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ABSTRACT  

Addis, Brett, M.S., May 2013           Organismal Biology and Ecology 

GENETIC STRUCTURE AND DISEASE PREVALENCE OF BOREAL TOADS (BUFO 
BOREAS) IN GLACIER NATIONAL PARK  
 
Co-Chairperson:  Dr. Winsor H. Lowe 
 
Co-Chairperson:  Dr. Fred W. Allendorf 
 
  Amphibians are more threatened than any other vertebrate group, with 41% of species 
experiencing declines.  The causes of most declines are not well understood, though many 
declines have been linked to the emerging infectious disease chytridiomycosis.  Additionally, 
amphibians are physiologically constrained to moist habitats and considered poor dispersers; 
thus, they may suffer genetic consequences of population isolation.  To address threats to the 
persistence of boreal toads (Bufo boreas) in Glacier National Park, USA, I genotyped 551 
individuals at 11 microsatellite loci and used spatially independent (STRUCTURE) and spatially 
explicit (GENELAND) Bayesian methods to describe population genetic structure and identify 
barriers to gene flow.  I found evidence of hierarchical population structure: individuals were 
splint into high and low elevation groups, and 2 secondary groups were detected within the high 
elevation group.  These results indicate that elevation strongly influences genetic structure.  
Genetic variation was high, but allelic richness declined with increasing elevation.  I tested a 
subset of the samples for Batrachochytrium dendrobatidis (Bd), the fungal pathogen which 
causes chytridiomycosis.  Thirty-seven of 109 toads tested positive for Bd.  Infection prevalence 
was not correlated with elevation, but—surprisingly—increased with individual heterozygosity.  
This finding suggests that dispersal may be facilitating the spread of disease because 
heterozygosity is highest where dispersal and gene flow are greatest.  
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Introduction 
 
 A central focus of conservation biology is determining why certain species are more at 
risk than others.  Species traits such as poor dispersal ability, ecological specialization to specific 
habitat types, and restricted geographic range, often lead to isolation of populations, and can 
facilitate declines (Purvis et al. 2000; Harcourt et al. 2002).  Geographically isolated populations 
are less likely to receive immigrants that help maintain positive population growth (Brown & 
Kodric-Brown 1977).  Loss of genetic variation and inbreeding depression are also common in 
small, isolated populations (Frankham 2005).  Both reduced genetic variation and inbreeding 
depression elevate extinction risk and weaken the ability of a population to cope with 
environmental change (Newman & Pilson 1997; Saccheri et al. 1998; Frankham 2005).  
Therefore, understanding the causes of population isolation and associated genetic effects is 
paramount for conservation and management, and many recent studies have focused on 
identifying landscape features (e.g. mountains, rivers) that lead to isolation by restricting 
movement and gene flow (e.g. McRae et al. 2005; Spear et al. 2005; Epps et al. 2005; Pérez-
Espona et al. 2008). 

 
Amphibians are more threatened than any other vertebrate group (Stuart et al. 2004).  

Forty-one percent of described amphibian species are classified as threatened, compared to only 
25% of mammals, 13% of birds, and 22% of reptiles (Hoffmann et al. 2010).  Additionally, most 
amphibian declines have occurred relatively recently: of the 34 amphibian species reported to 
have gone extinct since the year 1500, 9 extinctions have occurred since 1980, and an additional 
113 species can no longer be found (Stuart et al. 2004).  This suggests that the situation is 
worsening; yet the causes of most amphibian declines are still not well understood.  

 
Amphibians may be more vulnerable to extinction than other vertebrate taxa due to life 

history characteristics that lead to patchy distributions and geographically isolated populations.  
For example, because amphibians have highly permeable skin that is subject to evaporative water 
loss (Duellman & Trueb 1994), movements are often restricted to riparian corridors and forested 
areas where desiccation risks are low (Rothermel & Semlitsch 2002).  Additionally, amphibians 
are generally considered poor dispersers and many species exhibit high breeding site fidelity 
(Tracy & Dole 1969; Daugherty & Sheldon 1982; Blaustein et al. 1994).  Such physiological 
constraints and dispersal limitation can lead to limited connectivity among populations and 
related genetic and demographic effects of isolation (Lowe & Allendorf 2010) .  

 
Boreal toads (Bufo boreas) are widely distributed across western North America and 

occupy a variety of habitats, from desert springs to mountain wetlands (Hammerson et al. 2004).  
Boreal toads are of conservation concern because they are declining in portions of their range, 
causing the species to be listed as near-threatened by the IUCN (Hammerson et al. 2004).  In 
Colorado, where declines are most severe, only 1 of 44 known breeding populations is 
considered viable (Jackson 2008).  Factors that influence population isolation and patterns of 
genetic variation are likely important for predicting long-term persistence of this species, 
particularly for populations in the southern Rocky Mountains where extreme geographic 
isolation and aridity make immigration an unlikely source of demographic and genetic rescue 
(Switzer et al. 2009). 

 



2 
 

Boreal toads are an ideal species to test for landscape effects on population connectivity, 
particularly the influence of elevation, because they are found at a range of elevations, from sea 
level up to 3640 m (Hammerson et al. 2004).  Breeding immediately follows snowmelt and 
usually occurs during a 2-4 week period from mid-May to mid-June, but can occur as late as 
August at higher elevations (Carey et al. 2005).  Thus, toads living at different elevations may be 
reproductively isolated because breeding times may not overlap. In some landscapes, 
topographic complexity (i.e., mountain ridges) impedes gene flow (Murphy et al. 2010), while in 
others it does not (Moore et al. 2011), suggesting that factors influencing population connectivity 
cannot be broadly applied to all landscapes where boreal toads occur. 
 

Glacier National Park (GNP) in Montana provides an opportunity to examine how 
landscape effects on genetic variation may influence future boreal toad population trajectories.  
The Continental Divide runs through the middle of the park, creating high and low elevation toad 
breeding habitat across a wide range of elevations (960-2190 m).  High elevation sites typically 
have longer winters and more snowfall, constraining breeding to a much narrower window of 
time than at low elevations.   

 
Given the topographic complexity of GNP, mountain ridges likely impede boreal toad 

gene flow, as has been shown in other amphibians (Tallmon et al. 2000; Funk et al. 2005; 
Giordano et al. 2007).  In extreme cases, ridges may facilitate allopatric speciation among 
amphibian populations (Lougheed et al. 1999).  This evolutionary process could already be 
underway in Hanging Gardens, a high elevation site in mountainous central GNP (Fig. 1).  
Calling toads have been discovered in HG, but toads elsewhere in the park lack vocal slits 
necessary to produce the call, which is thought to serve as an advertisement to attract mates 
(Pauly 2008).  Thus calling and non-calling toads may be reproductively isolated, reinforcing the 
potential for divergence at high elevations due to mountain ridges.  Understanding how HG toads 
are genetically differentiated from surrounding populations will provide insight into the role of 
landscape features, such as mountain ridges, in this pattern of divergence.  

 
Variation in local environmental conditions may also influence population connectivity.  

Amphibians often show phenotypic variation at microgeographic scales, and this variation is 
usually related to source pond conditions (Denver et al. 1998; Skelly 2004).  For example, 
breeding ponds in close proximity can differ in light and thermal environments due to differences 
in shading (Skelly & Freidenburg 2000; Skelly et al. 2002; Halverson et al. 2003).  Skelly (2004) 
collected wood frog embryos from shaded and unshaded wetlands (20-4800 m apart) and 
conducted a common garden experiment where embryos were exposed to different temperatures 
that span the range of average in situ temperatures. Individuals from dark wetlands developed 
faster than individuals from light wetlands, demonstrating a genetic basis for phenotypic 
variation at microgeographic scales.  Similarly, differences in pond hydroperiod may influence 
the distribution of genotypes by offsetting breeding timing and facilitating reproductive isolation.  
Four breeding ponds near the Two Medicine Lakes in southeastern GNP (Fig. 1) are densely 
clustered (ranging from 150-430 m between ponds), but breeding in one pond consistently occurs 
two weeks earlier than the rest (mid-May v. late-May/early-June; Hossack and Corn, 
unpublished data).  The pond where early breeding occurs is also the only pond to dry 
completely by the end of the summer.  This variation in breeding pond hydroperiod provides an 
opportunity to test for reproductive isolation at a local, rather than landscape, scale. 
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Chytridiomycosis, an infectious disease caused by the fungal pathogen Batrachochytrium 

dendrobatidis (Bd) is gaining attention as a major contributor to amphibian declines worldwide 
(Berger et al. 1998; Lips et al. 2006; Skerratt et al. 2007), including boreal toad declines in 
Colorado and Montana (Muths et al. 2003; Pilliod et al. 2010). The disease is transmitted via 
contact with infected individuals and by zoospores in water (Nichols et al. 2001).  
Chytridiomycosis has been reported on all 6 continents where amphibians occur (Fisher et al. 
2009) and in a range of habitats, including lowland rainforests, cold mountaintops, and deserts 
(Ron 2005).  Studies have demonstrated a relationship between Bd infection and temperature 
(Bosch et al. 2007; Olson et al. 2013) and Pounds et al. (2006) showed that climate warming will 
likely accelerate the spread of chytridiomycosis by shifting temperatures toward the growth 
optimum of Bd.  
 

We know that amphibian populations differ in susceptibility to Bd (Crawford et al. 
2010), and Savage and Zamudio (2011) showed major histocompatibility complex (MHC) 
heterozygosity was strongly associated with survival in Bd-infected leopard frog populations.  
More broadly, increases in disease and parasite resistance with increasing heterozygosity has 
been demonstrated across taxa (Roelke et al. 1993; Coltman et al. 1999; Meagher 1999; Hedrick 
et al. 2001; Acevedo-Whitehouse et al. 2003; Spielman et al. 2004; Luikart et al. 2008).  Further 
efforts to detect a genetic basis for natural variation in host resistance to chytridiomycosis could 
be important for predicting local extinction risks and prioritizing conservation efforts for 
amphibians worldwide.   

 
Boreal toads in GNP have tested positive for chytridiomycosis (Hossack et al. 2013b), 

thus providing an opportunity to test for landscape and genetic factors that lead to patterns of 
variation in disease prevalence.  Based on previous studies, it might be expected that individuals 
infected with chytridiomycosis will have lower mean heterozygosity than uninfected individuals.  
Alternatively, individuals in populations experiencing high gene flow, with resulting high levels 
of heterozygosity, might experience higher exposure to Bd-infected immigrants and have a 
higher prevalence of Bd infection than individuals from isolated, low-heterozygosity 
populations.  Distinguishing between the two alternatives is important because they have very 
different management implications (i.e., promoting v. preventing dispersal and gene flow).  

  
Overall, this study had three major goals.  The first goal was to describe the population 

genetic structure of boreal toads in GNP.  Second, I tested for landscape effects on genetic 
population structure.  Finally, I used genetics to understand patterns of chytrid transmission and 
resistance.   
 
Methods 
 
Study site and DNA sampling protocol  
 

Glacier National Park (GNP), Montana, USA is characterized by steep topography due to 
extensive glaciation during the Pleistocene.  Boreal toads breed at a range of elevations, from 
960 m to > 2190 m, and in a variety of habitats, including beaver ponds, forest ponds, and small 
cirque lakes.  They commonly occur in the same wetlands as Columbia spotted frogs (Rana 



4 
 

luteiventris) and long-toed salamanders (Ambystoma macrodactylum).  Columbia spotted frogs 
are the only other known hosts of Bd in GNP (Muths et al. 2008; Hossack et al. 2013b). 

 
  DNA samples were collected from 551 toads older than 1 year in GNP during the 
summers of 2008-2011 (Fig. 1).  Twenty-two toads were sampled in 2008, 246 in 2009, 125 in 
2010, and 158 in 2011.  Toads were captured at randomly selected wetlands in 17 catchments as 
a part of an amphibian monitoring program (Corn et al. 2005).  Toads were also sampled 
opportunistically in terrestrial habitats; therefore, not all sampled toads were associated with a 
wetland.  DNA was collected by swabbing the buccal cavity with a foam-tipped or cotton-tipped 
swab (Pidancier et al. 2003).  Buccal swabs were stored in 95% ethanol until DNA extraction.  
 
DNA isolation and microsatellite amplification 
 

Tissues were digested using a detergent-based cell lysis buffer followed by ammonium 
acetate protein precipitation and isopropyl alcohol DNA precipitation.  Isolated DNA was 
resuspended in 100µl TE buffer.  DNA was not diluted for polymerase chain reaction (PCR).  
PCR were carried out in a PTC-200 thermocycler (MJ Research Inc., Waltham, MA) using the 
QIAGEN Multiplex PCR Kit (QIAGEN, Valencia, CA.).  All multiplex PCR reactions used a 
total volume of 10µl.  We amplified 11 microsatellite loci that were developed for Bufo boreas 
(BBR29, BBR17, BBR86, BBR87b, BBR36, BBR4, BBR292, BBR281, BBR34-2, BBR16, 
BBR201; Simandle et al.2005).  PCR conditions followed Murphy et al. (2010).  PCR products 
were visualized on an ABI3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, CA).  
Allele sizes were determined using the ABI GS600LIZ ladder (ABI) and called using 
Genemapper version 3.7 (ABI). 

 
Genetic analyses 
 

I did not know a priori whether wetlands represented discrete populations, and not all 
sampled individuals were associated with wetlands.  Therefore, I used the Bayesian clustering 
models in STRUCTURE 2.3.3 (Pritchard et al. 2000) and GENELAND 3.2.4 (Guillot et al. 
2005b) to delineate genetic groups (K) in the sample and assign individuals to groups.  Both 
programs group individuals into the most likely number of clusters (K) so that departures from 
Hardy-Weinberg proportions and gametic disequilibrium are minimized.  STRUCTURE bases 
its inference on genetic data alone, whereas GENELAND incorporates spatial information for 
the samples.    

 
For the STRUCTURE analysis, the number of clusters (K) is a fixed parameter, and 10 

independent runs for K = 1 to 6 were tested assuming an admixture model with correlated allele 
frequencies.  Evanno et al. (2005) showed that STRUCTURE accurately detects the uppermost 
level of population structure where different layers of population structure exist (i.e., the first 
round of analysis reveals the major genetic clusters, but further rounds of analyses can reveal 
substructure within each major genetic cluster).  I used a burn-in period of 100,000 with 100,000 
Markov Chain Monte Carlo repeats during the first round of analysis to identify the major 
genetic clusters, and a burn-in length of 300,000 and 300,000 MCMC repeats for subsequent 
rounds to test for further substructure.   
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The STRUCTURE run with the highest posterior probability is often used to infer the 
number of K in the sample; however, this statistic can sometimes be misleading, as once the real 
K is reached the posterior probability may continue to increase slightly at higher K (Evanno et 
al. 2005).  Evanno et al. (2005) found that the ad-hoc statistic ΔK, which is based on the second 
order rate of change of the likelihood with respect to K, is a more accurate estimator of the true 
number of genetic clusters.  However, because ΔK is a second order statistic, it cannot 
differentiate between K = 1 and K = 2, thus the ΔK method was used in conjunction with the 
highest mean posterior probability to infer the most likely K.  STRUCTURE provides the 
proportion of membership to each cluster (q) for each individual, and individuals were assigned 
to a population according to their highest q-value.   

 
For the GENELAND analysis, K is not a fixed parameter and 10 independent runs with 

100,000 MCMC iterations were performed allowing K to vary from 1 to 9.  The uncorrelated 
allele frequency model was used, as it is known to perform better than the correlated model 
(Guillot et al. 2005a).  The maximum rate of the Poisson process was fixed at 551 (the number of 
individuals; Guillot et al. 2005a), the maximum number of nuclei in the Poisson-Voronoi 
tessellation was set at 1653 (3 times the number of individuals; Guillot et al. 2005a), and the 
uncertainty of spatial coordinates was set at 500 m. The most likely number of clusters was 
inferred as the modal K with the highest posterior probability.  Varying the spatial uncertainty 
did not alter the most likely number of K. 

 
Genetic structure was also visualized using a principle coordinate analysis (PCA) 

implemented in GenAlEx version 6.4 (Peakall & Smouse 2005).  The PCA was constructed from 
a pairwise, individual-by-individual genotypic distance matrix.  To visualize population patterns, 
I used MINITAB (Version 16) to conduct a principal component analysis based on the 
covariance matrix among allele frequencies, omitting the largest allele at each locus to account 
for the non-independence of allele frequencies within each locus. 
 

I tested for gametic disequilibrium and significant departures from Hardy-Weinberg 
proportions across loci and identified clusters using exact tests in GENEPOP version 4.0 
(Raymond & Rousset 1995).  P-values were calculated using Markov Chain permutations (1000 
dememorizations, 100 batches, 1000 iterations per batch) according to the algorithm of Guo & 
Thompson (1992).  Genetic variation within populations was calculated as observed 
heterozygosity (HO), expected heterozygosity (HE), and allelic richness.  HO and HE were 
calculated in GenAlEx version 6.41 (Peakall & Smouse 2005) and allelic richness was 
determined using Fstat 2.9 (Goudet 1995).  Departures of observed and expected heterozygosity 
were quantified using Wright’s (1951) FIS and were calculated in Fstat 2.9 (Goudet 1995).  
Genetic variation among populations was assessed using pairwise FST calculated in GENEPOP 
version 4.0 (Wright 1931; Weir & Cockerham 1984; Raymond & Rousset 1995).   

 
To assess genetic variation among individuals, I used individual multi-locus 

heterozygosities.  I used the R package GENHET (Coulon 2009) to calculate standardized 
heterozygosity as the proportion of heterozygous typed loci / mean heterozygosity of typed loci 
(Coltman et al. 1999) because not all loci could be scored in all individuals.  I used a Mantel test 
(Mantel 1967), implemented in GenAlEx version 6.41, to estimate the correlation between 
individual genetic distances and geographical distances (Peakall & Smouse 2005).   
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Hanging Gardens and Two Medicine breeding ponds 
 
 To test for restricted gene flow due to mountain ridges at high elevations, I used 
STRUCTURE to determine whether calling Hanging Garden toads are reproductively isolated 
from toads in two neighboring basins (Heavy Runner and Hidden Lake; Fig. 1).  I also used 
STRUCTURE to determine whether early breeding toads near the Two Medicine Lakes are 
reproductively isolated from late breeding toads to investigate how differences in breeding 
phenology may influence genetic structure at a microgeographic scale. 
 
Disease sampling and analyses 
 

Some toads that were sampled for DNA were also sampled for Bd in 2008-2011.  To 
avoid any year effects on infection prevalence, only samples from 2009 were included in further 
analyses because it was the year with the broadest distribution of samples (n = 109, Fig. 2).  
Toads were sampled for Bd by swabbing the pelvic patch and undersides of legs and feet with a 
sterile cotton swab.  Swabs were stored in 95% ethanol until analysis for Bd presence.  

 
Bd presence was assessed using a quantitative real-time PCR assay (Hyatt et al. 2007) 

carried out at the Amphibian Disease Diagnostic Service Center at Washington State University, 
Pullman, Washington.  Samples were categorized as either infected (Bd = 1) or uninfected (Bd = 
0).  To determine if landscape factors explain variation in Bd prevalence, I tested for an 
association between Bd infection and elevation using logistic regression.  To understand how 
genetic variation influenced susceptibility to Bd infection, I also tested for an association 
between individual multi-locus heterozygosity and Bd infection using logistic regression.   
 
Results 
 
Population structure 
 

The first round of STRUCTURE analysis including all 551 individuals revealed the most 
likely number of clusters to be 2.  ΔK was highest at K = 2, but the mean estimated logarithm 
probability of the data [ln Pr (X|K)] continued increasing at K = 3 through K = 6, a phenomenon 
which may occur after the true K is reached (Appendix A, Evanno et al. 2005).  Because the 
difference in mean ln Pr (X|K) between K= 2 and K = 6 is much less than the difference between 
K = 1 and K = 2 (1707 v. 3544, respectively), I concluded the most likely K to be 2.   

 
The mean capture elevations of the two genetic groups (± 1 SD) were significantly 

different (1763 m ± 232 v. 1484m ± 228, T = 14.173, df = 550, P < 0.001), suggesting that 
elevation strongly influences genetic structure.  Not all individuals assigned to the high elevation 
group were found at higher elevations than individuals in the low elevation group; there are 
several instances where individuals assigned to the low elevation group cluster geographically 
with the high elevation group, and vice versa.  In many of these cases, these outlier individuals 
have low q-values of 0.5 – 0.7, indicating weak assignment to either major group.  There is a 
group of 76 individuals that strongly assign to the high elevation group but were captured at low 
elevations (Appendix B).  These individuals are spatially clustered in the high elevation group 
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(close to the Continental Divide, approximately 4 km south of Hanging Gardens; Fig. 1) but are 
located in the Gunsight valley directly adjacent to other high elevation toads.  Thus, the division 
of individuals into two elevation-based groups is rough; nonetheless, there is a clear pattern 
indicating that elevation is important in structuring genetic groups.  

 
STRUCTURE analysis was continued in a hierarchical fashion until no further 

substructure was detected (when K = 1).  Within the high elevation group, ΔK was highest at K = 
3, but the ΔK values for K = 2 and K = 3 were very similar (Appendix A).  The mean ln Pr (X|K) 
values were again highest for K = 6, but the difference between K = 1 and K = 2 is greater than 
between K = 2 and K =3 (865 v. 417).  Pritchard et al. (2000) recommend choosing the smallest 
value of K that captures the major structure in the data, thus K = 2 within the high elevation 
group.  These two groups are roughly arranged along a north-south gradient (Fig. 1), dividing the 
high elevation group into a northern group and a southern group.  Toads from the Hanging 
Gardens, Hidden Lake, and Heavy Runner basins are included within the southern high elevation 
group, and STRUCTURE analysis including only these three basins revealed the presence of 3 
distinct genetic groups, indicating there are several local populations within the southern high 
elevation group (Fig. 4).    

 
Within the low elevation group, ΔK was highest at K = 2 (Appendix A).  However, the 

height of the modal value of the distribution of ΔK was low, indicating the strength of the signal 
is fairly weak.  Additionally, because ΔK is based on the second order rate of change with 
respect to the likelihood function, it cannot distinguish between K = 1 and K = 2. For these 
reasons, Evanno et al. (2005) warn that the ΔK method may not always be the most appropriate 
criterion for determining the true K.  The plotted mean ln Pr (X|K) values indicate no clear break 
in slope and are instead more representative of a single population exhibiting isolation by 
distance (Schwartz & McKelvey 2009).  Additionally, Mantel tests revealed a significant pattern 
of isolation by distance parkwide (Mantel r = 0.30, P < 0.01), suggesting no evidence of further 
substructure within the low elevation group. 
 

Analyses in GENELAND revealed the most likely number of clusters to be 6.  However, 
two of these clusters contained only 1 and 3 individuals, and there was no spatial coherency in 
the latter cluster, making those groupings biologically uninterpretable. In the run with the highest 
posterior probability and a different modal value for K, the most likely number of clusters was 5.  
Population assignments revealed a pattern very similar to that of STRUCTURE, except that 
GENELAND found 3 groups in the high elevations and 2 groups in the low elevations. Ninety-
eight percent of individuals (541) were assigned to the same elevation grouping (high or low) 
using both clustering methods.  Of the 10 individuals that had different assignments, 7 had q-
values in STRUCTURE ranging from 0.5 – 0.7, indicating weak assignment.  The remaining 3 
outliers had strong assignments in STRUCTURE (q values = 0.7 – 1.0), but GENELAND 
appeared to assign these individuals to the other elevation category based on geographical 
continuity. 

 
Principal coordinate analysis (PCA) based on pairwise genetic distances between 

individuals supported the STRUCTURE groupings more than the GENELAND groupings.  PC1 
clearly separates individuals into the same high (positive coordinate 1 values) and low (negative 
coordinate 1 values) elevation groups detected by both STRUCTURE and GENELAND (Fig. 
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3A, 3B).  Coordinate 2 differentiates between the two groups within the high elevation cluster 
detected by STRUCTURE (Fig. 3A, 3C), but does not clearly differentiate between the 3 high 
elevation groups and 2 low elevation groups detected by GENELAND (Fig. 3B).  The 
GENELAND results may, therefore, overestimate population structure.  For further analyses, 
individuals were grouped according to the results of STRUCTURE.  I acknowledge that this is 
likely a conservative estimate of population structure, and these groups are probably not true 
populations in a biological sense (Waples & Gaggiotti 2006).  Group FIS values indicate a deficit 
of heterozygotes, likely due to the Wahlund effect (Table 1, Allendorf & Luikart 2007). 

 
Variation within groups 
 

All loci were polymorphic and the number of alleles per locus ranged from 4 alleles at 
BBR29 to 40 alleles at BBR16.  Genetic variation was high; mean expected heterozygosity within 
groups ranged from 0.68 to 0.74, and allelic richness ranged from 9.89 to 13.04 alleles per locus 
(Table 1).   

 
Twenty-three FIS values were significantly different from zero before correcting for 

multiple comparisons.  After Bonferroni correction, BBR29 in group 1, BBR87b, BBR292, BBR 
16, and BBR201 in group 2, and BBR86, BBR36, BBR292, BBR281, BBR34-2, BBR16, and 
BBR201 in group 3 deviated from Hardy-Weinberg expectations.  All loci exhibited heterozygote 
deficiency, with the exception of BBR201, which exhibited heterozygote excess.  Because no 
locus showed consistent deviations from Hardy-Weinberg expectations in all groups, all loci 
were retained for further analyses.  

 
Significant gametic disequilibrium was detected among 28 pairs of loci after Bonferroni 

correction, but only 4 pairs of loci were out of equilibrium in 2 groups (BBR17 & BBR86, BBR4 
& BBR34-2, BBR86 & BBR281, BBR87b & BBR36) and no locus-pair was out of equilibrium in 
all groups. 
 

I also tested whether restricted gene flow at high elevations due to mountain ridges 
resulted in lower genetic variation compared to the low elevation group.  Mean expected 
heterozygosity was not lower in the high elevation group (binomial sign test, Pone-tailed = 0.50).  
However, mean allelic richness was significantly lower in the high elevation group than in the 
low elevation group (Pone-tailed = 0.03).    This difference was also statistically significant using a 
randomization test (10,000 randomizations, P < 0.0001) where individual genotypes were 
randomized with respect to elevation designation (high or low) and allelic richness was 
calculated for each randomization.   
 
Variation among groups 
 

All pairwise FST comparisons between the 3 groups were significant (Table 2).  The 
greatest FST values were between the high and low elevation groups, indicating that gene flow is 
most restricted among low and high elevation groups (Table 2).  The significant differentiation 
between the two high elevation groups suggests that mountain ridges represent a barrier to gene 
flow. 
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 To further assess how mountain ridges influence genetic connectivity, I used 
STRUCTURE to test whether toads in Hanging Gardens and two neighboring basins (Heavy 
Runner and Hidden Lake) were genetically distinct.  The ΔK method (Evanno et al. 2005) 
revealed the most likely number of K to be 3 (Fig. 4) and FST values between the 3 basins were 
significant (Table 3), indicating that mountain ridges act as barriers to gene flow in this area, and 
may underlie divergence in calling phenotypes.  
 

I also used STRUCTURE to determine whether early breeding toads were reproductively 
isolated from late breeding toads near the Two Medicine Lakes.  The ΔK method (Evanno et al. 
2005) revealed the most likely number of K to be 3; however, the height of the modal value of 
the distribution of ΔK is extremely low (Appendix C) and the plotted mean ln Pr (X|K) values 
exhibit a pattern of isolation by distance (Appendix C, Schwartz & McKelvey 2009), indicating 
little evidence of substructure. Genetic samples collected at the early breeding pond do not 
cluster together (Appendix C), thus early breeding toads appear not to be reproductively isolated 
from late breeding toads.   

 
Disease prevalence 
 

A subset of toads that were sampled for DNA were also sampled for Bd to test for a 
relationship between infection and individual heterozygosity.  Of the 109 individuals tested for 
Bd, 37 were positive (Fig. 2).  Logistic regression analysis revealed that individuals with higher 
multiple-locus heterozygosity had significantly higher prevalence of Bd infection (χ2 = 4.71, df = 
1, P < 0.03; Fig. 5).  Bd infection was unrelated to capture elevation (χ2 = 0.13, df = 1, P < 0.72), 
and there was no clear spatial pattern of infection (Fig. 2). 

 
Discussion 
 
Elevation influences genetic structure 
 

My results show that elevation strongly influences genetic structure of toads in GNP.  
The first line of evidence comes from the initial split detected by STRUCTURE, which roughly 
divided individuals into a high elevation genetic group and a low elevation genetic group (Fig. 
1).  GENELAND also grouped individuals into high and low elevation groups, though the 
program detected greater substructure than STRUCTURE.  Principle coordinate analysis based 
on pairwise genetic distances between individuals also distinguished between low and high 
elevation primary genetic groups (Fig. 3).  Finally, pairwise FST values showed that gene flow is 
restricted among high and low elevation groups (Table 2).  However, the assignment of 
individuals to the high or low elevation genetic groups based solely on capture location is not 
always clear, as some individuals found at low elevations assign to the high elevation group (i.e., 
Gunsight valley individuals), and vice versa.  

 
There are several reasons gene flow might be restricted among low and high elevation 

groups.  Upslope dispersal may be limited by energetic costs and heightened desiccation risk 
with increased elevation due to reduced forest cover (Rothermel & Semlitsch 2002; Lowe et al. 
2008; Semlitsch et al. 2009).  However, Funk et al. (2005) found restricted gene flow between 
Columbia spotted frogs at low and high elevations despite evidence of long distance upslope 
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dispersal.  Similar to Columbia spotted frogs, boreal toads are vagile compared to other 
amphibians (Harris 1975; Semlitsch 1981; Kleeberger & Werner 1982; Muths 2003; Adams et 
al. 2005) and may be capable of dispersing long distances uphill.   

 
Rather than reflecting dispersal constraints, the genetic difference I observed between 

low and high elevation toads could be due to reproductive isolation based on elevation-related 
differences in breeding phenology.  Some breeding ponds are separated by > 1km of elevation in 
GNP, and breeding at low elevation sites can occur up to 60 days earlier than breeding at high 
elevations sites (B. Hossack, personal communication).  Thus, even though dispersal may not be 
restricted between high and low elevations, toads living at different elevations are likely 
reproductively isolated.  Snowpack throughout the Northern Rockies is expected to decrease 
under future climate change scenarios (Leung et al. 2004; Mote 2006; McKelvey et al. 2011), 
potentially reducing these differences in phenology and genetic differentiation related to 
elevation.  

 
Although elevation is likely an important source of variation in breeding phenology and 

reproductive isolation throughout GNP, at microgeographic scales it appears that genetic 
structure is unrelated to variation in breeding phenology.  Although some toads near the Two 
Medicine lakes breed approximately 2 weeks earlier than the rest, STRUCTURE analyses did 
not reveal evidence of genetic differentiation among Two Medicine toads.  The 2-week 
difference in breeding timing at Two Medicine is striking, but it is important to note that 
breeding can be offset by more than 2 months at low and high elevation sites in GNP, making 
genetic differentiation much more likely. 
 
Parkwide genetic structure 

 
My results suggest there are 3 genetic groups of boreal toads in GNP.  However, the 

Bayesian algorithm implemented in STRUCTURE (Pritchard et al. 2000) is not designed for 
situations where there is evidence of isolation by distance, as I detected in this study (Pritchard et 
al. 2010).  Schwartz & McKelvey (2009) warn that patterns of spatial autocorrelation of allele 
frequencies due to mating with neighbors should be considered prior to population structure 
analyses.  This is because autocorrelation along with irregular sampling can be misinterpreted as 
landscape features acting as barriers to gene flow, leading to faulty conclusions about the role of 
the landscape in shaping population structure.  I sampled continuously at a scale much larger 
than the dispersal capability of boreal toads, so it is unlikely I detected false barriers.  
Nevertheless, the designation of 3 discrete groups should be viewed as a coarse estimation of 
population structure within the park, and group FIS values indicate it is likely an underestimate 
(Table 1).  Further, though I could not resolve true biological populations at a parkwide scale, 
STRUCTURE analysis including Hanging Gardens, Hidden Lake, and Heavy Runner basins 
indicates that there are likely several local populations within the high elevation group.  
Therefore, my analysis only describes general patterns of genetic differentiation. 

 
 The amount of population differentiation in this study was higher than boreal toad 
populations elsewhere (Manier & Arnold 2006; Moore et al. 2011), suggesting that there are 
stronger barriers to gene flow in this system.  Overall, boreal toads in GNP have high genetic 
diversity.  Expected heterozygosity ranged from 0.683-0.736 within groups, and allelic richness 
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ranged from 9.887-13.038 alleles per locus.  These values are at the upper range observed for 
other pond-breeding amphibians (Newman & Squire 2001; Funk et al. 2005; Manier & Arnold 
2006; Moore et al. 2011).  For example, expected heterozygosity of wood frog populations in the 
Prairie Pothole Region in North Dakota ranged from 0.44-0.50, and the maximum number of 
alleles per locus was 5 (Newman & Squire 2001).  The authors hypothesized that 
extinction/colonization dynamics likely contributed to these low levels of genetic variation 
because breeding ponds in the region are ephemeral and cycle through periodic dry conditions.  
Frequent wildfires in GNP also lead to high turnover in wetlands, and toad occupancy increases 
initially post-fire (Hossack et al. 2013a).  Such dynamics could increase genetic variation 
because toads coming from outside the immediate burn area colonize the burned wetlands.   
 
Mountain ridges are barriers to gene flow 
 
  Significant differentiation between genetic groups at high elevations (FST = 0.11) adds to 
evidence that mountain ridges act as barriers to gene flow in amphibians (Lougheed et al. 1999; 
Tallmon et al. 2000; Funk et al. 2005; Giordano et al. 2007).  Hanging Gardens, the only known 
location in the park where calling toads have historically existed (Pauly 2008), represents one of 
the highest elevations where toads breed in GNP and is surrounded by > 300 m cliffs on 3 sides 
and drained by a stream that plunges to a valley bottom 520 m below.  Such steep topography 
could prevent gene flow into the Hanging Gardens basin, promoting divergence and, ultimately, 
allopatric speciation.  When HG toads and toads from 2 neighboring basins (Heavy Runner and 
Hidden Lake) were included in a separate STRUCTURE analysis, the three basins were 
significantly differentiated.  However, FST values among the basins were within the range 
observed parkwide (0.11-0.14, compared to parkwide range of 0.11-0.23).  I would expect higher 
FST values if HG toads were completely reproductively isolated, but these results do not preclude 
an effect of landscape structure on divergence in calling phenotype.  
 

I found that allelic richness decreased with elevation, but found no relationship between 
heterozygosity and elevation.  This result contrasts with other studies showing reductions in both 
metrics of genetic variation in high elevation amphibian populations (Funk et al. 2005; Giordano 
et al. 2007; Martínez-Solano & González 2008).  Genetic drift acts more quickly on allelic 
diversity than heterozygosity (Allendorf & Luikart 2007), which may explain these results.  The 
decrease in allelic richness with increasing elevation in this study indicates that there may be 
long-term genetic consequences of isolation at higher elevations, particularly the ability to 
respond to selection.  The loss of alleles reduces the genotypic diversity in a population that is 
subject to natural selection (Allendorf 1986; Allendorf & Luikart 2007), and large populations 
harboring more genetic variation have a greater response to selection than small, isolated 
populations with reduced genetic variation (Frankham 1996).   

 
The ability to respond to selection may be especially relevant under future climate change 

scenarios where rising temperatures are predicted to reduce the amount and duration of mountain 
snowpack (Leung et al. 2004), causing earlier breeding by montane amphibians (Corn 2003).  
Associated with early breeding are a suite of consequences, such as increased exposure to killing 
frosts (Inouye et al. 2000), increased duration of larval period, and shortened pond hydroperiod 
(Corn 2003), which may pose serious threats to populations with reduced adaptive potential.  
Reduced allelic richness may also have important implications for chytridiomycosis resistance.  
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MHC loci characteristically have many alleles and are associated with disease resistance in many 
taxa (Clarke 1979).  Savage and Zamudio (2011) showed that heterozygous leopard frogs 
bearing a specific allele, MHC allele Q, exhibited reduced risk of death from chytridiomycosis.  
Thus, reductions in allelic diversity could significantly affect disease susceptibility.   
 
Higher disease prevalence in more heterozygous individuals 
 

I found that more heterozygous individuals were more likely to be infected with Bd than 
less heterozygous individuals (Fig. 5).  This result is surprising in view of previous studies 
reporting that more heterozygous individuals within local populations tend to be more resistant 
to pathogens or parasites (e.g., Roelke et al. 1993; Coltman et al. 1999; Acevedo-Whitehouse et 
al. 2003; Luikart et al. 2008).  In addition, others have reported that local populations with 
greater mean heterozygosity tend to be more resistant to pathogens or parasites (e.g., Meagher 
1999; Hedrick et al. 2001; Spielman et al. 2004; Pearman & Garner 2005).  Inter and intra-
population differences in heterozygosity result from different genetic processes (Luquet et al. 
2011).  Random genetic drift leads to differences in heterozygosity among populations (Kimura 
et al. 1963), while inbreeding depression due to segregating deleterious alleles within 
populations leads to differences in heterozygosity among individuals within populations 
(Charlesworth & Charlesworth 1987).  It is important to consider whether correlations between 
heterozygosity and disease resistance result from intra or inter-population differences in 
heterozygosity because they have very different management implications (i.e., promoting gene 
flow vs. preventing mating between kin, Luquet et al. 2011). 

 
My results are best explained by my sampling scheme.  I was only able to identify major 

genetic groups and could not resolve local populations, so it is possible that the positive 
relationship between individual heterozygosity and infection results from an individual- or 
population-level effect.  Nevertheless, the findings of this study likely result from a population-
level effect.  That is, individuals with higher heterozygosity likely come from local populations 
with greater immigration.  Populations experiencing higher immigration are expected to have 
greater heterozygosity and greater exposure to chytridiomycosis.  This would result in a positive 
relationship between heterozygosity and Bd infection. More broadly, this would suggest that 
dispersal may be facilitating the spread of chytridiomycosis throughout GNP.  Additionally, this 
result would provide empirical support for mathematical models predicting that increased contact 
among populations increases prevalence, incidence and rate of disease spread (Hethecote 1976; 
Post et al. 1983; Andreason & Christiansen 1989; Hess 1996), and may even allow disease to 
persist when it would otherwise decline in isolated populations (e.g., Post et al. 1983; Andreason 
& Christiansen 1989). 
 
Conclusions 
 
 My study revealed the presence of 3 genetic groups of boreal toads in GNP, with one low 
elevation group and two high elevation groups.  Thus, elevation strongly influences genetic 
structure, most likely because of differences in breeding phenology at low and high elevations.  I 
found evidence of greater divergence at high elevations, suggesting that mountain ridges restrict 
gene flow.  Genetic variation in boreal toad groups in GNP was high; however, toads at high 
elevations exhibited reduced allelic diversity, which could limit adaptive potential under future 
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environmental change.  A potentially more important threat to population persistence is 
chytridiomycosis.  I found that more heterozygous individuals had higher infection prevalence, 
suggesting that dispersal facilitates disease transmission.  In this and other systems, knowledge 
of gene flow among populations may be very valuable for identifying populations likely to be 
exposed to disease, thus prioritizing conservation effort.  
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Fig. 1  Locations of boreal toad genetic samples (n = 551) in Glacier National Park, Montana, 
USA.  Symbols represent genetic groups revealed by STRUCTURE analysis. Open symbols 
represent the high elevation genetic group, and closed symbols represent the low elevation 
genetic group.  Open squares and circles represent groups 1 and 2, respectively. Closed circles 
represent group 3. Symbols overlap where multiple toads were sampled. The blue line indicates 
the Continental Divide. 
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Fig. 2  Location of boreal toad disease samples (n = 109) in Glacier National Park, Montana, 
USA.  Red symbols indicate individuals infected with chytridiomycosis and black symbols 
indicate uninfected individuals.  The blue line indicates the Continental Divide. 
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Fig. 3  Principal coordinate analysis based on pairwise genetic distances between individuals (A 
and B), and principal component analysis based on covariance matrix of group mean allele 
frequencies (C).  Symbols in (A) and (C) correspond to STRUCTURE group assignments.  
Symbols in (B) correspond to GENELAND group assignments.   
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Fig. 4  (A) Population assignments from STRUCTURE analysis including toads from Hanging 
Gardens (n = 30), Heavy Runner (n = 17), and Hidden Lake (n = 23) basins.  Each population is 
indicated by a different symbol, and symbols overlap where multiple toads were sampled. The 
blue line indicates the Continental Divide. (B) Plot of q values from STRUCTURE simulations 
when K = 3. (C) Plotted mean Ln P(X|K) values from STRUCTURE simulations for K = 1-6. 
(D) Results of STRUCTURE simulations using the delta K method (Evanno et al. 2005) to 
detect the most likely number of K.  
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Fig. 5  (A) Prediction curve from logistic regression analysis for probability of Bd infection relative to 
individual heterozygosity.  A Bd infection value of 0 indicates no infection and a value of 1 indicates 
infection.  (B) Proportion of individuals infected with chytridiomycosis at different heterozygosity 
levels.  Numbers above bars indicate sample size for each heterozygosity level. 
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Table 1  Sample size, mean capture elevation, and genetic information of 3 groups of boreal  
toads in Glacier National Park, Montana 
 

Population N Mean capture 
elevation (m) AR HE FIS 

High elevation group      
1 87 1865 9.989 0.728 0.090* 
2 210 1721 9.887 0.736 0.038* 

Low elevation group      
3 254 1478 13.040 0.683 0.091* 

      N, population size; AR, allelic richness; HE, expected  heterozygosity; FIS, Wright’s (1951) index 
of deviation from expected heterozygosity, averaged across loci: 1- (HO/HE). 
Significance: probability * < 0.05. 
 
 
 
 
 
 
Table 2  Pairwise FST values for groups of boreal toads in Glacier National  
Park, Montana 
          

 
Group       

 
High   

 
Low 

Group 1 2   3 
1 - 

   2 0.111 - 
  3 0.233 0.200   - 

 
 
 
 
 
 
Table 3  Pairwise FST values between Hanging Gardens (HG), Heavy Runner (HR) and Hidden 
Lake (HL) basins in Glacier National Park, Montana 
 

  HR HL HG 
HR - 

  HL 0.107 - 
 HG 0.137 0.123 - 
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Appendix A 

 
Mean of estimated Ln P(X|K) and Delta K of STRUCTURE analyses including all individuals 
(panel A, n = 551),  individuals assigning to the high elevation group (panel B, n = 297), and 
individuals assigning to the low elevation group (panel C, n = 254). 
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Appendix B 
STRUCTURE plot indicating proportion of membership of each toad (n =552) in each of K 
populations for K = 2. Individuals are arranged according to capture elevation, lowest to highest. 
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Appendix C 
 
Results of STRUCTURE analysis including early and late-breeding toads from Two Medicine 
Lakes. (A) Population assignments for individuals sampled at 4 breeding ponds. Intervals along 
the y-axis indicate the proportion of assignment (q) to each cluster when K = 3. (B) Mean Ln 
P(X|K) values from STRUCTURE simulations for K = 1-6. (C) Results of STRUCTURE 
simulations using the delta K method (Evanno et al. 2005) to detect the most likely number of K. 
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