of males included in the analysis contributed to the observed variation in number 

of females fertilized. 

2.4.5 Assortative mating and fertilization 

 Males and females did not pair randomly during the entire course of our 

experiment. Males with larger testes mass both mated and fertilized females of larger 

body sizes (assortative mating: Spearman ρ = 0.463, P < 0.05, N = 29; assortative 

fertilization: Spearman ρ = 0.463, P < 0.05, N = 24; Figures 6A and B). No other male 

attribute was correlated with the size of females that males mated with or fertilized. 

 

2.5 DISCUSSION 

 In a large number of species, sexual selection is likely governed by both pre and 

post-copulatory processes (Andersson & Simmons, 2006; Moller, 1998; Simmons, 

2001a). In such cases, selection will act on an integrated sexual phenotype, shaped or 

determined by its combination of primary and secondary sexual traits. Understanding the 

evolution of these sexual traits requires approaches that treat the sexual phenotype as an 

integrated system rather than a set of isolated characters, yet studies that do this are rare 

(Preston et al., 2003; Andersson & Simmons, 2006). In this study, we used a mesocosm 

experiment, genetic analyses and multivariate techniques to simultaneously address the 

effects of primary and secondary sexual characters on the reproductive success of 

Acromis sparsa males.  

 A. sparsa is an excellent species to evaluate the relative importance of primary 

and secondary sexual characters.  Males exhibit exaggerated weapons and genitalia. They 

use the weapons in contests for access to females and field observations show that males 
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with larger weapons win more fights. Small males with little or no weapons do not 

usually fight but they can still gain access to copulations by mating with undefended 

females. Males also possess elongated genitalia and large testes, which may be important 

for male competition inside the reproductive tract of multiply mating females.  

 Our simultaneous analysis of primary and secondary sexual characters in A. 

sparsa showed no strong effects of secondary sexual characters on male reproductive 

success. Although body size had a weak but potentially interesting effect on fertilization 

success that warrants further study, we found no relationship between weapon 

morphology and either mating or fertilization success. On the other hand, primary sexual 

characters, specifically testes mass, had an important effect on both mating and 

fertilization success. Furthermore, we found a strong indication of positive assortative 

mating, where males with larger testes mated with larger females. Thus, for this episodic 

breeding experiment, primary sexual characters had a much stronger effect on A. sparsa’s 

male fitness than secondary sexual characters.  

2.5.1 Female Promiscuity in A. sparsa 

 This study corroborated preliminary observations of female promiscuity, with 

male partners in the experiment ranging from zero to six per female. Many females in the 

mesocosm experiment mated multiply within small windows of time and were observed 

in copula during a few consecutive days right before laying eggs (pers. obs.). Larger 

females mated with more males but this increase in copulations did not translate into an 

increase in the number of fathers per brood. Thus, females are unlikely to be mating 

multiply in order to increase the genetic diversity of their brood (Hosken & Stockley, 

2004; Simmons, 2001b; Yasui, 1998). There may be some possibility for sperm 
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limitation in A. sparsa; however, more matings did not translate into larger broods and 

females can lay a full set of eggs after mating with only two males (see Chapter 4). 

Sperm limitation alone does not explain females that mated three to six times during our 

experiment.  

 Though it has not been directly investigated in this species, males of C. alternans, 

a closely related species, have been shown to transfer spermatophores to females during 

copulation (Rodriguez, 1993). Females of A. sparsa may mate multiply to gain access to 

direct benefits in the form of nutrition from males (Hockham et al., 2004).  Finally, if 

copulations can be used as a direct and reliable mechanism of assessment of male quality, 

then females, and in particular larger females, may be more selective in their mate choice 

by sampling males through copulations (Eberhard, 1985; Hosken & Stockley, 2004; 

Simmons, 2001a). 

2.5.2 Morphological relationships 

 As in many other species, secondary sexual characters in A. sparsa are also highly 

influenced by body size (Andersson, 1994). Both measurements of weapon size, 

pronotum and elytral projection length scaled positively with body size and had highly 

positive allometries. On the other hand, primary sexual characters followed different 

scaling patterns. Testes mass showed a marginally significant scaling with body size, 

with a positive allometric slope that had an intermediate value when compared to 

genitalia slopes and weapon slopes. This value is within the range of slopes for testes 

allometries found in other beetles with secondary sexual characters (Simmons et al., 

2007). Of the two main traits characterizing A. sparsa’s genitalia, only aedeagus length 

was significantly dependant on body size. Both adeagus length and flagellum length had 
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slopes much less than one (0.375 for aedeagus length and 0.110 for flagellum length). 

Thus, genitalia length increased at a much lower rate than what would be expected if 

increasing in proportion to body size. A negative allometry, for genitalia has been found 

in many other insects species (Eberhard et al., 1998; Emlen et al., 2007; Kawano, 2004) 

and may be due to small males allocating more resources to genitalia than expected based 

on their body size and/or large males allocating less to genitalia than what is expected 

based on their body size. This weak relationship between primary sexual characters and 

body size compared to secondary sexual characters and body size is important because it 

may confer individuals the ability to invest in primary sexual characters independently of 

their ability to achieve large body sizes.  

2.5.3 The importance of secondary sexual characters  

 Our univariate analyses for mating success showed that males with larger body 

sizes had a higher probability of being observed mating. However, this effect was 

strongly reduced and became non-significant in the multivariate analysis. The importance 

of large body sizes for mating success can be explained via increased success in male-

male competition and/or female choice (Andersson, 1994), but the effect was too weak 

(and potentially confounded with the effect of testes mass) to assume it played an 

important role in mate acquisition during our experiment. With respect to fertilization 

success, although not present in the univariate analysis, we found a positive weak effect 

for the quadratic term of body size in the multiple regression model, indicating the 

potential for disruptive selection on body size once the effects of testes mass on male 

fitness variation were accounted for.  Thus, it is possible that, within groups of 

individuals with similar medium or large sized testes, those males with small and large 
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(but not medium) body sizes would achieve even higher fertilizations. A larger sample 

size with a larger variation in body size and testes mass seems necessary to accurately 

determine the importance of this positive quadratic expression and the potential for 

disruptive selection to be acting on A sparsa. If an increase in sample size produces a 

significant quadratic term for body size, this would be an excellent example for a case 

where the effect of one sexual attribute (in this case body size) on male fitness could only 

be determined through a simultaneous analysis of primary and secondary sexual traits.  

 Finally, we found no effect of weapon size on either male mating or fertilization 

success. In this respect, A. sparsa is similar to some recent studies that also measured 

weak to absent directional sexual selection on exaggerated male weapons (Kelly, 2006). 

It is important to note, however, that this experiment captured a single reproductive event 

by replicating one single patch or mating aggregation. These beetles have long-lived 

adults, and males with larger weapons may achieve higher fertilizations by visiting a 

larger number of patches or mating aggregations than males with smaller weapons over 

the course of their lives. In addition, the conditions of population density found in our 

observation sites and replicated in the experiment need not be the same found in all A. 

sparsa populations. Mating aggregations with different density conditions may be more 

likely to uncover the effect of weapons on fertilization success (Head et al., 2007; Kokko 

& Rankin, 2006). Longer and larger scale studies are thus, needed to better address the 

strength and nature of sexual selection on secondary sexual traits in species with pre and 

post-copulatory reproductive strategies. 
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2.5.4 The importance of primary sexual characters 

 In terms of mating success, we found no relationship between aedeagus or 

flagellum length and the probability of observing a male mating. On the other hand, 

males with larger testes were observed mating significantly more often than males with 

small testes. This last result was unexpected given that we assumed primary sexual 

characters to be only associated with fertilization success.  Some possible explanations 

for this result are the following: First, males with large testes may have a higher sperm 

production rate and become less depleted than males with small testes (Cornwallis & 

Birkhead, 2007; Simmons, 2001a). This would therefore, allow for males with larger 

testes to recycle back to the mating pool faster than males with small testes males and 

thus achieve a higher number or matings. Alternatively, if females preferentially accept 

large testes males once they have started copulation (Hockham et al., 2004), these males 

would be able to stay paired longer than males with small testes. This would translate into 

an observer seeing more pairings of males with large testes than males with small testes. 

Finally, male adult condition is known to be an important factor when acquiring mates. 

Because adult A. sparsa are long-lived, morphological structures developed at the imago 

stage, such as weapons or body size may not be the best predictors of male condition 

throughout the adult life. Testes, on the other hand, may be able to track changes in 

nutrition over time, and male differences in testes mass may more accurately reflect 

differences in condition. Thus, males with larger testes may also mean males in better 

condition and thus, more likely to acquire mates. 

 With respect to fertilization success, the only primary sexual character that 

influenced the total number of offspring sired was testes mass, with a significantly 

negative quadratic term. A further analysis of the relationship with a cubic spline showed 
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that the total number of offspring sired increased with testes mass at the smaller range of 

values but it leveled off at larger values. A very similar result was found when we used 

the number of fertilized females as the dependent variable for fertilization success. In this 

case we found a significant effect of both the linear and the quadratic term of testes mass 

on the number of females fertilized. The cubic spline analysis also showed an increase in 

females fertilized with an increase of testes mass that was stronger at the lower testes 

ranges. Thus, male fitness, in terms of number of offspring sired and number of females 

fertilized, increased with larger testes, especially for those males at the lower values. For 

males with smaller testes, a small increase in size may reflect an important increase in 

many attributes associated with testes size. For males with testes sizes that are above 

average, on the other hand, a small increase in testes size may not reflect a real advantage 

over slightly smaller but still larger than average males.  

 For small males, an increase in testes size may reflect an increase in the ability of 

sperm production, which in turn may increase both absolute quantities and the rate of 

sperm transfer. If females are sperm limited, a small increase in sperm quantities may 

avoid the risk of sperm limitation and the subsequent mating of this female with other 

males (Anderson and Simmons, 2006). Male sperm production may also be important if 

it reflects an increase in the rate of sperm transfer during copulation. A higher transfer 

rate may decrease the amount of copulation time and the risk of being dislodged by 

another male. Finally, females may actively choose to be fertilized by males with higher 

sperm transfer rate if this translates into her having “sexy sons” with higher sperm 

transfer rate (Eberhard, 1996; Simmons, 2001a).  
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 An increase in size may also have an advantage in the production of larger or 

more nutritious spermatophores with which to induce females into laying eggs (Simmons, 

2001a). Finally, an increase in testes size may be correlated with an increase in accessory 

glands’ products used to enhance fertilization success. 

2.5.5 Assortative mating and fertilization 

 This study also showed that assortative mating and fertilization occurs in A. 

sparsa, where males with larger testes mate and fertilize larger females. This assortative 

pairing occurs if females preferentially mate with males that have larger testes and males 

preferentially mate with larger females. We have already discussed the potential 

mechanisms by which females may preferentially mate with large testes males, and male 

choice of larger females can be just as feasible. Rubolini et al. (2006) found that mating 

males were sensitive to female size and produced larger ejaculates when mating with 

larger females, which produced more eggs. Thus, female sized-related maternal effects 

may be an important factor affecting male choice. In A. sparsa female body size is highly 

correlated with brood size in both field and insectary females (see Chapter 4). Moreover, 

both male and female offspring adult body size is highly dependant on female body size 

but not on male body size (Trillo, in prep). Finally, although it has not been studied in A. 

sparsa, female body size may also influence offspring viability and adult survival. 

 To date, models predicting the nature of sexual selection have been developed 

separately for primary and secondary sexual characters (Danielsson, 2001). This is 

unfortunate, because pre and post-copulatory processes are not mutually exclusive, and 

likely interact in many species.  
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 The results of our study suggest and important role of primary sexual characters, 

especially testes mass, in this species. Males with larger testes in this experiment seem to 

be achieving the highest reproductive success by mating with more females, fertilizing 

more females and ensuring higher ovum fertilizations per female. On the other hand, we 

found little to no effect of secondary sexual characters on the reproductive success of A. 

sparsa males. In this experiment, sexual selection on primary sexual characters through 

post-copulatory processes seems to have attenuated or dampened sexual selection on 

secondary sexual characters through pre-copulatory processes.  Thus, our results indicate 

that even in species with exaggerated secondary sexual characters, under certain 

conditions, it is the primary sexual characters the ones that contribute the most to male 

fitness. This suggests that the relationship between primary and secondary sexual 

characters may be dynamic. In other words, the relative importance of these characters on 

male reproductive success may shift depending on the conditions animals experience. 

Thus, in order to understand to a full extent how sexual selection acts on whole 

organisms, with both primary and secondary sexual characters, it is crucial not only to 

determine the relative importance of these characters for male reproductive success but 

also to assess how this relative importance changes across different mating conditions, 

populations and species. 
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2.6 TABLES AND FIGURES 
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Table 2-1: Locus names, size range, annealing temperature, number of alleles, expected and observed heterozygosities, 

polymorphic information content, null allele frequency estimates and sample sizes for Acromis sparsa microsatellites 

developed. 

1 A range of temperatures indicates a touchdown PCR was used, where the annealing temperature was decreased 1 per cycle 
for 10 cycles starting at the higher temperature. The remainder of the cycles was performed at the lower annealing temperature. 
All PCRs were done for a total of 40 cycles.  
PIC = Polymorphic information content, gives a measure of the discriminatory power of a marker for a given population. High 
values indicate high discriminatory power. 
*An asterisk indicates this microsatellite marker that was out of Hardy-Weinberg equilibrium in the analysis, suggesting the 
presence of null alleles in the sample. 

 

Locus 
Primer Sequence (5’- 3’) 

Size 

Range  

(bp) 

Annealing 

Temperature 

(0C)1 

No of 

alleles 
HO HE PIC 

Null allele 

frequency 

estimate 

N 

D3 
F: TGCCATGTTAATAGCCAACA 

R: ACCTGCTAGGAGAGTCAACC 
280-318 59-49 9 0.517 0.747 0.701 0.1815* 180 

A127 
F: GTGGCAGAGATTTGTGTTTG 

R: AGGATCTTGACAGACGAGTTG 
282-350 59-49 32 0.901 0.859 0.844 0.0277 182 

A115 
F: CGAGCCGATGATTGTCTG 

R: TAATGGCGAACCGCTAAAC 
250-290 59-49 27 0.820 0.904 0.894 0.0478 183 

A118 
F: CGGTAGGATTTTTGATTTTCTG 

R: TTCAACTTGATTTGGGACAAG 
140-152 59-49 6 0.633 0.693 0.634 0.0446 180 

D132 
F: CACACGATTCTCGGTACTTG 

R: GGGTACATTCCCTTGATTTG 
244-304 59-49 13 0.734 0.736 0.694 0.0022 177 



 

 

37

 

 

 

Table 2-2: Allometric relationships for A. sparsa’s primary and secondary sexual 

characters (log10 of weapon size, genitalia size and testes mass regressed on log10 body 

size). Asterisks indicate significant regressions. 

  N Slope Intercept R2 F P 

Secondary Sexual Traits

 

       

Pronotum length (mm)  66 2.361 0.458 0.842 341.452 <0.0001* 

Elytral projection length (mm)  66 8.240 -1.418 0.872 435.117 <0.0001* 

Primary Sexual Traits

 

       

Aedeagus length (mm)  63 0.375 0.357 0.267 22.202 <0.0001* 

Flagellum length (mm)  64 0.110 1.068 0.015 0.968 0.328 

Testes mass (mg)  57 1.292 -0.093 0.051 2.967 0.091 
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Table 2-3: Pearson’s correlation coefficients for phenotypic correlations between 

measurements of A. sparsa’s weapons, genitalia and testes. 

 
Pronotum 

length  

Elytral 

projection 

length 

Aedeagus 

length 

Flagellum 

length 

Testes 

mass 

Secondary Sexual Traits

 

   
  

Pronotum length (mm) ___ 0.964(66) 

** 

0.536(63)*

* 

0.221(64) 0.160(57) 

Elytral projection length (mm)   ___ 0.553(63)*

* 

0.161(64) 0.174(57) 

Primary Sexual Traits

 

     

Aedeagus length (mm)   ___ 0.315(63) 

* 

0.185(57) 

Flagellum length (mm)    ___ 0.103(57) 

Testes mass (mg)     ____ 

Values in parenthesis represent sample sizes, ** = P <0.0001; * = P <0.05 
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Table 2-4: Multiple regression values and selection coefficients for the effects of primary 

sexual characters, secondary sexual characters and body size on fertilization success. For 

quadratic regressions, positive coefficients indicate potential disruptive selection, and 

negative coefficients indicate potential stabilizing selection. Asterisks indicate 

coefficients of selection significantly different from zero (N = 57). 

  Coefficient  SE T P 

Body Size      

Head width (mm)  β =  0.261 0.693 0.38 0.708 

Head width2 (mm)  γ =  0.735 0.375 1.96 0.052 

Secondary Sexual Traits      

Elytral projection length 

(mm) 

 β = - 0.283 0.655 - 0.43 0.668 

Elytral projection length2 

(mm) 

  γ = - 0.421 0.456 - 0.92 0.362 

Primary Sexual Traits      

Aedeagus length (mm)  β =  0.182 0.326 0.56 0.579 

Aedeagus length2 (mm)   γ = - 0.261 0.201 - 1.30 0.201 

Flagellum length (mm)  β =  0.082 0.295 0.28 0.782 

Flagellum length2 (mm)    γ = - 0.352 0.245 - 1.43 0.158 

Testes mass (mg)  β =  0.154 0.268 0.58 0.567 

Testes mass2 (mg)   γ = - 0.575 0.232 - 2.48 0.016* 
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Figure 2-1: Location of measurements for weapon size (elytral projection length and 

pronotum length) and body size (head width) in A. sparsa males. Drawing modified from 

Windsor (1987) 

 

 

 

 

 

 

Elytral projection length 

Pronotum length 

Head Width 
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Figure 2-2: Location of measurements for genitalia size in A. sparsa males. Aedeagus 

length was measured as the straight line distance between the proximal and distal ventral 

tip of the aedeagus (A). Flagellum length was measured as the entire length of the 

sclerotized whip (B - C). 
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Figure 2-3: The individual relationships between primary and secondary sexual 

characters and male mating success. A male’s probability of being observed mating 

(number of matings / total number of observations) against (A) elytral projection length; 

(B) pronotum length; (C) head width; (D) aedeagus length; (E) flagellum length and (F) 

testes mass.  
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Figure 2-4: The individual relationships between primary and secondary sexual 

characters and male fertilization success. The total number of offspring sired against (A) 

elytral projection length; (B) pronotum length; (C) head width; (D) aedeagus length and 

(E) flagellum length. (F) Cubic spline indicating the relationship between male fitness 

(number of offspring sired) and testes mass. The analysis was performed with λ = 1.2 

(choice based on minimum cross-validation scores). The dotted lines indicate one 

standard error of predicted values above and below the fitness function, completed with 

50 bootstrap replications. 
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Figure 2-5: Cublic spline indicating the relationship between the total number of females 

fertilized and testes mass. The analysis was performed with λ = -2 (choice based on 

minimum cross-validation scores). The dotted lines indicate one standard error of 

predicted values above and below the fitness function completed with 50 bootstrap 

replications.  
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Figure 2-6: Female body size measured as head width against male testes mass for all 

pairs where (A) individuals were observed mating; and (B) females were successfully 

fertilized.  
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3.1 ABSTRACT 

In species with promiscuous females, male competition for fertilizations continues 

inside the female’s reproductive tract. The outcome of this competition can be 

determined directly via sperm competition, whereby traits that ensure dominance over 

other males’ sperm are under selection; and/or indirectly, via cryptic female choice, 

whereby traits that stimulate females to accept sperm are under selection. Copulatory 

courtship behaviors are stereotyped movements performed during copulation thought to 

increase the likelihood that a male’s gametes are used by the female. These behaviors 

have been shown to affect male fertilization success, but little is known about the causes 

of male variation in copulatory courtship. We investigated whether variation in male 

copulatory courtship behavior is correlated with traits under pre-copulatory selection such 

as body or weapon size in the tortoise beetle Acromis sparsa. We also examined the 

relationship between body and weapon size to determine whether a weapon dimorphism 

exists in A. sparsa, and whether the copulatory courtship strategies of major and minor 

males in this dimorphism differ.  The intensity of the courtship behaviors measured 

(antennal stroke rate, foot tapping rate, and palpi vibration rate) decreased with an 

increase in body and weapon size. Antennal stroke rate and foot tap rate decreased with 

time during copulation. Our analysis also indicated a weapon dimorphism in this species. 

While females were more likely to copulate with major than with minor males during the 

pairings, minor males expressed higher courtship rates while copulating.  Small males 

may use copulatory courtship behaviors as a mechanism to compensate for decreased 

attractiveness to females, or to compensate decreased access to females as a result of 

inferior fighting abilities.
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3.2 INTRODUCTION 

It is widely recognized that females of many taxa copulate with multiple males for 

each single brood or reproductive event (Cornwallis & Birkhead, 2007). This high level 

of promiscuity creates a conflict over access to fertilizations, even after insemination, and 

selection therefore acts upon the ability of males and females to control offspring 

paternity (Eberhard, 1996). Males may compete over access to the ova inside the 

female’s genital tract directly via sperm competition, whereby traits that have the power 

to defeat other males’ sperm are under selection (Simmons, 2001a); and/or indirectly, via 

cryptic female choice, whereby traits that enhance the opportunity that a male’s sperm is 

accepted and used by the female are under selection (Eberhard, 1996).   

Copulatory courtship behaviors can serve an important role in increasing the 

likelihood that a female accepts a male’s sperm. These behaviors are courtship 

maneuvers performed in a seemingly ritualized manner by the male during copulation 

(Tallamy et al., 2002; Eberhard, 1996). Copulatory courtship behaviors may increase the 

reproductive success of males by stimulating certain female responses during or 

following copulation that increase a male’s chances of fertilizing her ova (Eberhard, 

1994). In insects, these behaviors are ubiquitous. Eberhard (1994) found that 81% of the 

species investigated presented some form of copulatory courtship behavior. Furthermore, 

recent studies on a wide variety of insect species show a positive relationship between 

copulatory courtship behavior and fertilization success (Tallamy et al., 2002; Edvardsson 

& Anqvist, 2000; Otronen, 1997; Sirot et al., 2007).  

Insects show many adaptations governed by post-copulatory sexual selection, 

such as exaggerated and convoluted internal genitalia, external morphologies, 
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spermatophores, plugs and glandular secretions (Simmons, 2001a; Arnqvist et al., 1997; 

Danielsson & Askenmo, 1999; Simmons & Achmann, 2000; House & Simmons, 2002), 

and therefore are an excellent group in which to study cryptic female choice. Despite 

being an important post-copulatory trait, copulatory courtship behavior has been studied 

extensively in only a few insect species (Tallamy et al., 2002). Recently, studies have 

shown that the consequences of variation in copulatory courtship behavior can be far 

reaching. Sirot et. al (2007) found that copulatory courtship behavior explained most of 

the variation in male postcopulatory reproductive success of the beetle D. abbreviatus.  

However, not much attention has been given to the causes of this variation among males 

of a single species. For example, little is known about how males use copulatory 

courtship behaviors and whether these behaviors can be influenced by other male sexual 

characteristics, such as weapon and body size.  

Copulatory courtship behaviors may be positively correlated to body and weapon 

size and thus, become a direct signal for male condition and quality. On the other hand, 

copulatory courtship behaviors may be negatively related to body size, whereby smaller 

males compensate for their inferior fighting capacities and low opportunities of mating 

with higher levels of courtship during copula (Simmons et al., 2000). Smaller males 

could also increase behavior rates to stimulate uninterested females, who might generally 

prefer large males, into accepting their sperm. Females may be more attracted to males 

with large bodies or weapons for many reasons: large male body size may be related to 

higher offspring quality and viability (Sirot et al., 2007),  larger males may be more apt to 

defend females against other-male harassment during copulation or egg laying (Dick & 
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Elwood, 1996) and, larger males may contribute more to egg production with larger 

spermatophores or other male-derived products (Sirot et al., 2007). 

 In this study, we investigated the relationship between body and weapon size and 

copulatory courtship behaviors of Acromis sparsa, a neotropical  chrysomelid beetle, 

highly specialized in a single hostplant vine Merremia umbellata  (Convolvuleaceae). In 

Acromis sparsa, females can mate multiple times before each single reproductive event. 

In a large mesocosm experiment, the level of sperm competition risk or fraction of 

females that mated more than once was moderate to high (q = 0.47, Wedell et al., 2002) 

and the number of male partners ranged from zero to six (see Chapter 2).  This 

promiscuity can select for the ability of males to influence paternity via post-copulatory 

traits such as copulatory behaviors (Eberhard, 1996). Acromis sparsa males show a series 

of behaviors during copula that follow Eberhard (1994)’s criteria for courtship behaviors. 

Though this study does not link copulatory behaviors with reproductive success, at least 

one of the behaviors described for A. sparsa, antennation rate, was found to affect 

fertilization success in a different experiment (see Chapter 4). Moreover, similar 

behaviors to the ones described in this study have also been found in other insect species, 

where they have been shown to influence male fitness (Sirot et al., 2007; Tallamy et al., 

2002; Edvardsson & Anqvist, 2000). Males of Acromis sparsa also vary greatly in body 

size and in the elytral and pronotal projections they use as weapons in contests for 

females (Windsor, 1987). Fighting males use their projections as claspers, to lock 

opponents between the pronotum and elytra, flip them on their side, and then throw them 

off the leaf (Windsor 1987). Here we show that variation in a post-copulatory trait, such 
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as copulatory courtship behavior is negatively correlated with pre-copulatory traits such 

as body and weapon size in A. sparsa. 

 

3.3 METHODS 

3.3.1 Study Site and Subjects 

 The study was conducted during 10 August to 30 November 2006 at the 

Smithsonian Tropical Research Institute facilities in the vicinity of Gamboa, Colon 

Province, Republic of Panamá (9°06' N, 79°41' W). This area collides with part of the 

22,000 hectares that make the Soberanía National Park. All individuals for the 

experiments came from wild populations of A. sparsa monitored from 2003 to 2005 at 

the Soberania National Park and in Gamboa. 

 Virgin females of Acromis sparsa were obtained for this study by collecting first 

instar larvae during the months of May and June 2006 and rearing them in an outdoor 

laboratory. Larvae were separated by family and reared under equivalent conditions in 

small 20 X12cm plastic containers until pupation. We obtained M. umbellate fresh leaves 

daily from different vine patches in the area, mixed them and then distributed them 

randomly to the larval family groups in order to avoid individual plant variation in 

nutrients. After adult emergence, a single female from each family group was randomly 

chosen. Experimental females were placed in all-females containers for 25-45 days and 

fed fresh leaves daily, to allow them to become reproductively active. Approximately 24 

hours before the experiment started, each female was separated from the group and put in 

isolation in a small plastic cup. In order to control for the effect of female size, we used 

only females of average size in the pairings. Males were collected from field patches of 
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Merremia umbellata found around Gamboa. These males were maintained in all-male 

containers with fresh leaves for one to two days before the assays started.   

3.3.2 Behavioral sampling 

 A female was introduced into a mating chamber, which consisted of a 12cm3 glass 

box placed upside down with the open side towards the table, and the observer was 

positioned between 50-100 cm away. This glass container allowed the observer to look at 

the beetle pairs from all angles without having to approach too closely.  First, a female 

was left alone in the chamber for a total of ten minutes while it acclimated to the area. 

After these ten minutes, a randomly chosen male was introduced into the chamber. If the 

pair did not copulated after a maximum of four hours, the male was replaced with a 

different male. If no copulation occurred the pair was removed from the mating chamber 

and a new female and male were used. If the male mounted the female, time of mount 

was recorded and the observer noted if and when the male penis or aedeagous was 

introduced into the female (hereafter called copulation). At the moment the aedeagus was 

introduced into the female and copulation was achieved, live behavioral observations 

began.  These consisted of 10-minute periods of focal observation that were conducted 

every 20 minutes thereafter until minute 130, or until the pair separated. Approximately 

63% of the pairs separated at or before minute 130. In another related species, 

Chelymorpha alternans, copulations with successful transfer of sperm, where 

spermatozoids enter the spermatheca, last a minimum of approximately 20 minutes 

(Rodriguez, 1993). Thus, only copulations that lasted longer than 20 minutes were 

considered successful.  In order to calculate behavioral rates with more than one single 

observation period, pairs with more than 20 minutes of copulation time but less than two 
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focal observation periods were considered as having successful copulations but were still 

excluded from the behavioral analysis. No differences in the relationship between 

copulatory courtship behaviors and weapon and body size were found when we excluded 

single observation period pairs from the analysis. Thus, we used pairs with a minimum 

number of two focal observation periods (20 minutes of observation total) and a 

maximum number of five focal observation periods (50 minutes of observation total). All 

observations were conducted during the day between 0900 and 2100 hours.  

3.3.3 Copulatory Courtship Behaviors 

 During periods of observation, a single observer recorded the numbers of times 

each of these three male behaviors occurred: (1) Palpi vibrations, which consisted of 

males touching the females’ medial and anterior region of the elytra with vibrating labial 

and maxillary palps; (2) Antennal strokes, which consisted of males slightly lowering 

their heads and stroking females one, two or three times at the base of the elytra or 

pronotum with the either the right, left or both antennae. In some occasions, it also 

included the stroking and rubbing of the lateral edges of the females’ antennae; and (3) 

Foot taps, which consisted of males tapping lightly on the females’ elytra with front or 

mid tarsi. These behaviors were chosen because they followed Eberhard (1994)’s criteria 

for copulatory courtship behaviors, and because they were easily noticeable so that the 

observer was able to keep a distance and record the behaviors without disturbing the 

copulating pair. Behaviors similar to those described above have been suggested to 

function as copulatory courtship behaviors and influence fertilization success in other 

insect species (Sirot et al., 2007; Eberhard, 1994; Edvardsson & Anqvist, 2000; Tallamy 

et al., 2002). The first two behaviors, palpi vibrations and antennal strokes have also been 
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documented as copulatory courtship behaviors for the related species C. alternans 

(Rodriguez, 1995). 

 Because the single observer that conducted all focal observations in this study 

eventually learned the hypothesis being tested, we decided to determine observer bias. On 

randomly selected days, we brought naïve volunteers to simultaneously conduct 

observations on the same subjects as the main observer. A comparison of the number and 

rate of copulatory courtship observations between the main observer and the naïve 

volunteers showed no significant difference in the number or rate of behaviors observed 

and no biased directionality for the main observer in either of the three copulatory 

courtship behaviors examined (Wilocoxon Signed Rank Test: Palpi Vibrations Z= -.557, 

N=24, P = 0.5774; Antennal strokes Z=-.928, N=23, P= 0.353; Foot taps Z= -1.430, 

N=23,  P= 0.1539). 

3.3.4 Morphological measurements 

 After copulation, pairs were collected and preserved in 70% ethanol for later use 

in detailed morphological measurements. We measured elytral projection length and 

pronotum width as indicators of male weapon size and head width as an indicator of male 

body size. Pictures for all morphological measurements were taken with a digital Hitachi 

KP-D50 stereoscope camera attached to a Leica MZ6 stereoscope. Scion Image (NIH) 

software was used to conduct measurements of body and weapon size (see Chapter 2, 

Figures 2-1 and 2-2 for measurement locations). 

3.3.5 Statistical Analysis 

 To determine if there was a relationship between copulatory behavior and body 

and weapon size, we analyzed the effects of both morphological traits on the intensity of 
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courtship measured as the total number of behaviors per minute. For all three behaviors 

we used generalized linear models with a log link function and a correction for 

overdispersion (“quassi-poisson” distribution). Simple non-parametric correlation 

analyses were also performed for the courtship behaviors with body size and weapon size 

independently to get familiarized with the effect of each trait on copulatory courtship 

rate. We used a Kruskall-Wallis test to examine any changes in the behavioral rates that 

might occur through time. We only used the first four observational periods for this test 

because of a lack of data points for the last observational period. All statistical analyses in 

this study were performed with the software program JMP (SAS, Cary, North Carolina). 

 Males of A. sparsa have been suggested to have a weapon size dimorphism 

(Chaboo, 2001). Weapon size dimorphisms are common in insects, where large males 

produce weapons larger than what would be expected for their body size (majors), and 

small males produce weapons smaller than expected for their body size (minors). In order 

to have a better understanding of the biological relationship between copulatory courtship 

behaviors and body and weapon size, we decided to determine whether a weapon size 

dimorphism was found in these beetles. For this analysis we used (Eberhard & Gutierrez, 

1991)’s model criteria. First, we tested for non-linearity of the scaling relationship 

between body size and weapon size by performing a partial F-test on a model that 

included a quadratic coefficient (model 1: Eberhard and Gutierrez (1991)): 

                                     Y* =ß0 + ß1X* + ß2X*2 + €       (1) 

where Y* = ln(weapon size); and X* = ln(body size). If the term ß2 is significant, the 

scaling relationship is non linear and further testing is used to determine the type of non-
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linear scaling relationship. Thus, we tested for discontinuity and a body size switch-point 

(model 2: (Eberhard & Gutierrez, 1991)): 

    Y = ß0 + ß1X + ß2(X-X0)D + ß3D + €     (2) 

in which X and Y are in actual measurement units; X0 is the switch point; D = 0 if X < X0 

and D = 1 in all other cases; ßi are the regression coefficients; € is the random component 

with assumed normal distribution,  mean zero, and common variance (Eberhard & 

Gutierrez, 1991). To determine the body size switch point that explained the greatest 

proportion of variance, ten different values of X0 (potential switch points) were 

substituted in (2) and ten adjusted R2s were calculated. The switch point giving the 

maximum value of adjusted R2 was visually selected from a fifth degree polynomial plot 

(Quasi-cubic spline) of the adjusted R2s against the potential switch point values.  

Assumptions of homoscedasticity and normality of errors were checked before the 

analysis. All analyses were done using head width as a measurement of body size and 

elytral projection length and pronotum length as measurements of weapon size.  

 

3.4 RESULTS 

3.4.1 Mating behavior 

 A total of 73 out of 146 pairings resulted in the male mounting the female, 

introducing the aedeagus, and maintaining the position inside the female for two 

observation periods or longer. Three other pairings had a successful copulation (more 

than 20 minutes) but the male dismounted before the end of the second period of 

observation. In most cases, males approached the female, although in a few instances 

females were seen approaching the males. Females could stand still and allow the male to 
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approach and mount or they could walk away. In a typical successful copulation, a male 

approaches the female from behind and quickly mount her. The pairs usually go through 

an average 1.6 (SD±1.46) physical encounters before mounting occurs. Although in a few 

cases females seemed to resist copulation by pressing their abdomen against the flat 

surface of the container, in most situations, at least partial intromission would occur and 

the time between mount and copulation was relatively short. During the 73 observed 

copulations, it took males an average of 185.67 (SD± 305.161) seconds to introduce their 

aedeagus after mounting the female.  

3.4.2 Copulatory courtship behaviors versus male body and weapon size 

 Male antennal stroke rate ranged from 0.040 to 2.30 strokes per minute  (average 

± SD = 0.976 ± 0.512 strokes/min; N=73).  Palpi vibration rate ranged from 0 to 1.180 

strokes per minute (0.186 ± 0.229, N=73), and foot taps ranged from 0 to 1.433 taps per 

minute (0.401 ± 0.399).  For all copulatory courtship behaviors included in the study, 

antennal strokes, palpi vibrations and foot taps, the rate decreased significantly with 

increasing male body size  (Table 3-1, Figures 3-1, 3-2, and 3-3) as well as with 

increasing weapon size (here we show analyses for one of the two components of male 

weapons, elytral projection length, since analyses for pronotum length produced very 

similar results, Table 3-1).  Generalized linear models with log link functions for each 

behavior on both body and weapon size showed significant relationships for the overall 

regressions, but no significant coefficients of regression for either of the variables alone 

(Palpi vibrations: X2 = 16.506, P < 0.001; antennal strokes: X2 = 18.376, P < 0.0001; foot 

taps: X2 = 8.210, P < 0.05, N = 73). Thus, the correlation between body size and weapon 
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size is high enough that either one of these variables is equally successful at explaining a 

similar amount of variance in the behavioral rates.  

 Two of the three copulatory courtship behaviors (antennal stroke and foot tap 

rates) decreased with time. Antennal stroke rate during the first 10-minute observational 

period was significantly higher than during all other periods (Kruskal-Wallis: H=45.131, 

pvalue<0.0001, df=3; PostHoc Tukey-Kramer Test:  Period 1 significantly different from 

2, 3 and 4; Figure 3-4). The rate of foot taps, during the first 10 minutes was not different 

from the second 10-minute period, but it was significantly higher than the next two 

periods (Kruskal-Wallis, H=19.766, pvalue<0.0002, df=3; PostHoc Tukey-Kramer Test: 

Period 1 significantly different from 3 and 4; Figure 3-5) 

3.4.3 Dimorphism in weapon size 

 The relationship between pronotum length and body size was not significant for 

(Eberhard & Gutierrez, 1991)’s non-linearity model 1, and we concluded this component 

trait of the weapon showed no weapon size dimorphism.  On the other hand, the scaling 

relationship between elytral projection length and body size showed a significant ß2 

coefficient for non-linearity (ß2coefficient = -13.637, t71 = -2.756l, P  < 0.05). A test of 

(Eberhard & Gutierrez, 1991)’s model 2 for discontinuity showed a significant ß3 

coefficient, indicating a discontinuity of the scaling relationship with a switch-point at 

1.52 head width (ß3coefficient =0.503, t71 = 4.577, P  < 0.0001, Figure 3-6). According to this 

model, males above or below the 1.52 mm head width switch-point follow a different 

scaling relationship, potentially resulting in two different types of male morphs. A 

seemingly bimodal distribution for elytral projection agrees with an intrasexual 

dimorphism for this component trait of the weapon.  
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3.4.4 Copulatory courtship behaviors and weapon size dimorphism 

 We used the body size switch point we found for elytral projection length to 

divide males into majors and minors and compare copulatory courtship rates between 

these two categories. Minor males had a significantly higher rate of copulatory courtship 

behaviors than major males (Palpi vibrations: Mann-Whitney U’=1009, P < 0.001, 

N1=36, N2=37; Antennal strokes: U’=986, N1=36, N2=37, P  <0.001; and Foot taps: 

Mann-Whitney U’=865, N1=36, N2=37, P  < 0.05). We also used the majors and minor 

classification to test for an association between male type and pairings that resulted in 

copulation versus pairings that did not. We found that pairings with major males ended 

up in copulation significantly more than expected by chance alone, whereas pairings with 

minor males ended up in no-copulation significantly more than expected by chance  (X2 = 

4.524, P < 0.05, N=108). 

3.5 DISCUSSION 

 A new but intensive program of research in sexual selection is focused on 

determining the consequences of post-copulatory trait variation on male reproductive 

success (Simmons, 2001a; Arnqvist et al., 1997; Danielsson & Askenmo, 1999; Simmons 

& Achmann, 2000; House & Simmons, 2002). However, little is known about the causes 

of variation in these traits, especially in copulatory courtship behaviors. The expression 

of traits under post-copulatory sexual selection, such as copulatory courtship, may 

interact with, and be influenced by traits under pre-copulatory sexual selection 

(Andersson & Simmons, 2006), such as body size and weapon size. Individuals could 

base the intensity of their copulatory courtship behaviors on their pre-copulatory traits as 

part of their efforts to maximize their chances of fertilization success. Thus, determining 
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whether individuals base the quality or intensity of copulatory behaviors on pre-

copulatory attributes has important implications for understanding the development of 

reproductive strategies.  

 In our study, all copulatory courtship behaviors (palpi vibrations, antennal strokes 

and foot taps) were negatively correlated with body and weapon size (Figures 3-1, 3-2, 

and 3-3). Body and weapon size vary greatly among A. sparsa males and these 

characteristics may be associated with variation in copulatory courtship behaviors for two 

non-mutually exclusive reasons: First, this pattern may arise through male-male 

competition. Field studies show that in A. sparsa, both weapon and body size influence 

success in pre-copulatory male-male competition for access to females. Fighting success 

is positively correlated with weapon and body size, and larger males (bigger weapons and 

body size) win more fights than smaller males (smaller weapons and body size) (see 

Chapter 2.). For small males, this inferior fighting ability may make actual copulations 

with females rare or infrequent, causing every single copulation with a female to be a 

highly valuable event. For each mating opportunity, small males may invest more heavily 

than larger males on their copulatory courtship behaviors, in an effort to influence 

females into accepting their sperm and oviposit, once they have succeeded in coupling 

with them. Sperm competition theory explains that males in disfavored roles with high 

risk of sperm competition should have a higher ejaculate expenditure (quantity and 

quality) than males in favored roles with reduced risks of sperm competition (Simmons et 

al., 1999; Parker, 1990; Wedell et al., 2002; Birkhead & Moller, 1998) Experimental 

evidence for this has been found in arctic charr, domestic fowl, Norway rats, Atlantic 

salmon, humans and dung beetles amongst others (Cornwallis & Birkhead, 2007; 
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Kilgallon & Simmons, 2005; Rudolfsen et al., 2006; Simmons et al., 1999; Pound & 

Gage, 2004; Gage et al., 1995).  Males under increased risk of sperm competition can 

also put more effort into other sexually selected traits such as courtship display, mate 

guarding and male-male aggressiveness (LeBoef & Peterson, 1969; Mougeot et al., 2001; 

Gage & Baker, 1991). At least one study has showed that in the Japanese stag beetle 

Prosopocoilus inclinatus the intensity of male courtship during female mounting and 

immediately preceding copulation was higher in males with smaller weapons and body 

sizes (Yasukazu & Eisuke, 2005). Thus, the idea of an increase in ejaculate investment 

when there is a higher risk of sperm competition could extend to other post-copulatory 

traits that influence female sperm uptake, such as genitalia sizes or copulatory courtship 

behaviors. In such case, we might predict a negative correlation between copulatory 

courtship rate and measures of body and weapon size in males.  

 A second reason for this pattern, which may be working separately or in 

conjunction with the one described above, involves female choice. Large males may be 

more attractive to females because larger size may be related to higher quality in the 

offspring, it may improve a male’s ability to defend females against other harassing 

males, and because large males may make higher contributions to egg production through 

larger spermatophores and other male-derived products (Sirot et al., 2007). If females are 

generally more attracted to larger males, then these males may not need the additional 

enticements of an elaborate copulatory courtship. On the other hand, smaller males may 

need to increase their behavior rates during copulation to stimulate less receptive, large 

male-preferring, females into allowing them continue to the subsequent phases of 

copulation and into accepting their sperm. In insects, the first phase of genital 
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intromission of the penis or aedeagus into the female’s bursa copulatrix does not 

necessarily guarantee sperm transfer, and where they have been investigated, insect 

copulations consist of a series of phases that culminate in the deposition of sperm inside 

the female’s genital tract (Tallamy et al., 2002). Once the male’s aedeagus is introduced, 

males may still face internal resistance from females such that they cannot inflate their 

internal genital sac and properly pass sperm (Eberhard, 1996). The genitalia of A. sparsa 

males also include a long whip-like sclerotized structure that emerges from the internal 

sac, called the flagellum. In successful copulations of a related species, C. alternans, this 

flagellum was found inside the female genital chamber and in some cases, partially up the 

spermathecal duct (Rodriguez, 1993). Thus, even after the aedeagus is introduced, A. 

sparsa males may need to use copulatory courtship behaviors to persuade females into 

permitting them to inflate their genital sac and extend their flagellum inside them.  

In our experiment, we found that small males copulated with females less than expected 

by chance, whereas large males copulated with females more than expected by chance, 

indicating that females of A. sparsa are more likely to accept and copulate with large 

males. Given the initial preference that females show for large males, small males may 

experience a higher amount of internal resistance from females than large males. One 

indirect line of evidence for the idea that copulatory courtship behaviors function to 

stimulate the female into allowing males to continue to subsequent phases of copulation 

is that both antennal strokes and foot tap rates decreased over time across the copulation 

observational periods. It is important to point out that the level of choosiness of the 

females used in this study was likely influenced by their unmated status, since all females 

we used were virgin. Future studies should include previously mated females in order to 
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examine the interactions between re-mating, male pre-copulatory attributes and 

copulatory courtship behaviors. 

  An important distinction between pre and postcopulatory courtship may be the 

ability for males to assess female interest. Pre-copulatory courtship commonly involves 

unidirectional information transfer from the male to the female. Leks are a familiar 

example of this, males display, and females use this information to assess male quality 

(Andersson, 1994).  On the other hand, copulation may bring about a degree of 

interaction between males and females that produces a more readily bidirectional 

exchange of information. Here, females again have the opportunity to assess male 

displays, but now males may be better able to assess female receptivity based on internal 

and external tactile, and chemical cues made available by a more intimate association 

with their mate. This degree of interaction and intimacy between male and female during 

copulation increases male assessment capabilities and thus changes the rules that males 

are subjected to, allowing them to make more tailored choices about how much they 

should engage in courtship during each copulation event. 

 Finally, the differences in copulatory courtship behaviors found among males of 

A. sparsa may be related to alternative tactics played by morphologically distinct males. 

To better understand the relationship between copulatory courtship behaviors and weapon 

size, we investigated whether males of A. sparsa presented a weapon size dimorphism. 

We found that males were dimorphic for one of two morphologies included in the 

measurements of weaponry (they were dimorphic for elytral projection but not for 

pronotum length). An analysis of the scaling relationship between elytral projection and 

body size showed a discontinuous dimorphism, whereby males below a certain body size 
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threshold invest less in weaponry than expected for their body size (minors), and males 

above this threshold body size threshold invest more in weaponry than expected for their 

body size (majors). When we used the size switch-point to divide major and minors, we 

found that minors had significantly higher rate of copulatory courtship behaviors than 

majors per copulation. These differences between the two groups could be interpreted as 

forming part of a repertoire of traits related to discrete alternative tactics in A. sparsa 

males. It is difficult, however, to interpret the result of the dimorphism test in these 

beetles, since it was significant for only one of the two morphologies describing the 

weapon. The discontinuous nature of the scaling relationship is also hard to confirm 

through visual inspection. Thus, it may be useful to think about this species as occupying 

an intermediate place along a continuum that moves from non-dimorphic to completely 

dimorphic species with discrete alternative tactics. Regardless of whether there are two 

different tactics or not in A. sparsa, this study shows that post-copulatory traits, such as 

copulatory courtship behaviors are negatively correlated with pre-copulatory traits such 

as male body and weapon size. This explicit consideration of the interaction between both 

types of sexual traits (pre and post-copulatory) will provide us with a broader 

appreciation of sexual selection as an evolutionary process that acts, not on single traits, 

but on whole organisms. 



  

65

3.6 TABLES AND FIGURES 

 

 

 

Table 3-1: Test statistics for Spearman Rank single correlations between copulatory 

courtship behaviors (palpi vibrations, antennal strokes and foot taps) and male body and 

weapon size (N=73). 

Head width (Body size) Elytral projection length (Weapon size) 

Behavior                    ρ           zvalue         P 

Palpi vibration       -.473        -4.016      <.0001 

rate 

 

Antennal stroke     -.465        -3.948       <.0001 

 rate 

 

Foot tap rate          -.286        -2.427        0.0152 

Behavior                   ρ            zvalue          P 

Palpi vibration       -.485       -4.117         <.0001   

 rate 

 

Antennal stroke     -.510       -4.324         <.0001 

rate 

 

Foot tap rate          -.292       -2.475         0.0133 
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Figure 3-1: Rate of palpi vibrations performed during copulation as a function of male 

body size.  
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Figure 3-2: Rate of antennal strokes performed during copulation as a function of male 

body size. 
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Figure 3-3: Rate of foot taps performed during copulation as a function of male body 

size. 
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Figure 3-4: Changes in mean antennal stroke rate across four subsequent 10-minute 

observational periods. Bars depict standard error.  
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Figure 3-5: Changes in mean foot tap rate across four subsequent 10-minute 

observational periods. Bars depict standard error.  
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Figure 3-6: Scaling relationship between head width and elytral projection length. Model 

2 indicates a body size switch point at 1.52 head width. 
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4.1 ABSTRACT 

 In species with multiply-mating females, males compete for access to 

fertilizations inside the female reproductive tract. Here, postcopulatory sexual selection 

will favor males with traits that can enhance fertilization success with already mated 

females (male offensive ability), and traits that reduce the fertilization success of males 

subsequently mating or attempting to mate with the same female (male defensive ability). 

Because different traits may be employed for offensive and defensive male roles, studies 

measuring variation in male fertilization success for only a single role may be misleading, 

over- or under-estimating the importance some traits to overall fertilization success. 

Nevertheless, few studies have compared the contributions of male sexual traits to 

fertilization success during offensive and defensive roles. Such an approach is important 

to further our understanding of the mechanisms by which postcopulatory sexual selection 

affects trait evolution. In this study, I conducted a double mating experiment and 

paternity analysis with Acomis sparsa, a neotropical tortoise beetle, to assess the effects 

of several sexual traits on the fertilization success of first and second males. I found no 

effect of genitalic structures, testes mass, body size, or copulatory behaviors on the 

fertilization success of first males. However, fertilization success was strongly associated 

with absolute measures of antennal stroke rate and weakly associated with relative testes 

mass in second males. These findings show that the contribution of some sexual traits to 

fertilization success in A. sparsa is context-dependent, and can vary considerably across 

offensive and defensive mating roles.  
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4.2 INTRODUCTION 

 Females of many species copulate with multiple males. This promiscuous 

behavior allows for male competition for fertilizations to continue inside the female’s 

reproductive tract (Simmons, 2001a; Birkhead & Moller, 1998) and gives females the 

opportunity to mediate this competition (Eberhard, 1996; Price et al., 1999). One 

fundamental issue for males engaged in competition inside the female’s reproductive 

tract is that they face two opposing selective pressures (Parker, 1970a). First, males must 

be successful at resisting displacement of their sperm by the incoming sperm of later 

mating males. This selects for “defensive” strategies with traits that protect a male’s 

ejaculate from preemption or neutralization. Second, males must be successful at gaining 

dominance over the sperm that is already inside the female reproductive tract. This 

selects for “offensive” strategies with traits that are good at overcoming any paternity 

assurance mechanisms of earlier males (Wigby & Chapman, 2004; House & Simmons, 

2006; Parker, 1970b; Parker, 1970a). Thus, for each mating event, males will encounter 

fundamentally different roles depending on whether they mate with virgin females (first 

male role) or non-virgin females (second or later male role), and these roles will be 

affected by the likelihood of the female re-mating afterwards or the sperm competition 

risk (Wedell et al., 2002) and the type and degree of sperm precedence.   

 Although many studies have demonstrated clear patterns of either first or second 

male sperm precedence in insects (Simmons, 2001a), fewer studies have measured which 

traits or components of a male’s sexual phenotype contribute to fertilization success in 

offensive versus defensive roles (but see Wilkinson & Fry, 2000; House & Simmons, 

2006; Clark et al., 1995; Civetta & Clark, 2000; Nilsson et al., 2003; House & Simmons, 
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2002; Arnqvist & Danielsson, 1999). Moreover, studies that have looked at the 

importance of sexual traits on first or second male roles have mostly focused on single 

categories of traits, such as genitalic structures (House & Simmons, 2006; Otronen, 1998; 

Waage, 1979), seminal fluids (Harshman & Prout, 1994; Price et al., 1999) or copulatory 

behavior (von Helversen & von Helversen, 1991; Otronen, 1997). However, because first 

and second males face different contexts, the components of a male’s sexual phenotype 

crucial for fertilization success in each role may differ (House & Simmons, 2006). 

Alternatively, the same component of a sexual phenotype may be efficient at protecting 

sperm in the first male role and at gaining dominance over stored sperm in the second 

male role and therefore, be crucial for fertilization success across both contexts (Price et 

al., 1999). Comparing the fitness contributions of several sexual traits in first versus 

second males will highlight contrasts between male sexual strategies in these two roles. 

Thus, a more comprehensive approach that includes multiple components of the sexual 

phenotype is needed to gain a better understanding of the mechanisms by which sexual 

selection affects the evolution of traits through different male mating roles, and how these 

mechanisms act together to shape the evolution of whole organisms. 

 In this study, I used double mating experiments that included behavioral 

observations and paternity analyses with microsatellite markers to assess what 

components of the sexual phenotype of Acromis sparsa (genitalic structures, testes, body 

size or copulatory courtship behaviors) contributed to the fertilization success of males in 

first versus second mate roles. 

 Acromis sparsa is an ideal species to determine the importance of different sexual 

traits on first versus second male mating roles. First, this neotropical tortoise beetle has 
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multiple exaggerated sexual morphologies and behaviors: They possess secondary sexual 

characters, which are rigid elytral and pronotal projections used in male-male combat for 

access to females (Windsor, 1987). Their primary sexual characters include a hardened 

intromitent organ called the aedeagus, a genitalic whip or flagellum that can be longer 

than the entire body, and testes that occupy roughly 10-15% of the internal cavity (pers. 

obs.). They also display copulatory behaviors such as palpi vibrations, antennal stroking 

and foot tapping, which follow Eberhard (1994)’s criteria for copulatory courtship and 

are very similar to other behaviors previously described and known to influence male 

fertilization success in other insect species (Eberhard, 1994; Edvardsson & Anqvist, 

2000; Sirot et al., 2007; Tallamy et al., 2002). 

 Second, females of A. sparsa mate multiple times before each reproductive bout 

and can store sperm for weeks, providing ample opportunities for male competition 

inside their reproductive tract (pers. obs.). In a large mesocosm experiment, the level of 

sperm competition risk or fraction of females that mated more than once was moderate to 

high (q = 0.47, Wedell et al., 2002) and the number of male partners ranged from zero to 

six (see Chapter 2)  

 Finally, microsatellite markers were fully developed for this species in order to 

accurately assess the fertilization success of males in both the first mate and second mate 

role. Most studies that include double mating experiments in insects have relied heavily 

in genetically based morphological markers or irradiated male techniques to determine 

male reproductive success (but see Simmons & Achmann, 2000; Simmons et al., 2004). 

However, both of these techniques could be problematic for some species. Techniques 

using morphological markers may artificially bias estimates of sperm competitive ability 
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because marker strains with visible mutations generally have lower fitness than the wild-

type (Wigby & Chapman, 2004). In the case of irradiation techniques, irradiated sperm 

may be less successful at attaining “fertilization” of an ovum, which would again bias the 

estimates towards non-irradiated males. Moreover, even when irradiated sperm is just as 

competent as non-irradiated sperm at fertilizing an ovum, radiation may affect a male’s 

copulatory behavior or the female’s perception of the irradiated male, and consequently 

of the non-irradiated male (Sirot et al., 2007). Thus, the development of microsatellite 

markers for A. sparsa minimized the potential for biased estimates of male competitive 

ability in the double-mating experiments.   

 This study simultaneously assessed the contributions of genitalic structures, testes 

size, body size and copulatory courtship behaviors to the fertilization success of males in 

first versus second mating roles in A. sparsa beetles. 

 

4.3 METHODS 

4.3.1 Study Site and Subjects 

  A. sparsa is a neotropical leaf beetle (Chrysomelidae: Cassidinae) that ranges 

from Mexico to Peru (Blackwelder, 1982; Chaboo, 2007) . A. sparsa is highly abundant 

in Panama, Central America, and individuals are easy to find because they feed, mate and 

oviposit on a single hostplant, Merremia umbellata (Convolvulaceae). All individuals for 

the experiments came from wild patches of A. sparsa monitored from 2003 to 2005 at the 

Soberania National Park and in the vicinity of Gamboa, Colon Province, Republic of 

Panamá (9°06' N, 79°41' W). All laboratory rearing and behavioral experiments were 

conducted at the Smithsonian Tropical Research Institute facilities in Gamboa.  
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 Virgin females of Acromis sparsa were obtained for this study by collecting first 

instar larvae during the months of May and June 2005 and rearing them in an outdoor 

laboratory. Larvae were separated by family and reared under equivalent conditions in 

small 20x12cm plastic containers until pupation. We obtained fresh M. umbellata leaves 

daily from different vine patches in the area, mixed them and then distributed them 

randomly to the larval groups in order to avoid individual plant variation in nutrients. 

After adult emergence, a single female from each family group was randomly chosen to 

be used in a double mating experiment. Experimental females were placed in all-female 

containers for 25-40 days and fed fresh leaves daily, to allow them to become 

reproductively active. Males were collected in the wild, from patches of M. umbellata in 

the vicinity of Gamboa. These males were placed in individual containers with fresh 

leaves, for two to three days before the experiment started.  We used each male for only 

one mating in the experiment.  

4.3.2 Experimental Design and Behavioral Observations 

 To conduct double matings, a female was introduced into a mating chamber, 

which consisted of a 12cm3 glass box placed upside down with the open side towards the 

table, an observer with a video camera was positioned between 50-100 cm away. This 

glass container allowed the observer to film the beetle pairs from all angles without 

having to approach too closely.  The female was left alone in the chamber for a total of 

ten minutes while it acclimatized to the area. After these ten minutes, a randomly chosen 

male was introduced in the chamber. If the pair did not copulate after a maximum of 90 

minutes, the male was replaced with a different male. If no copulation occurred this time, 

the pair was removed from the mating chamber and a new female and male were used. If 



 

 

79

the male mounted the female, time of mount was recorded and the observer noted if and 

when the male penis or aedeagus was introduced into the female (hereafter called 

copulation). In a related species, Chelymorpha alternans, copulations with successful 

transfer of sperm, where spermatozoids enter the spermatheca, last a minimum of 

approximately 20 minutes (Rodriguez, 1993). Thus, only copulations that lasted longer 

than 20 minutes were considered successful and were included in this study. The pairs 

that surpassed the 20-minute limit were allowed to mate until they separated or for a 

maximum of 90 minutes. Approximately 27% of the pairs separated before minute 90. 

After the first pairing, females were isolated for four to six hours before being presented 

with the second male. For the second mating, females were presented with a randomly 

chosen male for a total of 90 minutes. If the pair did not copulate, the male was replaced 

with a different male.  Recordings of copulatory behaviors started when the male entered 

his aedeagus into the female and continued through the entire experimental time. All 

recordings were done with a SONY TRV350 video camera. Videos of each pair were 

randomized and later analyzed by a single observer with J-watcher software (v.1.0, 

Blumstein, D. University of California, Los Angeles). This observer recorded the total 

number of times each male performed the following two behaviors: (1) Foot taps, which 

consisted of males tapping lightly on the females’ elytra with front or mid tarsi; and (2) 

Antennal strokes, which consisted of males slightly lowering their heads and stroking 

females one, two or three times at the base of the elytra or pronotum with the either the 

right, left or both antennae. In some occasions, it also included the stroking and rubbing 

of the lateral edges of the females’ antennae. In a closely related species, it has been 

suggested that females can reject sperm by expulsing a white droplet after mating 
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(Rodriguez, 1995). Thus, females were observed closely after each mating event to check 

for white droplet expulsion, however, this was not noticed in our study. 

 After the matings, experimental males were dissected to have their testes 

extracted and weighed. Immediately after dissections, males and testes were collected 

and preserved in 95% ethanol and DMSO for later use in DNA extractions, genotyping 

and morphological analyses. Females were marked with small insect tags on their 

pronotum (Insect Marking Kit, BioQuip, Rancho Domingo, CA) and placed inside a 

small insectary (2.25 m2 footprint x 1.5 m height) with abundant hostplant to encourage 

oviposition. Because A. sparsa exhibits maternal care, females and their second instar 

larvae broods were collected as distinct groups from the insectary. This allowed me to 

accurately know maternity for all larvae collected. All females and larvae were also 

preserved in 95% ethanol and DMSO for later use in analyses.  

4.3.3 Morphological Measurements 

 For morphological analyses, I used head width and femur length as indicators of 

male body size . I also measured testes mass as an indicator of testes size and aedeagus 

and flagellum length as indicators of male genitalia size. I measured head width and 

pronotum length as measurements of female body size. Males and females’ body size 

measurements, were taken by lining up single individuals at the same angle in graphing 

paper and taking the measurements with a Mitutoyo digital caliper (nearest 0.01mm).  

Male genitalia pictures were taken with a digital Hitachi KP-D50 stereoscope camera 

attached to a Leica MZ6 stereoscope. Scion Image (NIH) software was used to conduct 

measurements of aedeagus and flagellum length (see Chapter 2, Figures 2-1 and 2-2 for 
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complete description of the measurement location of weapons and genitalia). Testes were 

weighted to an accuracy of 0.01mg in an A&D Scale (model ER-182A).  

4.3.4 Genetic analysis 

 Tissue samples were taken from 90 adult beetles and 1036 larvae. Gonads and 

legs were used for adult DNA extraction whereas the entire larva was used for larval 

DNA extraction. Before extraction, the tissue was powdered using a 96-well bead mill 

homogenizer (2000 Geno/Grinder, SPEX CertiPrep, NJ, USA) in conjunction with 2-mm 

high density zirconium oxide beads (Glen Mills, Clifton, NJ, USA) (Allender et al., 

2004). Genomic DNA was extracted following a Phenol-Chloroform extraction protocol 

(Sambrook et al., 1989) modified for tissue powdering. DNA concentrations were 

determined by spot-checking the samples with Hoechst 33258 fluorescent dye and a UV 

fluorometer (Turner Biosystems TBS-380) and samples were diluted to a standard 

concentration. 

 Because A. sparsa exhibits maternal care, maternity for all larvae was known with 

certainty, based on collection of female-larval groups. Three of the five microsatellite 

markers I developed for this species were used to assign male paternity in this experiment 

(D3, A127 and A115, see Chapter 2 for a full description of the microsatellite marker 

development for Acromis sparsa and a table with all microsatellite markers). These 

markers were chosen because they allowed for multiplex amplification.  HEX and FAM 

dyes (Invitrogen Corporation) as well as NED dye (Applied Biosystems) were used to 

label the primers. The PCR amplification reaction included the following ingredients: 

2.0ul 5x GoTAQ Flexi buffer (Promega Corporation), 0.80ul 25mM MgCl2, 0.80ul 

2.5mM dNTPs, 0.2ul 10x BSA, 0.2ul of each 10uM labeled primer, 0.15ul GoTAQ Flexi 
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(Promega Corporation), and sterile distilled water to a final volume of 10ul. The 

amplification was completed using the following program: 3 minutes at 94°C, 10 cycles 

of [30 seconds at 94°C, 30 seconds at 59°C (reduced by 1°C each cycle), 45 seconds at 

72°C], 30 cycles of [30 seconds at 94°C, 30 seconds at 49°C, and 45 seconds at 72°C], 

followed by a final extension for 10 minutes at 72°C. For visualization, 1ul of the PCR 

product was run through an ABI 3130xl Genetic Analyzer capillary electrophoresis 

machine (Applied Biosystems, Foster City, California, USA) with Genescan 500 ROX 

size standard (Applied Biosystems). 

 We used the Genemapper software package (Applied Biosystems, Forster City, 

California) to generate genetic profiles of each parent and individual larvae at the three 

microsatellite loci. These profiles were verified individually by eye and only those 

samples showing strong and unambiguous peak profiles were used in the final analysis. 

Error rates and null alleles were determined by assessing mismatches between mothers 

and larvae. Paternity was assigned individually by determining the offsprings’ unique 

paternal allele combinations and then matching them against the two candidate fathers. 

Because one of the microsatellite loci we used had a null allele, we modified our 

exclusion criterion at this marker. In this case, for every offspring that was homozygous 

for a maternal allele, we maintained both candidate fathers if they were homozygous at 

that locus, because they could be potentially carrying a null allele. These males could not 

be excluded unless they had allele mismatches at all other loci. 

4.3.5 Statistical Analysis 

 To estimate similarities between female egg laying behavior in the field and in the 

insectary, I compared the number of eggs laid by experimental females to those of 
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females found in monitored hostplant patches around Gamboa. I also determined the 

relationship between female size and egg number in both experimental and field broods. 

 To establish the degree of first versus second male sperm precedence, I calculated 

the proportion of offspring sired by males in the second male role (P2) and males in the 

first male role (P1) (Boorman & Parker, 1976; House & Simmons, 2006; Sirot et al., 

2007). ) and determined the effects of mating order on fertilization success.  

 To determine the contributions of sexual morphologies and courtship behaviors to 

the fertilization success of first males, I tested for correlations between P1 and measures 

of the genitalic structures, testes mass, body size and copulatory courtship behaviors. 

 To determine the contributions of sexual morphologies to the fertilization success 

of second males, I tested for correlations between P2 and measures of the genitalic 

structures, testes mass, body size and copulatory courtship behaviors. Separate analysis 

using either aedeagus or flagellum length as the correlated measures of genitalia size 

showed similar results; therefore in order to minimize the number of variables, I only 

included flagellum length in the final multivariate models for both first and second male 

mating order. 

 To assess whether the differences of first to second male measurements affected 

fertilization success, I also tested the effect of the relative measures of male traits (ratio of 

second male measurement/first male measurement) for all morphologies and copulatory 

behaviors on P2.  Finally, to test whether female size had an effect on male fertilization 

success, I determined the relationship between relative male to female body size and P1 

versus P2.  
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  Because paternity scores in double mating trials yield proportional data that 

conform to a binomial, rather than a normal distribution (Zar, 1984), I used generalized 

linear models with binomial errors, logit link functions and a correction for 

overdispersion ('quasibinomial distribution',Williams, 1982) in all the analyses. All 

statistical analyses in this study were performed with the software program JMP (SAS, 

Cary, North Carolina). 

 

4.4 RESULTS  

4.4.1 Female egg laying behavior 

 Thirty experimental females with eggs were recovered from the insectary. 

Experimental females in the insectary laid an average of 39.67 eggs per clutch (SD ± 

4.93). There was no significant difference between the number of eggs laid by females in 

the insectary and those laid by females in the field (Student t-test: t68 = 1.718, P > 0.05).  

In both, experimental and field females, the number of eggs increased with female body 

size (Experimental females: R2 = 0.38, F1,19 = 11.767, P <0.01; Field females: R2 = 0.21,  

F1, 35 = 9.27, P < 0.01,  Figure 4-1A and B). 

4.4.2 Sperm precedence 

 I found a clear signal of last male sperm precedence in Acromis sparsa. Second 

males in the double mating experiment sired significantly more offspring than first males 

to mate (Effect(1st male) = -1.0285, SE = 0.3144, X2 = 12.480, P < 0.001, N = 29, Figure 4-

2). The average proportion of eggs fertilized was 0.739 (SD ± 0.304) for second males to 

mate and 0.260 (SD ± 0.304) for first males to mate and the proportion of eggs fertilized 

in both roles ranged from 0 to 1. The coefficients of variation (CV) for the proportion of 
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offspring sired were 122.31for first males and 42.29 for second males. Thus, though there 

is second male sperm precedence in this species, I also found a large amount of variation 

within first males and second males in the degree to which they successfully fertilized the 

female.  

4.4.3 Effect of sexual morphologies and copulatory behavior on fertilization success in 

first versus second males 

 Although we found a large amount of variation in the proportion of offspring 

sired for first males (P1), the model including flagellum length, testes mass, body size, 

antennal stroke rate and foot tap rate showed no relationship between any of these 

physical and behavioral attributes and fertilization success. Thus, none of the physical 

and behavioral male attributes measured seem to be able to explain the variation we find 

in first male reproductive success.  

 On the other hand, proportion of offspring sired for the second males (P2) was 

positively associated with antennal stroke rate, and this was the only predictor variable 

retained in the minimal relevant model (Effect = 1.129, SE = 0.3959, X2 = 10.436, P 

<0.01, N = 29, Figure 4-3). None of the other physical or behavioral attributes included in 

the analysis (flagellum length, testes mass, body size and foot tap rate) contributed to the 

observed variation in fertilization success of second males. 

 When comparing the effects of the relative measures of male traits, I found no 

relationship between second male to first male ratios of sexual morphologies and 

copulatory behavior and second male fertilization success. However, there was a 

marginally significant trend towards higher proportion of offspring sired in second males 
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with an increase in testes mass ratio of second to first males (Effect 2male/1male = 2.71, SE = 

1.988, X2 = 3.179, P = 0.073, N = 23).  

 Finally, I found no effect of relative male to female body size on the fertilization 

success for either first or second male mating order. 

 

4.5 DISCUSSION 

 In species where females mate multiply, male competition for fertilizations 

continues inside the female’s reproductive tract (Simmons, 2001a; Simmons, 2003), and 

males are faced with two strikingly different mating roles depending on their mating 

order (Parker, 1970a). First males need to ensure it is their sperm and not a later male’s 

sperm that gets utilized in fertilizations, thus following a defensive strategy. On the other 

hand, second or later males need to secure the dominance of their sperm over sperm from 

earlier males, thus following an offensive strategy (Parker, 1984). Because offensive and 

defensive roles are very different contexts of sexual selection, it is important to determine 

whether the same or different components of a male sexual phenotype contribute to 

fertilization success in each case (House & Simmons, 2006).  This information can give 

us insights into the mechanisms by which sexual selection acts on traits and how do these 

traits get integrated in whole organisms.  

 In this study, I used a double mating experiment, genetic analyses and 

multivariate techniques to follow different sexual traits and assess their effects on the 

fertilization success of first and second males roles in A. sparsa. I found no effect of 

genitalic structures, testes mass, body size or copulatory behaviors on the fertilization 

success of first males. On the other hand, fertilization success was strongly associated 
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with antennal stroke rate and weakly associated with relative testes mass in second males. 

Thus, this simultaneous analysis of sexual traits in A. sparsa showed that the level of 

contribution of sexual traits to fertilization success is context-dependent and can change 

significantly across mating roles. 

4.5.1 Female egg laying behavior 

 Female laying behavior was similar in both insectary and natural settings. I found 

no difference between the number of eggs laid in the insectary and in the field. Thus, 

female behavior did not seem to be influenced by the potted plants or confinement in an 

enclosure. More interestingly, clutch size increased significantly with an increase in 

female body size both in insectary and in field-monitored females. If female size is an 

indication of higher fecundity, males may choose to preferentially mate with larger 

females. Although I found no relationship between female size and male copulatory 

behaviors in this study, another experiment measuring Acromis sparsa mating and 

fertilization behavior suggests males may prefer to mate with and fertilize larger females 

(see Chapter 2). 

4.5.2 Sperm precedence 

 The proportion of offspring sired by the second male was greater than the 

proportion sired by the first male in A. sparsa. This pattern of last male sperm precedence 

has been found in many other insect species (Simmons, 2001a). However, as in many 

other insects (Lewis & Austad, 1990; Simmons, 2001a), mating order explains only a 

small part of the variation in fertilization success, which in A. sparsa can range from 0% 

to 100% success in either first or second males.  Moreover, for each female, high values 

of second male sperm precedence can occur through different mechanisms and levels of 
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sperm competition if, for example, the sperm of different males mixes but the sperm of 

the second male is superior, versus if the sperm of the first male is lost or ejected from 

the storage, or if the sperm of two males was stored, but only the sperm of the last one is 

used (Wigby & Chapman, 2004). Thus, it is important to identify what other causes of 

variation exist for sperm use patterns in insects.  

4.5.3 Effect of sexual morphologies and copulatory behavior on fertilization success in 

first versus second males 

 I found no relationship between any of the measurements of sexual morphologies 

or copulatory behavior included in this study and fertilization success in first males. First 

males may be able to assure their paternity using sexual attributes that were not measured 

due to the nature of this study. In many species an important mechanism for defense 

strategy is to prevent females from remating. Males in a defensive role can reduce the 

risk of competition by mate guarding (Parker, 1970b; Alcock, 1994) or by using seminal 

fluids that suppress female receptivity to remating and stimulate egg laying behavior 

(Chapman, 2001; Clark et al., 1999). Because males were not allowed to mate guard and 

females were not allowed to lay eggs until they mated with a second male, traits involved 

in preventing females from remating were not assessed in this study. Future studies 

should include single matings or measurements of mate guarding in order to more 

accurately assess the causes of variation in fertilization success for first males of A. 

sparsa.  

 This study found that copulatory behavior, specifically antennal stroke rate, was 

an important factor determining the fertilization success of second males but it did not 

affect the fertilization success of first males. Antennal strokes or leg strokes have been 
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shown to affect mating or fertilization success in at least six different insect species: 

Diabrotica. undecimpunctata (Tallamy et al., 2002); Diaprepes abbreviatus (Sirot et al., 

2007); Ontophagus taurus (Kotiaho et al., 2001); Psilothrix viridicoeruleus (Shuker et 

al., 2002); Tribolium castaneum (Edvardsson & Anqvist, 2000) and Dryomiza anilis 

(Otronen, 1997). However, none of these studies explicitly assessed the effects of 

antennal or leg strokes in first versus second male roles. 

 The relationship between antennal stroke rate and fertilization success in second 

males of A. sparsa may be mediated by cryptic female choice. There are many potential 

mechanisms by which females may select sperm of males with high antennal stroke rates. 

Females may be less likely to produce resistance, allow more sperm transfer or actively 

select sperm from those second males with higher antennal stroke rates. Where 

mechanisms have been studied, there is evidence that females can perceive and make 

choices of sperm usage based on behaviors such as antennal or leg stroking (Edvardsson 

& Anqvist, 2000; Tallamy et al., 2002). It is interesting to note that it is the absolute 

value of antennal stroke rate and not the relative measure that affects fertilization success 

in second males. If there is cryptic female choice in this species, this indicates that 

females are not assessing relative values of current to past mates but instead choosing 

based on the absolute values of the last male they mate with.  

  Relative measures are important to include because a male’s success may be 

related to his traits relative to the male he is competing against (Sirot et al., 2007). On the 

other hand, absolute measures will be especially important for traits that are involved in 

direct removal of sperm or in stimulation of sperm ejection by the female (Cordoba-

Aguilar, 1999; Waage, 1979), or whenever it is the total amount of stimulation that 
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affects the process of sperm usage. Thus, antennal stroke rate would not need to be 

directly affecting the process of sperm usage, and instead be correlated with traits 

involved in sperm removal or involved in stimulation of sperm ejection by the female.  

 Antennal stroke could also be correlated with the amount of transfer of sperm or 

seminal fluids (Matthews et al., 1997), or it could be a response to female’s level of 

receptivity or a mechanism by which males transmit pheromones to the female in order to 

influence receptivity (Sirot & Brockmann, 2001). In these cases, fertilization success in 

the second male would not be related to antennal stroking itself but to another trait 

associated with this copulatory behavior. In order to assess whether this copulatory 

behavior is directly involved in fertilization in second males and whether cryptic female 

choice mediates the relationship between antennal stroke rate and fertilization success, 

the specific mechanisms by which females may influence sperm use patterns in A. sparsa 

need to be studied. 

 I also found a marginally significant relationship between relative testes mass and 

fertilization success in second males, which may be explained if the amount of sperm 

transferred to a female by the second male is dependant on how much sperm was 

transferred by the first male. Testes mass also showed a significant effect on fertilization 

success for males in a natural insectary experiment, where first and second males were 

not distinguished (see Chapter 2). Though the relationship between fertilization success 

and testes in this study is weak, it warrants further study of the specific mechanisms of 

sperm transfer and uptake in A. sparsa. 

 Determining what components of a male sexual phenotype contribute to different 

mating contexts is critical to understand the effects sexual selection on trait evolution. 
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This study showed that, in A. sparsa, antennal stroke rate changed its level of importance 

across first and second male mating roles. House and Simmons (2002) found that 

different types of genitalic sclerites improved fertilization success in first versus second 

males in dung beetles. Similarly, Arnqvist and Danielsson (1999) found that the dorsal 

and ventral sclerites of waterstrider genitalia contributed to second male paternity, 

whereas the lateral sclerited contributed to first male paternity. My study, and these 

examples show that, as reproductive context changes, the relative contribution of sexual 

traits to fitness varies. Thus, in order to more accurately link sexual traits with 

fertilization success for competing males, it is necessary include a series of contexts for 

each species (House et al., 2007). By following a range of sexual traits across both first 

and second male roles, this study gives some insights into how these components 

function across different contexts, and how they are affected by sexual selection.
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4.6 TABLES AND FIGURES:  

 

 

 
 

Figure 4-1: Relationship between female body size, measured as head width,  and the 

total number of eggs laid for (A) Experimental females, and (B) Field monitored females.  
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Figure 4-2: Proportion of offspring sired for first males and for second males. Error bars 

indicate standard errors.  
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Figure 4-3: Relationship between antennal stroke rate and the proportion of offspring 

sired (P2) for the second males to mate.  
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