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Chairperson:  Dr. Sarah Certel 
 
 
Each animal has devised extraordinary and baroque mechanisms to achieve behavioral 

and physiological flexibility in the context of its environment, genetic and neuronal 

complement, and biomechanical constraints. It will only be by looking for general 

principles across species that we will find the more general rules that govern life in its 

many shapes and forms.  

- Adapted from a quote by Eve Marder  

ABSTRACT 
An organism’s survivability in the natural world is contingent to its ability to respond 

rapidly and appropriately to various cues and challenges in its physical and social 

environment. The dynamicity of various environmental and social factors necessitates 

plasticity in morphological, physiological and behavioral systems – both at the level of an 

individual organism and that of a species. For more than century, natural selection of 

existing genetic variation in populations has helped us understand such plasticity across 

generations. However, recent years have seen a re-emergence of somewhat contentious 

quasi-Lamarckian framework with which organisms can reliably transmit acquired traits 

to subsequent generations in response to changes in external conditions. Whether or not it 

can be categorized as such, a stable transgenerational transmission of acquired alterations 

in epigenetic code, including methylation patterns and small RNA molecules, associated 

with behavioral and physiological, and I use the term here loosely, ‘adaptations’ for up to 

three generations has indeed been demonstrated in a number of species. The focus on 

methyl-binding proteins in this dissertation is guided by a motivation to advance our 

understanding of such epigenetic systems in one of the most extensively used model 

systems in biological and biomedical research – Drosophila.  

In contrast to the vast body of literature on the genetics, physiology, ecology, and 

neurobiology of Drosophila, methylation and methylation-associated processes represent 

one of the few relatively unexplored territories in this system. This certainly hasn’t been 

for the lack of trying (see section 1.8). Consistent with their role in other species, 
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Drosophila MBD proteins have been implicated in dynamic regulation of chromatin 

architecture and spatiotemporal regulation of gene expression. However, methylation-

dependence of their functions and their contribution to the overall organismal behavior 

remains equivocal.  

In this dissertation, I explore the role of the conserved methyl-CpG binding 

(MBD) proteins in the regulation of octopaminergic (OA) systems that are associated 

with a number of critical behaviors such as aggression, courtship, feeding, locomotion, 

sleep, and learning and memory. In chapter II, I, along with my colleagues, demonstrate 

functional conservation of human and Drosophila MBD-containing proteins. We show – 

(a) that a well-characterized human protein – MeCP2 – can regulate amine neuron output 

in Drosophila through MBD domain, (b) that endogenous MBD proteins in Drosophila 

regulate OA sleep circuitry in a manner similar to human MeCP2, and (c) that human and 

Drosophila MBD proteins may share a select few genomic binding sites on larval 

polytene chromosomes.  In chapter III, we describe a novel function of these chromatin 

modifiers in the regulation of social behaviors, including aggression and courtship. 

Returning to the issue of methylation, we demonstrate an interaction effect between 

induced-DNA hypermethylation and MBD-function in context of aggression and inter-

male courtship.  

Species – and sex–specific behaviors such as courtship and aggression rely on an 

organism’s ability to reliably discriminate between species, sexes and social hierarchy of 

interacting partners, and adjust to the dynamic shifts in sensory and behavioral feedback 

cues. At the level of an individual organism, such behavioral flexibility is often achieved 

by modulating the strength and directionality of neural network outputs which endows a 

limited biological circuit the capacity to generate variable outputs and adds richness to 

the repertoire of behaviors it can display (Marder, 2012). The role of MBD proteins 

discussed in this dissertation highlights a mechanism that couples chromatin remodeling 

and OA neuromodulation in context-dependent decision-making processes.  
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1 CHAPTER I 1 

      INTRODUCTION 2 

 3 
This dissertation investigates the role of Methyl-CpG binding (MBD) proteins in the 4 

regulation of complex, multivariate behavioral traits in Drosophila. Specifically, it 5 

describes how endogenous MBD proteins regulate octopamine neuron function in context 6 

of dynamic reproductive and aggressive social interactions. These studies are 7 

complemented by temporal assessment of alterations in neural circuit output for high-8 

throughput profiling of domain-specific functional interactions. This introductory chapter 9 

will (1) provide a brief overview of the genesis and organization of the central nervous 10 

system in Drosophila (sections 1.1 to 1.4), (2) review the octopaminergic system in 11 

context of behavioral traits and social interactions examined in this dissertation (sections 12 

1.4 to 1.6), and (3) discuss the controversy surrounding DNA methylation in Drosophila 13 

along with a few recent confirmatory studies that provide some context and rationale 14 

behind the exploration of MBD protein function in this model organism (section 1.7).  15 

1.1 DROSOPHILA AS A MODEL SYSTEM  16 
Ever since Morgan’s pioneering experiments on sex-linked inheritance in 1909, 17 

Drosophila has played a pivotal role in advancing our understanding of some of the most 18 

fundamental processes in biology. As a result, there is an extensive knowledgebase 19 

spanning over a century covering almost all aspects of the biology of this organism. This 20 

has led to the emergence of an extraordinary versatility and specificity of genetic tools 21 

available for fly models; allowing spatiotemporally controlled manipulation of gene 22 

expression at the resolution of a single neuron. Coupled with the emergence of 23 

centralized stock distribution centers, high resolution imaging and sequencing systems 24 

along with high-throughput behavioral assays, Drosophila offers an unprecedented 25 

degree of ease and sophistication in the exploration of genetic, cellular and 26 

neurobiological basis of organismal development, physiology, and behavior. As a 27 

testament to their utility as a model system, these flies have been frequent visitors to the 28 

International space station (ISS) over last three decades for studies on the effects of 29 

microgravity on the development of the nervous system, ageing, and host immunity 30 
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(Horn et al., 2007)(Horn et al., 2007; De Juan et al., 2007; Benguría et al., 1996; Vernos 31 

et al., 1989; Marcu et al., 2011).  32 

According to the latest genome assembly and annotation report (2015/10/19; 33 

release 6.08 - GenBank: 1186808), Drosophila melanogaster genome is 143.7Mb in size 34 

with 30,443 known proteins, and an estimated 17,651 genes currently mapped to the 35 

genome. Of these, at least 585 fly genes represent functional homologues of 714 distinct 36 

genes associated with disease in humans representing ~77% of all known disease causing 37 

genes, many of which are involved in neurological disorders (Reiter et al., 2001).  38 

In terms of behavioral complexity, despite a relatively small brain, Drosophila 39 

exhibits an extraordinary repertoire of dynamic multivariate behaviors, many of which 40 

can be examined in a high-throughput manner with automated analytical methods. 41 

Furthermore, most neurotransmitter and neuromodulator systems associated with these 42 

behaviors are conserved between flies and higher mammals, including humans. For 43 

instance, the noradrenergic system – the primary neural cluster examined in this 44 

dissertation – shows functional conservation across species for its role in the regulation of 45 

arousal, wakefulness, aggression and formation and retrieval of memories. In this 46 

dissertation, I will attempt to capitalize on such sequence and functional conservation in 47 

an attempt to unravel mechanistic underpinnings of some of these complex processes by 48 

manipulating single or a small subset of genes selectively in a targeted set of neurons.  49 

1.2 GENESIS OF THE NERVOUS SYSTEM  50 
Before we begin our discussion of the role of aminergic neurons in the regulation of 51 

complex behavioral traits, it is fitting to provide the reader with a brief and general 52 

introduction to the development and the organization of the nervous system in 53 

Drosophila. After all, the transformation of a single cell in to a sophisticated calculating 54 

brain has long been an object of curiosity and wonder for many of us. Drosophila 55 

development has been studied intensely for more than six decades and this very brief 56 

summary doesn’t even begin to scratch the surface of the vast amount of literature on this 57 

subject. With that disclaimer out of the way, let me attempt to summarize the genesis and 58 
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the organization of the nervous system, and introduce you to this powerful model system 59 

of scientific inquiry. 60 

 61 

Drosophila, like all dipterans, undergoes a holometabolous mode of development 62 

with four distinct stages: (a) egg or embryo, (b) larvae, (c) pupae, and (d) adult. Starting 63 

from the first nuclear division in the zygote to the hatching of the first instar larvae, 64 

embryogenesis in Drosophila has been categorized into 17 distinct stages (Hartenstein 65 

and Campos-Ortega, 1985). During the first two hours after fertilization (stage 1-4), the 66 

zygote undergoes a series of 13 nuclear divisions resulting in a syncytial blastoderm with 67 

an estimated 5000 nuclei arranged around the periphery of the oocyte plasma membrane 68 

(Foe and Alberts, 1983; Gilbert, 2000). Subsequently, these nuclei undergo 69 

cellularization by invagination of the plasma membrane. The cellular blastoderm is then 70 

reorganized into three germ layers (ectoderm, mesoderm and endoderm) that give rise to 71 

all tissues and organs, including the brain (Gilbert, 2000). Around embryonic stage 9-11 72 

(between ~3.5-7 hours after fertilization), a subset of ectoderm cells delaminate to form 73 

~100 individual, scattered neural progenitor cells called neuroblasts (Younossi-74 

Hartenstein et al., 1996; Urbach and Technau, 2003). These neuroblasts divide 75 

asymmetrically to produce two daughter cells. The apical daughter cell retains the 76 

properties of a neuroblast while the basal daughter cell forms a ganglion mother cell 77 

(GMC). In most cases, the GMC undergoes one final division to produce two neuronal 78 

cells and in some cases, glia (Jan and Jan, 2001). These divisions result in the formation 79 

of ~3000 primary neurons organized into distinct, structurally cohesive clonal units based 80 

on their respective neuroblast lineages, and segregated equally into two hemispheres (Ito 81 

et al., 1997; Lai et al., 2008; Spindler and Hartenstein, 2010). By embryonic stage 16 (i.e. 82 

~13-16 hours after first nuclear division), these primary neurons begin to differentiate 83 

and project the primary axonal tracts away from the outer rind of the cell bodies and into 84 

the central brain, giving rise to early neuropil connectivity (Younossi-Hartenstein et al., 85 

2006; Larsen et al., 2009). These early innervations are established in response to specific 86 

chemo- and contact-guidance cues in the extracellular milieu that attract or repel these 87 

innervations along their migratory pathway (Schmucker et al., 2000). Later during second 88 

and third larval instars, neuroblast cells divide again and give rise to the secondary clonal 89 
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lineage that uses primary axonal bundles and glial boundaries as structural scaffolds for 90 

projecting secondary axonal tracts (Spindler and Hartenstein, 2010). These primary and 91 

secondary clonal lineages and their innervations undergo subsequent refinement, 92 

degeneration, reorganization and maturation through the course of development as well 93 

as in an activity-dependent manner (Albright et al., 2000). A large number of neurons are 94 

also added during the pupal stage. Some of these embryonic and larval neurons and their 95 

projections persist through profound morphological and physiological changes during 96 

metamorphosis well into the adult nervous system (Shepherd and Smith, 1996; Truman, 97 

1992; Truman and Bate, 1988; Truman, 1990).  98 

1.3 ORGANIZATION OF CENTRAL NERVOUS SYSTEM 99 

The central nervous system in Drosophila is composed of a dorsal bi-hemispheric brain 100 

(supraesophageal ganglion) connected to a composite ventral ganglion (fig 1.1) (Power, 101 

1943). The supraesophageal ganglion and the anterior part of the larval ventral ganglion – 102 

the suboesophageal ganglion (SOG) – constitute the central brain in adult Drosophila. 103 

The central brain is roughly 500µm wide, 250µm tall and 200µm thick and contains an 104 

estimated 135,000 neurons (Alivisatos et al., 2012). In contrast to the vertebrate neuronal 105 

architecture, most of these neurons are unipolar, with cell bodies confined to the outer 106 

cortical layer and single neurites projecting towards the neuropil (Hartenstein et al., 107 

2008). Neurons from different clonal lineages project onto specific regions of the 108 

neuropil contributing to the modular or segmental organization of the brain structure and 109 

connectivity (Younossi-Hartenstein et al., 2003; Ito and Awasaki, 2008). Such 110 

compartmentalization is quite apparent in the structural demarcation (by glial sheaths) of 111 

certain brain areas such as antennal lobe (al), mushroom bodies (mb) or the central 112 

complex (cc) (fig 1.2). Although a detailed review of the structural organization of 113 

Drosophila brain is beyond the scope of this brief summary, it is useful for the reader to 114 

orient herself with respect to some of the major neuroanatomical features of the brain, 115 

especially those that are discussed later in chapters II and III of this dissertation. These 116 

include, but are not limited to, the subesophageal ganglion (seg/sog), mushroom bodies 117 

(mb), antennal lobe (al), and ventrolateral protocerebrum (vlp). These structural features 118 

are highlighted in the figure 1.2 below.       119 
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  Figure 0.1: Lateral view of the central nervous system in Drosophila  
(OL: Optic lobe; CenBr: Central Brain; SubGgl: Subesophageal ganglion; ThAGgl: Thoracico-abdominal ganglion; cn: 
cervical connective). Source: Atlas of Drosophila Development (1993) Hartenstein, Volker.   

Figure 0.2: Anterior surface of an adult Drosophila brain.  
Dorsal Layer – VL:vertical lobe of mushroom body; SMP, SIP, SLP: superior medial, intermediate, and 
lateral protocerebrum respectively; LH: lateral horn   
Middle Layer – ML: medial lobe of mushroom body; CCX: central complex; IP: inferior protocerebrum; MB: 
Mushroom body; LAL: lateral accessory lobe; AOTU: anterior optic tubercle      
Ventral Layer: SEG: subesophageal ganglion (also, SOG); AL: Antennal Lobe; PENP: periesophageal 
neuropil; VLP: venterolateral protocerebrum  
(Source: Volker Hartenstein, Drosophila Brain Lineage Atlas (DBLA))   
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1.4 SPECIFICATION OF NEURONAL IDENTITY 121 
The differentiation of neuronal identity, in terms of neurotransmitter release, is specified 122 

according to their clonal lineage as well the extracellular environment (Huff et al., 1989; 123 

Taghert and Goodman, 1984). Neuronal identity is inherent to the gastrulation-stage 124 

neuroblasts which, shortly after their formation, are committed to the production of 125 

specific monoamines (Huff et al., 1989). Transcriptional activity is first initiated in the 126 

embryo after 11th nuclear division in a stage 4 syncytial blastoderm. As early as stage 16, 127 

monoamines such as dopamine and serotonin can be detected in the embryos (Lundell 128 

and Hirsh, 1994). 129 

1.5 DROSOPHILA OCTOPAMINERGIC SYSTEM 130 

Octopamine (OA) is a biogenic, sympathomimetic amine that was first discovered in the 131 

Octopus salivary glands more than 60 years ago (Erspamer and Boretti, 1951). It is 132 

synthesized from the precursor tyrosine which is decarboxylated by Tyrosine 133 

decarboxylase (neuronal dTdc2 and non-neuronal dTdc1) to form tyramine (TA) (Cole et 134 

al., 2005). TA may act independently as an agonist to TA receptors or hydroxylated by 135 

tyramine β-hydroxylase (Tβh) to OA (Monastirioti et al., 1996). As a result, the tdc2 136 

promoter is commonly used within the UAS-Gal4 binary expression system for 137 

selectively labeling and manipulating OA/TA neurons in the central brain of Drosophila. 138 

Coupling this approach with the traditional immunohistochemistry methods, an estimated 139 

137 OA/TA neurons have been identified in the adult brain (Busch et al., 2009). 140 

There are 3-isomers of OA (-para, -meta, and -141 

ortho) and only p-OA is present in significant amounts in 142 

Drosophila (Farooqui, 2012). OA is structurally and 143 

functionally related to norepinephrine and fulfills similar 144 

physiological roles in invertebrates (fig.1.3). One of the 145 

salient features of adrenergic systems is the “flight or 146 

fight” response during altercations with competitors or 147 

potential predators. As discussed at length in section 1.6, 148 

OA plays a similar role in the regulation of complex 149 

agonistic interactions in Drosophila. As with most amines, 150 

 Figure 0.3: Chemical structures of 
para-octopamine and norepinephrine 
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OA is associated with an array of physiological roles and behaviors in the capacity of a 151 

neurotransmitter, neuromodulator and neurohormone. These include flight, locomotion, 152 

sleep, olfaction, foraging, ovulation, courtship, and learning and memory. A 153 

comprehensive description of such functions is beyond the scope of this brief review and 154 

interested readers should refer to the excellent review by (Farooqui, 2012). 155 

OA signal transduction is mediated by a family of seven-transmembrane G-156 

protein coupled receptors (GPCRs). On this basis of sequence, structural and functional 157 

similarities with vertebrate adrenergic receptors, OA receptors (OARs) in Drosophila are 158 

categorized into three major classes (Maqueira et al., 2005) –  159 

a) DmOCTα receptors are similar to α1-adrenergic receptors; downstream 160 

signaling involves an increase in both Ca2+ and cAMP second messengers. 161 

The OAMB receptors belong to this category.  162 

b) DmOCTβ receptors are similar to β-adrenergic receptors, and are further 163 

divided into 3 pharmacological subclasses. Downstream signaling in these 164 

receptors is mediated by an increase in cAMP levels, but not Ca2+ levels. 165 

c) DmTYR1 receptors are similar to α2-adrenergic receptors and display an 166 

agonist specific downstream signaling. These receptors have been discussed in 167 

detail elsewhere (Farooqui, 2012; Roeder, 2005).  168 



 
 

8 

1.6 OCTOPAMINERGIC REGULATION OF COMPLEX BEHAVIORAL TRAITS 169 
Octopaminergic (OA) system plays a significant role in the regulation and modulation of 170 

a number of dynamic multifactorial behavioral traits that invariantly necessitate 171 

interactions with various internal and external factors. These interactions are quite 172 

evident in social contexts where organisms continually negotiate access to territory, 173 

resources, mating partners and social status with each other. Organisms negotiate this 174 

social space by acquiring and integrating various cues about their own genetic, 175 

epigenetic, nutritional, metabolic and hormonal states with information about the sex, 176 

species, dominance hierarchy, and reproductive status of its interacting partner(s). This 177 

multimodal integration allows an organism to respond to various internal and external 178 

stimuli in a context-dependent manner by generating an array of specific, mutually non-179 

overlapping behavioral programs. For instance, depending on the sex and the history of 180 

previous encounters with the interacting organism, males in many species display 181 

agonistic behaviors when interacting with other males and canonized courtship rituals 182 

when interacting with conspecific females. That is, there exists a context-dependent 183 

behavioral switch between mutually non-overlapping behaviors of aggression and 184 

courtship. For any organism, it’s important that these behaviors are directed in response 185 

to appropriate cues, and inhibited when such cues are absent. Unregulated aggression 186 

towards potential mating partners, for instance, may be maladaptive. Therefore, one of 187 

the central goals in neuro-ethology is to understand how these behavioral choices are 188 

made. What are the mechanistic underpinnings of context-dependent decision-making?   189 

The dynamic regulation of aggression and courtship behaviors provides us with a 190 

useful framework with which to examine general mechanics of multimodality integration, 191 

sensory motor processing, and decision-making in a social setting. Across species, 192 

biogenic amines such as serotonin, dopamine, and octopamine are key neuromodulators 193 

that promote or regulate innate behavioral sequences associated with aggression and 194 

reproductive behaviors as well as modulate them in an experience-dependent manner 195 

(Zhou et al., 2012; Szczuka et al., 2013; Kravitz and Fernandez, Maria de la Paz, 2015; 196 

Miczek et al., 2002). Here I’ll briefly describe the role of octopaminergic system in 197 

generation and modulation of these complex behavioral traits in Drosophila: 198 



 
 

9 

1.6.1 Aggression  199 
Male competition for access to resources and 200 

mating partners is one of the key features of 201 

sexual selection that results in the evolution of 202 

often extravagant and sexually-dimorphic 203 

morphological, physiological and behavioral 204 

systems (Darwin, 1871; Vehrencamp et al., 1989; 205 

Hack, 1997; Arak, 1983; Emlen, 2001). Exactly a 206 

hundred years ago in 1915, Sturtevant first 207 

described aggression-like behavioral sequences in 208 

Drosophila ampilophila males. While courting 209 

the same female, Sturtevant reported, males 210 

“often grow very excited, especially if she is 211 

unwilling to stay quiet. In such cases they may sometimes be seen to spread their wings, 212 

run at each other, and apparently butt heads. One of them soon gives up and runs away. 213 

If the other then runs at him again within the next few minutes he usually makes off 214 

without showing fight.” (p. 353) (Sturtevant, 1915). These behavioral sequences have 215 

since been extensively characterized and documented in a number of Drosophila species, 216 

including D. melanogaster, both in their ecological context as well as in the laboratory 217 

setting (Jacobs, 1960; Dow and von Schilcher, 1975; Hoffmann, 1987a; Hoffmann, 218 

1987b; Pritchard, 1969; Shelly, 1999; Baier et al., 2002; Chen et al., 2002). Figure 1.4 219 

illustrates some of these common and gender-specific behavioral patterns in male-male 220 

pairings in D. melanogaster.  221 

With the ability to explore the genetic and neural landscape with targeted 222 

manipulation methods, we have come to appreciate the sophistication and complexity of 223 

these behavioral programs and the underlying mechanisms associated with them. Various 224 

genetic, hormonal, and neuromodulatory components have been identified for their role 225 

in innate expression and experience-dependent modulation of behavioral modules 226 

associated with male-male competition, territoriality, and formation of social hierarchy 227 

relationships. Interested reader can refer to Zwarts et al., 2012; and Kravitz and 228 

Fernandez, 2015 for excellent and comprehensive reviews of this subject (Kravitz and 229 

 Figure 0.4: Aggression in Drosophila 
Common (white-boxes, gray arrows) and gender-
specific (blue-boxes, green arrows) behavioral 
patterns and transition loops in dyadic agonistic 
interactions in Drosophila males (Kravitz and 
Fernández, 2015) 
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Fernandez, Maria de la Paz, 2015; Zwarts et al., 2012). Many of these systems show 230 

functional conservation across species in context of aggression (Yanowitch and Coccaro, 231 

2011). Here, I will attempt to briefly highlight the role of octopaminergic (OA) system in 232 

this context. 233 

The role of biogenic amines, including OA, in Drosophila aggression was first 234 

reported in 2002 by Baier and co-workers (Baier et al., 2002). Since then, a number of 235 

different studies from our lab and others have examined the role of OA in socially naïve 236 

and experienced flies. While many of these studies use different protocols and scoring 237 

schemes thereby making direct comparisons difficult; in general, inhibition of OA 238 

signaling correlates with reduced aggression and lunge frequency (Baier et al., 2002; 239 

Zhou et al., 2008; Certel et al., 2007; Hoyer et al., 2008). Absence of OA in TβhM18 240 

mutants that lack tyramine β-hydroxylase (TβH) – the rate limiting enzyme in OA 241 

biosynthesis – has been reported to cause a delay in onset to aggression as well as an 242 

overall decrease in lunging, holding, boxing and tussling behaviors (Baier et al., 2002; 243 

Zhou et al., 2008; Certel et al., 2007; Hoyer et al., 2008). In contrast, pharmacological 244 

stimulation of OA signaling and neuronal activation of OA-neurons restores aggression 245 

in OA-null (TβhM18) mutants. A distinct subset of ~2-5 OA neurons in the SOG area of 246 

the posterior brain is critical for such rescue in TβhM18 males (Zhou et al., 2008). 247 

Furthermore, such enhanced OA signaling only increases aggression in socially 248 

experienced males, and not in socially naïve males (Zhou et al., 2008; Certel et al., 2010). 249 

That is, OA system may not only mediate expression of innate behaviors but also 250 

facilitate modulation of such canonical behavioral sequences in an experience-dependent 251 

manner. Such modulation hints at interactions between OA systems and mushroom 252 

bodies – the primary centers for learning and memory and modality integration in 253 

Drosophila. In fact, blocking the synaptic output from mushroom bodies (MB) result in 254 

complete abolition of aggressive behaviors (Baier et al., 2002), and OAMB-receptor 255 

neurons in the MB respond robustly to male-specific, aggression-mediating pheromone 256 

cis-vaccenyl acetate (cVA) (Zhou et al., 2012; Datta et al., 2008).  257 
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OA exhibits multilayered effects in wiring and regulation of circuitry and 258 

sensorimotor programs associated with aggression and reproductive behaviors. For 259 

instance, a subset of OA neurons may act as second order transducers of chemosensory 260 

information required for species and sex identification (see section 1.6.3). OA also acts as 261 

a key mediator in transmitting effects of sleep deprivation on aggressiveness in 262 

Drosophila (Kayser et al., 2015). Sleep deprived males display reduction in aggression 263 

and reduced reproductive fitness – both rescued by pharmacological administration of 264 

OA agonists (Kayser et al., 2015). Additionally, OA signaling plays a critical role in 265 

transmitting behavioral effects of Wolbachia infection in Drosophila brain; which 266 

significantly reduces total OA levels and initiation of aggressive encounters in males by 267 

down-regulating the expression of two key OA biosynthetic genes – tdc2 and Tβh 268 

(Rohrscheib et al., 2015). 269 

1.6.2 Courtship 270 

OA system has also been implicated in the regulation of male courtship behaviors. Like 271 

aggression, courtship behaviors in Drosophila are innate, modular, sequential and 272 

dynamically-modulated (fig 1.5).  273 

Within the aggression 274 

paradigm, OA-null (TβhM18) 275 

and OA-hypomorphic 276 

(TβhM1F372) males 277 

increasingly transition to 278 

courting the other male, 279 

instead of fighting and spend 280 

significantly greater time in 281 

male-male courtship 282 

compared to control pairs 283 

(Certel et al., 2010). Certel et 284 

al (2010) identified a small 285 

subset of OA neurons (two 286 

neurons in the VUM1 cluster 287 

 

Figure 0.5: Stereotypical courtship sequences in Drosophila (steps 1-6); 
and the timing of fruM-mediated determination of sexually-dimorphic courtship 
circuitry during development (Source: Yamamoto et al., 2014) 
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and one in VUM2 cluster; VUM: ventral unpaired median) in the SOG area that co-288 

express the male form of fruitless (fruM) – a key component of sex-determination 289 

pathway that specifies the sex-specific courtship circuitry in Drosophila (Certel et al., 290 

2010). Selective feminization of OA neurons by turning on the transformer (tra) – a 291 

female-determinant gene upstream of fruitless in sex-determination pathway (Salz, 2011) 292 

– also recapitulates the homosexual courtship phenotype observed in OA-null males 293 

(Certel et al., 2010). 294 

Not unlike aggression, multiple lines of evidence suggest that social-experience 295 

can override and modify the innate stereotypical and sequential behaviors within the 296 

courtship program (Siegel and Hall, 1979; Siwicki et al., 2005); and octopamine plays a 297 

role in that as well (Chartove et al., 2015). When Drosophila males are rejected by 298 

previously mated and unreceptive females, sexual rejection often leads to associative 299 

learning in the form of suppression of future courtship attempts even when paired with 300 

receptive, virgin females (Siegel and Hall, 1979; Kamyshev et al., 1999). The clues about 301 

mechanistic underpinnings of such associative social learning are found in sexually 302 

dimorphic pheromonal profiles. In Drosophila males, 9-pentacosene (9-P) acts as an 303 

aphrodisiac signal, whereas 11-cis-vaccenyl acetate (cVA) act as an anti-aphrodisiac 304 

signal (Jallon et al., 1981). Mating results in alteration of female pheromonal profile and 305 

mated females begin to display male-specific volatile pheromone cVA (Ejima et al., 306 

2007; Ejima, 2015). During courtship conditioning, males learn to associate 9-P 307 

aphrodisiac signal (CS) released by all females with the suppression effects of rejection 308 

behavior (US) and possibly with anti-aphrodisiac cVA (US) displayed by mated females 309 

(Siwicki et al., 2005; Ejima et al., 2007). Removal of OA (TβhM18) or inactivation of OA 310 

neurons impairs courtship conditioning whereas transient activation of OA neurons in 311 

TβhM18 males mimics the aversive effects of courtship conditioning rescuing the OA-null 312 

phenotype (Zhou et al., 2012). This process is mediated by OA transmission to OAMB-313 

expressing Kenyon cells that send projections to αβ lobes of the mushroom bodies (MB) 314 

(Zhou et al., 2012). Interestingly, however, induced-octopamine release during courtship 315 

training in non-OA-deficient lines also mitigates the effects of rejection or impairs 316 

courtship conditioning, suggesting a dose-dependent effect of OA on courtship memory 317 

(Chartove et al., 2015). 318 
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1.6.3 Consolidation of Behavioral Object Choice  319 
An impaired OA signaling results in enhanced uncertainty in decision-making between 320 

aggression and courtship behaviors (Certel et al., 2007). A recent study from our group 321 

demonstrated that OA neurons facilitate context-dependent decision-making by 322 

downstream processing of chemosensory information relayed by gustatory Gr32a 323 

neurons (Andrews et al., 2014). These foreleg neurons gather pheromonal information by 324 

tapping the female abdominal wall early during the courtship and relay this information 325 

via axonal projections to the OA neurons in the suboesophageal ganglion (SOG) 326 

(Andrews et al., 2014; Miyamoto and Amrein, 2008; Stocker, 1994). These 327 

chemosensory cues are subsequently integrated with the inputs from acoustic, visual and 328 

mechanosensory modalities and a decision is made with respect to the modulation of 329 

male behavioral choice (Krstic et al., 2009; Griffith and Ejima, 2009). These observations 330 

suggest a role for OA in coordination of sensory information in male behavioral choice in 331 

complex social interactions. 332 

Alternatively, it has been suggested that male-female courtship specificity and 333 

avoidance of male-male courtship is a learned phenomenon (Anaka et al., 2008). Under 334 

this framework, males learn to refrain from male-male courtship after experiencing 335 

antiaphrodisiac pheromones and rejection from other males (Anaka et al., 2008; Spieth, 336 

1974; Hirsch and Tompkins, 1994). Context-inappropriate behaviors such as homosexual 337 

courtship or reduced sex specificity in courtship attempts may, therefore, suggest learning 338 

deficits in addition to, or in exclusion of, difficulties in gender recognition. A number of 339 

mutants with learning-deficits also display male-male courtship (Anaka et al., 2008; 340 

McRobert et al., 2003; Savvateeva et al., 2000). As OA is involved in the formation of 341 

courtship memory (Zhou et al., 2012; Chartove et al., 2015), it may therefore also 342 

facilitate specification of context-appropriate behaviors through learning and memory of 343 

previous social experiences in addition to its role in species and sex recognition.  344 
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1.7 OCTOPAMINE IN VERTEBRATES  345 
All three isomers of OA are found in the vertebrate systems, albeit only in trace amounts. 346 

However, since no specific OA receptor has yet been detected in vertebrates, most of the 347 

effects of OA in mammalian systems are considered indirect “false trasmitter” effects 348 

because of OA-mediated displacement and release of other classical amines from storage 349 

vesicles (Farooqui, 2012; Borowsky et al., 2001). Interestingly, however, trace amines 350 

including OA have been implicated in a number of psychiatric disorders including 351 

depression, migraine, and schizophrenia in humans (D’andrea et al., 2006; Lindemann 352 

and Hoener, 2005; Berry, 2007). In 2001, a novel family of mammalian GPCRs called 353 

trace amine associated receptors (TAAR1) was identified that bind and respond to an 354 

array of agonists, including OA (Borowsky et al., 2001; Xie and Miller, 2008). TAAR1 355 

receptors are distinct from invertebrate OA/TA receptors and are expressed in adrenergic 356 

and dopaminergic brain nuclei (Xie et al., 2007; Lindemann et al., 2008). Interested 357 

readers can refer to Miller G., 2012 (Miller, 2012) for a more comprehensive review of 358 

distribution and function of TAAR1 receptors. In 2012, D’Andrea  and co-workers 359 

reported OA-mediated modulation  of nitric oxide (NO) production in rat astroglial cells 360 

through β2-adrenoceptors (D’Andrea et al., 2012).  If OA binding and functional activity 361 

through β2-adrenoceptors in mammalian systems is further substantiated, this will likely 362 

mark a paradigm shift in the way trace amines like OA are viewed in terms of their 363 

physiological role in vertebrates.  364 
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1.8 THE CURIOUS CASE OF METHYLATION IN DROSOPHILA 365 
Cytosine methylation (m5C) is a key process in the spatiotemporal regulation of gene 366 

expression (see footnote1). However, DNA methylation has had a bit of a controversial 367 

history in Drosophila. DNA methylation is phylogenetically highly variable (Jeltsch, 368 

2010). All examined land plants and vertebrates retain extensive DNA methylation and 369 

presence of de novo DNA methyltransferases (fig 1.6) (Jeltsch, 2010; Goll and Bestor, 370 

2005; Suzuki and Bird, 2008). 371 

While many invertebrates 372 

including representatives of 373 

molluscs, cnidarians, and 374 

echinoderms exhibit stable 375 

methylation patterns through 376 

different stages of development, 377 

presence or absence of methylation 378 

in many other species, however, 379 

including C. elegans 2, Drosophila, 380 

and yeast remained inconclusive 381 

for decades (Tweedie et al., 1997; 382 

Rae and Steele, 1979; Bird et al., 383 

1979).  384 

After serving as a textbook example of organisms that are free of methylation for 385 

decades (Rae and Steele, 1979; Urieli-Shoval et al., 1982; Patel and Gopinathan, 1987), 386 

genomic methylation was conclusively detected in Drosophila embryos in the year 2000 387 

by bisulphite-based sequencing methods (Lyko et al., 2000). Methylation was found to be 388 

enriched primarily during early embryonic stages (0.4% in 1-2hr old embryos) with 389 
                                                
 
1 While 5C-methylation is predominant form of methylation in vertebrates, a number of protists, bacteria, and lower 
eukaryotes contain methyl-groups at the 4th position of cytosine (m4C), and more frequently at the 6th position of adenine 
residues (N6A) (Wion and Casadesús, 2006). N6A-methylation plays a key role in methylation-sensitive restriction-
digestion based bacterial defense systems. Recently, however, 6A-methylation was also discovered in Drosophila (Zhang 
et al., 2015) where it is proposed to act as an epigenetic modifier. 
 
2 N6A methylation was also recently detected in C. elegans (Greer et al., 2015) although cytosine methylation has not yet 
been determined.  
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gradual reduction during later stages (0.1% in 15–16 h old embryos; see footnote 3) (Lyko 390 

et al., 2000). However, no methylation was detected in the adult genome (but see 391 

(Achwal et al., 1984)). As a result, the general understanding was that adult Drosophila 392 

genome lacks detectable m5C and methylation is restricted primarily to the embryonic 393 

stages. That line of thinking was contradicted after more than a decade when an estimated 394 

2 x 104 methylated cytosine bases were conclusively detected in adult Drosophila 395 

genome using highly sensitive liquid chromatography coupled with tandem mass 396 

spectrometry (LC–MS/MS) based methods (Capuano et al., 2014). This level of 397 

methylation represents only ~0.034% of the fly genome (below the threshold of earlier 398 

bisulphite based methods); in contrast, 7.6% of mice genome and 2.3% of E.coli genome 399 

is methylated (Capuano et al., 2014). In contrast to global distribution of methylation in 400 

vertebrate genomes (Tweedie et al., 1997), methylation in Drosophila is typical of 401 

fractional distribution in invertebrates, albeit towards the lower end of the spectrum. 402 

Despite relatively sparse distribution, 5C-methylation in Drosophila is associated with at 403 

least 23% reduction in the expression of transcription factors and anatomical structure 404 

development genes suggesting functional equivalence with mammalian cytosine 405 

methylation (Takayama et al., 2014).   406 

Another peculiar feature of methylation in Drosophila is selective enrichment on 407 

non-CpG motifs, particularly CpT and CpA dinucleotides (Lyko et al., 2000).  Non-CpG 408 

(CpH; H = A/C/T) methylation, however, is by no means unique to Drosophila. CpH 409 

methylation has been reported in mammalian systems including the human brain, adult 410 

mouse cortex, and dentate gyrus neurons (Lister et al., 2013; Varley et al., 2013; Guo et 411 

al., 2013). Mice dentate gyrus neurons contain as much as 25% of overall methylation on 412 

CpH dinucleotides (Guo et al., 2013). In context of MBD-function, there are indications 413 

that CpH methylation is just as relevant to MeCP2 function and regulation of gene 414 

expression as methylation in CpG context. Methylated CpH moieties are associated with 415 

the repression of gene expression in cultured neurons and show binding to MeCP2 both 416 

                                                
 
3 Adenine methylation (N6A) also exhibits high levels of enrichment during early embryonic stages and undergoes a 
strong reduction during subsequent stages of development (45 min old embryo: ∼0.07%, 6mA/dA; 4-16hr old embryo: 
∼0.001%, 6mA/dA) (Zhang et al., 2015).  



 
 

17 

in vitro and in vivo (Guo et al., 2013). One of the notable findings pertains to the 417 

concurrent emergence of neuronal CpH methylation and postnatal onset of Rett syndrome 418 

(Guo et al., 2013). In this context, Drosophila is especially relevant to the investigation of 419 

CpH-mediated functional interactions with MBD–containing proteins. 420 

1.9 METHYL-CPG BINDING PROTEINS  421 
As a result of the recent confirmation of cytosine (and adenine) methylation in 422 

Drosophila, the focus has once again shifted to the functional relevance of such sparsely 423 

distributed methylation tags; and the role, if any, endogenous methyl-CpG binding 424 

(MBD) proteins play in translating these epigenetic marks to appropriate functional 425 

states. Proteins containing a methyl-CpG-binding domain (MBD) bind methylated DNA 426 

and translate the methylation pattern information into appropriate cellular differentiation 427 

states through alterations in chromatin structure and assembly. The correct readout of 428 

epigenetic marks is of particular importance in the nervous system where abnormal 429 

expression or compromised MBD protein function, can lead to disease and 430 

developmental disorders. 431 

Many of these proteins exert these effects in a methylation-dependent manner. 432 

However, not all methyl binding proteins contain a canonical methyl-CpG binding 433 

domain (MBD), and not all MBD-containing proteins have been identified to interact 434 

directly with the methylated DNA. As a result, based on their constituent domain 435 

structures and motifs, methyl binding proteins can broadly be categorized into 3 major 436 

super-families (Hung and Shen, 2003; Parry and Clarke, 2011):  437 

a) MBD containing proteins (e.g. MeCP2), 438 

b) Methyl-CpG binding zinc-finger proteins (e.g. Kaiso), and  439 

c) SET and RING finger–Associated domain (SRA) – containing proteins.  440 

The mCpG-binding zinc-finger proteins and SRA-containing proteins vary significantly 441 

from the MBD-containing proteins in their structural properties and binding affinities for 442 

methylated DNA. For instance, Kaiso zinc-finger proteins can bind a pair of methylated 443 

CpG dinucleotides (mCGmCG) and with even greater affinity – unmethylated DNA 444 

(Daniel et al., 2002). The SRA-containing proteins, on the other hand, bind hemi-445 
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methylated DNA through a base-flipping mechanism (Arita et al., 2008) while the MBD 446 

domain of MeCP2 binds hydrated surface (and not the methylated cytosines per se) of 447 

symmetrically methylated CpG pairs (Ho et al., 2008). This dissertation primarily focuses 448 

on the category-I MBD-containing proteins of the MeCP2-type.  449 

 At the time of writing this dissertation, the UniProtKB/Swiss-Prot release 450 

2015_12 contains at least 43 MBD-containing proteins from a number of different 451 

species including Arabidopsis, C. elegans, D. melanogaster and pseudoobscura, 452 

Xenopus, mice, rats, chicken, macaques, and humans. Based on their composition and 453 

presence of additional domains, the MBD superfamily of proteins is classified into three 454 

subsequent categories: 455 

a) MBD_MeCP2 456 

b) Histone methyltransferases (HMT_MBD) 457 

c) Histone acetyltransferases (HAT_MBD)  458 

The HMT family of MBD proteins includes SETDB1 and SETDB2 lysine-methyl 459 

transferases that are involved in tri-methylation of H3K9 – a key histone modification 460 

associated with formation of heterochromatin (Völkel and Angrand, 2007). These 461 

proteins contain SET domains – named after Drosophila genes Su(Var)3-9, Enhancer of 462 

zeste E(z), and trithorax (trx) – in addition to the methyl-binding domain (Clough et al., 463 

2007). The HAT family of MBD proteins includes BAZ2A and BAZ2B histone 464 

acetyltransferases (see footnote4). These are characterized by the presence of PHD-type 465 

zinc-finger domains and bromodomain that associate with acetylated lysine and 466 

chromatin remodeling complexes such as nucleolar remodeling complex (NoRC) (Hung 467 

and Shen, 2003; Dhalluin et al., 1999). Finally, the MeCP2_MBD family of proteins is 468 

characterized by MeCP2 and MBD1-6 proteins illustrated in fig 1.7. The subsequent 469 

chapters in this dissertation primarily concerns with the MeCP2_MBD family of proteins 470 

where it is discussed at length.  471 

                                                
 
4 Toutatis protein in Drosophila belongs to HAT category of MBD proteins and positively regulates expression of pro-
neural genes (Vanolst et al., 2005). 
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Both HMT and HAT family of MBD proteins lack a “canonical” MBD domain 472 

characteristic of MeCP2 that binds methylated cytosine residues (Hung and Shen, 2003; 473 

Roloff et al., 2003; Hendrich and Tweedie, 2003). At the same time, presence of a 474 

canonical MBD-domain does not guarantee association with m5Cs as many members of 475 

the MeCP2_MBD family do not bind methylated DNA (Hendrich and Tweedie, 2003; 476 

Laget et al., 2010). Therefore, one must exercise caution while contextualizing the 477 

observations related to Drosophila MBD proteins in subsequent chapters of this 478 

dissertation. 479 

480 
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2.1 ABSTRACT  783 

Methyl-CpG-binding domain (MBD) proteins are characterized by the ability to bind 784 

methylated DNA and translate the methylation pattern information into appropriate 785 

functional cellular states through alterations in chromatin structure and assembly. The 786 

correct readout of epigenetic marks is of particular importance in the nervous system 787 

where abnormal expression or compromised MBD protein function, can lead to disease 788 

and developmental disorders. Recent evidence confirms presence of 5C – and 6A – 789 

methylation across various developmental stages in Drosophila (Capuano et al., 2014; 790 

Zhang et al., 2015). As a result, the focus has once again shifted to the functional 791 

relevance of such sparsely distributed methylation tags; and the role, if any, endogenous 792 

MBD proteins play in translating these epigenetic marks to appropriate functional states. 793 

Are Drosophila MBD proteins required for neuronal function? Additionally, as MBD-794 

containing proteins have diverged and evolved, does the MBD domain retain the 795 

molecular properties required for conserved cellular function across species?   796 

To address these questions in a systematic manner, we started out by exploring 797 

the role of a better characterized human MBD-family protein – MeCP2 (methyl-CpG 798 

binding protein 2) in Drosophila. We expressed MeCP2 in distinct subsets of amine 799 

neurons and quantified alterations in sleep circuit output as an endpoint behavioral 800 

readout for spatiotemporally restricted functional interactions. MeCP2 gain-of-function 801 

resulted in phase-specific sleep loss and sleep fragmentation. Cell-type specific baseline 802 

behavioral data was then used to dissect domain-specific interactions by systematically 803 

removing specific domains from the full-length protein. Intact methyl-CpG binding 804 

(MBD) domain was found to be a critical player for MeCP2-induced alterations in sleep 805 
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architecture. Partial truncation of transcription repression domain (TRD) and complete 806 

removal of C-terminal regions (CTD) did not rescue MeCP2 gain-of-function phenotype.  807 

Subsequently, we explored the role of the MBD-family proteins endogenous to 808 

Drosophila i.e. dMBD-2/3 and dMBD-R2. To examine if human MeCP2 and Drosophila 809 

MBD proteins are targeting common neuronal functions, we knocked-down dMBD levels 810 

in conjunction with hMeCP2 overexpression in a 2X2 factorial design. A significant 811 

interaction (dMBD × hMeCP2) effect was observed between relative dMBD and 812 

hMeCP2 expression on combined measures of sleep. Chromosomal binding experiments 813 

indicate dMBD-R2 and MeCP2 localize on a small set of shared genomic loci. Our 814 

results demonstrate that Drosophila MBD-containing family members are required for 815 

neuronal function and suggest the MBD domain retains considerable functional 816 

conservation at the whole organism level across species.  817 

Keywords: methyl-CpG Binding Protein 2 (MeCP2), MBD proteins, Drosophila, sleep, 818 

octopamine, methylation819 
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2.2 INTRODUCTION 820 
Gene expression and even more fundamentally, chromatin architecture, is controlled by a 821 

number of different chemical modifications to the DNA and histone proteins. In plants, 822 

vertebrates and more recently Drosophila, one of these key modifications is an added 823 

methyl group at position 5 of cytosine bases (5mC) (Capuano et al., 2014, Gehring, 2013, 824 

Schubeler, 2015, Takayama et al., 2014, Varriale, 2014, Zilberman, 2008). Most methyl-825 

CpG binding domain (MBD)-containing proteins bind methylated DNA and function to 826 

translate the chemical modification into appropriate cellular states (Bogdanovic and 827 

Veenstra, 2009, Fatemi and Wade, 2006, Sasai and Defossez, 2009). By interacting with 828 

diverse partners, MBD-containing proteins regulate the differentiation and function of a 829 

cell by maintaining or altering chromatin structure, interpreting genomic imprinting, 830 

gene-specific transcriptional activation/repression and controlling RNA splicing 831 

(Chahrour and Zoghbi, 2007, Lyst and Bird, 2015, Samaco and Neul, 2011). Due to this 832 

wide array of nuclear functions, MBD-containing proteins and in particular, the MBD 833 

family member, methyl-CpG-binding protein 2 (MeCP2), have been described as a 834 

genome-wide modulator of gene expression and cellular differentiation (Cohen et al., 835 

2011, Della Ragione et al., 2012, Skene et al., 2010, Yasui et al., 2013).  Alterations in 836 

MeCP2 levels, either through loss-of-function mutations or gene duplication, results in 837 

the postnatal neurodevelopmental disorders, Rett Syndrome (RTT) and MeCP2 838 

duplication syndrome. MeCP2 dysregulation is also an important component of 839 

neuropsychiatric and neurological disorders ranging from Alzheimer’s and Huntington’s 840 

to depression and drug addiction (Ausio et al., 2014, Hutchinson et al., 2012, Lv et al., 841 

2013, Ramocki et al., 2009, Zimmermann et al., 2015).  842 

Despite the proposed global nature of its nuclear function, MeCP2 expression is 843 

tightly regulated in a spatiotemporal manner. In the adult nervous system where MeCP2 844 

can be found at levels nearly as abundant as the histone octamer, MeCP2 immuno-845 

reactivity can differ between brain regions as well as among neurons of the same 846 

population (LaSalle et al., 2001; Shahbazian et al., 2002). Furthermore, MeCP2 847 

expression is regulated by the circadian clock resulting in diurnal oscillations in MeCP2 848 

function (Martinez de Paz et al., 2015). However, in a laboratory setting, many of the 849 



 33 

existing set of assays used for examining functional consequences of MeCP2 850 

dysregulation only provide a brief snapshot in the temporal order of functional 851 

interactions. A more comprehensive characterization framework necessitates accounting 852 

for temporal variability in function through various circadian and developmental phases. 853 

That is, characterization of cell-type and domain-specific interactions of MBD proteins 854 

and their relationship with the overall circuit output requires assaying a phenotype that is 855 

rigorously quantifiable through various temporal phases in defined subsets of cells over 856 

the course of an organisms’ life in a high-throughput manner. Therefore, we used 857 

continuous sleep-wake profiling methods for temporal assessment of MBD function.  858 

Sleep is also a relevant behavior at the molecular and phenotypic levels in terms 859 

of MeCP2 pathophysiology. One prevalent phenotype among children with alterations in 860 

MeCP2 function and a common feature of neurodegenerative disease and 861 

neuropsychiatric disorders is sleep abnormalities (Angriman et al., 2015, Kakkar and 862 

Dahiya, 2015, McCarthy and Welsh, 2012, Musiek et al., 2015). Such sleep impairments 863 

include delays in the onset of sleep, alterations in total sleep duration, and frequent bouts 864 

of waking resulting in a fragmented sleep pattern (Cortesi et al., 2010, Nomura, 2005, 865 

Piazza et al., 1990, Souders et al., 2009, Young et al., 2007). Furthermore, it has become 866 

increasingly clear that epigenetic factors play fundamental roles in transcriptional and 867 

post-transcriptional regulation within the circadian clock network (Liu and Chung, 2015, 868 

Qureshi and Mehler, 2014). For example, in mice changes in day length alters promoter 869 

DNA methylation within the suprachiasmatic nucleus (SCN) – the master circadian 870 

oscillator (Azzi et al., 2014); an observation also supported in humans, where 871 

methylation levels have been observed to display 24-hr rhythmicity (Angriman et al., 872 

2015, Kakkar and Dahiya, 2015). In Drosophila, diurnal oscillations of several non-873 

coding RNAs are regulated by the clock gene, period (Hughes et al., 2012). In mice, two 874 

miRNAs – miR134 and miR132 – have been implicated in circadian regulation; one of 875 

which – miR134 – is highly enriched in the brain and processed under the control of 876 

MeCP2 (Alvarez-Saavedra et al., 2011, Cheng et al., 2014, Gao et al., 2010).  877 

Sleep and arousal are regulated by multiple neurotransmitters including 878 

octopamine, dopamine, γ-aminobutyric acid (GABA), and serotonin (5HT) through 879 
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different but interacting circuits (Cirelli, 2009, Crocker and Sehgal, 2010, Potdar and 880 

Sheeba, 2013).  Therefore, we manipulated distinct subsets of aminergic neurons through 881 

a series of experiments and asked, if the functional output of these neurons is altered in a 882 

distinct, quantifiable manner. Our results indicate cell-type-specific and phase-specific 883 

alterations in sleep duration and architecture. Sleep-deficits were accompanied with a 884 

significant reduction in latency to sleep initiation suggesting an increased homeostatic 885 

drive for recovery of lost sleep. To separate the role of disrupted amine production from 886 

disrupted neuron function, we expressed MeCP2 in OA neurons that completely lacked 887 

OA and established that MeCP2-induced deficits in nighttime sleep are mediated, at least 888 

partly, in an OA dependent manner. Partial truncation of transcription repression domain 889 

(TRD) and removal of C-terminal domains (CTDα & CTDβ) could not rescue MeCP2-890 

induced alterations in sleep-wake patterns. However, males expressing hMeCP2Δ166 891 

allele, in which the N-terminal region (NTD) and methyl-CpG binding domain (MBD) 892 

are truncated, displayed no alterations in quality or duration of sleep. These observations 893 

suggest an integral role for MBD in MeCP2 functional interactions.  894 

Second, as the Drosophila genome contains two proteins with extended homologies to 895 

vertebrate MBD family members; and in consideration of the recent confirmation of 896 

cytosine methylation in Drosophila, we asked if reducing endogenous dMBD2/3 and 897 

dMBD-R2 proteins could also alter the function of OA neurons. As with hMeCP2 898 

expression, targeted knockdown of dMBD2/3 and dMBD-R2 in OA neurons caused sleep 899 

fragmentation. If OA neuron function is altered due to the targeting of similar or 900 

overlapping set of genomic targets by hMeCP2 and the endogenous MBD proteins, then 901 

reducing dMBD2/3 or dMBD-R2 in conjunction with hMeCP2 expression should 902 

suppress or reduce the severity of hMeCP2-mediated sleep deficits. Our results indicate 903 

the phase-specific sleep deficits that occur due to hMeCP2 are partially rescued with a 904 

concomitant reduction in MBD-R2. Finally, we labeled 3rd instar larval polytene 905 

chromosomes and found that hMeCP2 and MBD-R2 accumulate together at distinct 906 

chromosomal bands.  Taken together, our results demonstrate that Drosophila MBD-907 

proteins can alter neuron output suggesting functional conservation of MBD proteins 908 

across species.909 
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2.3 MATERIALS AND METHODS 910 

2.3.1 Drosophila Stocks:  911 
Canton-S, UAS-Red Stinger (BL 8545, BL 8546), UAS-mCD8:GFP (BL 5130), UAS-912 

MBD-R2-IR (BL 30481) and UAS-dMBD2/3-IR (BL 35347) were obtained from the 913 

Bloomington Stock Center (Bloomington, IN). The UAS-MeCP2, UAS-MeCP2R294X, 914 

UAS-MeCP2R106W, and UAS-MeCP2∆166 lines were generously provided by Juan Botas 915 

(Cukier et al., 2008). dTdc2-Gal4 was obtained from Jay Hirsh (Cole et al., 2005), th-916 

Gal4 was provided by Sirge Birman (Friggi-Grelin et al., 2003), and trh-Gal4 was a gift 917 

from Olga Alekseenko (Alekseyenko et al., 2010).  918 

2.3.2 Husbandry:  919 
All fly stocks were maintained in a temperature (25 °C) and humidity-controlled (~50%) 920 

environment on a standard cornmeal based medium (agar, cornmeal, sugar, yeast extract, 921 

Triton-X). During development and post-eclosion, all flies were entrained to standard 922 

12hr-12hr light:dark (L:D) conditions under 1400 + 200 lx fluorescent light intensity. 923 

Transgenic control males were generated by crossing Canton S females with males from 924 

the respective UAS- or gal4- lines. Before experimentation, male pupae were isolated and 925 

aged individually in 16X100mm borosilicate glass tubes containing standard food 926 

medium described above. 927 

2.3.3 Behavioral Analysis:  928 
For activity and sleep monitoring, 2-3 day old socially naive males were transferred to 929 

65x5mm glass tubes with 15mm food on one end and a cotton plug on the other. Flies 930 

were transferred under CO2 anesthesia and allowed 24-hr to recuperate and acclimatize to 931 

new housing conditions before data collection. The locomotor activity counts were 932 

recorded for both control and experimental males using Drosophila Activity Monitoring 933 

(DAM) system (Trikinetics, Waltham, MA) for a period of 10 consecutive days at 1-min 934 

bin acquisition mode. Count data for the first and the last day were truncated to remove 935 

mechanical noise. Data from 8 consecutive days was analyzed further using Counting 936 

Macro 5.19.5 (CM) program generously provided by R. Allada (Northwestern University, 937 

Evanston, IL). Various indices of sleep including temporal organization, duration and 938 

latency of sleep and the number and length of sleep bouts were analyzed as described 939 
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previously (Pfeiffenberger et al., 2010). Sleep was defined as complete inactivity for a 940 

period of 5 consecutive minutes (Shaw et al., 2000). Graphs were generated with 941 

Graphpad Prism and Adobe Illustrator CS5. 942 

2.3.4 Immunohistochemistry and imaging:  943 

Adult male brains were dissected and fixed in 4% paraformaldehyde (Electron 944 

Microscopy Sciences) for 40 minutes and labeled as described previously (Certel et al., 945 

2010). The following primary antibodies were used: rabbit anti-MeCP2 (1:30, Cell 946 

Signaling Technologies), mouse anti-MeCP2 (1:500, Abcam), rat anti-CD8 (1:100, 947 

Molecular Probes), monoclonal rabbit anti-GFP (1:200, Molecular Probes), mouse nc82 948 

(1:100) and anti-MBD-R2 (1:200) (Prestel et al., 2010). Secondary antibodies include 949 

Alexa Fluor 488-conjugated donkey anti-mouse, Alexa Fluor 594-conjugated goat anti-950 

rabbit, Alexa Fluor 647-conjugated donkey anti-mouse, Alexa Fluor 488-conjugated goat 951 

anti-rat cross-adsorbed antibodies (Jackson ImmunoResearch Laboratories, West Grove, 952 

PA). Brain samples were mounted in a drop of Vectashield™ (Vector Laboratories Inc, 953 

Burlingame, CA) and Images were collected on an Olympus Fluoview FV1000 laser 954 

scanning confocal mounted on an inverted IX81 microscope and processed with Image-J 955 

1.33 (NIH) and Adobe Photoshop (Adobe, CA).  956 

2.3.5 Polytene Chromosome Immunofluorescence:  957 
For Drosophila polytene chromosomal preparation and immunofluorescence, third instar 958 

larvae raised at raised at 25oC and dissected in 0.1% Triton X-100 solution in phosphate 959 

buffer saline (PBS). Salivary glands were placed in 250µm of solution 2 (3.7% 960 

paraformaldehyde, 1% Triton X-100 in PBS) for 30-45 seconds. Solution 2 was replaced 961 

with solution 3 (3.7% paraformaldehyde, 50% acetic acid) for another 2 minutes. 962 

Salivary glands were pipetted along with 20µl of solution 3 on siliconised glass cover 963 

slips and picked up onto a poly-L-lysine coated slide (Sigma), tapped to aid chromosomal 964 

spreading and frozen in liquid nitrogen. Cover slips were removed and slides were 965 

processed for IF as described previously (Capelson et al., 2010). Mouse α-MeCP2 was 966 

used at 1:100 and rabbit anti-dMBDR2 at 1:200 (a gift from Dr. Peter Becker). Secondary 967 

antibodies include Alexa Fluor 594-conjugated goat anti-rabbit and Alexa Fluor 647-968 

conjugated donkey anti-mouse for spectral non-overlap with DAPI (1µg/ml) which was 969 
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used as a DNA counterstain. Polytene samples were mounted in a drop of Vectashield™ 970 

and imaged as described previously. Images were processed for background subtraction 971 

and contrast enhancement with contrast-limited adaptive histogram equalization 972 

(CLAHE) in ImageJ. Theoretical PSF (point spread function) was calculated for images 973 

used for colocalization analysis followed by an iterative 2D deconvolution for each 974 

channel (macro code and algorithm parameters are available upon request). Pearson’s 975 

correlation coefficient (PCC) and Manders colocalization coefficient (MCC) were 976 

estimated and then PCC was statistically evaluated against randomized images using 977 

Costes’ randomization methods (Costes et al., 2004). Percentile based thresholding was 978 

applied to segment polytene chromosomes from the background for MCC calculations 979 

within the JaCoP plugin for ImageJ. 980 

2.3.6 RT-qPCR:  981 

Expression levels of dMBD2/3 and dMBD-R2 genes were measured quantitatively by 982 

RT-qPCR. Heads from socially naive 3-5 day old adult males from control and 983 

experimental groups were extracted under CO2 anesthesia and frozen immediately in sets 984 

of three in 1.5-ml Eppendorf tubes kept in dry ice. Total RNA from each pool (~35 heads 985 

/ pool) was isolated by Tri-Reagent, (Molecular Research Center, Cincinnati, OH). RNA 986 

samples were DNase treated and reverse transcribed as described previously (Hess-987 

Homeier et al, 2014). qPCR reactions were carried out in quadruplicate for each gene and 988 

genotype on an Agilent Stratagene Mx3005P platform using following thermal protocol: 989 

95°C – 10min; 40 X (95°C – 30sec; 53°C – 1min; 72°C – 1min) followed by 0.5°C 990 

stepwise increment from 65°C to 95°C. Cdc2c (cyclin-dependent kinase 2) reference 991 

gene was used for data normalization. Expression levels were calculated using the ΔCT 992 

method. dMBD-R2 expression was quantified from the total head RNA using following 993 

primer pair, with forward primer spanning exon2-exon3 junction: F: 5′-994 

GGCCAGTTTGGATATAGCATCCC-3′, and R: 5′-995 

GCACGATAACAGTGGGTTTCTGG-3′. For dMBD2/3, exon-exon junction primers 996 

were not designed in order to target all transcript variants. Following primers were used 997 

for dMBD2/3: F: 5′-AGAAGCGACTGGAACGACTACG-3′ and R: 5′-998 

CGGTCTGTTCGTTGACATTGGG-3′. For cdc2c reference gene, pre-designed exon-999 



 38 

spanning primer pair PP1255 was used from the FlyPrimerBank:  1000 

F: 5′-CGAGGGCACCTACGGTATAGT-3′ 1001 

R: 5′-CGCCTTCTAGCCGAATCTTTTTG-3′. 1002 

2.3.7 HPLC:  1003 
For HPLC analysis, brains from socially naive 3-5-day old adult males from control and 1004 

experimental groups were dissected in ice-cold PBS (137 mM NaCl/2.7 mM KCl/10 mM 1005 

Na2HPO4/1.8 mM KH2PO4, pH 7.4) and frozen immediately in sets of three in 1.5-ml 1006 

Eppendorf tubes at -20°C. To measure OA levels from the central brain, the 1007 

photoreceptors were removed in all dissections. Each pool (n=15) of brains were 1008 

homogenized in 150µL of ice-cold 0.05M perchloric acid containing 30 ng/mL DBA and 1009 

chilled on ice before analysis. Immediately before analysis, the samples were centrifuged 1010 

at 14,100g for 20 min at 4ºC. The supernatant was removed and 50µL injected into the 1011 

HPLC. Amine levels were measured with an ESA CoulArray Model 5600A HPLC with 1012 

electrochemical detection equipped with a C18 column (Varian), and a 200µl loop 1013 

(Rheodyne). The flow rate was set at 0.8 ml/min. The mobile phase was composed of 1014 

10% acetonitrile (Fisher, HPLC grade), 14.18g monochloroacetic acid, 4.80g NaOH (pH 1015 

adjusted to 3.0-3.5 with glacial acetic acid), and 0.301g sodium octyl sulfate (SOS) in 1016 

1000mL of sterile, polished water and filtered with 0.2µm filter. The electrodes were set 1017 

at -50, 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 920 mV. OA was detected in 1018 

the 600-mV channel. Retention times and concentrations of the amines were determined 1019 

by comparison to a standard composed of 80, 160, 320, 800, and 1200pg of octopamine 1020 

hydrochloride in 0.1 M perchloric acid containing 30ng/mL DBA. The data from three 1021 

groups of pooled males (n=15 in each pool) were averaged. Peaks were identified based 1022 

on elution times. 1023 

2.3.8 Statistical Analysis:  1024 

One-way ANOVA with Holm-Sidak's multiple comparisons test was used to evaluate 1025 

effects of genotype on various sleep parameters in three or more groups. Multiplicity-1026 

adjusted p-values are obtained for each pairwise comparison and only the most 1027 

conservative/numerically higher values were reported. Data was examined for gaussian 1028 

distribution and homogeneity of variance using D'Augustino Pearson omnibus normality 1029 
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test and Brown-Forsythe test respectively. Data were log-transformed or central limit 1030 

theorem was assumed for datasets with n>30 in case of violations of assumptions of 1031 

normality. Otherwise, non-parametric Kruskal-Wallis with Dunn’s post-hoc test was 1032 

used. Generalized ESD test (Rosner, 1993) was used to examine outliers. Results are 1033 

expressed as either mean±s.e.m. or mean±c.i. as indicated in the text. Empirical 1034 

cumulative distribution (CDF) for sleep bouts were plotted using the ecdf function in 1035 

MATLAB (The MathWorks, Natick, MA).  1036 

Ordinary two-way Multivariate ANOVA (MANOVA) was carried out in SPSS23 using 1037 

the general linear model (GLM) procedure to explore interactions between the effect of 1038 

hMeCP2 and dMBDs on linear composite of various measures of sleep. Multivariate 1039 

outliers were detected for all sleep parameters based on a chi-square distribution using 1040 

Mahalanobis distance (MD). Cases with MD>18.47 (critical χ² value assessed at p < .001, 1041 

df = 4) were identified as outliers and removed. Box-Cox transformed dependent 1042 

variables (i.e. total sleep, waking activity, consolidation index, and number of sleep 1043 

bouts) were auto-scaled for the purposes of scale standardization and univariate outliers 1044 

were identified using +3.0 z-score criterion. Multi-collinearity was checked against the 1045 

variance inflation factor (VIF; threshold=5). As our dataset contained an unbalanced 1046 

design (unequal sample size across groups), and violated the assumption of homogeneity 1047 

of covariance matrices, Pillais’ trace criterion (which is most robust to such violations) 1048 

was reported. These results were cross-validated by employing a non-parametric or 1049 

permutation MANOVA (NPMANOVA / PERMANOVA) in PASTv3.09 (Hammer et al., 1050 

2001) which is insensitive to such violations (Anderson, 2001). 1051 

2.3.9 Homology modeling:  1052 
The SWISS-MODEL template library (SMTL version 2015-04-15, PDB release 2015-04-1053 

17) was searched with Blast (Altschul et al., 1997) and HHBlits (Remmert et al., 1054 

2012) for evolutionary related structures matching the target MBD amino acid sequence 1055 

for both MBD-R2 and MBD2/3. The templates with the highest quality predicted from 1056 

features of the target-template alignment were then selected for model building. Models 1057 

were built based on the target-template alignment using Modeller (Sali and Blundell, 1058 

1993) within the UCSF Chimera package (Pettersen et al., 2004). The model 1059 
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quality/reliability was assessed using the z-DOPE (Shen and Sali, 2006) and GA341 1060 

(Melo et al., 2002) scoring functions through ModEval Model Evaluation 1061 

Server (http://modbase.compbio.ucsf.edu/evaluation/).1062 
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2.4 RESULTS 1063 

2.4.1 MeCP2 expression in OA neurons results in reduced and fragmented sleep 1064 
patterns  1065 
Examining sleep output in fruit flies provides an ideal paradigm for investigating the role 1066 

of MBD proteins in neuronal function for several reasons. First, numerous behavioral 1067 

parameters can be quantified in a large cohort of genetically identical control and 1068 

experimental populations (Bellen et al., 2010, Venken and Bellen, 2014). Second, 1069 

behavioral output can be measured at the single minute level, which provides a 1070 

formidable temporal resolution of function, and finally this functional output is 1071 

responsive to changing environmental stimuli thus requiring a dynamic readout of the 1072 

neuronal nuclear state.  1073 

To determine if MeCP2 expression in distinct amine neurons can alter sleep-wake 1074 

circuitry function, we used the Gal4-UAS gene expression system and previously 1075 

generated UAS-hMeCP2 transgenic lines (Cukier et al., 2008). As norepinephrine and 1076 

OA regulate sleep levels by promoting wakefulness (Crocker and Sehgal, 2008, Mitchell 1077 

and Weinshenker, 2010, Robbins, 1997), we expressed hMeCP2 (the MeCP2e2 isoform) 1078 

in OA/tyramine (TA) neurons via the tyrosine decarboxylase2 (tdc2)-gal4 driver (Cole et 1079 

al., 2005) (fig 2.1a-a’) and quantified sleep-wake patterns, sleep onset, duration, and the 1080 

quality of sleep over a 10-day period using a standard automated high-throughput activity 1081 

monitoring system (Ho and Sehgal, 2005) (Drosophila Activity Monitor, Trikinetics, 1082 

Waltham, MA).  1083 

Adult males expressing hMeCP2 in OA neurons exhibited specific deficits in 1084 

sleep quantity and quality including a significant reduction in total sleep as compared to 1085 

transgenic controls (tdc2-gal4/+, UAS-hMeCP2/+) and the nuclear protein expression 1086 

control (tdc2-Gal4;UAS-dsRed) (fig 2.1b). Further examination of sleep patterns 1087 

indicated that these deficits spanned over roughly 6-8 hours (Zeitgeber hours ZT04-10 1088 

and ZT14.5-22) distributed through both day and night (fig 2.1c, d). A reduced propensity 1089 

for an anticipated increase in activity was observed during light-dark transition hours (fig 1090 

2.1c). The reduction in the amount of sleep was accompanied with an increase in the 1091 

number of sleep bouts (fig 2.1e) and a rather significant decrease in the consolidation 1092 
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index (C.I.) suggesting altered sleep architecture (fig 2.1f). Consolidation index is a 1093 

weighted measure of average bout length corrected for potential structural bias in data 1094 

from unusually short bouts (Pfeiffenberger, 2010). This difficulty in maintaining sleep 1095 

was also evident by plotting sleep bout data using the empirical cumulative distribution 1096 

function (ECDF) (fig 2.1g). The ECDF demonstrates that MeCP2 gain-of-function in OA 1097 

neurons shifts the temporal structure of sleep bouts to a more fragmented state. That is, 1098 

longer consolidated bouts of sleep are replaced with a greater proportion of relatively 1099 

shorter bouts of sleep in experimental males but not in controls. Experimental males also 1100 

displayed a significant reduction in the latency to initiate sleep (fig 2.1h), suggesting the 1101 

need for recovery after sleep loss and homeostatic relevance of the observed sleep 1102 

deficits. This sleep loss induced by hMeCP2-expression in OA neurons did not shorten 1103 

the average lifespan of the experimental males; on the contrary, the Kaplan-Meier 1104 

survival plot indicated a modest increase in the median survival age (fig 2.2). 1105 

In addition to controlling for nuclear protein expression, we further verified the 1106 

specificity of the sleep defects observed in tdc2-gal4;UAS-hMeCP2 adults by asking if 1107 

hMeCP2 expression in serotonin neurons would alter sleep architecture differently (fig 1108 

2.3a). While the overall amount of sleep was not changed (fig 2.3b), males expressing 1109 

hMeCP2 in 5HT neurons via the tryptophan hydroxylase (trh)-Gal4 line (Alekseyenko et 1110 

al., 2010) did exhibit sleep loss similar to hMeCP2 effects in OA neurons towards the 1111 

latter hours of the dark phase (ZT19-22.5; fig 2.3 c, d). However, the nighttime sleep 1112 

deficits caused by hMeCP2 expression in 5HT neurons were not accompanied by 1113 

structural changes in measures of sleep quality such as consolidation index or average 1114 

number of sleep bouts (fig 2.3 e, f). At the same time, significant structural alterations in 1115 

sleep architecture were observed during the day with no concomitant changes in daytime 1116 

sleep duration (fig 2.3 c, e-f). The conserved nighttime sleep reduction suggests that 1117 

hMeCP2 expression may alter a specific aspect of sleep circuit that is shared by different 1118 

aminergic neurons, yet other sleep impairments are cell-specific.1119 
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2.4.2 OA is required for a subset of MeCP2-mediated sleep deficits 1120 
Since MeCP2 overexpression in OA neurons resulted in relatively broad ranging effects 1121 

on sleep duration and quality, we investigated if these effects are mediated through 1122 

alterations in OA neurotransmitter function. Activation or suppression of OA-neuron 1123 

activity or OA biosynthetic machinery results in diametrically opposite effects on sleep-1124 

wake behavior (Na et al., 2012). Increased expression of tyrosine decarboxylase 2 (tdc2) 1125 

– a rate-limiting enzyme in OA biosynthetic pathway in neurons – results in a decrease in 1126 

the amount of sleep. On the other hand disruption in OA biosynthetic pathway through 1127 

mutations in tyramine β-hydroxylase (tβh) results in an increased duration of sleep 1128 

(Crocker and Sehgal, 2008). Therefore, one possible explanation for this particular sleep 1129 

deficit is that the expression of genes required for OA biosynthesis is altered by MeCP2 1130 

overexpression. To address this question, we quantified OA levels extracted from the 1131 

heads of control and experimental males using High Performance Liquid 1132 

Chromatography (HPLC). Heads were removed during the period of daytime sleep 1133 

reduction, ZT04-10, to determine if the OA levels were altered. OA concentrations per 1134 

head did not differ between control (tdc2-gal4/+; and UAS-hMeCP2/+) and experimental 1135 

(tdc2-gal4;UAS-hMeCP2) males (fig 2.4a). Although we cannot rule out the possibility 1136 

of OA level differences in specific neurons contributing to sleep deficits, these results 1137 

demonstrate that a global reduction in OA production does not occur as a result of 1138 

hMeCP2 expression in OA neurons.  1139 

Although hMeCP2 expression in OA neurons does not alter OA production, it is 1140 

possible, however, that the observed sleep deficits require OA function. To test this 1141 

possibility, we expressed hMeCP2 in flies that completely lack OA due to a null mutation 1142 

in tyramine-β-hydroxylase (TβhnM18), the rate-limiting enzyme in OA biosynthesis 1143 

(Monastirioti et al., 1996). Not unlike wildtype males expressing hMeCP2, OA null males 1144 

expressing hMeCP2 also exhibited hourly specificity in sleep reduction (fig 2.4b-d). 1145 

However, the nighttime sleep deficit (ZT 14-17.5) quantified in figure 2.1 is completely 1146 

rescued in hMeCP2-expressing males that lack OA (fig. 2.4 b, c). This result suggests OA 1147 

is required to translate the hMeCP2-mediated neuronal defects into a reduction in 1148 

nighttime sleep during specific hours. Not all hMeCP2-mediated sleep deficits, however, 1149 
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rely on OA-neurotransmitter function, as alterations in the consolidation index and sleep 1150 

bout number (fig 2.4 e, f) were similar between hMeCP2-expressing males irrespective of 1151 

the presence or the absence of OA. 1152 

In contrast to the rescued dark phase sleep deficits, the daytime sleep reduction 1153 

observed during ZT04-10 in tdc2-Gal4;UAS-hMeCP2 adults persisted in males that lack 1154 

OA (fig 2.4c). A possible explanation for any sleep reduction is a concomitant increase in 1155 

activity. As Tβh converts tyramine (TA) to OA, the absence of this enzyme results in an 1156 

accumulation of TA (Monastirioti et al., 1996; Crocker and Sehgal, 2008). To determine 1157 

if the periods of sleep reduction observed in males lacking OA are due to elevated TA-1158 

induced increases in locomotion rather than hMeCP2 expression (Hardie et al., 2007, 1159 

Monastirioti, 1999), we quantified the activity levels in these males. Changes in waking 1160 

activity were not observed in the absence of OA (fig 2.4g). Finally, hMeCP2 expression 1161 

in the nucleus of octopamine neurons may provide some protection against the OA 1162 

deficient circuit alterations as the increase in sleep observed in OA null males is returned 1163 

to control levels in the same males now expressing hMeCP2 (TβhnM18 tdc2-gal4;;UAS-1164 

hMeCP2) (fig 2.4d, dark gray vs. yellow column).1165 
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2.4.3 The C-terminal region of hMeCP2 is not sufficient to generate sleep deficits in 1166 
OA neurons                                                                                                                        1167 

One approach to understanding the potential targets of multi-domain containing proteins 1168 

is to link protein domain(s) with a corresponding phenotype. Therefore, we investigated 1169 

which conserved domains are essential in generating the observed sleep impairments by 1170 

expressing hMeCP2 alleles that lack the CTD and separately, the MBD (Cukier et al., 1171 

2008). Due to the relatively sparse distribution of 5mC methylation in Drosophila, we 1172 

first postulated that hMeCP2 exerts its affects through methylation-independent 1173 

interactions mediated by the C-terminal transcriptional repression domain (TRD) and the 1174 

C-terminal domain (CTD). The TRD functions as a recruitment center for several 1175 

transcriptional and epigenetic regulators including components of the transcription 1176 

repression machinery such as Sin3a, HDAC1, and HDAC2 (Ghosh et al., 2010, Nan et 1177 

al., 1998); while the CTD (residues 295 to 486) contains one or more chromatin binding 1178 

regions (Ausio et al., 2014, Roloff et al., 2003). Together the TRD and CTD domains 1179 

have been implicated in nucleosomal clustering, array compaction and oligomerization, 1180 

and gene repression (Nikitina et al., 2007). To remove the C-terminus, we expressed the 1181 

early truncating mutation encoded by the hMeCP2R294X allele which is found in ~5-6% of 1182 

RTT patients (Laccone et al., 2001, Wan et al., 1999). In the resulting R294X protein, the 1183 

TRD is partially truncated and the CTD is completely removed (fig 2.5a) (Wan et al., 1184 

1999). The Gal4-driven protein expression of UAS-hMeCP2R294X was previously verified 1185 

by western blot analysis (Cukier et al., 2008). 1186 

      If the sleep deficits observed in males expressing hMeCP2 in OA neurons were 1187 

mediated through the C-terminus, we would predict sleep would be normal in males 1188 

expressing hMeCP2R294X. However, removing TRD and CTD function, did not eliminate 1189 

the daytime sleep reduction observed in tdc2-gal4;UAS-hMeCP2 males, and only a 1190 

partial recovery in the nighttime sleep deficits occurred (ZT14.5-22, figure 2.5 b,c). 1191 

Males expressing R294X exhibited a decrease in the latency to initiate sleep (fig 2.5d) 1192 

and changes in sleep architecture (fig 2.5 e-g) in a manner similar in males expressing 1193 

full-length hMeCP2. Specifically, the number of sleep bouts and weighted average bout 1194 

lengths exhibited by tdc2-gal4;UAS-hMeCP2R294X males remained significantly different 1195 
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than controls (fig 2.5 e,f). These results indicate that the hMeCP2-induced changes that 1196 

drive sleep alterations in the OA neuronal population do not occur primarily through the 1197 

CTD and TRD domains. 1198 

2.4.4 The N-terminus and MBD domain are necessary for MeCP2-induced alterations 1199 
in sleep architecture 1200 

We next asked if the majority of the sleep deficits observed in tdc2-gal4;UAS-hMeCP2 1201 

males are due to the conserved MBD domain. To test this question, we used the UAS-1202 

hMeCP2Δ166 line to express a truncated hMeCP2 allele that lacks the N-terminal and 1203 

MBD domain (Cukier et al., 2008) (fig 2.6 a,b). We found the sleep deficits caused by 1204 

hMeCP2 expression including the amount of sleep, latency to sleep, sleep bout number, 1205 

and sleep bout length were absent in tdc2-gal4;UAS-hMeCP2Δ166 males (fig 2.6 c-h). This 1206 

lack of sleep defects could be explained if the Δ166 protein was not expressed, however 1207 

we demonstrated hMeCP2 Δ166 accumulates in the nucleus of tdc2-gal4;UAS-hMeCP2 Δ166 1208 

adult brains by immunohistochemistry (fig 2.6 b). Also, previous studies demonstrated 1209 

hMeCP2 Δ166 localizes on distinct chromosomal bands along polytene chromosomes, 1210 

phosphorylated at amino acid S423, and is able to cause Drosophila neuronal 1211 

morphology and dendritic defects (Cukier et al., 2008, Vonhoff et al., 2012). However, in 1212 

context of sleep, it completely rescues MeCP2-induced alterations in sleep duration and 1213 

quality. 1214 

2.4.5 MeCP2-induced alterations in sleep output are dependent on the MBD domain 1215 

To determine if the MBD domain itself is required for the MeCP2-induced changes in 1216 

sleep output, we expressed the severe RTT-causing missense hMeCP2R106W allele in 1217 

which arginine is replaced with tryptophan at position 106. Arg106 is required for 1218 

structural integrity of MBD as a part of select group of residues that comprise the 1219 

hydrophobic core of wedge-shaped tertiary structure of MBD (Wakefield et al., 1999). 1220 

Two β-sheet strands in MBD run parallel along the major groove of the DNA near 1221 

methylated 5C and Arg106 lies in the middle of one of those β-sheets (Wakefield et al., 1222 

1999; Ballestar et al., 2000). The R106W mutation in the MBD domain alters the MBD 1223 

secondary structure and impacts the MeCP2 protein by severely disrupting its ability to 1224 

bind methylated DNA (~100-fold reduction); thereby, potentially altering target gene 1225 
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repression and chromatin condensation (Chapleau et al., 2009; Kudo et al., 2001). 1226 

However, the methylation-independent binding remains intact (Bellestar et al, 2000; 1227 

Yusufzai et al, 2000; but also see Nikitina et al., 2007 and Ghosh et al., 2008 for 1228 

conflicting observations). In Drosophila, the R106W protein also localizes to specific 1229 

sites on the polytene chromosomes, suggesting preservation of methylation-independent 1230 

DNA binding activity (Cukier et al., 2008). 1231 

Males expressing hMeCP2R106W in OA neurons (tdc2-gal4;UAS-hMeCP2R106W), 1232 

completely lack the sleep deficits, including all sleep reductions and fragmentation 1233 

phenotypes caused by wildtype hMeCP2 function (fig 2.7 a-e). These results demonstrate 1234 

that an intact MBD domain is necessary to cause the hMeCP2-mediated changes in sleep 1235 

behavior. Furthermore, if the hMeCP2-induced changes were a result of non-specific 1236 

methylation-independent cellular effects in OA neurons, we would expect the sleep 1237 

deficits to remain as was observed in a previous study describing R106W-induced 1238 

structural defects in the eye (Cukier et al., 2008). However, our results indicate 1239 

methylation-dependent mechanisms may play a key role in hMeCP2-induced changes in 1240 

OA neuron output. Recent experiments examining hMeCP2-induced motorneuron 1241 

dendritic defects also reported an absence of morphology changes upon R106W 1242 

expression (Vonhoff et al., 2012). 1243 

2.4.6 OA neuron function requires the Drosophila MBD-containing proteins, MBD2/3 1244 
and MBD-R2 1245 
At this point, our results describe specific hMeCP2-induced sleep deficits and establish 1246 

the MBD of MeCP2 is a critical component. We next asked if endogenous MBD-1247 

containing proteins are required for amine neuron function and sleep-wake circuitry 1248 

output. At least two proteins in Drosophila belong to the MBD family: a) dMBD-R2 and 1249 

b) dMBD2/3 (fig. 2.8) (Hendrich and Tweedie, 2003, Roder et al., 2000). dMBD2/3 is a 1250 

small protein consisting of three MBD domains (fig. 2.9a) in contrast; dMBD-R2 1251 

contains a THAP, TUDOR, and PHD-type Zinc finger in addition to the MBD domain 1252 

(fig. 2.10a). dMBD2/3 and the MBD2/3Δ splice variant associate with the nucleosome 1253 

remodeling and deacetylase (NuRD) complex (Marhold et al., 2004a), repress 1254 

transcription in in vitro assays (Ballestar and Wolffe, 2001), and MBD2/3Δ preferentially 1255 
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recognizes mCpG-containing DNA through its MBD (Roder et al., 2000). In addition, the 1256 

expression of both dMBD2/3 and MBD2/3Δ is developmentally regulated, and is retained 1257 

in adult tissues suggesting selective roles in transcriptional regulation (Marhold et al., 1258 

2004a, Marhold et al., 2004b). Unlike dMBD2/3, it has not been determined if MBD-R2 1259 

binds 5mC, however, dMBD-R2 is a part of the multi-subunit chromatin remodeling NSL 1260 

(non-specific lethal) complex, which regulates gene expression at genome wide levels 1261 

(Roder et al., 2000).  1262 

The human MeCP2 MBD contains 8 known DNA binding sites, half of which are 1263 

lysine residues (K107, K109, R111, K119, D121, K130, R133 and E137; Conserved 1264 

domain database CDD: 238690). At least five of these eight DNA-binding sites are 1265 

present in the Drosophila MBD-R2 protein (R111, K119, D121, K130, R133), and four 1266 

in dMBD-2/3 (R111, K119, D121, K130). These conserved sites and their location in 1267 

reference to the hMeCP2 residue positions are depicted in the figure 2.8 (orange bars). In 1268 

addition, a predicted homology model suggests similarity between specific secondary 1269 

structural features among the MBD domains of dMBD-R2, dMBD-2/3 MBD domains 1270 

and hMeCP2 (fig. 2.9b, 2.10b), as the hMeCP2 MBD domain contains three β-strands 1271 

(residues: 105-110, 120-125, and 131-132) and one α-helical region (residues 135-145) 1272 

(86).  1273 

Therefore, we asked if reducing dMBD-2/3 or dMBD-R2 levels using RNA 1274 

interference could alter the function of neurons as measured by changes in the sleep 1275 

network. To measure the RNAi effect on transcript levels, quantitative reverse 1276 

transcription PCR (RT-qPCR) was performed on RNA extracted from the heads of n-syb-1277 

Gal4;UAS-MBD-R2-IR and n-syb-Gal4;UAS-MBD-2/3-IR adults.  Transcript levels were 1278 

reduced by 26.84% (fig. 2.9c) and 36.79% respectively (fig. 2.10c). When dMBD-R2 and 1279 

dMBD-2/3 levels were reduced in OA neurons by separately expressing the UAS-MBD-1280 

R2-IR and UAS-dMBD-2/3-IR lines under control of the tdc2-gal4 driver, we found that 1281 

fragmentation of sleep architecture occurred in both tdc2-Gal4;UAS-MBD-2/3-IR and 1282 

tdc2-Gal4;UAS-MBD-R2-IR males. This fragmentation was manifested as an increase in 1283 

the number of sleep bouts along with a decrease in the consolidation index (figs. 2.9 e-f, 1284 

2.10 f-g). Males with reduced dMBD-R2 levels in OA neurons exhibited an increase in 1285 
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the amount of total sleep (fig. 2.10d), while sleep levels were not significantly altered 1286 

upon dMBD-2/3 reduction (fig. 2.9d). The increase in total sleep exhibited by tdc2-1287 

Gal4;UAS-MBD-R2-IR adults was not due to do subpar fitness as these males were more 1288 

active during waking periods than controls (Fig. 2.10e). 1289 

A third variable, the latency to initiate sleep was also unchanged (data not shown 1290 

for dMBD2/3-IR and fig. 2.10 h). The absence of latency and sleep deficits upon dMBD-1291 

2/3 manipulation could simply be due to the incomplete reduction of dMBD-2/3 mRNA 1292 

(73.16%); alternatively, dMBD-2/3 may not play a critical role in regulating the 1293 

expression of specific sleep-related genes.  However, the changes in sleep architecture are 1294 

the same whether hMeCP2, dMBD2/3-IR or MBD-R2-IR are expressed in OA neurons 1295 

(figs. 2.1 f-g, 2.9e-f, 2.10 f-g). These results demonstrate that a reduction in Drosophila 1296 

MBD-containing proteins can alter neuronal and whole organismal behavior; and provide 1297 

an avenue for examining the selectivity of gene expression and chromatin biology 1298 

changes in a defined neuronal subset. 1299 

2.4.7 Reducing MBD-R2 rescues hMeCP2-mediated phase-specific sleep deficits 1300 

The observation that total sleep increased with a reduction in dMBD-R2 levels is the 1301 

opposite of the sleep deficits observed in hMeCP2 overexpression lines. As both proteins 1302 

function as modifiers of gene expression, it led us to speculate that dMBD-R2 1303 

knockdown and hMeCP2 overexpression could function antagonistically by modifying 1304 

gene expression in opposite directions. If hMeCP2 and dMBD-R2 are functioning at 1305 

overlapping set of gene loci or genomic regions, then we predict a complete or partial 1306 

rescue of phase-specific sleep alterations in dMBD-R2-deficient lines with concurrent 1307 

hMeCP2 expression. We tested this hypothesis by generating tdc2-gal4;UAS-1308 

hMeCP2/UAS-MBD-R2-IR adults and found that a reduction in MBDR2 levels rescued 1309 

hMeCP2-induced deficits in day and night sleep profile (fig. 2.11a). 1310 

To test whether the effect of relative dMBD expression on sleep architecture 1311 

varies in the presence or absence of hMeCP2, a two-way multivariate analysis of variance 1312 

(MANOVA) was performed. This factorial MANOVA tested for main effects as well as 1313 

interactions between dMBD and hMeCP2 induced sleep alterations by comparing various 1314 
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measures of sleep as a linear composite across factors. Using Pillais’ trace and 0.05 1315 

criterion for significance, a significant interaction (dMBD2/3 × hMeCP2) effect was 1316 

observed between relative dMBD2/3 and hMeCP2 expression on combined measures of 1317 

sleep (F(3, 194) = 30.665, p < 0.0001; V = 0.322; Obs. Power = 1.00, fig. 2.11 b-c). 1318 

Likewise, the effect of dMBD-R2 levels on sleep architecture also varied depending on 1319 

hMeCP2 levels. That is, a significant interaction (dMBD-R2 × hMeCP2) effect was 1320 

observed between relative dMBD-R2 and hMeCP2 expression on combined measures of 1321 

sleep (F(3, 190) = 28.192, p < 0.0001; V = 0.308; Obs. Power = 1.00; fig. 2.11 d-e). This 1322 

interaction effect explained 32.2% of multivariate variance of sleep composite in 1323 

dMBD2/3-deficient males and 30.8% of multivariate variance in dMBDR2-deficient 1324 

males (V = partial η2). 1325 

2.4.8 MBDR2 colocalizes with MeCP2 on select chromosomal sites  1326 
To examine at a genomic level if hMeCP2 and MBD-R2 can associate together at 1327 

chromosomal locations, we expressed hMeCP2 in polytene salivary gland chromosomes 1328 

using the 48B10-Gal4 driver. Isolated larval polytene chromosomes from 48B10-1329 

Gal4;UAS-hMeCP2 larvae were labeled with MBD-R2 and MeCP2 antibodies. As 1330 

expected, MBD-R2 localizes extensively at multiple sites on polytene chromosomes 1331 

likely due to its role as a general facilitator of transcription and as a component of the 1332 

non-specific-lethal and male-specific-lethal complexes (Pascual-Garcia et al., 2014, 1333 

Prestel et al., 2010). However, hMeCP2 and MBD-R2 are detected together at a number 1334 

of chromosomal sites (fig. 2.12, arrows, n=6) suggesting the possibility of common gene 1335 

loci or chromatin organization targets. As a whole, our results indicate the conserved 1336 

MBD domain even among disparate MBD-containing proteins such as hMeCP2 and 1337 

dMBD-R2 is capable of conferring shared neuronal phenotypes, likely through shared 1338 

genomic binding sites.1339 
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2.5 DISCUSSION                                                                                                                                             1340 

In this study, we tested the hypothesis that MBD-containing proteins retain considerable 1341 

functional conservation by measuring neuronal output through an automated, 1342 

reproducible sleep assay. Sleep impairments are a major feature in a substantial number 1343 

of neurodegenerative and neuropsychiatric disorders (Piazza et al., 1990; Clements et al., 1344 

1986; Richdale and Schreck, 2009). However more fundamentally, this data can be 1345 

viewed as a relevant behavioral representation of circuit dysfunction in general, which is 1346 

a common theme in neurodevelopmental syndromes including RTT (Cortesi et al., 2010, 1347 

Shepherd and Katz, 2011). A powerful advantage of using Drosophila sleep to analyze 1348 

the functional differentiation of circuits and neurons is the ability to measure behavior 1349 

continuously through various temporal phases at a single minute resolution. This 1350 

formidable temporal resolution in combination with amine neuron-specific manipulation 1351 

allowed us to analyze the functional consequences of alterations in relative MBD levels 1352 

and domain-specific mutations. Not only does this approach allow for functional 1353 

monitoring through various circadian and developmental phases, temporal windows of 1354 

interest identified through this assay can facilitate a more empirical selection of 1355 

functionally-relevant timeframes for sampling and further mechanistic investigations. For 1356 

example, our results demonstrate that adults expressing hMeCP2 in OA neurons sleep 1357 

less; however, this sleep loss is not a general phenomenon but rather occurs during 1358 

specific day and nighttime intervals. In a similar manner, hMeCP2 expression in 5-HT 1359 

neurons also results in a loss of nighttime sleep. However, with the fine temporal 1360 

resolution, we can identify sleep deficit intervals that are both unique and overlapping 1361 

when compared to hMeCP2 expression in OA neurons. Finally, in a previous study we 1362 

determined that hMeCP2 expression in astrocytes non-cell-autonomously alters the sleep 1363 

network only during distinct nighttime hours (Hess-Homeier et al., 2014).  1364 

How might hMeCP2 expression in amine neurons reduce sleep amounts and sleep 1365 

quality? At the DNA level, MeCP2 binds to the promoters of enzymes involved in amine 1366 

synthesis including L-dopa decarboxylase (Ddc) (Urdinguio et al., 2008) and MeCP2 1367 

levels themselves oscillate under the control of circadian clock (Martinez de Paz et al., 1368 

2015). Previous studies have demonstrated that a loss of OA promotes sleep (Crocker and 1369 
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Sehgal, 2008) and our HPLC studies indicate global OA levels in the brain are not 1370 

reduced upon hMeCP2 expression. However, it is possible that the MeCP2-induced 1371 

reduction in nighttime sleep is mediated through an increase in OA signaling. This 1372 

hypothesis is consistent with previous observations as overexpression of Tdc2 or 1373 

genetically activating OA neurons significantly decreases nighttime but not daytime sleep 1374 

(Crocker and Sehgal, 2008). It is further supported by complete rescue of hMeCP2-1375 

mediated nighttime sleep deficits (ZT14-17.5) in OA-null lines in our study (fig. 2.4 c). 1376 

Additionally, components of the arousal circuitry respond to OA wake-promoting signals 1377 

including the large-lateral ventral neurons (l-LNvs) neurons (Crocker et al., 2010). When 1378 

hyper-excited, OA receptor-expressing l-LNv neurons reduce both sleep duration and 1379 

quality (Kula-Eversole et al., 2010, Shang et al., 2008). In our experiments, MeCP2 1380 

expression could potentially increase OA neuron activity by modulating presynaptic 1381 

function either through changes in levels of OA biosynthetic enzymes, components of 1382 

OA transport and release, or conserved RNA-binding proteins such as Lark, which 1383 

regulate neuronal excitability in the circadian system (Ishimoto et al., 2012). 1384 

As many MBD family members have a conserved DNA-binding surface that 1385 

shows high affinity for methylated DNA, a key question is whether individual proteins 1386 

bind differentially to distinct regions within the genome. Variations in the affinity for 1387 

binding methylated targets include double-stranded vs. single-stranded, sequence 1388 

dependent vs. sequence independent, and CpG vs. non-CpG (CpH; H=A/C/T) 1389 

methylation (Baubec et al., 2013, Fatemi and Wade, 2006, Guo et al., 2014). Recently, a 1390 

role for MeCP2 binding to CpH sites and regulating the expression of genes enriched for 1391 

neuronal function has been described (Chen et al., 2015). Non-CpG methylation has been 1392 

reported in vertebrate neurons (Fatemi and Wade, 2006, Guo et al., 2014, Pinney, 2014), 1393 

and in Drosophila where the methylation is enriched on non-CpG motifs, particularly 1394 

CpT and CpA dinucleotides (Boffelli et al., 2014, Capuano et al., 2014, Takayama et al., 1395 

2014). Although the levels of such methylation are low and sparsely distributed, it is 1396 

conceivable nonetheless that MeCP2 could translate endogenous CpH methylation into 1397 

changes in gene expression. This idea is especially compelling as we demonstrated that 1398 

an intact MBD-binding domain is required for all hMeCP2-induced sleep deficits (fig. 1399 

2.7). Furthermore, males with reduced levels of dMBD2/3, which binds methylated 1400 
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DNA, exhibited overlapping sleep quality deficits (fig. 2.9). In this context, Drosophila 1401 

may provide an ideal in vivo system to examine the functional consequences of CpH-1402 

mediated MBD protein interactions as future studies can address the significance of CpH 1403 

methylation at candidate genes that control circadian rhythm and aspects of sleep. 1404 

In conclusion, epigenetically modifying chromatin structure in response to 1405 

different stimuli may be a key mechanism in generating shifts in gene expression not only 1406 

at successive stages of neuron development but successive stages of neuron function. 1407 

Such functional changes may include responses to pheromones (predators or 1408 

conspecifics), odors (food resources), or light (sleep) all critical aspects of reproduction 1409 

and survival in any organism. In this study, we examined the consequences of a 1410 

hypomorphic reduction of endogenous MBD proteins in a relevant neuronal 1411 

subpopulation to provide a whole organism readout of changes in neuron function that 1412 

should be interpretable at the chromatin level in future studies due to ever-increasing 1413 

advances at the intersection of circadian biology and epigenetics. Our results provide the 1414 

first demonstration that Drosophila MBD proteins are required for neuron function in 1415 

context of sleep, and that MBD-containing proteins indicate conservation in the cell-1416 

specific functions of epigenetic translators.1417 
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2.6 FIGURES 1418 
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Figure 2.1: hMeCP2 expression in OA neurons reduces sleep in adult males  1419 

(A-A″) hMeCP2 expression (red) in OA neurons from an adult tdc2-gal4/UAS-1420 

mCD8:gfp; UAS-MeCP2/+ male (anti-GFP, green; mAb nc82, labels neuropil regions, 1421 

blue). (B-H) Sleep profiles of individual adult males averaged over 8 days from control 1422 

and experimental groups. Controls: tdc2-gal4/+ (white), UAS-MeCP2/+ (light grey), 1423 

tdc2-gal4/+; UAS-dsRed/+ (dark grey) and experimental: tdc2-gal4/+; UAS-MeCP2/+ 1424 

(red). (B) Total sleep per 24-hr day is reduced in experimental males as compared to 1425 

controls (Padj=0.0013; one-way ANOVA with Holm-Sidak’s multiple comparison test). 1426 

(C) Eduction graph displaying 30 minute bins of averaged sleep (daytime/light phase: 1427 

white bar; nighttime/dark phase: black bar, shaded grey). tdc2-gal4/+; UAS-MeCP2/+ 1428 

males displayed a reduction in the average amount of sleep during both day and night 1429 

(arrows) as compared to controls. These deficits are quantified in (D) for Zeitgeber hours 1430 

ZT04-10, (P<0.0001; two-tailed Mann Whitney test) and ZT14.5-22, (P<0.0001; two-1431 

tailed Mann Whitney test). (E-G) Sleep fragmentation in males expressing MeCP2 1432 

expression in OA neurons. As compared to controls, the average number of sleep bouts 1433 

per day (E) is increased (Padj<0.0001) and weighted average bout length measured by the 1434 

consolidation index (F) is reduced significantly in experimental males (Padj<0.0001). (G) 1435 

The empirical cumulative distribution function (ECDF) demonstrating experimental 1436 

males exhibit a greater proportion of short sleep bouts as compared to controls. (H) 1437 

Latency to initiate sleep (the delay in minutes from the lights OFF to the time to the first 1438 

sleep bout) is significantly reduced in tdc2-gal4/+; UAS-MeCP2/+ males as compared to 1439 

controls (Padj=0.0009; one-way ANOVA with Holm-Sidak’s multiple comparison test). 1440 

Data are shown as means ± standard error of the mean (SEM).1441 
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Figure 2.2: Kaplan-Meier survival curve in males expressing hMeCP2 in OA 1442 

neurons  1443 

A Kaplan-Meier survival distribution of experimental males, tdc2-gal4;UAS-hMeCP2 1444 

males and transgenic controls (standard log-rank test, P<<0.0001). Dotted boundaries 1445 

around the curves representing standard error (SE)1446 
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Figure 2.3: Adults expressing hMeCP2 in 5HT neurons exhibit a reduction in 1447 

nighttime sleep only (A) hMeCP2 nuclear expression (green) in 5HT neurons from a 1448 

trh-gal4; UAS-MeCP2/+ male brain. (B-H) The quality and amount of sleep in individual 1449 

adult males averaged over an 8 day period from control and experimental groups. (B) The 1450 

total amount of sleep per 24-hr day is not significantly changed in experimental males as 1451 

compared to UAS-MeCP2/+ controls (Padj=0.2051). (C) Eduction graph displaying the 1452 

average amount of sleep per 30 minute bin (daytime/light phase: white bar; 1453 

nighttime/dark phase: black bar, shaded grey) in control and experimental males. trh-1454 

gal4/+; UAS-MeCP2/+ males displayed a reduction in sleep during Zeitgeber hours 1455 

ZT19-22.5 (arrow). These deficits are quantified in (D) P=0.0011, Mann Whitney test. 1456 

(E-H) Sleep fragmentation in males expressing MeCP2 in 5HT neurons. (E) The daytime 1457 

consolidation index is significantly reduced in experimental vs. control males 1458 

(Padj<0.0001). The nighttime consolidation index is not altered (Padj=0.7262). (F) The 1459 

average number of daytime sleep bouts is increased in experimental males vs. controls 1460 

(Padj<0.0001), without alterations in the average number of nighttime sleep bouts 1461 

(Padj=0.8316). (G) Daytime, but not nighttime, waking activity is increased in 1462 

experimental males vs. controls (Padj<0.0001). (H) The empirical cumulative distribution 1463 

function demonstrates experimental males exhibit a greater proportion of short sleep 1464 

bouts as compared to controls. Data are shown as means ± standard error of the mean 1465 

(SEM). Unless noted otherwise, results were analyzed by one-way ANOVA with Holm-1466 

Sidak’s multiple comparison test.1467 
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Figure 2.4: The loss of OA rescues a subset of hMeCP2-induced sleep deficits                        1468 

HPLC quantification of OA levels in whole brain extracts of 3-5 day old adult males 1469 

collected during ZT04-10. OA levels between control and experimental groups did not 1470 

differ. (B-F) Sleep profiles of individual adult males averaged over an 8-day period from 1471 

control and experimental groups. Controls: tdc2-gal4/+ (white bar), UAS-MeCP2/+ (light 1472 

grey), tβhnM18 tdc2-gal4 (dark grey) and experimental: tdc2-gal4; UAS-MeCP2 (red), 1473 

tβhnM18 tdc2-gal4; UAS-MeCP2 (yellow). (B) Eduction graph displaying average amount 1474 

of sleep per 30 minute bin (daytime/light phase: white bar; nighttime/dark phase: black 1475 
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bar) in control and experimental males. MeCP2-induced sleep deficits (red line) are 1476 

restored to control levels in tβhnM18 tdc2-gal4; UAS-MeCP2 males during ZT14-17.5 1477 

(yellow line, arrow). (C) The reduction in sleep during ZT04-10 remained in OA 1478 

deficient males expressing hMeCP2. The sleep reduction during ZT14-17.5 was 1479 

completely rescued in the absence of OA (multiplicity adjusted P-value for pooled 1480 

controls vs. tβhnM18 tdc2-gal4; UAS-MeCP2 experimental males; P= 0.8447). (D-E) Sleep 1481 

fragmentation remains in hMeCP2-expressing OA deficient males. The consolidation 1482 

index (D) is reduced significantly in both experimental groups (Padj = 0.1658) and the 1483 

average number of sleep bouts is increased (E) (Padj = 0.2409). (F) No difference was 1484 

observed in the waking activity between OA deficient controls (tβhnM18 tdc2-gal4) and 1485 

experimental males (tβhnM18 tdc2-gal4; UAS-MeCP2/+; Padj = 0.6325).  (G) As predicted, 1486 

total sleep is significantly increased in the OA deficient control (tβhnM18 tdc2-gal4, black 1487 

column) as compared to transgenic controls (Padj = 0.0070). This sleep increase returned 1488 

to wildtype levels upon expression of hMeCP2 in OA deficient males (tβhnM18 tdc2-gal4; 1489 

UAS-MeCP2, black vs. yellow columns) (Padj = 0.6563; one-way ANOVA with Holm-1490 

Sidak’s multiple comparison).1491 
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Figure 2.5: hMeCP2-induced sleep deficits remain in males expressing the R294X 1492 

allele. 1493 

(A) Schematic depicting the structural domains MeCP2 and the loss of domains due to 1494 

the R294X mutation. (B-H) The sleep profiles of control and experimental adult males 1495 

averaged over an 8-day period. (B) Eduction graph displaying the average amount of 1496 

sleep per 30 minute bin (daytime/light phase: white bar; nighttime/dark phase: black bar, 1497 

shaded grey). Average sleep during Zeitgeber hours ZT04-10 and ZT14.5-22 are 1498 

quantified in (C). Males expressing the R294X allele displayed a similar reduction in the 1499 

average amount of sleep during ZT04-10 as males expressing the full-length allele 1500 

(Padj=0.0103). During ZT14.5-22, the average sleep deficit in males expressing R294X 1501 

allele remains reduced as compared to controls (P<0.0001). This 294X-induced sleep 1502 
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reduction is partially recovered in comparison to hMeCP2-expressing males (P<0.0001). 1503 

(D) Males expressing full-length or R294X alleles exhibited a reduction in the latency to 1504 

initiate sleep as compared to controls (Padj=0.0001). (E-G) Sleep fragmentation in males 1505 

expressing the full-length MeCP2 and R294X alleles in OA neurons. (E) The average 1506 

number of sleep bouts increases to a lesser extent in R294X males as compared to males 1507 

expressing full-length MeCP2 (Padj<0.0001) however the increase in sleep bouts of tdc2-1508 

gal4;UAS-hMeCP2294X is significantly higher than controls (P<0.0001). (F) The 1509 

consolidation index was reduced significantly in both full-length and R294X males as 1510 

compared to controls (Padj<0.0001). (G) Experimental males exhibited a greater 1511 

proportion of short sleep bouts as calculated by the empirical cumulative distribution 1512 

function. Data are shown as means ± standard error of the mean (SEM). Unless noted 1513 

otherwise, one-way ANOVA with Holm-Sidak’s multiple comparison test was used.1514 
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Figure 2.6: Sleep fragmentation and sleep deficits are rescued in males expressing 1515 

hMeCP2Δ166 allele in OA neurons 1516 

(A) Schematic diagram depicting MeCP2 structure and the loss of domains due to the 1517 

Δ166 truncation. (B) hMeCP2Δ166 (green) is expressed in adult OA neurons via the tdc2-1518 

gal4 driver (tdc2-gal4; UAS-MeCP2Δ166). (C-H) The sleep profiles of control and 1519 

experimental adult males averaged over an 8-day period. (C) The latency to initiate sleep 1520 

is not significantly reduced in males expressing hMeCP2Δ166 as compared to controls 1521 

(Padj=0.2611). (D) Eduction graph displaying average amounts of sleep per 30-minute bin 1522 

in control and experimental males. The overall sleep profile and average sleep during 1523 

Zeitgeber hours ZT04-10 and ZT14.5-22 is completely rescued in males expressing 1524 

hMeCP2Δ166. (D) The average amount of sleep does not differ between controls and 1525 

males expressing hMeCP2Δ166: ZT04-10, (Padj=0.514), and ZT14.5-22, (P=0.7853). (F-H) 1526 
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Sleep is not fragmented in males expressing hMeCP2Δ166 in OA neurons. (F) The average 1527 

number of sleep bouts is not significantly different in tdc2-gal4; UAS-MeCP2Δ166 vs. the 1528 

tdc2-gal4 and UAS-MeCP2 control (Padj=0.2923). (G) The consolidation index does not 1529 

differ between males expressing hMeCP2Δ166 and controls (Padj=0.1308). (H) The 1530 

empirical cumulative distribution function demonstrates experimental males exhibit a 1531 

greater proportion of short sleep bouts as compared to controls. Data are shown as means 1532 

± standard error of the mean (SEM). The one-way ANOVA with Holm-Sidak’s multiple 1533 

comparison test was used.1534 
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Figure 2.7: Disruption of the MeCP2 binding by the R106W mutation eliminates 1535 

MeCP2-induced sleep deficits and fragmentation  1536 

(A-E) Sleep patterns averaged over a period of 8 days from control and experimental 1537 

males. (A) Eduction graph displaying average amount of sleep per 30-min bin. The sleep 1538 

patterns and sleep quality of males expressing hMeCP2R106W in OA neurons are the same 1539 

as controls. (B) The average sleep during Zeitgeber hours ZT04-10 and ZT14.5-22 does 1540 

not differ between males expressing R106W and controls: ZT04-10, Padj=0.7406, and 1541 

ZT14.5-22, P=0.0974. (C-E) Sleep fragmentation does not occur in males expressing 1542 

R106W. (C) The average number of sleep bouts in males expressing R106W is not 1543 

significantly different from controls (Padj=0.8849). (D) The consolidation index does not 1544 

differ from the R106W-expressing experimental males and controls (Padj=0.9843). (E) 1545 

Experimental males exhibited a greater proportion of short sleep bouts as calculated by 1546 

the empirical cumulative distribution function1547 
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Figure 2.8: Alignment and conservation of MBD-containing proteins                         1548 

The structural domains of hMeCP2 with domain-specific multiple sequence alignment of 1549 

select MBD-family proteins in human (h) and Drosophila (d). Identical sequences are 1550 

highlighted in various shades of blue depending on the degree of conservation across 1551 

groups. The histogram (yellow) represents conserved physico-chemical properties for 1552 

each column of the alignment. Higher scores (max=10) for non-identical columns 1553 

indicate amino acid substitutions that belong to the same physico-chemical class 1554 

(Livingstone and Barton, 1993).1555 
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Figure 2.9: Reducing the levels of Drosophila dMBD2/3 in OA neurons alters sleep 1556 

quality: (A) A schematic diagram depicting the size and conserved domains of dMBD-1557 

2/3. (B) A structural model of the dMBD-2/3 MBD domain (Template: MBD3 (pdb: 1558 

2mb7), sequence identity = 40.9%, GA341 score = 0.955, z-DOPE score = -0.234 (C) 1559 

For semi-quantitative RT-PCR experiments, RNA from the heads of adults expressing 1560 

dMBD-2/3-IR in OA neurons (n-syb-Gal4-gal4;UAS-dMBD-2/3-IR, blue column), and 1561 

controls (n-syb-gal4-Gal4/+, white column; UAS-dMBD-2/3-IR/+, gray column). dMBD-1562 
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2/3 transcript levels were significantly reduced in n-syb-Gal4-gal4;UAS-dMBD-2/3-IR 1563 

adults as compared to age-matched control adults (Ordinary one way ANOVA, 1564 

Padj=0.0026). Reactions were performed in quadruplicate. Rpl32 expression was used as 1565 

the reference control to normalize expression between treatment groups (error bars 1566 

indicate s.e.m.).  (E-I) Sleep quality and quantity exhibited by individual males averaged 1567 

over an 8-day period from control and experimental groups. (E) The total amount of 1568 

sleep per 24-hr period in MBD2/3-deficient males does not differ from the tdc2-gal4 1569 

control (Padj=0.1186). (F) The average number of sleep bouts per 24-hr period is 1570 

increased in tdc2-gal4/+; UAS-dMBD2/3RNAi/+ males as compared to controls 1571 

(Padj=0.0041). (G) The consolidation index is significantly reduced in MBD2/3-deficient 1572 

males as compared to controls (Padj=0.0032). (H) No change was observed in the latency 1573 

to initiate sleep (Padj=0.7522).1574 
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Figure 2.10: Reducing dMBD-R2 levels in OA neurons increases total sleep and 1575 
causes sleep fragmentation 1576 
(A) Schematic representation of dMBD-R2 showing the conserved structural domains. 

(B) A structural model of the dMBD-R2 MBD domain (Template: MeCP2 (pdb: 3c2i), 

sequence identity = 34%, GA341 score = 0.931, z-DOPE score = -0.213). (C) RNA from 

the heads of adults expressing dMBD-R2-IR in OA neurons (n-syb-Gal4-gal4;UAS-

dMBD-R2-IR, blue column), and controls (n-syb-gal4-Gal4/+, white column; UAS-

dMBD-R2-IR/+, gray column) were used for semi-quantitative RT-PCR experiments. 

dMBD-R2 transcript levels were significantly reduced in n-syb-Gal4-gal4;UAS-dMBD-

R2-IR adults as compared to age-matched control adults (Ordinary one way ANOVA, 

Padj=0.0045). Reactions were performed in quadruplicate. Rpl32 expression was used as 

the reference control to normalize expression between treatment groups.  (D) MBD-R2-
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deficient males displayed an increase in total sleep as compared to controls (Padj<0.0001). 

(E) Sleep fragmentation as measured by an increase in the number of sleep bouts 

(Padj<0.0) and a decrease in the consolidation index (F) occurred in tdc2-gal4/+;UAS-

dMBD-R2-IR/+males as compared to controls (Padj=0.001). (G) The latency to initiate 

sleep in MBD-R2-deficient males was not significantly different from the UAS-dMBD-

R2-IR control (Padj<0.6981). Data are shown as means ± standard error of the mean 

(SEM). The one-way ANOVA with Holm-Sidak’s multiple comparison test was applied.



 72 

 



 73 

Figure 2.11: Concomitant reduction of dMBD and hMeCP2 overexpression rescues 1577 

hMeCP2-mediated sleep deficits 1578 

(A) Eduction graph displaying 30 minute bins of averaged sleep between males 1579 

expressing hMeCP2 in OA neurons, males expressing hMeCP2 and dMBD (UAS-dMBD-1580 

R2-IR, blue squares and UAS-dMBD-R2-IR, yellow squares) and controls (daytime: white 1581 

bar; nighttime: black bar, shaded grey). The phase-specific sleep reductions quantified in 1582 

tdc2-gal4;UAS-hMeCP2 males (red square line) have been rescued to control levels with 1583 

the reduction in dMBD-R2 levels (arrows). (B-C) Two-way multivariate analysis of 1584 

variance (MANOVA): Using Pillais’ trace and 0.05 criterion for significance, a 1585 

significant interaction (dMBD-R2 × hMeCP2) effect was observed between relative 1586 

dMBD-R2 expression and hMeCP2 gain of function on combined measures of sleep (F(3, 1587 

190) = 28.192, p < 0.0001; V = 0.308; Obs. Power = 1.00). (D, E) Interaction between 1588 

relative dMBD2/3 expression and hMeCP2 gain of function on combined measures of 1589 

sleep (F(3, 194) = 30.665, p < 0.0001; V = 0.322; Obs. Power = 1.00).1590 
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Figure 2.12: Co-immunofluorescence analysis in larval polytene chromosomes   1591 

(A-D) Polytene chromosomes from 48B10-gal4/+; UAS-hMeCP2/+ 3rd instar larvae. 1592 

Both dMBDR2 (red) and hMeCP2 (green) display extensive chromosomal binding. Co-1593 

immunofluorescence is observed at selected bands (arrowheads, PCC: r = 0.508; MCC1: 1594 

0.64, MCC2: 0.694 ; Costes’ randomization test: P-value=100%). Individual channels in 1595 

panels (C-D) correspond to the white region of interest (ROI).1596 
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3.1 INTRODUCTION 1849 
A long-standing challenge in evolutionary biology is to understand the molecular basis of 1850 

adaptive, divergent phenotypes. Between recently diverged species, processes that 1851 

underlie reliable sex and species discrimination can either impede or promote 1852 

reproductive isolation. For instance, chemosensory signaling, visual and acoustic 1853 

feedback from the interacting partner(s) and subsequent neuromodulatory processing 1854 

facilitates contextual discrimination and allows an organism to respond rapidly and 1855 

appropriately to social and environmental cues. While much research has focused on the 1856 

functional characterization of genes and neurons associated with these processes, 1857 

relatively little is known about the genomic structural and organizational features that 1858 

underlie contextual plasticity in various chemosensory, visual and acoustic faculties. 1859 

Therefore, we asked how various social behaviors that rely on sexual and species 1860 

discrimination are modified by epigenetic changes such as DNA methylation and 1861 

chromatin remodeling. To investigate the epigenetic processes that facilitate reproductive 1862 

and aggressive interactions, we altered the expression of methyl-CpG-binding domain 1863 

(MBD) proteins in Drosophila within a key subset of neuromodulatory neurons. 1864 

Contextual plasticity in organismal behavior and underlying sensory faculties is 1865 

achieved in part by modulating the strength of sensory information and the directionality 1866 

of neural network outputs (Marder, 2012). Neuromodulators such as serotonin, dopamine, 1867 

and norepinephrine are associated with the regulation of aggression and reproductive 1868 

behaviors in a diverse array of species ranging from crustaceans to primates (Huber et al., 1869 
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1997; Summers et al., 1995; Higley et al., 1992; Brown, 1979). Our group and others 1870 

have previously reported on the significance of octopamine (OA, the invertebrate analog 1871 

of noepinephrine) neurons in modulating the choice point between aggression and 1872 

courtship in Drosophila (Certel et al., 2007; Baier et al., 2002). OA neurons in the 1873 

subesophageal ganglion (SOG) of the adult central brain receive projections from 1874 

gustatory receptor-expressing sensory neurons (GRNs) found in taste sensilla within the 1875 

mouth, legs and wings (Andrews et al., 2014). These GRNs neurons detect and respond 1876 

to cuticular hydrocarbons (CHC) and long carbon chain esters that carry information 1877 

about the species- and sex-identity of interacting partners (Claude et al., 2010; Thisle et 1878 

al, 2012; Andrews et al., 2014)). Eliminating Gr32a function reduces male aggression, 1879 

increases male-male courtship, and prevents the inhibition of courtship between 1880 

Drosophila species (Fan et al., 2013). Similarly, in the absence of OA, males display 1881 

reduced levels of aggression as measured by lunge number (a key behavioral pattern in 1882 

the establishment of hierarchical relationships) and a delay in initiating aggression (Certel 1883 

et al., 2007; 2010). Additionally, males with enhanced OA signaling or feminized OA 1884 

neurons increasingly exhibit male-male courtship displays illustrating the critical role of 1885 

OA neuromodulation in regulating sensory inputs concerned with sexual recognition. 1886 

Therefore, we set out to explore the role of components associated with DNA 1887 

methylation and chromatin remodeling in OA-mediated behavioral plasticity in context of 1888 

species- and sex-specific aggression and courtship displays.   1889 

For this purpose, we examined mate choice and aggressive interactions in males 1890 

with altered levels of genomic methylation and/or methyl-CpG binding domain (MBD) 1891 

proteins. The function of MBD proteins has been studied extensively in vertebrates where 1892 

MBD family members can regulate gene expression by binding 5-methylcytosine (5mC) 1893 

and interacting with histone deacetylase (HDAC)-containing complexes, thereby linking 1894 

two epigenetic repression mechanisms: DNA methylation and histone deacetylation (Nan 1895 

et al., 1998). As discussed in Chapter I of this dissertation, the Drosophila genome 1896 

encodes at least two MBD-containing proteins, dMBD-R2 and dMBD-2/3 (Roder et al., 1897 

2000; Hendrich and Tweedie, 2003). dMBD2/3 and the MBD2/3Δ splice variant 1898 

associate with the nucleosome remodeling and deacetylase (NuRD) complex (Marhold, 1899 
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2004) and MBD2/3Δ preferentially recognizes mCpG-containing DNA through its MBD 1900 

(Roder et al., 2000). It has not been determined if the second protein - dMBD-R2 - binds 1901 

5mC in vivo, however, dMBD-R2 is part of the multi-subunit chromatin remodeling NSL 1902 

(non-specific lethal) complex, which regulates gene expression at genome wide levels 1903 

(Roder et al., 2000).  1904 

In this chapter, we describe a novel role for endogenous dMBD proteins in the 1905 

regulation of male social behavior. We found that dMBD-deficient males exhibit 1906 

significant reduction in male aggression with a concomitant increase in male-male 1907 

courtship. We also observed an increase in inter-species courtship and a reduction in 1908 

conspecific mating in these males. Subsequently, we hypermethylated the OA neuron 1909 

genomic DNA and asked if dMBDR2-induced alterations in mate discrimination and 1910 

male behavioral choice varied across various levels of methylation. Males with a 1911 

hypermethylated genome exhibited increased male-male courtship - a phenotype that was 1912 

rescued by concurrent reduction in dMBD-R2 levels. Taken together, our results 1913 

demonstrate that epigenetic mechanisms interpreted by the Drosophila MBD-containing 1914 

proteins (MBPs) are required for contextually plastic male selective behaviors and pave 1915 

the way to address how the selective utilization of the OA neuronal genome and potential 1916 

shifts in gene expression in response to sensory stimuli are coordinated.  1917 



 87 

3.2 METHODS 1918 

3.2.1 Husbandry and Stocks: 1919 

All flies were reared on standard cornmeal-based fly food containing agar, sugar, yeast, 1920 

cornmeal, distilled H2O and anti-fungal compound Tegosept (in 95% ethanol solution). 1921 

Unless noted otherwise, during developmental and post-eclosion, flies were raised at 1922 

25oC, ~50% humidity and 12:12hr light-dark cycles (1400+200 lx white fluorescent light) 1923 

in humidity and temperature controlled incubators.  1924 

Drosophila Stocks: Canton-S, UAS-CD8:GFP (BL 5130), UAS-MBD-R2-IR (BL 30481), 1925 

UAS-dMBD2/3-IR (BL 35347) and D. virilis lines were obtained from the Bloomington 1926 

Stock Center (Bloomington, IN). The Tdc2-Gal4 and UAS-MeCP2 lines were generously 1927 

provided by Juan Botas and Jay Hirsh, respectively. Transgenic control males were 1928 

generated by crossing Canton S females with males from the respective UAS- or gal4-1929 

lines.  1930 

3.2.2 Aggression Assays:  1931 

For aggression and inter-male courtship analysis, male pupae were isolated and aged 1932 

individually in 16x100mm borosilicate glass tubes containing 1.5ml of standard food 1933 

medium described above. Two-day old males were extracted and a dab of white or blue 1934 

acrylic paint was applied on the thorax under CO2 anesthesia for identification purposes. 1935 

Total CO2 exposure time was limited to less than 2 minutes for each fly. Flies were 1936 

returned to their respective tubes for a period of at least 24 hours to allow recovery from 1937 

handling and anesthesia. For aggression testing, pairs of 3-5day old, socially naïve adult 1938 

males were placed in 12-well polystyrene places (VWR #82050-930) as described 1939 

previously (Andrews et al., 2014).  1940 

For temperature sensitive Tub-Gal80ts experiments, flies were raised at 18-19oC through 1941 

all embryonic, larval and pupal stages. Individual pupae were transferred to 16 x 100 mm 1942 

glass vials and allowed to eclose in isolation. 2-3 day old adult males were transferred to 1943 

30oC for 24-36hrs for Gal80ts inactivation. 30-min prior to behavioral testing, flies were 1944 

moved to 25oC for recovery. Aggression and inter-male courtship were assayed at 25oC 1945 

and ~45-50% humidity levels in standard polystyrene chambers as described earlier. 1946 
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Scoring: All aggression was assayed within first two hours of lights ON time (Zeitgeber 1947 

hours 0-2). Each fight was recorded for a period of 90 minutes and scored manually using 1948 

iMovie 9. Total number of lunges and wing threat behaviors were scored for a period of 1949 

30 minutes after the first lunge according to the criteria established previously (Certel and 1950 

Kravitz, 2012; Chen et al., 2002). The delay between the assay start time and the first 1951 

lunge was used for calculating the delay to aggression onset (or latency to lunge). 1952 

Dominance was established after 3 consecutive lunges followed by chasing the other fly 1953 

off of the food cup. In most cases, a clear dominant-subordinate relationship was 1954 

characterized by a disproportionate number of lunges by the winner/dominant male. 1955 

However, in select few fights, frequent dominance reversal was observed and despite 1956 

high number of lunges, no clear hierarchy could be established within the scoring period.    1957 

3.2.3 Male-Male Courtship:  1958 
Inter-male courtship behavior was recorded in the form of unilateral wing extensions (or 1959 

singing) within the aggression paradigm. Number of single wing extensions were 1960 

recorded both prior to the first lunge as well after the onset of aggression for a period of 1961 

30 minutes. No strong correlation was observed in the combined latency to aggression 1962 

and single wing extension data across different genotypes. Graphs were generated with 1963 

Graphpad Prism and Adobe Illustrator CS5. 1964 

3.2.4 Interspecific Courtship:  1965 
For inter-species courtship preference assay, each 3-5 day old socially naïve control 1966 

(Canton S) or dMBDR2-deficient male was paired with one 5-7 day old socially naïve 1967 

conspecific female (D. mel) and one similarly aged female from a different but related 1968 

species – D. virilis. Courship was primarily characterized by the number of single wing 1969 

extensions and copulatory abdominal bendings. Various standard measures of courtship 1970 

were recorded including – a) latency to courtship or first unilateral wing extension, b) 1971 

duration of each wing extension, c) total time spent courting each female, d) number of 1972 

copulatory abdominal bendings, and e) courtship index (C.I.) defined as total time 1973 

courting both females as a fraction of latency to copulation or total scoring period, in case 1974 

there’s no successful mating event. These behaviors were scored for a total period of 10 1975 
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minutes (600 seconds) or up to the point of successful mating event, whichever came 1976 

earlier. 1977 

3.2.5 Statistics:  1978 

One-way analysis of variance (ANOVA) with Sidak’s multiple-comparison test was 1979 

performed in case of three or more comparison groups, and a standard pairwise t-test in 1980 

case of only two comparisons. If data did not meet key parametric assumptions, non-1981 

parametric version of the test or bootstrapping based resampling methods were employed 1982 

using the Resampling Procedures v1.3 (Howell, 2009). In this case, sample distribution 1983 

was empirically determined by random sampling of residuals with replacement and F-1984 

statistic was computed for each of the 50,000 bootstrapped residuals. The resulting 1985 

distribution was used to evaluate the likelihood of obtaining an F-statistic greater than the 1986 

value obtained from the sample means at 95% confidence level (Howell, 2012). In case 1987 

of more than two comparisons, α-values were manually adjusted for sequential Holm-1988 

Sidak’s correction (1- α)^(1/i), where i=number of comparisons. Results were cross 1989 

validated with permutation tests that involve randomization without replacement. For a 1990 

2x2 factorial design to assess if MBDR2-induced variations in social behavior varied 1991 

across levels of ectopically-induced methylation, an ordinary two-way ANOVA was 1992 

performed.  1993 
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3.3 RESULTS 1994 

3.3.1 Reduction in dMBD-R2 levels results in decreased conspecific aggression and an 1995 
increase in male-male courtship 1996 
To test the hypothesis that endogenous methyl-binding domain (MBD) proteins in 1997 

Drosophila play a role in male social behavior, we first examined conspecific agonistic 1998 

interactions in males with reduced dMBD levels. For this purpose, we employed targeted 1999 

knockdown strategies using the UAS-Gal4 system to selectively manipulate dMBD-levels 2000 

in OA neurons. dMBD-specific RNAi constructs (UAS-dMBDR2-RNAi, and UAS-2001 

dMBD2/3-RNAi) were expressed under the control of tyrosine decarboxylase (Tdc2) 2002 

promoter. These lines have previously been demonstrated to reduce dMBD transcript 2003 

levels in Chapter II (fig 2.4.8).  2004 

Pairs of tdc2-gal4;UAS-dMBD-R2-IR, tdc2-gal;UAS-dMBD-2/3-IR, or 2005 

transgenic control males were placed in an aggression chamber and multiple aggression 2006 

parameters were quantified including latency to the first lunge, total numbers of lunges, 2007 

and total number of agonistic wing threats. When two males were paired in a standard 2008 

aggression assay, dMBD-R2-deficient males exhibited a strong reduction in the average 2009 

number of lunges on each other (a key phenotype in establishment of dominant-2010 

subordinate relationships) as compared to the transgenic controls (fig 3.1a). These males 2011 

also demonstrated a five-fold reduction in the number of agonistic wing threats (fig 3.1b). 2012 

In parallel, the onset of aggression (typically marked by the first lunge) was significantly 2013 

delayed as well (fig 3.1c). In wt and transgenic control males, at least 80% of dyadic 2014 

interactions within the aggression paradigm result in establishing clear dominance 2015 

hierarchy relationships. However, only 11.76% of social encounters involving dMBD-2016 

R2-deficient males engaged in fighting resulting in a significant decrease in formation of 2017 

social hierarchy in this group (fig 3.1d). One of the possible explanations for such 2018 

significant reduction in male aggressiveness is a general dampening of the arousal 2019 

systems, independent of aggression-specific circuitry. However, the observed decrease in 2020 

aggression in MBDR2-deficient males was not correlated with the waking activity levels. 2021 

Contrary to that, these males are slightly more active as compared to the transgenic 2022 

control males (Chapter II, fig 2.4.8). 2023 
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A second explanation for a decrease in aggression may be that males are 2024 

engaging in an alternative behavior. Within the allotted fight assay time, interactions 2025 

between wildtype and transgenic control male pairings include high levels of aggression 2026 

accompanied by a relatively low baseline level of male-to-male courtship. dMBD-R2-2027 

deficient males, on the other hand, displayed a substantial three-fold increase in the 2028 

number of single wing extensions – a key measure of courtship – towards the second 2029 

male (fig 3.1 e). This increase in male-male courtship potentially at the expense of 2030 

conspecific aggression is also observed in males that lack OA (Certel et al., 2007). 2031 

Similar behavioral alterations were observed, albeit to a lesser degree, in males with 2032 

reduced expression of dMBD2/3 in the OA neurons (fig 3.2). These results demonstrate 2033 

Drosophila MBD proteins are required for context-dependent male social behavior and 2034 

identifies a neuronal subpopulation, OA neurons, functionally important for this 2035 

behavioral plasticity. As the observed behavioral phenotype was more pronounced in 2036 

tdc2-gal4;UAS-dMBD-R2-IR males, we focused our attention on MBD-R2 for 2037 

subsequent investigations.2038 
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3.3.2 MBD-R2 knockdown in a small subset of neurons modulates aggression but not 2039 
courtship     2040 

Under the control of Tdc2 promoter, around 137 nuclei distributed across the adult brain 2041 

in discrete clusters are estimated to express the gal4-driven transgenic RNAi construct 2042 

(Busch et. al., 2009; Cole et. al., 2005). However, aggression and reproductive behaviors 2043 

are for the most part mutually-exclusive (Certel et al., 2007; Petrovich et al., 2001). To 2044 

determine if the dMBD-R2 mediated male aggression and courtship phenotypes can be 2045 

separated into distinct OA neuronal subpopulations, we further restricted the expression 2046 

of MBD-R2-RNAi construct to an even smaller subset of neurons. For this purpose, we 2047 

employed the Gal80-based enhancer-trap system under the control of choline 2048 

acetyltransferase (Cha) promoter to spatially refine the expression of the RNAi construct 2049 

to a small subset of non-cholinergic Tdc2 neurons. Adding the cha-gal80 transgene (tdc2-2050 

gal4;cha-Gal80/UAS-6XGFP) limits the number of OA neurons with Gal4 activity to 2051 

neurons within the sub-oesophageal medial cluster (SM), the ventrolateral cluster (OA-2052 

VL1 and OA-VL2) (fig. 3.3a-a’’). A subset of these OA neurons has been shown to play 2053 

a role in aggression by group-housed males (Zhou et al., 2008). Therefore, we predicted 2054 

that males with a dMBD-R2 reduction in this OA neuronal subset would exhibit a 2055 

decrease in aggression only. As anticipated, tdc2-gal4;cha-Gal80/UAS-dMBD-R2-IR 2056 

males did not engage in male-male courtship over and above baseline levels observed in 2057 

control pairings (fig. 3.3b). However, a significant reduction was observed in the number 2058 

of lunges and wing threats (fig 3.3 c-d). This result suggests the male-male courtship 2059 

quantified in Figure 1 is not a compensatory behavioral artefact of reduced male 2060 

aggressiveness but may occur as a result of alterations in OA-mediated courtship-specific 2061 

circuitry. These observations are consistent with previous reports (Certel et al., 2010) 2062 

suggesting that male aggression and courtship are regulated by distinct, independent 2063 

subsets of Tdc2 neurons. 2064 

Furthermore, not all aggression parameters are altered in tdc2-gal4;cha-2065 

Gal80/UAS-dMBD-R2-IR males. The delay in onset to aggression (latency) was not 2066 

altered significantly (fig 3.3 d) and the experimental males were equally likely to form 2067 

dominance hierarchy relationships as control groups (fig S1). In this case, roughly 80% of 2068 
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dyadic interactions resulted in establishment of dominance hierarchy relationships, which 2069 

is in striking contrast to the dominance outcomes in males with reduced dMBD-R2 levels 2070 

in the entire tdc2-Gal4 neuronal population (fig 3.1d). Taken together, the behavior of 2071 

tdc2-gal4;cha-Gal80/UAS-dMBD-R2-IR males allows us to determine the contribution of 2072 

a limited number of OA neurons to distinct aggression phenotypes and supports the 2073 

hypothesis that the male-male courtship observed in the aggression context is regulated, 2074 

at least to some extent, independent of the circuitry that controls aggression. These 2075 

observations also lend support to the hypothesis that whether or not an organism will 2076 

decide to engage in an aggressive encounter and the delay in onset of such encounter is 2077 

regulated differently and independently of the circuitry that controls the intensity of 2078 

aggression.2079 
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3.3.3 Reducing MBD-R2 levels in adult-specific OA neurons recapitulates male 2080 
aggression deficits 2081 

Previous studies have determined MBD proteins can mediate the plasticity of neuronal 2082 

gene chromatin during development, signaling, and stress responses (Ballas et al., 2009; 2083 

Chen et al., 2003; Martinowich et al., 2003; Nuber et al., 2005)(Ballas et al., 2009). 2084 

Therefore, the deficits in male social behavior we observe may be due to changes in OA 2085 

neuronal differentiation or connectivity during  the course of the development. 2086 

To determine if observed alterations in male social behavior were caused by 2087 

potential alterations in neuronal maturation and/or connectively during early 2088 

development, we used Gal80-based temperature-sensitive conditional activation system 2089 

to restrict the expression of MBD-RNAi construct to adult male neurons, and not during 2090 

early embryonic or larval stages. For this purpose, tdc2-gal4; tub-Gal80ts/UAS-dMBD-R2 2091 

-RNAi progeny was raised at non-permissive temperatures (18-19oC), at which Gal80ts 2092 

represses Gal4 activity, thereby restricting transgenic expression. Figure 3.4 illustrates 2093 

Gal80ts based suppression of GFP reporter expression in UAS-CD8:GFP/+; Act5c-2094 

Gal4/Tub-Gal80 larvae (fig 3.4a) and pupae (fig 3.4b) raised at 19oC. Subsequently, adult 2095 

males 48 hours post-eclosion were shifted to 30oC for 24-36 hours prior to transference 2096 

into the fight chamber where the males fought at 25 oC (see Materials and Methods). This 2097 

inducible activation system allowed us to delineate effects due to developmental 2098 

alterations as opposed to acute modulation of octopaminergic circuit output in adults.  2099 

When dMBD-R2 levels were reduced post-eclosion, tdc2-gal4; tub-Gal80ts/UAS-2100 

dMBDR2 -RNAi males displayed a significant reduction in the number of lunges and 2101 

delayed onset of aggression as compared to controls (fig. 3.4 c, d). Experimental males 2102 

did not exhibit an increase in aggressive wing threats (Fig. 3.4 e), however, male-male 2103 

courtship as measured by the single wing extension remained significantly elevated in 2104 

dMBD-R2 adult deficient males (fig. 3.4f). These results indicate that dMBD-R2 has a 2105 

functional role in adult OA neurons.2106 
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3.3.4 MBDR2-deficient males display high-levels of interspecies courtship 2107 
Our previous work and others have established that males lacking OA and/or the 2108 

gustatory receptor Gr32a exhibit elevated levels of male-male courtship (Andrews et al., 2109 

2014). In addition, Gr32a-expressing neurons have been shown to be important for the 2110 

inhibition of inter-specific courtship in Drosophila (Fan et al., 2013); and OA neurons 2111 

within the subesophageal zone (SEZ) directly receive Gr32a-neuron chemosensory 2112 

pheromonal information (Andrews et al., 2014). Since dMBDR2-deficient males 2113 

displayed impaired inhibition of male-male courtship, we asked if such impairment 2114 

extended to the regulation of species-specific courtship displays as well.  2115 

Since D. virilis and D. melanogaster diverged ∼40 million years ago (mya), we 2116 

began by pairing a single tdc2-gal4/UAS-dMBD-R2-IR socially naïve male with one 2117 

conspecific (D. melanogaster; Canton S) female and one D. virilis female in a courtship 2118 

choice assay (see materials and methods). Although, a recent study reported little or no 2119 

courtship between intact wildtype males and D. virilis females (Fan et al., 2013); socially 2120 

naïve control (Canton S) males in our study did exhibit interspecific courtship with D. 2121 

virilis females (fig 3.5 a-d). However, inter-specific courtship by control males was 2122 

quickly terminated in favor of conspecific pursuits. In contrast, tdc2-gal4/+; UAS-2123 

MBDR2-RNAi/+ males displayed significantly high levels of interspecific courtship (fig 2124 

3.5 a-d). The number of single wing extensions (SWE) towards D. virilis females was 2125 

increased in MBDR2-deficient males as compared to the control group (fig 3.5 a). 2126 

Additionally, the number of copulatory abdominal bendings towards D. virilis females 2127 

was also increased in experimental males (fig 3.5 d). Although, the average duration of 2128 

conspecific wing extensions remained the same in both control and experimental groups, 2129 

the duration of interspecific wing extensions towards D. virilis females was shortened in 2130 

the control group, and increased in MBDR2-deficient males (fig 3.5 b). Overall, 2131 

experimental males spent ~80% of total time courting D. virilis females and only ~20% 2132 

time courting conspecific CS females (fig 3.5 c).  2133 

While the latency to initiate courtship (fig 3.5 f) and overall courtship vigor – 2134 

measured by courtship index (C.I.) (fig 3.5 e) – were not altered, MBDR2-deficient males 2135 
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exhibited a significant delay in copulating with conspecific females (fig 3.5 f). In terms of 2136 

reproductive fitness, one of the consequences of observed disinhibition of interspecific 2137 

courtship in experimental males was a significant reduction in conspecific mating success 2138 

(fig 3.5 g). Together, these results suggest male Drosophila require dMBD-R2 function in 2139 

OA neurons to respond correctly to sex- and species-specific cues.2140 
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3.3.5 Selective hypermethylation in OA neurons increases male-male courtship   2141 
The function of dMBDR2 as a component of NSL chromatin remodeling machinery has 2142 

been characterized in recent years (Raja et al., 2010; Lam et al., 2012; Prestel et al., 2143 

2010). Not unlike its extensively studied vertebrate homolog – MeCP2, dMBDR2 binds 2144 

genomic DNA, interacts with histone acetyltransferases (HAT) and is involved in 2145 

chromatin restructuring and regulation of gene expression (Raja et al., 2010; Lam et al., 2146 

2012; Prestel et al., 2010). However, despite the presence of methyl-CpG binding domain 2147 

(MBD) and structural conservation of DNA binding sites, its ability to interact with 2148 

methyl-5C tags remains elusive (Boffelli et al., 2014). 2149 

Due to the relatively sparse distribution of 5C-methylation in Drosophila, we 2150 

postulated that dMBD-R2 exerts its effects on social behavior through methylation-2151 

independent interactions. Therefore, we first sought to characterize the hyper-methylation 2152 

phenotype in context of social behavior and asked if selective hypermethylation of OA 2153 

neuron genome alters male aggression and courtship. For this purpose, we expressed the 2154 

murine de novo DNA methyltransferase DNMT3a in OA neurons with the Gal4-UAS 2155 

system. DMNT3a expression has previously been reported to cause cytosine methylation 2156 

in Drosophila and cause at least three-fold increase in embryonic methylation levels 2157 

(Lyko et al., 1999; Lyko et al., 2000; Weissmann et al., 2003). 2158 

 We found that experimentally-induced hypermethylation of OA neurons did not 2159 

significantly alter male aggressiveness. While the initiation of aggression was delayed in 2160 

tdc2-gal4/+UAS-Dnmt3a/+ males (fig 3.6 c), no statistically significant changes were 2161 

observed in the number of lunges or wing threats (fig 3.6 a-b). The overall frequency of 2162 

dominance hierarchy relationships remained comparable to transgenic control males as 2163 

well (fig 3.6 d). However, the experimental males exhibited a significant increase in 2164 

male-male courtship within the aggression paradigm (fig 3.6 e). As the latency to the first 2165 

lunge was increased in addition to impaired disinhibition of male-male courtship, these 2166 

results suggest an increased uncertainty in behavioral object choice.2167 
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3.3.6 Effects of dMBDR2-knockdown vary across levels of genomic methylation   2168 
Experimentally-induced de novo DNA methylation in Drosophila has previously been 2169 

demonstrated to cause an increase in histone H3K9 methylation and a reduction in 2170 

histone H3S10 phosphorylation (Weissmann et al., 2003). As H3K9me is associated with 2171 

the formation of transcriptionally inactive heterochromatin (Peters et al., 2002; Lehnertz 2172 

et al., 2003) and H3S10 serves as a marker for transcriptionally-active loci (Nowak and 2173 

Corces, 2000), the expression of murine DNMT3a in our  study is expected to cause 2174 

DNA compaction and/or suppression of transcriptional activity in OA neurons.  2175 

Furthermore, dMBDR2 is a component of non-specific lethal (NSL) multi-subunit 2176 

complex that also contains the Male absent on first (MOF) histone H4K16 2177 

acetyltransferase (HAT) (Raja et al., 2010). This complex is primarily associated with 2178 

active chromatin states and 66% of all transcriptionally-active gene promoters are bound 2179 

by dMBDR2 (Lam et al., 2012). However, there is no linear relationship between the 2180 

presence of dMBD-R2 and transcriptional activity. While dMBDR2-depletion in 2181 

embryonic cells is associated with a reduced expression of target genes (Prestel et al., 2182 

2010), dMBDR2-knockdown in larval salivary glands on the other hand results in 2183 

differential expression of 3996 genes; some of which are up-regulated while others are 2184 

down-regulated ((Raja et al., 2010), and figure 6 therein). 2185 

If the reduction in dMBDR2 levels and ectopically-induced genomic 2186 

hypermethylation act through completely independent mechanisms on distinct genomic 2187 

loci, then dMBDR2-knockdown and expression of DNMT3a together in OA neurons 2188 

should result in an additive effect on measured behavioral outcomes. Since Dnmt3a-2189 

induced DNA methylation is likely to occur downstream of dMBD function and given 2190 

the large number of genomic loci bound by dMBDR2 proteins, a more plausible 2191 

alternative is that dMBDR2-dependent regulation of transcriptional activity is influenced 2192 

by methylation-induced alterations in chromatin structure and assembly. However, it 2193 

remains unknown if dMBDR2 is a critical component in methylation-dependent changes 2194 

in chromatin compaction and transcriptional activity. If dMBDR2 functions at least 2195 

partially in the readout of methylated DNA, then reducing dMBD-R2 levels in 2196 
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conjunction with hypermethylation should rescue or reduce the hypermethylation 2197 

phenotype. 2198 

To test whether the effect of dMBDR2-knockdown on male social behavior varies 2199 

across different levels of methylation, two-way factorial ANOVA was performed for 2200 

both, latency to aggression onset and male-male courtship. A significant interaction 2201 

(dMBDR2 × Dnmt3a) effect was observed between dMBDR2 levels and 2202 

hypermethylation on both latency to first lunge (F(1, 111) = 25.08, p < 0.0001; V = 0.1459; 2203 

Obs. Power = 1.00, fig. 3.7 a) and male-male courtship (F(1, 111) = 37.89, p < 0.0001; V = 2204 

0.246; Obs. Power = 1.00, fig. 3.7 b). That is, the effect of dMBDR2 on delay to 2205 

aggression onset varied across the levels of relative methylation. Simple effects analysis 2206 

suggests that hypermethylation precludes the expression of dMBDR2-induced effects in 2207 

context of aggression. At the same time, although both ectopic methylation and reduction 2208 

in dMBDR2 levels separately increased male-male courtship but when present together, 2209 

result in a complete rescue of male courtship behavior (fig. 3.6e, 3.7b). As discussed 2210 

subsequently in section 3.4, these results suggest non-linear multilayered interactions 2211 

between dMBDR2 and Dnmt3a-induced hypermethylation states in determining the 2212 

overall behavioral outcome of an organism.2213 
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3.4 DISCUSSION 2214 
In this chapter, we describe a novel contribution of endogenous methyl-CpG binding 2215 

proteins in the regulation of male social behavior in Drosophila. Across species, methyl 2216 

binding proteins (MBPs) play a critical role in spatiotemporal regulation of gene 2217 

expression. This dynamic regulation of transcriptional activity can be achieved in a 2218 

methylation-dependent or –independent manner by structuring and remodeling of 2219 

chromatin states through association with various histone modification complexes.   2220 

At least two different modes of genomic methylation have recently been confirmed in 2221 

Drosophila (Capuano et al., 2014; Zhang et al., 2015). Although, both of these 2222 

methylation states have been associated with the regulation of gene expression (Zhang et 2223 

al., 2015; Takayama et al., 2014), the underlying mechanistic processes that translate 2224 

these epigenetic marks to appropriate functional states remain obscure.  2225 

There are multiple MBD-containing proteins in Drosophila, including dSETDB1 2226 

(egg), Toutatis (tou), dMBD-R2 and dMBD2/3. Of these, dSETDB1/Egg has been 2227 

categorized to the histone (lysine) methyltransferase (HMT) family of MBD proteins 2228 

(Völkel and Angrand, 2007), Toutatis to the histone acetyltransferase (HAT) family of 2229 

MBD proteins (Vanolst et al., 2005; Emelyanov et al., 2012), and both dMBDR2 and 2230 

dMBD2/3 (Hendrich and Tweedie, 2003) rest in the MBD family. While all of these 2231 

proteins have been implicated for their roles in various chromatin remodeling complexes, 2232 

only dSETDB1/Egg (Gou et al., 2010) and dMBD2/3 (Roder et al., 2000) (but see 2233 

(Ballestar et al., 2001)) have been demonstrated to associate with methylated cytosine 2234 

residues in vitro. Furthermore, none of these genes, to my knowledge, have been studied 2235 

for their role in context of gross organismal behavior in Drosophila. In this study, my 2236 

colleagues and I tried to fill in that gap by exploring the role of dMBDR2 in context of 2237 

highly dynamic species- and sex-specific behavioral interactions. We found that both 2238 

dMBDR2 and dMBD2/3 mediate OA neuromodulatory processes in context of 2239 

aggression and courtship.  2240 

We also explored the possibility of an interaction between DNA methylation 2241 

states and dMBDR2 function. Polytene chromosome staining by our lab (Chapter II; fig: 2242 
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2.12) and others (Raja et al., 2010) revealed extensive genome-wide association of 2243 

dMBD2. Although, a direct association between dMBDR2 and m5C has not been 2244 

demonstrated, we asked if dMBDR2 function could be altered by differential methylation 2245 

states. A direct investigation of this hypothesis by eliminating the endogenous 2246 

methylation states is constrained by relatively sparse distribution of methylated cytosines 2247 

and lack of a known DNA methyltransfease in Drosophila (Takayama et al., 2014). 2248 

Overexpression of a demethylase like dTet (Dunwell et al., 2013; Guo et al., 2011) would 2249 

have opened up the possibility of increased levels of oxidated residues including 5-2250 

hydroxymethylcytosine (5hmc) (Guo et al., 2011). As 5hmc has recently been shown to 2251 

act as an epigenetic signature in its own right and interact with the human MBD-2252 

containing protein – MeCp2 (Mellén et al., 2012), such an experimental design would 2253 

have further confounded our analysis. Therefore, we attempted to address this question 2254 

by ectopically inducing a targeted hypermethylation state by expressing murine de novo 2255 

DNA methyltransferase (Dnmt3a) selectively in OA neurons. Using a 2 x 2 factorial 2256 

design, we found that the effects of dMBDR2 on male social behavior varied across 2257 

levels of DNA methylation.  2258 

While a concurrent dMBDR2-knockdown completely rescued the 2259 

hypermethylation-induced homosexual courtship phenotype in our study (fig 3.7b), one 2260 

must tread the water cautiously with respect to proposing a direct functional association 2261 

between genomic methylation and dMBDR2 proteins. In addition to the lack of direct 2262 

evidence for methylation-dependence of dMBDR2-function, there are a number of 2263 

different factors that may further confound our interpretation of these results. In addition 2264 

to genomic hypermethylation, Dnmt3a expression in Drosophila can cause an increase in 2265 

H3K9 methylation – a hallmark of chromatin silencing and heterochromatin formation 2266 

(Weissmann et al., 2003). Since – a) dSETDB1 is the only essential H3K9 2267 

methyltransferase in Drosophila (Koch et al., 2009), b) SETDB1 has been shown to 2268 

interact with Dnmt3a in mammalian context (Li et al., 2006), and c) Dnmt3a can itself 2269 

repress transcription through ATRX-like PHD domains and direct association with 2270 

histone deacetylase HDAC1, independent of its CpG methylation activity (Bachman et 2271 

al., 2001). It is plausible, therefore, that the alterations in latency to aggression (fig 3.6c) 2272 

and inter-male courtship (fig 3.6e) in Dnmt3a-expressing males are caused by direct 2273 
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alterations in chromatin structure and transcriptional activity through Dnmt3a-dSETDB1 2274 

or HDAC1 interactions, and not by genomic hypermethylation per se. A further concern 2275 

that dSETDB1 itself binds methylated cytosines in the 5CpA dinucleotide context (Gou et 2276 

al., 2010) is mitigated by CpG selective hypermethylation activity of Dnmt3a (Oka et al., 2277 

2006). As a result, an alternative interpretation of these results may suggest that 2278 

dMBDR2 rescues Dnmt3a/dSETDB1-mediated alterations in male social behavior. For 2279 

what it’s worth, Dnmt3a also displays extensive co-localization with MBD1 and MeCP2 2280 

in mouse somatic cells, ES cells and NIH 3T3 cells (Bachman et al., 2001; Lewis et al., 2281 

1992; Hendrich and Bird, 1998). 2282 

At the same time, a low level ubiquitous expression of mouse Dnmt3a has been 2283 

reported to greatly increase the proportion of methylated 5CpG-residues to 4% – a very 2284 

significant increase from the 0% m5CpG levels detected by the same assay in comparison 2285 

lines expressing maintenance methyltransferase Dnmt1 (see (Lyko et al., 1999); Table 1 2286 

from the article has been reproduced here as Table 3.1). Furthermore, depletion of 2287 

MBD-R2 impairs the development of salivary glands and results in a reduced gland size 2288 

(Raja et al., 2010). Coincidentally, or perhaps not, a significant reduction in salivary 2289 

gland size was also reported in hypermethylated flies by a separate group (Weissmann et 2290 

al., 2003). Because of a very significant increase in methylation levels and shared 2291 

phenotypic alterations, we cannot completely exclude the possibility that 2292 

hypermethylation plays a role in observed behavioral shifts in aggression and courtship in 2293 

Dnmt3a lines in our study, in favor of the alterative hypothesis outlined above (fig 3.6 c, 2294 

e). At this point, our results suggest that dMBDR2-function varies across levels of 2295 

genomic methylation in Drosophila.     2296 

The observation that Drosophila MBD-containing proteins play a significant role in the 2297 

regulation of social behavior is consistent with the role of MBD-family proteins in other 2298 

organisms. In both mice and humans, the MBD-containing protein – MeCP2 – is critical 2299 

for normal functioning of genes associated with the regulation of social behavior 2300 

(Huppke et al., 2006; Tantra et al., 2014; Moretti et al., 2005). Multiple accounts of 2301 

socio-behavioral effects of the mammalian methyl CpG binding protein 2 (MeCP2) have 2302 

associated this key MBD-family protein with the modulation of territoriality and 2303 
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aggression in mammals. In mice, conditional knockout of MeCP2 in serotonergic 2304 

neurons, and separately in a subset of hypothalamic neurons, results in a significant 2305 

increase in aggressive attacks towards unfamiliar cage mates in a resident-intruder assay 2306 

(Fyffe et al., 2008; Samaco et al., 2009). Alterations in MeCP2 expression have also been 2307 

associated with poor impulse control and social aggression in schizophrenia cohorts as 2308 

well as monogenic disorders such as rett syndrome and MeCP2-duplication syndrome in 2309 

humans (Huppke et al., 2006; Tantra et al., 2014; Ramocki et al., 2009). The direction of 2310 

MeCP2-induced alterations in social behavior varies significantly with the genetic 2311 

background. That is, depending on the specific genetic context, an increase or decrease in 2312 

MeCP2 levels may modulate aggressive phenotypes in either direction. For instance, both 2313 

Rett syndrome patients, in which there’s a loss of MeCP2 function, and patients with 2314 

MeCP2 duplication syndrome display bouts of hostility and/or uncontrolled aggression 2315 

(Huppke et al., 2006; Ramocki et al., 2009). Such context-dependence and non-linear 2316 

association between MBD proteins and the direction of behavioral change may explain 2317 

why both reduction of dMBDR2 and increase in genomic methylation separately alter the 2318 

delay to aggression onset (compare fig 3.1c and fig 3.6c) and male-male courtship 2319 

(compare fig 3.1e and fig 3.6e) in the same direction. In support of this hypothesis, as 2320 

mentioned previously, both reduction in dMBDR2 levels and hypermethylation have 2321 

separately been reported to alter the size of the salivary glands in the same direction (Raja 2322 

et al., 2010; Weissmann et al., 2003).    2323 

Additional results in our study pertain to the role of dMBDR2 proteins in the 2324 

regulation of inter-species courtship. We demonstrate that dMBDR2-deficient males 2325 

enthusiastically, much more so than controls, court females of a distantly-related species (fig 2326 

3.5 b-e). Wildtype D. melanogaster males have previously been reported to interact sexually 2327 

with other, distantly related, sympatric drosophilid species (Dawson and McRobert, 2011; 2328 

Dukas, 2004). However, such interspecific courtship interactions are reproductively futile 2329 

and energetically inefficient as very few species are able to copulate and hybridize with D. 2330 

melanogaster (David et al., 1974; Tsacas and BäChli, 1981). In a few cases where copulation 2331 

does occur, hybrid incompatibility and sterility has been well documented  (Sturtevant, 1920; 2332 

Barbash, 2010). In many cases, however, Drosophila males adopt pre-mating behavioral 2333 

strategies for reproductive isolation by restricting courtship displays towards con-specific 2334 
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females (Spieth, 1974; Spieth and Ringo, 1983). These reports are consistent with recent 2335 

evidence pointing towards existence of chemosensory and neurobiological filters for species-2336 

identification and inhibition of interspecific courtship (Fan et al., 2013; Dukas, 2004). Our 2337 

group recently demonstrated that OA-neurons act as second-order transducers in Gr3a-2338 

mediated chemosensory-information pathway (Andrews et al., 2014). The shorter duration of 2339 

interspecific wing extensions by control males towards D. virilis females (fig 3.5 b; 2340 

*p=0.0434) in our study may reflect the ability to reliably process and respond to species-2341 

specific identification cues resulting in termination of singing and courtship sequence, or lack 2342 

thereof in case of dMBD-R2 deficient males (Agrawal et al., 2014). At this point, we do not 2343 

know if the observed defects in responding to sex- and species-specific cues are due to a 2344 

requirement for dMBD-R2 in the subset of OA neurons that promote male courtship, or a 2345 

separate requirement for dMBD-R2 in a set of OA neurons that modulate the inhibition of 2346 

male-male or interspecies courtship. It has also been suggested that male-female courtship 2347 

specificity and avoidance of male-male courtship is a learned phenomenon where males learn 2348 

to refrain from male-male courtship after experiencing antiaphrodisiac pheromones and 2349 

rejection from other males (Spieth, 1974; Anaka et al., 2008; Hirsch and Tompkins, 1994). 2350 

Context-inappropriate behaviors such as homosexual courtship or reduced sex or species 2351 

specificity in courtship attempts may, therefore, suggest learning deficits as well as 2352 

difficulties in gender recognition. A number of mutants with learning-deficits also display 2353 

male-male courtship (Anaka et al., 2008; McRobert et al., 2003; Savvateeva et al., 2000). As 2354 

OA is involved in the formation of courtship memory (Zhou et al., 2012; Chartove et al., 2355 

2015), it may therefore also facilitate specification of context-appropriate behaviors through 2356 

learning and memory of previous social experiences in addition to its role in species and sex 2357 

recognition. However, it is clear dMBD-R2 plays an important role in the molecular basis of 2358 

species and sex discrimination in addition to, or in exclusion of, learning and memory of 2359 

courtship rejection cues in Drosophila and contributes to our understanding of pre-mating 2360 

behavioral strategies for reproductive isolation.2361 
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3.5 FIGURES AND TABLES 2362 

 
 
Figure 3.1: dMBDR2-knockdown in OA neurons reduces conspecific aggression and 2363 
increases male-male courtship. 2364 
(A–D) Dyadic agonistic interactions between pairs of males with RNAi-based reduction 2365 
in dMBDR2 levels in OA neurons (Tdc2-Gal4/+; UAS-MBDR2IR/+; n=20) and 2366 
individual transgenic controls, UAS-MBDR2IR/+ (n=21) or Tdc2-Gal4 (n=18). (A) 2367 
Number of lunges (represented by each dot) in a 30 min scoring period after the first 2368 
lunge by either male in a fighting pair. dMBDR2-deficient males exhibited a significant 2369 
reduction as compared to controls (****Padj<0.0001). (B) Number of wing threats in the 2370 
same 30 min scoring period. A significant reduction is observed in average number of 2371 
wing-threats in dMBDR2-deficient males compared to transgenic controls 2372 
(****Padj<0.0001). (C) The latency to first lunge or delay to onset of aggression was 2373 
significantly higher in Tdc2-Gal4/+; UAS-MBDR2IR/+ males as compared to controls 2374 
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(****Padj<0.0001). (D) Percent of encounters that result in fighting and formation of 2375 
dominance hierarchies in control and experimental groups. Dominance was characterized 2376 
by 3 consecutive lunges followed by chase behavior. This criterion was relaxed for the 2377 
experimental group because of extremely low number of lunges in each fight and 2378 
essentially represents % of encounters that resulted in fighting. (E) Male-male courtship 2379 
measured by the number of unilateral wing extensions within the aggression paradigm 2380 
was significantly increased in MBDR2-defficient males as compared to both transgenic 2381 
controls (****Padj<0.0001). Unless noted otherwise one-way ANOVA with Sidak’s 2382 
multiple comparison test was used in all cases. Data is represented as Mean + 95% 2383 
confidence interval (C.I.) of mean. Each p-value was adjusted (Padj) to account for 2384 
multiple comparisons at family-wise α = 0.05. Only the  most conservative value was 2385 
reported for each family-wise comparison.2386 
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Figure 3.2: dMBD2/3-knockdown in OA neurons reduces conspecific aggression and 2387 
increases male-male courtship. 2388 
(A–D) Dyadic agonistic interactions between pairs of males with RNAi-based reduction 2389 
in dMBD2/3 levels in OA neurons (Tdc2-Gal4/+; UAS-MBD2/3IR/+; n=18) and 2390 
individual transgenic controls, UAS-MBD2/3IR/+ (n=23) or Tdc2-Gal4 (n=18). (A) 2391 
Number of lunges (represented by each dot) in a 30 min scoring period after the first 2392 
lunge by either male in a fighting pair. dMBDR2-deficient males exhibited a significant 2393 
reduction as compared to controls (**Padj = 0.0087). (B) No change was observed in the 2394 
average number of wing-threats in dMBDR2-deficient males compared to transgenic 2395 
controls (nsPadj = 0.5106). (C) The latency to first lunge or delay to onset of aggression 2396 
was significantly higher in Tdc2-Gal4/+; UAS-MBD23IR/+ males as compared to 2397 
controls (**Padj=0.0022). (D) Percent of encounters that result in fighting and formation 2398 
of dominance hierarchies showed a modest decrease in experimental groups. Dominance 2399 
was characterized by 3 consecutive lunges followed by chase behavior. (E) Male-male 2400 
courtship measured by the number of unilateral wing extensions within the aggression 2401 
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paradigm was significantly increased in MBD2/3-defficient males as compared to both 2402 
transgenic controls (****Padj<0.0001). One-way ANOVA with Sidak’s multiple 2403 
comparison test was used in all cases. Data is represented as Mean + S.E.M (standard 2404 
error of mean). Each p-value was adjusted (Padj) to account for multiple comparisons at 2405 
family-wise α = 0.05. Only the  most conservative value was reported for each family-2406 
wise comparison.2407 
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Figure 3.3: dMBDR2-knockdown in small subset of OA neurons modulates 2408 
aggression not courtship. 2409 
(A–A’’) Subset of OA neurons in adult brain of tdc2-gal4/UASmCD8:gfp/UAS-Cha-2410 
Gal80 male (nc82 labels neuropil regions - blue; anti-GFP - green; mAb | Gray channel 2411 
panels are shown for enhanced contrast). (B-D) Dyadic agonistic interactions between 2412 
pairs of males with RNAi-based reduction in dMBDR2 levels in a subset of OA neurons 2413 
(Tdc2-Gal4/+; UAS-MBDR2IR/Cha-Gal80; n=18) and individual transgenic 2414 
controls, UAS-MBDR2IR/+ (n=23) or Tdc2-Gal4/+; Cha-Gal80/+ (n=14). (B) 2415 
Experimental males exhibited low baseline levels of male-male courtship measured by 2416 
the number of unilateral wing extensions within the aggression paradigm and were not 2417 
statistically different from one of the transgenic controls (nsPadj=0.0587). (C) Number of 2418 
lunges (represented by each dot) in a 30 min scoring period after the first lunge by either 2419 
male in a fighting pair. Experimental males exhibited a significant reduction as compared 2420 
to controls (**Padj = 0.0020). (D) Males with reduced levels of dMBDR2 in Tdc2-2421 
Gal4/Cha-Gal80 neurons exhibited a significant reduction in the average number of 2422 
wing-threats compared to transgenic controls (**Padj = 0.0031). (E) The latency to first 2423 
lunge or delay to onset of aggression was not altered in experimental males as compared 2424 
to transgenic controls (nsPadj =0.7178). One-way ANOVA with Sidak’s multiple 2425 
comparison test was used in all cases. Data is represented as Mean + S.E.M (standard 2426 
error of mean). Each p-value was adjusted (Padj) to account for multiple comparisons at 2427 
family-wise α = 0.05. Only the  most conservative value was reported for each family-2428 
wise comparison.2429 
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Figure 3.4: Reducing MBD-R2 levels in adult OA neurons recapitulates male 2430 
aggression deficits 2431 
 (AA’–BB’) Side-by-side comparison of 3rd instar larvae (A-A’), and pupae (B-B’) raised 2432 
at 18-19oC expressing GFP under the control of actin promoter (Act5c-Gal4) in the 2433 
presence or absence of temperature-sensitive Tub-Gal80ts repressor. (A-B) represents 2434 
pseudo-colored heat-maps representing intensity of GFP signal which is quantified in 2435 
panels (A’-B’) corresponding to the green horizontal lines cutting across the images. 2436 
UAS-20XmCD8:gfp/+; Act5c-gal4/Tub-Gal80ts larva and pupa raised at 18-19oC display 2437 
a clear absence of GFP signal in comparison to UAS-20XmCD8:gfp/+; Act5c-gal4/+ 2438 
larva and pupa also raised at 18-19oC. (C-E) Dyadic agonistic interactions between pairs 2439 
of males with adult-specific RNAi-based reduction in dMBDR2 levels in OA neurons 2440 
(Tdc2-Gal4/+; UAS-MBDR2IR/Tub-Gal80ts; n=15) and transgenic control, Tdc2-2441 
Gal4/+; Tub-Gal80ts/+ (n=11). (C) Number of lunges (represented by each dot) in a 30 2442 
min scoring period after the first lunge by either male in a fighting pair. Experimental 2443 
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males exhibited a significant reduction in lunges as compared to controls (**P = 0.0085). 2444 
No statistical evidence was obtained for a significant difference in the (D) latency to first 2445 
lunge or delay to onset of aggression (nsP = 0.1357). (E) or number of wing-threats (nsP = 2446 
0.4792) between experimental and transgenic control males. (F) Adult-specific reduction 2447 
in MBDR2 in OA neurons increased male-male courtship measured by the number of 2448 
unilateral wing extensions within the aggression paradigm (**P = 0.0010). Unpaired t-test 2449 
with Welch’s correction for was used in all cases. Data is represented as Mean + S.E.M 2450 
(standard error of mean). 2451 
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Figure 3.5: dMBDR2-deficient males display high-levels of interspecies courtship 2452 
and reduced conspecific-mating 2453 
(A-D) Courtship behaviors of MBDR2-deficient (D. mel, Tdc2-Gal4/+; UAS-2454 
MBDR2IR/+; n=18 and control (D. mel, Canton S; n=16) males towards conspecific (D. 2455 
mel; labeled CS) and interspecific (D. virilis; labeled DV) females in a courtship-2456 
choice/preference assay. (A) Number of unilateral/single wing extensions (singing; SWE) 2457 
towards conspecific and interspecific females. Interspecific wing extensions as a fraction 2458 
of total wing extensions towards either female were calculated as: SWE 2459 
DV/(SWE:CS+SWE:DV). MBDR2-deficient males disproportionately courted interspecific 2460 
female over conspecific female (****p<0.0001). (B) Average length of each unilateral 2461 
wing extension was estimated. Experimental males exhibited an increase in duration of 2462 
interspecific wing extensions (***P = 0.0006). Duration of conspecific wing extensions 2463 
was comparable to the controls (nsP = 0.7142). Control males exhibited shorter wing 2464 
extensions towards virilis females as compared to conspecific females (*P = 0.0434). (C) 2465 
Males with reduced levels of dMBDR2 in Tdc2-Gal4 neurons spent majority of their time 2466 
courting virilis females as compared to transgenic controls (****P< 0.0001). (D) Number 2467 
of interspecific attempted matings or copulatory abdominal bendings in an attempt to 2468 
mount the female were increased in experimental males (***P=0.0002). (E) Courtship 2469 
index (C.I.) was calculated as total time spent courting any female as a fraction of total 2470 
scoring period (600sec). In case of conspecific copulation within the scoring period, time 2471 
to copulation was used as a denominator. Average C.I. of experimental males was similar 2472 
to that of control males (nsP=0.6883) (F) The latency to first single wing extension 2473 
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(courtship) to either female and delay to successful conspecific copulation were measured 2474 
in control and experimental males. As compared to controls, latency to courtship was not 2475 
altered (nsP =0.1637) while conspecific copulation was delayed significantly in Tdc2-2476 
Gal4/+; UAS-MBDR2IR/+ males (*P =0.0153). (G) Percent of assays that resulted in a 2477 
successful conspecific mating event was significantly decreased in MBDR2-deficient 2478 
males (50% mating success rate) as compared to the control groups (81.25% mating 2479 
success). Mann-Whitney test was used in all cases, unless otherwise specified. Data is 2480 
represented as Mean + S.E.M (standard error of mean). 2481 
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Figure 3.6: Selective hypermethylation of OA neurons increases male-male 2482 
courtship 2483 
(A-D) Aggressive behaviors between pairs of males with selectively-induced genomic 2484 
(m5CpG) hypermethylation in OA neurons by expressing mouse DNA methyltransferase 2485 
Dnmt3a (Tdc2-Gal4/+; UAS-Dnmt3a/+; n=20) and individual transgenic controls, UAS-2486 
Dnmt3a/+ (n=21) or Tdc2-Gal4/+ (n=18). No difference was observed in the (A) 2487 
number of lunges in a 30 min scoring period (One-way ANOVA: nsPadj = 0.1357 | 2488 
Bootstrap: FC1-EXP = 12.046, **p=0.001, d=0.571; and Fc2-EXP=3.032, nsp=0.089, 2489 
d=0.279) and (B) number of wing-threats (nsPadj = 0.2354) between experimental and 2490 
control males. (C) Males with selective hypermethylation in OA neurons exhibited a 2491 
significant delay in onset of aggression or the latency to first lunge compared to 2492 
transgenic controls (One-way ANOVA: **Padj = 0.0057 | Bootstrap: FC1-EXP = 9.098, 2493 
**p=0.004, d=0.496; and Fc2-EXP=5.430, *p=0.025, d=0.373) (D) Percent of fights that 2494 
resulted in clear-establishment of dominant-subordinate relationship exhibited only a 2495 
marginal decrease in experimental groups. Dominance was characterized by 3 2496 
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consecutive lunges followed by chase behavior. (E) Tdc2-Gal4/+; UAS-Dnmt3a/+ males 2497 
exhibited an increase in male-male courtship measured by the number of unilateral wing 2498 
extensions within the aggression paradigm as compared to the transgenic control pairs 2499 
(One-way ANOVA: *Padj= 0.0178 | Bootstrap: FC1-EXP = 8.428, **p=0.003, d=0.478; 2500 
and Fc2-EXP=5.146, *p=0.026, d=0.363; d=effect size; C1 and C2 represent respective 2501 
transgenic control groups tdc2-gal4/+ and UAS-Dnmt3a/+). One-way ANOVA with 2502 
Sidak’s multiple comparison test was used in all cases. In case of panels C and E where 2503 
few-extreme values skewed the distribution, instead of data transformations or outlier 2504 
removal, original data was cross-validated by non-parametric bootstrapping-based 2505 
resampling methods (see materials and methods) as these data form critical components 2506 
for subsequent analysis and interpretations with regard to dMBDR2 function. Penal A 2507 
was also cross-checked with bootstrapping methods to avoid selection bias. In all 3 2508 
instances, bootstrapping methods confirmed the validity of parametric ANOVA results. 2509 
Data is represented as Mean + S.E.M (standard error of mean). Each p-value was 2510 
adjusted (Padj) to account for multiple comparisons at family-wise α = 0.05. In most 2511 
cases, only the  most conservative value was reported for each family-wise comparison.  2512 
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Figure 3.7: Effects of dMBDR2-knockdown in OA neurons vary across levels of 2513 
genomic methylation   2514 
(A-B) Two-way (2 x 2) Factorial ANOVA illustrating an interaction effect between 
dMBDR2-knockdown and selectively-induced genomic (m5CpG) hypermethylation in 
OA neurons by expressing mouse DNA methyltransferase Dnmt3a (A) Effect of dMBD-
R2 on the latency to lunge varies significantly across methylation states (Interaction 
dMBDR2 x Dnmt3a: F(1, 111) = 25.08, p < 0.0001; V = 0.1459; Obs. Power = 1.00), and 
(B) Effect of dMBDR2-knockdown on the number of male-male courtship events 
measured by counting unilateral wing extensions between pairs of males also varies 
across levels of Dnmt3a-induced methylation states (Interaction dMBDR2 x Dnmt3a: F(1, 

111) = 37.89, p < 0.0001; V = 0.246; Obs. Power = 1.00. Additionally, a concurrent 
dMBD-R2 knockdown rescues Dnmt3a-induced increase in male-male courtship (F = 
9.055, **p=0.003, d=0.503; Bootstrapped ANOVA. d= effect size, see materials and 
methods).
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Table 3.1: Indicating UAS-Dnmt3a-induced increase in genomic m5CpG levels. 2515 
Reproduced from (Lyko et al., 1999) 2516 
 
----------------------------------------------------------------- 
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