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Reed, Steven (Jim), Doctor of Philosophy, Summer 2019                            Immunology 

Impacts of trogocytosis-mediated intracellular signaling on CD4+ T cell effector cytokine 
production and differentiation 

Chairperson: Scott Wetzel 

Trogocytosis is the direct intercellular transfer of membrane and membrane 
associated molecules. Unlike other passive-membrane transfer events, trogocytosed 
molecules may remain fully functional and become re-expressed on the surface of the 
trogocytosis-positive (trog+) recipient. This phenomenon commonly occurs between 
various cell types, including those of the immune system. CD4+ T cell trogocytosis 
occurs during their activation by antigen presenting cells (APC). Consequently, the 
acquired molecules include ligands for signaling receptors on the T cell. 

The impacts of CD4+ trogocytosis on the immune response are largely unknown. 
While it has been demonstrated that trog+ cells can present trogocytosed peptide:MHC 
(pMHC), and costimulatory molecules to activate other T cells, the consequences of 
trogocytosis on the individual trog+ CD4+ T cell have not been studied in-depth. We 
previously reported that trog+ cells perform cell-autonomous signaling by trogocytosed 
ligands engaging surface receptors, referred here to as trogocytosis-mediated signaling. 
This signaling led to the enhanced survival of trog+ cells in vitro compared to trog– cells 
after APC removal. Because the duration of T cell signaling influences the activation, 
lineage determination, and effector functionality of CD4+ T cells; trogocytosis-mediated 
signaling has the potential to uniquely modulate the effector-cytokine production and 
differentiation of trog+ CD4+ T cell after separation from APC. 

Examining this possibility is the foundation for this dissertation. Here, I will report 
my findings that: 1. Between 0-72 hrs post-separation from APC, trogocytosis-mediated 
signaling drives IL-4 and GATA-3 expression, consistent with T helper type-2 (TH2) 
differentiation; 3. Extended trogocytosis-mediated signaling (>72 hrs) leads to the 
expression of Bcl-6, PD-1, CXCR5, and IL-21, consistent with T follicular helper (TFH) 
differentiation; 4. In absence of exogenous antigen (Ag), trogocytosis-mediated 
signaling is critical for the survival of the activated CD4+ T cells with high memory-
potential.  
         Despite the critical role for CD4+ T cells in generating protective immunity in the 
host, much remains unknown about the differentiation of CD4+ T cell effector subsets. 
The findings here present a novel mechanism for CD4+ T cell activation and 
differentiation via trogocytosis-mediated signaling, demonstrating the broad implications 
for such signaling in matters of public health.  
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Chapter 1 
Introduction 

 

Part I 

Brief overview of the immune response 

 
The immune system provides protection against infection from a multitude 

of pathogens in a series of events orchestrated by various leukocytes (white 

blood cells). The immune response is broadly broken down into three major 

stages, the first being the innate immune response, followed by adaptive 

immunity, and finally, long-lasting protective memory. As suggested by its title, 

the innate immune response occurs rapidly (minutes to hours), and 

independently of specific antigens (Ag). Cells of the innate immune system 

consist of those derived from common myeloid progenitors including: neutrophils, 

mast cells, basophils, and dendritic cells (DC); as well as natural killer (NK) cells, 

NK T cells, γδ T cells, and innate-like lymphocyte (ILC) derived from common 

lymphoid progenitors. A portion of innate cells reside in mucosal and epidermal 

layers to increase detection of pathogens by proximity, while others are found in 

circulation. Innate cells are activated by signaling through pattern recognition 

receptors (PRR) which include toll-like receptors (TLRs), rig-like receptors (RLR) 

and nod-like receptors (NLRs). These receptors detect conserved, pathogen 

associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), viral 

CpG DNA and RNAs, and flagellin. Signaling through PRRs triggers a rapid 

inflammatory response that recruits other immune cells to the site of infection [1-



2 
 

3]. During this stage of the immune response, activated PAMP-stimulated 

antigen-presenting phagocytes, primarily DC, mature and migrate to secondary 

lymphoid organs, such as the lymph nodes. In these tissues they present peptide 

fragments of phagocytosed pathogens loaded into major histocompatibility 

complexes (MHC) to T cells, which are key mediators of the adaptive immune 

response [4].    

 

The Adaptive Immune Response  

Unlike the innate immune response, cells of the adaptive response respond to 

specific antigenic epitopes. Adaptive immunity is established by two primary 

types of lymphocytes; T cells, named after the location of their development in 

the thymus, and B cells which develop in the bone marrow. T cells make up the 

largest proportion (40-75%) of the peripheral blood mononuclear cell population 

and are broken down further into two major subsets determined by CD4 (CD4+) 

and CD8 (CD8+) surface antigens. Cytotoxic CD8+ T cells are associated with 

cell-mediated immunity and the killing of infected cells, whereas the primary role 

of CD4+ “helper” T cells is to mediate the activity of other cells of the immune 

system through contact-dependent stimulation and cytokine secretion. B cells 

secrete protective antibodies (Abs) against Ags on pathogens leading to their 

neutralization, opsonization, or lysis through initiating the classical complement 

cascade and antibody-dependent cellular cytotoxicity (ADCC). An important 

hallmark of the adaptive immune response is the rapid clonal expansion of 

responding lymphocytes resulting in an increase of several orders of magnitude 
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in the number of Ag-specific lymphocytes within days after initiation. This 

expansion typically peaks 5-7 days post-infection and is followed by a rapid 

contraction phase, which coincides with clearance of Ag. Once Ag has been 

cleared, ~90-95% of activated lymphocytes die within a matter of days. The 

remaining cells survive as long-lived memory cells, which are maintained at 

relatively stable numbers for years after infection. In addition to increasing the 

pool of antigen-specific cells, memory cells respond more quickly, and cells are 

pre-differentiated to generate the appropriate type of response for the given 

pathogen. The difference in memory responses vs primary responses is quite 

significant, and the generation of stable memory populations is the basis of 

modern-day vaccines.  

 

Part II 

 CD4+ T cell Activation, Differentiation, and 
Functions in the Immune Response 

 

CD4+ T cell Activation 

CD4+ T lymphocytes play a central role in generating protective immunity against 

infection. The importance of CD4+ cells has been exemplified through the HIV 

epidemic of recent decades, in which viral-depletion of CD4+ cells leads to AIDS 

progression. While low CD4+ levels result in impaired immunity against infection, 

aberrant CD4+ T cell responses can lead to, or exacerbate, autoimmune 

diseases such as asthma [5, 6], allergy [6], multiple sclerosis [7-9], [10-12], 

systemic lupus erythematosus (SLE) [13], psoriasis [14], irritable bowel disease 
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(IBD) [10, 15-20], and tumor persistence, amongst others [21]. Despite the clear 

implications of T cells in modulating the immune response, the mechanisms 

behind T cell activation and subsequent differentiation are still being elucidated. 

Thus, additional research is necessary to develop a comprehensive 

understanding of the mechanisms which govern these events and have far-

reaching implications in human health. 

 

T cell Maturation and Central Tolerance  

                     Due to the profound impact T cells have on the generation of 

immune responses, T cell development is a highly regulated process. The model 

for central tolerance involves two phases known as positive selection and 

negative selection. Both CD4+ and CD8+ T cells arise from common progenitors 

which express CD2 but are double-negative for CD4 and CD8. The majority of T 

cells contain  TCR (while ~20% have  TCR). In early development, diversity 

among the TCR repertoire is established through genetic recombination of DNA 

encoding segments for TCR by RAG1 and RAG2 recombinases. This leads to 

different variable (V) and common chain subunits to be expressed by each T cell 

through recombination of V(D)J regions of the of TCR  chain, and VJ 

recombination in the  chain. For a developing CD4+ T cell to progress through 

primary selection, the rearranged TCR must be able to recognize self-MHCII. 

This step, in positive selection is necessary due to the diversity of MHC proteins 

between individuals. In fact, the Human MHC is locus (referred to as HLA, for 

human leukocyte antigen) is the most polymorphic region in the human genome, 
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with >10,000 different alleles identified to-date [22, 23]. As a result, depending on 

the number of different inherited alleles, an individual may express up to 6 

different MHC I molecules, or haplotypes. MHC II are made up of two subunits (A 

and B), and humans can express between 3 and 12 different MHC II molecules 

[23]. In mice, there are three classical MHC I subclasses, (H2-K, D, L) and two 

MHCII classes H-2A(I-A) and H-2E(I-E) with many haplotypes indicated by lower 

case superscripts (such as I-Ek) seen later in this dissertation [24]. Endogenous 

T cells in the periphery only recognize Ag presented by host MHC haplotypes, 

but foreign MHC molecules have the potential to be antigenic as evident through 

the large role these molecules have in transplant rejection [25, 26]. During 

positive selection, if the re-arranged TCR cannot recognize self-MHC, the T cell 

dies from lack of stimulation in the cortex of the thymus. Negative selection 

subsequently serves to eliminate strongly self-reactive T cells which could lead to 

autoimmunity. During negative selection, single-positive CD4+ T cells which have 

survived the process of positive selection are exposed to a variety of self-Ag by 

medullary thymic epithelial cells (mTECs), along with DCs and macrophages, 

which present various self and non-self Ags. T cells that have high affinity TCR 

for self-Ags are eliminated through APC-induced apoptosis, while some lower-

affinity self-reactive T cells are programmed to become natural T regulatory 

(nTreg). T cells that recognize self-Ag weakly, or not at all are able to exit as 

mature, naïve T cells and circulate throughout the periphery. Central tolerance 

results in a population of mature T cells that display, each of which displays 

unique T cell receptor (TCR) specificity for a single peptide epitope (Ag). Thus, 
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the population of T cells can recognize a diverse array of Ags, while limiting the 

risk of unwanted immune responses by maintaining high Ag specificity. 

                The peptides presented to CD4+T cells are typically 12-25 amino acids 

in length, and alterations in the sequence may alter the T cell response 

significantly. While each TCR has a precise sequence for optimal Ag-recognition, 

TCR may recognize similar peptide sequences (with ~1-3 amino-acid 

substitutions) with varying affinity. Lower affinity interactions typically lead to a 

weaker TCR ligation, and subsequent TCR signaling. Therefore, a single amino 

acid replacement could be the difference between a T cell becoming activated or 

not [27]. Due to the immense diversity among TCRs, and physiological  

limitations of an organism, the frequency of circulating naïve T cells which 

recognize a particular epitope is approximately 0.01%, or roughly 100 cells in a 

WT mouse [28]. Peripheral naïve CD4+ T cells circulate throughout the lymphatic 

system where in lymph nodes (LN), they scan 160-200 DC per hour in search of 

cognate peptide:major histocompatibility complexes (p:MHC) complexes [29]. 

 

Regulation of T cell Activation  

T cell activation requires TCR recognition of antigenic peptide presented 

by MHC on the surface of an APC. However, recognition of cognate p:MHC and 

subsequent TCR signaling alone is insufficient to drive complete activation. In 

order to become fully activated, naïve CD4+ T cells require concurrent 

costimulatory receptor engagement including CD28, ICOS, and CD27 [30, 31]. 

The critical role of costimulatory signaling in T cell activation is apparent, as in 
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models where costimulatory molecules were knocked out, ~8000 TCR:pMHC 

contacts were required to induce T cell activation and proliferation. In the 

presence of CD28 signaling, this number was reduced to only ~1500 contacts 

[32]. In typical immune settings, insufficient costimulatory signaling following Ag 

recognition results in the T cell becoming hyporesponsive, or “anergic” [33].  

This checkpoint limits the activation of CD4+ T cells in absence of 

infection, as T cell costimulatory ligands such as CD80/CD86 (ligands for CD28), 

ICOS-L, and OX40L are not highly expressed on resting APC, but become 

upregulated following PRR stimulation [34]. Initial priming and activation of naïve 

T cells primarily occurs through interaction with DC [35], however B cells are also 

potent APC later in the response after many Ag-bearing DC have died, and Ag-

specific B cells have become abundant following clonal expansion [36].  

              Activated T cells, and memory cells have been observed to respond 

more quickly to stimuli compared to naïve T cells [37], although the exact 

mechanism for these differences is unclear. One study has proposed that it may 

be attributed to differential signaling through Erk pathways in naïve vs previously 

activated cells [38]. Other studies have found that memory cells have higher 

levels of ZAP-70, thus may more readily form TCR signaling complexes than 

naïve cells [39]. In addition, activated cells are significantly larger than naïve 

cells, so the number of initial TCR:pMHC contact points is likely greater on 

activated cells. These results suggest that CD4+ T cells that have passed through 

the initial activation checkpoints and undergone clonal expansion require less 

stimuli compared to naïve T cells. 
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T cell:APC Interactions 

The Immune Synapse 

A single T cell expresses ~30,000 TCR, while an APC typically displays ~100 

cognate ligands spread across the cell surface [40, 41]. In the case of naïve 

CD4+ T cells, interaction between a single TCR:pMHC is insufficient for complete 

activation. In order to obtain sufficient levels of TCR and costimulatory signaling 

required for activation, engagement of TCR with cognate p:MHC complexes 

leads to the formation of the immunological synapse [42-49]. Initiation of the 

immunological synapse may be triggered by a single TCR:pMHC interaction, but 

an elegant study by Irvine et al., visualized labeled peptide bound to MHC, and 

found 10 or more TCR:pMHC ligands are necessary to produce a functional 

immunological synapse [50]. The formation of the immunological synapse 

involves the spatio-temporal rearrangement of the TCR, costimulatory molecules, 

and adhesion molecules into distinct, spatially-segregated supra-molecular 

activation complexes (SMACs)  [48, 51-54]. This rearrangement is actin-

dependent [55, 56], and is initiated by a rapid calcium influx initiated upon 

TCR:pMHC ligation. In effector cells, TCR and costimulatory molecules such as 

CD28 and ICOS, as well as the regulatory molecule CTLA-4, form connections at 

multiple points of T cell:APC contact and rapidly migrate towards the center of 

the SMAC forming the central SMAC (c-SMAC) [45, 57, 58]. Exclusion of 

adhesion molecules from the c-SMAC leads to the formation of a proximal ring 

(p-SMAC) of adhesion molecules such as LFA1-ICAM1, talin, and CD4 around 

the c-SMAC, stabilizing the interaction. Surrounding the p-SMAC are larger 
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molecules not directly involved in the immune synapse including CD43, CD44, 

and CD45, which form a distal SMAC (d-SMAC) [42, 47]. 

                This entire process of rearrangement typically occurs within 2-3 

minutes of initial Ag recognition [31, 59]. As TCR reach the center of the c-

SMAC, they lose signaling capacity and become internalized by the T cell and 

are either recycled to the surface or are ubiquitinated, leading to their 

degradation [60]. The loss of TCR signaling and surface expression have been 

proposed as a mechanism for dissociation from APC [61], though the exact 

events which initiate the termination of the immunological synapse remain 

unknown. The inhibitory molecule CTLA-4 which shares the APC ligands CD80 

and CD86 with the T cell costimulatory molecule CD28 may also be involved in 

dissociation of the immune synapse by outcompeting CD28 for shared ligands on 

APC [62]. Dissociation from APC generally occurs within 15-60 minutes in 

activated CD4+ cells [31]. Naive CD4+ T cells tend to maintain longer synapses 

and have been commonly observed to maintain contact with APC for hours [63]. 

One study found that at the immunological synapse, as many as 20,000 TCRs 

could be triggered by only 100 p:MHC complexes [64], showing the great 

efficiency of the immunological synapse in T cell activation. Depictions of the 

formation of the immunological synapse, and molecules involved are seen in 

figure 1 below. 
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Kinapses, and Microvessicles and the Distal Pole 
Complex 
 

Immune Kinapses 

Immune synapses are not the only mechanism for T cells to receive stimulation. 

Shorter-lived interactions between highly motile T cells and APC also occur and 

have termed kinapses [46, 57]. Similar to the immunological synapse, kinapses 

typically have a focal point of contact between the T cell and APC. However, 

unlike synapses that are stable structures, with kinapses the T cell does not 

arrest upon TCR signaling thus, these are unstable structures and signaling is 
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intermittent [65]. From imaging experiments, signaling molecules that are found 

in the cSMAC of a classical synapse appear to be localized to the trailing edge 

(uropod) the migrating T cell (Fig. 1.2B). 

 

 

 It has been proposed that kinapses may form as opposed to a classical synapse 

due to the high mobility of the T cell, or in cases where chemokine receptor 

signaling is greater than signaling triggered by APC molecules [57]. Recently, an 

elegant study by Akkaya et al., proposed a model for kinapse morphology 

involving T cell microvilli, (small protrusions containing TCR/costimulatory 

molecules on the surface of T cells) that form the main points of contact during 

synapses [66].  
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            Kinapses are not generally associated with the activation of naïve T cells, 

though it has been found multiple kinapses can result in the accumulation of 

sufficient signaling to drive T cell activation [67]. Kinapses also serve as a 

mechanism to maintain the activation state of already activated T cells [67]. 

These findings, combined with the proposed model for kinapse formation via 

microvilli [66], suggest that microvilli may play a larger role than previously 

thought in the context of active TCR signaling. 

 

Microclusters 

                  A third physically distinct signaling mechanism that has been 

observed between T cell and APC involves small clusters of TCR and 

costimulatory molecules such as CD28 termed microclusters. The initiation of 

both the immune synapse and formation of microclusters involve filamentous like 

protrusions on the T cells known as microvilli [66, 68]. Microvilli have high 

concentrations of TCR, thus enabling T cells to efficiently scan the surface of 

APC for pMHC complexes. Microvilli also contain costimulatory molecules such 

as CD28. Microclusters form outside of the dSMAC upon microvilli binding pMHC 

and costimulatory molecules on APC. These microcluster signaling complexes 

provide a major source of TCR/costimulatory molecule signaling. The synaptic 

microcluster morphology commonly occurs in synapses formed with DC [45], 

while the classical “bulls-eye” centrally focused synapses are predominantly 

formed during Ag presentation by B cells [45, 69]. Because DC play a primary 

role in the activation of naïve T cells, this is a notable observation. 
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One particularly interesting aspect of TCR microclusters is their unique migration 

patterns. Signaling via microclusters precedes the formation of the immunological 

synapse, and rapidly initiates (0-30 seconds) following engagement of TCR and 

MHC and CD28:CD80/86. Microclusters generally migrate towards the cSMAC, 

but also have been observed to migrate away from the immunological synapse 

and localize at the distal pole of the T cell [70].  In contrast to some of the original 

models of the immune synapse, where maximal signaling was predicted to occur 

in the cSMAC, more recent models suggest that TCR signaling primarily occurs 

in microclusters outside of the SMAC  [69, 71-73]. It has been proposed that 

while active signaling is occurring in the microclusters, the cSMAC mainly serves 

as the location where TCR that are no longer actively signaling are endocytosed 

and either recycled to the surface or ubiquinated, leading to their destruction [69, 

74, 75].              

             Curiously, microclusters migrating away from the immune synapse have 

been shown to retain active TCR signaling, despite their apparent lack of APC 

contact [70, 76]. An interesting study by Hashimoto et al., observed that TCR 

microclusters form a surrounding ring of adhesion molecules, and on a micro-

scale are similar in structure to the immunological synapse [71] (Fig. 1.3). 

Microclusters outside of the cSMAC have also been observed to exclude the 

phosphatase protein CD45 [74]. CD45 can act to enhance TCR signaling through 

the dephosphorylation of autoinhibitory tyrosine in clusters of Lck [77]. On the 

other hand, CD45 also plays an important role in regulating TCR signaling by 

dephosphorylating ITAMs and TCR in the sMAC, leading to the termination of the 
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TCR signaling [78, 79]. The formation of the ring surrounding TCR microclusters 

has been thought to aid in their exclusion of CD45, permitting TCR signaling to 

be maintained in absence of APC contact.  

 

 

The Distal Pole Complex 

During the formation of the immunological synapse, cytoskeletal rearrangements 

and establishment of an active signaling location leads to distinct polarity within 

the T cell. This axis of polarity is established as TCR and costimulatory 

molecules migrate towards the T cell:APC interface to form the proximal pole, 

which is the location of the highest active signaling. Concurrent with the 

formation of the synapse, surface molecules not involved in the immune synapse 

such as CD43, SHP-1, PI3K, scribble (PKCζ), Numb, Par3/6, and Disks Large 

(hDLG) [80], migrate to the side of the T cell directly opposite the immune 

synapse. Together these molecules form the distal pole complex (DPC) [70].  

                While the DPC contains negative-regulators of T cell activation, 
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surprisingly, active signaling of molecules including ZAP-70, have also been 

observed to occur at the DPC [76, 81]. Although the mechanism is unknown, the 

presence of active TCR signaling at the DPC has been observed to precede the 

formation of the immune synapse in a TCR-independent, but contact-dependent 

manner [70]. Randriamampita et al. have termed active signaling at the DPC the 

“antisynapse”. [76]. Upon formation of a stable immunolocigal synapse, actively-

signaling TCR at the antisynapse are recruited to the proximal pole until 

eventually signaling localized to the distal pole is no longer detectable [70]. The 

mechanisms behind active TCR signaling at the distal pole have not yet been 

characterized [76]. However, it is likely that the antisynapse is formed by 

microclusters which retain active signaling outside of the cSMAC [74, 76]. 

 

Additional Variables That Influence Synapse 
Morphology  
 

               While it has been suggested that T cell activation via microclusters vs 

classical synapse are dependent on APC cell type, factors such as Ag dose, or T 

cell subset also have been shown to influence the morphology of the T cell:APC 

interaction [31, 82]. For example, Thauland et al., found that the majority of pre-

polarized TH2 cells formed multifocal synapses with low doses of Ag, while high 

doses lead to the majority of synapses forming the classical “bull’s-eye” 

morphology [83]. Meanwhile, polarized TH1 cells formed canonical synapses 

under both low and high Ag dose [83] (Fig. 1.4). 



16 
 

 

         The existing models of T cell activation, requires the ligation of many TCR 

by pMHC, CD28 ligation with CD80/CD80, and the interaction of adhesion 

molecules. Thus, regardless of the physical location of these interactions, 

synaptic or microclusters, a period of stable signaling molecule ligation is 

necessary to achieve full CD4+ T cell activation. 
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T cell Signaling: Pathways, Consequences, and 
Regulation 
 
T cell activation 
 
Following TCR and costimulatory receptor engagement, downstream signaling 

leads to the activation of three canonical transcription factors which play the 

primary roles in T cell activation, proliferation, and differentiation. These 

transcription factors are; nuclear factor-κB (NF-κB) (required for proliferation and 

differentiation), activator protein 1 (AP-1) (involved in IL-2 production and 

activation), and nuclear factor of activated T cells (NFAT) (drives IL-2 and IL-2Rα 

expression, and important in effector functions and differentiation) [84]. An 

overview of T cell signaling events is shown in figure 1.5.  

Following recognition of p:MHC by TCR formed by αβ heterodimers, the 

Src-family kinase p56Lck (Lck), which is non-covalently associated with CD4 

molecules, is recruited to the TCR signaling complex [85]. Lck is recruited to the 

early synapse, upon CD4 binding to the non-polymorphic β2 domain of MHCII 

[86]. CD4 is therefore often categorized as part of the TCR signaling complex, 

and also acts as a coreceptor because it enhances the sensitivity of TCR by up 

to 100-fold [87-90]. Upon removal of an autoinhibitory phosphate by CD45, and 

phosphorylation of Tyr 505, activated Lck phosphorylates immunoreceptor 

tyrosine-based activation motifs (ITAMs) on the CD3 and TCR ζ chains, which 

then become binding sites for the SH2 domains of the Syk-family kinase zeta 

associated protein 70 kDa (ZAP-70) [91]. Lck phosphorylates and activates 

recruits ZAP-70. Phosphorylated Ltk/ZAP-70 stabilize the TCR signal [92] and 
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phosphorylate four major tyrosine sites on the adaptor protein linker of activated 

T cells (LAT). The proximity of LAT to TCR-signaling complexes is maintained via 

its single transmembrane domain, and the multiple cytoplasmic binding domains 

of LAT serve as scaffold for multiple signaling molecules. The recruitment of 

these signaling molecules to activated LAT forms the proximal signaling complex 

which plays a central role in the initiation of the multiple signaling pathways 

downstream of TCR signaling [93]. The formation of this complex promotes 

interaction with recruited proteins including the adaptor Grb2-related adaptor 

protein-2 (GRAP2/Gads), SLP-76, IL-2 inducible T cell kinase (ITK), Grb2, p85 

PI-3 kinase, and phosphoinositide-specific phospholipase C1 (PLCγ1) [94]. Here 

the signal diverges through signaling of GRB2/SOS and SLP-76, as well as 

PLCγ1, to act on different transcription factors involved in T cell activation.   

               Grb2 and Gads are adaptor proteins which bind Son of Sevenless 

(SOS) and SLP-76, leading to Ras and subsequent MAP kinase cascade. This 

signaling cascades leads to ERK1/2 activation, which acts in the nucleus to 

regulate c-Jun and c-Fos, which form the AP-1 transcription factor. AP-1 plays 

roles in IL-2 production by binding to the IL-2 promotor to induce gene 

expression and also stabilizes IL-2 mRNA [95]. Its activation also promotes 

survival by indusing expression of the anti-apoptotic gene Bcl-xL [96]. 

Downstream of AP-1, NF-κB activation occurs, which drives T cell proliferation 

and differentiation through IL-2 expression, enhancing translation of subset-

specific transcription factors, increased effector functions, and upregulation of 

surface activation and costimulatory markers [93, 97-99].  
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           PLCγ1 hydrolyzes PIP2 to generate the secondary messengers inositol 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which activate different 

downstream pathways. IP3 diffuses in the cytoplasm and becomes bound by its 

receptor (IP3R) on the endoplasmic reticulum (ER). This causes the release of 

Ca2+ stores from the ER leading to the subsequent influx of extracellular calcium 

through channels in the plasma membrane. Elevated levels of cytosolic 

Ca2+ activate various proteins, including the phosphatase calcineurin. Calcineurin 

dephosphorylates the transcription factor nuclear factor of activated T cells 

(NFAT), allowing it to traffic into the nucleus. In the nucleus, NFAT is involved in 

stabilization and induction of lineage-specific transcription factors T-bet (TH1), 

Gata3 (TH2), RORγt (TH17), and Foxp3 (iTreg) [100]. The specific transcription 

factor NFAT promotes is dependent on the convergence of other signaling 

pathways such as cytokine receptor signaling to activate respective STAT 

signaling pathways. NFAT also is critical for the expression of IL-2 and IL-2Rα 

(CD25), which enable T cell proliferation [101].  

Activated DAG initiates signaling in two pathways. The first pathway 

involves the calcium independent activation of protein kinase Cθ (PKCθ). DAG 

binding to PKCθ leads to conformational changes in PKCθ to form an open, 

active state. Activated PKCθ can phosphorylate cytoplasmic IkB kinase (IKK), 

leads to NF-κB translocation to the nucleus where it acts as a transcription factor 

driving T cell proliferation and differentiation [102]. The second role for DAG is to 

initiate the RAS – MAPK cascade ending with the activation of kinases ERK1/2 
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which, as described above, leads to the nuclear translocation and activation of 

AP-1.   

At the immunological synapse, costimulatory signaling primarily involves 

the costimulatory receptor CD28. CD28 ligation activates phosphoinositide 3-

kinase (PI3k) which subsequently phosphorylates phosphatidylinositol 4,5-

bisphosphate (PIP2) to yield phosphatidylinositol (3,4,5)-trisphosphate (PIP3). 

PIP3 recruits proteins to the inner leaflet of the plasma membrane, such as ITK 

kinase [103]. ITK binds to PIP3 and SLP-76, which localize it to the plasma 

membrane and cause its activation. Activated ITK can then phosphorylate 

PLCγ1, thus CD28 signaling pathways converge with TCR signaling to amplify 

RAS/MAPK and PCKθ signaling. CD28 signaling also increases expression of 

the costimulatory CD40L to aid in the maintenance of T cell activation [104]. 

Signaling through CD28 alone can enhance the survival of activated T cells.  

Importantly, TCR + CD28 activation of PI3k also activates the protein 

kinase B (Akt) / mammalian target of rapamycin (mTOR) signaling pathway. 

mTOR includes two unique signaling complexes mTORC1 and mTORC2. 

Through inhibition of STAT signaling, mTORC1 has been found to play a role in 

TH1, TH2, and TH17 differentiation, while a role for mTORC2 has only been found 

in the differentiation of TH1, and TH2 [105]. While early studies suggested the 

absence of mTOR signaling in the presence of TCR signaling led to anergy [106], 

more recent studies have found that absence of mTOR signaling leads to 

induction of Treg [107]. mTORC1 signaling leads to glycolysis, and trafficking of 

the glucose transporter Glut1 to the cell membrane [108].The induction of 
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mTORC glycolic metabolism is associated with CD4+ effector function. It also is 

directly involved in protein synthesis through inhibition of eukaryotic initiation 

factor 4E binding protein (4EBP1) (which inhibits protein translation), and 

activation of p70 S6K ribosomal protein [109, 110]. In addition, mTORC1 

increases lipid metabolism and synthesis, as well as mitochondrial biogenesis 

which aids in T cell effector functionality and clonal expansion [111]. mTORC2 

acts by phosphorylating other proteins including Akt, which forms a positive 

feedback loop [112], leading to increased cell survival, cytoskeletal organization 

and migration [113]. mTOR signaling can lead to increased effector functionality 

by promoting the production of effector cytokines [114]. Collectively, the mTOR 

signaling complex integrates multiple cell signaling events to regulate cell 

proliferation, differentiation, effector functionality, and survival.   
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Regulation of T cell signaling 

Proximal signaling through ZAP-70 is negatively regulated by the binding of the 

E3-ubiquitin ligases Cbl c-Cbl and Cbl-b. Cbl ubiquinates lysine residues on ZAP-

70 targeting it for proteasomal degradation [115]. Excessive Cbl-recruitment can 

lead to insufficient signaling for activation and is largely associated with T cell 

anergy. While anergic T cells are able to form mature immunological synapses, it 

was found by Doherty et al., that anergic synapses showed higher recruitment of 

Cbl-b to the cSMAC compared to control cells, leading to decreased pERK 

signaling [116]. Cytoplasmic phosphatases have also been shown to reduce 

ZAP-70 activity through removal of activating tyrosine phosphate [117]. 

Dysregulation of ZAP-70 signaling can lead to cell exhaustion, or excessive 

responses implicated with autoimmune diseases. Along these lines, inhibitors of 

ZAP-70 signaling have been proposed for use in treatment of autoimmune 

diseases and organ transplant rejection [118, 119].    

The Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), which is 

expressed after T cell activation, binds to the same ligands as CD28 

(CD80/CD86), but rather than providing positive costimulation, CTLA-4 signaling 

inhibits T cell activation [120]. CTLA-4 resides in intracellular vesicles and upon 

strong TCR ligation, these vesicles move to and fuse with the plasma membrane 

delivering CTLA-4 into the immunological synapse [121, 122]. Although 

expressed at much lower levels than CD28, CTLA-4 binds to CD80/86 with 

significantly higher affinity than CD28. CTLA-4 ligation provides competitive 

inhibition of costimulatory signaling, as well as inducing unique signals that inhibit 
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IL-2 production [120]. The immunoregulatory effects CTLA-4 comes from studies 

using antibody-mediated blockade of CTLA-4 signaling, which has become a 

promising component in anti-tumor therapies [123, 124]. However, the absence 

of CTLA-4 has also been shown to lead to CD28-mediated autoimmunity in mice 

and humans [62, 125]. In these particular cases, it is likely that CTLA-4 blockade 

not only increased costimulatory signaling through CD28, but also decreased the 

function of Treg. The high expression levels of CTLA-4 by Treg plays an important 

role in peripheral tolerance, and are discussed in greater detail in later sections.   

 

Events Following T-cell Activation 

T cell Clonal Expansion 

Following activation, naive CD4+ T cells rapidly proliferate, resulting in clonal 

expansion of up to 100,000-fold within 3-4 days [126]. Despite early contradictory 

findings [127], continued Ag signaling is not required during the expansion phase 

[128, 129]. This allows for rapid T cell proliferation without the requirement for 

daughter cells to scan APC for Ag. Clonal expansion leads to a massive increase 

in Ag-specific lymphocytes which can then rapidly clear an infection. It also 

underscores the necessity for the regulation of T cell activation through activation 

checkpoints and Treg, in order to conserve physiological resources and prevent 

unwanted inflammation and autoimmunity due to potential self-reactive T cells 

that have escaped negative selection.  

Following expansion, activated CD4+ effector cells provide “help” to other 

cells of the immune system through effector-cytokine secretion and contact 
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dependent mechanisms [130]. Effector T cells undergo a genetic reprogramming 

into specialized lineages of T helper TH subsets. Each TH subset exhibits effector 

functions associated with protection against a given type of pathogen, or 

interacts with a specific type of cell, such as TFH help for B cells. This 

reprogramming from undifferentiated precursors is known as T cell differentiation.  

 

CD4+ T Helper Differentiation 

The immune system must be highly adaptable in order to provide protection 

against a diverse array of pathogens with various modes of infection. For 

example, a cell-mediated response is optimal for combating intracellular 

pathogens, while a humoral response leading to the production of antibodies is 

more effective at neutralizing extracellular infections. Typically, a fine balance is 

required to provide optimal protection. CD4+ T cells play a central role in directing 

the type of immune response generated.  They are differentiated from naïve, 

undifferentiated precursors, into specialized subsets upon activation. While some 

T cell lineages such as natural T regulatory (nTReg) [131], and NK T cells [132] 

are predetermined during maturation in the thymus, the majority of naïve CD4+ T 

cells in the periphery are undifferentiated. 

The first insights into TFH differentiation came from the work of Mossmann 

and Coffman in the late 1980s when they observed two distinct subsets of CD4+ 

T cells that produced either IFNγ (TH1), or IL-4 (TH2) [133, 134]. In the years 

since, new subsets with specialized functions have been discovered including 

TH17, TH9, TH22, induced T regulatory (iTreg/ Treg), T follicular helper (TFH), and 
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cytotoxic CD4+ T cell (CD4+ CTL) [135-137].  The primary model for naïve TH 

differentiation, known as the three-step model, proposes that TCR signaling 

primes the T cell (step 1), while costimulatory signaling is required for T cell 

activation (step 2). The effector subset differentiation is driven by cytokine 

signaling concomitant with, or shortly after, activation (step 3). This differentiation 

is ultimately controlled by PRR signaling in APCs, which leads to the expression 

of cytokines associated with protection against the encountered pathogen. In this 

way, CD4+ T cells differentiate into lineages which promote the most effective 

immune response against the pathogen at hand [138] (Fig. 1.6).   
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While this model holds true for the majority of TH differentiation cases, 

recent evidence has found this process to be more complex than initially thought. 

One example comes from findings that the strength of TCR signaling may 

override cytokine signaling in the context of TH2 differentiation. Weak TCR 

signaling has been found to drive cells to differentiate towards TH2 even when 

cells are in a TH1 -polarizing environment  [139]. In contrast, strong TCR signaling 

has been shown to favor TH1 differentiation [82, 140, 141]. The duration, or 
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persistence, of TCR and costimulatory signaling also impacts TH  differentiation, 

with short-lived interactions favoring a TH2 phenotype and longer synapses 

promoting TH1 differentiation [82]. In the case of TFH cells, repeated cognate 

interactions with cognate APC are required for their differentiation  [142, 143]. To 

add to the complexity, under opposing polarizing conditions, there is plasticity 

between differentiated TH  subsets, and concurrent expression of two or more 

subset-characteristic cytokines and/or transcription factors in the same TH  cell is 

possible [144-149] (Fig. 1.7B) 
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Functions of CD4+ TH Subsets 

As described above, while TH differentiation is a complex process, the cytokines 

present at the time of activation play a major role in TH-subset differentiation. 

Through the activation of specific STAT proteins, cytokine signaling is able to 

activate transcription factors that act as master regulators of differentiation, and 

the expression of cytokines which further drive TH differentiation, or by inhibiting 

the expression of transcription factors associated with other TH subsets. The 

cytokines, transcription factors, and primary functions associated with known 

effector subsets is shown in table 1 below.  
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TH1: Cell-mediated immunity against intracellular pathogens 

TH1 differentiation is driven primarily by the polarizing cytokine IL-12, while IL-18, 

IL-23, and IL-27 also favor TH1 differentiation [150]. Meanwhile opposing signals 

from IL-4 can inhibit TH1 differentiation and effector functionality [151]. Although 

other APC are capable of driving TH1 differentiation, CD8α+ dendritic cells (DC) 

localized in lymphoid organs [152] secrete IL-12, thus are effective promoters of 

promoting TH1 differentiation [153]. The master transcriptional regulator T-bet 

inhibits GATA3 expression [154], and is a defining marker for TH1 lineage [150]. 

Strong TCR and costimulatory signaling through high Ag dose [155-157], and 

extended T:DC interactions also favors TH1 differentiation [157]. TH1 cells aid in 

cellular-mediated immunity through secretion of IFNγ, IL-2, TNFα and TNFβ, 

which activate cytotoxic CD8+ T cells (CTL) and NK cells to kill infected cells 

[158], or tumors [159, 160]. These cytokine also induce nitric oxide production in 

macrophages to enhance pathogen killing [161, 162]. IFNγ induces B cell class 

switching towards IgG2 Ab production which are highly effective in activating the 

classical complement pathway [163, 164]. Aberrant TH1 responses contribute to 

pathogenicity of organ-specific autoimmune diseases including type 1 diabetes, 

psoriasis, Crohn’s disease, and multiple sclerosis [7, 153, 165] 
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TH2: Humoral-Mediated Immunity and Protection Against 
Extracellular Pathogens 

TH2 differentiation cells are identified by the master regulator transcription factor 

GATA3 [166, 167], and produce effector cytokines IL-4, IL-5, IL-6, and IL-13. The 

presence of IL-4 following activation drives GATA3 expression via STAT6 

signaling [168], while IL-12 negatively regulates TH2 differentiation [169]. IL-4R 

signaling not only prevents TH1 differentiation, but also negatively regulates IFNγ 

expression [170], following a clear pattern for TH1/TH2 negative regulation. In 

addition, IL-2-induced STAT5 has been found to be required for TH2 

differentiation [171]. Lower signal strength or short interactions with APC favor 

TH2 differentiation [139, 156, 172], thought to be due to weaker signaling  leading 

to early IL-4 production [173]. Some contrasting reports have found high signal 

strength to drive TH2 differentiation [174, 175], and the consensus is that either 

low, or high signal strength can drive TH2 differentiation, while medium to high 

signal strength drives TH1 [155-157].  

These cells specialize in providing B cell help through directed cytokine 

secretion upon recognition of cognate Ag displayed by the B cell. The cytokines 

IL-4 and IL-6 in particular are important in driving B cell class switching and 

proliferation in the germinal center response, with IL-4 favoring class switching 

towards IgE and IgG1 isotypes [6, 176]. TH2 cells activate eosinophils [177] and 

play a role in airway inflammation. TH2 responses are also associated with 

protection against large extracellular pathogens such as helminths [178]. 

Dysregulation in the activation of TH2 cells can lead to increased allergic 
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inflammation, ulcerative colitis, atopic dermatitis, chronic rhinosinusitis, as well as 

airway inflammation and asthma [6, 165, 179].  

TH17: Mucosal and Surface-Barrier Immunity 

The third effector subset of CD4+ T cell to be identified were TH17 cells, induced 

by a combination of TGFβ + IL-6 or IL-23 signaling leading to the expression of 

transcription factors STAT3, RORγt, and RORα [180]. While TNFα, IL-21, and IL-

23 can enhance TH17 differentiation, IL-4, IFNγ, IL-12, and IL-27 inhibit their 

differentiation. TH17 cells secrete IL-17A, IL-17F, IL-21, IL-22, and granulocyte-

macrophage colony-stimulating factor (GM-CSF) [181, 182]. These cells are 

associated with inflammation and mucosal immunity, primarily act at barrier 

tissues, and provide protection against extracellular bacteria, fungi, and enteric 

parasites such as Giardia [183, 184]. IL-17 in combination with IL-22 has been 

found to induce expression of β-defensin 2 and other antimicrobial peptides, 

suggesting that TH17 cells play a role in skin immunity [185]. Cytokines produced 

by TH17 cells can induce neutrophil production, and lead to recruitment of other 

immune cells to sites of inflammation. TH17 cells are also able to regulate the B 

cell Pigr gene, which is crucial for the expression of the poly Ig receptor for IgA, 

pIgR. The pIgR enables IgA molecules to cross luminal membranes [183], again, 

demonstrating the important role TH17 cells play in mucosal immunity. As TH17 

cells are associated with inflammation, excessive TH17 responses have been 

found to play a role in exacerbation of diseases in a manner similar to TH1 cells. 

Excessive numbers of TH17 likely increases pathology of psoriasis [14], as drugs 

which neutralize IL-17A have been effective in reducing the symptoms of 
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psoriasis [186]. IL-17A has also been associated with rheumatoid arthritis, 

multiple sclerosis, airway inflammation and COPD, asthma, atopic dermatitis, 

and irritable bowel disease [10, 15-20].  

 

TH22: Surface barrier immunity 

TH22 cells are a more recently described subset of cells, which are related TH17 

cells. it has been found that TH22 cells are identified by expression of the 

transcriptional regulator, the Aryl Hydrocarbon Receptor (AhR) and they produce 

TGFα and IL-22, but not IFNγ, IL-4, or IL-17 [187]. It has been proposed that IL-

22 differentiation is driven by IL-6, IL-23, IL-1β, and FICZ [188]. While originally 

considered to be identical to TH 7 [185] these cells have roles in immune function 

distinct from TH17 cells [189]. High numbers of TH22 localize to the epidermis and 

TH22-produced IL-22 has been found to play important roles in protection against 

enteropathogenic bacteria [190]. The impact of IL-22 differs between locations, 

as pathogens may enter through the skin, gut, and respiratory tract [191, 192]. 

However, the end result is production of antimicrobial peptides on surface 

barriers, and mucus-associated glycoproteins at mucosal barriers, both which 

provide defense against bacterial infection [193]. IL-22 also exhibits epithelial 

reparative and regenerative properties [194]. Interestingly, the depletion of TH22 

cells during HIV infection led to the epithelial barrier becoming compromised due 

to decreased IL-22 levels, suggesting IL-22 may play a role in protection from 

HIV, among other viral infections, at mucosal membranes [194]. Excessive TH22 
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responses can exacerbate symptoms of rheumatoid arthritis [10, 19], skin allergy 

[195] and atopic dermatitis, psoriasis, irritable bowel syndrome, and potentially 

systemic lupus erythematosus (SLE) [13]. 

 

TH9: Type-2 Associated extracellular Pathogen, (and anti-tumor?) Immunity 

The recently discovered TH9 subset [196] is induced by IL-2 and IL-4 + TGFβ 

[197] and is typically associated with a type 2 Immune response. TH9 cells 

require transcription factors STAT6, IRF4, GATA3, and are identified by 

expression of PU.1 [198]. While the redundancy of TH9 cells with TH2 has led to 

uncertainty whether they play an indispensable role in immune protection, TH9 

cells have been found to uniquely  produce IL-10, IL-21, and IL-9 [137]. IL-9 

stimulates growth, proliferation and survival of T cells and mast cells, increases 

secretion of mucus, and enhances IgE production by B cells [199-202]. 

suggesting a protective role for TH9 cells in mucosal immunity. Results have 

found TH9 cells drive immunity against helminth infection [203] through 

increasing IL-5 and IL-13 production in T cells, and basophil and eosinophil 

numbers at the site of infection [204]. IL-9-secreting cells have also recently been 

found to play a role in anti-tumor immunity in melanoma models [205, 206]. While 

the mechanism for IL-9 driven anti-tumor activity is unclear, it was proposed that 

IL-9 induced recruitment of mast cells [205], DC and cytotoxic CD8+ cells to the 

site of the tumor through increasing expression of the chemoattractant CCL20 

[206]. The impacts of TH9 cells on autoimmunity are still undetermined, though 

transfer of TH9 cells in a colitis model led to increased inflammation [197]. It was 
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unclear however, if this was a result of IL-9 production, as transferred cells were 

observed to increase IFNγ expression, thus the results may have been due to a 

TH9-TH 1 effector transition [197].  

 

T follicular helper cells: Key Players in the Humoral Response 

T follicular helper cells (TFH) play an essential role in providing B cell help in the 

germinal center (GC) reaction. Their proximity to B cells, secretion of IL-21 and 

IL-6, maintained expression of the C-X-C chemokine receptor type 5 (CXCR5) 

along with inducible T-cell costimulatory (ICOS) and programmed cell death 

protein-1 (PD-1) [207-211], sets them apart from the TH 2 subset.  Unlike other 

CD4+ T cell effector subsets, TFH differentiation does not occur following initial 

priming of naïve TH0 cells by antigen-bearing DC, but requires subsequent 

interaction with APC for full differentiation [142, 212-215]. The current model of 

TFH differentiation seen in Fig. 1.8, holds that pre-TFH are primed by DC through 

IL-6 and ICOS signaling which leads to the upregulation CXCR5. As activated T 

cells downregulate CCR7 (which keeps cells in T cell zones), the expression of 

CXCR5 enables them to chemotax in response to the CXCL13 chemokine 

gradient present in B cell zones [212, 216-218]. At the edge of the B cell follicle, 

pre-TFH interact with antigen-bearing, cognate B cells and these repeated 

interactions in combination with either IL-6 or IL-21 induce STAT3 signaling [219, 

220]. STAT3 signaling leads to upregulation of the transcription factor Bcl-6 to 

drive full TFH differentiation (in the absence of the transcription factors Blimp-1 
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and KLF2) [209, 213, 215, 219, 221-225]. Bcl-6 acts as a transcriptional 

repressor for GATA3 and inhibits the activity of T-bet and RORγt, thus inhibiting 

TH2, TH1, and TH17 differentiation, respectively [226]. The transcription factor 

Tcf1 has also been found to be necessary for full differentiation in the context of 

viral infection [227].   

 
 

The proposed requirement for B cells in TFH differentiation is potentially 

due to the fact that pre-TFH are much more likely to encounter antigen-bearing B 

cells than DC upon their CXCR5-driven migration to the B cell follicles. In 
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addition, about 3 days following the initiation of the immune response, the 

majority of APC are Ag-specific B cells. This possibility is supported by the fact 

that continual stimulation by repeated immunizations in the absence of B cells 

was found to produce TFH [213]. This, combined with results from other studies 

[228], suggests that B cells do not provide unique signals which drives TFH 

differentiation, but simply serve to prolong Ag stimulation that is required for TFH 

differentiation.   

        Upon full TFH differentiation, high Bcl-6 expression leads to loss of Epstein-

Barr virus-induced G-protein coupled receptor 2 (EBI2). EBI2 is present in the B 

cell follicle, but not the germinal center (GC) where the majority of B cell class 

switching and somatic hypermutation occurs. The high expression of CXCR5 and 

CXCR4, in combination with low surface expression of CCR7 and sphingosine 1-

phosphate 1 receptor (S1P1R) displayed by TFH allows them to migrate into the 

GC [229, 230]. Once in the GC, TFH provide B cell help through contact-

dependent co-stimulation and secretion of high levels of IL-21 and IL-6, which 

induce B cell maturation, proliferation, and class switching [208, 231-233]. TFH 

cells in mice have also been found to produce intermediate amounts of IL-4 

[234], and low amounts of IL-5, IFNγ, and IL-17 [235, 236]. The diverse cytokine 

profile of TFH is in part, due to the fact that differentiated TH1 [237], TH2 [238], 

TH17 [148], and possibly Treg [239], cells have the ability to convert to TFH. The 

differentiation of these cells is driven in the same manner as un-differentiated T 

cells, through repeat cognate interactions. These effector-TFH retain the 

expression of their lineage-associated cytokines in addition to TFH-associated 
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markers and are classified by their co-localization with B cells in the GC. Less 

evidence exists for the differentiation of Treg to TFH TFH-regulatory (TFR), and it has 

been speculated that these cells may arise from naïve precursors, or transition 

from TFH to TFR [239-241]. TFR regulate the GC reaction and play an important 

role in preventing excessive humoral responses which could lead to Ab-mediated 

autoimmune disease. Interestingly, CXCR4-expressing cells that otherwise 

resemble TFH in surface phenotype and function, have been detected outside of B 

cell follicles and can induce class switching in extrafollicular B cells [242]. The 

exact mechanisms that drive this phenotype have yet to be elucidated. 

 Due to the heterogenicity of the TFH pool, the Ig subclasses produced 

generally correlate with the effector-like phenotype of the TFH themselves (i.e. TH 

2-like TFH) [243]. Since their identification as a distinct subset of TH cells, TFH cells 

have been found to be crucial in GC formation and effective antibody-mediated 

protection [244]. Dysregulation of TFH function is a major cause of systemic Ab-

mediated autoimmunity such as SLE [245], and has been implicated in human 

diseases including myasthenia gravis (MG), autoimmune thyroiditis, Sjögren’s 

syndrome (SS), rheumatoid arthritis (RA), multiple sclerosis (MS), ulcerative 

colitis, Crohn's disease, ankylosing spondylitis (spinal arthritis), and type 1 

diabetes [245, 246]. 

 

 

Cytotoxic CD4+ (CD4+ CTL): MHCII-Restricted Killers 
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CD4+ CTL secrete granzyme B and perforin to kill infected cells in a similar 

fashion to CD8+ T cells [247, 248]. IL-2 is required for their differentiation through 

upregulation of the transcription factor EOMES which leads to IFNγ expression 

and perforin [249, 250]. It also appears that there is an inverse correlation 

between CD4+ CTL and TFH differentiation, as CD4+ CTL express high levels of 

Blimp-1, which inhibits Bcl-6 expression [251]. These cells are thought to be 

related to TH1 cells as they most often occur in viral infection models, express T-

bet, and secrete IFNγ [252]. Although they have also been found to develop from 

TH0 [253, 254], TH2 [255], TH17 [256], and Treg [257]. Class I-restricted T cell-

associated molecule (CRTAM) has been identified as a likely early marker for 

identification of CD4+ CTL [258]. The majority of CD4+ CTL are found in 

peripheral tissues, such as in the lung, but this is likely due, at least in part, to 

their increased presence in viral infection models of the lung. CD4+ CTL have 

been found to have a major role in late-onset EAE with implications for 

exacerbation of multiple sclerosis in humans [259]. It is also possible that these 

cells play a major role in the onset of colitis [257]. 

 

Regulatory T cells (Treg): Preventing Excessive, and Undesirable 
Immune Responses 
 
Regulatory T cells (Treg) function to suppress the activities of the other effector 

subsets and play a role in tolerance to non-self Ags [260, 261]. While nTreg exit 

the thymus pre-differentiated, inducible Treg (iTreg) are differentiated by a 

combination of TGF-β and IL-10. Treg express the transcription factor Foxp3 [262, 

263], and often display the surface marker CD25. Foxp3 acts as a transcriptional 
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regulator which suppresses the activation of T cells by inhibiting NFAT and NF-

κB [264]. Foxp3+ Treg regulate peripheral tolerance through multiple inhibitory 

mechanisms and are a critical component in preventing the activation of cells 

reactive to self or allergy-associated Ags, as well as limiting infection-induced 

organ pathology, fetal and transplant rejection, and graft versus host disease 

(GvHD) [265-271]. The immunosuppressive roles by Treg are carried out both in a 

contact-dependent manner and through secretion of inhibitory cytokines and 

other glycoproteins. Unlike conventional CD4+ effector cells, Treg constitutively 

express the inhibitory molecule CTLA-4 which binds costimulatory CD80 and 

CD86 on APC. CTLA-4 binds these ligands with a significantly higher affinity than 

CD28 and can inhibit the activation of conventional T cells via competitive ligation 

[272-274]. Interestingly, in addition to limiting conventional TH access to 

costimulatory molecules through the binding of CD80/CD86, Treg have been 

observed to physically remove CD80/CD86 from DC in a process which has 

been termed transendocytosis [275, 276]. While studies have proposed this 

acquisition resembles trogocytosis [277], transendocytosis by Treg differs slightly 

from trogocytosis [278, 279] in that acquired molecules are degraded within the 

Trreg rather than expressed on the surface as they are after trogocytosis [275, 

280-287]. In addition to the physical removal or engagement of CD80/86 from 

APC, ligation with CTLA-4 itself drives signaling through CD80/86 on the DC 

which lead to the nuclear translocation of Foxo3, which then inhibits the 

expression of IL-6 and TNFα [288]. It has also been observed that ligation with 

CTLA-4 induces production of the immunosuppressive tryptophan catabolizing 
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enzyme IDO by DC [289], which would further inhibit T cell activation. It has been 

speculated that the high expression of CD25 (IL-2Rα) by Treg may also act as a 

sink for IL-2, limiting the amount of IL-2 available to effector T cells and thus 

hampering their proliferation and activation  

 Treg can also directly influence the activation of conventional T cells by 

secreting the cytokines TGF-β, IL-10 and IL-35, as well as Granzyme-B, perforin, 

cAMP, Galectin, and Neutropilin. [290, 291]. In an immunosuppressive context, 

TGF-β inhibits T cell proliferation. While TGF-β + IL-6 can drive TH17 

differentiation [292]. Treg can limit TH17 differentiation through CTLA-4:CD80/86-

mediated downregulation of IL-6 by DC. IL-10 can inhibit TH1 and TH2 responses 

through activation of STAT3, while enhancing the differentiation of Treg in a 

positive-feedback loop [293]. The immunosuppresive cytokine IL-35 is produced 

almost exclusively by regulatory cells, and reduces the activation of naïve T cells, 

and inhibits proliferation in activated cells [290].  

Treg have been observed to release cyclic-AMP (cAMP) onto effector cells 

through gap-junctions between Treg and effector T cells [294]. Granzyme B and 

perforin secreted by Treg has been shown to kill effector T cells and activated B 

cells in vitro [295-297]. Treg have been found to generate high levels of the β -

galactoside–binding protein galectin-1 which is secreted as well as found on the 

surface membrane. Galectin-1 binds to surface glycoproteins on effector T cells, 

such as CD7, CD43, and CD45, leading to cell-cycle arrest, apoptosis, and the 

inhibition of inflammatory cytokines such as IL-2 and IFNγ [298-301]. 
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 Through the mechanisms mentioned above, Treg play a critical role in 

peripheral tolerance. Thus, excessive Treg responses may hamper an immune 

response leading to insufficient protection, and decrease anti-tumor immunity 

[266, 302, 303]. On the other hand, insufficient Treg presence can result in 

excessive immune responses associated with all TH subsets and therefore has 

been associated with numerous autoimmune diseases, allergy, and asthma [8, 

304-307]. 

In addition to conventional Treg, other regulatory T cell subsets that can 

conditionally express Foxp3 include Tr1 and TH3 cells. Tr1 secrete IL-10 and 

TGFβ which inhibit proinflammatory TH1 responses [308]. TH 3 cells share many 

similarities with conventional Treg, and Tr1 cells, but can also secrete IL-4 [309-

311]. Both Tr1 and TH3 cells are important for oral tolerance, as secreted TGFβ 

increases IgA production by B cells plays a large role in mucosal immunity [309, 

312]. Further contributing to Treg diversity is the ability for naive nTreg to 

differentiate into effector Treg (eTreg) in the context of the current immune 

response [313]. eTreg occurs concurrently with effector T cell activation, and by 

receiving similar stimuli from APC, eTreg differentiate similarly to T effector cells. 

This allows the eTreg to display similar homing patterns to the effector T cells, 

enhancing their ability to regulate the activation of effector T cells in the periphery 

[313, 314]. The multiple pathways for Treg development, and high diversity of 

regulatory mechanisms show the high diversity of the Treg pool and emphasizes 

the broad implications in Treg-mediated immunological tolerance and 

homeostasis.  
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Memory CD4+ T cells: Providing Long-Term Immunity 

Following Ag clearance, the vast majority of activated T cells die within days 

while ~ 5 -10% persist as long-lived memory cells, which maintain stable 

populations for years. Due to the ability of multiple CD4+ effector subsets to 

become memory cells, memory CD4+ T cells are comprised of a heterogenous 

population [315]. Therefore, memory cells are largely defined by the ability to 

survive for extended periods of time in absence of Ag [316], and exhibit rapid 

recall responses upon re-encountering their cognate Ag [39]. 

The exact mechanisms which drive activated CD4+ T cells to become 

memory remain unclear. Studies have found that T cells that receive weaker 

signals upon activation, along with late cognate interactions are more likely to 

become memory cells [317-320]. A proposed mechanism for the survival of 

previously activated CD4+ T cells is through the permanent upregulation of the 

IL-7 receptor alpha chain (CD127) [321-323].  IL-7 is secreted throughout the 

body by multiple cell types, including epithelial cells [324], stromal cells [325], 

skeletal muscle cells [326], and follicular DCs [327]. CD127 ligation signals 

through Jak3/1 - STAT5 promotes cell survival by inducing expression of the anti-

apoptotic genes Mcl-1 and Bcl-2 [328]. CD127 is highly expressed on naïve cells, 

but is downregulated on activated cells, facilitating their clearance during the 

contraction of the immune response. While the mechanisms which allow 

memory-fated cells to survive during the contraction phase are unknown, it has 

been suggested that autocrine IL-2/CD25 (IL-2Rα) signaling induced by TCR 
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signaling late in the immune response may be required, by driving constitutive 

CD127 (IL-7Rα) expression [317, 319].   

 A second path to becoming memory cells is through asymmetrical cell 

division, where one daughter cell becomes a memory-precursor or maintains a 

quiescent memory phenotype, and the other displays effector functionality [329-

331] (Fig. 1.9). Existing memory T cells have also been observed to 

asymmetrically divide upon restimulation to produce effector cell progeny and a 

daughter cell which retains memory-like capacity [331].  
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CD4+ Memory Subsets 

Memory CD4+ cells are categorized into various subsets based on their 

physiologic locations and recall responses. Variable expression of CD44 and 

CD62L was the basis for the initial characterization of two distinct CD4+ memory 

populations. Cells expressing both CD62L and CD44 are classified as T central 

memory (TCM), while CD44+ CD62L- are classified as T effector memory (TEM) 

[332]. Additional subsets of CD4+ memory cells have been identified in recent 

years, including Tissue-resident memory (TRM) T cells, and stem cell-like memory 

T cells (TSCM). These subsets are largely defined by their physiological location 

that is dictated by expression of the chemokine receptor CCR7, and CD62L (L 

selectin), (Fig. 1.9). The ligands for CCR7, CCL19 and CCL21, are highly 

expressed by stromal cells in T cell zones of the lymph node [333], mature DCs, 

and on the luminal side of HEVs [334, 335]. Thus, expression of CCR7 by naïve, 

and memory subsets allow these cells to exit the periphery and home to T 

cell/DC rich areas in the LNs. CD62L is a member of the selectin family of 

adhesion molecules. Expression of CD62L contributes to the tethering and rolling 

action of lymphocytes along luminal surfaces of venules through interactions with 

P-selectin glycoprotein ligand 1 (PSGL1) [336, 337]. Therefore, CD62L 

expression permits T cells to cross endothelial barriers and enter lymphoid 

organs from the periphery.  
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         Another marker commonly used to identify memory T cells is CD44. This 

surface protein is not expressed by naïve T cells but is upregulated following 

activation. Thus, expression of CD44 indicates that T cells have been previously 

activated. After contraction of cells during the effector phase, its presence can be 

used to identify Ag-experienced cells. The primary receptor for CD44 is 

hyaluronic acid (HA) which is a component of the extracellular matrix, and is also 
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expressed by some by endothelial cells [338-340]. It has been speculated that 

CD44 may aid in lymphocyte trafficking through the extracellular matrix, through 

HEV, and aid in the retention of T cells to luminal barriers. CD44 has been found 

to also act as costimulatory molecule [341-343].    

 

T central memory (TCM)  

TCM cells account for a large percentage of CD4+ memory cells and may arise 

from undifferentiated precursors, or from differentiated effector cells [344, 345]. 

TCM are identified by surface expression of both CD44+ and CD62L+, while also 

commonly expressing CCR7 [346]. The expression of CD62L and CCR7 allows 

these cells to circulate in blood, cross through high endothelial venules (HEVs), 

and traffic through lymphoid organs [332]. As a result, TCM are the primary CD4+ 

memory population found in lymphoid tissue and upon restimulation, rapidly 

produce IL-2 and proliferate to produce effector cell progeny, and can serve to 

stimulate Ag-presenting DCs to increase costimulatory molecule expression [332, 

347].  

 

T effector memory (TEM)  

TEM cells share a similar phenotype to activated effector cells and are thought to 

arise  primarily from effector cells which have transitioned to memory. This is 

supported through the observations that TEM show less plasticity between TH  

subset phenotypes compared to TCM [348]. As mentioned above, these cells 

express CD44, but not CD62L or CCR7. As a result, TEM continually scan 
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peripheral tissue and circulate in blood, and are able to rapidly migrate to sites of 

inflammation. Upon re-activation, TEM quickly exert effector functions, but do not 

rapidly proliferate compared to TCM. [332, 349, 350] However, there has been 

some debate whether TEM are simply effector cells that arise from TCM upon 

reactivation and subsequent proliferation. 

 

Tissue resident memory (TRM)  

During infection, activated CD4+ T cells migrate to peripheral tissue to induce 

local responses and clear pathogens. Among the memory cells that survive after 

Ag clearance include a subset of cells that take up residence in tissues such as 

the lung, small intestine, and skin [351-353]. Upon Ag-reencounter, localized TRM 

induce rapid localized inflammation to recruit other immune cells [354]. These 

cells are retained in peripheral tissue through constitutive expression of CD69 

[355], and many maintain expression of CD103. While CD69 is commonly used 

as an early activation marker, one of its biological roles is to suppress the 

function of sphingosine 1-phosphate receptor-1 (S1P1) [356]. As high 

concentrations of S1P are found in blood and lymph, CD69 expression prevents 

the egress of CD69+ cells into these fluids [357]. Different migration patterns 

have been observed between CD8+ and CD4+ TRM. While CD8+ migrate and 

localize at sites of infection, CD4+ cells were more mobile and continually 

scanned through skin [358]. One study using mice, as well as mice bearing 

human skin xenografts, found that human skin TRM were able to downregulate 

CD69 expression and enter circulation [353]. These cells then took up residency 
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in secondary skin sites where they resumed a TRM phenotype [353]. As such, TRM 

may not be as strictly compartmentalized as previously thought, and TRM that 

develop early may downregulate CD69 to become more evenly distributed 

throughout the body. Although the mechanism for TRM re-entry into circulation 

remains unknown, it is possible that this could also play a role in recruitment of 

TRM to sites of subsequent infection.  

 

T stem cell-like memory (TSCM) 

Human TSCM are identified by the surface expression pattern CD45RO−, CCR7+, 

CD45RA+ CD62L+, CD27+, CD28+ and IL-7Rα+  [359]. In mice, the surface 

phenotype of TSCM largely resembles that of a naïve T cell (CD62L+ CD44-). 

Similar to TCM, the expression of CD62L and CCR7 allows these cells to circulate 

in blood, cross through high endothelial venules (HEVs), and traffic through 

lymphoid organs. TSCM cells are Ag-specific, but retain sTEM cell-like properties in 

that they are able to undergo homeostatic proliferation and replenish the memory 

pool of Ag-specific cells of both TEM and TCM
 [359, 360]. Human TSCM have also 

been found to rapidly proliferate, to a greater extent than TCM or TEM  [359]. TSCM 

were produced upon Mycobacterium tuberculosis infection [361], however the 

exact mechanisms that drive TSCM differentiation have yet to be elucidated.  

 In all, the rapid recall responses of the various populations of memory 

CD4+ T cells provide long-lived Ag-specific immunity. This is accomplished by 

TCM in the LN rapidly proliferating to produce effector cells and stimulating the 

activation of other responding cells; TEM and TRM residing in surface and 
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peripheral organs to rapidly exert effector functions upon encountering Ag in the 

periphery; and TSCM performing homeostatic proliferation to replenish the memory 

pool.   

 

Part III 
                         Trogocytosis 

                 Trogocytosis, stemming from the Greek words trogo, or “to gnaw” and 

cyto meaning cells, is the direct, intercellular transfer of membrane and 

membrane-associated molecules in a contact-dependent manner. Trogocytosis 

occurs rapidly and between live cells, and therefore is not a simply a result of 

phagocytosis of apoptotic vesicles. In addition, unlike endocytosis of CD80/CD86 

by Treg where acquired molecules become degraded [275, 276], a defining feature 

of trogocytosis is that acquired molecules remain functional, and may become re-

expressed on the surface of the trogocytosis-positive (trog+) T cell. Images of a 

live-cell experiment showing trogocytosis by CD4+ T cells is shown in Fig. 1.11 

  The first report of trogocytosis came from the research of Cone, Sprent, 

and colleagues in 1972, where they detected donor B cell MHCII molecules on 

adoptively transferred T cells in mice [362]. They concluded that the MHC 

molecules were integrated into the T cell surface, and similar in composition to the 

membrane-bound form on B cells. While the mechanism was unknown at the 

time, mouse T cells do not endogenously express MHCII [363], thus these 

molecules were acquired from the host B cells. One year later, Bona et al were 

the first to detect the transfer of Ag from APC to lymphocytes using B cells that 
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acquired LPS from macrophages in a B cell receptor-dependent manner [364]. 

Several years later, Hudson and Sprent became the first to report the transfer of 

surface molecules between APC and T cells when they found B cell-derived IgM 

on the surface of activated T cells that had been transferred into irradiated 

allogenic (MHC-mismatched) mice [365]. This discovery provided an explanation 

for the earlier findings by Cone and Sprent, as well as other instances where 

signaling molecules were detected on cells in which they are not endogenously 

expressed (as determined by the absence of mRNA for these molecules). Shortly 

after two, separate groups observed MHC transferred to T cells in donor 

thymocytes cells from host splenic cells [366], and in cultures of proliferating T 

cells [367]. In the years since, this phenomenon has been observed in CD4+ [81, 

285, 287, 368-372], CD8+ [370, 373-376], and  [377] T cells, B cells [378, 379], 

NK cells [380-382], basophils [283], macrophages [383, 384], neutrophils [385-

387], dendritic cells [388, 389], and between tumor cells [390]. Despite the 

widespread occurrence and immunomodulatory potential of trogocytosis by 

immune cells, the biological impacts of trogocytosis remain largely unknown.  
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Mechanisms for Trogocytosis 

Contributions of T cell Signaling and Activation State on 
Trogocytosis 
 

Although significant work over the past decade has been conducted in 

deciphering the mechanism of T cell trogocytosis, the exact details of this event 

remain unknown. This is in part, due to multiple factors which appear to influence 

trogocytosis such as the activation state of the T cell  [391-396] and APC [383]; 

Ag-dose  [287, 373, 397] and affinity [397, 398]; and costimulatory molecule 

signaling  [394].  In contrast to B cells, Natural killer (NK) cells [399], and DCs that 

may passively perform trogocytosis [370, 400, 401], evidence suggests that active 
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signaling is required for T cell trogocytosis. We, and others, have previously 

shown that trogocytosis by CD4+ T cells occurs at the immunological synapse 

formed between Ag-specific CD4+ T cells and APC (Fig 1.11) [287, 392, 394, 397, 

402]. This is consistent with the vast majority of reports which have found Ag-

specificity to be a requirement for T cell trogocytosis [285, 287, 375, 399, 403]. In 

fact, the presence of trogocytosed molecules has been used as an identifying 

marker for tumor- [399, 403], and viral-, reactive cells [404]. In addition, this 

method has recently been described as a method to identify antigen-epitopes for 

specific T cells in vivo [399]. 

             The strength of TCR signaling by Ag-dose positively correlates with the 

trogocytosis [287, 373, 397]. The activation state of T cells impacts the efficiency 

in which cells perform trogocytosis, as activated T cell blasts perform trogocytosis 

to a greater extent than naïve T cells [391-396]. This could be due, in part, to the 

larger size of activated T cells compared to naïve cells, which have increased 

surface area contact with APC. It has also been hypothesized that increased 

avidity of the activated T cells due to their increased expression of adhesion and 

costimulatory molecules, such as CD28 and LFA-1, and CD44, stabilizes the 

immune synapse to facilitate trogocytosis [394, 405]. Costimulatory molecule 

ligation such as CD28:CD80/CD86 can also lead to acquisition of CD80 and 

CD86 [394], thus increasing the amount of total material trogocytosed by the T 

cell.  

Similar to the effect of adhesion molecules in stabilizing the immune 

synapse and promoting trogocytosis, T cell microvilli (as mentioned under 
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kinapses and microclusters) are also central factors in trogocytosis. These 

filamentous like protrusions concentrated with TCR form multiple contact points 

with APC and enhance signaling in both the T cell and APC [68]. In a recent 

study, Akkaya et al., found that microvilli stabilize T:APC interactions and 

correlate with the acquisition of MHCII by the T cell [66]. iTreg had the highest level 

of microvilli, formed the most stable contacts, and showed the highest acquisition 

of MHCII, compared to activated effector T cells which had higher levels of 

microvilli compared to naïve t cells (Fig. 1.12). They also found that microvilli 

acquired MHCII with cognate, but not irrelevant peptide, suggesting that the 

acquisition of MHCII occurred in an Ag-specific manner.  

 

Further insight into the mechanism of trogocytosis comes from studies 

showing that treatment of cells with latrunculin or cytochalasin D to inhibit actin 

polymerization severely limited trogocytosis [370, 405]. Blocking proximal TCR 

signaling through ZAP-70 has also been found to significantly reduce the rate of 

trogocytosis [373]. Intriguingly, trogocytosis of CD80 and CD86 may occur 
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independently of CTLA-4, or CD28-signaling in Treg [277]. Studies with 

conventional effector cells found that antibody blockade of CD80 had minimal on 

trogocytosis of GFP-tagged MHCII, while blocking MHCII or CD3 significantly 

reduced the amount of trogocytosed MHCII [287]. 

Collectively, the above data suggests that trogocytosis is an active 

process in T cells that occurs predominantly in an Ag-specific manner and 

requires stable-T cell:APC interactions.  

 

Proposed Physical Mechanisms of Trogocytosis 

The possibility that more than one pathway exists for the acquisition of APC 

molecules by T cells has contributed to the elusiveness in defining the underlying 

mechanisms. While it is understood that trogocytosis requires stable, cognate 

interactions and trogocytosed molecules may be re-expressed on the T cell 

surface, the pathways leading to this end-result may differ. For example, CD8+ 

CTL have been observed to acquire membrane and associated proteins from 

target cells through small regions of fused membrane termed membrane bridges 

(Fig. 1.13A) [406]. These membrane bridges are distinct from the significantly 

longer nanotubules formed between T cell and APC (Fig. 1.13B) that are thought 

to extend cell communication [407].   



56 
 

 

 

However, the presence of T cell:APC membrane bridges in CD4+ T cells has not 

been reported. Live-cell imaging data from Wetzel et al., showed that GFP-

tagged MHCII was removed from APC during spontaneous dissociation from the 

immune synapse [287] (Fig. 1.11). As the immune synapse is comprised of a 

multitude of ligated molecules, the strength of these interactions is greater than 

the integrity of the APC membrane. Spontaneous dissociation during the 

immunological synapse results in the stripping of APC molecules by the 

migrating T cell.  

                Multiple proposed models for trogocytosis suggest that APC-derived 

molecules become internalized by the T cell through endocytosis. These models 

diverge from one another in how the APC molecules arrive on the surface of T 

cell. In one theory, APC-derived exosomes containing various molecules are 

taken up by the T cells and then re-expressed on the surface [408]. It has been 

observed that strong MHCII:TCR interactions leads to the migration of late 
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endosomal compartments containing MHCII towards the immunological synapse, 

thus TCR signaling may increase the release of APC exosomes directed towards 

the T cell [409]. In a separate study, electron microscopy revealed that MHCII 

was transferred to T cells in T cell:DC conjugates via exosomes which were 

concentrated at the immunological synapse [408]. Here, the authors proposed 

that the exosomes were endocytosed by the T cell during TCR recycling, then 

were re-expressed on the T cell. Similar results were observed by Huang et al., 

in a model using Drosophila APC transfected with mouse MHC and costimulatory 

molecules, where they observed small packets containing MHCII localized 

between T:DC synapses [397]. The authors in this study observed that acquired 

MHCII were co-internalized with recycling TCR and were found to be present in 

both endosomes and lysosomes. Thus, they concluded that TCR-endocytosis 

was driving the internalization and subsequent acquisition of APC-derived 

signaling molecules [397]. However, results from numerous studies suggest that 

the acquisition of APC-derived molecules via exosomes is distinct from 

trogocytosis. For example, the transfer of PD-L1 and MHC is blocked when co-

cultured T cells and APC are separated by a trans-well membrane [375, 410]. In 

addition, blocking exosome formation by DC with the ATPase inhibitor CMA was 

found to only slightly decrease the amount of trogocytosed material compared to 

untreated controls [375].  
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     The most recent model for trogocytosis comes from studies by Martinez-

Martin et al., proposing that APC-derived membrane and membrane proteins 

are internalized in tandem during TCR downmodulation. Consistent with much 

of the published research, this model proposes that T cell trogocytosis is an 

active event occurring in a TC21/RhoG dependent manner. Once internalized by 

the T cell, recycling endosomes containing acquired APC fragments fuse with 

the T cell plasma membrane resulting in APC-derived molecules being 

displayed on the T cell surface in their native topological orientation (Fig. 1.14, 

above) [278, 411] This model is consistent with the majority of published data 
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including results of Sprent and colleagues that found trogocytosed GFP-tagged 

MHCI is internalized by CD8+ T cells before surface re-expression [397]. Finally, 

pre-treatment of T cells with the vacuolar ATPase CMA to inhibit endosomal 

formation and trafficking led to a significant decrease in trogocytosis [375], 

strengthening a model for endocytosis-dependent trogocytosis.   

                 Our live-cell imaging experiments also show that GFP-labeled p:MHC 

found on the surface of the T cell moves from the immunological synapse and 

localizes at the distal pole region (Fig. 1.15). We also observed that in fixed 

T:APC conjugates, >82% of T cells with detectable trogocytosed molecules had 

p:MHCII localized to the distal pole [81]. Similar distal pole localization of 

trogocytosed MHCI was reported by Huang et al., using CD8+ T cells and 

Drosophila APC [397]. Regardless of the mechanisms in which the molecules are 

acquired from APC, true trogocytosis results in the expression, or re-expression, 

of the acquired molecules on the T cell surface. 

 

Biological Consequences of T cell Trogocytosis 
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While the intracellular exchange of proteins is common among various cell types, 

the outcome of trogocytosis has distinct biological implications in that; 1. the 

molecules acquired may be involved in active signaling; and 2. these signaling 

molecules become re-expressed in the native topological orientation on the 

surface of recipient cell. As mentioned above, molecules trogocytosed from APC 

by T cells include molecules that can trigger active signaling within the T cells 

including pMHCI/MHCII complexes [66, 81, 282, 285, 287, 376, 399, 412], 

CD80/CD86 [277, 281, 282, 284], OX40-L [368], and PDL-1 [375], as well as 

adhesion molecules such as ICAM-1 [400]. Due to the nature, and accessibility of 

these trogocytosed molecules, this event has numerous biological implications. 

Elevated levels of trogocytosis have been documented in sites of autoimmune 

inflammation [391], viral and parasitic infections [282, 413, 414], rheumatoid 

arthritis [11], and in tumor environments [284, 403]. While the function of 

trogocytosis in these cases is not yet established, this widely-observed event has 

been proposed to play a role in the modulation of immune responses [277, 388, 

415-419].  

 

Antigen Presentation by Trog+ T cells 

The potential for trog+ cells to act as APC themselves has inspired significant 

research focused on the ability of the trogocytosis-positive (trog+) T cells to 

present antigen, in the context of other acquired molecules, to responding T cells 

[369, 371, 372, 415, 420-426]. The outcome of such presentation appears to 

correlate with the nature of the acquired molecules and phenotype of the trog+ 
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cell. For example, trog+ CD4+ cells displaying acquired costimulatory molecules 

such as CD80, along with MHC:peptide can activate responding naïve T cells 

both in vitro, and in vivo [371, 410, 420, 424]. One such example comes from the 

work of Zhou et al., who found that FACS-sorted hemagglutinin (HA)-specific 

trog+ T cells induced proliferation of naïve HA-specific T cells in vitro [406]. 

Through bystander acquisition of MHCI from DC, OVA-specific trog+ CD4+ T cells 

have been found to activate naïve CD8+ T cells both in vitro, and in vivo after 

adoptive transfer of trog+ cells [421]. In a study using human T cells, Game et al. 

showed that in an allogenic response, trog+ cells can stimulate both naïve and 

allogenic and autologous T cells to proliferate [410]. The antibody blockade of 

CD80/86 limited these responses, suggesting that, similar to Ag-specific 

responses, the presence of allogenic MHC alone on T cells is insufficient to 

induce a response in other allogenic T cells.  

 A separate study compared the effects of trogocytosed CD80 in both an 

allogenic and Ag-specific response. Similar to the results above, they found that 

the trog+ cells could induce activation of other cells in both types of responses. 

However, the trog+ cells only were shown to have significant effects on 

stimulating naive T cells in the first 48 hours of their activation [427]. In the case 

of allogenic responses they proposed that T cells expressing CD80 could act to 

as a mechanism to boost the costimulatory presence for responding naïve T 

cells. Interestingly they also noticed a difference in the chemokine receptor 

pattern between allogenic and Ag-specific responses. T cells that performed 

antigen-independent acquisition of CD80 retained expression of CCR7 and low 
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levels of CCR5, thus were more likely to remain in the T cell zones of the lymph 

node after activation. On the other hand, CD80+ cells which were stimulated with 

cognate Ag-presenting DCs downregulated CCR7 and increased expression of 

CCR5, thus, they would be more likely to exit the lymph node and act on 

peripheral sites to modulate the response of peripheral T cells. Finally, it was 

observed in samples from human donors with either malignant ascites or 

autoimmune thyroiditis, circulating T cells had increased levels of CD86 

compared to healthy controls, suggesting that these cells may play a role in 

augmenting these autoimmune disorders [428]. 

While T:T Ag-presentation has been shown to augment an immune 

response, numerous studies have also found it may play a role in suppressing 

the immune function of other cells. In an in vivo study,  Helft et al., found that Ag 

presentation by trog+ cells to activated T cells induced responder cell death, but it 

stimulated naïve T cells to proliferate. The authors proposed that this was likely 

due to insufficient levels of costimulatory molecules upon p:MHC presentation by 

trog+ cells [429]. The authors speculated that T cell Ag-presentation may play a 

role in preventing peripheral memory, but not naïve T cells, from entering 

activated lymph nodes by interacting with T cells in the periphery.  

Attenuation of the immune response via presentation of trogocytosed 

molecules to T cells has also been observed in T cells from donors with multiple 

myeloma. In vitro incubation of patient cells with myeloma cell lines led to 

trogocytosis of CD86 and the immunosuppressive molecule HLA-G by T cells 

[284]. These HLA-G+ trog+ cells were functionally comparable to nTreg in 
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proliferation of trog- cells. In samples directly from patients, a significantly higher 

frequency of circulating T cells had detectable HLA-G and CD86 compared to 

healthy controls, and the increase in the frequency of these trog+ cells was 

associated with poor prognosis [284]. 

            In addition to conferring regulatory functions to non-Treg cells [277, 375, 

415, 417, 430-432], Treg themselves display high-rates of Ag-specific trogocytosis 

[66]. CD80 and CD86 have been detected on the surface of both nTreg and iTreg  

[277], and has been proposed that these trog+ Treg use trogocytosed molecules to 

form connections with activated T cells, thus enhancing their suppressive 

[431,432].  

               Trogocytosis itself also has been found to suppress the immune 

response in a manner similar to Treg, where pMHC complexes and costimulatory 

molecules are removed via trogocytosis rendering APC inefficient stimulators of 

other responding T cells, or inhibiting the detection and killing of tumor cells [284, 

433-436]    

                     Another means of immune suppression is the killing of Ag-

presenting T cells by CTL through fratricide. This phenomenon is most widely-

associated with viral infection, but CD8+ T cells with trogocytosed PD-L1 can 

induce fratricide of neighboring T cells expressing PD-1. In addition, trog+ 

themselves may be targeted by cytotoxic cells through displaying trogocytosed 

pMHC [434]. 

        Collectively, the studies described underscore the biological significance of 

trogocytosis and subsequent Ag presentation by trog+ T cells  
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Trogocytosis-Mediated Signaling 

                  While the ability of trog+ T cells to present trogocytosed molecules to 

other T cells has been fairly well-documented, much less is known about the 

biological consequences of trogocytosis on an individual trog+ cell. Trogocytosed 

molecules are retained in punctate areas on the CD4+ T cell surface and co-

localize with their receptors and signaling molecules [81, 287]. This raises the 

possibility that trogocytosed molecules may drive intracellular signaling within the 

T cell. It has been observed that trog+ cells are more activated compared to their 

trog- counterparts, as indicated by expression of CD44, CD69, and/or CD25  

[277, 417, 420, 422, 432, 437, 438], and, in some cases, express higher levels of 

effector cytokines compared to similarly-stimulated trog- cells [81, 282, 412, 439]. 

One possible explanation for these observations is that highly activated cells are 

more efficient at performing trogocytosis. Another possibility is that the 

trogocytosed molecules induce intracellular signaling and are playing a role in 

augmenting the activation state and effector functions of the trog+ cells.  

 In our previous studies, TCR signaling was detected in trog+, but not  

trog–, CD4+ T cells up to 72 hours after separation from APC. This sustained 

signaling was mediated by trogocytosed molecules engaging their cognate 

receptors on the trog+ T cell, resulting in autopresentation, referred to here as 

trogocytosis-mediated signaling. This signaling led to the enhanced survival of 

trog+ cells compared to trog– cells, up to five days after APC removal [81]. This 

was not due to residual signaling from the T-APC interaction, as treatment with 
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the Src-family kinase inhibitor PP2 was used to halt signaling after APC removal. 

Signaling, as measured by ZAP-70 and ERK 1/2 phosphorylation resumed only 

in trog+ cells. Consistent with these findings, Zhou et al. found that trog+ CD4+ T 

cells displayed sustained activation of NFB and AP1, 24 hours after removal 

from APC. Interestingly, the trog+ cells also developed a unique cytokine profile 

[439]. This suggests that a qualitative difference may exist between trogocytosis-

mediated signaling and signals received from APC, raising the possibility that this 

non-canonical signaling has the potential to modulate the immune response.  

Trogocytosis-mediated signaling, by altering the activation state, survival, 

and effector cytokine production has the potential to significantly impact the 

physiology and subset differentiation of the trog+ cell, and by extension, an 

immune response. This paradigm-shifting event may play a significant role in the 

generation and control of protective immune responses, cancer immunotherapy, 

and vaccine efficacy. However, we have a very limited knowledge of 

trogocytosis-mediated signaling, and more work is necessary to improve our 

understanding of this underappreciated phenomenon and the role it plays in 

modulating the immune response.  
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Rationale for the Current Study 
 
While the ability of CD4+ T cells to differentiate into specific subsets with 

specialized roles is a defining feature of the adaptive immune response, the 

mechanisms behind their differentiation are not fully understood. While canonical 

T cell activation is dependent on APC, trog+ CD4+ cells can sustain active TCR 

signaling through engaging trogocytosed molecules with their surface receptors 

(trogocytosis-meidated signaling) [81]. This signaling was observed up to 72 hrs 

after APC removal, and despite being similarly activated by APC, the trog+ cells 

displayed enhanced survival compared to trog- cells in the absence of exogenous 

stimulation [81]. These findings strongly suggest that trogocytosis-mediated 

signaling in the trog+ T cells can modulate their survival. 

The overall objective of this study was to determine the biological effects 

of trogocytosis-mediated signaling on CD4+ T cell activation, effector cytokine 

production, and differentiation. Due to the demonstrated ability for trog+ cells to 

retain active signaling and maintain a heightened state of activation, I 

hypothesized that trogocytosis-mediated signaling would drive sustained 

effector cytokine production and influence the differentiation of the 

recipient trog+ cell.  

This was examined through the following three aims: 

Aim 1. Determine the activation state, effector cytokine production, and TH -

subset differentiation of trog+ and trog- cells after APC removal, and the 

contribution of trogocytosis-mediated signaling to the observed phenotype 

Rationale and supporting data: Sustained T cell signaling is not only required for 



67 
 

effector T cell and survival, but also mediates T cell activation state and effector 

cytokine production. In addition, trog+ cells display higher levels of activation and 

increased effector functionality in vitro and in vivo. Whether trogocytosis is a 

result, plays a causative role in these phenotypes has yet to be determined.  

               Because variations in signaling events, including the frequency, and 

duration, of TCR signaling, can significantly impact the differentiation of CD4+ 

cells [82, 139-143], it is plausible that sustained trogocytosis-mediated signaling 

may also impact these aspects in the trog+ cell.  

 

Aim 2. Ascertain the impacts of trogocytosis-mediated signaling in the 

differentiation of trog+ CD4+ T cells towards TFH  

Rationale and supporting data. 

While events during initial T cell activation are sufficient to drive CD4+ cells to 

differentiate into common effector subsets including TH1, TH2, and TH17, the 

differentiation of T follicular helper (TFH) requires prolonged, and/or repeated 

TCR and costimulatory signaling [142, 143]. Multiple studies have suggested that 

following T cell activation, subsequent interactions with B cells presenting 

cognate Ag are required for full TFH-differentiation, [209, 221-224]. However, 

signaling from DC in absence of B cells is capable of driving TFH differentiation 

[213]. Thus, the key factor in TFH differentiation is likely sustained T cell signaling, 

and not a signal uniquely attained through B cell interactions. It is possible that 

sustained trogocytosis-mediated signaling may promote TFH differentiation after 

separation from APC. 
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Aim 3. Determine the impact of trogocytosis-mediated signaling in the 

generation of memory-precursor CD4+ T cells.   

Rationale and supporting data: Though the exact requirements for driving CD4+ T 

cells to become long-lived memory cells are unknown, sustained and/or repeated 

TCR and costimulatory signaling from APC promote CD4+ transition to memory. 

It is possible that by emulating T:APC interactions, trogocytosis-mediated 

signaling may satisfy signaling requirements to transition into memory cells. One 

of the defining criteria for memory cells is the ability to survive in the absence of 

Ag. We previously found that sustained trogocytosis-mediated signaling leads to 

enhanced survival of trog+ cells compared to trog- cells after APC removal, 

suggesting that such signaling could play a role in the survival of 

memory/memory-precursor cells. 

            Results from aim 1 showed that trog+, but not trog- cells produced IL-4 

and IL-21, both of which have been shown to aid in CD4+ survival. In addition, IL-

21 has also been found to be critical for CD4+ and CD8+ memory cell generation 

[440]. Therefore, it is possible that autocrine signaling through IL-4 and IL-21 

produced by the trog+ cells would enhance their survival, as well as promote 

transition to memory. 

            In addition to effector-to-memory transition, T cells may be fated to 

become memory cells during initial T cell activation and subsequent asymmetric 

division. In our previous study, during T:APC synapses, it was found that over 

83% of these cells had trogocytosed molecules at the distal pole, and these 
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molecules were driving TCR signaling. Thus, it is possible that the commonly 

observed TCR signaling at the distal pole is due to TCR engagement with 

trogocytosed pMHC complexes. If trog+ cells undergo asymmetric division and 

trogocytosed molecules are retained on the distal daughter cell, this would 

implicate that trogocytosis-mediated signaling may play a role in the survival of 

memory cells that are generated through asymmetric division.  

 

These aims were addressed primarily using our well-established standard in-vitro 

trogocytosis-assay using fibroblast cell line and peptide-loaded mouse BMDC 

cells as APC. Briefly, naïve or non-polarized resting CD4+ T Cell blasts were 

incubated with fibroblasts which constitutively express covalently-attached MCC 

to the I-Ek -chain, or MCC-loaded BMDC, for 90’ at 37 oC. T cells are removed 

from APC from T cell cultures and are analyzed immediately, or cultured at low 

density to limit potential T:T interactions. In addition, in vivo experiments were 

conducted using MCC-specific TCR-transgenic mice, and wild-type (WT) mouse 

models. These experiments involved immunization of whole protein to examine 

the phenotype of cells which have performed in vivo trogocytosis. Studies on 

memory T cell survival included the adoptive transfer of CD4+ T cells recovered 

from an in vitro trogocytosis assay into naïve animals. Full details of these 

experiments are described in the materials and methods section.  

Results from this study provide insight into both, the biological 

consequences of trogocytosis, as well as the mechanisms behind CD4+ 

activation and differentiation. Due to the common occurrence of trogocytosis by 
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CD4+ T cells upon activation, and the central role of CD4+ T cells in immune 

responses, these findings are of significance in advancing our current knowledge 

of basic cell biology while also providing insight into better understanding the 

pathology of infectious and autoimmune diseases, allergies, along with future 

drug or vaccine design. 
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Chapter 2 

 Materials and Methods 

  

Animals 

B10.A and C57BL/6 CD45.1 mice were purchased from The Jackson Laboratory 

(Sacramento, CA). 5C.C7 TCR (V3+) transgenic Rag-1-/- mice specific for pigeon 

cytochrome c fragment 88–104 and reactive against moth cytochrome c (MCC) 

fragment 88–103 [441] were purchased from Taconic (Rensselaer, NY). For 

some experiments, 5C.C7 mice were crossed with B10.A mice and the 

splenocytes from F1 generation animals were used. Both male and female mice 

were used in this study, and no differences were observed between male and 

female T cell phenotypes. Mice were housed in the University of Montana 

Laboratory Animal Resources facility and were allowed food and water ad 

libitum. All procedures were supervised and in accordance with the University of 

Montana Institutional Animal Care and Use Committee. 

  

Antibodies and Reagents  

The following conjugated or unconjugated antibodies were purchased from: 

Biolegend (San Diego, CA): anti-CD3 (145-2C11), anti-CD4 (RM4-5), anti-CD69 

(H1.2F3), anti-CD80 (16-10A1), anti-Foxp3 (150D), anti-I-Ek (17-3-3), anti-IA/IE 

(M5/114.15.2), anti-IFN (XMG1.2), anti-IL-2 (JES6-5H4), anti-IL-4 (11B11), anti-

IL-6 (MP5-20F3), anti-IL-9 (RM9A4), anti-IL-17A (TC11-18H10.1), anti-IL-21 
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(FFA21), anti-Bcl-6 (IG19E/A8), anti-T-bet (4B10), anti-PD-1 (29F.A12), anti-

CCR7 (4B12), anti-Ki-67 (16A8), anti-CD25 (3C7) anti-CD62L (MEL-14), anti-

CD127 (A7R34), anti-ICOS-L (HK.53),  anti-CD44 (IM7), anti-GATA-3 

(16E10A23), Streptavidin (PE-Dazzle594). Conjugated or unconjugated 

antibodies were also purchased from BD Biosciences (Franklin Lakes, NJ): anti-

pZAP-70 (17A/P-ZAP-70), anti-V3 (KJ25), anti-IL-12 (C15.6), anti-CD80 (16-

10A1), anti-CD86 (GL1), anti-CD90.2 (30-H12)], and eBiosciences (San Diego, 

CA): anti-IL-5 (TRFK5), anti-IL-10 (JES5-16E3), anti-RORt (AFKJS-9), anti-

Tcf1/Tcf7 (S33-966). AlexaFluor 488- and AlexaFluor 647-conjugated 

Streptavidin were purchased from Jackson ImmunoResearch Laboratories (West 

Grove, PA).  

 

Whole pigeon cytochrome c (PCC) and Ovalbumin (Ova) proteins were obtained 

from Sigma-Aldrich (St. Louis, MO) and moth cytochrome C fragment 88-103 

(MCC88-103) peptide was obtained from Genscript (Piscataway, NJ). Peptides 

were dissolved in sterile nano-pure water at 500 µM and aliquots were stored at -

80 °C until used.  

 

Culture Media 

Fibroblast APC were cultured in DMEM (Life Technologies, Carlsbad, CA) 

supplemented with 10% FBS (Atlanta Biologicals, Atlanta, GA), 1 mM L-

glutamine, 100 mg/ml sodium pyruvate, 50 mM 2-ME, essential and nonessential 
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amino acids (Life Technologies), 100 U/ml penicillin G, 100 U/ml streptomycin, 

and 50 mg/ml gentamicin (Sigma-Aldrich). 

 

Primary splenocytes, T lymphocytes, and bone marrow-derived dendritic cells 

(BMDC) were maintained in complete RPMI which consisted of RPMI 1640 

medium (Life Technologies) supplemented with 10% FBS (Atlanta Biologicals, 

Flowery Branch, GA), 1 mM L-glutamine, 100 mg/ml sodium pyruvate, 50 mM 2-

ME, essential and nonessential amino acids (Life Technologies), 100 U/ml 

penicillin G, 100 U/ml streptomycin, and 50 mg/ml gentamicin (Sigma-Aldrich).  

 

Antigen Presenting Cells           

In in vitro trogocytosis experiments, peptide-pulsed B10.A BMDC or the 

previously described MCC:FKBP cell line [287] were used as APC. The 

MCC:FKBP is a CD80high Ltk– fibroblast cell line that has been transfected with 

ICAM-1, I-Ek α-chain, and an I-Ek -chain with covalently attached antigenic 

MCC88–103 peptide via a flexible linker, and a cytoplasmic tail containing 3 copies 

of FK506-binding protein (Ariad Pharmaceuticals, Cambridge, MA). This cell line 

expresses levels of CD80 and ICAM-1 comparable to B10.BR splenocyte APC 

[287].  

 

Surface-Labeling of APC 

MCC:FKBP APC or BMDC APC cells were surface biotinylated using EZ-Link 

Sulfo-NHS-Biotin (Thermo Scientific, Waltham, MA), or in some cases surface 
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labeled with BODIPY™ FL NHS Ester (Succinimidyl Ester) conjugated to 

AlexaFluor 647 (ThermoFisher), in PBS pH 8.0 for 20 min at RT. Following 

surface labeling, excess biotin or BODIPY dye was quenched with 15x volume of 

PBS pH 7.4 containing 100mM glycine, followed by an additional 3 washes with 

PBS + 100 mM glycine. Cells were then resuspended in cRPMI prior to counting 

and plating for use in the trogocytosis assay.   

 

Generation of BMDCs 

Bone marrow cells were isolated from femurs and tibiae of B10.A mice and 

cultured for 6 days in sterile non-tissue culture grade petri dishes at 105 cells/ml 

in complete RPMI medium containing 30 ng/ml recombinant murine granulocyte 

macrophage-colony stimulating factor (GM-CSF) (PeproTech, Rocky Hill, NJ) at 

37 °C and 5% CO2. Fresh culture media and GM-CSF were added on day 3, and 

non-adherent cells were harvested on day 6. Cells were activated by plating on 

tissue culture-coated 6-well plates with addition of Sigma adjuvant sysTEM at 125 

ng/ml 18 hours prior to use. Adherent cells were surface biotinylated and 

exogenously loaded with MCC88–103 peptide at a final concentration of 2.5 µM for 

2 hours prior to use. Purity was verified via flow cytometry to be >90% CD11c+.    

 

In vitro T cell priming       

Non-polarized TCR-transgenic CD4+ T cell blasts were generated in vitro to 

increase the potential for trogocytosis relative to naïve CD4+ T cells [392]. Single-

cell suspensions of splenocytes from 6- to 12-week-old 5C.C7 or 5C.C7 x B10.A 
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F1 transgenic mice were depleted of erythrocytes by hypotonic lysis using Gey’s 

balanced salt solution (155 mM NH4Cl, 10mM KHCO3) and resuspended in 

complete RPMI 1640. Splenocytes from 5C.C7 x B10.A F1 mice were activated 

in vitro for 6 days by addition of 2.5 µM MCC88–103 peptide to splenic cell 

suspensions. 5C.C7 splenocytes were stimulated for 48 hours on pre-coated 

anti-CD3 (1 µg/ml) and anti-CD28 (1 µg/ml) plates followed by a 2-day incubation 

after removal from antibody-coated plates prior to use. Viable lymphocytes were 

isolated from priming cultures by density centrifugation using Lympholyte M 

(Cedarlane Labs, Burlington, NC). When culturing B10.A x 5C.C7 F1 or C57BL/6 

cells, B cells were depleted from cultures by incubating cells for 30 min with 

biotin-labeled anti-B220 (BioLegend), followed by 3 washes in PBS. Cells were 

then incubated for 20 min with 3.75 µm streptavidin-coated magnetic particles 

(Spherotech) followed by removal of B220+ cells by magnetic separation.  

Cultures of cells from peptide T cell blast cultures were 90-95% CD4+ 

immediately prior to use in the trogocytosis-assay.   

 

In vitro TH1 and TH2 polarization to induce TH1 or TH2 effector subset 

differentiation 

 Primary T cells were stimulated directly ex vivo on anti-CD3 (1 µg/ml) and anti-

CD28 (1 µg/ml) coated plates, as described above, with either TH1 (5 ng/ml IL-12 

and 20 µg/ml anti-IL-4 (11B11), or TH2 (10 ng/ml rmIL-4 and 20 µg/ml anti-IFN) 

differentiation cocktails [83]. On day 2, 5 U/ml rmIL-2 was added to all cultures. 

The exogenous cytokines were obtained from Peprotech, (Rocky Hill, NJ) and 
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neutralizing antibodies were purchased from Biolegend. Cells were removed 

from Ab-coated plates on day 4. Polarization was confirmed through flow 

cytometry analysis of transcription factor and cytokine staining for GATA-3, T-

Bet, IL-4 and IFN. Immediately prior to use in the trogocytosis assay, >95% of 

CD4+ blasts generated under TH1-polarizing conditions were T-bet+, and >60% of 

CD4+ blasts generated under TH2-polarizing conditions were GATA-3+.  

      

Standard in vitro trogocytosis assay 

To assess trogocytosis by the CD4+ 5C.C7 T cells, we used our previously 

described standard in vitro trogocytosis assay ([81] Fig. S3.1A). Briefly, 0.5 x 106  

surface biotinylated or BODIPY labeled MCC:FKBP fibroblast or 1 x 106  similarly 

labeled BMDC  APC were plated into individual wells of a 6-well tissue culture 

plate (Greiner, Monroe, NC) and incubated overnight at 37 °C. The MCC:FKBP 

cell line doubling time is approximately 12 hours, so following the overnight 

incubation wells contained 106 APC at the time T cells were added. To facilitate 

magnetic depletion of APC from recovered T cells, iron-containing polystyrene 

2.22 µm beads (Spherotech, Green Oaks, IL) were added to the overnight 

cultures at a final concentration of 0.01% w/v. Twelve to 18 hours later, free 

magnetic beads were removed from cultures by rinsing, and 2.5 x 106 in vitro-

primed T cells, (for a final 2.5:1 T:APC ratio), were added to each well and 

subsequently incubated for 90 min at 37 °C. For experiments using naïve CD4+ T 

cells, B220 negative selection was performed as described in in vitro T cell 

priming, and the same 2.5:1 T:APC ratio was used, but T cells were incubated 



77 
 

with APC for 18 h at 37 °C. After the co-incubation, T cells were recovered from 

the cultures by rinsing with cold PBS pH 7.4. Greater than 95% of residual APC 

were removed by magnetic separation and greater than 70% of the input T cells 

were routinely recovered from the culture at 90 min after the PBS wash. After two 

additional PBS washes, recovered T cells (containing both trog+ and trog– cells) 

were analyzed immediately by flow cytometry, or were resuspended in complete 

RPMI 1640 medium at low density (104 /ml) to minimize T:T contact, and cultured 

for 60 min in 6-well plates or petri dishes to allow for residual APC to settle and 

bind to the surface of the 6-well plate. Cells were then gently aspirated and 

placed into unused 6-well plates with 2 mL/well at 104 cells/ml additional time 

periods. These cultures of recovered cells contained >95% CD4+ cells, and 

<0.1% residual APC (Fig. S3.1B). 

 

Inhibition of TCR Signaling 

To confirm the role of trogocytosis-mediated signaling in effector function, TCR 

signaling was extinguished using the reversible Src family tyrosine kinase 

inhibitor PP2 (Life Technologies), as previously reported [81, 442]. Immediately 

post-trogocytosis assay, recovered T cells were incubated for 20 min in 20 µ 

PP2, followed by three washes in PBS to remove the PP2. Cells were then 

assessed immediately to confirm the treatment halted all TCR-signaling, or were 

cultured as described above and assessed for TCR-downmodulation, 

transcription factor, and intracellular cytokine expression via flow cytometry.   
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CFSE / CellTrace Violet Labeling of T cells 

Primary mouse splenocytes were washed twice with CFSE loading buffer ( 0.1% 

FBS in PBS pH 7.4). Cells were then resuspended at 107 cells/ml in pre-warmed 

CFSE loading buffer containing 5 µM CFSE (Sigma-Aldrich), or 5 µM CellTrace 

Violet (ThermoFisher) and incubated at 37 °C for 10 minutes. The reaction was 

stopped by addition of an equal volume of complete RPMI 1640 medium 

containing 10% FBS, followed by two additional washes in complete RPMI. 

 

In vivo Trogocytosis Experiments 

In adoptive transfer experiments, B10.A mice were immunized via subcutaneous 

injection (s.c.) (base of tail) with either 300 µg pigeon cytochrome c (PCC) 

protein (Sigma-Aldrich) in 100 µl of Sigma Adjuvant System (SAS) or with 100 µl 

of PBS as a negative control. 24 hours later, 2 x 106 CFSE labeled 5C.C7 

primary splenocytes in PBS were injected i.v.  Draining inguinal lymph nodes 

were collected five days post-adoptive transfer and analyzed using flow 

cytometry. Donor 5C.C7 cells were identified as being V3+ and CFSE+. Of these 

transferred donor cells, trog+ cells were identified as CD3+ CD4+ CD80+ I-Ek+ (Fig. 

S.31D). 

 

To generate in vivo trog+ cells in a non-transgenic setting, C57Bl/6 CD45.1 mice 

were subcutaneously immunized at the base of tail with 300 µg of chicken egg 

white albumin (OVA) (Sigma-Aldrich) in 100 µl SAS, or 100 µl SAS alone as a 

control. 14 days later, OVA-immunized mice were boosted s.c. with 300 µg OVA 
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in 100 µl of PBS, control mice were injected with 100 µl PBS alone. Five days 

post-boost, draining inguinal lymph nodes and spleens were harvested and 

analyzed via flow cytometry. Trog+ cells were identified as CD3+ CD4+ CD80/86+ I-

A/E+ (Fig. S3.5). To confine analysis of cytokine and transcription factor 

expression to cells with similar activation states, CD4+ CD69High cells were gated 

on prior to identification of trog+ and trog– populations.  

 

Flow cytometry 

Cells were recovered from cultures and resuspended at 106 /ml in FACS buffer 

(PBS pH 7.4 containing 2% BSA Fraction V (Sigma-Aldrich), 2.5 mM EDTA, and 

0.1% NaN3). To assess viability of cells, cells were stained for 10 min at RT with 

Zombie NIR fixable viability dye (Biolegend) diluted in PBS then washed 3x with 

PBS. Cells were then stained for surface markers with the indicated reagents for 

30 min on ice in FACS buffer. After three additional washes in FACS buffer, cells 

were stained for 20 min with secondary reagents in FACS buffer, when 

necessary. Following a final set of three washes in FACS buffer, cells were 

resuspended in 400 µl of FACS buffer and stored on ice until being analyzed 

within 2 hours of staining. Alternatively, cells were fixed in ice-cold fixative (4% 

paraformaldehyde and 0.5% glutaraldehyde), or Biolegend Fixation Buffer, for 30 

min at 4 °C followed by 3 washes in FACS buffer. Fixed cells were resuspended 

in 400 µl of FACS buffer and stored in the dark at 4 °C until being analyzed the 

following day.  
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For the detection of antigen-specific cells, an MCC:I-Ek (88–103)  MHC class-II 

tetramer was obtained through the NIH tetramer core facility (Emory University, 

Atlanta, GA). Prior to surface staining, tetramer was diluted 1:100 in FACS buffer, 

and spun down at 1000 x g for 10 minutes to remove aggregates. Cells were 

blocked with FC receptor-block, then stained with recovered tetramer in 

suspension, for 30 min at 37 °C, or with an irrelevant isotype control tetramer. 

For detection of previously-activated cells gating included selection of CD44+ 

cells (Fig. S4.3) 

 

Intracellular Cytokine Staining 

To enhance detection of intracellular cytokines, in Figs. 3.2, 3.4A-C, 3.6, 3.7,  

3.8, 4.4, 4.8, 4.12, 4.16-18, 4.29, and 4.35B, cells were re-stimulated at for 5 

hours 37 °C with 500 ng/ml PMA (Phorbol 12-myristate 13-acetate) (Sigma-

Aldrich), 1 µg/ml Ionomycin (Sigma-Aldrich), in the presence of 5 µg/ml brefeldin 

A (BioLegend). After staining surface molecules on live cells, as described 

above, cells were fixed for 30 min in BD Bioscience cytofix/cytoperm followed by 

three washes in 1x Biolegend permeabilization/wash buffer (PWB). Cells were 

then stained for intracellular targets for 60 min on ice or overnight at 4 °C with 

staining reagents diluted in 1x PWB. Following intracellular staining, cells were 

washed three times in PWB and were either analyzed immediately, or were 

stored in FACS buffer in the dark at 4 °C and analyzed the following day. 

 

Transcription Factor Staining 
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For transcription factor staining, live cells were stained for surface molecules, as 

described above, then fixed in Biolegend True-Nuclear transcription factor 

fixation buffer for 60 min at room temperature. Following 3 washes in True-

Nuclear Perm Buffer, intercellular targets cells were stained with antibodies 

diluted in True-Nuclear Perm Buffer for 60 minutes on ice, or overnight at 4 °C. 

After a final set of 3 washes in Perm Buffer, cells were resuspended in 300 µl 

FACS buffer and analyzed immediately via flow cytometry.  

 

Cells were analyzed on a FACSAria (BD Bio-sciences) in the University of 

Montana Fluorescence Cytometry Core, or an LSRII (BD Bio-sciences) in the 

University of Montana Center for Translational Medicine. Data were analyzed 

with FlowJo 8.8.7 and FlowJo 10 software (Tree Star, Ashland, OR). Geometric 

mean flourescence intensity (MFI) values were determined, where indicated.   

  

Gating Strategies 

Identification of trog+ cells was done by gating on lymphocyte population (SSC-A 

vs. FSC-A) followed by rigorous doublet exclusion (FSC-W vs. FSC-H, and SSC-

W vs. SSC-A). Live CD3+ CD4+ cells were identified by the absence of fixable 

live/dead staining, and trog+ cells were identified by the presence of trogocytosed 

biotinylated-APC membrane protein (greater than stained, anti-CD3/CD28-

stimulated, or unstimulated controls), or the presence of CD80/CD86 + I-Ek for 

experiments using 5C.C7 TCR transgenic mice, or presence of CD80/CD86 + 

MHCII I-A/E for experiments using C57BL6/J mice (Fig. S3.5). Ag-specific 
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staining was confirmed by comparison to respective isotype controls of matched 

populations confirmed by background levels on unstimulated CD4+ T cells (Fig. 

S3.5). 

 

Intracellular cytokines and transcription factor gating was established using 

matched-isotype control Ab staining for respective populations. trog+ and trog- 

isotype control intensities were nearly identical, and vertical lines in histogram 

data depict fluorescence intensity greater than 99% of cells stained with isotype 

controls.  

 

Removal of Peptide from Trogocytosed-MHCII  

Recovered T cells were washed in PBS at RT and 5 x 106 cells/ml were 

incubated at RT for 2.5 min with citric acid buffer (0.1M sodium citrate (Sigma), 

0.1M citric acid (Sigma) in PBS pH 4.5 to induce reversible-conformational 

changes in MHCII [443]. The reaction was neutralized by adding 15x volume of 

cRPMI, followed by two additional washes in cRPMI. Following washing of 

unbound peptide, aliquots of cells were supplemented with 10 mM hemoglobin 

(Hb) peptide, or MCC peptide. When MCC-loaded BMDC were exposed to the 

same treatment, then used in a trogocytosis-assay, in cultures with 

supplemented Hb the rate of trogocytosis, and activation (as measured by CD69 

expression) of CD4+ T cells recovered from the trogocytosis-assay were reduced 

by >80% relative to cells recovered from BMDC cultures supplemented with 

MCC-peptide. Trog+ cells recovered from cultures where peptide was stripped 
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and replenished with Hb showed a substantial reduction in pZAP-70 signaling 

compared to untreated, or peptide-stripped cultures where MCC was replenished 

(Fig. S4.2). Acid treatment did not have a significant effect on activation state of 

cells as determined by CD69 expression (data not shown). 

 

Antibody-Neutralization of Trogocytosed MHCII/CD80 

 Following recovery from the trogocytosis-assay and removal of contaminating 

APC, 20 µg/ml of purified anti-I-Ek (17-3-3) (BioLegend) and anti-CD80 (Clone) 

(BioLegend) were added to an aliquot of recovered cells, and replenished 3d 

post-recovery. In experiments involving neutralizing antibodies, trogocytosis was 

measured by the presence of trogocytosed biotin-labeled APC membrane 

proteins. trog+ cells recovered from cultures containing neutralizing antibodies 

showed a substantial decrease in pZAP-70 compared to trog+ cells from 

untreated cultures (Fig. S4.2) 

 

In vitro Cytokine Supplementation  

Immediately following recovery from the trogocytosis assay, an aliquot of 

recovered T cells was supplemented with recombinant mouse IL-2 to a final 

concentration of 100 iU/mL. Cultures were re-supplemented with IL-2 at 24, and 

48 hrs post-recovery.  

 

Isolating Lymphocytes from Blood 
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Blood was collected into tubes containing 0.2 mM EDTA followed by RBC lysis 

with Gey’s solution then stained as described above.  

 

 

 

Isolation of lymphocytes from skin 

Prior to immunization mouse hair was trimmed in a ~2 cm2 patch around the 

injection site. At the time of harvest, ~1.5 cm 2 skin was collected from the 

injection site and minced into 3-5mm pieces. Tissue was incubated with 2.5 mM 

HBSS for 30 min at 37 °C degrees followed by an additional 60 min digestion at 

37 °C after the addition of collagenase D (Sigma) to a final concentration of 100 

U/ml. Skin was washed in cRPMI and tissue was dissociated with glass slides, 

and filtered through a 70 µm filter prior to staining for flow cytometric analysis.  

 

Treatment of T cells with Cytochalasin D 

Prior to imaging of proliferating naïve cells, cytochalasin D (Sigma), was added to 

cultures for a final concentration of 10 µM, followed by a 4 hr incubation at 37 °C 

before collection and staining.  

 

Edu Incorporation Assays 

Twenty-four hours prior to collection and analysis, 2 mM 5-Ethynyl-2´-

deoxyuridine (EdU) was added aliquots of recovered cells. After collection, cells 

were stained for surface molecules, with the exception of PE-conjugated Abs. 
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Cells were fixed with 4% PFA for 20 min at RT and permeabilized with 0.2% 

Triton-x 100. Edu staining was conducted according to manufacturer’s protocol, 

followed by 3 washes and when applicable, staining with PE-conjugated Abs.   

 

 

Detection of Extracellular Cytokines 

The detection of secreted cytokines in culture medium was performed using 

BioLegend LEGENDplex beads according to the manufacturer’s directions. 

Briefly, culture medium from cells was centrifuged to remove contaminating cells 

and debris, and immediately stored at -80 °C until used. Samples and known 

standards for each cytokine analyzed were subsequently incubated with 

cytokine-capture beads and biotinylated-detection antibodies in polypropylene 

microfuge tubes shaking at 1000 rpm at room temperature for 2 hours. Following 

this incubation, SA-PE was added, followed by a 30 min incubation while shaking 

at 1000 rpm. Beads were washed and immediately analyzed via flow cytometry.  

 

LEGENDplex beads were analyzed on a LSRII (BD Bio-sciences). Standard 

curves were generated, and data were analyzed with LEGENDplex software 

(Biolegend/ VigeneTech). Cytokine levels in samples were confirmed using 

BioLegend LEGEND MAX sandwich cytokine-capture ELISA kits according to 

manufacturer’s protocol.     
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Cell Staining and Image Collection for Microscopic Analysis   

    

T cells recovered and isolated from the standard trogocytosis assay were 

cultured at low density (104 cells/ml) for three days in complete RPMI at 37 °C. 

Live cells were isolated using Lympholyte M density centrifugation prior to 

detection of trogocytosed molecules with fluorochrome-conjugated streptavidin 

and anti-I-Ek antibodies diluted in FACS buffer for 30 min on ice. Cells were then 

washed 3x in PBS and ~106 recovered T cells were placed in 0.01% poly-L-

lysine (Sigma) precoated #1.5 LabTek II eight-chambered coverslips (Nunc) for 

10 min at 37 °C in PBS. Cells were fixed with ice-cold fixative (4% 

paraformaldehyde and 0.5% glutaraldehyde in PBS) in a dark, a humidified 

chamber for 20 min at room temperature, followed by permeabilization with 0.2% 

Triton X-100 in PBS for 10 min. Intracellular cytokine and phospho-ZAP70 

staining was performed for 1 hour at room temperature in a dark humidified 

chamber followed by washing with PBS and addition of SlowFade Gold anti-fade 

reagent (Thermo Fisher, Eugene, OR). 0.3 µm optical sections were collected, on 

an Olympus Fluoview FV1000 laser scanning confocal mounted on an inverted 

IX81 microscope using a Nikon 60x objective with 1.4 N.A, housed in the UM 

Molecular Histology and Fluorescent Imaging core facility.  

 

Image analysis      

Constrained, iterative deconvolution was performed using the Applied Precision 

SoftWorx software package (GE Healthcare, Issaquah, WA). The integrated 



87 
 

intensity of streptavidin, which is a measure of the amount of fluorescently 

labeled molecules trogocytosed, was obtained for areas ≥ six-times above 

background fluorescence. For analysis of phosphorylated ZAP-70, the integrated 

intensity and mean fluorescent intensity was obtained for areas 6-fold above 

background. Between 25 and 55 trog+ cells were imaged in each of five 

independent experiments. Cells were selected for analysis by the presence of 

streptavidin or I-Ek (6-fold above background intensity). Unstimulated cells were 

also stained and examined to establish levels of background and non-specific 

staining. To determine IL-4 or IL-21 polarization towards trogocytosed molecules, 

cells were divided into 4 quadrants using the ImageJ quadrant picker plugin, with 

trogocytosed molecules in the center of one radian along the circumference of 

the cell. The presence of IL-4 staining in the same quadrant as trogocytosed 

molecules was defined as specific accumulation. Images presented are 

maximum intensity projections of three consecutive 0.3 µm-thick Z-axis optical 

sections centered around the highest intensity staining of trogocytosed molecules 

on the cells surface were created by stacking images in ImageJ.  IL-21 and Tcf-1 

images in chapter 4, and the additional images presented in Fig. S3.4, are single 

0.3 µm-thick optical sections  

 

Statistical Analysis and Graphing 

Statistical analysis was determined by student’s t test, and one-way ANOVA 

followed by Tukey’s multiple comparison test when more than two samples were 
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compared, using Prism 4 (GraphPad Software, La Jolla, CA). Significance was 

defined as * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, and **** p≤ 0.0001.  

 

 

 

Chapter 3 
 

 Trogocytosis-mediated Intracellular Signaling in 
CD4+ T cells Drives TH2-associated Effector 

Cytokine Production and Differentiation 
 

The following are results as presented in the Journal of Immunology, 2019, 
minus the materials and methods section which has been consolidated into 
chapter II, and references which have been consolidated in the bibliography of 
this dissertation. 
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Abstract 

CD4+ T cells have been observed to acquire APC-derived membrane and 

membrane-associated molecules through trogocytosis in diverse immune 

settings. Despite this, the consequences of trogocytosis on the recipient T cell 

remain largely unknown. We previously reported that trogocytosed molecules on 

CD4+ T cells engage their respective surface receptors, leading to sustained 

TCR signaling and survival after APC removal. Using peptide-pulsed BMDC and 

transfected murine fibroblasts expressing antigenic MHC:peptide complexes as 

APC, we show that trogocytosis-positive CD4+ T cells display effector cytokines 

and transcription factor expression consistent with a TH2 phenotype. In vitro 

polarized TH2 cells were found to be more efficient at performing trogocytosis 

than TH1 or non-polarized CD4+ cells, while subsequent trogocytosis-mediated 

signaling induced TH2 differentiation in polarized TH1 and non-polarized cells. 

Trogocytosis-positive CD4+ T cells generated in vivo also display a TH2 

phenotype, in both TCR-transgenic and wild type models. These novel findings 

suggest that trogocytosis-mediated signaling impacts CD4+ T cell differentiation 

and effector cytokine production, and may play a role in augmenting or shaping a 

TH2-dominant immune response.   
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Introduction 

T lymphocytes acquire lipids and membrane-bound molecules directly from the 

surface of antigen presenting cells (APC) in a phenomenon termed trogocytosis 

[279, 373]. This event has been frequently observed in CD4+ T-helper (TH) [81, 

285, 287, 368-372], CD8+ [370, 373-376], and  [377] T cells. Though the 

consequences of trogocytosis on recipient cells are not completely understood, it 

has been described as “an inherent feature in CD4+ T cell activation” [420]. This 

phenomenon is not exclusive to T cells, as B cells [378, 379], NK cells [380-382], 

basophils [283], macrophages [383, 384], neutrophils [385-387], and dendritic 

cells [388, 389], have all been reported to perform trogocytosis. With elevated 

levels of trogocytosis documented in sites of autoimmune inflammation [391], 

viral and parasitic infections [282, 413, 414], rheumatoid arthritis [11], and in 

tumor environments [284, 403], this widely observed event has been proposed to 

play a role in the modulation of immune responses [277, 388, 415-419].  

            Work over the past decade has begun to decipher the mechanism of T 

cell trogocytosis. We, and others, have previously shown that trogocytosis by 

CD4+ T cells occurs at the immunological synapse formed between Ag-specific 

CD4+ T cells and APC [287, 392, 394, 397, 402]. The formation of the 

immunological synapse involves the spatio-temporal rearrangement of the TCR, 

costimulatory molecules, and adhesion molecules, into distinct, spatially-

segregated supramolecular activation complexes (SMACs) [51-54]. Upon binding 

MHC:peptide complexes, TCRs migrate towards the center of the SMAC where 

they become internalized by the T cell and are either recycled to the surface, or 



92 
 

ubiquitinated leading to their degradation [60]. Martinez-Martin et al., have 

proposed a model of trogocytosis in which APC-derived membrane and 

membrane proteins are internalized in tandem with TCR via T-cell phagocytosis. 

Recycling endosomes containing acquired APC fragments then fuse with the T 

cell plasma membrane resulting in APC-derived molecules being displayed on 

the T cell surface in their native topological orientation [278, 411]. Trogocytosed 

molecules are retained in a focused spot on the CD4+ T cell surface [81, 287] 

and remain fully functional, as demonstrated by the ability for trogocytosis-

positive (trog+) T cells to present antigen, in the context of other acquired 

molecules, to responding T cells [369, 371, 372, 415, 420-426]. The 

consequences of such presentation appear to correlate with the nature of the 

acquired molecules and phenotype of the trog+ cell. While trog+ CD4+ cells 

displaying acquired CD80 and MHC:peptide have been shown to activate 

responding naïve T cells [371, 410, 420, 424], presentation of Ag to activated 

cells has been reported to induce responder cell death [429]. In a regulatory 

context, trog+ T regulatory (Treg), or TH cells displaying trogocytosed molecules 

associated with immune-suppression, such as HLA-G, show enhanced 

suppressive capabilities [417, 420, 422, 432, 437, 438]. Collectively, the above 

findings underscore that CD4+ T cell trogocytosis, and the subsequent 

presentation of acquired molecules, are biologically significant events in the 

context of regulating immune responses. 
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While the ability of trog+ T cells to act as APC has been fairly well documented, 

much less is known about the biological consequences of trogocytosis on an 

individual trog+ cell. In our previous studies, we detected TCR signaling in trog+, 

but not trog–, CD4+ T cells up to 72 hours after separation from APC. This 

sustained signaling was mediated by trogocytosed molecules engaging their 

cognate receptors on the trog+ T cell, resulting in “autopresentation”, referred to 

here as “trogocytosis-mediated signaling”. This signaling led to the enhanced 

survival of trog+ cells compared to trog– cells, up to five days after APC removal 

[81]. Consistent with these findings, Zhou et al. found that trog+ CD4+ T cells 

displayed sustained activation of NFB and AP1, 24 hours after removal from 

APC. Interestingly, the trog+ cells also developed a unique cytokine profile [439], 

raising the possibility that a difference exists between trogocytosis-mediated 

signaling and signals received from APC. Taken together, the above results 

suggest that trogocytosis-mediated signaling has the potential to uniquely impact 

the survival, activation state, and effector cytokine production and/or 

maintenance of the trog+ CD4+ T cell after separation from APC.  

        In this study, we examined whether trogocytosis-mediated signaling 

impacted T cell effector cytokine production and differentiation in the context of 

the individual trog+ cell. Using non-polarized in vitro CD4+ T cell blasts, we found 

that shortly after APC removal, a high frequency of trog– cells expressed IFN, 

consistent with a T helper 1 (TH1) phenotype. The trog– cells did not maintain 

IFN expression over a subsequent 72-hour incubation, and by 72 hours only 

minimal levels of any effector cytokine examined were detected. In contrast, 5 
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hours after APC removal the frequency of IFN+ trog+ cells was significantly lower 

than IFN+ trog– cells. Interestingly, over the subsequent 72-hour incubation, IL-4 

expression was significantly increased in the trog+ cells, consistent with a TH2 

phenotype. Because trogocytosis-mediated signaling induces preferential 

survival of trog+ cells [81], the appearance of the TH2 phenotype by trog+ cells 

could be due to differences in the ability of TH1 and TH2 cells to perform 

trogocytosis. Consistent with this possibility, in vitro polarized TH2 

cells were more efficient at performing trogocytosis than TH1 or non-polarized 

CD4+ cells. However, further investigation revealed that trogocytosis-mediated 

signaling was directly contributing to the TH2-associated effector cytokine and 

transcription factor expression in non-polarized trog+ CD4+ cells. In addition, in 

vitro TH 1-polarized trog+ cells lost expression of IFN and T-bet, and began 

expressing IL-4 and GATA-3, suggesting that trogocytosis-mediated signaling 

was inducing TH 1 to TH2 conversion. Finally, using both TCR-transgenic and 

non-transgenic models, and distinct Ag systems, we show that in vivo, a 

significantly higher frequency of trog+ CD4+ T cells display a TH2 

phenotype when compared to trog– cells from the same animal. Cumulatively, 

these findings suggest that trogocytosis-mediated signaling has the potential to 

significantly impact CD4+ T cell effector cytokine production and differentiation, 

and subsequently may play a role in sustaining, augmenting, or shaping, TH2-

dominant immune responses.  
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Results  

Intracellular TCR signaling and elevated activation is maintained in trog+, 
but not trog– CD4+ T cells after APC removal. 
 
At sites of inflammation and immune activation, there is a correlation between 

CD4+ trogocytosis and a heightened activation state [397]. This is consistent with 

data showing that highly activated cells display enhanced trogocytic activity [287, 

391]. An additional explanation for the heightened activation observed in 

trogocytosis-positive (trog+) cells is that that trogocytosed molecules could 

engage their receptors on the trog+ CD4+ T cell and sustain intracellular 

signaling. Such trogocytosis-mediated signaling may be playing an important and 

unappreciated role in driving and/or maintaining T cell activation, effector 

functions, and differentiation. We have previously shown that that after APC 

removal, there is selective survival of trog+ cells over 5 days in vitro compared to 

trog– cells [81]. In addition, both TCR-proximal (ZAP-70 phosphorylation) and 

distal signaling (ERK 1/2 phosphorylation) was detectable in trog+, but not trog– 

cells 72 hours after APC removal. This sustained-signaling occurred 

independently of APC, and was driven by the engagement of trogocytosed 

molecules and their receptors on T cells (i.e. trogocytosis-mediated signaling) 

[81].  

 

To extend on our previous study, we began by comparing the activation state 

and TCR-proximal signaling in trog+ and trog– cells up to 72 hours after recovery 

from a 90-minute in vitro trogocytosis assay. Recovered T cells were analyzed 

immediately, or cultured for 3 days at low density (104 cells/ml) to minimize T:T 
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interactions, and samples were collected daily. At indicated time-points (Fig. 3.1), 

cells were analyzed via flow cytometry, and trog+ cells were identified by the 

presence of trogocytosed, biotin-labeled APC-derived molecules (Fig. S3.1C). 

Consistent with our previous findings, both trog+ and trog– cells showed similar 

levels of TCR downmodulation immediately after the trogocytosis-assay, 

indicating that both populations had recognized antigen (Fig. 3.11A, B). In 

agreement with the TCR downmodulation data, both trog+ and trog– cells also 

displayed elevated levels of the activation marker CD69, compared to 

unstimulated cells (Figs. 3.11C-E). However, after APC were removed from the 

system, only the trog+ cells maintained TCR downmodulation and an activated 

(CD69High) phenotype throughout the 72-hour incubation. In contrast, at the 48 

and 72-hour time points, the trog– cells displayed significantly lower TCR 

downmodulation levels compared to the trog+ cells (Fig. 3.1B), and surface TCR 

levels were similar to unstimulated T cell blasts (Figs. 3.11A, B). The loss of TCR 

downmodulation coincided with a decrease in CD69 expression by the trog–  cells 

to levels similar to unstimulated T cell blasts (Figs. 3.1C, D), and at the 48 and 

72-hour time points, the trog+ cells displayed significantly increased levels of 

CD69 compared to trog– cells (Fig. 3.1D). This marked difference was not only 

due to the loss of CD69 expression by trog– cells, but also a result of trog+ cells 

enhancing CD69 expression, and the loss of CD69Low trog+ cells (Figs. 3.1C-E). 

In agreement with our previous study [81], the trog+ cells displayed enhanced 

survival compared to the trog– cells, as seen by the increase in trog+ frequencies, 

and decrease in trog– frequencies after APC removal (Fig. 3.1C). While the 
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phenotype of the trog+ cells is consistent with active-TCR signaling, the 

phenotype displayed by the trog– cells is consistent with published data showing 

that CD69 expression peaks between 18-48 hours after removal of in vitro TCR 

stimulation [444].  

 

 

To confirm that the TCR engagement displayed by trog+ cells resulted in TCR-

proximal signaling, the levels of phosphorylated ZAP-70 (pZAP-70) were 
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assessed [445, 446]. In support of the data in Figs. 3.1A and B, and consistent 

with our previous studies [81], the trog+, but not trog– cells, maintained pZAP-70 

levels after APC removal (Fig. 3.1E). At each observed time-point, the trog+ cells 

had significantly higher levels of pZAP-70, as determined by MFI, compared to 

the trog– cells (Fig. 3.1F). Because nearly no APC were present in the cultures of 

CD4+ T cells following the trogocytosis-assay (Fig. S3.1B), the increased CD69 

expression, TCR downmodulation, and elevated pZAP-70 maintained in trog+, 

but not trog–, cells over the 72-hour incubation suggests that cell-autonomous, 

trogocytosis-mediated signaling sustained the T cell activation.  

 

Trog+ CD4+ T cells express elevated levels of IL-4 and IL-5, whereas trog– 

cells express high levels of IFN+ and little IL-4 or IL-5. 
 
The sustained activation and TCR proximal signaling in trog+ cells after removal 

from APC raised the possibility that trogocytosis-mediated signaling may impact 
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effector cytokine production within these cells. To examine this, culture 

supernatants from T cells recovered from the trogocytosis assay were analyzed 

for cytokines characteristic of various TH subsets using cytokine-capture beads. 

Five hours after recovery from the in vitro trogocytosis-assay, T cell supernatants 

contained high levels of IFN and IL-2, but negligible amounts of IL-4, IL-6, IL-21 

or IL-13 (Fig. 3.2A). Interestingly, by 72 hours IFN levels were significantly 

decreased, while IL-4 levels had increased significantly (Fig. 3.2A). To examine a 

potential correlation between trogocytosis and the observed cytokine production, 

intracellular cytokine staining (ICS) was performed on recovered cells at 24-hour 

intervals over a 72-hour incubation after APC removal. The fold-difference in MFI 

for TH subset-characteristic cytokine expression of trog+ and trog– cells compared 

to T cell blasts which did not undergo the trogocytosis-assay (unstimulated cells) 

is shown in Fig. 3.2B. Five hours post-recovery, neither the trog+ nor trog– cells 

showed increased levels of IL-4, IL-5, IL-12, IL-6, IL-9, or IL-17, and the only 

cytokine showing substantially increased expression compared to unstimulated 

controls was IFN (Fig. 3.2B). Interestingly, at 5 hours IFN levels were increased 

in the trog– cells significantly more than in the trog+ cells (Fig. 3.2D). By 72 hours, 

there were still minimal expression of IL-12, IL-6, IL-9, or IL-17 by both 

populations. The robust IFN expression seen in trog– cells at 5 hours was no 

longer apparent and had decreased to levels only marginally higher than that of 

unstimulated cells, while IFN levels remained minimal in trog+ cells. However, 

the trog+ cells had developed a striking 2.2-fold increase for IL-4 and 1.85-fold 

increase for IL-5, and 0.89-fold increase for IL-2, all of which were found to be 
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significantly higher in the trog+ cells compared to the trog– cells (Fig. 3.2B). 

Representative histograms for IFN and IL-4 expression by trog+, trog–, and 

unstimulated cells are presented in Fig. 3.2C. Enhanced IL-4 expression was 

also observed in trog+ cells from parallel experiments using MCC peptide-pulsed 

BMDCs as APC (Fig. S3.2). Because the only significant differences in subset-

characteristic cytokines detected between trog+ and trog– cells were TH1 and 

TH2-associated, the subsequent experiments focused on these subsets. 

 

Further assessment of the IFN and IL-4 production on a per-cell basis showed 

that the frequency of IL-4+ cells increased exclusively in the trog+ cells, from an 

average of 12.5% at 5 hours to an average of 73% by 72 hours (Fig. 3.2D). By 

comparison, the frequency of trog– IL-4+ cells remained below 5% at all time-

points. This resulted in significantly more trog+ IL-4+ cells than trog– IL-4+ cells at 

24, 48, and 72 hours (Fig. 3.2D left). In contrast, on average, 34% of the trog– 
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cells, but only 10% of trog+ cells were IFN+ at 5 hours. Unlike IL-4, IFN 

expression was not maintained in trog+ cells. Despite a dramatic loss of trog– 

IFN+ cells, there was still a significantly lower frequency of trog+ IFN+ cells 

compared to the trog– IFN+ cells at each observed time-point (Fig. 3.2D right). 

The decrease in trog– IFN+ cells over the 72-hour incubation correlates with the 

loss of TCR signaling and activation seen in Fig. 3.1, and the massive cell death 

in this population as observed in Fig. 3.1C and our previous study [81].  

 

The strong IFN+ expression in trog– cells at 5 hours further demonstrates that 

both trog+ and trog– cells are fully activated by the initial APC encounter. Thus, 

differences in the phenotype between trog+ and trog– cells do not simply reflect 

whether T cells have recognized Ag. In addition, although trog+ cells displayed 
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sustained signaling and activation (Fig. 3.1), IFN expression in these cells was 

not maintained. Combined with the increase in IL-4 expression by trog+ cells after 

removal from APC, these results are consistent with the possibility that 

trogocytosis-mediated signaling was impacting the effector cytokine production of 

the trog+ cells, in a manner consistent with a TH2 phenotype.   

 
TH2 cells are more efficient than TH1 or non-polarized CD4+ T cells at 
performing trogocytosis. 
 
One potential explanation for the increased IL-4 expression and frequency 

observed in trog+ cells is that pre-TH2 or TH2-like cells had performed 

trogocytosis more efficiently than pre-TH1 / TH1-like cells. Thus, the increase in 

IL-4+ trog+ cells may simply reflect the superior survival displayed by trog+ cells 

after removal from APC [81]. To compare the trogocytic potential of differentiated 

TH1 and TH2 cells, in vitro-polarized TH1 and TH2 blasts were used in an in vitro 

trogocytosis assay (Figs. 3.3A, B). Representative histograms in Fig. 3C and D 

show that GATA-3+ TH2 blasts were highly efficient at performing trogocytosis, 

with an average of 71.5% displaying biotin-labeled APC-membrane and 58.1% 

having I-Ek on their surface. In contrast, T-bet+ TH1 cells were weakly trogocytic, 

averaging only 14.2% of cells with detectable APC-membrane and 10.4% being 

I-Ek+. For comparison, non-polarized blasts, which showed a predominant TH1 

phenotype (Figs. 3.3A, B), averaged 26.8% of cells with detectable APC-

membrane, and 16.8% with trogocytosed I-Ek. Thus, while non-polarized cells 

had a significantly higher frequency of trog+ cells compared to polarized TH1 

cells, the TH2 cells performed trogocytosis at significantly higher rates than both 
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non-polarized, and TH1 cells (Fig. 3.3E). These results support the hypothesis 

that the predominant TH2-associated cytokine production in the trog+ cells at 72 

hours (Fig. 3.2) was, at least in part, due to the increased ability of TH2 cells to 

perform trogocytosis and their subsequent enhanced survival, which was driven 

by trogocytosis-mediated signaling.  
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Trogocytosis-mediated signaling is sufficient, and effective, in driving IL-4 
expression.  
 
Based on the data in Fig. 3.3 showing that TH2 cells possess higher trogocytic 

potential than TH1 or non-polarized cells, the increase in trog+ IL-4+ cells may 

simply be due to trogocytosis-mediated signaling enhancing the survival of 

predestined TH2 cells. If this were the case, then sustained-canonical TCR and 

costimulatory signaling would be expected to augment the TH2 phenotype of pre-

TH2 or TH2 cells. To examine this possibility, an aliquot of the same T cell blasts 

to be used in a trogocytosis-assay were stimulated with plate-bound anti-CD3 + 

anti-CD28 in parallel with T cells recovered from a standard in vitro trogocytosis-

assay. At 72 hours, on average, 77.4% of the trog+ cells were IL-4+, but only 

3.5% of trog– cells and 1.8% of Ab-stimulated blasts were IL-4+ (Figs. 3.4A-C). In 

contrast, Ab-stimulated blasts maintained a similar frequency of IFN+ cells over 

the 72 hours (Fig. 3.4A), while the frequency of IFN+ trog+ cells dropped from an 

average of 13.4% at 5 hours to 1.5% by 72 hours (Fig. 3.4C). The striking 

difference between the IFN and IL-4 expression patterns between the trog+ and 

Ab-stimulated blasts suggests that trogocytosis-mediated signaling provides 

additional, potentially unique, signals that favor TH2-associated cytokine 

expression, beyond the signaling induced by repeated CD3 + CD28 signaling. 

These results further strengthen the association between trogocytosis-mediated 

signaling, and a TH2 phenotype.  
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As seen in Fig. 3.3, the majority of non-polarized T cells did not displayed a TH1 

phenotype prior to the trogocytosis assay, yet the vast majority of trog+ cells 

developed a TH2 phenotype after APC removal. While the data thus far is 

suggestive that trogocytosis-mediated signaling was driving this phenotype, the 
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possibility that residual signaling from the T:APC interaction was driving the 

observed IL-4 expression in trog+ cells remained. To confirm that trogocytosis-

mediated signaling alone was capable of driving IL-4 production in trog+ cells, 

Lck signaling was interrupted in cells recovered from the trogocytosis assay with 

the reversible Src family kinase inhibitor PP2. Using this technique, we previously 

demonstrated that PP2 treatment terminated TCR signaling, however, after 

removal of PP2, signaling was re-initiated in trog+, but not trog– cells [81]. Here, 

we hypothesized that if trogocytosis-mediated signaling was driving IL-4 

expression, then cytokine production would resume in trog+, but not trog– cells 

after removal of PP2. If neither trog+ nor trog– cells re-initiated IL-4 expression 

after PP2 was removed, it would indicate that trogocytosis-mediated signaling 

alone was insufficient to drive the expression of IL-4. Immediately following the 

trogocytosis assay, recovered cells were treated for 20 min with PP2 to halt TCR 

signaling, and then incubated for an additional 2 hours after PP2 removal. 

Results in Fig. 3.4D show that PP2 treatment did not alter the engagement of 

TCR by trogocytosed MHC:peptide complexes, as nearly identical levels of TCR 

downmodulation were observed in PP2-treated trog+ and untreated trog+ cells, at 

2 (MFI reduced 2.9 fold or 2.81 fold vs. unstimulated controls, respectively) and 

72 hours (1.7 fold vs. 1.3 fold reduction, respectively) (Fig. 3.4D). Treatment with 

PP2 did however, reduce the frequencies of trog+ IL-4+ cells at 2 hours by an 

average of 83.5% (from 11% to 1%). However, 72 hours after PP2 removal, the 

frequency of IL-4+ trog+ cells had rebounded from 1% at 2 hours, to nearly 60% 

at 72 hours (Fig. 3.4D, right). PP2 treatment also decreased the modest IL-4 
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expression of trog– cells at 2 hours, and, as expected, neither the PP2-treated or 

untreated populations of trog– cells expressed IL-4 at 72 hours (Fig. S3.3C). The 

ability of trog+ cells to resume IL-4 production in absence of APC provides 

compelling evidence that trogocytosis-mediated signaling was sufficient to drive 

IL-4 expression in trog+ cells.  

 

Treatment with PP2 reduced the frequency of trog+ IFN+ cells by 72%, and trog– 

IFN+ cells by 80% at 2 hours (Fig. S3). However, consistent with the hypothesis 

that trogocytosis-mediated signaling was driving IL-4, but not IFN expression, 

the expression of IL-4, had rebounded in trog+ cells 24 hours after PP2 

treatment, while IFN expression was significantly lower in PP2-treated cells 

compared to untreated cells (Fig. 4E). This suggests that IFN expression was 

due to signaling occurring at the immunological synapse, and that trogocytosis-

mediated signaling was insufficient to maintain IFN production in these cells.  

 

Intracellular IL-4 is polarized towards trogocytosed molecules  

The sustained expression of IL-4 by trog+ cells up to 72 hours after removal from 

APC (Fig. 3.2) suggested that trogocytosis-mediated signaling may be 

contributing to the maintenance of TH2-associated cytokine production in these 

cells. As a major function of TH2 cells is to provide contact-dependent help to 

cognate B cells upon Ag recognition through B cell directed cytokine secretion, 

we hypothesized that trogocytosis-mediated signaling may mimic these T:B 

interactions. If so, intracellular IL-4 would likely be polarized towards areas of 
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trogocytosis-mediated TCR-signaling. Three days after recovery from a standard 

in vitro trogocytosis assay, recovered cells were stained for trogocytosed 

molecules, intracellular IL-4, and pZAP-70, and analyzed by confocal 

microscopy. Consistent with the flow-cytometry data (Fig. 3.2), IL-4 was only 

detected in 5% of trog– cells in which polarization of IL-4 towards any distinct 

region was only observed in 8% of trog– IL-4+ cells (Figs. 3.5C, S4). In contrast, 

the trog+ IL-4+ cells had significantly higher frequencies of polarized IL-4 

compared to the trog– IL-4+ cells, and 86% of these cells had IL-4 polarized 

towards trogocytosed molecules on the T cell membrane (Fig. 3.5C). 

Representative images illustrate that IL-4 was polarized towards trogocytosed 

molecules (Fig. 3.5A), and that proximal TCR-signaling was occurring at the 

trogocytosed molecules, as indicated by pZAP-70 staining (Fig. 3.5B). Additional 

images are presented in Fig. S3.4. These images are reminiscent of 

observations made by Kupfer et al., who revealed that during TH2 help for B 

cells, IL-4 delivery was localized to the TH2:B cell interface [447]. Thus, data in 

Fig. 3.5 are supportive of a model where trogocytosis-mediated signaling was 

stimulating polarized IL-4 secretion, and also further reinforce the TH2 phenotype 

displayed by trog+ cells. 
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Trog+ cells develop a TH2 phenotype while trog– cells maintain a TH1 
phenotype after separation from APC.  
 
Although IL-4 is widely accepted as the representative TH2 effector-cytokine, 

other T cell subsets, such as TFH, also express IL-4 [448]. Therefore, expression 

of IL-4 alone does not indicate TH2-differentiation. To determine whether trog+ 

cells were differentiated to TH2, the expression of subset-characteristic 

transcription factors was examined. The data in Fig. 3.6A show no detectable 

differences in expression of GATA-3 (TH2), T-bet (TH1), Foxp3 (Treg), Bcl-6 (TFH) 

or RORt (TH17) between trog+ and trog– cells, 5 hours post-recovery from an in 

vitro trogocytosis-assay. This further supported that the unstimulated blasts 

consisted of a homogenous population prior to use in the trogocytosis-assay. By 
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72 hours however, the trog+ cells displayed a 1.7-fold increase for GATA-3, and 

90% lower levels of T-bet compared to trog– cells, while only minimal differences 

were detected for Foxp3, Bcl-6, or RORt (Fig. 3.6A). In agreement with the 

cytokine profiles observed in Fig. 3.2, over the 72-hour incubation, T-bet 

expression in trog+ cells decreased to a level below unstimulated bulk T cell 

blasts, while trog– cells maintained elevated T-bet expression (Fig. 3.6B). In 

contrast, at 72 hours, the majority of the trog+ cells were GATA-3+, and GATA-3 

expression was negligible in the trog– cell population (Fig. 3.6B). While trog+ and 

trog– displayed similar levels of T-bet and GATA-3 five hours after recovery, by 

72 hours the trog+ cells displayed significantly increased GATA-3 expression, 

and significantly decreased T-bet expression compared to trog– cells (Fig. 3.6C). 

These results confirmed that the IL-4+ trog+ cells were consistent with a TH2 

phenotype, and support the hypothesis that trogocytosis-mediated signaling was 

driving TH2 differentiation rather than simply enhancing the survival of TH2-

commited cells.   
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Trogocytosis-mediated signaling, rather than IL-4 availability, is required 
for GATA-3 upregulation after APC removal.  
 
 While IL-4 is a major product of TH2 cells, it is also an inducer of this subset, as 

IL-4R-signaling significantly contributes to TH2 differentiation [449]. Because the 

trog+ cells produced significantly higher amounts of IL-4 than trog– cells (Fig. 3.2), 

it was possible that the TH2 phenotype displayed by the trog+ cells was simply 

the result of IL-4 availability. To examine whether IL-4R signaling was playing the 

central role in the TH2-phenotype observed in trog+ cells, exogenous IL-4 (20 

µg/ml) was added to cultures of cells immediately after recovery from the 

trogocytosis assay, and replenished at 24 hours. As seen in Fig. 3.6D, at 72 

hours, the addition of IL-4 had minimal effects on GATA-3 expression in 

unstimulated cells. Similarly, the trog– cells from cultures containing 

supplemented IL-4, showed only an 8.6% average increase in GATA-3 
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expression, while trog+ cells from the same cultures had increased GATA-3 

expression by an average of 25.5%, as determined by MFI (Fig. 3.6E). However, 

the addition of IL-4 had little impact on the frequency of GATA-3+ trog– or trog+ 

cells, as no significant differences between cells from untreated cultures, and 

cultures with supplemented IL-4, were detected in either population (Fig. 3.6F). 

Thus, IL-4R signaling was not playing the central role in the increase in GATA-3+ 

expression by the trog+ cells. These results confirm that trogocytosis-mediated 

signaling, and not simply the availability of IL-4, was essential for the observed 

TH2 phenotype developed in trog+ cells, consistent with the finding that GATA-3 

translation is dependent on TCR signaling [450].  

 

Trogocytosis-mediated signaling drives TH1 cells to express IL-4 and 
GATA-3 
 
The results in Figs. 3.4 and 3.6 are consistent with the hypothesis that 

trogocytosis-mediated signaling drives TH2 differentiation in trog+ cells. To 

examine this hypothesis, we tested whether trogocytosis-mediated signaling 
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could induce in vitro TH1 polarized trog+ cells to start producing TH2 characteristic 

proteins. If such conversion was observed in trog+, but not trog–, polarized TH1 

cells it would strongly support the hypothesis that sustained, trogocytosis-

mediated signaling was inducing a TH2 phenotype. In vitro TH1 and TH2 polarized 

blasts were generated and used in a standard in vitro trogocytosis assay. In 

parallel, polarized TH1 and TH2 blasts were stimulated on anti-CD3 + anti-CD28 

coated plates to provide sustained signaling throughout the 72-hour incubation. 

Because plasticity between TH1 and TH2 subsets occurs only after days of 

exposure to alternate polarizing conditions [144, 169, 451, 452], the 90 minutes 

of exposure to APC during the trogocytosis-assay alone would not likely be 

sufficient to induce TH1 to TH2 conversion. Cells were examined at 5 hours to 

examine baseline conditions, and at 72 hours after APC removal, to assess 

potential phenotypic changes.   

 

The results in Fig. 3.7A show that sustained Ab-stimulation resulted in stable 

IFN expression in polarized TH1 cells, with an average of 61% being IFN+ at 5 

hours, and 57% being IFN+ at 72 hours. As anticipated, these TH1 polarized 

cells did not express IL-4 at any time-point. The TH1 polarized trog+ cells showed 

a phenotype similar to Ab-stimulated TH1 cells at 5 hours, with an average of 

79% being IFN+, and only 8% expressing IL-4+ (Fig. 3.7B). However, unlike the 

Ab-stimulated TH1 cells, the frequency of trog+ IFN+ cells decreased at each 

successive time-point, and by 72 hours only ~5% remained IFN+. IFN 
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expression was not detected in the trog+ TH2, or the Ab-stimulated TH2 blasts at 

any time-point (Figs. 3.7 C, D).     
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In contrast to the significant decrease in IFN expression, the frequency of trog+ 

TH1 polarized cells expressing IL-4 increased from 8% at 5 hours, to 

approximately 70% at 72 hours (Fig. 3.7B). The presence of a unique population 

(averaging 4.7%) of TH1 polarized trog+ cells which were IFN+ IL-4+ double-

positive cells at 72 hours (Fig. 3.7B) supported the idea that these cells 

converted from TH1 towards a TH2 phenotype [178]. For comparison, while Ab-

stimulation of the polarized TH1 maintained IFN expression, on average, less 

than 0.2% of these cells were for IFN+ IL-4+ double-positive at 72 hours (Fig. 

37A). Within the polarized TH2 cells, on average only 0.22% of trog+, and 0.31% 

of Ab-stimulated cells were IFN+ IL-4+ (Fig. 3.7C, D).  

 

While the TH2 polarized trog+ population displayed an average of 84.2% of cells 

being IL-4+, somewhat unexpectedly, only 28% of Ab-stimulated cells were IL-4+ 

at 72 hours (Fig. 3.7C, D). These are similar to the results in Fig. 4, and further 

support that trogocytosis-mediated signaling is favorable for driving and/or 

augmenting a TH2 phenotype, while sustained anti-CD3 + anti-CD28 Ab-

stimulation is not.  

 

In addition to shutting down IFN expression and upregulating IL-4, the trog+ TH1 

polarized cells also displayed a shift in transcription factor expression. These 

cells were GATA-3 negative and expressed high levels of T-bet at 5 hours, but by 

72 hours, the trog+ TH1 cells had upregulated GATA-3 expression, and 

approximately half of the population lost T-bet expression (Fig. 3.7E). In contrast, 
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the Ab-stimulated and trog– TH1 cells remained GATA-3– and maintained 

expression of T-bet at 72 hours. While there were no significant differences in T-

bet or GATA-3 expression between TH1 polarized trog+, trog–, and Ab-stimulated 

cells 5 hours after recovery, by 72 hours the frequency of T-bet+ cells was 

significantly lower in the trog+ population compared to trog– population. This was 

concomitant with significantly more trog+ cells expressing GATA-3 compared to 

trog– and Ab-stimulated cells (Fig. 3.7F). Consistent with the cytokine expression 

data where the TH1 polarized trog+ cells expressed both IL-4 and IFN (Figs. 37A, 

B), significantly more trog+ cells also expressed both T-bet and GATA-3 

compared to trog– and Ab-stimulated cells (Fig. 3.7F). Taken together, the data in 

figure 7 strongly suggest that trogocytosis-mediated signaling induced TH1 to TH2 

conversion, strengthening the conclusion that trogocytosis-mediated signaling 

drove the observed TH2 phenotype in trog+ cells.  

 

Trogocytosis+ CD4+ T cells generated in vivo display a TH2 phenotype. 

The results so far strongly support the hypothesis that trogocytosed molecules 

engage cognate receptors on T cells to sustain intracellular signaling, leading to 

TH2 biasing. To examine whether this in vitro phenotype was consistent with in 

vivo immune responses, a protein immunization model in an adoptive transfer 

system, using TCR-transgenic T cells transferred into wild type animals was 

used, as well as the direct protein immunization of wild type animals. In the 

adoptive transfer model, B10.A mice were immunized subcutaneously with whole 

pigeon cytochrome-c (PCC) protein. Twenty-four hours later, naïve 5C.C7 TCR-



117 
 

transgenic T cells were adoptively transferred into the immunized animals (Fig. 

3.8). Five days after the adoptive transfer, cells were harvested from draining 

lymph nodes and analyzed. Of the recovered, adoptively transferred CD4+ T 

cells, there was significantly higher rates of trogocytosis in the PCC-immunized 

animals (averaging 19.4% trog+) compared to PBS-injected controls (averaging 

0.28% trog+) (Fig. 3.8A). Based on CD69 upregulation and TCR 

downmodulation, both trog+ and trog– adoptively transferred CD4+ T cells had 

recognized Ag and were activated (Fig. 3.8B). Consistent with the in vitro results 

in Fig. 3.1, the trog+ CD4+ T cells showed trends of higher activation and TCR 

downmodulation compared to trog– CD4+ T cells from the same animal (Fig. 

3.8B). Within the activated (CD69High) CD4+ T cells, there was a significantly 

higher frequency of trog+ IL-4+ cells than trog– IL-4+ cells (Fig. 3.8C). On average, 

15% of trog– cells and 11% of trog+ cells were IFN+ (Fig. 3.8C), resembling the 

phenotypes observed at 48 hours following recovery from the in vitro trogocytosis 

assay (Fig. 3.2D). Also, consistent with the phenotype of cells recovered from the 

in vitro trogocytosis assays (Fig. 3.2C), the expression of IL-4 on a per-cell basis, 

was higher in trog+ cells than similarly activated trog– cells (Fig. 3.8D).  
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In a parallel set of experiments, non-transgenic C57BL/6 mice were immunized 

with chicken ovalbumin (OVA), followed by a booster immunization 14 days later. 

CD4+ T cells were recovered from draining lymph nodes five days after the 

second immunization. These time-points were chosen to reintroduce antigen at 

the end of the effector stage of the immune response, but before establishment 

of a stable memory population. OVA-immunized animals had significantly higher 

frequencies of trog+ CD4+ T cells compared to PBS-injected control mice (Fig. 

3.8E). Consistent with our previous study [81], the trog+ cells displayed sustained 

survival ex vivo, as the frequency of isolated trog+ CD4+ T cells from OVA-

immunized mice increased from 8% on the day of harvest to nearly 60% after a 

five-day in vitro incubation (Fig. 3.8D). Similar to the results with the TCR-
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transgenic model, the trog+ CD4+ T cells were more activated than trog– CD4+ T 

cells as determined by CD69 staining (Fig. 3.8F). Within the activated (CD69High) 

CD4+ cell populations, the trog+ cells displayed increased expression of GATA-3 

and IL-4, whereas their expression in trog– cells from the same animal was nearly 

identical to that of CD4+ T cells recovered from PBS-control animals (Fig. 3.8F). 

Similar to results from in vitro and in vivo TCR-transgenic experiments (Figs. 3.2, 

3.8C), the frequency of GATA-3+ CD4+ cells was significantly higher in the trog+ 

cells compared to the trog– cells (Fig. 3.8G). Consistent with these results, of 

cells recovered from OVA-immunized mice, the frequency of IL-4+ cells was 

significantly higher in CD69High trog+ cells, at nearly 50%, compared to the 

CD69High trog– cells, of which 22.3% were IL-4+. (Fig. 3.8H). Collectively, the 

results in Fig. 3.8 provide strong corroboration of the results obtained from the in 

vitro experiments, as trog+ CD4+ T cells generated in vivo displayed enhanced 

survival in vitro, and displayed greater activation, as well as increased GATA-3 

and IL-4 expression, compared to trog– cells from the same animal. These results 

support the hypothesis that trogocytosis-mediated signaling may play a role in 

TH2 differentiation in vivo.   
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Discussion  

Trogocytosis by CD4+ T cells results in the presence of functional, APC-derived 

molecules, including MHC:peptide complexes, on the surface of the trog+ T cell. 

Many of these acquired molecules are not expressed endogenously by the T cell, 

but they clearly have an impact on T cell biology. This has been demonstrated by 

the ability of trog+ cells to impact the activation of other T cells through the 

presentation of trogocytosed molecules [372, 420]. We have found that 

trogocytosed molecules are also engaged by cognate receptors on the trog+ T 

cell [81], however the biological implications of this phenomenon are largely 

unknown. Because trogocytosis commonly occurs during the activation of CD4+ 
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T cells, it is important to develop a comprehensive understanding of the 

biological consequences of this event.  

 

In this study, we examined the impact of sustained, trogocytosis-mediated 

signaling on the activation, effector cytokine production, and differentiation of the 

trog+ T cell. trog+ cells have sustained TCR proximal signaling for at least 72 

hours after APC removal, consistent with cell-autonomous signaling resulting 

from engagement of the receptors on the T cell by trogocytosed molecules (Fig. 

3.1). This sustained signaling was not due to T:T presentation or the presence of 

contaminating APC, as only the trog+ cells maintained a phenotype consistent 

with active TCR signaling and sustained activation, despite the cultures 

containing both trog+ and trog– cells throughout the incubation period. This 

conclusion is further supported by images showing that active TCR signaling 

occurred proximal to trogocytosed molecules on the surface of trog+ cells, 72 

hours after removal from APC (Fig. 3.5). Similar to our previous studies, the 

sustained signaling led to preferential survival of the trog+ cells, as the frequency 

of CD4+ cells that were trog+ increased from roughly 25% immediately after 

recovery from the trogocytosis-assay, to nearly 80% 72 hours later (Fig. 3.1C, 

[81].  

 

Because the trog+ cells had sustained TCR signaling and remained activated 72 

hours after APC removal, we investigated whether trogocytosis-mediated 

signaling might impact the effector cytokine production of these cells. Intracellular 
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cytokine staining of cells 5 hours after recovery from the trogocytosis-assay 

showed that a significantly higher frequency of trog– cells were IFN+ compared 

to trog+ cells. However, IFN levels decreased to resting levels in both trog– and 

trog+ cells over a subsequent 72-hour incubation (Fig. 3.2B,C). While the 

frequency of trog– IL-4+ cells remained at approximately 5% over the 72-hour 

incubation, the average frequency of trog+ IL-4+ cells increased from 10% at 5 

hours, to over 70% at 72 hours (Fig. 3.2D). Because the trog+ cells also 

displayed enhanced survival after APC removal (Fig. 3.1C), the trog+ cells 

accounted for over 98% of the total IL-4+ CD4+ cells at 72 hours. The increase in 

the frequency of trog+ IL-4+ cells over the 72-hour incubation was likely not due to 

increased proliferation of the trog+ cells, as the amount of trogocytosed 

molecules on the trog+ cells remained constant and was not diluted, as would be 

expected for dividing cells. In addition, our previous study showed no discernable 

proliferation of trog+ cells, up to 5 days after removal from APC [81]. These 

results are consistent with the observations that trogocytosed molecules are 

retained in a punctate spot on the membrane of the trog+ cell (Fig. 4, [81, 287]. 

Thus, the data suggest that trogocytosis-mediated signaling led to sustained 

survival of IL-4+ cells, and/or directly impacted the IL-4 expression in the trog+ 

cells.  

 

If the trogocytosis-mediated signaling was simply sustaining the survival of IL-4-

expressing cells, the apparent increase in IL-4+ trog+ cells after APC removal 

might be due to a difference in the ability of TH1 and TH2 cells to perform 
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trogocytosis. We found that when in vitro polarized TH1 and TH2 cells and non-

polarized T cells were compared, the TH2 polarized cells were indeed more 

efficient at performing trogocytosis (Fig. 3). However, the difference in the 

efficiency of trogocytosis alone isn’t sufficient to account for the observed 

phenotypes. While the frequency of trog+ IL-4+ cells increased, the frequency of 

trog+ IFN producing cells decreased from 10% at 5 hours after recovery to 0.5% 

at 72 hours, suggesting that trogocytosis-mediated signaling was not simply 

boosting global intracellular signaling and enhancing the survival of all trog+ cells. 

If that were the case, the frequency of IFN-expressing and IL-4-expressing cells 

would be expected to remain relatively stable. Rather, our results suggested that 

trog+ cells were differentiating into TH2 (GATA-3+ IL-4+) cells after the 

trogocytosis-assay. While robust GATA-3 expression was detected in trog+ cells 

by 72 hours (Fig. 6), anti-CD3 + anti-CD28 stimulation of an aliquot of the 

unstimulated T cell blasts used in the trogocytosis-assay did not result in a 

similar TH2 phenotype (Fig. 4A). Furthermore, T cell blasts immediately prior to 

the trogocytosis assay displayed a relatively homogeneous TH 0/TH1 phenotype 

(Figs. 3.2, 3.3, 3.6). This is consistent with the inherent bias towards a TH1 

phenotype possessed by the 5C.C7 TCR transgenic mice used in our 

experiments [453, 454], and may explain the rapid IFN production, and delay in 

IL-4 expression, observed in the cells after recovery from the trogocytosis-assay. 

 

To eliminate the possibility that the observed IL-4 production in the trog+ cells 

was induced by residual signaling received from the T:APC interaction and 
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directly examine the role of trogocytosis-mediated signaling in the observed TH2 

phenotype of trog+ cells, the reversible Lck inhibitor PP2 was used to halt TCR 

signaling after APC removal, then washed out to allow trogocytosis-mediated 

signaling to resume. We found that after PP2 removal, IFN expression did not 

resume in either trog+ or trog– cells (Figs. 3.4D, 3.4E, S3.3), consistent with IFN 

production being induced by interactions with APC, and not induced further by 

trogocytosis-mediated signaling. In contrast to IFN, the frequency of trog+ IL-4+ 

cells from PP2-treated cultures rebounded to levels equal to untreated cells by 

24 hours after PP2 removal (Fig. 3.4E), and robust IL-4 production was observed 

in trog+ cells 72 hours after PP2 treatment (Figs. 3.4B, C). These significant 

findings show that trogocytosis-mediated signaling was sufficient to drive IL-4 

expression in trog+ cells. The results showing that in vitro TH1 polarized trog+ 

cells began expressing IL-4 and GATA-3, while at the same time decreasing 

expression of IFN and T-bet (Fig. 3.7), further support that, at least in absence 

of external stimuli, trogocytosis-mediated signaling promotes TH2 differentiation. 

Although it is possible that a portion of the trog+ blasts generated under TH1-

polarizing conditions were not fully differentiated to TH1 prior to use in the 

trogocytosis assay, the unique population of double-positive cells expressing 

both IFN and IL-4 (Fig. 3.7B), and the transcription factors T-bet and GATA-3 

(Fig. 3.7F), was only apparent within the trog+ cells generated under TH1-

polarizing conditions. Thus, the data in Fig. 3.7 supports the possibility that 

trogocytosis-mediated signaling is capable of inducing TH1 to TH2 conversion. 

That a greater frequency of TH2 polarized trog+ cells produced IL-4 than Ab-
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stimulated TH2 polarized cells at 72 hours (Fig. 3.7C, D), further supports the 

hypothesis that trogocytosis-mediated signaling is potent in driving IL-4 

expression. Taken together, the data presented here are consistent with the 

concept that trogocytosis-mediated signaling can drive the differentiation of CD4+ 

T cells towards a TH2 phenotype.   

 

The TH2 phenotype observed in vitro with trog+ cells was also apparent in in vivo 

immune responses. Using TCR-transgenic or wild type cells, and with different 

antigen sysTEMs, we observed that in vivo derived CD4+ trog+ cells expressed IL-

4 and GATA-3 at greater levels, and higher cell frequencies, compared to trog– 

cells from the same animal (Fig. 3.8B, C). The observed TH2 phenotype of in vivo 

trog+ cells was less robust than the phenotype developed in in vitro assays, 

however, this is consistent with findings that in some cases, GATA-3 expression 

in TH2 CD4+ T cells is less pronounced in vivo than in vitro [143]. The observed 

phenotype may also be attributed to the inherent nature of the mice used in our 

study towards TH1, which, consequently, further underscores the significance of 

the TH2 phenotype developed by trog+ cells in this study. Further studies are 

underway to characterize the TH2 phenotype of in vivo-generated trog+ cells at 

additional time-points, and after immunization with TH1-inducing components. 

 

It is interesting to speculate on the mechanisms leading to the observed 

association between CD4+ trog+ cells and a TH2 phenotype. It has been found 

that the strength, duration, and “summation” of TCR and costimulatory molecule 
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signaling can substantially impact T helper differentiation [143, 157, 455, 456]. In 

non-differentiated cells, it is possible that immune synapses that result in 

trogocytosis may be of shorter duration and/or generate weaker TCR signaling. 

This would be consistent with observations that weaker TCR signaling drives 

early IL-4 production by T cells [156, 157, 173, 457]. Because only a fraction of 

the APC molecules involved in the immunological synapse are transferred to the 

T cell, trogocytosis-mediated signaling is likely weaker than signaling at the 

synapse. This signaling could further promote IL-4 production, consistent with the 

increased levels of IL-4 observed in trog+ cells over a 72-hour incubation (Figs. 

3.2, 3.4, 3.7). The TH1 to TH2 conversion observed with TH1 polarized trog+ cells 

(Fig. 3.7) further supports this model, as weak TCR-signaling drives TH2 

differentiation, even under TH1- polarizing conditions [139]. In contrast, IFN 

production and TH1 differentiation have been shown to require strong TCR-

signaling [82, 140, 141].  

 

The differences in trogocytosis efficiency between polarized TH1 and TH2 cells 

may also be attributed to morphological differences in the immunological 

synapse formed. We have previously shown that at low Ag concentrations, TH1 

synapses form the classical “bull’s-eye” shape, while TH2 cells form multi-focal 

synapses [83]. In separate live-cell imaging experiments, we have observed that 

small “packets” of MHC:peptide are transferred from APC to non-polarized T 

cells from the immunological synapse, before becoming localized to a punctate 

spot at the distal pole of the T cell membrane [31]. It is inviting to speculate that 
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the multi-focal synapses formed by TH2 cells facilitate trogocytosis much more 

efficiently than the synapses formed by TH1 cells, although that was not directly 

tested here.  

 

There are many biological implications of trogocytosis-mediated signaling driving 

and/or augmenting a TH2 phenotype, while also antagonizing a TH1 phenotype. 

Such implications are amplified when considering that trog+ cells display 

sustained survival, along with enhanced activation and effector cytokine 

production (Figs. 3.1, 3.2, [81]). The TH2 phenotype itself may contribute to the 

enhanced survival displayed by trog+ cells (Fig. 3.2C, [81]), as IL-4 has been 

found to enhance CD4+ survival both in vitro and in vivo [458]. Additionally, a TH2 

phenotype may aid in the heightened activation commonly observed in trog+ 

cells, as TH2, but not TH1 cells, have been shown to be able to revert from an 

anergic state to resume effector functionality [459]. It is possible that trog+ TH2 

cells may significantly aid in the generation of B cell germinal centers, and/or 

increase the quality and duration of protective antibody generation when Ag is 

limited. On the other hand, the low trogocytic potential of TH1 cells, and the TH2 

phenotype induced by trogocytosis-mediated signaling, could act as checkpoint 

to limit unwanted TH1-associated inflammation after Ag clearance.  

 

In cases where a TH2 response is undesirable, excessive CD4+ trogocytosis may 

play a role in exacerbating TH2-mediated autoimmune diseases such as SLE and 

rheumatoid arthritis, heighten allergic reactions, or negatively impact protective 
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cell-mediated responses. In a study by Brown et al., CD4+ T cells from patients 

with multiple myeloma showed increased rates of trogocytosis and the trog+ cells 

displayed inhibitory effects on proliferation of stimulated T cells [284]. The 

authors proposed that trogocytosis might play a role in tumor-induced immune 

suppression through T-cell fratricide and deletion in patients with multiple 

myeloma. It is possible that in tumor environments where antigen is presumably 

abundant, a high frequency of CD4+ trogocytosis and subsequent TH2-

differentiation/conversion could significantly suppress an anti-tumor response. 

Such suppression may be attributed to the inhibition of anti-tumor promoting TH1 

cell differentiation by trogocytosis-mediated signaling, and the high IL-4 

production by trog+ cells, as IL-4 has been shown to both inhibit IFN production 

and prevent activation of naïve T cells [460]. 

 

Beyond driving a TH2 phenotype, continual trogocytosis-mediated signaling may 

aid in the generation of CD4+ memory and/or TFH cells, as both subsets require 

sustained-TCR signaling through repeated Ag-encounter for their differentiation 

[142, 143]. As TH2 to TFH conversion has been found to take between 5 to 7 days 

to occur in vivo [238], examining the phenotype of trog+ cells at extended time-

points is likely necessary to determine this possibility. Studies are currently 

underway in our lab to examine the potential role of trogocytosis-mediated 

signaling in the generation of both TFH and memory CD4+ T cells.   
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In conclusion, the results from this study provide further insight into the role of 

trogocytosis and trogocytosis-mediated signaling in the activation, effector 

cytokine production and differentiation of CD4+ T cells. We report a strong 

association between CD4+ trogocytosis and a TH2 phenotype, which is twofold, 

as TH2 cells are highly efficient at performing trogocytosis, while trogocytosis-

mediated signaling induced TH2 differentiation in both non-polarized, and 

polarized TH1 cells. We propose a model for trogocytosis-mediated CD4+ 

differentiation in which trogocytosed MHC:peptide complexes and costimulatory 

molecules sustain intracellular signaling by engaging their cognate receptors on 

the trog+ T cell. The relatively weak intensity of this signaling leads to early IL-4 

production, which is sustained by trogocytosis-mediated signaling. In the 

presence of IL-4, the sustained trogocytosis-mediated TCR-signaling drives 

GATA-3 expression, and thus, TH2 differentiation [450]. Because trog+ CD4+ 

possess the unique ability to remain activated independently of further APC 

encounter via trogocytosis-mediated signaling, results from this study raise the 

possibility that CD4+ trogocytosis may play a role in augmenting, or inducing a 

TH2-dominant immune response.  
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Chapter 4. 
Trogocytosis-Mediated Signaling Drives a TFH 

Phenotype with High Memory-Potential 

 

Work funded by R03AI122167 (to S.A.W).  Fluorescence Cytometry and 
Molecular Histology and Florescence imaging core facilities used to perform 
studies are supported by P30RR033379.  
 

Introduction 

The adaptability of the immune response is largely defined by the differentiation 

of CD4+ T cells into specialized subsets. Despite extensive research efforts, the 

mechanisms which govern CD4+ T cell differentiation are not fully understood. 

This is largely due to variability in events at the immunological synapse which 

have been found to impact CD4+ differentiation such as TCR affinity [456, 461-

465], antigen density and dose [155, 157, 456, 462, 463], TCR dwell time [82, 

466], and costimulatory molecule signaling [155, 156, 217, 467-475]. In addition, 

TFH differentiation and effector-to-memory transition have been shown to require 

multiple signaling events through subsequent cognate interactions [145, 213, 

476, 477]. Further convoluting the process of deciphering pathways behind CD4+ 

differentiation is the growing evidence for plasticity between various CD4+ 

subsets [144-148, 178, 451, 452]. Due to the wide spread implications for CD4+ T 

cell differentiation in infectious and autoimmune disease, allergy and asthma, as 

well as vaccine and immunotherapy design, understanding the mechanisms 

behind CD4+ differentiation is critical for public health. 
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One notable but unappreciated deviation from the canonical model for T cell 

activation has been the discovery that T cells may act as APC themselves. This 

is accomplished through the acquisition, and subsequent presentation of APC-

derived signaling molecules including peptide:MHC (p:MHC) complexes, and 

costimulatory molecules such as CD80 and CD86, via trogocytosis [81, 285, 287, 

368-372]. Trogocytosed molecules may be fully functional and become properly 

re-expressed on the surface of trogocytosis-positive (trog+) T cells [278, 411]. 

Numerous studies have found that trog+ cells are able to impact the activation of 

responding T cells through the presentation of trogocytosed molecules [369, 371, 

372, 415, 420-426]. In addition, we previously reported that trog+ CD4+ T cells 

are able to perform cell-autonomous signaling through engagement of their 

receptors with trogocytosed ligands, which we have termed trogocytosis-

mediated signaling [81, 412]. In T cell blasts recovered from APC after a 90 min 

incubation, and cultured without additional stimuli, TCR signaling and a 

heightened state of activation was maintained for >72 hours in trog+, but not 

trog─, cells [81, 412]. The trog+ cells subsequently developed a TH2-phenotype 

and increased expression of IL-4, while the trog─ cells produced IFNγ shortly 

after removal of APC, but dramatically decreased IFNγ expression until reaching 

levels comparable to unstimulated cells [412]. These results are consistent with 

models of TCR signal strength in TH2 differentiation, in which the presumably 

weaker signal from trogocytosis-mediated signaling had induced IL-4 expression 

[139, 449, 457, 478]. It was also observed that IL-4 was directed towards 

trogocytosed molecules in a manner reminiscent of TH2 help of B cells [48]. As 
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both TH2 and TFH specialize in providing B cell help [21, 179, 479-481], TH2 

readily differentiate to TFH [238], and TFH differentiation requires multiple TCR 

signaling events [213, 214, 231, 479, 482]; it was possible that the observed 

sustained trogocytosis-mediated signaling could further promote the 

differentiation of trog+ cells towards TFH. Here, we researched this possibility 

using naïve, and activated TCR-transgenic MCC-specific 5C.C7 CD4+ T cell 

blasts and APC expressing CD80, and I-Ek with covalently attached MCC, or 

peptide-pulsed BMDC expressing high levels of CD80, ICOS, CD86, and I-Ek. 

We also examined the phenotype of trog+ cells in vivo using adoptively 

transferred 5C.C7 cells, and pigeon cytochrome c (PCC) or (ovalbumin) OVA in 

wild type animals.  

 

Our results suggest that trogocytosis-mediated signaling drives a phenotype 

consistent with TFH (CD69+ PD-1+ CXCR5+ ICOS+ IL-21+) in vitro, between 3-5 

days post removal from APC. Inhibiting signaling through trogocytosed I-Ek and 

CD80 with neutralizing antibodies, or removal of antigenic peptide from 

trogocytosed MHCII, significantly reduced the TFH phenotype. In vivo-generated 

trog+ cells developed a TFH phenotype more rapidly than trog─ cells following 

immunization with PCC in Sigma Adjuvant System (SAS). The trog+ cells also 

showed increased expression of IL-6, IL-21, and Bcl-6 compared to similarly 

activated trog─ cells 5 days post-immunization of WT mice with OVA.  
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At later time-points the trog+ cells in immunized mice contained a major 

population that resembled T central memory cells (TCM) [483, 484]. Interestingly, 

early TCM-precursors and TFH often share a similar phenotype including increased 

levels of CXCR5 and Bcl-6 [483, 485], and IL-21 has been found to be critical for 

T cell memory formation [440, 486-489]. In addition, repeat cognate-Ag 

interactions that are required for TFH also promote effector-to-memory transition 

[490]. These similarities raise the possibility that trogocytosis-mediated signaling 

may promote the formation of memory CD4+ cells, and is supported by the 

enhanced survival of trog+ cells in absence of APC [81, 412]. 

             Our results suggested that trogocytosis-mediated signaling enhances IL-

2 production, proliferation, and survival of trog+ cells after APC removal. The 

trog+ cells also showed higher expression of the anti-apoptotic protein Bcl-2, and 

CD127. Interestingly, proliferating trog+ cells appeared to unequally distribute 

trogocytosed molecules amongst progeny to produce a trog+ and a trog- 

daughter cell. The daughter cell that retained the trogocytosed molecules also 

expressed levels of Tcf1, reminiscent of memory-precursors formed through 

asymmetric division [491].  

 

Results from this study show that extended trogocytosis-mediated signaling is 

capable of driving CD4+ T cells to develop a phenotype consistent with TFH after 

separation from APC. We also report a strong correlation between trogocytosis 

and memory precursor cells and propose a model in which trogocytosis-mediated 

signaling maintains the survival of CD4+ T cells which have received weaker 
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signals from APC. These findings provide additional insights into both TFH, and 

memory generation in the absence of APC, through the non-conventional 

mechanism of trogocytosis-mediated signaling. 

 

Results  

Trog+, but not trog-, cells maintain a heightened state of activation after 
APC removal.  
 
While multiple studies have suggested that repeated cognate interactions with B 

cells are required for full TFH-differentiation, [209, 221-224], it been demonstrated 

that sustained TCR signaling can drive TFH differentiation independently of B 

cells [213]. As a critical component in TFH differentiation is sustained 

TCR/costimulatory signaling, we hypothesized that sustained trogocytosis-

mediated signaling may drive and/or augment TFH differentiation after separation 

from APC. To examine this possibility, in vitro trogocytosis assays were 

performed using T cell blasts from 5C.C7 TCR-Tg mice. Following the 

trogocytosis-assay, APC were removed resulting in cultures >95% CD4+ T cells 

and <0.1% APC [412]. Recovered T cells were analyzed immediately (day 0), or 

cultured at low density 104 cells/ml to minimize cell:cell interactions and analyzed  

3, and 7 days post-recovery, at 24 h intervals. We previously have shown that 

both trog+ and trog─ cells downmodulate TCR levels and increase CD69 levels, 

suggesting that both populations were similarly activated by APC during the 

trogocytosis assay [412]. Consistent with those findings; Figure 4.1 shows that 

the trog─ and trog+ cells have similar CD69 levels immediately after recovery 

from the trogocytosis assay with either MCC:FKPB APC or BMDC (Fig. 4.1).  
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As with previous results, the trog+, but not trog─, cells retained high CD69 

expression at 3 days and 7 days post recovery (Fig. 4.1). This supports the 

model of trog+ cells retaining active TCR-signaling and subsequent activation in 

the absence of APC. A notable difference in the activation state of cells 

recovered from BMDC or MCC:FKPB APC was observed at day 0. Both the trog+ 

and trog─ cells recovered from MCC:FKPB fibroblasts had significantly lower 

levels of CD69 compared to respective populations recovered from BMDC. This 

is likely due to substantially higher expression of both I-Ek and CD86, and slightly 

higher levels of CD80 and ICOS-L on BMDC compared to MCC:FKBP (Fig. 

S4.1). The trog+ cells recovered from MCC:FKPB APC increased CD69 

expression between Day 0 and Day 7, while the median CD69 expression of the 

trog─ cells decreased, by 43% on Day 3, and was only 30% higher than resting 

cells 5 days after removal of APC. In contrast, trog+ and trog- cells recovered 

from BMDC decreased in CD69 expression between Day 0 and Day 3, by 61% 

or 81% respectively. However, at 7 days post-recovery, the CD69 expression in 
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trog─ cells was unchanged, while on the remaining trog+ cells CD69 expression 

increased by 40% (Fig. 4.1).  

In vitro-generated trog+, but not trog─ cells, develop a TFH-like phenotype 
after separation from APC.  
 
Signaling from the inducible T cell costimulator (ICOS) has been found to play a 

major role in TFH differentiation, [209, 217, 242, 492, 493]. Immediately after 

recovery from APC, the trog+ cells showed moderately higher levels of ICOS 

compared to the trog─ cells (65% in cells recovered from BMDC, and 34% in cells 

recovered from MCC:FKBP) (Fig. 4.2, top). At 7 days post-recovery, there was a 

clear difference in expression in ICOS expression with the trog+ cells recovered 

from BMDC showing a 3.2-fold increase in ICOS levels over trog─ cells, and a 

2.2-fold increase in cells recovered from MCC:FKBP APC (Fig. 4.2, bottom).   

 

TFH cells are largely identified by high expression of CXCR5 and PD-1 [494-496], 

as well as CD69 [497], which was maintained in trog+, but not trog─ cells (Fig 

4.1). Consistent with the ICOS expression levels (Fig. 4.2), and the kinetics of 

TFH-differentiation [498], figure 4.3 shows that immediately post-recovery (Day 0), 
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a TFH-like phenotype, (PD-1+ CXCR5+), was apparent in 9.2% of trog+ cells, but 

only 3% of trog─ cells recovered from BMDC (Fig. 4.3, left). Similar levels were 

observed in cells recovered from MCC:FKBP (7.04% of trog+ and 3.54% of trog─ 

cells) (Fig. 4.3, right), suggesting that the higher activation induced by BMDC did 

not immediately impact CXCR5 and PD-1 surface expression levels. In cells 

recovered from BMDC, the trog+ cells maintained CXCR5 expression at both 3 

days and 7 days post recovery, while the frequency of the CXCR5+ PD-1+ 

population increased to 15%, and 19% of trog+ cells, respectively (Fig. 4.3, left, 

red). In contrast, the trog─ cells initially had lower CXCR5 levels at 3 days 

compared to trog+ cells, and by 7 days, CXCR5 expression was similar to 

unstimulated cells (Fig. 4.3 left, blue). Accordingly, only 2.23%, and 0.3% of the 

trog─ cells were PD-1+ CXCR5+ at 3 and 7 days post-recovery.  

               The trog+ cells recovered from MCC:FKBP APC showed markedly 

different expression patterns compared to those recovered from BMDC. High 

CXCR5 expression was maintained in the trog+ cells at 3 and 7 days post-

recovery, and the frequency of PD-1+ CXCR5+ cells increased to 26.2% by Day 3 

and had reached 57.5% on day 7 (Fig. 4.3, right, red). The trog─ cells showed a 

very slight increase from 3.5% at Day 0 to 5.0% by Day 3. By Day 7 the CXCRS+ 

PD-1+ cells were only 4.4% of trog- cells (Fig. 4.3, bottom, blue). 
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Consistent with a TFH phenotype, the trog+ cells from either APC cultures 

expressed higher levels of Bcl-6 and IL-21 compared to trog─ cells 7 days post-

recovery (Fig. 4.4). Consistent with the surface phenotype data (Fig 4.1-3), when 

trog+ cells from the two different APC cultures were compared, the cells recovered 

from MCC:FKPB APC expressed higher levels of Bcl-6 and IL-21 (Fig. 4.4A, 

right), compared to trog+ cells recovered from BMDC (Fig. 4.4A, left). When 

BMDC-stimulated populations were compared, a significantly higher frequency of 

trog+ cells were IL-21+ at days 2, 3, 5, and 7.  IL-21 expression by trog+ cells 

peaked on Day 5, when 29% of the cells were IL-21+ (Fig. 4.4B, top). Similarly, 

when cells recovered from MCC:FKPB APC were compared, a significantly higher 

percentage of trog+ cells were IL-21+ at each time-point observed from 1 to 7 days 

post-recovery (Fig. 4.4B, bottom).  
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Collectively, the data in Figs. 4.1 to 4.4 show that trog+, but not trog─, cells are 

highly efficient at developing a CXCR5+ PD-1+ BCl-6+, IL-21+ phenotype 

consistent with TFH, after APC removal. When trog+ cells recovered from both 

BMDC and MCC:FKPB APC were compared, cells recovered from MCC:FKPB 

showed a more robust TFH-like phenotype. Regardless of the APC type, these 

data strongly suggest that trogocytosis-mediated signaling promotes TFH 

differentiation in trog+ cells. 
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Trogocytosis-mediated signaling drives a TFH phenotype  

The data in Figs. 4.2-4.2 show that after removal of APC, a substantial 

percentage of trog+ cells developed a phenotype consistent with TFH, while the 

trog─ cells do not. However, initial priming of CD4+ T cells by DC may result in a 

pre-TFH phenotype including the upregulation of CXCR5 to promote T cell 

migration towards B cell follicles/GC [218]. Therefore, the observed TFH-like 

phenotype in the trog+ cells may be due to signals from APC promoting TFH 

differentiation, and not a direct result of trogocytosis-mediated signaling. To 

address the impact of trogocytosis-mediated signaling on development of the 

observed TFH phenotype, CD4+ T cell blasts were used in an in vitro trogocytosis 

assay with MCC-loaded BMDC or MCC:FKPB APC. Immediately following 

recovery from BMDC, peptide was removed from trogocytosed MHC by mild acid 

elution. Aliquots of acid-stripped cells were then cultured with 10 µM cognate 

MCC peptide or 10 µM irrelevant hemoglobin (Hb) peptide as a negative control. 

With cells recovered from MCC: FKPB APC, trogocytosed TCR and CD28 

signaling was neutralized using 20 µM anti-I-Ek and/or 20 µM anti-CD80 purified 

antibodies. Because the MCC: FKPB APC do not express CD86 (Fig. S4.1A), 

antibodies against CD86 were not included.   

 

After recovery on Day 0, cells recovered from BMDC and MCC:FKPB APC 

exhibited minimal difference in PD-1 and CXCR5 expression on trog+ and trog- 

cells, similar to the Day 0 in figure 4.1 (data not shown). As the TFH-phenotype 

peaked at 5 days post-recovery (Fig. 4.4B) cells were examined at this time-
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point. The acid-stripped cells cultured with Hb peptide had substantially 

decreased TCR signaling as determined by pZAP-70 signaling, compared to 

non-treated or acid-stripped cells cultured in the presence of MCC (Fig. S4.1B). 

Similarly, neutralization of I-Ek and CD80 in MCC:I-Ek-recovered cultures greatly 

decreased TCR signaling (Fig. S4.1B). 

 

 Figure 4.5 shows that removal of antigenic-peptide had a drastic impact on the 

phenotype of the trog+ cells, on Day 5, reducing the frequency of PD-1+ CXCR5+ 

trog+ cells by nearly 50% (15.2% PD-1+ CXCR5+) compared to untreated controls 

(29.7% PD-1+ CXCR5+) (Fig. 4.5, left). On the other hand, addition of MCC to 

peptide-stripped cells increased the frequency of PD-1+ CXCR5+ cells by 87%, 

with 55.6% of these cells displaying the TFH-like phenotype (Fig. 4.5, left). Similar 
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results were obtained with antibody neutralization as anti-I-Ek and anti-CD80 

reduced the frequency of trog+ PD-1+ CXCR5+ cells by 71% to 20.4% PD-1+ 

CXCR5+ compared to the untreated trog+ cells (70.5% PD-1+ CXCR5+) (Fig. 4.5, 

right). The frequency of PD-1+ CXCR5+ was very low in trog─ cells across the 

board, ranging from 2.91% in untreated BMDC cultures to 1.07% in Hb-

supplemented cultures, to 3.15% in MCC-supplemented cultures. Similarly, of 

cells stimulated with MCC:FKPB, the frequency of CXCR5+ PD-1+ trog- cells was 

2.91% in untreated cultures and 1.07% in Ab-neutralized cultures (Fig. 4.5, 

middle). 

 

In parallel cultures, T cell blasts were stimulated for 6 hours each day during a 5 

day incubation as a control. These cells did not develop a robust PD-1+ CXCR5+ 

population, consistent with the requirement for IL-21 or IL-6, and costimulatory 

molecules such as ICOS for TFH differentiation. It also suggests that the TFH-like 

phenotype displayed by the trog+ cells was not simply a result of sustained-

signaling TCR and CD28 signaling. 

 

Trogocytosis-mediated signaling drives a TFH phenotype in naïve T cells in 
absence of APC 
 
                 We next examined whether trogocytosis-mediated signaling could 

drive a TFH-phenotype in trog+ naïve CD4+ cells. Like the activated blasts, trog+ 

and trog- naïve cells displayed comparable levels of activation immediately after 

recovery from the trogocytosis assay (as determined by CD69 expression) (Fig. 
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4.6). As anticipated, naïve cells were more highly activated by MCC-loaded 

BMDC compared to MCC:FKBP APC (Fig. 4.6).  

 

Figure 4.6 shows that approximately 22.3% of the trog+ naïve T cells cultured for 

5 days after removal from an 18 hour trogocytosis assay using MCC-loaded 

BMDC were CXCR5+ ICOS+. In comparison, acid-stripped cells cultured in Hb 

peptide had a 4.5% decrease in the frequency of trog+ CXCR5+ ICOS+ cells to 

12.5% (Fig 4.6, left). Addition of MCC to acid-stripped cultures led to a 2.2-fold 

increase to 49.8% of the trog+ CXCR5+ ICOS+ cells (Fig. 4.6, left). The trog─ cells 

in Hb-supplemented peptide-stripped cultures showed a 78% decrease in the 

frequency of CXCR5+ ICOS+ cells compared to untreated cultures, to 4.07% 

CXCR5+ ICOS+. MCC-supplementation increased this frequency 2.5-fold to 

10.2%, which, while substantially higher compared to trog─ cells from untreated 
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cultures, was well below the frequency of trog+ cells displaying this phenotype 

(Fig. 4.6, left) 

 

To assess the individual roles of TCR and costimulatory signaling, neutralizing 

Abs anti-CD3 and anti-CD28 or anti-CD3 alone or anti-CD28 alone, were added 

to naïve cells recovered from MCC:FKBP APC as in Fig. 4.3. The data in Fig. 4.6 

(right) suggests that TCR signaling through trogocytosed-p:MHC complexes and 

CD80 signaling both played a role in development of the apparent TFH 

phenotype. Compared to trog+ cells from untreated cultures, the trog+ cells from 

cultures with only neutralizing CD80 Abs had a 42% decrease in CXCR5+ ICOS+ 

cells (Fig. 4.6, second from left). The trog+ cells from cultures containing 

neutralizing anti-I-Ek Abs showed a 61.5% decrease in this population (Fig. 4.6, 

second from right), while the trog+ cells from cultures containing both anti-I-Ek 

and anti-CD80 showed a further 83% reduction in the phenotype to 9.58% (Fig. 

4.6, far right), compared to trog+ cells from untreated cultures (Fig. 4.6, far left).  

 

Trog- cells can develop a TFH phenotype in the presence of APC  

It was apparent that trogocytosis-mediated signaling was playing a role in driving 

a TFH-phenotype in the trog+ cells, however it was also possible that the cells that 

performed trogocytosis were predisposed to developing the TFH phenotype, and 

trogocytosis-mediated signaling was simply sustaining their survival. To examine 

whether the trog+ cells inherently developed a TFH-like phenotype more readily 

than trog─ cells in cases where Ag receptor signaling was not limited to 
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trogocytosis-mediated signaling, unlabeled MCC:FKBP APC were added back at 

a 1:10 APC:T cell ratio to stimulate cultures of CD4+ T cell blasts immediately 

after recovery from an 90 min trogocytosis-assay with biotin-labeled MCC:I-Ek 

APC. Figure 4.7 shows that addition of MCC:FKBP to cultures after recovery 

from the trogocytosis assay, increased the frequency of PD-1+ CXCR5+ trog─ 

cells increased from 5.56% to 22.5%. Interestingly, in these same cultures the 

frequency of PD-1+ CXCR5+ trog+ cells decreased from 63.7% in untreated 

cultures, to 38.4% (Fig. 4.7, right). Consistent with previous data, neutralizing 

antibodies against trogocytosed I-Ek and CD80 led to a 67.2% decrease in the 

frequency of PD-1+ CXCR5+ trog+ cells compared to cells recovered from 

untreated cultures (Fig. 4.7, middle). 

 

IL-21 expression in trog+ cells is enhanced by trogocytosis-medited 
signaling in vitro 
 
In line with the observed decrease in PD1+ CXCR5+ trog+ cells, after acid-

stripping or Ab blockade of trog-mediated signaling (Fig. 4.5), the frequency of IL-

21+ trog+ cells at 5 days was significantly reduced by the same treatments (Fig. 
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4.8). Significantly fewer trog+ cells from peptide-stripped cultures supplemented 

with Hb were IL-21+ (22.8%) compared to untreated cultures (32.5%). In contrast, 

the frequency of IL-21+ trog+ cells in acid-stripped and MCC-supplemented 

cultures increased to 40.3% (Fig. 4.8, left). Similarly, neutralizing trogocytosis-

mediated signaling with anti-I-Ek and anti-CD80 decreased the frequency of IL-

21+ trog+ by 55% (Fig. 4.8, right).  

 

In absence of APC, the development of a TFH phenotype is dependent on 
trogocytosis-mediated signaling 
 
To confirm that the trog+ cells were developing a TFH-like phenotype in absence 

of APC, naïve 5C.C7 cells recovered from a standard 18 h in vitro trogyctosis-

assay were FACS-sorted into trog+ and trog─ populations. These purified trog+ 

and trog- cells were cultured individually in vitro and analyzed 72 hours later. At 

this early time-point, 11.2% of the trog+, but only 1.53% of the trog─ cells 

recovered from MCC:APC were CXCR5+ PD-1+ (Fig. 4.9, top). Similarly 11.8% of 

trog+ and 3.36% of trog- cells acid-stripped cells cultured in MCC peptide were 

CXCR5+ PD-1+ (Fig. 4.9, middle). Culturing with irrelevant Hb peptide after acid-

stripping led to a massive decrease in the frequency of CXCR5+ PD-1+ cells to 

only 2.72% of the trog+ and 1.75% of the trog─ cells (Fig. 4.9, bottom). Due to low 
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recovery following the FACS sort, later time-points were not examined in these 

experiments. 

 

TFH-associated cytokines IL-21, IL-4 and IL-6 are polarized towards 
trogocytosed molecules  
 

We previously reported that IL-4+ trog─ cells, >80% of trog+ cells had IL-4 

directed towards trogocytosed molecules, while there was no IL-4 polarization in 

trog- cells. To expand those previous studies, here intracellular polarization of IL-

6 and IL-21 was examined. As seen in figure 4.9, 3 days post-recovery, IL-21 and 

IL-6 were directed towards trogocytosed molecules. As TFH cells help cognate B 

cells through directed secretion of these cytokines, this data strengthens the 

case for development of a TFH-phenotype observed in the trog+ cells. 
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In vivo-generated trog+ cells can rapidly display a TFH-like phenotype  

The in-vitro data presented above suggests that trogocytosis-mediated signaling 

drives development of a TFH phenotype in trog+ cells after separation from APC. 

To examine whether a similar phenotype occurs in vivo, 105 naïve 5C.C7 CD4+ T 

cells were adoptively transferred into naïve WT B10.A mice. Six hours later, 

recipients were immunized S.C. with PCC protein emulsified in Sigma Adjuvant 

System (SAS). Mice with adoptively transferred cells immunized with SAS alone 

served as negative controls. Spleens were harvested 3, and 7 days post-

immunization and Ag-specific CD4+ T cells were identified by MCC:pMHCII 

tetramer staining (Fig. S4.1C). As murine CD4+ cells do not endogenously 

express MHCII, trog+ cells were identified by the presence of trogocytosed 
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MHCII. Three days post-immunization, 2.3% of MCC:MHCII+ CD44+ cells were 

PD-1+ CXCR5+ (Fig. 4.11A, left) This number increased to 7.4% by 7 days post-

immunization (Fig. 4.11A, middle). Transferred cells from mice immunized with 

SAS alone did not develop a TFH-phenotype, as expected in absence of Ag (Fig. 

4.11A, right). The data in Fig. 4.11B suggests that the transferred trog+ cells were 

able to more rapidly express PD-1 and CXCR5 compared to transferred trog- 

cells. Of the PD-1+ CXCR5+ cells recovered 3 days post-immunization, 78.4% 

were trog+ (Fig. 4.11B, middle). However, by 7 days post-immunization, the 

frequency of CXCR5+ PD-1+ cells that were trog+ had decreased to an average of 

37.2% (Fig. 4.11B, right). These findings suggest that even in the presence of 

APC, the trog+ cells were more proficient at rapidly developing a phenotype 

consistent with TFH. 
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Trog+ cells express higher levels of IL-21, IL-6, and Bcl-6 compared to trog- 
cells in vivo  
 
To further examine the in vivo relationship between trog+ cells and a TFH 

phenotype protein, WT B10.a mice were immunized S.C. with OVA protein in 

SAS, or SAS alone. Proximal draining lymph nodes were collected 5 days post-

immunization and recovered cells were analyzed via flow cytometry. Figure 

4.12A shows that of CD44+ similarly-activated (CD69High) CD4+ T cells, the trog+ 

cells (red) had increased expression levels of IL-21 (left), IL-6 (middle), and Bcl-6 

(right), compared to trog─ cells (blue). Meanwhile, the trog- cells had only slightly 

higher expression levels of IL-21, IL-6, and BCL-6 than CD4+ T cells from SAS-

only controls (shaded grey). A significantly greater frequency of trog+ cells were 

IL-21+ (10.2%), IL-6+ (17.1%), and BCL-6+ (6.8%) compared to CD4+ cells from 

SAS-control mice. The trog+ cells had significantly higher frequencies of IL-21+ 

(38.4%), IL-6+ (39.2%) and BCL-6+ (22.1%), compared to CD4+ cells recovered 

from SAS-control mice (Fig. 4.12B). 
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  In vitro-generated trog+, but not trog─, cells develop a TFH phenotype in 
vivo, in absence of exogenous antigen 

 
While the phenotype was consistent between in vivo-generated and in vitro-

generated trog+ cells, the role of trogocytosis-mediated signaling in the 

phenotype in vivo could not be determined above. To more directly examine the 

role of trogocytosis-mediated signaling in vivo, an 18 hr trogocytosis assay using 

naïve 5C.C7 T cells and MCC:FKBP APC was performed. Recovered T cells 

were purified from APC and adoptively transferred into naïve WT B10.A mice. 

trog+ cells were identified by the presence of biotinylated APC membrane-derived 

proteins. Similar to the in vitro data (Fig. 4.2), neither the trog+ or trog─ cells 

contained a substantial population of PD-1+ CXCR5+ cells 24 hrs post-adoptive 

transfer (Fig. 4.13A, left). However, by 72 hrs post-transfer, 17% of the trog+ cells 

were PD-1+ CXCR5+, while only 1.4% of the trog─ cells shared this phenotype 
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(Fig. 4.13, right). Since the only source of stimulation in these animals was 

trogocytosed pMHCII and other APC-derived proteins, the appearance of the 

CXCR5+ PD-1+ population only in the trog+ cells strongly supports the hypothesis 

that trogocytosis-mediated signaling can drive TFH differentiation both in vitro and 

in vivo. 

 

In vivo-generated trog+ cells display a TFH phenotype during an active 
immune response, but resemble T central memory cells after contraction of 
the immune response. 
 
The data thus far suggested that trogocytosis-mediated signaling was playing a 

critical role in the apparent TFH-like phenotype, however, the role of trogocytosis-

mediated signaling in maintaining this phenotype was unknown. We observed 

that 7 days following the adoptive transfer of naïve 5C.C7 cells into WT B10.A 

mice, and immunization with MCC+SAS as in Fig. 4.11, a significantly greater 

frequency of trog+ cells resembled PD-1+ CXCR5+ TFH-like cells at 25%, 

compared to only 2.9% of trog─ cells. Although the total numbers of PD-1+ 

CXCR5+ cells from each population was similar, due to only 10% of responding 

cells being trog+, and thus consistent with the data in Fig. 4.11. The TFH 

phenotype was not maintained beyond the expected time for Ag-persistence in 

trog+ or trog- cells, and by 28 days post-immunization the TFH-like PD-1+ CXCR5+ 

population had decreased by 95% and 68% in the trog+, and trog─ populations, 

respectively. (Fig. 4.13A, left).  
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We did however, observe a noticeable difference in the phenotype of the trog+ 

and trog- cell at this time-point, as a substantial percentage (57% on average) of 

the trog+ cells were expressing CXCR5, but not PD-1, compared to only 6.8% of 

trog─ cells. Interestingly, these results are consistent with a study by Pepper et 

al., which showed that early in the immune response, CXCR5+ PD-1- cells 

contain a high frequency of CCR7+ T central memory (TCM)-precursors which 

displayed sustained-survival after Ag-clearance [484]. In contrast, CXCR5+ PD-1+ 

TFH population decreased in frequency after Ag-clearance until disappearing 

altogether [484]. Looking back, a significantly higher frequency of the the trog+ 

cells were CXCR5+ PD-1- compared to trog- cells at 7 days post-immunization. 

In addition the trog+ cells also expressed higher levels of CCR7 compared to 

trog─ cells at D28 (Fig. 4.14B), consistent with a TCM-phenotype. Recent studies 

have found many similarities between TFH and CD4+ memory precursors, and TFH 

themselves are able to become memory cells. Thus the apparent TFH-like 

phenotype displayed early by the trog+ cells did not exclude the possibility that 

these cells were memory/memory-TFH precursors  
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Trogocytosis-mediated signaling increases memory-potential in CD4+ T 
cells 
 
The results in Fig. 4.14 indicated that the while the trog+ cells displayed a 

phenotype consistent with TFH, this phenotype was not observed at late time-

points. Rather, the phenotype of the trog+ cells 28 days post-immunization 

resembled that of memory-precursors. Interestingly, a recent study by Kaji et al., 

found that while GC B cells were critical for full TFH differentiation, a population of 

memory precursors that resembled TFH cells in CXCR5, PD-1, and BCL-6 

expression developed in absence of GC B cells [499]. In addition, TFH cells 

themselves are able to readily become memory TFH [222, 500, 501], and in human 

studies, circulating CXCR5+ memory cells represent a distinct subset of memory 

cells which are able to rapidly migrate to B cell follicles and promote secondary 

memory responses [483]. Thus, the collective results from Fig. 4.2-4.14 

substantiates the in vitro TFH data, while also raising the possibility that trog+ cells 

may also contain a high frequency of TCM precursors.  
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Trogocytosis-mediated signaling enhances CD4+ T cell survival.  

A defining hallmark of memory T cells is their ability to survive for extended 

durations after Ag clearance. [502-504]. While the exact mechanisms which 

permit the survival of CD4+ memory cells in absence of Ag is currently unknown, 

prolonged Ag exposure and sequential cognate T cells:APC interactions promote 

the transition to memory [318, 499]. Consistent with this, our previous reports 

show that after separation from APC, trog+, but not trog─ cells retain active 

signaling and that trog+ enhanced survival compared to trog─ cells up to 5 days in 

vitro [81, 412].  

 

To investigate whether the frequency of trog+ cells also increased in vivo as Ag 

became depleted, WT B10.A mice were immunized with PCC in SAS as in Fig. 

412. Spleens were harvested and MCC:MHC tetramer+ (Fig. S4.1D) CD44+ CD4+ 

cells were analyzed for the presence of trogocytosed MHCII and CD80/CD86 at 

5, 7, 15, 21, and 28 days post immunization. A sharp increase in the percentage 

of trog+ cells was observed between 7 and 14 days post-immunizationn from an 

average of 6.8% during the peak of the immune response (Day 7), to 22% 14 

days post-immunization. The frequency of trog+ cells further increased on Day 21 

to an average of 52% of cells being trog+, then decreased slightly to an average 

of 42.2% on 28 days post-immunization (Fig. 4.15A). 
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 However, in this in vivo system, it was unclear when these cells performed 

trogocytosis, and it was possible that cells present in later time-points had 

recently performed trogocytosis from APC expressing residual Ag. To directly 

assess the role of trogocytosis-mediated signaling in the enhanced survival 

displayed by the trog+ cells, the frequency of trog+ cells was measured in cells 

recovered from in vitro trogocytosis assays in the presence of neutralizing 

antibodies or with MCC peptide removed as in Figs. 4.4 and 4.5. Figure 4.15B 

shows that blocking trogocytosis-mediated signaling with neutralizing antibodies 

clearly impacted the survival of T cell blasts at 3, and 5 days post-recovery from 

a 90 min in vitro trogocytosis-assay with MCC:FKBP. While on average, 33.5% of 

recovered CD4+ T cells were trog+ immediately after recovery from the 

trogocytosis assay, by day 3, untreated cultures were on average, 61.4% trog+. 

Antibody blockade of trogocytosis-mediated signaling resulted in a significantly 

lower frequency of trog+ cells, and only 16.3% of cells from cultures containing 
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anti-I-Ek + anti-CD80 Abs were trog+ (Fig. 4.15B, left). At 5 days post recovery, 

the frequency of trog+ cells in cultures containing neutralizing Abs had dropped 

further to 1.8%, while 54% of the cells from untreated cultures were trog+(Fig. 

4.15B, left). Similar trends in survival were observed in cultures of T cell blasts 

recovered from a 90 min trogocytosis assay with MCC-loaded BMDC. While the 

frequencies of trog+ cells were nearly equal in untreated and peptide-stripped + 

supplemented MCC, the cultures where peptide was removed and supplemented 

with Hb showed a 79% reduction in trog+ cell frequencies to only 4.8% trog+, 

compared to the 22.8% trog+ from cultures where MCC was replenished (Fig. 

4.15B, left). By 5 days post-recovery, only 1.2% of CD4+ cells from peptide-

stripped cultures supplemented with Hb were trog+, which was significantly lower 

than the 4.8%, and 5.5% of trog+ cells in untreated, or MCC-supplemented 

cultures, respectively (Fig. 4.15B, right).  

                   Trogocytosis-mediated signaling also appeared to be critical for the 

survival of naïve T cells following activation. In cultures where naïve cells were 

used in an 18-hr trogocytosis assay with MCC:FKBP APC, 33.6% of recovered 

cells immediately after the trogocytosis assay were trog+ (Fig. 4.14C, left). 

Blocking trogocytosed I-Ek led to a significant decrease in the frequency of trog+ 

cells at 3 days post-recovery as only 4.7% of cells from cultures containing 

neutralizing Abs were trog+, compared to 16.5% of untreated cells (Fig. 4C, left). 

By 5 days post-recovery only 0.9% of cells from cultures containing neutralizing 

Abs were trog+, which was significantly lower than the 4.2% of cells from 

untreated cultures (Fig. 4.15C, left). Finally, in cultures of naïve cells recovered 
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from an 18-hr trogocytosis assay with MCC-loaded BMDC, 34.4% of CD4+ cells 

were trog+ immediately following recovery from the trogocytosis assay. At 5 days 

post-recovery, on average, 6.8% of cells from peptide-stripped cultures 

supplemented with MCC were trog+, compared to 4.7% of CD4+ cells from 

untreated cultures being trog+ (Fig. 4.15C, right). The removal of Ag-peptide 

however, led to a significant decrease in the frequency of trog+ cells to only 0.8% 

of cells from these cultures being trog+ cells (Fig. 4.15C, right). These results 

suggest that trogocytosis-mediating is critical for the survival of trog+ cells in the 

absence of exogenous Ag.  

 

Trogocytosis-mediated signaling drives IL-2 expression in trog+ cells 

To examine downstream effects of sustained trogocytosis-mediated signaling  

that could impact the survival of trog+ cells, expression levels of IL-2 and CD25 

(IL-2Rα) were examined, as early IL-2 signaling is critical for T cell activation, 

survival, and proliferation [505-507]. Naïve 5C.C7 CD4+ T cells were used in an in 

vitro 18 hr trogocytosis assay using either MCC-loaded BMDC, or MCC:FKPB 

APC. Five days post-recovery, cells recovered from BMDC were, on average, 

42.5% of the trog+ but only 18.2% of the trog─ cells were expressing both IL-2 

and CD25 (Fig. 4D, left). In cultures where peptide was stripped following the 

trogocytosis assay, the addition of irrelevant Hb peptide resulted in a significantly 

lower frequency (15.2% average) of IL-2+ CD25+ trog+ cells, compared to the 

59.6% average of trog+ cells recovered from MCC-supplemented cultures. While 

the trog─ cells from cultures supplemented with Hb showed a 41% decrease in 
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IL-2+ CD25+ cells compared to untreated cultures, from 24.6% to 14.7% (Fig. 

4.16, third from left). The addition of MCC appeared to have little impact on IL-2 

expression in trog+ cells, leading to an increase from 24.6% in untreated cultures, 

to 25.6% in MCC-supplemented cultures. The addition of MCC had substantial 

impacts on the trog+ cells however, increasing the frequency of IL-2-expressing 

CD25+ cells by 36% to 68.4% of trog+ cells (Fig. 4.16, third from left). Correlating 

with the massive cell death observed in Fig. 4.15, neutralizing trogocytosis-

mediated signaling with anti-I-Ek + anti-CD80 significantly resulted in an 80% 

decrease in IL-2+ CD25+ trog+ cells. From 62.6% of trog+ cells from untreated 

cultures, to only 12.5% of trog+ cells (Fig. 4.16, right). In addition to a decrease in 

frequency, there were clearly lower numbers of trog+ cells in peptide-stripped+ 

Hb (Fig. 4.16D, second from left), and cultures containing neutralizing Abs (Fig. 

4.16, far right), compared to untreated (Fig. 4.16, left), or peptide-stripped 

cultures supplemented with MCC (Fig. 4.16, third from left).  
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             Consistent with the decrease in IL-2 expression, and survival, inhibiting 

trogocytosis-mediated signaling by removing antigenic peptide or blocking the 

signaling with neutralizing Abs led to decreased activation (as indicated by 

CD69) (Fig. 4.17, top). The clear reduction in IL-2 expression resulting from the 

inhibition of trogocytosis-mediated signaling is further made apparent in 

histogram overlays (Fig. 4.17, bottom)  
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In vivo-generated trog+ cells showed a similar phenotype. Ninety-six hours post-

immunization with PCC+SAS, the trog+ adoptively transferred naïve 5C.C7 cells 

expressed higher levels of IL-2 and CD25 compared to trog─ cells from the same 

animals (Fig. 4.18).   
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Trogocytosis-mediated signaling sustains the survival of trog+ cells in an 
IL-2-independent manner 
 
The inhibition of trogocytosis-mediated signaling led to a reduced expression of 

pro-survival cytokines including IL-2 (Fig. 4.16) and IL-21 (Fig. 4.8) by the trog+ 

cells. While trogocytosis-mediated signaling appeared to clearly play a role in the 

survival of the trog+ cells in the absence of APC, the direct impact of 

trogocytosis-mediated signaling vs the presence of survival-associated cytokines 

was unclear. To address this, exogenous recombinant IL-2 (100 U/mL) was 

added to an aliquot of T cell blasts in cultures with, or without, anti-I-Ek/anti-CD80 

neutralizing antibodies. In cultures supplemented with IL-2 alone, there was a 

modest, but significant increase in the number of trog+ cells relative to input 

compared to untreated cultures from 26.5%, to 32%, respectively. The trog─ cells 

showed a greater response to IL-2, showing a survival rate of 23% compared to 

only 9.5% of cells from untreated cultures (Fig. 4.19, left). In cultures where anti-

I-Ek/anti-CD80 neutralizing antibodies were added, addition of exogenous IL-2 

led to significantly increased survival of both the trog- and trog+ cells. However, 

the increased survival was most apparent in the trog- cells, which increased from 

6.2% to 22% relative to input, which was similar to the trog- cell numbers in the 

absence of neutralizing Abs + IL-2. On the other hand, the trog+ cell numbers 

were only partially rescued by supplemented IL-2 in the presence of neutralizing 

Abs, increasing the survival rate from 12% to 18.2%, which was significantly 

lower than the survival rate of trog+ cells in cultures with IL-2 alone. 
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The data in Fig. 4.15 show that trogocytosis-mediated signaling plays a major 

role in the survival of both trog+ and trog─ cells after separation from APC, but 

through different mechanisms. While it appeared that the survival of recovered 

trog─ cells blasts was largely dependent upon exogenous IL-2, trogocytosis-

mediated signaling appeared to be playing a distinct role in the survival of the 

trog+ cells independently of IL-2 (Fig. 4.19).  

 Consistent with previous studies, the trog+ blasts recovered from 

MCC:FKPB APC showed enhanced survival compared to the trog─ cells (Fig. 

4.15, left). In contrast to this pattern, the frequency of naive trog+ cells recovered 

from either MCC:FKBP, or BMDC decreased between 0 and 3 days post-

recovery (Fig. 4.15C). Interestingly, at day 5 the frequency of trog+ cells 

recovered from MCC:FKBP APC had rebounded, while the cells recovered from 

BMDC continued to decrease (Fig. 4.15C). One explanation for these observed 

differences is that the cells more highly activated by BMDC were proliferating at a 

greater rate than the cells that were comparably less-activated by MCC:FKBP. 

As the trogocytosed material was limited to what was acquired during the 

trogocytosis assay, either trogocytosed molecules were being diluted or 
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internalized by the trog+ cells resulting in undetectable levels, or unequal 

distribution of trogocytosed molecules was occurring during the division of trog+ 

cells. It was also possible that the trog─ cells were showing greater rates of 

proliferation.  

 

Trog+ cells rapidly proliferate, and produce trog+ and trog─ progeny 

To ascertain whether the discrepancies in the frequency of trog+ cells in cultures 

where naïve cells were used in the trogocytosis-assay, or BMDC were used as 

APC, a series of experiments was conducted to assess the proliferation, and 

retaining of trogocytosed molecules on proliferating trog+ cells. First, we 

examined the proliferation in trog+ and trog─ cells using CFSE-labeled naïve 

5C.C7 T in an 18 h in vitro trogocytosis assay with MCC:I-Ek APC. For 

comparison, an aliquot of the CFSE-labeled naïve cells was added to anti-CD3 + 

anti-CD28 coated plates at the same time cells were added to the APC during 

the trogocytosis-assay (t= -18 h). Figure 4.20A shows that at 24 hrs post-

recovery, of CD44+ CD4+ cells, a small portion of the trog+ cells and nearly none 

of the trog─ or Ab-stimulated cells had performed a single cells division (Fig. 

4.20A, top). By 48 hrs the majority of the trog+ cells had performed at lest one 

cell division. Meanwhile a noticeably lower frequency of the trog─ cells had 

divided, and Ab-stimulated cells showed a similar proliferation pattern as the 

trog─ cells had undergone one or two cell-divisions (Fig. 4.20A, middle gray). 

Interestingly, at 72 hrs the majority of the trog+ cells remained at 1- 2 divisions, 
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while it appeared that the trog─ and Ab-stimulated cells had continued to divide 

(Fig. 4.20A, bottom).  

 

Antibody-blockade against I-Ek and CD80 dramatically reduced the proliferation, 

and survival of trog+ and trog- cells (Fig. 4.20B), suggesting that trogocytosis-

mediated signaling was necessary for the proliferation of the trog+ cells after APC 

removal. 

 

Compared to naïve cells recovered from MCC:FKPB APC, cells recovered from 

BMDC showed markedly different proliferation patterns. The trog─ cells appeared 

to undergo comparable, if not more rounds of cell division compared to trog+ cells 

at 48 hrs, and similar levels to the trog+ cells by 72 hrs (Fig. 4.21, left). Removal 
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of peptide and supplementation with Hb led to decreased survival of both trog+ 

and trog─ cells, consistent with the findings in Fig. 4.20 (Fig. 4.21A, left), 

however, there was no substantial difference in the extent of proliferation in the 

trog+ cells from Hb-supplemented cultures compared to MCC-supplemented 

cultures (Fig. 4.21 left). Somewhat unexpectedly, at 72 hrs, a higher frequency of 

the trog+ cells from Hb-supplemented cultures had undergone 4-5 rounds of cell 

division compared to trog+ cells from MCC-supplemented cultures (Fig. 4.21B, 

top right). However, in terms of cell numbers, the removal of Ag and 

supplementation with Hb led to a decrease in cell numbers within all cellular 

divisions (Fig. 4.21B, right bottom).  

 

Trog+ cells show increased proliferative responses compared to trog- cells 

The seemingly disproportionate increase in the number of trog─ cells that had 

undergone 3-4 divisions between 48 and 72 hrs (Fig. 4.20) could be due to a 

delay in the proliferation of these cells. Another possibility for this observation 

could be that the proliferating trog+ cells were producing trog─ progeny. To test 
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this, 5-ethynyl-2′-deoxyuridine (EdU)-incorporation was examined in proliferating 

trog+ and trog─ cells. Using a combination of EdU incorporation and Ki-67 Gossel 

et al. have reported a strategy to determine whether a cell is currently undergoing 

cell division or has recently divided but it not actively proliferating. If a cell is 

actively dividing, it will express both Ki-67 and have incorporated Edu. If a cell is 

not expressing Ki-67 but has incorporated Edu, this suggests that the cell has 

recently divided, but is no longer actively proliferating, or a progeny of an actively 

dividing cell [508]. Therefore, if unequal distribution of the trogocytosed 

molecules was occurring during cell division, it would be expected that the trog─ 

cells would contain a high proportion of EdU+ Ki-67─ cells, while a higher 

frequency of the trog+ cells would be both EdU+ and Ki-67+. The data in Fig. 

4.22A show that 48 hrs after naïve 5C.C7 cells were recovered form a standard 

in vitro trogocytosis assay, 25.6% of the trog+, but only 7.4% of the trog─ cells 

were actively dividing, as determined by Ki-67 expression (Fig. 4.21A). At 72 hrs 

post-recovery, 16.5% of the trog+ and 13.1% of the trog─ were expressing Ki-67. 

In comparison, 21% and 12.2% of anti-CD3 + anti-CD28-stimulated cells were Ki-

67+ at 48 and 72 hours, respectively. Between 48 and 72 hrs, the frequency of 

recently-divided (EdU+), Ki-67─ cells increased 3.13-fold in the Ab-stimulated 

cells, and 3.13-fold in the trog+ cells (Fig. 4.22, right, left). The trog─ cells 

however, showed a 5.79-fold increase in this population, which did not fit well 

with the frequency of actively proliferating cells detected at 48 hrs (Fig. 4.22, 

middle).  
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Trogocytosis-mediated signaling enhances the cellular division of trog+ 
cells  
 
As Ag-experienced CD4+ T cells require less stimulation compared to naïve cells 

to induce proliferation [37, 509], trogocytosis-mediated signaling may differently 

impact the proliferation of previously-activated and naïve cells. Due to the 

variability in the size of activated blasts, it is difficult to assess proliferation 

confidently with cell proliferation dyes. Ki-67 was instead used to identify actively-

proliferating cells. It appeared that trogocytosis-mediated signaling was impacting 

the proliferation of previously-activated trog+ cells, as antibody blockade against 

trogocytosed I-Ek and CD80 led to a decrease in Ki-67 in the trog+ cells (Fig. 

4.22B).  
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Trogocytosed molecules are retained through early cell divisions 

While trogocytosis-mediated signaling appeared to be playing a role in driving 

proliferation of lesser activated cells in vitro (Fig. 4.21), it was unclear whether in 

vivo-generated trog+ and trog─ cells would show similar patterns. To examine 

this, naïve CellTrace-labeled 5C.C7 cells were adoptively transferred into naïve 

WT B10.A mice. Six hours later, adoptive-transfer recipients were immunized 

with SAS alone, or PCC+SAS. Spleens were harvested 96 hrs later and cell 

proliferation was assessed by dilution of CellTrace dye. As expected, adoptively 

transferred cells in SAS-only immunized controls did not proliferate in the 

absence of Ag (Fig. 4.23A). In contrast, the transferred cells in SAS+PCC-

immunized mice underwent massive expansion. Interestingly, trogocytosed I-Ek 

and CD80 were clearly present on cells which had undergone fewer (1-5) rounds 

of cell division, but was scarce on cells which had undergone >6 rounds of cell 

division (Fig. 4.23A). Consistent with the phenotype of memory-precursors early 

in the immune response [510, 511], of adoptively transferred CD44+ CD4+ T cells 

that had performed 1-4 cell divisions, expression levels of the anti-apoptotic 

protein Bcl-2 were higher in trog+ cells compared to trog─ cells (Fig. 4.23B, left). 

However, this was not the case in the few trog+ cells that had performed 5+ cell 

divisions, as they displayed similar expression patterns to the trog- cells of similar 

cell divisions (Fig. 4.23B, right).  
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The results in Figs. 4.20-4.23 suggest that trogocytosis-mediated signaling was 

critical for the proliferation of weakly-activated cells, but the extent of proliferation 

in highly activated cells was occurring independently of trogocytosis-mediated 

signaling (Fig. 4.21). Although, it was apparent that trogocytosis-mediated 

signaling was playing a role in the survival of the trog+ cells, particularly those 

that had undergone fewer rounds of cell division (Fig. 4.21B). The 

disproportionate frequency of trog- cells that had divided between 48 and 72 

hours relative to the frequency of cells actively-dividing at 48 hrs (Fig. 4.22A) 

could be due to the increased survival of recently-divided cells. When also 

considering the maintained levels of trogocytosed material (as determined by 

staining intensity), through multiple rounds of cell division, these results raised 

the possibility that these molecules may be unequally distributed to daughter 
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cells during the division of the trog+ cells. Thus, potentially accounting for the 

increase of trog- cells which appeared to have divided multiple times at 72 hrs.  

 

During asymmetric division of trog+ cells, daughter cells that retain 
trogocytosed molecules resemble memory precursors.  
 
In addition to the effector-to-memory transition model, it has been found that 

naïve T cell progeny may become predestined for memory fate during the 

immune synapse through subsequent asymmetric division [329, 491, 512, 513]. In 

this model, the signaling molecules converged at the immune synapse, along 

with high levels of localized TCR and costimulatory signaling, form a region of 

polarity known as the proximal pole. Concurrent with the formation of the immune 

synapse, surface molecules including CD43 and CD45 migrate, and localize at a 

focal point opposite of the immune synapse to form the distal pole complex [70, 

514]. As this axis of polarity is established during the immune synapse, it has 

been proposed that asymmetric division occurs in the first few rounds of cell 

division following activation [329]. In this model, the daughter cell containing the 

proximal pole which received strong TCR and costimulatory signaling from the 

APC becomes an effector cell which continues to proliferate at high rates. 

Meanwhile, the cell containing the distal pole complex are more likely to be 

memory-precursors, which are less terminally differentiated, and do not expand 

as rapidly as the effector cell population [329, 330, 515]. Asymmetric division is 

not limited to naïve T cells, as memory T cells have also been observed to 

asymmetrically divide upon re-challenge [331]. Interestingly, we have previously 
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observed that during the immune synapse, >82% of trog+ cells had trogocytosed 

molecules localized to the distal pole [81] (Fig. 4.24).  

 

 

To examine whether the cells with retained trogocytosed molecules resembled 

memory precursors, we examined Tcf1 expression in trog+ and trog─ cells. In 

asymmetrically dividing CD4+ T cells, Tcf1 has been observed to be retained at 

high levels on the daughter cell resembling TCM precursors [516]. In an influenza 

model, of CD4+ T cells which had undergone only several rounds of divisions, 

Tcf1High cells retained the capacity to self-renew, producing Tcf1-silenced 

daughter cells which resembled terminally-differentiated effector cells, and a 

memory-like sibling cell which maintained high Tcf1 expression [491]. Consistent 

with these findings and the possibility that trog+ cells resemble memory-precursor 

cells, 48 hrs post-recovery from a trogocytosis assay using naïve 5C.C7 CD4+ 

cells, the trog+ cells recovered from MCC:FKBP APC largely maintained high 

Tcf1 expression through 1-3 cell divisions, while the trog─ cells within equal 

divisions expressed low levels of Tcf1 (Fig. 4.25A, top). This pattern was not 

observed in the cells recovered from BMDC, and both trog+ and trog─ cells 

showed lower levels of Tcf1 compared to trog+ cells recovered from MCC:FKBP 
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APC (Fig. 4.25B). Intriguingly, the trog+ cells recovered from BMDC which were 

peptide-stripped and supplemented with Hb, showed higher levels of Tcf1 

compared to the trog+ cells from peptide-stripped cultures supplemented with 

MCC (Fig. 4.25B).  

 

 

 

A similar phenotype was observed in in vivo-generated trog+ cells. Of adoptively 

transferred cells as in Fig. 4.23., in cells that had undergone 1-4 cell divisions 

following immunization with PCC+SAS, the trog+ cells showed higher levels of 
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Tcf1 compared to the trog─ cells (Fig. 4.26). Similar to the trends for Bcl-2 

expression (Fig. 4.23), of adoptively transferred CD44+ cells which had 

undergone >5 rounds of cell division, the difference between Tcf1 expression in 

trog+ vs trog─ cells was less apparent and did not resemble asymmetric 

distribution of Tcf1. However, the trog+ cells still showed 62% higher expression 

of Tcf1 as determined by MFI, compared to the trog─ cells (Fig. 4.26, right).  

 

 

To test the possibility that asymmetric distribution of trogocytosed molecules was 

occurring, naïve 5C.C7 cells were used in an 18 h in vitro trogocytosis assay with 

fluorescent NHS-Sulfo BODIPY-labeled MCC-loaded BMDC. Recovered cells 

were FACS sorted into trog+ and trog─ populations, CFSE labeled, then cultured 

separately in vitro for 72 h. While >95% of the trog+ cells were displaying 

trogocytosed molecules immediately following the FACS sort, by the end of the 

3-day incubation, the frequency of cells displaying trogocytosed molecules 

decreased within each successive cell division (Fig. 4.27, middle). The trog─ 

sorted as expected, did not display trogocytosed molecules within cells of any 

cell division. (Fig. 4.2, right),   
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The above data suggest that the trog+ cells had undergone asymmetric division, 

where one cell retained both the trogocytosed molecules and Tcf1. To confirm 

this, immunofluorescent imaging was performed on naïve 5C.C7 cells 32 hrs 

post-recovery from an in vitro trogocytosis assay with MCC:FKBP APC. Four 

hours prior to fixation and staining, cells were treated with the actin 

polymerization inhibitor cytochalasin D to inhibit cytokinesis. Consistent with the 

data in Fig. 4.27, in >70% of the dividing cell conjugates, the cells with 

trogocytosed molecules also had higher levels of Tcf1. Representative images 

are shown in Fig. 4.28. Interestingly, it also appeared that unlike observations in 

trog+ T cell blasts [412], the majority of naïve trog+ cells had multiple punctate 

spots of trogocytosed molecules. Suggesting that it is possible for a trog+ cell to 

produce more than one trog+ progeny throughout it’s proliferation cycle. 
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Collectively, the data in above strongly suggest that during cell division, at least 

in lesser activated naïve CD4+ T cells, trogocytosed molecules are unequally 

distributed to daughter cells in a manner reminiscent of asymmetric division. In 

this case, the daughter cells which retained the trogocytosed molecules 

resembled memory precursors, while the trog─ progeny did not.  

 

Trog+ cells rapidly increase expression of TFH-associated molecules PD-1, 
CXCR5, and IL-21 upon in vitro re-stimulation 
 
 In addition to extended periods of survival, another important function of memory 

cells is to display rapid recall responses. To test the recall responses of trog+ and 

trog- cells, naïve 5C.C7 cells were used in an 18-hr in vitro trogocytosis assay 

with MCC:FKBP APC. Recovered cells were cultured in vitro for 7 days and then 

re-stimulated for 3 hrs at a 1:1 ratio with MCC:FKBP APC, followed by a 3-hr 

incubation. Following this brief period of re-stimulation, the trog+ cells increased 

in their frequency of PD-1+ CXCR5+ cells by 50%, (from 39.5% to 59.3%), while 
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the trog- cells showed a 32% increase in the frequency of this population. 

Although, at significantly lower overall frequencies compared to the trog+ cells, 

the frequency of PD-1+ CXCR5+ trog- cells increased from 5.36% to 7.06% 

following in vitro re-stimulation (Fig. 4.29). To examine IL-21 expression in the 

context of a recall response, the trog+ cells generated in vivo from the experiment 

in Fig. 4.14 were isolated from spleens of PCC+SAS-immunized mice 28 days 

post-immunization, and were re-stimulated in vitro as in Fig. 4.29A. Here, the 

trog+ cells also displayed rapid expression of IL-21 upon re-stimulation while the 

trog- cells did not. Although, this may be an unfair comparison due to the overall 

lack of a robust TFH-like phenotype displayed by the trog- cells. Regardless, these 

results show that the trog+ cells were able to rapidly upregulate TFH-associated 

markers upon re-stimulation, consistent with a memory-phenotype.  
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In vitro-generated trog+ cells display prolonged survival in vivo, in absence 
of antigen 
 
The results thus far suggested that the trog+ cells displayed characteristics 

consistent with memory-precursor cells. However, the results showing that the 

trog+ cells can produce trog- progeny through asymmetric division, and the 

uncertainty of when trogocytosis occurred in the trog+ cells in vivo made it difficult 

to ascertain the long-term phenotype of the initial trog+ cell. To isolate the time 

frame for trogocytosis to occur to a set duration, and limit Ag to trogocytosed 

molecules, naïve 5C.C7 cells were used in an 18-hr in vitro trogocytosis assay 

with MCC:FKPB.  
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Immediately following recovery, cells were FACS sorted into CD4+ trog+ and 

trog─ populations. Immediately following the FACS sort, 2 x 105 FACS-sorted 

trog+, trog─, or unstimulated 5C.C7 cells were transferred into separate naïve WT 

B10.A recipient mice. An experimental timeline is shown in Fig 4.30A. In line with 

the in vitro data (Figs. 4.1, 4.5), 24 hrs after adoptive transfer, cells recovered 

from the spleens of trog+ and trog─ adoptive transfer recipients showed a 

similarly activated phenotype as indicated by CD69 levels (Fig. 4.30B), and high 

expression of CD44 and low CD62L (Fig. 4.30C).  

Five days post-adoptive transfer, the transferred (MCC:MHCII tetramer-positive 

CD44+) cells that had migrated to the LN of trog─ recipients contained a higher 

frequency of actively-proliferating cells (46.7% on average) as determined by Ki-

67 staining (Fig. 4.31), and had slightly increased numbers (Fig. 4.32) compared 

to the cells from trog+ recipients.  
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Consistent with the in vitro data, on average 73.4% of the transferred cells which 

retained trogocytosed I-Ek and CD80 (which accounted for on average 11% of 

CD44+ MC:MHCII+ cells in the spleen, and 8.5% in the lymph nodes) were 

actively proliferating, compared to 35.4% of the cells without detectable I-Ek / 

CD80 (Fig. 4.31). It also appeared that the trog+ had noticeably higher levels of 

CD44 in the cells recovered from spleens compared to the transferred cells from 

the trog─ recipients (based off of fluorescence intensity) (Fig. 4.31), suggesting 

that the cells from the trog+ recipients had remained highly activated, and that 

those from the trog- recipients were becoming less activated.  

 

It appeared that the trog+ cells more rapidly exited circulation compared to trog+ 

cells, as 24 hours post-transfer, there was a significantly lower frequency of 

transferred cells in trog+ recipients in circulation compared to trog─ recipients 

(Fig. 4.32, left), while similar frequencies of transferred trog+ and trog─ cells were 
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observed in cells recovered from the lymph nodes and spleen (Fig. 4.32, middle, 

right). In support of the in vitro data, the transferred cells in the trog+ recipients 

showed enhanced survival compared to the cells from trog─ recipients, and at 21 

days post-adoptive transfer, there was a significantly higher frequency of 

transferred cells in the spleens of trog+ recipients compared to trog─ recipients 

(Fig. 4.32, right). In support of the in vitro data, the transferred cells from trog+ 

recipients which had retained trogocytosed I-Ek/CD80 also expressed high levels 

of CXCR5, (Fig. 4.33, left) while neither the I-Ek/CD80─ cells in these animals, or 

the transferred cells recovered from trog─ recipients expressed CXCR5 (Fig. 

4.33, left). Similar to the transferred cells in immunized mice (Fig. 4.13), 21 days 

post-transfer, the transferred cells from trog+ and trog─ recipients did express 

high levels of PD-1, although the cells from trog+ recipients showed lower levels 

of PD-1 expression compared to those from trog─ recipients (Fig. 4.33, middle). 

Compared to transferred cells recovered from the trog─ recipients, the cells from 

trog+ recipients expressed higher levels of CCR7, consistent with CD4+ TCM cells 

(Fig. 4.33, right).  
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Consistent with the frequency observed in the immunized WT mice, an average 

of 61.5% of transferred cells in trog+ recipients had retained I-Ek and CD80 

expression on day 21, compared to only 6.95% of the cells from trog─ recipients 

(Fig. 4.34, left). To test the recall ability of the transferred cells, mice were 

immunized with MCC peptide alone or PCC emulsified in SAS on day 21. Forty-

eight hours later, spleens, proximal draining lymph nodes, and skin from the 

injection site were collected. While immunization with peptide alone in the 

absence of high costimulation typically leads to anergy in naïve CD4+ cells [33], 

memory CD4+ cells have been found to respond to injection with a single peptide 

epitope [517]. Interestingly, 47% of the MCC:MHCII+ cells recovered from the 

spleens of trog+ recipients displaying trogocytosed I-Ek/CD80, expressed Ki-67 

after immunization of peptide alone, while only 18% of the cells without 

trogocytosed molecules were Ki-67+. In transferred cells recovered from trog─ 

recipients, only 8.7% of all transferred CD44+ CD4+ cells were Ki-67+. It appeared 
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that proliferation in these cells was induced by peptide, as <1% of the cells from 

either trog+ or trog─ recipients were Ki-67+ on day 21 prior to the immunization. In 

the presence of adjuvant, the transferred cells from trog+ recipients showed only 

a slight increase in the frequency of Ki-67+ cells (49.6% on average) compared to 

MCC peptide-immunization (40.5% average Ki-67+). The I-Ek/CD80-negative 

cells showed a substantial increase in the frequency of actively-dividing cells 

however, from 18% in MCC-immunized animals, to an average of 44.3% in 

PCC+SAS-immunized animals (Fig. 4.34A, middle). Meanwhile, the cells from 

the trog─ recipients responded more robustly to immunization with MCC+SAS 

compared to MCC alone, increasing the total frequency of Ki-67+ transferred cells 

to an average of 15.5%.  
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Notably, 59% of the Ki-67+ cells in trog─ recipients on day 23 had acquired I-Ek + 

CD80, suggesting that these cells performed trogocytosis from APC in vivo and 

more readily proliferated than cells which did not perform trogocytosis (Fig. 
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4.34A, bottom right). This is supported by the fact that cells from trog─ recipients 

on day 21, and those recovered from mice 48 hrs post-immunization with MCC 

alone showed similar frequencies of I-Ek/CD80+ cells (6% and 6.9%, 

respectively), however after immunization with PCC + SAS, 26.7% of cells in 

trog- recipients had become trog+ (Fig. 4.34A, bottom).  

 Interestingly, the cells in the lymph nodes did not display the same pattern 

as those in the spleen, as both I-Ek/CD80 positive, and negative cells from the 

trog+ recipients response to peptide alone, and a lower frequency of the cells in 

the draining LN were I-Ek/CD80+ compared to those in the spleen (Fig. 4.34B). 

However, a noticeable difference was still observed between the cells recovered 

from the trog+ (71% Ki-67+) and trog─ (29% Ki-67+) recipients after immunization 

with MCC (Fig. 4.34B, right). The cells from the trog─ recipients responded to 

immunization with PCC+SAS, and 61% of MCC:MHCII+ cells in these animals 

were Ki-67+ 48 hours post-immunization (day 23), compared to 76% of cells from 

trog+ recipients (Fig. 4.34, right). To address potential TRM cells, skin was 

collected from the immunization site, as well as a portion of skin from the distal 

side of the mouse. Very few MCC:MHCII+ cells were detected in a similar-sized 

portion of the skin distal to the injection site (not shown). However, there was a 

striking difference between the cells in the trog+ and trog─ recipients at the site of 

the immunization (Fig. 4.34C). Using the markers CD69 and CD103 to identify 

TRM cells, of the transferred CD44+ cells in the trog+ recipients, 22.3% of cells in 

MCC-immunized mice, and 62.1% of cells in MCC+SAS-immunized mice 

showed a TRM-phenotype (Fig. 4.34C, top). In contrast, only 6.98% of transferred 
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CD44+ cells in trog─ recipients immunized with MCC, and 13.7% of SAS+PCC-

immunized mice shared this phenotype (Fig. 4.34C, bottom). 

 

To further assess the recall responses of transferred cells, the frequency of 

MCC:MHC+ cells relative to all CD4+ T cells in the spleens of mice at day 21 and 

48 hrs after immunization on day 21, was determined. Immunization with 

PCC+SAS led to a significantly higher frequency of MCC:MHCII-tetramer+ cells in 

naïve WT, trog+ and trog─ recipients compared to the frequencies on day 21. In 

naïve WT animals however, this frequency remained below 0.15% (Fig. 4.35A, 

left). Immunization with PCC+SAS also led to significantly higher frequencies of 

MCC:MHCII+ cells compared to MCC-immunized mice in naïve WT, and trog─ 

recipients, while the difference between MCC:MHCII+ cell numbers in  

PCC+SAS immunized trog+ recipients was found to be significantly greater 

compared to day 21, but was not significantly different compared to MCC-

immunized mice (Fig. 4.35A). This suggests that the response of the Ag-specific 

cells in the trog+ recipients was consistent with memory cells.  

 

Finally, IL-21 expression was examined in cells recovered from the spleens of 

trog+ and trog─ recipients 48 hrs after immunization with MCC or PCC+SAS. 

Despite the apparent increase in proliferation displayed by cells in the trog+ 

recipients after immunization with MCC alone, the IL-21 expression was similar in 

cells from MCC-immunized trog+ and trog─ recipients (Fig. 4.35B, left). The 

transferred cells from the trog+ recipients however displayed a 28% increase in 
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IL-21 expression compared to transferred CD44+ cells from trog─ recipients after 

immunization with PCC+SAS (Fig. 4.35B, right).  

 

 

As the early-memory checkpoint in mouse models typically falls between 21-28 

days after the start of the immune response [518], at 21 days it is difficult to 

confirm that these cells were true-memory cells, which can persist for months to 

years after infection. However, in typical models the early checkpoint has been 

based off of immunization models, where Ag-reserves may persist for weeks, 

and thus making it difficult to determine if the cells were true memory or were 

activated by Ag-reserves. In this system, Ag was limited to the APC during the 

trogocytosis assay, and trogocytosed molecules. Therefore, these results 
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suggest that trog+ cells contain a population of initial cells, or produce progeny, 

that show enhanced survival, and recall responses consistent with a memory-

phenotype. Because in the absence of exogenous Ag the rate of trogocytosis is 

expected to be low, that a substantial percentage of surviving cells in the trog+ 

recipients still displayed trogocytosed I-Ek / CD80 21 days post-transfer (Fig. 

4.34), suggests that the original cells which performed trogocytosis made up a 

major portion of the persisting early memory-like population.  

 

Discussion 

 The ability of CD4+ T cells to differentiate into specialized TH subsets is a critical 

component in generating protective immunity against a multitude of pathogens. 

Despite the central role these cells play in generating adaptive immunity, the 

mechanisms behind CD4+ differentiation are not completely understood. In 

particular, the multi-step signaling process required for TFH differentiation, [519], 

and the mechanisms governing memory T cell formation are largely unknown. 

Here, we set out to investigate the potential role for trogocytosis-mediated 

signaling in TFH differentiation. We hypothesized that, because TFH differentiation 

requires repeat-cognate TCR+costimulatory signaling events, that sustained 

trogocytosis-mediated signaling may promote TFH differentiation after APC 

removal.  

While it has been agreed on that TFH development requires repeat 

cognate interactions, the required source of these interactions has not been 

solidified. The proposed requirement for B cells in the development of TFH is most 
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likely due to the fact that the B cells become the most abundant APC for 

activated T cells in the lymph node following clonal expansion. This is supported 

by the fact that repeated interactions with DC can also drive TFH differentiation 

[213]. Irrespective of the APC type, TFH differentiation requires repeated TCR 

signaling after initial activation [213, 228, 231, 244]. In this system, T cells were 

cultured in absence of APC, but still developed a TFH-like phenotype. This 

strongly suggests that trogocytosis-mediated signaling is capable of driving TFH 

differentiation in the absence of APC. If there were contaminating residual APC 

in the cultures, then it would be expected that a higher frequency of the trog─ 

cells would also be able to develop a TFH phenotype. This is supported by the 

results that the addition of APC to cultures of recovered cells led to a significant 

increase in the amount of CXCR5+ PD-1+ trog─ cells (Fig. 4.7). Somewhat 

unexpectedly, the addition decreased the frequency of CXCR5+ PD-1+ trog─ cells 

compared to cultures containing only recovered T cells. This could possibly be 

due to hyporesponsiveness developed by the T cells, which can occur after 

repeat exposure to APC [520].   

The T cells recovered from the MCC:FKBP APC were highly efficient at 

developing a TFH phenotype, consistent with the positive correlation between 

TCR binding strength and TFH differentiation [521]. That trogocytosis-mediated 

signaling was contributing to the apparent TFH phenotype developed in the trog+ 

cells was further supported by the findings that removal of MCC from 

trogocytosed pMHCII complexes led to a dramatic decrease in CXCR5, PD-1, 

and IL-21 expression.  
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Following adoptive transfer of naïve 5C.C7 cells into naïve animals, and 

immunization with PCC, 3 days -post immunization we found that nearly 80% of 

the PD-1+ CXCR5+ cells were also trog+ (Fig. 4.11). However, the frequency of 

trog+ cells decreased to 40% by 7 days post-immunization. This strongly 

suggests that the trog+ cells are able to more rapidly become TFH compared to 

trog─ cells, while trog─ cells are able to efficiently become TFH given extra time. 

One explanation for these results could be that trogocytosis-mediated signaling 

contributed to the signaling required for TFH differentiation after the trog+ cells 

dissociated from APC. On the other hand, the trog─ cells would require re-

engaging APC to receive sequential TCR signaling, reflected by a delay in the 

differentiation to TFH. The kinetics of the immune response and TFH differentiation 

further support this theory. Because purified populations of CD4+ TCR-Tg T cells 

were transferred into the naïve animal, at early time-points, the number of 

responding B cells would be expected to be low. Therefore, due to the time it 

takes for TFH differentiation to occur (at least 2-3 days in vivo), the trog+ cells 

likely started developing a pre-TFH phenotype shortly after activation by DC 

outside of the B cell follicles. Seven days post-immunization, the host B cells 

would have had time to undergo clonal expansion, and thus effectively drive TFH 

differentiation in the trog─ cells through increased B:T cell interactions. These 

findings raise the possibility that trogocytosis-mediated signaling may have 

significant impacts on the kinetics of GC formation and B cell activation. 

Trogocytosis-mediated signaling appeared to enhance IL-21 expression in 

the trog+ cells, as blocking signaling or removal of Ag from MHCII led to a 
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significant decrease in the frequency of IL-21+ trog+ cells. These results, 

combined with the observation that IL-21 was polarized towards trogocytosed 

molecules, suggest that trogocytosis-mediated signaling may further promote TFH 

differentiation by driving IL-21 expression. The IL-21 produced by the trog+ cells 

may play a separate role in vivo, as IL-21 can impact multiple aspects of T cell 

immunity including maintaining cell survival, proliferation, effector function, and 

memory formation.  

          The observed proliferation of I-Ek/CD80- cells in the LN in response to 

immunization with MCC alone could be due to residual activation in the LN 

compared to the spleen, as a higher frequency of the LN cells were performing 

active cell division, and displayed higher levels of CD44 compared to those in the 

spleen 5 days post-transfer (Fig. 4.34B).  

It also appeared that the cells from the trog+ recipients were able to 

respond to immunization with PCC+SAS in the periphery more readily than the 

cells in the trog─ recipients. This was indicated by a massive recruitment of these 

cells to the site of injection in trog+ recipients compared to the trog─ recipients 

(Fig. 4.34C). Interestingly, these cells resembled TRM, however they were not 

largely present in the injection site of mice immunized with MCC peptide alone, 

suggesting that the presence of these cells may be an artifact of the adjuvant. 

However, it has been shown that human TRM are able to leave the tissue to enter 

circulation and take up residency in other sites. Therefore, it is possible that the 

trog+ cells also produce TRM. Without an initial site of Ag-delivery to induce a 

primary response in this model, it was difficult to assess TRM responses. In the 
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study shown in Fig. 4.14, skin from the injection site was collected at the time of 

harvest (7 and 28 days post-immunization), and no substantial differences in  

MCC:MHCII+ CD69+ CD103+ TRM cells were observed between cells isolated 

from the skin proximal, or distal, to the injection site (data not shown).  

From these experiments, the possibility for T:T presentation between the 

trog+ cells after adoptive transfer into animals cannot be ruled out. However, 

even with this possibility, the results suggest that the trog+ cells produce a more 

robust memory-like population compared to the trog─ cells in absence of 

exogenous Ag and is a novel finding.  

Collectively the results from chapter 4 suggest that trogocytosis-mediated 

signaling plays a role in the generation of cells resembling both TEM and TCM. 

Importantly, the results suggest that trogocytosis-mediated signaling plays a 

critical role early in the response by enhancing the survival and proliferation of 

cells weakly-activated by APC. Such activation may promote Tcf1 expression 

and enhance the differentiation to TFH, or transition to memory [522].  
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Chapter 5  

Discussion 

Although trogocytosis was first observed nearly a half-century ago [362], the 

biological implications of this event were not appreciated until recent decades 

with the discovery that trog+ cells can act as functional APCs through the 

presentation of trogocytosed molecules. T-T Ag presentation after trogocytosis 

can significantly impact the activation state of the responding cell. The various 

effector phenotypes and distinct migratory patterns of trog+ cells add additional 

layers of complexity to models of canonical T cell activation and differentiation. 

The biological implications of trogocytosis-mediated signaling are underscored by 

the fact that trogocytosis occurs at significant frequencies (~10-20%) in 

responding T cells during an active immune response. Collectively, the published 

literature, and the results from this dissertation, demonstrate the clear 

immunomodulatory potential of trogocytosis, and subsequent signaling events. 

 A largely-understudied component of trogocytosis is how this event 

impacts the trog+ cell itself. Studies have shown that irrespective of the context, 

the trog+ cells show enhanced effector ability compared to their trog─ 

counterparts [406][282, 374, 391, 400]. The authors in these studies suggested 

that trogocytosis was the result of a highly activated state in the trog+ cells. While 

the heightened state of activation likely contributed to trogocytosis, the findings 

here suggest that trogocytosis-mediated signaling itself could have been 
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responsible for the observed phenotype in trog+ cells. While activated cells 

perform trogocytosis more efficiently than naïve cells [391], the activation kinetics 

of trog+ cells are not consistent with those of trog- cells after removal of TCR 

stimulation [81,406,412]. This suggests that the trogocytosed molecules impact 

the activation and, potentially effector functions of the trog+ cell. We previously 

reported that T cells can engage their surface receptors with trogocytosed 

signaling molecules to achieve sustained TCR signaling [81]. This signaling 

correlated with a heightened activation state, and enhanced survival of the trog+ 

cells. Because the duration and frequency of TCR signaling can significantly 

impact T cell activation, effector function, and differentiation, it is possible that 

trogocytosis-mediated signaling impacts the trog+ cells beyond allowing for 

sustained survival. The objective of this dissertation was to examine how 

trogocytosis-mediated signaling impacted CD4+ effector function and subset 

differentiation in the context of the trog+ T cell.  

 

Part I. The Mechanisms of CD4+ Trogocytosis 

On the Requirement for Active Signaling in T cell Trogocytosis 

 T cell trogocytosis is largely dependent on active signaling, and primarily 

involves the acquisition of molecules that are bound to ligands on APC. However,  

the acquisition of “bystander” molecules such as MHC class-I have been 

observed on trog+ CD4+ T cells [523]. It has been proposed that such acquisition 

occurs due the proximity of the non-engaged molecules to recycling TCR bound 

to ligands on the APC. Support for this come from the findings by Gu et al., who 
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demonstrated that CTLA-4 knockout nTreg, or iTreg with CTLA-4 neutralized with 

anti-CTLA-4 Abs, acquired their CD80 and CD86 from DC [277]. This 

trogocytosis event was not due to CD28 engagement with CD80/CD86 as 

neutralizing antibody blockade against CD28 did not affect the acquisition of 

CD80 or CD86. Curiously, they also reported that the addition of an endocytosis 

inhibitor (unnamed) to T cell:DC co-cultures did not impact CD80/CD86 

acquisition by the Treg. Thus, they speculated that Treg acquire CD80/86 via an 

unknown mechanism independently of CTLA-4, CD28, or PD-L1 binding, or 

endocytosis. Why they did not examine MHC in this study was unclear. One 

possible explanation for these results could be that CD80/CD86 were transferred 

via APC-derived exosomes that were bound to T cell surface receptors.  

 

APC-Derived Exosome Acquisition as a Mechanism for Trogocytosis 

 The acquisition of pMHC complexes by T cells through APC or tumor-

derived exosomes has been found to confer T cells with antigen-presenting 

ability, and has been proposed as one mechanism of intercellular membrane-

protein transfer [524]. APC-derived exosomes include signaling, and non-

signaling molecules, including lysosomal membrane protein-1 (Lamp-1), CD86, 

CD37,  MHC1, MHCII, and transferrin receptor (TfR) [525-528]. Thus, the 

acquisition of these exosomes is consistent with the presence of non-engaged 

molecules detected on trog+ T cells. In support of this theory, cognate T cell 

interactions with DC or B cells increase the rate of MHCII-rich exosomal 

formation by APC [529]. Furthermore, DC and B cell-derived exosomes can 
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stimulate activated, but not naïve CD4+ T cells both in vitro, and in vivo [529]. 

However, evidence suggests that exosomal acquisition of APC-derived 

molecules is distinct from trogocytosis. For example, pre-treatment of DC with 

the ATPase inhibitor CMA (which also inhibits exosome formation) prior to co-

incubation with CD8+ T cells, led to only a minimal decrease in PD-L1 transfer to 

T cells [375]. However, separation of co-incubated T and DC by a trans-well 

membrane prevented transfer of PD-L1 to T cells [375], suggesting that the PD-

L1 trogocytosis was contact-dependent. In a similar study using human cells, 

while co-cultured DC and T cells resulted in high levels of HLA-DR acquisition, 

separation of T cells and DC by a trans-well membrane inhibited virtually all 

transfer of HLA-DR to T cells [410]. These studies did not account, for the fact 

that contact with T cells induces increased exosomal release by APC [529]. 

Interestingly, when exosomes containing p:MHCII complexes and costimulatory 

molecules were added to cultures of naïve CD4+ T cells, Ag-specific activation 

occurred only in the presence of DC CD80+/CD86+, but was independent of 

MHCII expression by the DC [530]. These results suggest that MHC acquired via 

APC-derived exosomes is only functional upon T cell:APC contact.  

Additional evidence discounting the role of exosomes as the mechanism 

for trogocytosis come from findings with DC whose membranes were labeled 

with the extremely stable lipophilic dye PHK26. Levels of PHK26 on the T cell 

decreased between 6 and 24 h of iTreg co-incubation with DC while, in contrast, 

levels of CD80 and CD86 increased [277]. This suggests that receptor-mediated 

transfer was occurring, rather than absorption of membrane-bound exosomes 
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which would be expected to increase the levels of PHK26 similarly to CD80/86 

[277]. Our previous data using APC-conditioned media also observed minimal 

acquisition of APC-derived exosomes by T cells [287]. In addtion, unpublished 

data from our lab using mild acid treatment of antibodies against trogocytosed 

molecules did not alter the amount of troocytosed molecules associated with a 

trog+ T cell. These data show that the trogoctosed molecules are integrated into 

the T cell membrane, even at early time points, and were not on APC-derived 

exosomes adsorbed to the T cell surface.  

While exosomes may contribute to the amount of transferred material to T 

cells, exosomal transfer alone is unlikely to result in intracellular trogoctosis 

mediated signaling. We, and others have observed trogocytosed molecules in 

distinct, punctate spots on the surface of the T cell. These spots are orders of 

magnitude larger than exosomes (~30-100 nm). Thus, dramatic re-arrangment of 

TCR/costimulatory molecules as well as APC-acquired molecules via exosomes 

would have to occur to form clusters equivelant to those which have been 

visualized. If the observed spots of trogocytosed molecule/TCR complexes were 

formed by T cell signaling events, then abolishing T cell signaling should lead to 

the dispersion of molecules and loss of these spots. Such dispersion was not 

observed in experiments where ZAP-70 signaling was inhibited with the Srk 

kinase inhibitor PP2 [81]. Taken together, the published data suggests that 

intracellular trogocytosis-mediated signaling is not dependent on exosomal 

transfer.   
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Microclusters as a Mechanism for Trogocytosis  

Another potential mechanism for trogocytosis is the transfer of APC 

molecules to the T cell via microclusters. We, and others have observed small 

clusters of MHC being transferred from APC to T cells during the immune 

synapse [397] [81]. In live-cell imaging experiments, it has been observed that 

clusters containing pMHC move away from the immunological synapse and 

migrate to the distal pole upon T cell:APC contact (Fig. 1.15). This transfer event 

is strikingly similar to the formation of the distal pole complex or, the 

“antisynapse” [70, 76]. A perplexing characteristic of the antisynapse is that, 

despite its location at the distal pole, it contains active TCR signaling molecules 

ZAP-70, LAT, PCLy1, P-Tyr, and Lck [76]. It has been proposed that the 

formation of the antisynapse likely involves TCR microclusters which were 

activated by pMHC that move to the distal pole [70]. That microclusters may be 

involved in the active TCR signaling at the anti-synapse is strengthened from the 

fact that TCR microclusters form an adhesion ring composed of LFA-1, focal 

adhesion molecules paxillin and Pyk2, and myosin II (MyoII) [71]. It has been 

proposed that this structure allows microclusters to exclude the suppressive 

molecule CD45 and thus are able to retain active TCR signaling [69, 72, 74]. 

However, even by exclusion of CD45, there is little evidence that the TCR 

proximal signaling complex would be sustained for the duration that has been 

observed at the antisynapse, in the absence of MHC binding and subsequent 

TCR signaling. Coincidentally, we have observed that the clusters of MHC which 
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transfer to the T cell and localize to the distal pole also co-localize with TCR and 

active proximal TCR signaling molecules ZAP-70, Lck, P-Tyr [81]. In fact, the 

images we previously reported are strikingly similar to those of antisynapses (Fig. 

5.1). 

 

 

 

Further support for microclusters as a mechanism for trogocytosis, is that 

microcluster formation is found to be resistant to treatment with PP2 [73]. This 

potentially explains how punctate signaling complexes, or what I will refer to as 

“trogosomes”, were observed after treatment of trog+ cells with PP2 [81]. The 

uncanny resemblance between the antisynapse and our studies on trogocytosis 

in the context of location and active signaling events, is consistent with the 

hypothesis that active-TCR signaling at the antisynapse is driven by pMHC 

complexes bound to the TCR.  
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 The location of APC-signaling molecules on the distal pole of the T cell 

could result in trogocytosis when the T cell dissociates from the APC. In this 

model, the transfer of APC-derived molecules is highly dependent on active 

signaling, consistent with current models for trogocytosis. This would also 

provide an explanation for the observed punctate spots on trog+ cells, which 

would be derived from pre-existing microclusters rather than having to 

independently form from re-expressed trogocytosed molecules. Consistent with 

this possibility is the data from Fig. 3.3 which shows that pre-polarized TH2 cells 

perform trogocytosis at significantly higher frequencies compared to polarized 

TH1, or non-polarized cells. As TH2 cells have been observed to form multi-focal 

synapses which resemble microclusters [83] this morphology could facilitate 

trogocytosis of pMHCII and costimulatory molecules.  

In this proposed microcluster model, it is possible that the acquired 

molecules are endocytosed with recycling TCR. However, if a focal point of 

signaling is already pre-established by the signaling complex formed at the distal 

pole this would promote the migration of newly-bound TCR:pMHC to the site of 

active signaling. This could be an explanation for the observed punctate 

trogosomes detected on trog+ cells days after APC removal (Fig. 3.5).  

           It is possible that highly activated cells are more efficient at tearing off 

membrane from the immunological synapse, as they have higher migration 

patterns and form shorter synapses. Perhaps trogocytosis through this 

mechanism would be more likely to enhance activation and effector functions of 

the trog+ cell. The live-cell imaging should also be further analyzed, as the data 
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show that as the T cell dissociates, the T:APC molecules bound near the dSMAC 

appear to get “pulled in” towards the central point of T:APC contact and torn 

away from the APC by the T cell. This is suggestive that the acquisition of 

microclusters may also occur upon T cell dissociation. 

The current literature has referred to trogocytosis in the context of all of 

the aforementioned mechanisms, however this broad categorization has led to 

contrasting results in not only the mechanisms of trogocytosis, but its biological 

outcomes as well. The microcluster model fits well with our previous results, and 

those in this study, showing that trogocytosis-mediated signaling is sustained for 

up to 72 hrs after APC removal, and leads to increased activation and effector 

cytokine production. In contrast, the acquisition of APC molecules not engaged 

with T cell receptors through bystander endocytosis or exosomes may lead to a 

different phenotype in the context of the trog+ cell. Whether there is a difference 

in the overall result between the different mechanisms of APC-derived signaling 

molecules remains to be determined.  

 

 

 

 

 

 

 
Part II 
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T:T Antigen Presentation and Trogocytosis-
Mediated Signaling in T cell Activation, and 

Immuno-Regulation 
 

The results in this study suggest that trogocytosis-mediated signaling enhances 

the activation state of the trog+ cell independently from activation by APC.  

However, other studies have reported T:T presentation of trogocytosed 

molecules signaling to inhibit the activation of responding cells. The most likely 

explanation for such conclusions is simply, that the trog+ cells which induce 

repressive modes of action are actually Treg, which are highly efficient at 

performing trogocytosis. In such a case, trogocytosis-mediated interactions 

would enhance the trog+ Treg suppressive capabilities rather than provide 

insufficient signaling to induce anergy in activated cells. While some studies 

claim that the trog+ cells which showed repressive functions were “not Treg”, the 

argument for this is questionable. For example, Helft et al. reported that when 

trog+ CD4+ cells were mixed with previously-activated T cells, T:T presentation of 

Ag to activated cells induced responder cell death, but stimulated naïve T cells to 

proliferate. The authors proposed that this was likely due to insufficient levels of 

costimulatory molecules upon p:MHC presentation by trog+ cells. Interestingly, 

when DC were added to cultures containing a mixture of trog+ and either 

activated or naïve T cells, the presence of trog+ cells inhibited the activation of 

activated, but not naïve cells, compared to controls which did not contain trog+ 

cells [429]. Firstly, activated cells require less stimulation than naïve T cells to 

maintain an activated state, thus the argument for insufficient stimulation for 
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naïve vs activated cells is not sound. Second, if insufficient stimulation by 

trogocytosis-mediated signaling was the reason for activated cells to become 

inactive, the addition of APC to mixed trog+/trog─ cultures should have rescued at 

least some of the phenotype. Rather than determining the phenotype of the trog+ 

cells, it was suggested that because the suppression of activated cells occurred 

in an Ag-specific manner, the trog+ cells were not Treg, which function in an Ag-

independent manner. In complete contradiction to this reasoning, a study by 

Bacheli et al found that Treg efficiently perform trogocytosis and formed contacts 

with responding T cells leading to a contact-dependent mechanism for 

immunosuppression by trog+ Treg. [432]. In addition, three years prior to the 

publication by Helft et al. it was published that Treg perform contact-dependent 

immunosuppression through granzyme B release onto ligated cells [296]. While 

insufficient levels of trogocytosed costimulatory molecules are likely to induce 

anergy, inadequate phenotyping of the trog+ cells in previous studies has 

resulted in a convoluted consensus of the impacts of non-Treg T:T presentation.  

Our results suggest that in effector CD4+ cells, trogocytosis-mediated 

signaling enhances the activation of the trog+ cells (Figs. 3.1, 4.1). This is 

consistent with a role for trogocytosis signaling in the heightened state of 

activation observed in trog+ cells from other studies. The sustained activation 

observed here occurred in the context of peptide bound to MHCII. This timing is 

the average t-1/2 half-life for peptide binding to MHC is ~72-96 hours, which is 

consistent with the kinetics of trogocytosis-mediated signaling we have observed 

in the activation state of trog+ cells recovered from BMDC, or other APC with 
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non-covalent peptide. At later time-points, as peptide dissociates from MHC, 

engagement with a combination of empty MHC and pMHC complexes would be 

insufficient to trigger T cell responses.  

Trogocytosis-mediated signaling also involves costimulatory receptor 

signaling, which could also contextually lead to differences in TH subset 

differentiation, for example, the acquisition of ICOS-L, and OX40L and 

subsequent trogocytosis-mediated signaling promoting a TFH phenotype. 

Costimulatory signaling through CD28 in the absence of TCR signaling has been 

found to be sufficient to induce the nuclear translocation of NF-κB [531]. Thus, as 

peptide dissociates from the MHC and TCR signaling dcreases, co-stimulatory 

signaling may be playing a larger role in the apparent phenotype at later time 

points.  

 

Part III 
Biological Implications of Intracellular Trogocytosis-

Mediated Signaling 
 

Implications of Trogocytosis-Mediated Signaling and a TH2 Phenotype 

The strong correlation between trogocytosis and the subsequent TH2 phenotype 

observed in chapter 3 supports the hypothesis that trogocytosis-mediated 

signaling plays a role in T cell effector function and subset differentiation. In cells 

that are weakly activated by APC (which also promotes TH2 differentiation), 

trogocytosis-mediated signaling could help overcome the threshold of signaling 

required for T cell survival and activation. In recently activated cells, or TH2 

effector cells, the production of IL-4 driven by trogocytosis-mediated signaling 
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could enhance cell survival [458]. By driving TH2 differentiation, trogocytosis-

mediated signaling could further promote the survival of the trog+ cells by 

increasing their resistance to Treg suppression. It has been found that TH2 cells 

are resistant to galectin-mediated apoptosis by Treg, while TH1 and TH17 are 

susceptible [299]. The TH2 phenotype could also aid in preventing an exhausted 

phenotype from sustained trogocytosis-mediated signaling as TH2 cells suppress 

the expression of the apoptosis-inducing antigen FAS Ligand, making them less 

susceptible to activation induced cell death (AICD) [532]. On the other hand, TH1 

cells are highly susceptible to AICD [533]. Interestingly, TH2, but not TH1, cells 

have been shown to be able to revert from an anergic state to resume effector 

functionality [459], which may promote the transition of TH2 cells to memory. 

These characteristics may be a reason for the observed bias for trogocytosis-

mediated signaling to drive a TH2 phenotype, over a TH1 or TH17 phenotype. The 

high susceptibility of TH1 cells to Treg suppression and AICD may also help 

explain the extremely low frequency of TH1 trog+ cells at later time-points.  

 The implications of trogocytosis-mediated signaling and development of a 

TH2 phenotype were discussed in detail at the end of chapter 3. One additional 

point of emphasis should be made regarding this phenotype in the context of 

solid tumors. Increasing evidence has been found from both animal studies and 

samples from human patients that trogocytosis occurs at high rates in solid tumor 

environments and by multiple cell types [388, 389, 399, 435, 534, 535]. In these 

cases of a localized tumor environment, a TH2 phenotype driven by trogocytosis-

mediated signaling could inhibit TH1 effector functions, and the activation of naïve 
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CD4 T cells. TH1 responses are generally considered protective in tumor models. 

As Ag is removed from tumor cells the responding T cells would receive weaker 

TCR signals from tumor cells or APC, leading to imbalanced TH2 differentiation 

and augmenting a localized TH2 environment. This could lead to generation of a 

non-protective humoral response. Effective immunotherapy against solid tumors 

has not yet been developed. The results from this study suggest that the 

differentiation/effector cytokine production by CD4+ trog+ T cells in the tumor 

microenvironment is worthy of consideration in future strategies to combat solid 

tumors.  

 

Trogocytosis-Mediated Signaling in the Apparent TFH Phenotype  

The phenotype observed in the trog+ cells in chapters 3 (TH2) and 4 (TFH) 

overlap in that both of these subsets specialize in providing B cell help. The 

differentiation towards TH2 could ultimately promote TFH differentiation by 

increasing the proximity of the T cell to the B cell and increasing the likelihood of 

interactions with cognate B cells. In addition, TH2 cells have been shown to 

readily become TFH themselves [148, 231, 238]. In these studies, trogocytosis-

mediated signaling drives cells towards a TFH-like phenotype, while still retaining 

qualities of TH2. This possibility is supported by observations that TFH-like cells 

can concurrently express Bcl-6 and GATA3 [148], and both TH2 and TFH cells 

commonly express IL-4 [234, 238, 448, 481, 536]. It is temping to conclude that 

the early TH2 phenotype developed by the trog+ cells may act as a favorable 

intermediate for the TFH phenotype observed at later time-points.  
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                An interesting observation from the results in chapter 4 was, in vivo, 

the trog+ cells developed a TFH-phenotype more readily than trog─ cells (Fig. 

4.11). In addition, when cultures of cells recovered from the trogocytosis assay 

were supplemented with APC, a greater frequency of the trog+ cells displayed a 

TFH-like phenotype compared to the trog─ cells (Fig. 4.7). These results suggest 

that the trog+ cells were more efficient at becoming TFH upon initial priming by 

APC compared to trog─ cells. This also raises the possibility that trogocytosis-

mediated signaling may have significant impacts on the kinetics of GC formation 

and B cell activation. By rapidly upregulating high levels of CXCR5 and 

producing high levels of IL-21 (Figs. 4.2-5), the trog+ cells could rapidly provide 

help to the B cells to increase Ab production, affinity maturation, class switching 

and proliferation to further increase the chances of B:T cell interactions early 

during the effector phase of the immune response. This is an area of active 

inquiry in the Wetzel lab. 

 It is also likely that trogocytosis-mediated signaling would have significant 

impacts on TFH differentiation in cases of low Ag. If a low number of APC 

displaying cognate-Ag were present, Ag-specific T cell:APC interactions would 

be less likely to occur. The current models of TFH differentiation require 2 or more 

distinct T-APC interactions. However, the necessity for additional APC could be 

circumvented by sustained trogocytosis-mediated signaling after the first 

interaction, thus making the trog+ cells more likely to differentiate to TFH than the 

trog─ cells.  
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Finally, trogocytosis-mediated signaling also resulted in the sustained 

expression of IL-21, and IL-4 by the trog+ cells (Figs. 3.3, 4.5). This is important 

because the initial T-DC interactions that result in pre-TFH cells do not induce IL-

21 expression, which has been proposed to occur only after subsequent 

interactions with B cells. This implies the Trog-mediated signaling is contributing 

to full TFH differentiation. It is possible that the trog+ cells would be more efficient 

TFH early in response by secreting high amounts of these cytokines in the GC 

without requiring cognate B cell interactions. Furthermore, if trogocytosis-

mediated signaling can drive TFH differentiation in the absence of B cells, then 

the trog+ cells could act also as extra-follicular TFH-like cells, that readily provide 

help to B cells outside of B cell follicles/GCs.  

The sustained activation and high production of IL-4 and IL-21 by trog+ 

cells could also play a major role in humoral autoimmunity. Hyperreactive TH2 

and TFH responses play a major role in Ab-mediated autoimmune diseases such 

as myasthenia gravis, autoimmune thyroiditis, Sjögren’s syndrome, rheumatoid 

arthritis (RA), multiple sclerosis, SLE, ulcerative colitis, Crohn's disease, 

ankylosing spondylitis (spinal arthritis), and type 1 diabetes [245, 246]. 

Interestingly, extrafollicular cells, which resemble TFH, have been found to be key 

mediators in such autoimmune diseases by forming ectopic lymphoid structures 

with B cells to induce class switching, affinity maturation, and high antibody 

production [537]. These structures have been observed in patients with RA [538], 

and have shown to play a major role in progression of SLE [539]. It is possible 
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that trogocytosis-mediated signaling could be contributing to the TFH-like 

phenotype of these cells outside of the GC.  

 

IL-21 promotes T cell Activation, Survival, Effector Function, and Memory 
Generation 
 

The high production of IL-21 by trog+ cells has biological implications 

beyond driving a TFH phenotype and providing B cell help. IL-21 may contribute 

to the sustained survival displayed by the trog+ cells, as IL-21 has been shown to 

be critical for the survival of activated CD4+ and CD8+ T cells in cases where IL-2 

is limited [540]. Is it also possible that IL-21 production by trog+ cells aids in their 

ability to sustain effector functionality, as addition of IL-21 has been shown to 

protect T cells from suppression by Treg [541]. In CD8+ T cells, IL-21 has been 

shown to preserve effector function in exhausted cells, and presence of IL-21-

producing CD4+ T cells has been shown to enhance Ag-presentation and the 

generation functional anti-tumor CTL [499]. This raises the possibility that IL-21- 

producing trog+ cells may also play an important role in anti-tumor immunity. 

Consistent with the results in chapter 4, IL-21 production driven by trogocytosis-

mediated signaling may aid in the transition of trog+ cells to memory, as IL-21 is 

critical for the formation of CD4+ and CD8+ memory T cells [440, 489].  

 

Tcf1 is a Common Feature in TH2, TFH, and Memory Cells 

A shared feature between the TH2, TFH, and memory-precursor 

phenotypes observed in the trog+ cells here is expression of the repressive 

transcription factor T cell factor 1 (Tcf1). The results in chapter 4 show that the 
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trog+ cells displayed higher levels of Tcf1 compared to trog─ counterparts, and it 

is possible that Tcf1 was playing a central role in the observed differentiation 

patterns.  

                Tcf1 likely contributed to the TH2 phenotype observed in chapter 3, as 

Tcf1 suppresses IFNγ and IL-17 expression, and it enhances the expression of 

GATA-3 [9, 244]. Consistent with the results from chapter 4, Tcf1 also is critical in 

TFH differentiation by regulating Blimp1 expression and repressing IL-2 signaling 

to promote the expression of Bcl-6 [227]. The high levels of Tcf1 expression in 

the trog+ cells may explain their ability to develop a TFH-like phenotype in the 

presence of high levels of IL-2. In addition, in a viral model Tcf1 had a critical role 

in TFH development, and was required for memory T cell formation [542]. Human 

lymph nodes have also been found to contain memory T cells which maintain 

high expression of TCF1, and these cells show superior functional potential 

compared to TCF1low memory cells [543]. Similar to the phenotype of the trog+ 

cells in chapter 4, during T cell asymmetric division Tcf1 is inherited by the distal 

daughter cell and correlates with self-renewal and the transition to memory [491]. 

 The regulation of Tcf1 is also consistent with a model in which 

trogocytosis and trogocytosis-mediated signaling are correlated with weaker TCR 

signaling. Strong TCR signaling has been shown to repress Tcf1 expression 

through high levels of PKCθ activation [522]. In addition, inflammatory cytokines 

such as IL-12 can suppress Tcf1 activation and drive effector differentiation 

[544]. It is possible that the IL-4 expression driven by trogocytosis-mediated 

signaling acts to shield the trog+ cells from inflammatory cytokines through a 
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negative-feedback loop and aids in their progression to become a memory cell. 

The compelling correlation between Tcf1 function in each of the phenotypes 

observed in trog+ cells in this study suggest that Tcf1 plays a central role in T cell 

differentiation via trogocytosis-mediated signaling. 

 

Trogocytosis-Mediated Signaling in CD4+ Memory Generation 

Trogocytosis-Mediated Signaling in Effector-to-Memory Transition 

Our previous results [81], and results from this study, show that despite similar 

activation by APC, the trog+ cells display superior survival compared to trog─ 

cells after APC removal (Fig. 2.1). Results in chapter 4 show that trogocytosis-

mediated signaling was necessary for the high levels of IL-2 expression by the 

trog+ cells, which was a major contributor the survival of both trog+ and trog─ cells 

(Fig. 4.19). These results suggest that trogocytosis-mediated signaling can 

promote effector-to-memory transition, as it has been found that autocrine IL-

2/IL-2R signaling induced by late-cognate interactions with APC are required for 

memory transition [317]. As mentioned above, it is also likely that the IL-21 

produced by the trog+ cells would aid in the transition to memory, as IL-21 has 

been found to be critical in CD4+ memory formation [440]. 

The sustained TCR downmodulation by the trog+ cells also has 

implications for memory transition. While trogocytosis-mediated signaling may be 

sustained at a level which promotes survival and licensing to become memory, 

subsequent interactions with APC may drive terminal effector differentiation of 

the trog+ cell. By maintaining low levels of surface TCR, the chances of 
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subsequent interactions between the trog+ cells and APC would be decreased, 

thus favoring memory formation over terminal-effector differentiation.  

 Currently, the mechanisms which allow memory cells to persist after Ag 

clearance are not well defined. The data presented here raise the possibility that 

trogocytosis-mediated signaling plays a role in the sustained survival of the trog+ 

cells and subsequent effector-to-memory transition.   

 

Trogocytosis-Mediated Signaling in T cell Memory Generation via 
Asymmetric Division 
 
The results in chapter 4 show a strong correlation for trogocytosis and 

asymmetric division. The presence of trogocytosed molecules on the cell 

resembling the distal daughter cell during asymmetric division could be 

established during the immunological synapse. However, our results showed that 

it was apparent that trogocytosis-mediated signaling enhanced the survival of 

trog+ cells and was critical for the proliferation, and survival of the lesser 

activated cells. The initial description of asymmetric division and memory 

development suggested differential signaling at the synapse and the distal region 

of the cell set up the asymmetry. Our imaging experiments show reduced, but 

present, signaling at the distal pole associated with trogocytosed molecules. This 

may have major biological implications in the context of memory formation, as 

cells which receive stronger signaling develop terminally-differentiated effector 

cells, while the cells which receive less intense signaling upon activation retain 

high memory-potential. 
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             In addition to promoting the survival of cells which received weaker 

signals from APC, it is possible that trogocytosis-mediated signaling plays a role 

in the asymmetric division of cells. An unknown variable in the model for 

asymmetric division is how a T cell which has been separated from an APC for 

several rounds of cell division is able to maintain its axis of polarity established at 

the immune synapse. One proposed mechanism is strong PI3K signaling and the 

formation of the proximal TCR signaling complex established this polarity [513]. 

However, this still does not explain how the polarity is maintained long after the T 

cell separates from the APC and has undergone multiple rounds of cell division. 

It is possible that the sustained trogocytosis-mediated signaling at the distal pole 

complex/antisynapse is responsible for maintaining this polarity.  

 

Proposed Model for the Presented Results 

 The phenotypes displayed by the trog+ cells in this study can be centered 

around a few common mechanisms, all of which can enhance the survival of the 

trog+ cell. In the context of trogocytosis-mediated signaling, the most obvious 

factor is the signaling itself. The results in this dissertation show that 

trogocytosis-mediated signaling can influence the activation, proliferation, and 

survival of the trog+ cell after APC removal. In addition, the primary cytokines we 

found trogocytosis-mediated signaling to promote were IL-2, IL-4, and IL-21. 

These cytokines are all able to promote CD4+ T cell survival, and depending on 

the context of TCR/costimulatory signaling, could differently impact the effector 

functions and differentiation of the trog+ cell. For example, strong trogocytosis-
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mediated signaling in the presence of IL-21 could lead to TFH differentiation, while 

weaker signaling would further promote IL-4 production. IL-4 in the context of 

trogocytosis-mediated signaling could then drive GATA-3 expression and TH2 

differentiation. Trogocytosis-mediated signaling could also enhance the T cell 

memory pool through the survival of memory-precursors formed through 

asymmetric division. By rapidly, and sustainably, producing high levels of IL-2 the 

trog+ cells could aid in the proliferation of not only the trog+ cell, but the 

surrounding trog─ cells as well. Later in the immune response IL-2 and IL-21 

have been found to be critical in generating a stable memory T cell population 

from effector cells, again, in the context of TCR signaling. The common theme in 

these potential outcomes, is these are all mechanisms that could enhance the 

survival of the trog+ cell through potentially self-sustainable mechanisms. 

              Throughout this dissertation I have also proposed that trogocytosis-

mediated signaling of relatively weak strength, at least when compared to 

signaling from interaction with APC. This hypothesis is supported in that, weak 

TCR signaling can drive TH2-differentiation, and promote memory formation, 

which is consistent with the phenotypes observed in trog+ cells in this study. TH2 

cells display superior survival mechanisms compared to inflammatory subsets 

such as TH1 and TH17. It is possible that the survival of the individual cell would 

be enhanced through phenotypic changes towards a less inflammatory-

associated subset such as the TH1 to TH2 conversion seen in Fig. 3.7 or become 

a memory T cell as proposed in chapter 4. Weak signaling also promotes Tcf1 

expression, which as mentioned above, can drive TFH, TH2, and memory T cell 
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formation. In addition, it is likely that strong trogocytosis-mediated signaling 

would lead to T cell exhaustion. Thus, the surviving trog+ cells are primarily those 

receiving a sustainable level of continual signaling.  

 This raises the question of whether the weak signaling by trogocytosis-

mediated signaling drives phenotypes, or simply maintains the survival of cells 

programmed towards a particular subset by APC. Both of these possibilities are 

likely scenarios.  

In an in vitro system where transgenic cells display uniform TCR and APC 

which display the same peptide antigen, if all T cells encounter Ag and are 

similarly activated, why do some cells perform trogocytosis while others do not? 

In this scenario, a major variable is the duration of contact between T cell and 

APC. If this is the case, then why did the trog+ cells display a phenotype 

associated with weaker T cell signaling (TH2), while the trog─ cells displayed a 

phenotype associated with stronger signaling (TH1)? These data are seemingly 

contradictory to the published data showing that T cell trogocytosis is associated 

with a heightened state of activation, which is also what was observed here, as 

indicated by CD69 levels in the trog+ and trog─ cells (Figs. 3.1, 4.1). 

 One possible example is that the acquisition of pMHC/costimulatory 

molecules occurs via microclusters. Microclusters can localize to the distal pole 

rapidly upon T:APC contact, but become recruited to the immunological synapse 

within minutes. Therefore, if a T cell were to form a short-lived synapse and 

spontaneously dissociate before the microclusters integrate into the SMAC, this 

would result in the transfer of pMHC/costimulatory molecules to the T cell. 
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Consequently, in the in vitro system used here, it is likely that a shorter synapse 

would also be associated with weaker TCR signaling events. The weaker 

signaling would allow the trog+ cells to retain high Tcf1 levels which could 

promote a TH2 and/or TFH phenotype, effector-to-memory transition, or memory-

precursor formation through asymmetric division. In contrast, longer-lived 

synapses would allow extra time for pMHC complexes in these microclusters to 

migrate back towards the immune synapse and thus would be less likely to be 

acquired by the T cell. The extended duration of the synapse would likely also 

subsequently lead to stronger signaling, providing an explanation for the 

predominant TH1 phenotype and nearly exclusive IFNγ expression by the trog─ 

cells observed in chapter 3.  

In addition, the morphology of microclusters granting them ability to 

exclude regulatory molecules allows them to sustain active signaling for longer 

durations compared to TCR in the sMAC. This could also play a significant role in 

the sustained trogocytosis-mediated signaling observed in this study. 

     If a weaker signal promotes TH2 and memory generation, then why do 

the trog+ display equal, if not greater levels of CD69 compared to the trog─ cells 

immediately after recovery from APC?  Figures 3.1 and 4.1 show that the trog+ 

cells not only maintained high CD69 expression after APC removal, but levels of 

CD69 increased over subsequent incubation. This strongly suggests that 

trogocytosis-mediated signaling was driving CD69 expression, as in absence of 

stimulation, CD69 levels peak within 24 hours of stimulation. Therefore, it is 

possible that compared to the trog─ cells, the trog+ cells were not as activated by 
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the APC, but this was not reflected in their activation state due to trogocytosis-

mediated signaling augmenting CD69 expression in the trog+ cells.   

This proposed models is intended to serve as an explanation for the 

results obtained in this study, however as described in earlier sections, the broad 

consequences of trogocytosis-mediated signaling are likely context dependent.  

 

Outro  

As the number of identified TH subsets continues to grow, and plasticity 

between differentiated subsets is becoming more apparent, determining the 

exact mechanisms governing TH differentiation has become a challenging topic 

of research. In particular, the multi-step processes involved in the generation of 

TFH comes with extra layers of complexity. In addition to TH differentiation, the 

mechanisms which drive memory formation are largely unknown. This combined 

lack of knowledge has been a major roadblock in vaccine design and efficacy, 

and anti-tumor immunotherapy. Therefore, improving our understanding of the 

mechanisms governing the differentiation of effector subsets, and memory cells 

are of paramount importance in human health. The results here provide insight 

into a novel mechanism for CD4+ T cells to differentiate towards TH2 and/or TFH 

in the absence of further interaction with APC. They also provide compelling 

evidence for trogocytosis-mediated signaling to play a role in the generation of 

CD4+ memory cells through effector-to-memory transition, and asymmetric 

division.   
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          I will end with a few questions for speculation. Could there be a distinct 

phenotype of T cell which displays all of these characteristics? Is trogocytosis 

simply a common, but understudied mechanism in the differentiation of these 

subsets?  And finally, does weak TCR signaling itself promote a TH2 phenotype 

and memory formation, or does weak TCR signaling actually promote 

trogocytosis? 

 

 

 

Future Directions 
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To address whether a shortened T cell:APC contact leads to increased 

trogocytosis via microclusters, additional live-imaging experiments should be 

conducted over a wider time-course to observe the rate of dissociation in 

comparison to the MHC that remains on the T cell microclusters. Additionally, 

collecting the cells which spontaneously dissociate from APC at different time 

points for immediate analysis, and assessment of the downstream phenotype will 

help address the hypothesis that shorter T cell:APC contact duration favors 

trogocytosis and memory cell generation.  

 

While the differentiation of previously-activated trog+ cells in chapter 3 was 

towards a TH2 phenotype, this could be an artifact of the APC used in the 

system. While a greater frequency of the trog+ cells from BMDC produced IL-4 

compared to the trog─ cells, the frequency of IL-4+ trog+ cells was substantially 

lower in cultures from BMDC vs MCC:FKPC APC. This is likely due to the 

weaker activation state induced by the FKPB:APC compared to BMDC which has 

been shown to promote TH2 differentiation. In addition, other model systems 

should be utilized with pathogen-associated antigenic proteins in in vivo studies, 

or the addition of different agonists which trigger separate TLR/RLR (PRR 

receptors) to observe whether the TH2 phenotype of trog+ cells holds true in 

inflammatory settings which promote a TH1 phenotype.    

 

While we observed a phenotype in the trog+ cells consistent with TFH, it was not 

actually demonstrated that the trog+ cells were indeed TFH, as defined by their 
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ability to help B cells. Further studies to examine the functional role of trog+ cells 

in the help of B cells should therefore be conducted to confirm this phenotype. 

Assays should include B cell help assays containing mixtures of trog+ and trog─ 

FACS sorted cells to assess B cell activation, class switching, and proliferation. 

To assess the migratory location, FACS-sorted trog+ and trog─ cells may be 

labeled with different dyes and adoptively transferred in to mice 3-5 days 

following immunization with either a cognate or irrelevant Ag. Histology on the 

lymph nodes to observe the proximity of the trog+ cells and trog─ cells to B cell 

follicles can be assessed 12-24 hours post-transfer, and 48-72h post-transfer to 

also stain for Ig class switching proximal to the trog+ or trog─ cells. If the trog+, but 

not trog─ cells migrate to the B cell follicle/GC in animals immunized with 

irrelevant Ag, this would suggest that the trog+ cells are able to home towards B 

cell follicles independently of cognate B cell interactions. The role of trogocytosis-

mediated signaling through costimulatory molecules shown to be involved in TFH 

differentiation such as ICOS:ICOS-L and OX40:OX40-L interactions, should also 

be assessed. The acquisition of these molecules is likely to impact IL-21 and Bcl-

6 expression through trogocytosis-mediated signaling. 

 

It is also possible that trogocytosis-mediated signaling could lead to the 

generation of extrafollicular cells displaying a TFH-like phenotype, including IL-21 

secretion, which have been observed in other studies [242]. This is a possibility 

that should be examined further, as this would be an area where trogocytosis-

mediated signaling would be most influential on the immune response, as 



227 
 

opposed to GCs where the all of the CD4+ T cells in proximity would have access 

to APC contact.  

 

In the context of asymmetric division, it is possible that the axis of polarity are 

maintained by trogocytosis-mediated signaling at the distal pole. This is an 

intriguing hypothesis that should be explored further. While it was difficult to 

ascertain whether this possibility was true due to the massive cell death and 

decreased proliferation of the trog+ cells when trogocytosis-mediated signaling 

was neutralized with anti-I-Ek/CD80 antibodies, it is possible that the 

supplementation of sufficient survival cytokines would allow the T cells to survive 

and proliferate long enough to examine this possibility. I did find some evidence 

for reduced asymmetric distribution in the few cells which divided in cases where 

trogocytosis-mediated signaling was neutralized (data not shown). However, due 

to extremely low cell numbers, I cannot conclude with confidence that 

trogocytosis-mediated signaling promotes asymmetric division.  

 

Following up with the asymmetric division model, another interesting possibility is 

the potential role for the molecule CD43. Thought to be due to its repressive 

activity and physically large size, CD43 has been observed to become excluded 

from the immunological synapse, and travel to the distal pole complex during the 

immune synapse. Interestingly, anti-CD43 Ab-induced CD43 signaling alone in 

TH2 cells led to IL-4 production, increased proliferation, and CD69 and CD25 

upregulation [545]. CD43 signaling has also been found to act as a costimulatory 
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molecule, acting independently of CD28 to enhance T cell activation, particularly 

in low levels of TCR signaling. High levels of CD43 signaling have been shown to 

inhibit TCR/CD3-mediated apoptosis, which may aid in the survival of trog+ cells 

expressing pMHC. Due to its physical size, CD43 has also been proposed to 

inhibit cell:cell interactions, and thus could prevent MHC-recognition and killing of 

trog+ by CTL. The role of CD43 in the activation, differentiation, and survival in 

the context of trog+ cells is worth examining further. 

 

Signaling through Notch proteins may also play a role in trogocytosis. These 

previously overlooked molecules have been shown to play significant roles in T, 

and other cell development and activation. Interestingly Notch signaling has been 

found to be important in activating the long isoforms of Tcf1, which promote TFH 

differentiation and are critical for memory formation, at least in the context of a 

viral model [542]. Therefore, the presence of these molecules should be 

assessed on trog+ cells, as well as determining whether they play a role in 

trogocytosis, and/or trogocytosis-mediated signaling.  

 

In the context of Tcf1, the Wnt/-catenin pathway is an important regulator of 

Tcf1 and should be further examined in the context of trogocytosis-mediated 

signaling.  
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